Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * raid5.c : Multiple Devices driver for Linux
   3 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   4 *	   Copyright (C) 1999, 2000 Ingo Molnar
   5 *	   Copyright (C) 2002, 2003 H. Peter Anvin
   6 *
   7 * RAID-4/5/6 management functions.
   8 * Thanks to Penguin Computing for making the RAID-6 development possible
   9 * by donating a test server!
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21/*
  22 * BITMAP UNPLUGGING:
  23 *
  24 * The sequencing for updating the bitmap reliably is a little
  25 * subtle (and I got it wrong the first time) so it deserves some
  26 * explanation.
  27 *
  28 * We group bitmap updates into batches.  Each batch has a number.
  29 * We may write out several batches at once, but that isn't very important.
  30 * conf->seq_write is the number of the last batch successfully written.
  31 * conf->seq_flush is the number of the last batch that was closed to
  32 *    new additions.
  33 * When we discover that we will need to write to any block in a stripe
  34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
  35 * the number of the batch it will be in. This is seq_flush+1.
  36 * When we are ready to do a write, if that batch hasn't been written yet,
  37 *   we plug the array and queue the stripe for later.
  38 * When an unplug happens, we increment bm_flush, thus closing the current
  39 *   batch.
  40 * When we notice that bm_flush > bm_write, we write out all pending updates
  41 * to the bitmap, and advance bm_write to where bm_flush was.
  42 * This may occasionally write a bit out twice, but is sure never to
  43 * miss any bits.
  44 */
  45
  46#include <linux/blkdev.h>
  47#include <linux/kthread.h>
  48#include <linux/raid/pq.h>
  49#include <linux/async_tx.h>
 
  50#include <linux/async.h>
  51#include <linux/seq_file.h>
  52#include <linux/cpu.h>
  53#include <linux/slab.h>
  54#include <linux/ratelimit.h>
 
 
 
 
 
  55#include "md.h"
  56#include "raid5.h"
  57#include "raid0.h"
  58#include "bitmap.h"
 
  59
  60/*
  61 * Stripe cache
  62 */
  63
  64#define NR_STRIPES		256
  65#define STRIPE_SIZE		PAGE_SIZE
  66#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
  67#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
  68#define	IO_THRESHOLD		1
  69#define BYPASS_THRESHOLD	1
  70#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
  71#define HASH_MASK		(NR_HASH - 1)
  72
  73#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
  74
  75/* bio's attached to a stripe+device for I/O are linked together in bi_sector
  76 * order without overlap.  There may be several bio's per stripe+device, and
  77 * a bio could span several devices.
  78 * When walking this list for a particular stripe+device, we must never proceed
  79 * beyond a bio that extends past this device, as the next bio might no longer
  80 * be valid.
  81 * This macro is used to determine the 'next' bio in the list, given the sector
  82 * of the current stripe+device
  83 */
  84#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
  85/*
  86 * The following can be used to debug the driver
  87 */
  88#define RAID5_PARANOIA	1
  89#if RAID5_PARANOIA && defined(CONFIG_SMP)
  90# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
  91#else
  92# define CHECK_DEVLOCK()
  93#endif
  94
  95#ifdef DEBUG
  96#define inline
  97#define __inline__
  98#endif
 
  99
 100/*
 101 * We maintain a biased count of active stripes in the bottom 16 bits of
 102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
 103 */
 104static inline int raid5_bi_phys_segments(struct bio *bio)
 105{
 106	return bio->bi_phys_segments & 0xffff;
 
 107}
 108
 109static inline int raid5_bi_hw_segments(struct bio *bio)
 110{
 111	return (bio->bi_phys_segments >> 16) & 0xffff;
 112}
 113
 114static inline int raid5_dec_bi_phys_segments(struct bio *bio)
 115{
 116	--bio->bi_phys_segments;
 117	return raid5_bi_phys_segments(bio);
 118}
 119
 120static inline int raid5_dec_bi_hw_segments(struct bio *bio)
 121{
 122	unsigned short val = raid5_bi_hw_segments(bio);
 
 
 123
 124	--val;
 125	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
 126	return val;
 
 
 
 
 127}
 128
 129static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
 130{
 131	bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
 
 
 
 
 132}
 133
 134/* Find first data disk in a raid6 stripe */
 135static inline int raid6_d0(struct stripe_head *sh)
 136{
 137	if (sh->ddf_layout)
 138		/* ddf always start from first device */
 139		return 0;
 140	/* md starts just after Q block */
 141	if (sh->qd_idx == sh->disks - 1)
 142		return 0;
 143	else
 144		return sh->qd_idx + 1;
 145}
 146static inline int raid6_next_disk(int disk, int raid_disks)
 147{
 148	disk++;
 149	return (disk < raid_disks) ? disk : 0;
 150}
 151
 152/* When walking through the disks in a raid5, starting at raid6_d0,
 153 * We need to map each disk to a 'slot', where the data disks are slot
 154 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 155 * is raid_disks-1.  This help does that mapping.
 156 */
 157static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
 158			     int *count, int syndrome_disks)
 159{
 160	int slot = *count;
 161
 162	if (sh->ddf_layout)
 163		(*count)++;
 164	if (idx == sh->pd_idx)
 165		return syndrome_disks;
 166	if (idx == sh->qd_idx)
 167		return syndrome_disks + 1;
 168	if (!sh->ddf_layout)
 169		(*count)++;
 170	return slot;
 171}
 172
 173static void return_io(struct bio *return_bi)
 174{
 175	struct bio *bi = return_bi;
 176	while (bi) {
 177
 178		return_bi = bi->bi_next;
 179		bi->bi_next = NULL;
 180		bi->bi_size = 0;
 181		bio_endio(bi, 0);
 182		bi = return_bi;
 183	}
 184}
 185
 186static void print_raid5_conf (raid5_conf_t *conf);
 187
 188static int stripe_operations_active(struct stripe_head *sh)
 189{
 190	return sh->check_state || sh->reconstruct_state ||
 191	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
 192	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
 193}
 194
 195static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
 196{
 197	if (atomic_dec_and_test(&sh->count)) {
 198		BUG_ON(!list_empty(&sh->lru));
 199		BUG_ON(atomic_read(&conf->active_stripes)==0);
 200		if (test_bit(STRIPE_HANDLE, &sh->state)) {
 201			if (test_bit(STRIPE_DELAYED, &sh->state))
 202				list_add_tail(&sh->lru, &conf->delayed_list);
 203			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
 204				   sh->bm_seq - conf->seq_write > 0)
 205				list_add_tail(&sh->lru, &conf->bitmap_list);
 206			else {
 207				clear_bit(STRIPE_BIT_DELAY, &sh->state);
 208				list_add_tail(&sh->lru, &conf->handle_list);
 209			}
 210			md_wakeup_thread(conf->mddev->thread);
 211		} else {
 212			BUG_ON(stripe_operations_active(sh));
 213			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
 214				atomic_dec(&conf->preread_active_stripes);
 215				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
 216					md_wakeup_thread(conf->mddev->thread);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 217			}
 218			atomic_dec(&conf->active_stripes);
 219			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
 220				list_add_tail(&sh->lru, &conf->inactive_list);
 221				wake_up(&conf->wait_for_stripe);
 222				if (conf->retry_read_aligned)
 223					md_wakeup_thread(conf->mddev->thread);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 224			}
 225		}
 226	}
 227}
 228
 229static void release_stripe(struct stripe_head *sh)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 230{
 231	raid5_conf_t *conf = sh->raid_conf;
 
 232	unsigned long flags;
 233
 234	spin_lock_irqsave(&conf->device_lock, flags);
 235	__release_stripe(conf, sh);
 236	spin_unlock_irqrestore(&conf->device_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 237}
 238
 239static inline void remove_hash(struct stripe_head *sh)
 240{
 241	pr_debug("remove_hash(), stripe %llu\n",
 242		(unsigned long long)sh->sector);
 243
 244	hlist_del_init(&sh->hash);
 245}
 246
 247static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
 248{
 249	struct hlist_head *hp = stripe_hash(conf, sh->sector);
 250
 251	pr_debug("insert_hash(), stripe %llu\n",
 252		(unsigned long long)sh->sector);
 253
 254	CHECK_DEVLOCK();
 255	hlist_add_head(&sh->hash, hp);
 256}
 257
 258
 259/* find an idle stripe, make sure it is unhashed, and return it. */
 260static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
 261{
 262	struct stripe_head *sh = NULL;
 263	struct list_head *first;
 264
 265	CHECK_DEVLOCK();
 266	if (list_empty(&conf->inactive_list))
 267		goto out;
 268	first = conf->inactive_list.next;
 269	sh = list_entry(first, struct stripe_head, lru);
 270	list_del_init(first);
 271	remove_hash(sh);
 272	atomic_inc(&conf->active_stripes);
 
 
 
 273out:
 274	return sh;
 275}
 276
 277static void shrink_buffers(struct stripe_head *sh)
 
 278{
 
 279	struct page *p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 280	int i;
 281	int num = sh->raid_conf->pool_size;
 282
 
 283	for (i = 0; i < num ; i++) {
 
 
 
 284		p = sh->dev[i].page;
 285		if (!p)
 286			continue;
 287		sh->dev[i].page = NULL;
 288		put_page(p);
 289	}
 
 
 
 
 
 290}
 291
 292static int grow_buffers(struct stripe_head *sh)
 293{
 294	int i;
 295	int num = sh->raid_conf->pool_size;
 296
 
 297	for (i = 0; i < num; i++) {
 298		struct page *page;
 299
 300		if (!(page = alloc_page(GFP_KERNEL))) {
 301			return 1;
 302		}
 303		sh->dev[i].page = page;
 
 
 304	}
 
 
 
 
 
 
 
 
 
 
 305	return 0;
 306}
 307
 308static void raid5_build_block(struct stripe_head *sh, int i, int previous);
 309static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
 310			    struct stripe_head *sh);
 311
 312static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
 313{
 314	raid5_conf_t *conf = sh->raid_conf;
 315	int i;
 316
 317	BUG_ON(atomic_read(&sh->count) != 0);
 318	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
 319	BUG_ON(stripe_operations_active(sh));
 
 320
 321	CHECK_DEVLOCK();
 322	pr_debug("init_stripe called, stripe %llu\n",
 323		(unsigned long long)sh->sector);
 324
 325	remove_hash(sh);
 326
 327	sh->generation = conf->generation - previous;
 328	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
 329	sh->sector = sector;
 330	stripe_set_idx(sector, conf, previous, sh);
 331	sh->state = 0;
 332
 333
 334	for (i = sh->disks; i--; ) {
 335		struct r5dev *dev = &sh->dev[i];
 336
 337		if (dev->toread || dev->read || dev->towrite || dev->written ||
 338		    test_bit(R5_LOCKED, &dev->flags)) {
 339			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
 340			       (unsigned long long)sh->sector, i, dev->toread,
 341			       dev->read, dev->towrite, dev->written,
 342			       test_bit(R5_LOCKED, &dev->flags));
 343			WARN_ON(1);
 344		}
 345		dev->flags = 0;
 346		raid5_build_block(sh, i, previous);
 347	}
 
 
 
 348	insert_hash(conf, sh);
 
 
 349}
 350
 351static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
 352					 short generation)
 353{
 354	struct stripe_head *sh;
 355	struct hlist_node *hn;
 356
 357	CHECK_DEVLOCK();
 358	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
 359	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
 360		if (sh->sector == sector && sh->generation == generation)
 361			return sh;
 362	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
 363	return NULL;
 364}
 365
 366/*
 367 * Need to check if array has failed when deciding whether to:
 368 *  - start an array
 369 *  - remove non-faulty devices
 370 *  - add a spare
 371 *  - allow a reshape
 372 * This determination is simple when no reshape is happening.
 373 * However if there is a reshape, we need to carefully check
 374 * both the before and after sections.
 375 * This is because some failed devices may only affect one
 376 * of the two sections, and some non-in_sync devices may
 377 * be insync in the section most affected by failed devices.
 378 */
 379static int has_failed(raid5_conf_t *conf)
 380{
 381	int degraded;
 382	int i;
 383	if (conf->mddev->reshape_position == MaxSector)
 384		return conf->mddev->degraded > conf->max_degraded;
 385
 386	rcu_read_lock();
 387	degraded = 0;
 388	for (i = 0; i < conf->previous_raid_disks; i++) {
 389		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
 
 
 390		if (!rdev || test_bit(Faulty, &rdev->flags))
 391			degraded++;
 392		else if (test_bit(In_sync, &rdev->flags))
 393			;
 394		else
 395			/* not in-sync or faulty.
 396			 * If the reshape increases the number of devices,
 397			 * this is being recovered by the reshape, so
 398			 * this 'previous' section is not in_sync.
 399			 * If the number of devices is being reduced however,
 400			 * the device can only be part of the array if
 401			 * we are reverting a reshape, so this section will
 402			 * be in-sync.
 403			 */
 404			if (conf->raid_disks >= conf->previous_raid_disks)
 405				degraded++;
 406	}
 407	rcu_read_unlock();
 408	if (degraded > conf->max_degraded)
 409		return 1;
 410	rcu_read_lock();
 411	degraded = 0;
 412	for (i = 0; i < conf->raid_disks; i++) {
 413		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
 
 
 414		if (!rdev || test_bit(Faulty, &rdev->flags))
 415			degraded++;
 416		else if (test_bit(In_sync, &rdev->flags))
 417			;
 418		else
 419			/* not in-sync or faulty.
 420			 * If reshape increases the number of devices, this
 421			 * section has already been recovered, else it
 422			 * almost certainly hasn't.
 423			 */
 424			if (conf->raid_disks <= conf->previous_raid_disks)
 425				degraded++;
 426	}
 427	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 428	if (degraded > conf->max_degraded)
 429		return 1;
 430	return 0;
 431}
 432
 433static struct stripe_head *
 434get_active_stripe(raid5_conf_t *conf, sector_t sector,
 435		  int previous, int noblock, int noquiesce)
 436{
 437	struct stripe_head *sh;
 
 
 438
 439	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
 440
 441	spin_lock_irq(&conf->device_lock);
 442
 443	do {
 444		wait_event_lock_irq(conf->wait_for_stripe,
 445				    conf->quiesce == 0 || noquiesce,
 446				    conf->device_lock, /* nothing */);
 447		sh = __find_stripe(conf, sector, conf->generation - previous);
 448		if (!sh) {
 449			if (!conf->inactive_blocked)
 450				sh = get_free_stripe(conf);
 
 
 
 
 
 451			if (noblock && sh == NULL)
 452				break;
 
 
 453			if (!sh) {
 454				conf->inactive_blocked = 1;
 455				wait_event_lock_irq(conf->wait_for_stripe,
 456						    !list_empty(&conf->inactive_list) &&
 457						    (atomic_read(&conf->active_stripes)
 458						     < (conf->max_nr_stripes *3/4)
 459						     || !conf->inactive_blocked),
 460						    conf->device_lock,
 461						    );
 462				conf->inactive_blocked = 0;
 463			} else
 464				init_stripe(sh, sector, previous);
 465		} else {
 466			if (atomic_read(&sh->count)) {
 467				BUG_ON(!list_empty(&sh->lru)
 468				    && !test_bit(STRIPE_EXPANDING, &sh->state));
 469			} else {
 
 
 
 
 
 
 470				if (!test_bit(STRIPE_HANDLE, &sh->state))
 471					atomic_inc(&conf->active_stripes);
 472				if (list_empty(&sh->lru) &&
 473				    !test_bit(STRIPE_EXPANDING, &sh->state))
 474					BUG();
 
 
 475				list_del_init(&sh->lru);
 
 
 
 
 
 
 476			}
 
 
 477		}
 478	} while (sh == NULL);
 479
 480	if (sh)
 481		atomic_inc(&sh->count);
 482
 483	spin_unlock_irq(&conf->device_lock);
 484	return sh;
 485}
 486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 487static void
 488raid5_end_read_request(struct bio *bi, int error);
 489static void
 490raid5_end_write_request(struct bio *bi, int error);
 491
 492static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
 493{
 494	raid5_conf_t *conf = sh->raid_conf;
 495	int i, disks = sh->disks;
 
 
 
 496
 497	might_sleep();
 498
 
 
 
 
 
 499	for (i = disks; i--; ) {
 500		int rw;
 501		struct bio *bi;
 502		mdk_rdev_t *rdev;
 
 
 
 503		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
 
 504			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
 505				rw = WRITE_FUA;
 506			else
 507				rw = WRITE;
 508		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
 509			rw = READ;
 510		else
 
 
 
 
 511			continue;
 
 
 512
 
 513		bi = &sh->dev[i].req;
 514
 515		bi->bi_rw = rw;
 516		if (rw & WRITE)
 517			bi->bi_end_io = raid5_end_write_request;
 518		else
 519			bi->bi_end_io = raid5_end_read_request;
 520
 521		rcu_read_lock();
 
 
 522		rdev = rcu_dereference(conf->disks[i].rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 523		if (rdev && test_bit(Faulty, &rdev->flags))
 524			rdev = NULL;
 525		if (rdev)
 526			atomic_inc(&rdev->nr_pending);
 
 
 
 
 527		rcu_read_unlock();
 528
 529		/* We have already checked bad blocks for reads.  Now
 530		 * need to check for writes.
 
 531		 */
 532		while ((rw & WRITE) && rdev &&
 533		       test_bit(WriteErrorSeen, &rdev->flags)) {
 534			sector_t first_bad;
 535			int bad_sectors;
 536			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
 537					      &first_bad, &bad_sectors);
 538			if (!bad)
 539				break;
 540
 541			if (bad < 0) {
 542				set_bit(BlockedBadBlocks, &rdev->flags);
 543				if (!conf->mddev->external &&
 544				    conf->mddev->flags) {
 545					/* It is very unlikely, but we might
 546					 * still need to write out the
 547					 * bad block log - better give it
 548					 * a chance*/
 549					md_check_recovery(conf->mddev);
 550				}
 
 
 
 
 
 
 551				md_wait_for_blocked_rdev(rdev, conf->mddev);
 552			} else {
 553				/* Acknowledged bad block - skip the write */
 554				rdev_dec_pending(rdev, conf->mddev);
 555				rdev = NULL;
 556			}
 557		}
 558
 559		if (rdev) {
 560			if (s->syncing || s->expanding || s->expanded)
 561				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
 
 562
 563			set_bit(STRIPE_IO_STARTED, &sh->state);
 564
 565			bi->bi_bdev = rdev->bdev;
 566			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
 
 
 
 
 
 
 567				__func__, (unsigned long long)sh->sector,
 568				bi->bi_rw, i);
 569			atomic_inc(&sh->count);
 570			bi->bi_sector = sh->sector + rdev->data_offset;
 571			bi->bi_flags = 1 << BIO_UPTODATE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 572			bi->bi_vcnt = 1;
 573			bi->bi_max_vecs = 1;
 574			bi->bi_idx = 0;
 575			bi->bi_io_vec = &sh->dev[i].vec;
 576			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
 577			bi->bi_io_vec[0].bv_offset = 0;
 578			bi->bi_size = STRIPE_SIZE;
 579			bi->bi_next = NULL;
 580			generic_make_request(bi);
 581		} else {
 582			if (rw & WRITE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 583				set_bit(STRIPE_DEGRADED, &sh->state);
 584			pr_debug("skip op %ld on disc %d for sector %llu\n",
 585				bi->bi_rw, i, (unsigned long long)sh->sector);
 586			clear_bit(R5_LOCKED, &sh->dev[i].flags);
 587			set_bit(STRIPE_HANDLE, &sh->state);
 588		}
 
 
 
 
 
 
 
 589	}
 
 
 
 590}
 591
 592static struct dma_async_tx_descriptor *
 593async_copy_data(int frombio, struct bio *bio, struct page *page,
 594	sector_t sector, struct dma_async_tx_descriptor *tx)
 
 595{
 596	struct bio_vec *bvl;
 
 597	struct page *bio_page;
 598	int i;
 599	int page_offset;
 600	struct async_submit_ctl submit;
 601	enum async_tx_flags flags = 0;
 
 602
 603	if (bio->bi_sector >= sector)
 604		page_offset = (signed)(bio->bi_sector - sector) * 512;
 605	else
 606		page_offset = (signed)(sector - bio->bi_sector) * -512;
 607
 608	if (frombio)
 609		flags |= ASYNC_TX_FENCE;
 610	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
 611
 612	bio_for_each_segment(bvl, bio, i) {
 613		int len = bvl->bv_len;
 614		int clen;
 615		int b_offset = 0;
 616
 617		if (page_offset < 0) {
 618			b_offset = -page_offset;
 619			page_offset += b_offset;
 620			len -= b_offset;
 621		}
 622
 623		if (len > 0 && page_offset + len > STRIPE_SIZE)
 624			clen = STRIPE_SIZE - page_offset;
 625		else
 626			clen = len;
 627
 628		if (clen > 0) {
 629			b_offset += bvl->bv_offset;
 630			bio_page = bvl->bv_page;
 631			if (frombio)
 632				tx = async_memcpy(page, bio_page, page_offset,
 
 
 
 
 
 
 633						  b_offset, clen, &submit);
 634			else
 635				tx = async_memcpy(bio_page, page, b_offset,
 636						  page_offset, clen, &submit);
 637		}
 638		/* chain the operations */
 639		submit.depend_tx = tx;
 640
 641		if (clen < len) /* hit end of page */
 642			break;
 643		page_offset +=  len;
 644	}
 645
 646	return tx;
 647}
 648
 649static void ops_complete_biofill(void *stripe_head_ref)
 650{
 651	struct stripe_head *sh = stripe_head_ref;
 652	struct bio *return_bi = NULL;
 653	raid5_conf_t *conf = sh->raid_conf;
 654	int i;
 
 655
 656	pr_debug("%s: stripe %llu\n", __func__,
 657		(unsigned long long)sh->sector);
 658
 659	/* clear completed biofills */
 660	spin_lock_irq(&conf->device_lock);
 661	for (i = sh->disks; i--; ) {
 662		struct r5dev *dev = &sh->dev[i];
 663
 664		/* acknowledge completion of a biofill operation */
 665		/* and check if we need to reply to a read request,
 666		 * new R5_Wantfill requests are held off until
 667		 * !STRIPE_BIOFILL_RUN
 668		 */
 669		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
 670			struct bio *rbi, *rbi2;
 671
 672			BUG_ON(!dev->read);
 673			rbi = dev->read;
 674			dev->read = NULL;
 675			while (rbi && rbi->bi_sector <
 676				dev->sector + STRIPE_SECTORS) {
 677				rbi2 = r5_next_bio(rbi, dev->sector);
 678				if (!raid5_dec_bi_phys_segments(rbi)) {
 679					rbi->bi_next = return_bi;
 680					return_bi = rbi;
 681				}
 682				rbi = rbi2;
 683			}
 684		}
 685	}
 686	spin_unlock_irq(&conf->device_lock);
 687	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
 688
 689	return_io(return_bi);
 690
 691	set_bit(STRIPE_HANDLE, &sh->state);
 692	release_stripe(sh);
 693}
 694
 695static void ops_run_biofill(struct stripe_head *sh)
 696{
 697	struct dma_async_tx_descriptor *tx = NULL;
 698	raid5_conf_t *conf = sh->raid_conf;
 699	struct async_submit_ctl submit;
 700	int i;
 
 701
 
 702	pr_debug("%s: stripe %llu\n", __func__,
 703		(unsigned long long)sh->sector);
 704
 705	for (i = sh->disks; i--; ) {
 706		struct r5dev *dev = &sh->dev[i];
 707		if (test_bit(R5_Wantfill, &dev->flags)) {
 708			struct bio *rbi;
 709			spin_lock_irq(&conf->device_lock);
 710			dev->read = rbi = dev->toread;
 711			dev->toread = NULL;
 712			spin_unlock_irq(&conf->device_lock);
 713			while (rbi && rbi->bi_sector <
 714				dev->sector + STRIPE_SECTORS) {
 715				tx = async_copy_data(0, rbi, dev->page,
 716					dev->sector, tx);
 717				rbi = r5_next_bio(rbi, dev->sector);
 
 718			}
 719		}
 720	}
 721
 722	atomic_inc(&sh->count);
 723	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
 724	async_trigger_callback(&submit);
 725}
 726
 727static void mark_target_uptodate(struct stripe_head *sh, int target)
 728{
 729	struct r5dev *tgt;
 730
 731	if (target < 0)
 732		return;
 733
 734	tgt = &sh->dev[target];
 735	set_bit(R5_UPTODATE, &tgt->flags);
 736	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
 737	clear_bit(R5_Wantcompute, &tgt->flags);
 738}
 739
 740static void ops_complete_compute(void *stripe_head_ref)
 741{
 742	struct stripe_head *sh = stripe_head_ref;
 743
 744	pr_debug("%s: stripe %llu\n", __func__,
 745		(unsigned long long)sh->sector);
 746
 747	/* mark the computed target(s) as uptodate */
 748	mark_target_uptodate(sh, sh->ops.target);
 749	mark_target_uptodate(sh, sh->ops.target2);
 750
 751	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
 752	if (sh->check_state == check_state_compute_run)
 753		sh->check_state = check_state_compute_result;
 754	set_bit(STRIPE_HANDLE, &sh->state);
 755	release_stripe(sh);
 
 
 
 
 
 
 756}
 757
 758/* return a pointer to the address conversion region of the scribble buffer */
 759static addr_conv_t *to_addr_conv(struct stripe_head *sh,
 760				 struct raid5_percpu *percpu)
 761{
 762	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
 
 
 
 
 
 
 
 
 
 763}
 764
 765static struct dma_async_tx_descriptor *
 766ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
 767{
 768	int disks = sh->disks;
 769	struct page **xor_srcs = percpu->scribble;
 
 770	int target = sh->ops.target;
 771	struct r5dev *tgt = &sh->dev[target];
 772	struct page *xor_dest = tgt->page;
 
 773	int count = 0;
 774	struct dma_async_tx_descriptor *tx;
 775	struct async_submit_ctl submit;
 776	int i;
 777
 
 
 778	pr_debug("%s: stripe %llu block: %d\n",
 779		__func__, (unsigned long long)sh->sector, target);
 780	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
 781
 782	for (i = disks; i--; )
 783		if (i != target)
 
 784			xor_srcs[count++] = sh->dev[i].page;
 
 
 785
 786	atomic_inc(&sh->count);
 787
 788	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
 789			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
 790	if (unlikely(count == 1))
 791		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
 
 792	else
 793		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
 
 794
 795	return tx;
 796}
 797
 798/* set_syndrome_sources - populate source buffers for gen_syndrome
 799 * @srcs - (struct page *) array of size sh->disks
 
 800 * @sh - stripe_head to parse
 801 *
 802 * Populates srcs in proper layout order for the stripe and returns the
 803 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 804 * destination buffer is recorded in srcs[count] and the Q destination
 805 * is recorded in srcs[count+1]].
 806 */
 807static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
 
 
 
 808{
 809	int disks = sh->disks;
 810	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
 811	int d0_idx = raid6_d0(sh);
 812	int count;
 813	int i;
 814
 815	for (i = 0; i < disks; i++)
 816		srcs[i] = NULL;
 817
 818	count = 0;
 819	i = d0_idx;
 820	do {
 821		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
 
 822
 823		srcs[slot] = sh->dev[i].page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824		i = raid6_next_disk(i, disks);
 825	} while (i != d0_idx);
 826
 827	return syndrome_disks;
 828}
 829
 830static struct dma_async_tx_descriptor *
 831ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
 832{
 833	int disks = sh->disks;
 834	struct page **blocks = percpu->scribble;
 
 835	int target;
 836	int qd_idx = sh->qd_idx;
 837	struct dma_async_tx_descriptor *tx;
 838	struct async_submit_ctl submit;
 839	struct r5dev *tgt;
 840	struct page *dest;
 
 841	int i;
 842	int count;
 843
 
 844	if (sh->ops.target < 0)
 845		target = sh->ops.target2;
 846	else if (sh->ops.target2 < 0)
 847		target = sh->ops.target;
 848	else
 849		/* we should only have one valid target */
 850		BUG();
 851	BUG_ON(target < 0);
 852	pr_debug("%s: stripe %llu block: %d\n",
 853		__func__, (unsigned long long)sh->sector, target);
 854
 855	tgt = &sh->dev[target];
 856	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
 857	dest = tgt->page;
 
 858
 859	atomic_inc(&sh->count);
 860
 861	if (target == qd_idx) {
 862		count = set_syndrome_sources(blocks, sh);
 863		blocks[count] = NULL; /* regenerating p is not necessary */
 864		BUG_ON(blocks[count+1] != dest); /* q should already be set */
 865		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
 866				  ops_complete_compute, sh,
 867				  to_addr_conv(sh, percpu));
 868		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
 
 869	} else {
 870		/* Compute any data- or p-drive using XOR */
 871		count = 0;
 872		for (i = disks; i-- ; ) {
 873			if (i == target || i == qd_idx)
 874				continue;
 
 875			blocks[count++] = sh->dev[i].page;
 876		}
 877
 878		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
 879				  NULL, ops_complete_compute, sh,
 880				  to_addr_conv(sh, percpu));
 881		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
 
 882	}
 883
 884	return tx;
 885}
 886
 887static struct dma_async_tx_descriptor *
 888ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
 889{
 890	int i, count, disks = sh->disks;
 891	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
 892	int d0_idx = raid6_d0(sh);
 893	int faila = -1, failb = -1;
 894	int target = sh->ops.target;
 895	int target2 = sh->ops.target2;
 896	struct r5dev *tgt = &sh->dev[target];
 897	struct r5dev *tgt2 = &sh->dev[target2];
 898	struct dma_async_tx_descriptor *tx;
 899	struct page **blocks = percpu->scribble;
 
 900	struct async_submit_ctl submit;
 901
 
 902	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
 903		 __func__, (unsigned long long)sh->sector, target, target2);
 904	BUG_ON(target < 0 || target2 < 0);
 905	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
 906	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
 907
 908	/* we need to open-code set_syndrome_sources to handle the
 909	 * slot number conversion for 'faila' and 'failb'
 910	 */
 911	for (i = 0; i < disks ; i++)
 
 912		blocks[i] = NULL;
 
 913	count = 0;
 914	i = d0_idx;
 915	do {
 916		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
 917
 
 918		blocks[slot] = sh->dev[i].page;
 919
 920		if (i == target)
 921			faila = slot;
 922		if (i == target2)
 923			failb = slot;
 924		i = raid6_next_disk(i, disks);
 925	} while (i != d0_idx);
 926
 927	BUG_ON(faila == failb);
 928	if (failb < faila)
 929		swap(faila, failb);
 930	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
 931		 __func__, (unsigned long long)sh->sector, faila, failb);
 932
 933	atomic_inc(&sh->count);
 934
 935	if (failb == syndrome_disks+1) {
 936		/* Q disk is one of the missing disks */
 937		if (faila == syndrome_disks) {
 938			/* Missing P+Q, just recompute */
 939			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
 940					  ops_complete_compute, sh,
 941					  to_addr_conv(sh, percpu));
 942			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
 943						  STRIPE_SIZE, &submit);
 
 944		} else {
 945			struct page *dest;
 
 946			int data_target;
 947			int qd_idx = sh->qd_idx;
 948
 949			/* Missing D+Q: recompute D from P, then recompute Q */
 950			if (target == qd_idx)
 951				data_target = target2;
 952			else
 953				data_target = target;
 954
 955			count = 0;
 956			for (i = disks; i-- ; ) {
 957				if (i == data_target || i == qd_idx)
 958					continue;
 
 959				blocks[count++] = sh->dev[i].page;
 960			}
 961			dest = sh->dev[data_target].page;
 
 962			init_async_submit(&submit,
 963					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
 964					  NULL, NULL, NULL,
 965					  to_addr_conv(sh, percpu));
 966			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
 
 967				       &submit);
 968
 969			count = set_syndrome_sources(blocks, sh);
 970			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
 971					  ops_complete_compute, sh,
 972					  to_addr_conv(sh, percpu));
 973			return async_gen_syndrome(blocks, 0, count+2,
 974						  STRIPE_SIZE, &submit);
 
 975		}
 976	} else {
 977		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
 978				  ops_complete_compute, sh,
 979				  to_addr_conv(sh, percpu));
 980		if (failb == syndrome_disks) {
 981			/* We're missing D+P. */
 982			return async_raid6_datap_recov(syndrome_disks+2,
 983						       STRIPE_SIZE, faila,
 984						       blocks, &submit);
 
 985		} else {
 986			/* We're missing D+D. */
 987			return async_raid6_2data_recov(syndrome_disks+2,
 988						       STRIPE_SIZE, faila, failb,
 989						       blocks, &submit);
 
 990		}
 991	}
 992}
 993
 994
 995static void ops_complete_prexor(void *stripe_head_ref)
 996{
 997	struct stripe_head *sh = stripe_head_ref;
 998
 999	pr_debug("%s: stripe %llu\n", __func__,
1000		(unsigned long long)sh->sector);
 
 
 
 
 
 
 
1001}
1002
1003static struct dma_async_tx_descriptor *
1004ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1005	       struct dma_async_tx_descriptor *tx)
1006{
1007	int disks = sh->disks;
1008	struct page **xor_srcs = percpu->scribble;
 
1009	int count = 0, pd_idx = sh->pd_idx, i;
1010	struct async_submit_ctl submit;
1011
1012	/* existing parity data subtracted */
 
1013	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1014
 
1015	pr_debug("%s: stripe %llu\n", __func__,
1016		(unsigned long long)sh->sector);
1017
1018	for (i = disks; i--; ) {
1019		struct r5dev *dev = &sh->dev[i];
1020		/* Only process blocks that are known to be uptodate */
1021		if (test_bit(R5_Wantdrain, &dev->flags))
 
 
 
 
 
 
 
 
1022			xor_srcs[count++] = dev->page;
 
1023	}
1024
1025	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1026			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1027	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1028
1029	return tx;
1030}
1031
1032static struct dma_async_tx_descriptor *
1033ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1034{
 
1035	int disks = sh->disks;
1036	int i;
 
1037
1038	pr_debug("%s: stripe %llu\n", __func__,
1039		(unsigned long long)sh->sector);
1040
1041	for (i = disks; i--; ) {
1042		struct r5dev *dev = &sh->dev[i];
1043		struct bio *chosen;
1044
1045		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
 
1046			struct bio *wbi;
1047
1048			spin_lock_irq(&sh->raid_conf->device_lock);
 
 
 
 
 
 
 
1049			chosen = dev->towrite;
1050			dev->towrite = NULL;
 
1051			BUG_ON(dev->written);
1052			wbi = dev->written = chosen;
1053			spin_unlock_irq(&sh->raid_conf->device_lock);
 
1054
1055			while (wbi && wbi->bi_sector <
1056				dev->sector + STRIPE_SECTORS) {
1057				if (wbi->bi_rw & REQ_FUA)
1058					set_bit(R5_WantFUA, &dev->flags);
1059				tx = async_copy_data(1, wbi, dev->page,
1060					dev->sector, tx);
1061				wbi = r5_next_bio(wbi, dev->sector);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062			}
1063		}
1064	}
1065
1066	return tx;
1067}
1068
1069static void ops_complete_reconstruct(void *stripe_head_ref)
1070{
1071	struct stripe_head *sh = stripe_head_ref;
1072	int disks = sh->disks;
1073	int pd_idx = sh->pd_idx;
1074	int qd_idx = sh->qd_idx;
1075	int i;
1076	bool fua = false;
1077
1078	pr_debug("%s: stripe %llu\n", __func__,
1079		(unsigned long long)sh->sector);
1080
1081	for (i = disks; i--; )
1082		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
 
 
 
1083
1084	for (i = disks; i--; ) {
1085		struct r5dev *dev = &sh->dev[i];
1086
1087		if (dev->written || i == pd_idx || i == qd_idx) {
1088			set_bit(R5_UPTODATE, &dev->flags);
 
 
 
 
1089			if (fua)
1090				set_bit(R5_WantFUA, &dev->flags);
 
 
1091		}
1092	}
1093
1094	if (sh->reconstruct_state == reconstruct_state_drain_run)
1095		sh->reconstruct_state = reconstruct_state_drain_result;
1096	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1097		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1098	else {
1099		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1100		sh->reconstruct_state = reconstruct_state_result;
1101	}
1102
1103	set_bit(STRIPE_HANDLE, &sh->state);
1104	release_stripe(sh);
1105}
1106
1107static void
1108ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1109		     struct dma_async_tx_descriptor *tx)
1110{
1111	int disks = sh->disks;
1112	struct page **xor_srcs = percpu->scribble;
 
1113	struct async_submit_ctl submit;
1114	int count = 0, pd_idx = sh->pd_idx, i;
1115	struct page *xor_dest;
 
1116	int prexor = 0;
1117	unsigned long flags;
 
 
 
1118
1119	pr_debug("%s: stripe %llu\n", __func__,
1120		(unsigned long long)sh->sector);
1121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122	/* check if prexor is active which means only process blocks
1123	 * that are part of a read-modify-write (written)
1124	 */
1125	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1126		prexor = 1;
 
1127		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1128		for (i = disks; i--; ) {
1129			struct r5dev *dev = &sh->dev[i];
1130			if (dev->written)
 
 
1131				xor_srcs[count++] = dev->page;
 
1132		}
1133	} else {
1134		xor_dest = sh->dev[pd_idx].page;
 
1135		for (i = disks; i--; ) {
1136			struct r5dev *dev = &sh->dev[i];
1137			if (i != pd_idx)
 
1138				xor_srcs[count++] = dev->page;
 
1139		}
1140	}
1141
1142	/* 1/ if we prexor'd then the dest is reused as a source
1143	 * 2/ if we did not prexor then we are redoing the parity
1144	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1145	 * for the synchronous xor case
1146	 */
1147	flags = ASYNC_TX_ACK |
1148		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1149
1150	atomic_inc(&sh->count);
 
 
 
 
 
 
 
 
 
 
 
1151
1152	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1153			  to_addr_conv(sh, percpu));
1154	if (unlikely(count == 1))
1155		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
 
1156	else
1157		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
 
 
 
 
 
 
 
1158}
1159
1160static void
1161ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1162		     struct dma_async_tx_descriptor *tx)
1163{
1164	struct async_submit_ctl submit;
1165	struct page **blocks = percpu->scribble;
1166	int count;
 
 
 
 
 
1167
1168	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1169
1170	count = set_syndrome_sources(blocks, sh);
 
 
 
 
 
 
 
 
 
 
 
 
1171
1172	atomic_inc(&sh->count);
 
 
 
 
 
 
 
 
 
 
1173
1174	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1175			  sh, to_addr_conv(sh, percpu));
1176	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1177}
1178
1179static void ops_complete_check(void *stripe_head_ref)
1180{
1181	struct stripe_head *sh = stripe_head_ref;
1182
1183	pr_debug("%s: stripe %llu\n", __func__,
1184		(unsigned long long)sh->sector);
1185
1186	sh->check_state = check_state_check_result;
1187	set_bit(STRIPE_HANDLE, &sh->state);
1188	release_stripe(sh);
1189}
1190
1191static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1192{
1193	int disks = sh->disks;
1194	int pd_idx = sh->pd_idx;
1195	int qd_idx = sh->qd_idx;
1196	struct page *xor_dest;
1197	struct page **xor_srcs = percpu->scribble;
 
 
1198	struct dma_async_tx_descriptor *tx;
1199	struct async_submit_ctl submit;
1200	int count;
1201	int i;
1202
1203	pr_debug("%s: stripe %llu\n", __func__,
1204		(unsigned long long)sh->sector);
1205
 
1206	count = 0;
1207	xor_dest = sh->dev[pd_idx].page;
 
 
1208	xor_srcs[count++] = xor_dest;
1209	for (i = disks; i--; ) {
1210		if (i == pd_idx || i == qd_idx)
1211			continue;
 
1212		xor_srcs[count++] = sh->dev[i].page;
1213	}
1214
1215	init_async_submit(&submit, 0, NULL, NULL, NULL,
1216			  to_addr_conv(sh, percpu));
1217	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
 
1218			   &sh->ops.zero_sum_result, &submit);
1219
1220	atomic_inc(&sh->count);
1221	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1222	tx = async_trigger_callback(&submit);
1223}
1224
1225static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1226{
1227	struct page **srcs = percpu->scribble;
 
1228	struct async_submit_ctl submit;
1229	int count;
1230
1231	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1232		(unsigned long long)sh->sector, checkp);
1233
1234	count = set_syndrome_sources(srcs, sh);
 
1235	if (!checkp)
1236		srcs[count] = NULL;
1237
1238	atomic_inc(&sh->count);
1239	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1240			  sh, to_addr_conv(sh, percpu));
1241	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1242			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
 
1243}
1244
1245static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1246{
1247	int overlap_clear = 0, i, disks = sh->disks;
1248	struct dma_async_tx_descriptor *tx = NULL;
1249	raid5_conf_t *conf = sh->raid_conf;
1250	int level = conf->level;
1251	struct raid5_percpu *percpu;
1252	unsigned long cpu;
1253
1254	cpu = get_cpu();
1255	percpu = per_cpu_ptr(conf->percpu, cpu);
1256	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1257		ops_run_biofill(sh);
1258		overlap_clear++;
1259	}
1260
1261	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1262		if (level < 6)
1263			tx = ops_run_compute5(sh, percpu);
1264		else {
1265			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1266				tx = ops_run_compute6_1(sh, percpu);
1267			else
1268				tx = ops_run_compute6_2(sh, percpu);
1269		}
1270		/* terminate the chain if reconstruct is not set to be run */
1271		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1272			async_tx_ack(tx);
1273	}
1274
1275	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1276		tx = ops_run_prexor(sh, percpu, tx);
 
 
 
 
 
 
 
1277
1278	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1279		tx = ops_run_biodrain(sh, tx);
1280		overlap_clear++;
1281	}
1282
1283	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1284		if (level < 6)
1285			ops_run_reconstruct5(sh, percpu, tx);
1286		else
1287			ops_run_reconstruct6(sh, percpu, tx);
1288	}
1289
1290	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1291		if (sh->check_state == check_state_run)
1292			ops_run_check_p(sh, percpu);
1293		else if (sh->check_state == check_state_run_q)
1294			ops_run_check_pq(sh, percpu, 0);
1295		else if (sh->check_state == check_state_run_pq)
1296			ops_run_check_pq(sh, percpu, 1);
1297		else
1298			BUG();
1299	}
1300
1301	if (overlap_clear)
1302		for (i = disks; i--; ) {
1303			struct r5dev *dev = &sh->dev[i];
1304			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1305				wake_up(&sh->raid_conf->wait_for_overlap);
1306		}
1307	put_cpu();
1308}
1309
1310#ifdef CONFIG_MULTICORE_RAID456
1311static void async_run_ops(void *param, async_cookie_t cookie)
1312{
1313	struct stripe_head *sh = param;
1314	unsigned long ops_request = sh->ops.request;
1315
1316	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1317	wake_up(&sh->ops.wait_for_ops);
1318
1319	__raid_run_ops(sh, ops_request);
1320	release_stripe(sh);
1321}
1322
1323static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
 
1324{
1325	/* since handle_stripe can be called outside of raid5d context
1326	 * we need to ensure sh->ops.request is de-staged before another
1327	 * request arrives
1328	 */
1329	wait_event(sh->ops.wait_for_ops,
1330		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1331	sh->ops.request = ops_request;
1332
1333	atomic_inc(&sh->count);
1334	async_schedule(async_run_ops, sh);
1335}
1336#else
1337#define raid_run_ops __raid_run_ops
1338#endif
 
 
 
 
 
 
 
1339
1340static int grow_one_stripe(raid5_conf_t *conf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1341{
1342	struct stripe_head *sh;
1343	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
 
1344	if (!sh)
1345		return 0;
1346
1347	sh->raid_conf = conf;
1348	#ifdef CONFIG_MULTICORE_RAID456
1349	init_waitqueue_head(&sh->ops.wait_for_ops);
1350	#endif
1351
1352	if (grow_buffers(sh)) {
1353		shrink_buffers(sh);
1354		kmem_cache_free(conf->slab_cache, sh);
1355		return 0;
1356	}
 
 
1357	/* we just created an active stripe so... */
1358	atomic_set(&sh->count, 1);
1359	atomic_inc(&conf->active_stripes);
1360	INIT_LIST_HEAD(&sh->lru);
1361	release_stripe(sh);
 
1362	return 1;
1363}
1364
1365static int grow_stripes(raid5_conf_t *conf, int num)
1366{
1367	struct kmem_cache *sc;
 
1368	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1369
1370	if (conf->mddev->gendisk)
1371		sprintf(conf->cache_name[0],
1372			"raid%d-%s", conf->level, mdname(conf->mddev));
1373	else
1374		sprintf(conf->cache_name[0],
1375			"raid%d-%p", conf->level, conf->mddev);
1376	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1377
1378	conf->active_name = 0;
1379	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1380			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1381			       0, 0, NULL);
1382	if (!sc)
1383		return 1;
1384	conf->slab_cache = sc;
1385	conf->pool_size = devs;
1386	while (num--)
1387		if (!grow_one_stripe(conf))
1388			return 1;
 
1389	return 0;
1390}
1391
1392/**
1393 * scribble_len - return the required size of the scribble region
1394 * @num - total number of disks in the array
 
 
 
1395 *
1396 * The size must be enough to contain:
1397 * 1/ a struct page pointer for each device in the array +2
1398 * 2/ room to convert each entry in (1) to its corresponding dma
1399 *    (dma_map_page()) or page (page_address()) address.
1400 *
1401 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1402 * calculate over all devices (not just the data blocks), using zeros in place
1403 * of the P and Q blocks.
1404 */
1405static size_t scribble_len(int num)
 
1406{
1407	size_t len;
 
 
 
 
 
 
 
 
 
 
 
 
 
1408
1409	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1410
1411	return len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1412}
1413
1414static int resize_stripes(raid5_conf_t *conf, int newsize)
1415{
1416	/* Make all the stripes able to hold 'newsize' devices.
1417	 * New slots in each stripe get 'page' set to a new page.
1418	 *
1419	 * This happens in stages:
1420	 * 1/ create a new kmem_cache and allocate the required number of
1421	 *    stripe_heads.
1422	 * 2/ gather all the old stripe_heads and tranfer the pages across
1423	 *    to the new stripe_heads.  This will have the side effect of
1424	 *    freezing the array as once all stripe_heads have been collected,
1425	 *    no IO will be possible.  Old stripe heads are freed once their
1426	 *    pages have been transferred over, and the old kmem_cache is
1427	 *    freed when all stripes are done.
1428	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1429	 *    we simple return a failre status - no need to clean anything up.
1430	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1431	 *    If this fails, we don't bother trying the shrink the
1432	 *    stripe_heads down again, we just leave them as they are.
1433	 *    As each stripe_head is processed the new one is released into
1434	 *    active service.
1435	 *
1436	 * Once step2 is started, we cannot afford to wait for a write,
1437	 * so we use GFP_NOIO allocations.
1438	 */
1439	struct stripe_head *osh, *nsh;
1440	LIST_HEAD(newstripes);
1441	struct disk_info *ndisks;
1442	unsigned long cpu;
1443	int err;
1444	struct kmem_cache *sc;
1445	int i;
 
1446
1447	if (newsize <= conf->pool_size)
1448		return 0; /* never bother to shrink */
1449
1450	err = md_allow_write(conf->mddev);
1451	if (err)
1452		return err;
1453
1454	/* Step 1 */
1455	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1456			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1457			       0, 0, NULL);
1458	if (!sc)
1459		return -ENOMEM;
1460
 
 
 
1461	for (i = conf->max_nr_stripes; i; i--) {
1462		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1463		if (!nsh)
1464			break;
1465
1466		nsh->raid_conf = conf;
1467		#ifdef CONFIG_MULTICORE_RAID456
1468		init_waitqueue_head(&nsh->ops.wait_for_ops);
1469		#endif
1470
1471		list_add(&nsh->lru, &newstripes);
1472	}
1473	if (i) {
1474		/* didn't get enough, give up */
1475		while (!list_empty(&newstripes)) {
1476			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1477			list_del(&nsh->lru);
1478			kmem_cache_free(sc, nsh);
1479		}
1480		kmem_cache_destroy(sc);
 
1481		return -ENOMEM;
1482	}
1483	/* Step 2 - Must use GFP_NOIO now.
1484	 * OK, we have enough stripes, start collecting inactive
1485	 * stripes and copying them over
1486	 */
 
 
1487	list_for_each_entry(nsh, &newstripes, lru) {
1488		spin_lock_irq(&conf->device_lock);
1489		wait_event_lock_irq(conf->wait_for_stripe,
1490				    !list_empty(&conf->inactive_list),
1491				    conf->device_lock,
1492				    );
1493		osh = get_free_stripe(conf);
1494		spin_unlock_irq(&conf->device_lock);
1495		atomic_set(&nsh->count, 1);
1496		for(i=0; i<conf->pool_size; i++)
 
 
 
 
 
 
1497			nsh->dev[i].page = osh->dev[i].page;
1498		for( ; i<newsize; i++)
1499			nsh->dev[i].page = NULL;
1500		kmem_cache_free(conf->slab_cache, osh);
 
 
 
 
 
 
 
 
1501	}
1502	kmem_cache_destroy(conf->slab_cache);
1503
1504	/* Step 3.
1505	 * At this point, we are holding all the stripes so the array
1506	 * is completely stalled, so now is a good time to resize
1507	 * conf->disks and the scribble region
1508	 */
1509	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1510	if (ndisks) {
1511		for (i=0; i<conf->raid_disks; i++)
1512			ndisks[i] = conf->disks[i];
1513		kfree(conf->disks);
1514		conf->disks = ndisks;
1515	} else
1516		err = -ENOMEM;
1517
1518	get_online_cpus();
1519	conf->scribble_len = scribble_len(newsize);
1520	for_each_present_cpu(cpu) {
1521		struct raid5_percpu *percpu;
1522		void *scribble;
1523
1524		percpu = per_cpu_ptr(conf->percpu, cpu);
1525		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1526
1527		if (scribble) {
1528			kfree(percpu->scribble);
1529			percpu->scribble = scribble;
 
 
1530		} else {
1531			err = -ENOMEM;
1532			break;
1533		}
1534	}
1535	put_online_cpus();
 
 
 
1536
1537	/* Step 4, return new stripes to service */
1538	while(!list_empty(&newstripes)) {
1539		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1540		list_del_init(&nsh->lru);
1541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1542		for (i=conf->raid_disks; i < newsize; i++)
1543			if (nsh->dev[i].page == NULL) {
1544				struct page *p = alloc_page(GFP_NOIO);
1545				nsh->dev[i].page = p;
 
 
1546				if (!p)
1547					err = -ENOMEM;
1548			}
1549		release_stripe(nsh);
 
1550	}
1551	/* critical section pass, GFP_NOIO no longer needed */
1552
1553	conf->slab_cache = sc;
1554	conf->active_name = 1-conf->active_name;
1555	conf->pool_size = newsize;
 
1556	return err;
1557}
1558
1559static int drop_one_stripe(raid5_conf_t *conf)
1560{
1561	struct stripe_head *sh;
 
1562
1563	spin_lock_irq(&conf->device_lock);
1564	sh = get_free_stripe(conf);
1565	spin_unlock_irq(&conf->device_lock);
1566	if (!sh)
1567		return 0;
1568	BUG_ON(atomic_read(&sh->count));
1569	shrink_buffers(sh);
1570	kmem_cache_free(conf->slab_cache, sh);
1571	atomic_dec(&conf->active_stripes);
 
1572	return 1;
1573}
1574
1575static void shrink_stripes(raid5_conf_t *conf)
1576{
1577	while (drop_one_stripe(conf))
 
1578		;
1579
1580	if (conf->slab_cache)
1581		kmem_cache_destroy(conf->slab_cache);
1582	conf->slab_cache = NULL;
1583}
1584
1585static void raid5_end_read_request(struct bio * bi, int error)
1586{
1587	struct stripe_head *sh = bi->bi_private;
1588	raid5_conf_t *conf = sh->raid_conf;
1589	int disks = sh->disks, i;
1590	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1591	char b[BDEVNAME_SIZE];
1592	mdk_rdev_t *rdev;
1593
1594
1595	for (i=0 ; i<disks; i++)
1596		if (bi == &sh->dev[i].req)
1597			break;
1598
1599	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1600		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1601		uptodate);
1602	if (i == disks) {
 
1603		BUG();
1604		return;
1605	}
 
 
 
 
 
 
 
 
 
1606
1607	if (uptodate) {
 
 
 
 
1608		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1609		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1610			rdev = conf->disks[i].rdev;
1611			printk_ratelimited(
1612				KERN_INFO
1613				"md/raid:%s: read error corrected"
1614				" (%lu sectors at %llu on %s)\n",
1615				mdname(conf->mddev), STRIPE_SECTORS,
1616				(unsigned long long)(sh->sector
1617						     + rdev->data_offset),
1618				bdevname(rdev->bdev, b));
1619			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1620			clear_bit(R5_ReadError, &sh->dev[i].flags);
1621			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1622		}
1623		if (atomic_read(&conf->disks[i].rdev->read_errors))
1624			atomic_set(&conf->disks[i].rdev->read_errors, 0);
 
 
 
 
 
 
 
 
 
1625	} else {
1626		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1627		int retry = 0;
1628		rdev = conf->disks[i].rdev;
1629
1630		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1631		atomic_inc(&rdev->read_errors);
1632		if (conf->mddev->degraded >= conf->max_degraded)
1633			printk_ratelimited(
1634				KERN_WARNING
1635				"md/raid:%s: read error not correctable "
1636				"(sector %llu on %s).\n",
 
 
 
 
 
 
1637				mdname(conf->mddev),
1638				(unsigned long long)(sh->sector
1639						     + rdev->data_offset),
1640				bdn);
1641		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1642			/* Oh, no!!! */
1643			printk_ratelimited(
1644				KERN_WARNING
1645				"md/raid:%s: read error NOT corrected!! "
1646				"(sector %llu on %s).\n",
1647				mdname(conf->mddev),
1648				(unsigned long long)(sh->sector
1649						     + rdev->data_offset),
1650				bdn);
1651		else if (atomic_read(&rdev->read_errors)
1652			 > conf->max_nr_stripes)
1653			printk(KERN_WARNING
1654			       "md/raid:%s: Too many read errors, failing device %s.\n",
1655			       mdname(conf->mddev), bdn);
1656		else
 
 
 
 
 
 
 
 
1657			retry = 1;
1658		if (retry)
1659			set_bit(R5_ReadError, &sh->dev[i].flags);
 
 
 
 
 
 
1660		else {
1661			clear_bit(R5_ReadError, &sh->dev[i].flags);
1662			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1663			md_error(conf->mddev, rdev);
 
 
 
 
1664		}
1665	}
1666	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
 
1667	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1668	set_bit(STRIPE_HANDLE, &sh->state);
1669	release_stripe(sh);
1670}
1671
1672static void raid5_end_write_request(struct bio *bi, int error)
1673{
1674	struct stripe_head *sh = bi->bi_private;
1675	raid5_conf_t *conf = sh->raid_conf;
1676	int disks = sh->disks, i;
1677	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1678	sector_t first_bad;
1679	int bad_sectors;
 
1680
1681	for (i=0 ; i<disks; i++)
1682		if (bi == &sh->dev[i].req)
 
1683			break;
1684
1685	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
1686		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1687		uptodate);
1688	if (i == disks) {
 
1689		BUG();
1690		return;
1691	}
1692
1693	if (!uptodate) {
1694		set_bit(WriteErrorSeen, &conf->disks[i].rdev->flags);
1695		set_bit(R5_WriteError, &sh->dev[i].flags);
1696	} else if (is_badblock(conf->disks[i].rdev, sh->sector, STRIPE_SECTORS,
1697			       &first_bad, &bad_sectors))
1698		set_bit(R5_MadeGood, &sh->dev[i].flags);
1699
1700	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1701	
1702	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1703	set_bit(STRIPE_HANDLE, &sh->state);
1704	release_stripe(sh);
1705}
1706
1707
1708static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1709	
1710static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1711{
1712	struct r5dev *dev = &sh->dev[i];
 
 
 
 
 
 
 
 
1713
1714	bio_init(&dev->req);
1715	dev->req.bi_io_vec = &dev->vec;
1716	dev->req.bi_vcnt++;
1717	dev->req.bi_max_vecs++;
1718	dev->vec.bv_page = dev->page;
1719	dev->vec.bv_len = STRIPE_SIZE;
1720	dev->vec.bv_offset = 0;
1721
1722	dev->req.bi_sector = sh->sector;
1723	dev->req.bi_private = sh;
 
 
 
1724
1725	dev->flags = 0;
1726	dev->sector = compute_blocknr(sh, i, previous);
1727}
1728
1729static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1730{
1731	char b[BDEVNAME_SIZE];
1732	raid5_conf_t *conf = mddev->private;
 
1733	pr_debug("raid456: error called\n");
1734
1735	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1736		unsigned long flags;
1737		spin_lock_irqsave(&conf->device_lock, flags);
1738		mddev->degraded++;
1739		spin_unlock_irqrestore(&conf->device_lock, flags);
1740		/*
1741		 * if recovery was running, make sure it aborts.
 
1742		 */
1743		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
 
 
1744	}
1745	set_bit(Blocked, &rdev->flags);
1746	set_bit(Faulty, &rdev->flags);
1747	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1748	printk(KERN_ALERT
1749	       "md/raid:%s: Disk failure on %s, disabling device.\n"
1750	       "md/raid:%s: Operation continuing on %d devices.\n",
1751	       mdname(mddev),
1752	       bdevname(rdev->bdev, b),
1753	       mdname(mddev),
1754	       conf->raid_disks - mddev->degraded);
 
 
 
 
 
 
 
1755}
1756
1757/*
1758 * Input: a 'big' sector number,
1759 * Output: index of the data and parity disk, and the sector # in them.
1760 */
1761static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1762				     int previous, int *dd_idx,
1763				     struct stripe_head *sh)
1764{
1765	sector_t stripe, stripe2;
1766	sector_t chunk_number;
1767	unsigned int chunk_offset;
1768	int pd_idx, qd_idx;
1769	int ddf_layout = 0;
1770	sector_t new_sector;
1771	int algorithm = previous ? conf->prev_algo
1772				 : conf->algorithm;
1773	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1774					 : conf->chunk_sectors;
1775	int raid_disks = previous ? conf->previous_raid_disks
1776				  : conf->raid_disks;
1777	int data_disks = raid_disks - conf->max_degraded;
1778
1779	/* First compute the information on this sector */
1780
1781	/*
1782	 * Compute the chunk number and the sector offset inside the chunk
1783	 */
1784	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1785	chunk_number = r_sector;
1786
1787	/*
1788	 * Compute the stripe number
1789	 */
1790	stripe = chunk_number;
1791	*dd_idx = sector_div(stripe, data_disks);
1792	stripe2 = stripe;
1793	/*
1794	 * Select the parity disk based on the user selected algorithm.
1795	 */
1796	pd_idx = qd_idx = -1;
1797	switch(conf->level) {
1798	case 4:
1799		pd_idx = data_disks;
1800		break;
1801	case 5:
1802		switch (algorithm) {
1803		case ALGORITHM_LEFT_ASYMMETRIC:
1804			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1805			if (*dd_idx >= pd_idx)
1806				(*dd_idx)++;
1807			break;
1808		case ALGORITHM_RIGHT_ASYMMETRIC:
1809			pd_idx = sector_div(stripe2, raid_disks);
1810			if (*dd_idx >= pd_idx)
1811				(*dd_idx)++;
1812			break;
1813		case ALGORITHM_LEFT_SYMMETRIC:
1814			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1815			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1816			break;
1817		case ALGORITHM_RIGHT_SYMMETRIC:
1818			pd_idx = sector_div(stripe2, raid_disks);
1819			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1820			break;
1821		case ALGORITHM_PARITY_0:
1822			pd_idx = 0;
1823			(*dd_idx)++;
1824			break;
1825		case ALGORITHM_PARITY_N:
1826			pd_idx = data_disks;
1827			break;
1828		default:
1829			BUG();
1830		}
1831		break;
1832	case 6:
1833
1834		switch (algorithm) {
1835		case ALGORITHM_LEFT_ASYMMETRIC:
1836			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1837			qd_idx = pd_idx + 1;
1838			if (pd_idx == raid_disks-1) {
1839				(*dd_idx)++;	/* Q D D D P */
1840				qd_idx = 0;
1841			} else if (*dd_idx >= pd_idx)
1842				(*dd_idx) += 2; /* D D P Q D */
1843			break;
1844		case ALGORITHM_RIGHT_ASYMMETRIC:
1845			pd_idx = sector_div(stripe2, raid_disks);
1846			qd_idx = pd_idx + 1;
1847			if (pd_idx == raid_disks-1) {
1848				(*dd_idx)++;	/* Q D D D P */
1849				qd_idx = 0;
1850			} else if (*dd_idx >= pd_idx)
1851				(*dd_idx) += 2; /* D D P Q D */
1852			break;
1853		case ALGORITHM_LEFT_SYMMETRIC:
1854			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1855			qd_idx = (pd_idx + 1) % raid_disks;
1856			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1857			break;
1858		case ALGORITHM_RIGHT_SYMMETRIC:
1859			pd_idx = sector_div(stripe2, raid_disks);
1860			qd_idx = (pd_idx + 1) % raid_disks;
1861			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1862			break;
1863
1864		case ALGORITHM_PARITY_0:
1865			pd_idx = 0;
1866			qd_idx = 1;
1867			(*dd_idx) += 2;
1868			break;
1869		case ALGORITHM_PARITY_N:
1870			pd_idx = data_disks;
1871			qd_idx = data_disks + 1;
1872			break;
1873
1874		case ALGORITHM_ROTATING_ZERO_RESTART:
1875			/* Exactly the same as RIGHT_ASYMMETRIC, but or
1876			 * of blocks for computing Q is different.
1877			 */
1878			pd_idx = sector_div(stripe2, raid_disks);
1879			qd_idx = pd_idx + 1;
1880			if (pd_idx == raid_disks-1) {
1881				(*dd_idx)++;	/* Q D D D P */
1882				qd_idx = 0;
1883			} else if (*dd_idx >= pd_idx)
1884				(*dd_idx) += 2; /* D D P Q D */
1885			ddf_layout = 1;
1886			break;
1887
1888		case ALGORITHM_ROTATING_N_RESTART:
1889			/* Same a left_asymmetric, by first stripe is
1890			 * D D D P Q  rather than
1891			 * Q D D D P
1892			 */
1893			stripe2 += 1;
1894			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1895			qd_idx = pd_idx + 1;
1896			if (pd_idx == raid_disks-1) {
1897				(*dd_idx)++;	/* Q D D D P */
1898				qd_idx = 0;
1899			} else if (*dd_idx >= pd_idx)
1900				(*dd_idx) += 2; /* D D P Q D */
1901			ddf_layout = 1;
1902			break;
1903
1904		case ALGORITHM_ROTATING_N_CONTINUE:
1905			/* Same as left_symmetric but Q is before P */
1906			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1907			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1908			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1909			ddf_layout = 1;
1910			break;
1911
1912		case ALGORITHM_LEFT_ASYMMETRIC_6:
1913			/* RAID5 left_asymmetric, with Q on last device */
1914			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1915			if (*dd_idx >= pd_idx)
1916				(*dd_idx)++;
1917			qd_idx = raid_disks - 1;
1918			break;
1919
1920		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1921			pd_idx = sector_div(stripe2, raid_disks-1);
1922			if (*dd_idx >= pd_idx)
1923				(*dd_idx)++;
1924			qd_idx = raid_disks - 1;
1925			break;
1926
1927		case ALGORITHM_LEFT_SYMMETRIC_6:
1928			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1929			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1930			qd_idx = raid_disks - 1;
1931			break;
1932
1933		case ALGORITHM_RIGHT_SYMMETRIC_6:
1934			pd_idx = sector_div(stripe2, raid_disks-1);
1935			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1936			qd_idx = raid_disks - 1;
1937			break;
1938
1939		case ALGORITHM_PARITY_0_6:
1940			pd_idx = 0;
1941			(*dd_idx)++;
1942			qd_idx = raid_disks - 1;
1943			break;
1944
1945		default:
1946			BUG();
1947		}
1948		break;
1949	}
1950
1951	if (sh) {
1952		sh->pd_idx = pd_idx;
1953		sh->qd_idx = qd_idx;
1954		sh->ddf_layout = ddf_layout;
1955	}
1956	/*
1957	 * Finally, compute the new sector number
1958	 */
1959	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1960	return new_sector;
1961}
1962
1963
1964static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1965{
1966	raid5_conf_t *conf = sh->raid_conf;
1967	int raid_disks = sh->disks;
1968	int data_disks = raid_disks - conf->max_degraded;
1969	sector_t new_sector = sh->sector, check;
1970	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1971					 : conf->chunk_sectors;
1972	int algorithm = previous ? conf->prev_algo
1973				 : conf->algorithm;
1974	sector_t stripe;
1975	int chunk_offset;
1976	sector_t chunk_number;
1977	int dummy1, dd_idx = i;
1978	sector_t r_sector;
1979	struct stripe_head sh2;
1980
1981
1982	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1983	stripe = new_sector;
1984
1985	if (i == sh->pd_idx)
1986		return 0;
1987	switch(conf->level) {
1988	case 4: break;
1989	case 5:
1990		switch (algorithm) {
1991		case ALGORITHM_LEFT_ASYMMETRIC:
1992		case ALGORITHM_RIGHT_ASYMMETRIC:
1993			if (i > sh->pd_idx)
1994				i--;
1995			break;
1996		case ALGORITHM_LEFT_SYMMETRIC:
1997		case ALGORITHM_RIGHT_SYMMETRIC:
1998			if (i < sh->pd_idx)
1999				i += raid_disks;
2000			i -= (sh->pd_idx + 1);
2001			break;
2002		case ALGORITHM_PARITY_0:
2003			i -= 1;
2004			break;
2005		case ALGORITHM_PARITY_N:
2006			break;
2007		default:
2008			BUG();
2009		}
2010		break;
2011	case 6:
2012		if (i == sh->qd_idx)
2013			return 0; /* It is the Q disk */
2014		switch (algorithm) {
2015		case ALGORITHM_LEFT_ASYMMETRIC:
2016		case ALGORITHM_RIGHT_ASYMMETRIC:
2017		case ALGORITHM_ROTATING_ZERO_RESTART:
2018		case ALGORITHM_ROTATING_N_RESTART:
2019			if (sh->pd_idx == raid_disks-1)
2020				i--;	/* Q D D D P */
2021			else if (i > sh->pd_idx)
2022				i -= 2; /* D D P Q D */
2023			break;
2024		case ALGORITHM_LEFT_SYMMETRIC:
2025		case ALGORITHM_RIGHT_SYMMETRIC:
2026			if (sh->pd_idx == raid_disks-1)
2027				i--; /* Q D D D P */
2028			else {
2029				/* D D P Q D */
2030				if (i < sh->pd_idx)
2031					i += raid_disks;
2032				i -= (sh->pd_idx + 2);
2033			}
2034			break;
2035		case ALGORITHM_PARITY_0:
2036			i -= 2;
2037			break;
2038		case ALGORITHM_PARITY_N:
2039			break;
2040		case ALGORITHM_ROTATING_N_CONTINUE:
2041			/* Like left_symmetric, but P is before Q */
2042			if (sh->pd_idx == 0)
2043				i--;	/* P D D D Q */
2044			else {
2045				/* D D Q P D */
2046				if (i < sh->pd_idx)
2047					i += raid_disks;
2048				i -= (sh->pd_idx + 1);
2049			}
2050			break;
2051		case ALGORITHM_LEFT_ASYMMETRIC_6:
2052		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2053			if (i > sh->pd_idx)
2054				i--;
2055			break;
2056		case ALGORITHM_LEFT_SYMMETRIC_6:
2057		case ALGORITHM_RIGHT_SYMMETRIC_6:
2058			if (i < sh->pd_idx)
2059				i += data_disks + 1;
2060			i -= (sh->pd_idx + 1);
2061			break;
2062		case ALGORITHM_PARITY_0_6:
2063			i -= 1;
2064			break;
2065		default:
2066			BUG();
2067		}
2068		break;
2069	}
2070
2071	chunk_number = stripe * data_disks + i;
2072	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2073
2074	check = raid5_compute_sector(conf, r_sector,
2075				     previous, &dummy1, &sh2);
2076	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2077		|| sh2.qd_idx != sh->qd_idx) {
2078		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2079		       mdname(conf->mddev));
2080		return 0;
2081	}
2082	return r_sector;
2083}
2084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2085
2086static void
2087schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2088			 int rcw, int expand)
2089{
2090	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2091	raid5_conf_t *conf = sh->raid_conf;
2092	int level = conf->level;
2093
2094	if (rcw) {
2095		/* if we are not expanding this is a proper write request, and
2096		 * there will be bios with new data to be drained into the
2097		 * stripe cache
 
 
2098		 */
2099		if (!expand) {
2100			sh->reconstruct_state = reconstruct_state_drain_run;
2101			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2102		} else
2103			sh->reconstruct_state = reconstruct_state_run;
2104
2105		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2106
2107		for (i = disks; i--; ) {
2108			struct r5dev *dev = &sh->dev[i];
2109
2110			if (dev->towrite) {
2111				set_bit(R5_LOCKED, &dev->flags);
2112				set_bit(R5_Wantdrain, &dev->flags);
2113				if (!expand)
2114					clear_bit(R5_UPTODATE, &dev->flags);
2115				s->locked++;
 
 
 
2116			}
2117		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2118		if (s->locked + conf->max_degraded == disks)
2119			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2120				atomic_inc(&conf->pending_full_writes);
2121	} else {
2122		BUG_ON(level == 6);
2123		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2124			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2125
2126		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2127		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2128		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2129		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2130
2131		for (i = disks; i--; ) {
2132			struct r5dev *dev = &sh->dev[i];
2133			if (i == pd_idx)
2134				continue;
2135
2136			if (dev->towrite &&
2137			    (test_bit(R5_UPTODATE, &dev->flags) ||
2138			     test_bit(R5_Wantcompute, &dev->flags))) {
2139				set_bit(R5_Wantdrain, &dev->flags);
2140				set_bit(R5_LOCKED, &dev->flags);
2141				clear_bit(R5_UPTODATE, &dev->flags);
2142				s->locked++;
 
 
 
2143			}
2144		}
 
 
 
 
 
 
 
2145	}
2146
2147	/* keep the parity disk(s) locked while asynchronous operations
2148	 * are in flight
2149	 */
2150	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2151	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2152	s->locked++;
2153
2154	if (level == 6) {
2155		int qd_idx = sh->qd_idx;
2156		struct r5dev *dev = &sh->dev[qd_idx];
2157
2158		set_bit(R5_LOCKED, &dev->flags);
2159		clear_bit(R5_UPTODATE, &dev->flags);
2160		s->locked++;
2161	}
2162
 
 
 
 
 
 
2163	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2164		__func__, (unsigned long long)sh->sector,
2165		s->locked, s->ops_request);
2166}
2167
2168/*
2169 * Each stripe/dev can have one or more bion attached.
2170 * toread/towrite point to the first in a chain.
2171 * The bi_next chain must be in order.
2172 */
2173static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
 
2174{
2175	struct bio **bip;
2176	raid5_conf_t *conf = sh->raid_conf;
2177	int firstwrite=0;
2178
2179	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2180		(unsigned long long)bi->bi_sector,
2181		(unsigned long long)sh->sector);
2182
2183
2184	spin_lock_irq(&conf->device_lock);
 
 
 
2185	if (forwrite) {
2186		bip = &sh->dev[dd_idx].towrite;
2187		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2188			firstwrite = 1;
2189	} else
2190		bip = &sh->dev[dd_idx].toread;
2191	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2192		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2193			goto overlap;
2194		bip = & (*bip)->bi_next;
2195	}
2196	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2197		goto overlap;
2198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2199	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2200	if (*bip)
2201		bi->bi_next = *bip;
2202	*bip = bi;
2203	bi->bi_phys_segments++;
 
2204
2205	if (forwrite) {
2206		/* check if page is covered */
2207		sector_t sector = sh->dev[dd_idx].sector;
2208		for (bi=sh->dev[dd_idx].towrite;
2209		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2210			     bi && bi->bi_sector <= sector;
2211		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2212			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2213				sector = bi->bi_sector + (bi->bi_size>>9);
2214		}
2215		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2216			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
 
2217	}
2218	spin_unlock_irq(&conf->device_lock);
2219
2220	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2221		(unsigned long long)(*bip)->bi_sector,
2222		(unsigned long long)sh->sector, dd_idx);
2223
2224	if (conf->mddev->bitmap && firstwrite) {
2225		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2226				  STRIPE_SECTORS, 0);
2227		sh->bm_seq = conf->seq_flush+1;
2228		set_bit(STRIPE_BIT_DELAY, &sh->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2229	}
 
 
 
 
2230	return 1;
2231
2232 overlap:
2233	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2234	spin_unlock_irq(&conf->device_lock);
2235	return 0;
2236}
2237
2238static void end_reshape(raid5_conf_t *conf);
2239
2240static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2241			    struct stripe_head *sh)
2242{
2243	int sectors_per_chunk =
2244		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2245	int dd_idx;
2246	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2247	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2248
2249	raid5_compute_sector(conf,
2250			     stripe * (disks - conf->max_degraded)
2251			     *sectors_per_chunk + chunk_offset,
2252			     previous,
2253			     &dd_idx, sh);
2254}
2255
2256static void
2257handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2258				struct stripe_head_state *s, int disks,
2259				struct bio **return_bi)
2260{
2261	int i;
 
2262	for (i = disks; i--; ) {
2263		struct bio *bi;
2264		int bitmap_end = 0;
2265
2266		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2267			mdk_rdev_t *rdev;
2268			rcu_read_lock();
2269			rdev = rcu_dereference(conf->disks[i].rdev);
2270			if (rdev && test_bit(In_sync, &rdev->flags))
 
2271				atomic_inc(&rdev->nr_pending);
2272			else
2273				rdev = NULL;
2274			rcu_read_unlock();
2275			if (rdev) {
2276				if (!rdev_set_badblocks(
2277					    rdev,
2278					    sh->sector,
2279					    STRIPE_SECTORS, 0))
2280					md_error(conf->mddev, rdev);
2281				rdev_dec_pending(rdev, conf->mddev);
2282			}
2283		}
2284		spin_lock_irq(&conf->device_lock);
2285		/* fail all writes first */
2286		bi = sh->dev[i].towrite;
2287		sh->dev[i].towrite = NULL;
2288		if (bi) {
2289			s->to_write--;
 
2290			bitmap_end = 1;
2291		}
 
2292
2293		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2294			wake_up(&conf->wait_for_overlap);
2295
2296		while (bi && bi->bi_sector <
2297			sh->dev[i].sector + STRIPE_SECTORS) {
2298			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2299			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2300			if (!raid5_dec_bi_phys_segments(bi)) {
2301				md_write_end(conf->mddev);
2302				bi->bi_next = *return_bi;
2303				*return_bi = bi;
2304			}
2305			bi = nextbi;
2306		}
 
 
 
 
2307		/* and fail all 'written' */
2308		bi = sh->dev[i].written;
2309		sh->dev[i].written = NULL;
 
 
 
 
 
2310		if (bi) bitmap_end = 1;
2311		while (bi && bi->bi_sector <
2312		       sh->dev[i].sector + STRIPE_SECTORS) {
2313			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2314			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2315			if (!raid5_dec_bi_phys_segments(bi)) {
2316				md_write_end(conf->mddev);
2317				bi->bi_next = *return_bi;
2318				*return_bi = bi;
2319			}
2320			bi = bi2;
2321		}
2322
2323		/* fail any reads if this device is non-operational and
2324		 * the data has not reached the cache yet.
2325		 */
2326		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
 
2327		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2328		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
 
2329			bi = sh->dev[i].toread;
2330			sh->dev[i].toread = NULL;
 
2331			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2332				wake_up(&conf->wait_for_overlap);
2333			if (bi) s->to_read--;
2334			while (bi && bi->bi_sector <
2335			       sh->dev[i].sector + STRIPE_SECTORS) {
 
2336				struct bio *nextbi =
2337					r5_next_bio(bi, sh->dev[i].sector);
2338				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2339				if (!raid5_dec_bi_phys_segments(bi)) {
2340					bi->bi_next = *return_bi;
2341					*return_bi = bi;
2342				}
2343				bi = nextbi;
2344			}
2345		}
2346		spin_unlock_irq(&conf->device_lock);
2347		if (bitmap_end)
2348			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2349					STRIPE_SECTORS, 0, 0);
2350		/* If we were in the middle of a write the parity block might
2351		 * still be locked - so just clear all R5_LOCKED flags
2352		 */
2353		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2354	}
 
 
2355
2356	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2357		if (atomic_dec_and_test(&conf->pending_full_writes))
2358			md_wakeup_thread(conf->mddev->thread);
2359}
2360
2361static void
2362handle_failed_sync(raid5_conf_t *conf, struct stripe_head *sh,
2363		   struct stripe_head_state *s)
2364{
2365	int abort = 0;
2366	int i;
2367
2368	md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2369	clear_bit(STRIPE_SYNCING, &sh->state);
 
 
2370	s->syncing = 0;
 
2371	/* There is nothing more to do for sync/check/repair.
2372	 * For recover we need to record a bad block on all
 
 
 
2373	 * non-sync devices, or abort the recovery
2374	 */
2375	if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2376		return;
2377	/* During recovery devices cannot be removed, so locking and
2378	 * refcounting of rdevs is not needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2379	 */
2380	for (i = 0; i < conf->raid_disks; i++) {
2381		mdk_rdev_t *rdev = conf->disks[i].rdev;
2382		if (!rdev
2383		    || test_bit(Faulty, &rdev->flags)
2384		    || test_bit(In_sync, &rdev->flags))
2385			continue;
2386		if (!rdev_set_badblocks(rdev, sh->sector,
2387					STRIPE_SECTORS, 0))
2388			abort = 1;
2389	}
2390	if (abort) {
2391		conf->recovery_disabled = conf->mddev->recovery_disabled;
2392		set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2393	}
 
 
2394}
2395
2396/* fetch_block - checks the given member device to see if its data needs
2397 * to be read or computed to satisfy a request.
2398 *
2399 * Returns 1 when no more member devices need to be checked, otherwise returns
2400 * 0 to tell the loop in handle_stripe_fill to continue
2401 */
2402static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2403		       int disk_idx, int disks)
2404{
2405	struct r5dev *dev = &sh->dev[disk_idx];
2406	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2407				  &sh->dev[s->failed_num[1]] };
2408
2409	/* is the data in this block needed, and can we get it? */
2410	if (!test_bit(R5_LOCKED, &dev->flags) &&
2411	    !test_bit(R5_UPTODATE, &dev->flags) &&
2412	    (dev->toread ||
2413	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2414	     s->syncing || s->expanding ||
2415	     (s->failed >= 1 && fdev[0]->toread) ||
2416	     (s->failed >= 2 && fdev[1]->toread) ||
2417	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2418	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2419	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2420		/* we would like to get this block, possibly by computing it,
2421		 * otherwise read it if the backing disk is insync
2422		 */
2423		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2424		BUG_ON(test_bit(R5_Wantread, &dev->flags));
 
 
 
 
 
 
 
 
 
 
 
2425		if ((s->uptodate == disks - 1) &&
 
2426		    (s->failed && (disk_idx == s->failed_num[0] ||
2427				   disk_idx == s->failed_num[1]))) {
2428			/* have disk failed, and we're requested to fetch it;
2429			 * do compute it
2430			 */
2431			pr_debug("Computing stripe %llu block %d\n",
2432			       (unsigned long long)sh->sector, disk_idx);
2433			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2434			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2435			set_bit(R5_Wantcompute, &dev->flags);
2436			sh->ops.target = disk_idx;
2437			sh->ops.target2 = -1; /* no 2nd target */
2438			s->req_compute = 1;
2439			/* Careful: from this point on 'uptodate' is in the eye
2440			 * of raid_run_ops which services 'compute' operations
2441			 * before writes. R5_Wantcompute flags a block that will
2442			 * be R5_UPTODATE by the time it is needed for a
2443			 * subsequent operation.
2444			 */
2445			s->uptodate++;
2446			return 1;
2447		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2448			/* Computing 2-failure is *very* expensive; only
2449			 * do it if failed >= 2
2450			 */
2451			int other;
2452			for (other = disks; other--; ) {
2453				if (other == disk_idx)
2454					continue;
2455				if (!test_bit(R5_UPTODATE,
2456				      &sh->dev[other].flags))
2457					break;
2458			}
2459			BUG_ON(other < 0);
2460			pr_debug("Computing stripe %llu blocks %d,%d\n",
2461			       (unsigned long long)sh->sector,
2462			       disk_idx, other);
2463			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2464			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2465			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2466			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2467			sh->ops.target = disk_idx;
2468			sh->ops.target2 = other;
2469			s->uptodate += 2;
2470			s->req_compute = 1;
2471			return 1;
2472		} else if (test_bit(R5_Insync, &dev->flags)) {
2473			set_bit(R5_LOCKED, &dev->flags);
2474			set_bit(R5_Wantread, &dev->flags);
2475			s->locked++;
2476			pr_debug("Reading block %d (sync=%d)\n",
2477				disk_idx, s->syncing);
2478		}
2479	}
2480
2481	return 0;
2482}
2483
2484/**
2485 * handle_stripe_fill - read or compute data to satisfy pending requests.
2486 */
2487static void handle_stripe_fill(struct stripe_head *sh,
2488			       struct stripe_head_state *s,
2489			       int disks)
2490{
2491	int i;
2492
2493	/* look for blocks to read/compute, skip this if a compute
2494	 * is already in flight, or if the stripe contents are in the
2495	 * midst of changing due to a write
2496	 */
2497	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2498	    !sh->reconstruct_state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2499		for (i = disks; i--; )
2500			if (fetch_block(sh, s, i, disks))
2501				break;
 
 
2502	set_bit(STRIPE_HANDLE, &sh->state);
2503}
2504
2505
 
2506/* handle_stripe_clean_event
2507 * any written block on an uptodate or failed drive can be returned.
2508 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2509 * never LOCKED, so we don't need to test 'failed' directly.
2510 */
2511static void handle_stripe_clean_event(raid5_conf_t *conf,
2512	struct stripe_head *sh, int disks, struct bio **return_bi)
2513{
2514	int i;
2515	struct r5dev *dev;
 
 
 
2516
2517	for (i = disks; i--; )
2518		if (sh->dev[i].written) {
2519			dev = &sh->dev[i];
2520			if (!test_bit(R5_LOCKED, &dev->flags) &&
2521				test_bit(R5_UPTODATE, &dev->flags)) {
 
 
2522				/* We can return any write requests */
2523				struct bio *wbi, *wbi2;
2524				int bitmap_end = 0;
2525				pr_debug("Return write for disc %d\n", i);
2526				spin_lock_irq(&conf->device_lock);
 
 
 
 
 
 
 
 
2527				wbi = dev->written;
2528				dev->written = NULL;
2529				while (wbi && wbi->bi_sector <
2530					dev->sector + STRIPE_SECTORS) {
2531					wbi2 = r5_next_bio(wbi, dev->sector);
2532					if (!raid5_dec_bi_phys_segments(wbi)) {
2533						md_write_end(conf->mddev);
2534						wbi->bi_next = *return_bi;
2535						*return_bi = wbi;
2536					}
2537					wbi = wbi2;
2538				}
2539				if (dev->towrite == NULL)
2540					bitmap_end = 1;
2541				spin_unlock_irq(&conf->device_lock);
2542				if (bitmap_end)
2543					bitmap_endwrite(conf->mddev->bitmap,
2544							sh->sector,
2545							STRIPE_SECTORS,
2546					 !test_bit(STRIPE_DEGRADED, &sh->state),
2547							0);
2548			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2549		}
 
 
 
 
 
 
2550
2551	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2552		if (atomic_dec_and_test(&conf->pending_full_writes))
2553			md_wakeup_thread(conf->mddev->thread);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2554}
2555
2556static void handle_stripe_dirtying(raid5_conf_t *conf,
2557				   struct stripe_head *sh,
2558				   struct stripe_head_state *s,
2559				   int disks)
2560{
2561	int rmw = 0, rcw = 0, i;
2562	if (conf->max_degraded == 2) {
2563		/* RAID6 requires 'rcw' in current implementation
2564		 * Calculate the real rcw later - for now fake it
 
 
 
 
 
 
 
 
 
 
2565		 * look like rcw is cheaper
2566		 */
2567		rcw = 1; rmw = 2;
 
 
 
2568	} else for (i = disks; i--; ) {
2569		/* would I have to read this buffer for read_modify_write */
2570		struct r5dev *dev = &sh->dev[i];
2571		if ((dev->towrite || i == sh->pd_idx) &&
 
 
2572		    !test_bit(R5_LOCKED, &dev->flags) &&
2573		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2574		      test_bit(R5_Wantcompute, &dev->flags))) {
2575			if (test_bit(R5_Insync, &dev->flags))
2576				rmw++;
2577			else
2578				rmw += 2*disks;  /* cannot read it */
2579		}
2580		/* Would I have to read this buffer for reconstruct_write */
2581		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
 
2582		    !test_bit(R5_LOCKED, &dev->flags) &&
2583		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2584		    test_bit(R5_Wantcompute, &dev->flags))) {
2585			if (test_bit(R5_Insync, &dev->flags)) rcw++;
 
2586			else
2587				rcw += 2*disks;
2588		}
2589	}
2590	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2591		(unsigned long long)sh->sector, rmw, rcw);
 
2592	set_bit(STRIPE_HANDLE, &sh->state);
2593	if (rmw < rcw && rmw > 0)
2594		/* prefer read-modify-write, but need to get some data */
 
 
 
 
2595		for (i = disks; i--; ) {
2596			struct r5dev *dev = &sh->dev[i];
2597			if ((dev->towrite || i == sh->pd_idx) &&
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2598			    !test_bit(R5_LOCKED, &dev->flags) &&
2599			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2600			    test_bit(R5_Wantcompute, &dev->flags)) &&
2601			    test_bit(R5_Insync, &dev->flags)) {
2602				if (
2603				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2604					pr_debug("Read_old block "
2605						"%d for r-m-w\n", i);
2606					set_bit(R5_LOCKED, &dev->flags);
2607					set_bit(R5_Wantread, &dev->flags);
2608					s->locked++;
2609				} else {
2610					set_bit(STRIPE_DELAYED, &sh->state);
2611					set_bit(STRIPE_HANDLE, &sh->state);
2612				}
2613			}
2614		}
2615	if (rcw <= rmw && rcw > 0) {
 
2616		/* want reconstruct write, but need to get some data */
 
2617		rcw = 0;
2618		for (i = disks; i--; ) {
2619			struct r5dev *dev = &sh->dev[i];
2620			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2621			    i != sh->pd_idx && i != sh->qd_idx &&
2622			    !test_bit(R5_LOCKED, &dev->flags) &&
2623			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2624			      test_bit(R5_Wantcompute, &dev->flags))) {
2625				rcw++;
2626				if (!test_bit(R5_Insync, &dev->flags))
2627					continue; /* it's a failed drive */
2628				if (
2629				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2630					pr_debug("Read_old block "
2631						"%d for Reconstruct\n", i);
2632					set_bit(R5_LOCKED, &dev->flags);
2633					set_bit(R5_Wantread, &dev->flags);
2634					s->locked++;
2635				} else {
 
2636					set_bit(STRIPE_DELAYED, &sh->state);
2637					set_bit(STRIPE_HANDLE, &sh->state);
2638				}
2639			}
2640		}
 
 
 
 
2641	}
 
 
 
 
 
2642	/* now if nothing is locked, and if we have enough data,
2643	 * we can start a write request
2644	 */
2645	/* since handle_stripe can be called at any time we need to handle the
2646	 * case where a compute block operation has been submitted and then a
2647	 * subsequent call wants to start a write request.  raid_run_ops only
2648	 * handles the case where compute block and reconstruct are requested
2649	 * simultaneously.  If this is not the case then new writes need to be
2650	 * held off until the compute completes.
2651	 */
2652	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2653	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2654	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2655		schedule_reconstruction(sh, s, rcw == 0, 0);
 
2656}
2657
2658static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2659				struct stripe_head_state *s, int disks)
2660{
2661	struct r5dev *dev = NULL;
2662
 
2663	set_bit(STRIPE_HANDLE, &sh->state);
2664
2665	switch (sh->check_state) {
2666	case check_state_idle:
2667		/* start a new check operation if there are no failures */
2668		if (s->failed == 0) {
2669			BUG_ON(s->uptodate != disks);
2670			sh->check_state = check_state_run;
2671			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2672			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2673			s->uptodate--;
2674			break;
2675		}
2676		dev = &sh->dev[s->failed_num[0]];
2677		/* fall through */
2678	case check_state_compute_result:
2679		sh->check_state = check_state_idle;
2680		if (!dev)
2681			dev = &sh->dev[sh->pd_idx];
2682
2683		/* check that a write has not made the stripe insync */
2684		if (test_bit(STRIPE_INSYNC, &sh->state))
2685			break;
2686
2687		/* either failed parity check, or recovery is happening */
2688		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2689		BUG_ON(s->uptodate != disks);
2690
2691		set_bit(R5_LOCKED, &dev->flags);
2692		s->locked++;
2693		set_bit(R5_Wantwrite, &dev->flags);
2694
2695		clear_bit(STRIPE_DEGRADED, &sh->state);
2696		set_bit(STRIPE_INSYNC, &sh->state);
2697		break;
2698	case check_state_run:
2699		break; /* we will be called again upon completion */
2700	case check_state_check_result:
2701		sh->check_state = check_state_idle;
2702
2703		/* if a failure occurred during the check operation, leave
2704		 * STRIPE_INSYNC not set and let the stripe be handled again
2705		 */
2706		if (s->failed)
2707			break;
2708
2709		/* handle a successful check operation, if parity is correct
2710		 * we are done.  Otherwise update the mismatch count and repair
2711		 * parity if !MD_RECOVERY_CHECK
2712		 */
2713		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2714			/* parity is correct (on disc,
2715			 * not in buffer any more)
2716			 */
2717			set_bit(STRIPE_INSYNC, &sh->state);
2718		else {
2719			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2720			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2721				/* don't try to repair!! */
2722				set_bit(STRIPE_INSYNC, &sh->state);
2723			else {
 
 
 
 
 
2724				sh->check_state = check_state_compute_run;
2725				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2726				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2727				set_bit(R5_Wantcompute,
2728					&sh->dev[sh->pd_idx].flags);
2729				sh->ops.target = sh->pd_idx;
2730				sh->ops.target2 = -1;
2731				s->uptodate++;
2732			}
2733		}
2734		break;
2735	case check_state_compute_run:
2736		break;
2737	default:
2738		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2739		       __func__, sh->check_state,
2740		       (unsigned long long) sh->sector);
2741		BUG();
2742	}
2743}
2744
2745
2746static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2747				  struct stripe_head_state *s,
2748				  int disks)
2749{
2750	int pd_idx = sh->pd_idx;
2751	int qd_idx = sh->qd_idx;
2752	struct r5dev *dev;
2753
 
2754	set_bit(STRIPE_HANDLE, &sh->state);
2755
2756	BUG_ON(s->failed > 2);
2757
2758	/* Want to check and possibly repair P and Q.
2759	 * However there could be one 'failed' device, in which
2760	 * case we can only check one of them, possibly using the
2761	 * other to generate missing data
2762	 */
2763
2764	switch (sh->check_state) {
2765	case check_state_idle:
2766		/* start a new check operation if there are < 2 failures */
2767		if (s->failed == s->q_failed) {
2768			/* The only possible failed device holds Q, so it
2769			 * makes sense to check P (If anything else were failed,
2770			 * we would have used P to recreate it).
2771			 */
2772			sh->check_state = check_state_run;
2773		}
2774		if (!s->q_failed && s->failed < 2) {
2775			/* Q is not failed, and we didn't use it to generate
2776			 * anything, so it makes sense to check it
2777			 */
2778			if (sh->check_state == check_state_run)
2779				sh->check_state = check_state_run_pq;
2780			else
2781				sh->check_state = check_state_run_q;
2782		}
2783
2784		/* discard potentially stale zero_sum_result */
2785		sh->ops.zero_sum_result = 0;
2786
2787		if (sh->check_state == check_state_run) {
2788			/* async_xor_zero_sum destroys the contents of P */
2789			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2790			s->uptodate--;
2791		}
2792		if (sh->check_state >= check_state_run &&
2793		    sh->check_state <= check_state_run_pq) {
2794			/* async_syndrome_zero_sum preserves P and Q, so
2795			 * no need to mark them !uptodate here
2796			 */
2797			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2798			break;
2799		}
2800
2801		/* we have 2-disk failure */
2802		BUG_ON(s->failed != 2);
2803		/* fall through */
2804	case check_state_compute_result:
2805		sh->check_state = check_state_idle;
2806
2807		/* check that a write has not made the stripe insync */
2808		if (test_bit(STRIPE_INSYNC, &sh->state))
2809			break;
2810
2811		/* now write out any block on a failed drive,
2812		 * or P or Q if they were recomputed
2813		 */
2814		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2815		if (s->failed == 2) {
2816			dev = &sh->dev[s->failed_num[1]];
2817			s->locked++;
2818			set_bit(R5_LOCKED, &dev->flags);
2819			set_bit(R5_Wantwrite, &dev->flags);
2820		}
2821		if (s->failed >= 1) {
2822			dev = &sh->dev[s->failed_num[0]];
2823			s->locked++;
2824			set_bit(R5_LOCKED, &dev->flags);
2825			set_bit(R5_Wantwrite, &dev->flags);
2826		}
2827		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2828			dev = &sh->dev[pd_idx];
2829			s->locked++;
2830			set_bit(R5_LOCKED, &dev->flags);
2831			set_bit(R5_Wantwrite, &dev->flags);
2832		}
2833		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2834			dev = &sh->dev[qd_idx];
2835			s->locked++;
2836			set_bit(R5_LOCKED, &dev->flags);
2837			set_bit(R5_Wantwrite, &dev->flags);
2838		}
 
 
 
 
 
 
 
 
2839		clear_bit(STRIPE_DEGRADED, &sh->state);
2840
2841		set_bit(STRIPE_INSYNC, &sh->state);
2842		break;
2843	case check_state_run:
2844	case check_state_run_q:
2845	case check_state_run_pq:
2846		break; /* we will be called again upon completion */
2847	case check_state_check_result:
2848		sh->check_state = check_state_idle;
2849
2850		/* handle a successful check operation, if parity is correct
2851		 * we are done.  Otherwise update the mismatch count and repair
2852		 * parity if !MD_RECOVERY_CHECK
2853		 */
2854		if (sh->ops.zero_sum_result == 0) {
2855			/* both parities are correct */
2856			if (!s->failed)
2857				set_bit(STRIPE_INSYNC, &sh->state);
2858			else {
2859				/* in contrast to the raid5 case we can validate
2860				 * parity, but still have a failure to write
2861				 * back
2862				 */
2863				sh->check_state = check_state_compute_result;
2864				/* Returning at this point means that we may go
2865				 * off and bring p and/or q uptodate again so
2866				 * we make sure to check zero_sum_result again
2867				 * to verify if p or q need writeback
2868				 */
2869			}
2870		} else {
2871			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2872			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2873				/* don't try to repair!! */
2874				set_bit(STRIPE_INSYNC, &sh->state);
2875			else {
 
 
 
 
 
2876				int *target = &sh->ops.target;
2877
2878				sh->ops.target = -1;
2879				sh->ops.target2 = -1;
2880				sh->check_state = check_state_compute_run;
2881				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2882				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2883				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2884					set_bit(R5_Wantcompute,
2885						&sh->dev[pd_idx].flags);
2886					*target = pd_idx;
2887					target = &sh->ops.target2;
2888					s->uptodate++;
2889				}
2890				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2891					set_bit(R5_Wantcompute,
2892						&sh->dev[qd_idx].flags);
2893					*target = qd_idx;
2894					s->uptodate++;
2895				}
2896			}
2897		}
2898		break;
2899	case check_state_compute_run:
2900		break;
2901	default:
2902		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2903		       __func__, sh->check_state,
2904		       (unsigned long long) sh->sector);
2905		BUG();
2906	}
2907}
2908
2909static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
2910{
2911	int i;
2912
2913	/* We have read all the blocks in this stripe and now we need to
2914	 * copy some of them into a target stripe for expand.
2915	 */
2916	struct dma_async_tx_descriptor *tx = NULL;
 
2917	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2918	for (i = 0; i < sh->disks; i++)
2919		if (i != sh->pd_idx && i != sh->qd_idx) {
2920			int dd_idx, j;
2921			struct stripe_head *sh2;
2922			struct async_submit_ctl submit;
2923
2924			sector_t bn = compute_blocknr(sh, i, 1);
2925			sector_t s = raid5_compute_sector(conf, bn, 0,
2926							  &dd_idx, NULL);
2927			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2928			if (sh2 == NULL)
2929				/* so far only the early blocks of this stripe
2930				 * have been requested.  When later blocks
2931				 * get requested, we will try again
2932				 */
2933				continue;
2934			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2935			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2936				/* must have already done this block */
2937				release_stripe(sh2);
2938				continue;
2939			}
2940
2941			/* place all the copies on one channel */
2942			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2943			tx = async_memcpy(sh2->dev[dd_idx].page,
2944					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
 
2945					  &submit);
2946
2947			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2948			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2949			for (j = 0; j < conf->raid_disks; j++)
2950				if (j != sh2->pd_idx &&
2951				    j != sh2->qd_idx &&
2952				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2953					break;
2954			if (j == conf->raid_disks) {
2955				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2956				set_bit(STRIPE_HANDLE, &sh2->state);
2957			}
2958			release_stripe(sh2);
2959
2960		}
2961	/* done submitting copies, wait for them to complete */
2962	if (tx) {
2963		async_tx_ack(tx);
2964		dma_wait_for_async_tx(tx);
2965	}
2966}
2967
2968
2969/*
2970 * handle_stripe - do things to a stripe.
2971 *
2972 * We lock the stripe and then examine the state of various bits
2973 * to see what needs to be done.
2974 * Possible results:
2975 *    return some read request which now have data
2976 *    return some write requests which are safely on disc
2977 *    schedule a read on some buffers
2978 *    schedule a write of some buffers
2979 *    return confirmation of parity correctness
2980 *
2981 * buffers are taken off read_list or write_list, and bh_cache buffers
2982 * get BH_Lock set before the stripe lock is released.
2983 *
2984 */
2985
2986static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
2987{
2988	raid5_conf_t *conf = sh->raid_conf;
2989	int disks = sh->disks;
2990	struct r5dev *dev;
2991	int i;
 
2992
2993	memset(s, 0, sizeof(*s));
2994
2995	s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
2996	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2997	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2998	s->failed_num[0] = -1;
2999	s->failed_num[1] = -1;
 
3000
3001	/* Now to look around and see what can be done */
3002	rcu_read_lock();
3003	spin_lock_irq(&conf->device_lock);
3004	for (i=disks; i--; ) {
3005		mdk_rdev_t *rdev;
3006		sector_t first_bad;
3007		int bad_sectors;
3008		int is_bad = 0;
3009
3010		dev = &sh->dev[i];
3011
3012		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3013			i, dev->flags, dev->toread, dev->towrite, dev->written);
 
3014		/* maybe we can reply to a read
3015		 *
3016		 * new wantfill requests are only permitted while
3017		 * ops_complete_biofill is guaranteed to be inactive
3018		 */
3019		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3020		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3021			set_bit(R5_Wantfill, &dev->flags);
3022
3023		/* now count some things */
3024		if (test_bit(R5_LOCKED, &dev->flags))
3025			s->locked++;
3026		if (test_bit(R5_UPTODATE, &dev->flags))
3027			s->uptodate++;
3028		if (test_bit(R5_Wantcompute, &dev->flags)) {
3029			s->compute++;
3030			BUG_ON(s->compute > 2);
3031		}
3032
3033		if (test_bit(R5_Wantfill, &dev->flags))
3034			s->to_fill++;
3035		else if (dev->toread)
3036			s->to_read++;
3037		if (dev->towrite) {
3038			s->to_write++;
3039			if (!test_bit(R5_OVERWRITE, &dev->flags))
3040				s->non_overwrite++;
3041		}
3042		if (dev->written)
3043			s->written++;
3044		rdev = rcu_dereference(conf->disks[i].rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3045		if (rdev) {
3046			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3047					     &first_bad, &bad_sectors);
3048			if (s->blocked_rdev == NULL
3049			    && (test_bit(Blocked, &rdev->flags)
3050				|| is_bad < 0)) {
3051				if (is_bad < 0)
3052					set_bit(BlockedBadBlocks,
3053						&rdev->flags);
3054				s->blocked_rdev = rdev;
3055				atomic_inc(&rdev->nr_pending);
3056			}
3057		}
3058		clear_bit(R5_Insync, &dev->flags);
3059		if (!rdev)
3060			/* Not in-sync */;
3061		else if (is_bad) {
3062			/* also not in-sync */
3063			if (!test_bit(WriteErrorSeen, &rdev->flags)) {
 
3064				/* treat as in-sync, but with a read error
3065				 * which we can now try to correct
3066				 */
3067				set_bit(R5_Insync, &dev->flags);
3068				set_bit(R5_ReadError, &dev->flags);
3069			}
3070		} else if (test_bit(In_sync, &rdev->flags))
3071			set_bit(R5_Insync, &dev->flags);
3072		else {
3073			/* in sync if before recovery_offset */
3074			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3075				set_bit(R5_Insync, &dev->flags);
3076		}
 
 
 
 
 
 
3077		if (test_bit(R5_WriteError, &dev->flags)) {
3078			clear_bit(R5_Insync, &dev->flags);
3079			if (!test_bit(Faulty, &rdev->flags)) {
 
 
 
 
 
3080				s->handle_bad_blocks = 1;
3081				atomic_inc(&rdev->nr_pending);
3082			} else
3083				clear_bit(R5_WriteError, &dev->flags);
3084		}
3085		if (test_bit(R5_MadeGood, &dev->flags)) {
3086			if (!test_bit(Faulty, &rdev->flags)) {
 
 
 
 
3087				s->handle_bad_blocks = 1;
3088				atomic_inc(&rdev->nr_pending);
3089			} else
3090				clear_bit(R5_MadeGood, &dev->flags);
3091		}
 
 
 
 
 
 
 
 
 
3092		if (!test_bit(R5_Insync, &dev->flags)) {
3093			/* The ReadError flag will just be confusing now */
3094			clear_bit(R5_ReadError, &dev->flags);
3095			clear_bit(R5_ReWrite, &dev->flags);
3096		}
3097		if (test_bit(R5_ReadError, &dev->flags))
3098			clear_bit(R5_Insync, &dev->flags);
3099		if (!test_bit(R5_Insync, &dev->flags)) {
3100			if (s->failed < 2)
3101				s->failed_num[s->failed] = i;
3102			s->failed++;
 
 
 
 
 
 
 
 
3103		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3104	}
3105	spin_unlock_irq(&conf->device_lock);
3106	rcu_read_unlock();
3107}
3108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3109static void handle_stripe(struct stripe_head *sh)
3110{
3111	struct stripe_head_state s;
3112	raid5_conf_t *conf = sh->raid_conf;
3113	int i;
3114	int prexor;
3115	int disks = sh->disks;
3116	struct r5dev *pdev, *qdev;
3117
3118	clear_bit(STRIPE_HANDLE, &sh->state);
3119	if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
 
 
 
 
 
 
 
 
 
 
3120		/* already being handled, ensure it gets handled
3121		 * again when current action finishes */
3122		set_bit(STRIPE_HANDLE, &sh->state);
3123		return;
3124	}
3125
3126	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3127		set_bit(STRIPE_SYNCING, &sh->state);
3128		clear_bit(STRIPE_INSYNC, &sh->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3129	}
3130	clear_bit(STRIPE_DELAYED, &sh->state);
3131
3132	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3133		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3134	       (unsigned long long)sh->sector, sh->state,
3135	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3136	       sh->check_state, sh->reconstruct_state);
3137
3138	analyse_stripe(sh, &s);
3139
3140	if (s.handle_bad_blocks) {
 
 
 
 
3141		set_bit(STRIPE_HANDLE, &sh->state);
3142		goto finish;
3143	}
3144
3145	if (unlikely(s.blocked_rdev)) {
3146		if (s.syncing || s.expanding || s.expanded ||
3147		    s.to_write || s.written) {
3148			set_bit(STRIPE_HANDLE, &sh->state);
3149			goto finish;
3150		}
3151		/* There is nothing for the blocked_rdev to block */
3152		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3153		s.blocked_rdev = NULL;
3154	}
3155
3156	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3157		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3158		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3159	}
3160
3161	pr_debug("locked=%d uptodate=%d to_read=%d"
3162	       " to_write=%d failed=%d failed_num=%d,%d\n",
3163	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3164	       s.failed_num[0], s.failed_num[1]);
3165	/* check if the array has lost more than max_degraded devices and,
3166	 * if so, some requests might need to be failed.
3167	 */
3168	if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written)
3169		handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3170	if (s.failed > conf->max_degraded && s.syncing)
3171		handle_failed_sync(conf, sh, &s);
3172
3173	/*
3174	 * might be able to return some write requests if the parity blocks
3175	 * are safe, or on a failed drive
3176	 */
3177	pdev = &sh->dev[sh->pd_idx];
3178	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3179		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3180	qdev = &sh->dev[sh->qd_idx];
3181	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3182		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3183		|| conf->level < 6;
3184
3185	if (s.written &&
3186	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3187			     && !test_bit(R5_LOCKED, &pdev->flags)
3188			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3189	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3190			     && !test_bit(R5_LOCKED, &qdev->flags)
3191			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3192		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3193
3194	/* Now we might consider reading some blocks, either to check/generate
3195	 * parity, or to satisfy requests
3196	 * or to load a block that is being partially written.
3197	 */
3198	if (s.to_read || s.non_overwrite
3199	    || (conf->level == 6 && s.to_write && s.failed)
3200	    || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3201		handle_stripe_fill(sh, &s, disks);
 
 
 
 
 
 
3202
3203	/* Now we check to see if any write operations have recently
3204	 * completed
3205	 */
3206	prexor = 0;
3207	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3208		prexor = 1;
3209	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3210	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3211		sh->reconstruct_state = reconstruct_state_idle;
3212
3213		/* All the 'written' buffers and the parity block are ready to
3214		 * be written back to disk
3215		 */
3216		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
 
3217		BUG_ON(sh->qd_idx >= 0 &&
3218		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
 
3219		for (i = disks; i--; ) {
3220			struct r5dev *dev = &sh->dev[i];
3221			if (test_bit(R5_LOCKED, &dev->flags) &&
3222				(i == sh->pd_idx || i == sh->qd_idx ||
3223				 dev->written)) {
 
3224				pr_debug("Writing block %d\n", i);
3225				set_bit(R5_Wantwrite, &dev->flags);
3226				if (prexor)
3227					continue;
 
 
3228				if (!test_bit(R5_Insync, &dev->flags) ||
3229				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3230				     s.failed == 0))
3231					set_bit(STRIPE_INSYNC, &sh->state);
3232			}
3233		}
3234		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3235			s.dec_preread_active = 1;
3236	}
3237
3238	/* Now to consider new write requests and what else, if anything
3239	 * should be read.  We do not handle new writes when:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3240	 * 1/ A 'write' operation (copy+xor) is already in flight.
3241	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3242	 *    block.
 
3243	 */
3244	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3245		handle_stripe_dirtying(conf, sh, &s, disks);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3246
3247	/* maybe we need to check and possibly fix the parity for this stripe
3248	 * Any reads will already have been scheduled, so we just see if enough
3249	 * data is available.  The parity check is held off while parity
3250	 * dependent operations are in flight.
3251	 */
3252	if (sh->check_state ||
3253	    (s.syncing && s.locked == 0 &&
3254	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3255	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3256		if (conf->level == 6)
3257			handle_parity_checks6(conf, sh, &s, disks);
3258		else
3259			handle_parity_checks5(conf, sh, &s, disks);
3260	}
3261
3262	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3263		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3264		clear_bit(STRIPE_SYNCING, &sh->state);
 
 
3265	}
3266
3267	/* If the failed drives are just a ReadError, then we might need
3268	 * to progress the repair/check process
3269	 */
3270	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3271		for (i = 0; i < s.failed; i++) {
3272			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3273			if (test_bit(R5_ReadError, &dev->flags)
3274			    && !test_bit(R5_LOCKED, &dev->flags)
3275			    && test_bit(R5_UPTODATE, &dev->flags)
3276				) {
3277				if (!test_bit(R5_ReWrite, &dev->flags)) {
3278					set_bit(R5_Wantwrite, &dev->flags);
3279					set_bit(R5_ReWrite, &dev->flags);
3280					set_bit(R5_LOCKED, &dev->flags);
3281					s.locked++;
3282				} else {
3283					/* let's read it back */
3284					set_bit(R5_Wantread, &dev->flags);
3285					set_bit(R5_LOCKED, &dev->flags);
3286					s.locked++;
3287				}
3288			}
3289		}
3290
3291
3292	/* Finish reconstruct operations initiated by the expansion process */
3293	if (sh->reconstruct_state == reconstruct_state_result) {
3294		struct stripe_head *sh_src
3295			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3296		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3297			/* sh cannot be written until sh_src has been read.
3298			 * so arrange for sh to be delayed a little
3299			 */
3300			set_bit(STRIPE_DELAYED, &sh->state);
3301			set_bit(STRIPE_HANDLE, &sh->state);
3302			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3303					      &sh_src->state))
3304				atomic_inc(&conf->preread_active_stripes);
3305			release_stripe(sh_src);
3306			goto finish;
3307		}
3308		if (sh_src)
3309			release_stripe(sh_src);
3310
3311		sh->reconstruct_state = reconstruct_state_idle;
3312		clear_bit(STRIPE_EXPANDING, &sh->state);
3313		for (i = conf->raid_disks; i--; ) {
3314			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3315			set_bit(R5_LOCKED, &sh->dev[i].flags);
3316			s.locked++;
3317		}
3318	}
3319
3320	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3321	    !sh->reconstruct_state) {
3322		/* Need to write out all blocks after computing parity */
3323		sh->disks = conf->raid_disks;
3324		stripe_set_idx(sh->sector, conf, 0, sh);
3325		schedule_reconstruction(sh, &s, 1, 1);
3326	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3327		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3328		atomic_dec(&conf->reshape_stripes);
3329		wake_up(&conf->wait_for_overlap);
3330		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3331	}
3332
3333	if (s.expanding && s.locked == 0 &&
3334	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3335		handle_stripe_expansion(conf, sh);
3336
3337finish:
3338	/* wait for this device to become unblocked */
3339	if (conf->mddev->external && unlikely(s.blocked_rdev))
3340		md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
 
 
 
 
 
 
 
 
 
 
3341
3342	if (s.handle_bad_blocks)
3343		for (i = disks; i--; ) {
3344			mdk_rdev_t *rdev;
3345			struct r5dev *dev = &sh->dev[i];
3346			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3347				/* We own a safe reference to the rdev */
3348				rdev = conf->disks[i].rdev;
3349				if (!rdev_set_badblocks(rdev, sh->sector,
3350							STRIPE_SECTORS, 0))
3351					md_error(conf->mddev, rdev);
3352				rdev_dec_pending(rdev, conf->mddev);
3353			}
3354			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3355				rdev = conf->disks[i].rdev;
3356				rdev_clear_badblocks(rdev, sh->sector,
3357						     STRIPE_SECTORS);
 
 
 
 
 
 
 
 
 
3358				rdev_dec_pending(rdev, conf->mddev);
3359			}
3360		}
3361
3362	if (s.ops_request)
3363		raid_run_ops(sh, s.ops_request);
3364
3365	ops_run_io(sh, &s);
3366
3367	if (s.dec_preread_active) {
3368		/* We delay this until after ops_run_io so that if make_request
3369		 * is waiting on a flush, it won't continue until the writes
3370		 * have actually been submitted.
3371		 */
3372		atomic_dec(&conf->preread_active_stripes);
3373		if (atomic_read(&conf->preread_active_stripes) <
3374		    IO_THRESHOLD)
3375			md_wakeup_thread(conf->mddev->thread);
3376	}
3377
3378	return_io(s.return_bi);
3379
3380	clear_bit(STRIPE_ACTIVE, &sh->state);
3381}
3382
3383static void raid5_activate_delayed(raid5_conf_t *conf)
3384{
3385	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3386		while (!list_empty(&conf->delayed_list)) {
3387			struct list_head *l = conf->delayed_list.next;
3388			struct stripe_head *sh;
3389			sh = list_entry(l, struct stripe_head, lru);
3390			list_del_init(l);
3391			clear_bit(STRIPE_DELAYED, &sh->state);
3392			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3393				atomic_inc(&conf->preread_active_stripes);
3394			list_add_tail(&sh->lru, &conf->hold_list);
 
3395		}
3396	}
3397}
3398
3399static void activate_bit_delay(raid5_conf_t *conf)
 
3400{
3401	/* device_lock is held */
3402	struct list_head head;
3403	list_add(&head, &conf->bitmap_list);
3404	list_del_init(&conf->bitmap_list);
3405	while (!list_empty(&head)) {
3406		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
 
3407		list_del_init(&sh->lru);
3408		atomic_inc(&sh->count);
3409		__release_stripe(conf, sh);
 
3410	}
3411}
3412
3413int md_raid5_congested(mddev_t *mddev, int bits)
3414{
3415	raid5_conf_t *conf = mddev->private;
3416
3417	/* No difference between reads and writes.  Just check
3418	 * how busy the stripe_cache is
3419	 */
3420
3421	if (conf->inactive_blocked)
3422		return 1;
3423	if (conf->quiesce)
3424		return 1;
3425	if (list_empty_careful(&conf->inactive_list))
3426		return 1;
3427
3428	return 0;
3429}
3430EXPORT_SYMBOL_GPL(md_raid5_congested);
3431
3432static int raid5_congested(void *data, int bits)
3433{
3434	mddev_t *mddev = data;
 
 
 
3435
3436	return mddev_congested(mddev, bits) ||
3437		md_raid5_congested(mddev, bits);
3438}
3439
3440/* We want read requests to align with chunks where possible,
3441 * but write requests don't need to.
3442 */
3443static int raid5_mergeable_bvec(struct request_queue *q,
3444				struct bvec_merge_data *bvm,
3445				struct bio_vec *biovec)
3446{
3447	mddev_t *mddev = q->queuedata;
3448	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3449	int max;
3450	unsigned int chunk_sectors = mddev->chunk_sectors;
3451	unsigned int bio_sectors = bvm->bi_size >> 9;
3452
3453	if ((bvm->bi_rw & 1) == WRITE)
3454		return biovec->bv_len; /* always allow writes to be mergeable */
3455
3456	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3457		chunk_sectors = mddev->new_chunk_sectors;
3458	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3459	if (max < 0) max = 0;
3460	if (max <= biovec->bv_len && bio_sectors == 0)
3461		return biovec->bv_len;
3462	else
3463		return max;
3464}
3465
3466
3467static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3468{
3469	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3470	unsigned int chunk_sectors = mddev->chunk_sectors;
3471	unsigned int bio_sectors = bio->bi_size >> 9;
3472
3473	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3474		chunk_sectors = mddev->new_chunk_sectors;
3475	return  chunk_sectors >=
3476		((sector & (chunk_sectors - 1)) + bio_sectors);
3477}
3478
3479/*
3480 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3481 *  later sampled by raid5d.
3482 */
3483static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3484{
3485	unsigned long flags;
3486
3487	spin_lock_irqsave(&conf->device_lock, flags);
3488
3489	bi->bi_next = conf->retry_read_aligned_list;
3490	conf->retry_read_aligned_list = bi;
3491
3492	spin_unlock_irqrestore(&conf->device_lock, flags);
3493	md_wakeup_thread(conf->mddev->thread);
3494}
3495
3496
3497static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3498{
3499	struct bio *bi;
3500
3501	bi = conf->retry_read_aligned;
3502	if (bi) {
 
3503		conf->retry_read_aligned = NULL;
3504		return bi;
3505	}
3506	bi = conf->retry_read_aligned_list;
3507	if(bi) {
3508		conf->retry_read_aligned_list = bi->bi_next;
3509		bi->bi_next = NULL;
3510		/*
3511		 * this sets the active strip count to 1 and the processed
3512		 * strip count to zero (upper 8 bits)
3513		 */
3514		bi->bi_phys_segments = 1; /* biased count of active stripes */
3515	}
3516
3517	return bi;
3518}
3519
3520
3521/*
3522 *  The "raid5_align_endio" should check if the read succeeded and if it
3523 *  did, call bio_endio on the original bio (having bio_put the new bio
3524 *  first).
3525 *  If the read failed..
3526 */
3527static void raid5_align_endio(struct bio *bi, int error)
3528{
3529	struct bio* raid_bi  = bi->bi_private;
3530	mddev_t *mddev;
3531	raid5_conf_t *conf;
3532	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3533	mdk_rdev_t *rdev;
 
 
3534
3535	bio_put(bi);
3536
3537	rdev = (void*)raid_bi->bi_next;
3538	raid_bi->bi_next = NULL;
3539	mddev = rdev->mddev;
3540	conf = mddev->private;
3541
3542	rdev_dec_pending(rdev, conf->mddev);
3543
3544	if (!error && uptodate) {
3545		bio_endio(raid_bi, 0);
 
 
3546		if (atomic_dec_and_test(&conf->active_aligned_reads))
3547			wake_up(&conf->wait_for_stripe);
3548		return;
3549	}
3550
3551
3552	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3553
3554	add_bio_to_retry(raid_bi, conf);
3555}
3556
3557static int bio_fits_rdev(struct bio *bi)
3558{
3559	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
 
 
 
 
 
 
3560
3561	if ((bi->bi_size>>9) > queue_max_sectors(q))
3562		return 0;
3563	blk_recount_segments(q, bi);
3564	if (bi->bi_phys_segments > queue_max_segments(q))
3565		return 0;
 
3566
3567	if (q->merge_bvec_fn)
3568		/* it's too hard to apply the merge_bvec_fn at this stage,
3569		 * just just give up
3570		 */
3571		return 0;
3572
3573	return 1;
3574}
 
3575
 
 
 
 
 
 
 
 
 
 
 
3576
3577static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3578{
3579	raid5_conf_t *conf = mddev->private;
3580	int dd_idx;
3581	struct bio* align_bi;
3582	mdk_rdev_t *rdev;
3583
3584	if (!in_chunk_boundary(mddev, raid_bio)) {
3585		pr_debug("chunk_aligned_read : non aligned\n");
 
 
3586		return 0;
3587	}
3588	/*
3589	 * use bio_clone_mddev to make a copy of the bio
3590	 */
3591	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3592	if (!align_bi)
3593		return 0;
3594	/*
3595	 *   set bi_end_io to a new function, and set bi_private to the
3596	 *     original bio.
3597	 */
3598	align_bi->bi_end_io  = raid5_align_endio;
3599	align_bi->bi_private = raid_bio;
3600	/*
3601	 *	compute position
3602	 */
3603	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3604						    0,
3605						    &dd_idx, NULL);
3606
3607	rcu_read_lock();
3608	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3609	if (rdev && test_bit(In_sync, &rdev->flags)) {
3610		sector_t first_bad;
3611		int bad_sectors;
 
 
 
 
 
 
3612
3613		atomic_inc(&rdev->nr_pending);
3614		rcu_read_unlock();
3615		raid_bio->bi_next = (void*)rdev;
3616		align_bi->bi_bdev =  rdev->bdev;
3617		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3618		align_bi->bi_sector += rdev->data_offset;
3619
3620		if (!bio_fits_rdev(align_bi) ||
3621		    is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3622				&first_bad, &bad_sectors)) {
3623			/* too big in some way, or has a known bad block */
3624			bio_put(align_bi);
3625			rdev_dec_pending(rdev, mddev);
3626			return 0;
3627		}
3628
 
 
 
 
 
 
 
 
 
 
 
 
3629		spin_lock_irq(&conf->device_lock);
3630		wait_event_lock_irq(conf->wait_for_stripe,
3631				    conf->quiesce == 0,
3632				    conf->device_lock, /* nothing */);
3633		atomic_inc(&conf->active_aligned_reads);
3634		spin_unlock_irq(&conf->device_lock);
 
3635
3636		generic_make_request(align_bi);
3637		return 1;
3638	} else {
3639		rcu_read_unlock();
3640		bio_put(align_bi);
3641		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3642	}
 
 
 
 
 
3643}
3644
3645/* __get_priority_stripe - get the next stripe to process
3646 *
3647 * Full stripe writes are allowed to pass preread active stripes up until
3648 * the bypass_threshold is exceeded.  In general the bypass_count
3649 * increments when the handle_list is handled before the hold_list; however, it
3650 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3651 * stripe with in flight i/o.  The bypass_count will be reset when the
3652 * head of the hold_list has changed, i.e. the head was promoted to the
3653 * handle_list.
3654 */
3655static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3656{
3657	struct stripe_head *sh;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3658
3659	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3660		  __func__,
3661		  list_empty(&conf->handle_list) ? "empty" : "busy",
3662		  list_empty(&conf->hold_list) ? "empty" : "busy",
3663		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3664
3665	if (!list_empty(&conf->handle_list)) {
3666		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3667
3668		if (list_empty(&conf->hold_list))
3669			conf->bypass_count = 0;
3670		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3671			if (conf->hold_list.next == conf->last_hold)
3672				conf->bypass_count++;
3673			else {
3674				conf->last_hold = conf->hold_list.next;
3675				conf->bypass_count -= conf->bypass_threshold;
3676				if (conf->bypass_count < 0)
3677					conf->bypass_count = 0;
3678			}
3679		}
3680	} else if (!list_empty(&conf->hold_list) &&
3681		   ((conf->bypass_threshold &&
3682		     conf->bypass_count > conf->bypass_threshold) ||
3683		    atomic_read(&conf->pending_full_writes) == 0)) {
3684		sh = list_entry(conf->hold_list.next,
3685				typeof(*sh), lru);
3686		conf->bypass_count -= conf->bypass_threshold;
3687		if (conf->bypass_count < 0)
3688			conf->bypass_count = 0;
3689	} else
3690		return NULL;
3691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3692	list_del_init(&sh->lru);
3693	atomic_inc(&sh->count);
3694	BUG_ON(atomic_read(&sh->count) != 1);
3695	return sh;
3696}
3697
3698static int make_request(mddev_t *mddev, struct bio * bi)
 
 
 
 
 
 
3699{
3700	raid5_conf_t *conf = mddev->private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3701	int dd_idx;
3702	sector_t new_sector;
3703	sector_t logical_sector, last_sector;
3704	struct stripe_head *sh;
3705	const int rw = bio_data_dir(bi);
3706	int remaining;
3707	int plugged;
3708
3709	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3710		md_flush_request(mddev, bi);
3711		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
3712	}
3713
3714	md_write_start(mddev, bi);
 
 
 
 
 
 
 
 
 
 
 
 
3715
3716	if (rw == READ &&
3717	     mddev->reshape_position == MaxSector &&
3718	     chunk_aligned_read(mddev,bi))
3719		return 0;
 
3720
3721	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3722	last_sector = bi->bi_sector + (bi->bi_size>>9);
3723	bi->bi_next = NULL;
3724	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3725
3726	plugged = mddev_check_plugged(mddev);
3727	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3728		DEFINE_WAIT(w);
3729		int disks, data_disks;
3730		int previous;
 
3731
 
3732	retry:
 
3733		previous = 0;
3734		disks = conf->raid_disks;
3735		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
 
3736		if (unlikely(conf->reshape_progress != MaxSector)) {
3737			/* spinlock is needed as reshape_progress may be
3738			 * 64bit on a 32bit platform, and so it might be
3739			 * possible to see a half-updated value
3740			 * Of course reshape_progress could change after
3741			 * the lock is dropped, so once we get a reference
3742			 * to the stripe that we think it is, we will have
3743			 * to check again.
3744			 */
3745			spin_lock_irq(&conf->device_lock);
3746			if (mddev->delta_disks < 0
3747			    ? logical_sector < conf->reshape_progress
3748			    : logical_sector >= conf->reshape_progress) {
3749				disks = conf->previous_raid_disks;
3750				previous = 1;
3751			} else {
3752				if (mddev->delta_disks < 0
3753				    ? logical_sector < conf->reshape_safe
3754				    : logical_sector >= conf->reshape_safe) {
3755					spin_unlock_irq(&conf->device_lock);
3756					schedule();
 
3757					goto retry;
3758				}
3759			}
3760			spin_unlock_irq(&conf->device_lock);
3761		}
3762		data_disks = disks - conf->max_degraded;
3763
3764		new_sector = raid5_compute_sector(conf, logical_sector,
3765						  previous,
3766						  &dd_idx, NULL);
3767		pr_debug("raid456: make_request, sector %llu logical %llu\n",
3768			(unsigned long long)new_sector, 
3769			(unsigned long long)logical_sector);
3770
3771		sh = get_active_stripe(conf, new_sector, previous,
3772				       (bi->bi_rw&RWA_MASK), 0);
3773		if (sh) {
3774			if (unlikely(previous)) {
3775				/* expansion might have moved on while waiting for a
3776				 * stripe, so we must do the range check again.
3777				 * Expansion could still move past after this
3778				 * test, but as we are holding a reference to
3779				 * 'sh', we know that if that happens,
3780				 *  STRIPE_EXPANDING will get set and the expansion
3781				 * won't proceed until we finish with the stripe.
3782				 */
3783				int must_retry = 0;
3784				spin_lock_irq(&conf->device_lock);
3785				if (mddev->delta_disks < 0
3786				    ? logical_sector >= conf->reshape_progress
3787				    : logical_sector < conf->reshape_progress)
3788					/* mismatch, need to try again */
3789					must_retry = 1;
3790				spin_unlock_irq(&conf->device_lock);
3791				if (must_retry) {
3792					release_stripe(sh);
3793					schedule();
 
3794					goto retry;
3795				}
3796			}
3797
3798			if (rw == WRITE &&
3799			    logical_sector >= mddev->suspend_lo &&
3800			    logical_sector < mddev->suspend_hi) {
3801				release_stripe(sh);
3802				/* As the suspend_* range is controlled by
3803				 * userspace, we want an interruptible
3804				 * wait.
3805				 */
3806				flush_signals(current);
3807				prepare_to_wait(&conf->wait_for_overlap,
3808						&w, TASK_INTERRUPTIBLE);
3809				if (logical_sector >= mddev->suspend_lo &&
3810				    logical_sector < mddev->suspend_hi)
3811					schedule();
3812				goto retry;
3813			}
3814
3815			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3816			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
3817				/* Stripe is busy expanding or
3818				 * add failed due to overlap.  Flush everything
3819				 * and wait a while
3820				 */
3821				md_wakeup_thread(mddev->thread);
3822				release_stripe(sh);
3823				schedule();
 
3824				goto retry;
3825			}
3826			finish_wait(&conf->wait_for_overlap, &w);
 
 
 
 
 
3827			set_bit(STRIPE_HANDLE, &sh->state);
3828			clear_bit(STRIPE_DELAYED, &sh->state);
3829			if ((bi->bi_rw & REQ_SYNC) &&
 
3830			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3831				atomic_inc(&conf->preread_active_stripes);
3832			release_stripe(sh);
3833		} else {
3834			/* cannot get stripe for read-ahead, just give-up */
3835			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3836			finish_wait(&conf->wait_for_overlap, &w);
3837			break;
3838		}
3839			
3840	}
3841	if (!plugged)
3842		md_wakeup_thread(mddev->thread);
3843
3844	spin_lock_irq(&conf->device_lock);
3845	remaining = raid5_dec_bi_phys_segments(bi);
3846	spin_unlock_irq(&conf->device_lock);
3847	if (remaining == 0) {
3848
3849		if ( rw == WRITE )
3850			md_write_end(mddev);
3851
3852		bio_endio(bi, 0);
3853	}
 
3854
3855	return 0;
 
 
 
3856}
3857
3858static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3859
3860static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3861{
3862	/* reshaping is quite different to recovery/resync so it is
3863	 * handled quite separately ... here.
3864	 *
3865	 * On each call to sync_request, we gather one chunk worth of
3866	 * destination stripes and flag them as expanding.
3867	 * Then we find all the source stripes and request reads.
3868	 * As the reads complete, handle_stripe will copy the data
3869	 * into the destination stripe and release that stripe.
3870	 */
3871	raid5_conf_t *conf = mddev->private;
3872	struct stripe_head *sh;
 
3873	sector_t first_sector, last_sector;
3874	int raid_disks = conf->previous_raid_disks;
3875	int data_disks = raid_disks - conf->max_degraded;
3876	int new_data_disks = conf->raid_disks - conf->max_degraded;
3877	int i;
3878	int dd_idx;
3879	sector_t writepos, readpos, safepos;
3880	sector_t stripe_addr;
3881	int reshape_sectors;
3882	struct list_head stripes;
 
3883
3884	if (sector_nr == 0) {
3885		/* If restarting in the middle, skip the initial sectors */
3886		if (mddev->delta_disks < 0 &&
3887		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3888			sector_nr = raid5_size(mddev, 0, 0)
3889				- conf->reshape_progress;
3890		} else if (mddev->delta_disks >= 0 &&
 
 
 
 
3891			   conf->reshape_progress > 0)
3892			sector_nr = conf->reshape_progress;
3893		sector_div(sector_nr, new_data_disks);
3894		if (sector_nr) {
3895			mddev->curr_resync_completed = sector_nr;
3896			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3897			*skipped = 1;
3898			return sector_nr;
 
3899		}
3900	}
3901
3902	/* We need to process a full chunk at a time.
3903	 * If old and new chunk sizes differ, we need to process the
3904	 * largest of these
3905	 */
3906	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3907		reshape_sectors = mddev->new_chunk_sectors;
3908	else
3909		reshape_sectors = mddev->chunk_sectors;
3910
3911	/* we update the metadata when there is more than 3Meg
3912	 * in the block range (that is rather arbitrary, should
3913	 * probably be time based) or when the data about to be
3914	 * copied would over-write the source of the data at
3915	 * the front of the range.
3916	 * i.e. one new_stripe along from reshape_progress new_maps
3917	 * to after where reshape_safe old_maps to
3918	 */
3919	writepos = conf->reshape_progress;
3920	sector_div(writepos, new_data_disks);
3921	readpos = conf->reshape_progress;
3922	sector_div(readpos, data_disks);
3923	safepos = conf->reshape_safe;
3924	sector_div(safepos, data_disks);
3925	if (mddev->delta_disks < 0) {
3926		writepos -= min_t(sector_t, reshape_sectors, writepos);
 
3927		readpos += reshape_sectors;
3928		safepos += reshape_sectors;
3929	} else {
3930		writepos += reshape_sectors;
 
 
 
 
3931		readpos -= min_t(sector_t, reshape_sectors, readpos);
3932		safepos -= min_t(sector_t, reshape_sectors, safepos);
3933	}
3934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3935	/* 'writepos' is the most advanced device address we might write.
3936	 * 'readpos' is the least advanced device address we might read.
3937	 * 'safepos' is the least address recorded in the metadata as having
3938	 *     been reshaped.
3939	 * If 'readpos' is behind 'writepos', then there is no way that we can
 
 
 
3940	 * ensure safety in the face of a crash - that must be done by userspace
3941	 * making a backup of the data.  So in that case there is no particular
3942	 * rush to update metadata.
3943	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3944	 * update the metadata to advance 'safepos' to match 'readpos' so that
3945	 * we can be safe in the event of a crash.
3946	 * So we insist on updating metadata if safepos is behind writepos and
3947	 * readpos is beyond writepos.
3948	 * In any case, update the metadata every 10 seconds.
3949	 * Maybe that number should be configurable, but I'm not sure it is
3950	 * worth it.... maybe it could be a multiple of safemode_delay???
3951	 */
3952	if ((mddev->delta_disks < 0
 
 
 
 
 
 
3953	     ? (safepos > writepos && readpos < writepos)
3954	     : (safepos < writepos && readpos > writepos)) ||
3955	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3956		/* Cannot proceed until we've updated the superblock... */
3957		wait_event(conf->wait_for_overlap,
3958			   atomic_read(&conf->reshape_stripes)==0);
 
 
 
3959		mddev->reshape_position = conf->reshape_progress;
3960		mddev->curr_resync_completed = sector_nr;
 
 
 
 
 
 
 
 
 
3961		conf->reshape_checkpoint = jiffies;
3962		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3963		md_wakeup_thread(mddev->thread);
3964		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3965			   kthread_should_stop());
 
 
3966		spin_lock_irq(&conf->device_lock);
3967		conf->reshape_safe = mddev->reshape_position;
3968		spin_unlock_irq(&conf->device_lock);
3969		wake_up(&conf->wait_for_overlap);
3970		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3971	}
3972
3973	if (mddev->delta_disks < 0) {
3974		BUG_ON(conf->reshape_progress == 0);
3975		stripe_addr = writepos;
3976		BUG_ON((mddev->dev_sectors &
3977			~((sector_t)reshape_sectors - 1))
3978		       - reshape_sectors - stripe_addr
3979		       != sector_nr);
3980	} else {
3981		BUG_ON(writepos != sector_nr + reshape_sectors);
3982		stripe_addr = sector_nr;
3983	}
3984	INIT_LIST_HEAD(&stripes);
3985	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3986		int j;
3987		int skipped_disk = 0;
3988		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
3989		set_bit(STRIPE_EXPANDING, &sh->state);
3990		atomic_inc(&conf->reshape_stripes);
3991		/* If any of this stripe is beyond the end of the old
3992		 * array, then we need to zero those blocks
3993		 */
3994		for (j=sh->disks; j--;) {
3995			sector_t s;
3996			if (j == sh->pd_idx)
3997				continue;
3998			if (conf->level == 6 &&
3999			    j == sh->qd_idx)
4000				continue;
4001			s = compute_blocknr(sh, j, 0);
4002			if (s < raid5_size(mddev, 0, 0)) {
4003				skipped_disk = 1;
4004				continue;
4005			}
4006			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4007			set_bit(R5_Expanded, &sh->dev[j].flags);
4008			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4009		}
4010		if (!skipped_disk) {
4011			set_bit(STRIPE_EXPAND_READY, &sh->state);
4012			set_bit(STRIPE_HANDLE, &sh->state);
4013		}
4014		list_add(&sh->lru, &stripes);
4015	}
4016	spin_lock_irq(&conf->device_lock);
4017	if (mddev->delta_disks < 0)
4018		conf->reshape_progress -= reshape_sectors * new_data_disks;
4019	else
4020		conf->reshape_progress += reshape_sectors * new_data_disks;
4021	spin_unlock_irq(&conf->device_lock);
4022	/* Ok, those stripe are ready. We can start scheduling
4023	 * reads on the source stripes.
4024	 * The source stripes are determined by mapping the first and last
4025	 * block on the destination stripes.
4026	 */
4027	first_sector =
4028		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4029				     1, &dd_idx, NULL);
4030	last_sector =
4031		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4032					    * new_data_disks - 1),
4033				     1, &dd_idx, NULL);
4034	if (last_sector >= mddev->dev_sectors)
4035		last_sector = mddev->dev_sectors - 1;
4036	while (first_sector <= last_sector) {
4037		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4038		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4039		set_bit(STRIPE_HANDLE, &sh->state);
4040		release_stripe(sh);
4041		first_sector += STRIPE_SECTORS;
4042	}
4043	/* Now that the sources are clearly marked, we can release
4044	 * the destination stripes
4045	 */
4046	while (!list_empty(&stripes)) {
4047		sh = list_entry(stripes.next, struct stripe_head, lru);
4048		list_del_init(&sh->lru);
4049		release_stripe(sh);
4050	}
4051	/* If this takes us to the resync_max point where we have to pause,
4052	 * then we need to write out the superblock.
4053	 */
4054	sector_nr += reshape_sectors;
4055	if ((sector_nr - mddev->curr_resync_completed) * 2
 
 
 
4056	    >= mddev->resync_max - mddev->curr_resync_completed) {
4057		/* Cannot proceed until we've updated the superblock... */
4058		wait_event(conf->wait_for_overlap,
4059			   atomic_read(&conf->reshape_stripes) == 0);
 
 
 
4060		mddev->reshape_position = conf->reshape_progress;
4061		mddev->curr_resync_completed = sector_nr;
 
 
 
 
 
 
 
 
4062		conf->reshape_checkpoint = jiffies;
4063		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4064		md_wakeup_thread(mddev->thread);
4065		wait_event(mddev->sb_wait,
4066			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4067			   || kthread_should_stop());
 
 
4068		spin_lock_irq(&conf->device_lock);
4069		conf->reshape_safe = mddev->reshape_position;
4070		spin_unlock_irq(&conf->device_lock);
4071		wake_up(&conf->wait_for_overlap);
4072		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4073	}
4074	return reshape_sectors;
 
4075}
4076
4077/* FIXME go_faster isn't used */
4078static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4079{
4080	raid5_conf_t *conf = mddev->private;
4081	struct stripe_head *sh;
4082	sector_t max_sector = mddev->dev_sectors;
4083	sector_t sync_blocks;
4084	int still_degraded = 0;
4085	int i;
4086
4087	if (sector_nr >= max_sector) {
4088		/* just being told to finish up .. nothing much to do */
4089
4090		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4091			end_reshape(conf);
4092			return 0;
4093		}
4094
4095		if (mddev->curr_resync < max_sector) /* aborted */
4096			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4097					&sync_blocks, 1);
4098		else /* completed sync */
4099			conf->fullsync = 0;
4100		bitmap_close_sync(mddev->bitmap);
4101
4102		return 0;
4103	}
4104
4105	/* Allow raid5_quiesce to complete */
4106	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4107
4108	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4109		return reshape_request(mddev, sector_nr, skipped);
4110
4111	/* No need to check resync_max as we never do more than one
4112	 * stripe, and as resync_max will always be on a chunk boundary,
4113	 * if the check in md_do_sync didn't fire, there is no chance
4114	 * of overstepping resync_max here
4115	 */
4116
4117	/* if there is too many failed drives and we are trying
4118	 * to resync, then assert that we are finished, because there is
4119	 * nothing we can do.
4120	 */
4121	if (mddev->degraded >= conf->max_degraded &&
4122	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4123		sector_t rv = mddev->dev_sectors - sector_nr;
4124		*skipped = 1;
4125		return rv;
4126	}
4127	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4128	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4129	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
 
4130		/* we can skip this block, and probably more */
4131		sync_blocks /= STRIPE_SECTORS;
4132		*skipped = 1;
4133		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
 
4134	}
4135
 
4136
4137	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4138
4139	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4140	if (sh == NULL) {
4141		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4142		/* make sure we don't swamp the stripe cache if someone else
4143		 * is trying to get access
4144		 */
4145		schedule_timeout_uninterruptible(1);
4146	}
4147	/* Need to check if array will still be degraded after recovery/resync
4148	 * We don't need to check the 'failed' flag as when that gets set,
4149	 * recovery aborts.
4150	 */
4151	for (i = 0; i < conf->raid_disks; i++)
4152		if (conf->disks[i].rdev == NULL)
 
 
 
4153			still_degraded = 1;
 
 
4154
4155	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4156
4157	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
 
4158
4159	handle_stripe(sh);
4160	release_stripe(sh);
4161
4162	return STRIPE_SECTORS;
4163}
4164
4165static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
 
4166{
4167	/* We may not be able to submit a whole bio at once as there
4168	 * may not be enough stripe_heads available.
4169	 * We cannot pre-allocate enough stripe_heads as we may need
4170	 * more than exist in the cache (if we allow ever large chunks).
4171	 * So we do one stripe head at a time and record in
4172	 * ->bi_hw_segments how many have been done.
4173	 *
4174	 * We *know* that this entire raid_bio is in one chunk, so
4175	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4176	 */
4177	struct stripe_head *sh;
4178	int dd_idx;
4179	sector_t sector, logical_sector, last_sector;
4180	int scnt = 0;
4181	int remaining;
4182	int handled = 0;
4183
4184	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
 
4185	sector = raid5_compute_sector(conf, logical_sector,
4186				      0, &dd_idx, NULL);
4187	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4188
4189	for (; logical_sector < last_sector;
4190	     logical_sector += STRIPE_SECTORS,
4191		     sector += STRIPE_SECTORS,
4192		     scnt++) {
4193
4194		if (scnt < raid5_bi_hw_segments(raid_bio))
4195			/* already done this stripe */
4196			continue;
4197
4198		sh = get_active_stripe(conf, sector, 0, 1, 0);
4199
4200		if (!sh) {
4201			/* failed to get a stripe - must wait */
4202			raid5_set_bi_hw_segments(raid_bio, scnt);
4203			conf->retry_read_aligned = raid_bio;
 
4204			return handled;
4205		}
4206
4207		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4208		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4209			release_stripe(sh);
4210			raid5_set_bi_hw_segments(raid_bio, scnt);
4211			conf->retry_read_aligned = raid_bio;
 
4212			return handled;
4213		}
4214
 
4215		handle_stripe(sh);
4216		release_stripe(sh);
4217		handled++;
4218	}
4219	spin_lock_irq(&conf->device_lock);
4220	remaining = raid5_dec_bi_phys_segments(raid_bio);
4221	spin_unlock_irq(&conf->device_lock);
4222	if (remaining == 0)
4223		bio_endio(raid_bio, 0);
4224	if (atomic_dec_and_test(&conf->active_aligned_reads))
4225		wake_up(&conf->wait_for_stripe);
4226	return handled;
4227}
4228
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4229
4230/*
4231 * This is our raid5 kernel thread.
4232 *
4233 * We scan the hash table for stripes which can be handled now.
4234 * During the scan, completed stripes are saved for us by the interrupt
4235 * handler, so that they will not have to wait for our next wakeup.
4236 */
4237static void raid5d(mddev_t *mddev)
4238{
4239	struct stripe_head *sh;
4240	raid5_conf_t *conf = mddev->private;
4241	int handled;
4242	struct blk_plug plug;
4243
4244	pr_debug("+++ raid5d active\n");
4245
4246	md_check_recovery(mddev);
4247
4248	blk_start_plug(&plug);
4249	handled = 0;
4250	spin_lock_irq(&conf->device_lock);
4251	while (1) {
4252		struct bio *bio;
 
 
 
 
 
 
4253
4254		if (atomic_read(&mddev->plug_cnt) == 0 &&
4255		    !list_empty(&conf->bitmap_list)) {
4256			/* Now is a good time to flush some bitmap updates */
4257			conf->seq_flush++;
4258			spin_unlock_irq(&conf->device_lock);
4259			bitmap_unplug(mddev->bitmap);
4260			spin_lock_irq(&conf->device_lock);
4261			conf->seq_write = conf->seq_flush;
4262			activate_bit_delay(conf);
4263		}
4264		if (atomic_read(&mddev->plug_cnt) == 0)
4265			raid5_activate_delayed(conf);
4266
4267		while ((bio = remove_bio_from_retry(conf))) {
4268			int ok;
4269			spin_unlock_irq(&conf->device_lock);
4270			ok = retry_aligned_read(conf, bio);
4271			spin_lock_irq(&conf->device_lock);
4272			if (!ok)
4273				break;
4274			handled++;
4275		}
4276
4277		sh = __get_priority_stripe(conf);
4278
4279		if (!sh)
4280			break;
4281		spin_unlock_irq(&conf->device_lock);
4282		
4283		handled++;
4284		handle_stripe(sh);
4285		release_stripe(sh);
4286		cond_resched();
4287
4288		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
 
4289			md_check_recovery(mddev);
4290
4291		spin_lock_irq(&conf->device_lock);
4292	}
4293	pr_debug("%d stripes handled\n", handled);
4294
4295	spin_unlock_irq(&conf->device_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
4296
4297	async_tx_issue_pending_all();
4298	blk_finish_plug(&plug);
4299
4300	pr_debug("--- raid5d inactive\n");
4301}
4302
4303static ssize_t
4304raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4305{
4306	raid5_conf_t *conf = mddev->private;
 
 
 
4307	if (conf)
4308		return sprintf(page, "%d\n", conf->max_nr_stripes);
4309	else
4310		return 0;
4311}
4312
4313int
4314raid5_set_cache_size(mddev_t *mddev, int size)
4315{
4316	raid5_conf_t *conf = mddev->private;
4317	int err;
4318
4319	if (size <= 16 || size > 32768)
4320		return -EINVAL;
4321	while (size < conf->max_nr_stripes) {
4322		if (drop_one_stripe(conf))
4323			conf->max_nr_stripes--;
4324		else
 
 
 
 
 
 
 
 
 
 
 
4325			break;
4326	}
4327	err = md_allow_write(mddev);
4328	if (err)
4329		return err;
4330	while (size > conf->max_nr_stripes) {
4331		if (grow_one_stripe(conf))
4332			conf->max_nr_stripes++;
4333		else break;
4334	}
4335	return 0;
4336}
4337EXPORT_SYMBOL(raid5_set_cache_size);
4338
4339static ssize_t
4340raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4341{
4342	raid5_conf_t *conf = mddev->private;
4343	unsigned long new;
4344	int err;
4345
4346	if (len >= PAGE_SIZE)
4347		return -EINVAL;
4348	if (!conf)
4349		return -ENODEV;
4350
4351	if (strict_strtoul(page, 10, &new))
4352		return -EINVAL;
4353	err = raid5_set_cache_size(mddev, new);
4354	if (err)
4355		return err;
4356	return len;
 
 
 
 
 
 
 
4357}
4358
4359static struct md_sysfs_entry
4360raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4361				raid5_show_stripe_cache_size,
4362				raid5_store_stripe_cache_size);
4363
4364static ssize_t
4365raid5_show_preread_threshold(mddev_t *mddev, char *page)
4366{
4367	raid5_conf_t *conf = mddev->private;
4368	if (conf)
4369		return sprintf(page, "%d\n", conf->bypass_threshold);
4370	else
4371		return 0;
4372}
4373
4374static ssize_t
4375raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4376{
4377	raid5_conf_t *conf = mddev->private;
4378	unsigned long new;
4379	if (len >= PAGE_SIZE)
4380		return -EINVAL;
4381	if (!conf)
4382		return -ENODEV;
4383
4384	if (strict_strtoul(page, 10, &new))
 
 
 
4385		return -EINVAL;
4386	if (new > conf->max_nr_stripes)
 
4387		return -EINVAL;
4388	conf->bypass_threshold = new;
 
 
 
 
 
 
4389	return len;
4390}
4391
4392static struct md_sysfs_entry
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4393raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4394					S_IRUGO | S_IWUSR,
4395					raid5_show_preread_threshold,
4396					raid5_store_preread_threshold);
4397
4398static ssize_t
4399stripe_cache_active_show(mddev_t *mddev, char *page)
4400{
4401	raid5_conf_t *conf = mddev->private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4402	if (conf)
4403		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4404	else
4405		return 0;
4406}
4407
4408static struct md_sysfs_entry
4409raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4411static struct attribute *raid5_attrs[] =  {
4412	&raid5_stripecache_size.attr,
4413	&raid5_stripecache_active.attr,
4414	&raid5_preread_bypass_threshold.attr,
 
 
 
 
 
 
4415	NULL,
4416};
4417static struct attribute_group raid5_attrs_group = {
4418	.name = NULL,
4419	.attrs = raid5_attrs,
4420};
4421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4422static sector_t
4423raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4424{
4425	raid5_conf_t *conf = mddev->private;
4426
4427	if (!sectors)
4428		sectors = mddev->dev_sectors;
4429	if (!raid_disks)
4430		/* size is defined by the smallest of previous and new size */
4431		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4432
4433	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4434	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4435	return sectors * (raid_disks - conf->max_degraded);
4436}
4437
4438static void raid5_free_percpu(raid5_conf_t *conf)
4439{
4440	struct raid5_percpu *percpu;
4441	unsigned long cpu;
 
 
 
4442
4443	if (!conf->percpu)
4444		return;
 
 
 
 
 
4445
4446	get_online_cpus();
4447	for_each_possible_cpu(cpu) {
4448		percpu = per_cpu_ptr(conf->percpu, cpu);
4449		safe_put_page(percpu->spare_page);
4450		kfree(percpu->scribble);
 
 
 
4451	}
4452#ifdef CONFIG_HOTPLUG_CPU
4453	unregister_cpu_notifier(&conf->cpu_notify);
4454#endif
4455	put_online_cpus();
4456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4457	free_percpu(conf->percpu);
4458}
4459
4460static void free_conf(raid5_conf_t *conf)
4461{
 
 
 
 
 
 
4462	shrink_stripes(conf);
4463	raid5_free_percpu(conf);
 
 
 
4464	kfree(conf->disks);
 
4465	kfree(conf->stripe_hashtbl);
 
4466	kfree(conf);
4467}
4468
4469#ifdef CONFIG_HOTPLUG_CPU
4470static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4471			      void *hcpu)
4472{
4473	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4474	long cpu = (long)hcpu;
4475	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4476
4477	switch (action) {
4478	case CPU_UP_PREPARE:
4479	case CPU_UP_PREPARE_FROZEN:
4480		if (conf->level == 6 && !percpu->spare_page)
4481			percpu->spare_page = alloc_page(GFP_KERNEL);
4482		if (!percpu->scribble)
4483			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4484
4485		if (!percpu->scribble ||
4486		    (conf->level == 6 && !percpu->spare_page)) {
4487			safe_put_page(percpu->spare_page);
4488			kfree(percpu->scribble);
4489			pr_err("%s: failed memory allocation for cpu%ld\n",
4490			       __func__, cpu);
4491			return notifier_from_errno(-ENOMEM);
4492		}
4493		break;
4494	case CPU_DEAD:
4495	case CPU_DEAD_FROZEN:
4496		safe_put_page(percpu->spare_page);
4497		kfree(percpu->scribble);
4498		percpu->spare_page = NULL;
4499		percpu->scribble = NULL;
4500		break;
4501	default:
4502		break;
4503	}
4504	return NOTIFY_OK;
4505}
4506#endif
4507
4508static int raid5_alloc_percpu(raid5_conf_t *conf)
4509{
4510	unsigned long cpu;
4511	struct page *spare_page;
4512	struct raid5_percpu __percpu *allcpus;
4513	void *scribble;
4514	int err;
4515
4516	allcpus = alloc_percpu(struct raid5_percpu);
4517	if (!allcpus)
4518		return -ENOMEM;
4519	conf->percpu = allcpus;
4520
4521	get_online_cpus();
4522	err = 0;
4523	for_each_present_cpu(cpu) {
4524		if (conf->level == 6) {
4525			spare_page = alloc_page(GFP_KERNEL);
4526			if (!spare_page) {
4527				err = -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4528				break;
4529			}
4530			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4531		}
4532		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4533		if (!scribble) {
4534			err = -ENOMEM;
4535			break;
4536		}
4537		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4538	}
4539#ifdef CONFIG_HOTPLUG_CPU
4540	conf->cpu_notify.notifier_call = raid456_cpu_notify;
4541	conf->cpu_notify.priority = 0;
4542	if (err == 0)
4543		err = register_cpu_notifier(&conf->cpu_notify);
4544#endif
4545	put_online_cpus();
4546
4547	return err;
 
 
 
 
 
 
 
 
4548}
4549
4550static raid5_conf_t *setup_conf(mddev_t *mddev)
4551{
4552	raid5_conf_t *conf;
4553	int raid_disk, memory, max_disks;
4554	mdk_rdev_t *rdev;
4555	struct disk_info *disk;
 
 
 
 
 
4556
4557	if (mddev->new_level != 5
4558	    && mddev->new_level != 4
4559	    && mddev->new_level != 6) {
4560		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4561		       mdname(mddev), mddev->new_level);
4562		return ERR_PTR(-EIO);
4563	}
4564	if ((mddev->new_level == 5
4565	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4566	    (mddev->new_level == 6
4567	     && !algorithm_valid_raid6(mddev->new_layout))) {
4568		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4569		       mdname(mddev), mddev->new_layout);
4570		return ERR_PTR(-EIO);
4571	}
4572	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4573		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4574		       mdname(mddev), mddev->raid_disks);
4575		return ERR_PTR(-EINVAL);
4576	}
4577
4578	if (!mddev->new_chunk_sectors ||
4579	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4580	    !is_power_of_2(mddev->new_chunk_sectors)) {
4581		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4582		       mdname(mddev), mddev->new_chunk_sectors << 9);
4583		return ERR_PTR(-EINVAL);
4584	}
4585
4586	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4587	if (conf == NULL)
4588		goto abort;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4589	spin_lock_init(&conf->device_lock);
 
 
 
4590	init_waitqueue_head(&conf->wait_for_stripe);
4591	init_waitqueue_head(&conf->wait_for_overlap);
4592	INIT_LIST_HEAD(&conf->handle_list);
 
4593	INIT_LIST_HEAD(&conf->hold_list);
4594	INIT_LIST_HEAD(&conf->delayed_list);
4595	INIT_LIST_HEAD(&conf->bitmap_list);
4596	INIT_LIST_HEAD(&conf->inactive_list);
4597	atomic_set(&conf->active_stripes, 0);
4598	atomic_set(&conf->preread_active_stripes, 0);
4599	atomic_set(&conf->active_aligned_reads, 0);
 
 
 
 
 
 
 
 
 
 
 
4600	conf->bypass_threshold = BYPASS_THRESHOLD;
 
4601
4602	conf->raid_disks = mddev->raid_disks;
4603	if (mddev->reshape_position == MaxSector)
4604		conf->previous_raid_disks = mddev->raid_disks;
4605	else
4606		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4607	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4608	conf->scribble_len = scribble_len(max_disks);
4609
4610	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4611			      GFP_KERNEL);
 
4612	if (!conf->disks)
4613		goto abort;
4614
 
 
 
 
 
 
 
 
 
4615	conf->mddev = mddev;
4616
4617	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4618		goto abort;
4619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4620	conf->level = mddev->new_level;
 
4621	if (raid5_alloc_percpu(conf) != 0)
4622		goto abort;
4623
4624	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4625
4626	list_for_each_entry(rdev, &mddev->disks, same_set) {
4627		raid_disk = rdev->raid_disk;
4628		if (raid_disk >= max_disks
4629		    || raid_disk < 0)
4630			continue;
4631		disk = conf->disks + raid_disk;
4632
4633		disk->rdev = rdev;
 
 
 
 
 
 
 
 
4634
4635		if (test_bit(In_sync, &rdev->flags)) {
4636			char b[BDEVNAME_SIZE];
4637			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4638			       " disk %d\n",
4639			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4640		} else if (rdev->saved_raid_disk != raid_disk)
4641			/* Cannot rely on bitmap to complete recovery */
4642			conf->fullsync = 1;
4643	}
4644
4645	conf->chunk_sectors = mddev->new_chunk_sectors;
4646	conf->level = mddev->new_level;
4647	if (conf->level == 6)
4648		conf->max_degraded = 2;
4649	else
 
 
 
 
4650		conf->max_degraded = 1;
 
 
4651	conf->algorithm = mddev->new_layout;
4652	conf->max_nr_stripes = NR_STRIPES;
4653	conf->reshape_progress = mddev->reshape_position;
4654	if (conf->reshape_progress != MaxSector) {
4655		conf->prev_chunk_sectors = mddev->chunk_sectors;
4656		conf->prev_algo = mddev->layout;
 
 
 
4657	}
4658
4659	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
 
 
 
 
 
 
 
 
 
 
4660		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4661	if (grow_stripes(conf, conf->max_nr_stripes)) {
4662		printk(KERN_ERR
4663		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
4664		       mdname(mddev), memory);
4665		goto abort;
4666	} else
4667		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4668		       mdname(mddev), memory);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4669
4670	conf->thread = md_register_thread(raid5d, mddev, NULL);
 
4671	if (!conf->thread) {
4672		printk(KERN_ERR
4673		       "md/raid:%s: couldn't allocate thread.\n",
4674		       mdname(mddev));
4675		goto abort;
4676	}
4677
4678	return conf;
4679
4680 abort:
4681	if (conf) {
4682		free_conf(conf);
4683		return ERR_PTR(-EIO);
4684	} else
4685		return ERR_PTR(-ENOMEM);
4686}
4687
4688
4689static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4690{
4691	switch (algo) {
4692	case ALGORITHM_PARITY_0:
4693		if (raid_disk < max_degraded)
4694			return 1;
4695		break;
4696	case ALGORITHM_PARITY_N:
4697		if (raid_disk >= raid_disks - max_degraded)
4698			return 1;
4699		break;
4700	case ALGORITHM_PARITY_0_6:
4701		if (raid_disk == 0 || 
4702		    raid_disk == raid_disks - 1)
4703			return 1;
4704		break;
4705	case ALGORITHM_LEFT_ASYMMETRIC_6:
4706	case ALGORITHM_RIGHT_ASYMMETRIC_6:
4707	case ALGORITHM_LEFT_SYMMETRIC_6:
4708	case ALGORITHM_RIGHT_SYMMETRIC_6:
4709		if (raid_disk == raid_disks - 1)
4710			return 1;
4711	}
4712	return 0;
4713}
4714
4715static int run(mddev_t *mddev)
4716{
4717	raid5_conf_t *conf;
 
 
 
 
 
 
4718	int working_disks = 0;
4719	int dirty_parity_disks = 0;
4720	mdk_rdev_t *rdev;
 
4721	sector_t reshape_offset = 0;
 
 
 
 
 
 
4722
4723	if (mddev->recovery_cp != MaxSector)
4724		printk(KERN_NOTICE "md/raid:%s: not clean"
4725		       " -- starting background reconstruction\n",
4726		       mdname(mddev));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4727	if (mddev->reshape_position != MaxSector) {
4728		/* Check that we can continue the reshape.
4729		 * Currently only disks can change, it must
4730		 * increase, and we must be past the point where
4731		 * a stripe over-writes itself
 
 
 
 
 
 
 
4732		 */
4733		sector_t here_new, here_old;
4734		int old_disks;
4735		int max_degraded = (mddev->level == 6 ? 2 : 1);
 
 
 
 
 
 
 
 
4736
4737		if (mddev->new_level != mddev->level) {
4738			printk(KERN_ERR "md/raid:%s: unsupported reshape "
4739			       "required - aborting.\n",
4740			       mdname(mddev));
4741			return -EINVAL;
4742		}
4743		old_disks = mddev->raid_disks - mddev->delta_disks;
4744		/* reshape_position must be on a new-stripe boundary, and one
4745		 * further up in new geometry must map after here in old
4746		 * geometry.
 
 
 
4747		 */
4748		here_new = mddev->reshape_position;
4749		if (sector_div(here_new, mddev->new_chunk_sectors *
4750			       (mddev->raid_disks - max_degraded))) {
4751			printk(KERN_ERR "md/raid:%s: reshape_position not "
4752			       "on a stripe boundary\n", mdname(mddev));
 
4753			return -EINVAL;
4754		}
4755		reshape_offset = here_new * mddev->new_chunk_sectors;
4756		/* here_new is the stripe we will write to */
4757		here_old = mddev->reshape_position;
4758		sector_div(here_old, mddev->chunk_sectors *
4759			   (old_disks-max_degraded));
4760		/* here_old is the first stripe that we might need to read
4761		 * from */
4762		if (mddev->delta_disks == 0) {
4763			/* We cannot be sure it is safe to start an in-place
4764			 * reshape.  It is only safe if user-space if monitoring
4765			 * and taking constant backups.
4766			 * mdadm always starts a situation like this in
4767			 * readonly mode so it can take control before
4768			 * allowing any writes.  So just check for that.
4769			 */
4770			if ((here_new * mddev->new_chunk_sectors != 
4771			     here_old * mddev->chunk_sectors) ||
4772			    mddev->ro == 0) {
4773				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4774				       " in read-only mode - aborting\n",
4775				       mdname(mddev));
4776				return -EINVAL;
4777			}
4778		} else if (mddev->delta_disks < 0
4779		    ? (here_new * mddev->new_chunk_sectors <=
4780		       here_old * mddev->chunk_sectors)
4781		    : (here_new * mddev->new_chunk_sectors >=
4782		       here_old * mddev->chunk_sectors)) {
4783			/* Reading from the same stripe as writing to - bad */
4784			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4785			       "auto-recovery - aborting.\n",
4786			       mdname(mddev));
4787			return -EINVAL;
4788		}
4789		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4790		       mdname(mddev));
4791		/* OK, we should be able to continue; */
4792	} else {
4793		BUG_ON(mddev->level != mddev->new_level);
4794		BUG_ON(mddev->layout != mddev->new_layout);
4795		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4796		BUG_ON(mddev->delta_disks != 0);
4797	}
4798
 
 
 
 
 
 
 
 
4799	if (mddev->private == NULL)
4800		conf = setup_conf(mddev);
4801	else
4802		conf = mddev->private;
4803
4804	if (IS_ERR(conf))
4805		return PTR_ERR(conf);
4806
 
 
 
 
 
 
 
 
 
 
 
4807	mddev->thread = conf->thread;
4808	conf->thread = NULL;
4809	mddev->private = conf;
4810
4811	/*
4812	 * 0 for a fully functional array, 1 or 2 for a degraded array.
4813	 */
4814	list_for_each_entry(rdev, &mddev->disks, same_set) {
4815		if (rdev->raid_disk < 0)
 
 
 
 
 
 
4816			continue;
 
 
 
 
 
 
4817		if (test_bit(In_sync, &rdev->flags)) {
4818			working_disks++;
4819			continue;
4820		}
4821		/* This disc is not fully in-sync.  However if it
4822		 * just stored parity (beyond the recovery_offset),
4823		 * when we don't need to be concerned about the
4824		 * array being dirty.
4825		 * When reshape goes 'backwards', we never have
4826		 * partially completed devices, so we only need
4827		 * to worry about reshape going forwards.
4828		 */
4829		/* Hack because v0.91 doesn't store recovery_offset properly. */
4830		if (mddev->major_version == 0 &&
4831		    mddev->minor_version > 90)
4832			rdev->recovery_offset = reshape_offset;
4833			
4834		if (rdev->recovery_offset < reshape_offset) {
4835			/* We need to check old and new layout */
4836			if (!only_parity(rdev->raid_disk,
4837					 conf->algorithm,
4838					 conf->raid_disks,
4839					 conf->max_degraded))
4840				continue;
4841		}
4842		if (!only_parity(rdev->raid_disk,
4843				 conf->prev_algo,
4844				 conf->previous_raid_disks,
4845				 conf->max_degraded))
4846			continue;
4847		dirty_parity_disks++;
4848	}
4849
4850	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4851			   - working_disks);
 
 
4852
4853	if (has_failed(conf)) {
4854		printk(KERN_ERR "md/raid:%s: not enough operational devices"
4855			" (%d/%d failed)\n",
4856			mdname(mddev), mddev->degraded, conf->raid_disks);
4857		goto abort;
4858	}
4859
4860	/* device size must be a multiple of chunk size */
4861	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4862	mddev->resync_max_sectors = mddev->dev_sectors;
4863
4864	if (mddev->degraded > dirty_parity_disks &&
4865	    mddev->recovery_cp != MaxSector) {
4866		if (mddev->ok_start_degraded)
4867			printk(KERN_WARNING
4868			       "md/raid:%s: starting dirty degraded array"
4869			       " - data corruption possible.\n",
4870			       mdname(mddev));
 
4871		else {
4872			printk(KERN_ERR
4873			       "md/raid:%s: cannot start dirty degraded array.\n",
4874			       mdname(mddev));
4875			goto abort;
4876		}
4877	}
4878
4879	if (mddev->degraded == 0)
4880		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4881		       " devices, algorithm %d\n", mdname(mddev), conf->level,
4882		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4883		       mddev->new_layout);
4884	else
4885		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4886		       " out of %d devices, algorithm %d\n",
4887		       mdname(mddev), conf->level,
4888		       mddev->raid_disks - mddev->degraded,
4889		       mddev->raid_disks, mddev->new_layout);
4890
4891	print_raid5_conf(conf);
4892
4893	if (conf->reshape_progress != MaxSector) {
4894		conf->reshape_safe = conf->reshape_progress;
4895		atomic_set(&conf->reshape_stripes, 0);
4896		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4897		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4898		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4899		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4900		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4901							"reshape");
 
 
4902	}
4903
4904
4905	/* Ok, everything is just fine now */
4906	if (mddev->to_remove == &raid5_attrs_group)
4907		mddev->to_remove = NULL;
4908	else if (mddev->kobj.sd &&
4909	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4910		printk(KERN_WARNING
4911		       "raid5: failed to create sysfs attributes for %s\n",
4912		       mdname(mddev));
4913	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4914
4915	if (mddev->queue) {
4916		int chunk_size;
4917		/* read-ahead size must cover two whole stripes, which
4918		 * is 2 * (datadisks) * chunksize where 'n' is the
4919		 * number of raid devices
4920		 */
4921		int data_disks = conf->previous_raid_disks - conf->max_degraded;
4922		int stripe = data_disks *
4923			((mddev->chunk_sectors << 9) / PAGE_SIZE);
4924		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4925			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4926
4927		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4928
4929		mddev->queue->backing_dev_info.congested_data = mddev;
4930		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4931
4932		chunk_size = mddev->chunk_sectors << 9;
4933		blk_queue_io_min(mddev->queue, chunk_size);
4934		blk_queue_io_opt(mddev->queue, chunk_size *
4935				 (conf->raid_disks - conf->max_degraded));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4936
4937		list_for_each_entry(rdev, &mddev->disks, same_set)
4938			disk_stack_limits(mddev->gendisk, rdev->bdev,
4939					  rdev->data_offset << 9);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4940	}
4941
 
 
 
4942	return 0;
4943abort:
4944	md_unregister_thread(&mddev->thread);
4945	if (conf) {
4946		print_raid5_conf(conf);
4947		free_conf(conf);
4948	}
4949	mddev->private = NULL;
4950	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
4951	return -EIO;
4952}
4953
4954static int stop(mddev_t *mddev)
4955{
4956	raid5_conf_t *conf = mddev->private;
4957
4958	md_unregister_thread(&mddev->thread);
4959	if (mddev->queue)
4960		mddev->queue->backing_dev_info.congested_fn = NULL;
4961	free_conf(conf);
4962	mddev->private = NULL;
4963	mddev->to_remove = &raid5_attrs_group;
4964	return 0;
4965}
4966
4967#ifdef DEBUG
4968static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4969{
4970	int i;
4971
4972	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4973		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4974	seq_printf(seq, "sh %llu,  count %d.\n",
4975		   (unsigned long long)sh->sector, atomic_read(&sh->count));
4976	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4977	for (i = 0; i < sh->disks; i++) {
4978		seq_printf(seq, "(cache%d: %p %ld) ",
4979			   i, sh->dev[i].page, sh->dev[i].flags);
4980	}
4981	seq_printf(seq, "\n");
4982}
4983
4984static void printall(struct seq_file *seq, raid5_conf_t *conf)
4985{
4986	struct stripe_head *sh;
4987	struct hlist_node *hn;
4988	int i;
4989
4990	spin_lock_irq(&conf->device_lock);
4991	for (i = 0; i < NR_HASH; i++) {
4992		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4993			if (sh->raid_conf != conf)
4994				continue;
4995			print_sh(seq, sh);
4996		}
4997	}
4998	spin_unlock_irq(&conf->device_lock);
4999}
5000#endif
5001
5002static void status(struct seq_file *seq, mddev_t *mddev)
5003{
5004	raid5_conf_t *conf = mddev->private;
5005	int i;
5006
5007	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5008		mddev->chunk_sectors / 2, mddev->layout);
5009	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5010	for (i = 0; i < conf->raid_disks; i++)
5011		seq_printf (seq, "%s",
5012			       conf->disks[i].rdev &&
5013			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
 
 
5014	seq_printf (seq, "]");
5015#ifdef DEBUG
5016	seq_printf (seq, "\n");
5017	printall(seq, conf);
5018#endif
5019}
5020
5021static void print_raid5_conf (raid5_conf_t *conf)
5022{
5023	int i;
5024	struct disk_info *tmp;
5025
5026	printk(KERN_DEBUG "RAID conf printout:\n");
5027	if (!conf) {
5028		printk("(conf==NULL)\n");
5029		return;
5030	}
5031	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5032	       conf->raid_disks,
5033	       conf->raid_disks - conf->mddev->degraded);
5034
5035	for (i = 0; i < conf->raid_disks; i++) {
5036		char b[BDEVNAME_SIZE];
5037		tmp = conf->disks + i;
5038		if (tmp->rdev)
5039			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5040			       i, !test_bit(Faulty, &tmp->rdev->flags),
5041			       bdevname(tmp->rdev->bdev, b));
5042	}
5043}
5044
5045static int raid5_spare_active(mddev_t *mddev)
5046{
5047	int i;
5048	raid5_conf_t *conf = mddev->private;
5049	struct disk_info *tmp;
5050	int count = 0;
5051	unsigned long flags;
5052
5053	for (i = 0; i < conf->raid_disks; i++) {
5054		tmp = conf->disks + i;
5055		if (tmp->rdev
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5056		    && tmp->rdev->recovery_offset == MaxSector
5057		    && !test_bit(Faulty, &tmp->rdev->flags)
5058		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5059			count++;
5060			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5061		}
5062	}
5063	spin_lock_irqsave(&conf->device_lock, flags);
5064	mddev->degraded -= count;
5065	spin_unlock_irqrestore(&conf->device_lock, flags);
5066	print_raid5_conf(conf);
5067	return count;
5068}
5069
5070static int raid5_remove_disk(mddev_t *mddev, int number)
5071{
5072	raid5_conf_t *conf = mddev->private;
5073	int err = 0;
5074	mdk_rdev_t *rdev;
 
5075	struct disk_info *p = conf->disks + number;
5076
5077	print_raid5_conf(conf);
5078	rdev = p->rdev;
5079	if (rdev) {
5080		if (number >= conf->raid_disks &&
5081		    conf->reshape_progress == MaxSector)
5082			clear_bit(In_sync, &rdev->flags);
5083
5084		if (test_bit(In_sync, &rdev->flags) ||
5085		    atomic_read(&rdev->nr_pending)) {
5086			err = -EBUSY;
5087			goto abort;
5088		}
5089		/* Only remove non-faulty devices if recovery
5090		 * isn't possible.
5091		 */
5092		if (!test_bit(Faulty, &rdev->flags) &&
5093		    mddev->recovery_disabled != conf->recovery_disabled &&
5094		    !has_failed(conf) &&
5095		    number < conf->raid_disks) {
5096			err = -EBUSY;
5097			goto abort;
5098		}
5099		p->rdev = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5100		synchronize_rcu();
5101		if (atomic_read(&rdev->nr_pending)) {
5102			/* lost the race, try later */
5103			err = -EBUSY;
5104			p->rdev = rdev;
5105		}
5106	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5107abort:
5108
5109	print_raid5_conf(conf);
5110	return err;
5111}
5112
5113static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5114{
5115	raid5_conf_t *conf = mddev->private;
5116	int err = -EEXIST;
5117	int disk;
5118	struct disk_info *p;
5119	int first = 0;
5120	int last = conf->raid_disks - 1;
5121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5122	if (mddev->recovery_disabled == conf->recovery_disabled)
5123		return -EBUSY;
5124
5125	if (has_failed(conf))
5126		/* no point adding a device */
5127		return -EINVAL;
5128
5129	if (rdev->raid_disk >= 0)
5130		first = last = rdev->raid_disk;
5131
5132	/*
5133	 * find the disk ... but prefer rdev->saved_raid_disk
5134	 * if possible.
5135	 */
5136	if (rdev->saved_raid_disk >= 0 &&
5137	    rdev->saved_raid_disk >= first &&
5138	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5139		disk = rdev->saved_raid_disk;
5140	else
5141		disk = first;
5142	for ( ; disk <= last ; disk++)
5143		if ((p=conf->disks + disk)->rdev == NULL) {
5144			clear_bit(In_sync, &rdev->flags);
5145			rdev->raid_disk = disk;
5146			err = 0;
5147			if (rdev->saved_raid_disk != disk)
5148				conf->fullsync = 1;
5149			rcu_assign_pointer(p->rdev, rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5150			break;
5151		}
 
 
5152	print_raid5_conf(conf);
5153	return err;
5154}
5155
5156static int raid5_resize(mddev_t *mddev, sector_t sectors)
5157{
5158	/* no resync is happening, and there is enough space
5159	 * on all devices, so we can resize.
5160	 * We need to make sure resync covers any new space.
5161	 * If the array is shrinking we should possibly wait until
5162	 * any io in the removed space completes, but it hardly seems
5163	 * worth it.
5164	 */
5165	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5166	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5167					       mddev->raid_disks));
5168	if (mddev->array_sectors >
5169	    raid5_size(mddev, sectors, mddev->raid_disks))
 
 
 
 
5170		return -EINVAL;
5171	set_capacity(mddev->gendisk, mddev->array_sectors);
5172	revalidate_disk(mddev->gendisk);
 
 
 
 
5173	if (sectors > mddev->dev_sectors &&
5174	    mddev->recovery_cp > mddev->dev_sectors) {
5175		mddev->recovery_cp = mddev->dev_sectors;
5176		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5177	}
5178	mddev->dev_sectors = sectors;
5179	mddev->resync_max_sectors = sectors;
5180	return 0;
5181}
5182
5183static int check_stripe_cache(mddev_t *mddev)
5184{
5185	/* Can only proceed if there are plenty of stripe_heads.
5186	 * We need a minimum of one full stripe,, and for sensible progress
5187	 * it is best to have about 4 times that.
5188	 * If we require 4 times, then the default 256 4K stripe_heads will
5189	 * allow for chunk sizes up to 256K, which is probably OK.
5190	 * If the chunk size is greater, user-space should request more
5191	 * stripe_heads first.
5192	 */
5193	raid5_conf_t *conf = mddev->private;
5194	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5195	    > conf->max_nr_stripes ||
5196	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5197	    > conf->max_nr_stripes) {
5198		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5199		       mdname(mddev),
5200		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5201			/ STRIPE_SIZE)*4);
5202		return 0;
5203	}
5204	return 1;
5205}
5206
5207static int check_reshape(mddev_t *mddev)
5208{
5209	raid5_conf_t *conf = mddev->private;
5210
 
 
5211	if (mddev->delta_disks == 0 &&
5212	    mddev->new_layout == mddev->layout &&
5213	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5214		return 0; /* nothing to do */
5215	if (mddev->bitmap)
5216		/* Cannot grow a bitmap yet */
5217		return -EBUSY;
5218	if (has_failed(conf))
5219		return -EINVAL;
5220	if (mddev->delta_disks < 0) {
5221		/* We might be able to shrink, but the devices must
5222		 * be made bigger first.
5223		 * For raid6, 4 is the minimum size.
5224		 * Otherwise 2 is the minimum
5225		 */
5226		int min = 2;
5227		if (mddev->level == 6)
5228			min = 4;
5229		if (mddev->raid_disks + mddev->delta_disks < min)
5230			return -EINVAL;
5231	}
5232
5233	if (!check_stripe_cache(mddev))
5234		return -ENOSPC;
5235
5236	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
 
 
 
 
 
 
 
 
 
 
 
 
 
5237}
5238
5239static int raid5_start_reshape(mddev_t *mddev)
5240{
5241	raid5_conf_t *conf = mddev->private;
5242	mdk_rdev_t *rdev;
5243	int spares = 0;
5244	unsigned long flags;
5245
5246	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5247		return -EBUSY;
5248
5249	if (!check_stripe_cache(mddev))
5250		return -ENOSPC;
5251
5252	list_for_each_entry(rdev, &mddev->disks, same_set)
 
 
 
5253		if (!test_bit(In_sync, &rdev->flags)
5254		    && !test_bit(Faulty, &rdev->flags))
5255			spares++;
 
5256
5257	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5258		/* Not enough devices even to make a degraded array
5259		 * of that size
5260		 */
5261		return -EINVAL;
5262
5263	/* Refuse to reduce size of the array.  Any reductions in
5264	 * array size must be through explicit setting of array_size
5265	 * attribute.
5266	 */
5267	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5268	    < mddev->array_sectors) {
5269		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5270		       "before number of disks\n", mdname(mddev));
5271		return -EINVAL;
5272	}
5273
5274	atomic_set(&conf->reshape_stripes, 0);
5275	spin_lock_irq(&conf->device_lock);
 
5276	conf->previous_raid_disks = conf->raid_disks;
5277	conf->raid_disks += mddev->delta_disks;
5278	conf->prev_chunk_sectors = conf->chunk_sectors;
5279	conf->chunk_sectors = mddev->new_chunk_sectors;
5280	conf->prev_algo = conf->algorithm;
5281	conf->algorithm = mddev->new_layout;
5282	if (mddev->delta_disks < 0)
 
 
 
 
 
5283		conf->reshape_progress = raid5_size(mddev, 0, 0);
5284	else
5285		conf->reshape_progress = 0;
5286	conf->reshape_safe = conf->reshape_progress;
5287	conf->generation++;
5288	spin_unlock_irq(&conf->device_lock);
5289
 
 
 
 
 
 
 
5290	/* Add some new drives, as many as will fit.
5291	 * We know there are enough to make the newly sized array work.
5292	 * Don't add devices if we are reducing the number of
5293	 * devices in the array.  This is because it is not possible
5294	 * to correctly record the "partially reconstructed" state of
5295	 * such devices during the reshape and confusion could result.
5296	 */
5297	if (mddev->delta_disks >= 0) {
5298		int added_devices = 0;
5299		list_for_each_entry(rdev, &mddev->disks, same_set)
5300			if (rdev->raid_disk < 0 &&
5301			    !test_bit(Faulty, &rdev->flags)) {
5302				if (raid5_add_disk(mddev, rdev) == 0) {
5303					if (rdev->raid_disk
5304					    >= conf->previous_raid_disks) {
5305						set_bit(In_sync, &rdev->flags);
5306						added_devices++;
5307					} else
5308						rdev->recovery_offset = 0;
5309
5310					if (sysfs_link_rdev(mddev, rdev))
5311						/* Failure here is OK */;
5312				}
5313			} else if (rdev->raid_disk >= conf->previous_raid_disks
5314				   && !test_bit(Faulty, &rdev->flags)) {
5315				/* This is a spare that was manually added */
5316				set_bit(In_sync, &rdev->flags);
5317				added_devices++;
5318			}
5319
5320		/* When a reshape changes the number of devices,
5321		 * ->degraded is measured against the larger of the
5322		 * pre and post number of devices.
5323		 */
5324		spin_lock_irqsave(&conf->device_lock, flags);
5325		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5326			- added_devices;
5327		spin_unlock_irqrestore(&conf->device_lock, flags);
5328	}
5329	mddev->raid_disks = conf->raid_disks;
5330	mddev->reshape_position = conf->reshape_progress;
5331	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5332
5333	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5334	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
 
5335	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5336	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5337	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5338						"reshape");
5339	if (!mddev->sync_thread) {
5340		mddev->recovery = 0;
5341		spin_lock_irq(&conf->device_lock);
 
5342		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
 
 
 
 
 
 
 
5343		conf->reshape_progress = MaxSector;
 
 
5344		spin_unlock_irq(&conf->device_lock);
5345		return -EAGAIN;
5346	}
5347	conf->reshape_checkpoint = jiffies;
5348	md_wakeup_thread(mddev->sync_thread);
5349	md_new_event(mddev);
5350	return 0;
5351}
5352
5353/* This is called from the reshape thread and should make any
5354 * changes needed in 'conf'
5355 */
5356static void end_reshape(raid5_conf_t *conf)
5357{
5358
5359	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
 
5360
5361		spin_lock_irq(&conf->device_lock);
5362		conf->previous_raid_disks = conf->raid_disks;
 
 
5363		conf->reshape_progress = MaxSector;
 
 
 
 
 
 
5364		spin_unlock_irq(&conf->device_lock);
5365		wake_up(&conf->wait_for_overlap);
5366
5367		/* read-ahead size must cover two whole stripes, which is
5368		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5369		 */
5370		if (conf->mddev->queue) {
5371			int data_disks = conf->raid_disks - conf->max_degraded;
5372			int stripe = data_disks * ((conf->chunk_sectors << 9)
5373						   / PAGE_SIZE);
5374			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5375				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5376		}
5377	}
5378}
5379
5380/* This is called from the raid5d thread with mddev_lock held.
5381 * It makes config changes to the device.
5382 */
5383static void raid5_finish_reshape(mddev_t *mddev)
5384{
5385	raid5_conf_t *conf = mddev->private;
5386
5387	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5388
5389		if (mddev->delta_disks > 0) {
5390			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5391			set_capacity(mddev->gendisk, mddev->array_sectors);
5392			revalidate_disk(mddev->gendisk);
5393		} else {
5394			int d;
5395			mddev->degraded = conf->raid_disks;
5396			for (d = 0; d < conf->raid_disks ; d++)
5397				if (conf->disks[d].rdev &&
5398				    test_bit(In_sync,
5399					     &conf->disks[d].rdev->flags))
5400					mddev->degraded--;
5401			for (d = conf->raid_disks ;
5402			     d < conf->raid_disks - mddev->delta_disks;
5403			     d++) {
5404				mdk_rdev_t *rdev = conf->disks[d].rdev;
5405				if (rdev && raid5_remove_disk(mddev, d) == 0) {
5406					sysfs_unlink_rdev(mddev, rdev);
5407					rdev->raid_disk = -1;
5408				}
 
5409			}
5410		}
5411		mddev->layout = conf->algorithm;
5412		mddev->chunk_sectors = conf->chunk_sectors;
5413		mddev->reshape_position = MaxSector;
5414		mddev->delta_disks = 0;
 
5415	}
5416}
5417
5418static void raid5_quiesce(mddev_t *mddev, int state)
5419{
5420	raid5_conf_t *conf = mddev->private;
5421
5422	switch(state) {
5423	case 2: /* resume for a suspend */
5424		wake_up(&conf->wait_for_overlap);
5425		break;
5426
5427	case 1: /* stop all writes */
5428		spin_lock_irq(&conf->device_lock);
5429		/* '2' tells resync/reshape to pause so that all
5430		 * active stripes can drain
5431		 */
5432		conf->quiesce = 2;
5433		wait_event_lock_irq(conf->wait_for_stripe,
 
 
 
 
5434				    atomic_read(&conf->active_stripes) == 0 &&
5435				    atomic_read(&conf->active_aligned_reads) == 0,
5436				    conf->device_lock, /* nothing */);
 
5437		conf->quiesce = 1;
5438		spin_unlock_irq(&conf->device_lock);
5439		/* allow reshape to continue */
5440		wake_up(&conf->wait_for_overlap);
5441		break;
5442
5443	case 0: /* re-enable writes */
5444		spin_lock_irq(&conf->device_lock);
5445		conf->quiesce = 0;
5446		wake_up(&conf->wait_for_stripe);
5447		wake_up(&conf->wait_for_overlap);
5448		spin_unlock_irq(&conf->device_lock);
5449		break;
5450	}
 
5451}
5452
5453
5454static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5455{
5456	struct raid0_private_data *raid0_priv = mddev->private;
5457	sector_t sectors;
5458
5459	/* for raid0 takeover only one zone is supported */
5460	if (raid0_priv->nr_strip_zones > 1) {
5461		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5462		       mdname(mddev));
5463		return ERR_PTR(-EINVAL);
5464	}
5465
5466	sectors = raid0_priv->strip_zone[0].zone_end;
5467	sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5468	mddev->dev_sectors = sectors;
5469	mddev->new_level = level;
5470	mddev->new_layout = ALGORITHM_PARITY_N;
5471	mddev->new_chunk_sectors = mddev->chunk_sectors;
5472	mddev->raid_disks += 1;
5473	mddev->delta_disks = 1;
5474	/* make sure it will be not marked as dirty */
5475	mddev->recovery_cp = MaxSector;
5476
5477	return setup_conf(mddev);
5478}
5479
5480
5481static void *raid5_takeover_raid1(mddev_t *mddev)
5482{
5483	int chunksect;
 
5484
5485	if (mddev->raid_disks != 2 ||
5486	    mddev->degraded > 1)
5487		return ERR_PTR(-EINVAL);
5488
5489	/* Should check if there are write-behind devices? */
5490
5491	chunksect = 64*2; /* 64K by default */
5492
5493	/* The array must be an exact multiple of chunksize */
5494	while (chunksect && (mddev->array_sectors & (chunksect-1)))
5495		chunksect >>= 1;
5496
5497	if ((chunksect<<9) < STRIPE_SIZE)
5498		/* array size does not allow a suitable chunk size */
5499		return ERR_PTR(-EINVAL);
5500
5501	mddev->new_level = 5;
5502	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5503	mddev->new_chunk_sectors = chunksect;
5504
5505	return setup_conf(mddev);
 
 
 
 
5506}
5507
5508static void *raid5_takeover_raid6(mddev_t *mddev)
5509{
5510	int new_layout;
5511
5512	switch (mddev->layout) {
5513	case ALGORITHM_LEFT_ASYMMETRIC_6:
5514		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5515		break;
5516	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5517		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5518		break;
5519	case ALGORITHM_LEFT_SYMMETRIC_6:
5520		new_layout = ALGORITHM_LEFT_SYMMETRIC;
5521		break;
5522	case ALGORITHM_RIGHT_SYMMETRIC_6:
5523		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5524		break;
5525	case ALGORITHM_PARITY_0_6:
5526		new_layout = ALGORITHM_PARITY_0;
5527		break;
5528	case ALGORITHM_PARITY_N:
5529		new_layout = ALGORITHM_PARITY_N;
5530		break;
5531	default:
5532		return ERR_PTR(-EINVAL);
5533	}
5534	mddev->new_level = 5;
5535	mddev->new_layout = new_layout;
5536	mddev->delta_disks = -1;
5537	mddev->raid_disks -= 1;
5538	return setup_conf(mddev);
5539}
5540
5541
5542static int raid5_check_reshape(mddev_t *mddev)
5543{
5544	/* For a 2-drive array, the layout and chunk size can be changed
5545	 * immediately as not restriping is needed.
5546	 * For larger arrays we record the new value - after validation
5547	 * to be used by a reshape pass.
5548	 */
5549	raid5_conf_t *conf = mddev->private;
5550	int new_chunk = mddev->new_chunk_sectors;
5551
5552	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5553		return -EINVAL;
5554	if (new_chunk > 0) {
5555		if (!is_power_of_2(new_chunk))
5556			return -EINVAL;
5557		if (new_chunk < (PAGE_SIZE>>9))
5558			return -EINVAL;
5559		if (mddev->array_sectors & (new_chunk-1))
5560			/* not factor of array size */
5561			return -EINVAL;
5562	}
5563
5564	/* They look valid */
5565
5566	if (mddev->raid_disks == 2) {
5567		/* can make the change immediately */
5568		if (mddev->new_layout >= 0) {
5569			conf->algorithm = mddev->new_layout;
5570			mddev->layout = mddev->new_layout;
5571		}
5572		if (new_chunk > 0) {
5573			conf->chunk_sectors = new_chunk ;
5574			mddev->chunk_sectors = new_chunk;
5575		}
5576		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5577		md_wakeup_thread(mddev->thread);
5578	}
5579	return check_reshape(mddev);
5580}
5581
5582static int raid6_check_reshape(mddev_t *mddev)
5583{
5584	int new_chunk = mddev->new_chunk_sectors;
5585
5586	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5587		return -EINVAL;
5588	if (new_chunk > 0) {
5589		if (!is_power_of_2(new_chunk))
5590			return -EINVAL;
5591		if (new_chunk < (PAGE_SIZE >> 9))
5592			return -EINVAL;
5593		if (mddev->array_sectors & (new_chunk-1))
5594			/* not factor of array size */
5595			return -EINVAL;
5596	}
5597
5598	/* They look valid */
5599	return check_reshape(mddev);
5600}
5601
5602static void *raid5_takeover(mddev_t *mddev)
5603{
5604	/* raid5 can take over:
5605	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5606	 *  raid1 - if there are two drives.  We need to know the chunk size
5607	 *  raid4 - trivial - just use a raid4 layout.
5608	 *  raid6 - Providing it is a *_6 layout
5609	 */
5610	if (mddev->level == 0)
5611		return raid45_takeover_raid0(mddev, 5);
5612	if (mddev->level == 1)
5613		return raid5_takeover_raid1(mddev);
5614	if (mddev->level == 4) {
5615		mddev->new_layout = ALGORITHM_PARITY_N;
5616		mddev->new_level = 5;
5617		return setup_conf(mddev);
5618	}
5619	if (mddev->level == 6)
5620		return raid5_takeover_raid6(mddev);
5621
5622	return ERR_PTR(-EINVAL);
5623}
5624
5625static void *raid4_takeover(mddev_t *mddev)
5626{
5627	/* raid4 can take over:
5628	 *  raid0 - if there is only one strip zone
5629	 *  raid5 - if layout is right
5630	 */
5631	if (mddev->level == 0)
5632		return raid45_takeover_raid0(mddev, 4);
5633	if (mddev->level == 5 &&
5634	    mddev->layout == ALGORITHM_PARITY_N) {
5635		mddev->new_layout = 0;
5636		mddev->new_level = 4;
5637		return setup_conf(mddev);
5638	}
5639	return ERR_PTR(-EINVAL);
5640}
5641
5642static struct mdk_personality raid5_personality;
5643
5644static void *raid6_takeover(mddev_t *mddev)
5645{
5646	/* Currently can only take over a raid5.  We map the
5647	 * personality to an equivalent raid6 personality
5648	 * with the Q block at the end.
5649	 */
5650	int new_layout;
5651
5652	if (mddev->pers != &raid5_personality)
5653		return ERR_PTR(-EINVAL);
5654	if (mddev->degraded > 1)
5655		return ERR_PTR(-EINVAL);
5656	if (mddev->raid_disks > 253)
5657		return ERR_PTR(-EINVAL);
5658	if (mddev->raid_disks < 3)
5659		return ERR_PTR(-EINVAL);
5660
5661	switch (mddev->layout) {
5662	case ALGORITHM_LEFT_ASYMMETRIC:
5663		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5664		break;
5665	case ALGORITHM_RIGHT_ASYMMETRIC:
5666		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5667		break;
5668	case ALGORITHM_LEFT_SYMMETRIC:
5669		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5670		break;
5671	case ALGORITHM_RIGHT_SYMMETRIC:
5672		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5673		break;
5674	case ALGORITHM_PARITY_0:
5675		new_layout = ALGORITHM_PARITY_0_6;
5676		break;
5677	case ALGORITHM_PARITY_N:
5678		new_layout = ALGORITHM_PARITY_N;
5679		break;
5680	default:
5681		return ERR_PTR(-EINVAL);
5682	}
5683	mddev->new_level = 6;
5684	mddev->new_layout = new_layout;
5685	mddev->delta_disks = 1;
5686	mddev->raid_disks += 1;
5687	return setup_conf(mddev);
5688}
5689
 
 
 
 
5690
5691static struct mdk_personality raid6_personality =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5692{
5693	.name		= "raid6",
5694	.level		= 6,
5695	.owner		= THIS_MODULE,
5696	.make_request	= make_request,
5697	.run		= run,
5698	.stop		= stop,
5699	.status		= status,
5700	.error_handler	= error,
 
5701	.hot_add_disk	= raid5_add_disk,
5702	.hot_remove_disk= raid5_remove_disk,
5703	.spare_active	= raid5_spare_active,
5704	.sync_request	= sync_request,
5705	.resize		= raid5_resize,
5706	.size		= raid5_size,
5707	.check_reshape	= raid6_check_reshape,
5708	.start_reshape  = raid5_start_reshape,
5709	.finish_reshape = raid5_finish_reshape,
5710	.quiesce	= raid5_quiesce,
5711	.takeover	= raid6_takeover,
 
5712};
5713static struct mdk_personality raid5_personality =
5714{
5715	.name		= "raid5",
5716	.level		= 5,
5717	.owner		= THIS_MODULE,
5718	.make_request	= make_request,
5719	.run		= run,
5720	.stop		= stop,
5721	.status		= status,
5722	.error_handler	= error,
 
5723	.hot_add_disk	= raid5_add_disk,
5724	.hot_remove_disk= raid5_remove_disk,
5725	.spare_active	= raid5_spare_active,
5726	.sync_request	= sync_request,
5727	.resize		= raid5_resize,
5728	.size		= raid5_size,
5729	.check_reshape	= raid5_check_reshape,
5730	.start_reshape  = raid5_start_reshape,
5731	.finish_reshape = raid5_finish_reshape,
5732	.quiesce	= raid5_quiesce,
5733	.takeover	= raid5_takeover,
 
5734};
5735
5736static struct mdk_personality raid4_personality =
5737{
5738	.name		= "raid4",
5739	.level		= 4,
5740	.owner		= THIS_MODULE,
5741	.make_request	= make_request,
5742	.run		= run,
5743	.stop		= stop,
5744	.status		= status,
5745	.error_handler	= error,
 
5746	.hot_add_disk	= raid5_add_disk,
5747	.hot_remove_disk= raid5_remove_disk,
5748	.spare_active	= raid5_spare_active,
5749	.sync_request	= sync_request,
5750	.resize		= raid5_resize,
5751	.size		= raid5_size,
5752	.check_reshape	= raid5_check_reshape,
5753	.start_reshape  = raid5_start_reshape,
5754	.finish_reshape = raid5_finish_reshape,
5755	.quiesce	= raid5_quiesce,
5756	.takeover	= raid4_takeover,
 
5757};
5758
5759static int __init raid5_init(void)
5760{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5761	register_md_personality(&raid6_personality);
5762	register_md_personality(&raid5_personality);
5763	register_md_personality(&raid4_personality);
5764	return 0;
5765}
5766
5767static void raid5_exit(void)
5768{
5769	unregister_md_personality(&raid6_personality);
5770	unregister_md_personality(&raid5_personality);
5771	unregister_md_personality(&raid4_personality);
 
 
5772}
5773
5774module_init(raid5_init);
5775module_exit(raid5_exit);
5776MODULE_LICENSE("GPL");
5777MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5778MODULE_ALIAS("md-personality-4"); /* RAID5 */
5779MODULE_ALIAS("md-raid5");
5780MODULE_ALIAS("md-raid4");
5781MODULE_ALIAS("md-level-5");
5782MODULE_ALIAS("md-level-4");
5783MODULE_ALIAS("md-personality-8"); /* RAID6 */
5784MODULE_ALIAS("md-raid6");
5785MODULE_ALIAS("md-level-6");
5786
5787/* This used to be two separate modules, they were: */
5788MODULE_ALIAS("raid5");
5789MODULE_ALIAS("raid6");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid5.c : Multiple Devices driver for Linux
   4 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   5 *	   Copyright (C) 1999, 2000 Ingo Molnar
   6 *	   Copyright (C) 2002, 2003 H. Peter Anvin
   7 *
   8 * RAID-4/5/6 management functions.
   9 * Thanks to Penguin Computing for making the RAID-6 development possible
  10 * by donating a test server!
 
 
 
 
 
 
 
 
 
  11 */
  12
  13/*
  14 * BITMAP UNPLUGGING:
  15 *
  16 * The sequencing for updating the bitmap reliably is a little
  17 * subtle (and I got it wrong the first time) so it deserves some
  18 * explanation.
  19 *
  20 * We group bitmap updates into batches.  Each batch has a number.
  21 * We may write out several batches at once, but that isn't very important.
  22 * conf->seq_write is the number of the last batch successfully written.
  23 * conf->seq_flush is the number of the last batch that was closed to
  24 *    new additions.
  25 * When we discover that we will need to write to any block in a stripe
  26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
  27 * the number of the batch it will be in. This is seq_flush+1.
  28 * When we are ready to do a write, if that batch hasn't been written yet,
  29 *   we plug the array and queue the stripe for later.
  30 * When an unplug happens, we increment bm_flush, thus closing the current
  31 *   batch.
  32 * When we notice that bm_flush > bm_write, we write out all pending updates
  33 * to the bitmap, and advance bm_write to where bm_flush was.
  34 * This may occasionally write a bit out twice, but is sure never to
  35 * miss any bits.
  36 */
  37
  38#include <linux/blkdev.h>
  39#include <linux/kthread.h>
  40#include <linux/raid/pq.h>
  41#include <linux/async_tx.h>
  42#include <linux/module.h>
  43#include <linux/async.h>
  44#include <linux/seq_file.h>
  45#include <linux/cpu.h>
  46#include <linux/slab.h>
  47#include <linux/ratelimit.h>
  48#include <linux/nodemask.h>
  49
  50#include <trace/events/block.h>
  51#include <linux/list_sort.h>
  52
  53#include "md.h"
  54#include "raid5.h"
  55#include "raid0.h"
  56#include "md-bitmap.h"
  57#include "raid5-log.h"
  58
  59#define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
 
 
  60
  61#define cpu_to_group(cpu) cpu_to_node(cpu)
  62#define ANY_GROUP NUMA_NO_NODE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63
  64static bool devices_handle_discard_safely = false;
  65module_param(devices_handle_discard_safely, bool, 0644);
  66MODULE_PARM_DESC(devices_handle_discard_safely,
  67		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
  68static struct workqueue_struct *raid5_wq;
  69
  70static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
 
 
 
 
  71{
  72	int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
  73	return &conf->stripe_hashtbl[hash];
  74}
  75
  76static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
  77{
  78	return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
  79}
  80
  81static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
  82{
  83	spin_lock_irq(conf->hash_locks + hash);
  84	spin_lock(&conf->device_lock);
  85}
  86
  87static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
  88{
  89	spin_unlock(&conf->device_lock);
  90	spin_unlock_irq(conf->hash_locks + hash);
  91}
  92
  93static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
  94{
  95	int i;
  96	spin_lock_irq(conf->hash_locks);
  97	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
  98		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
  99	spin_lock(&conf->device_lock);
 100}
 101
 102static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
 103{
 104	int i;
 105	spin_unlock(&conf->device_lock);
 106	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
 107		spin_unlock(conf->hash_locks + i);
 108	spin_unlock_irq(conf->hash_locks);
 109}
 110
 111/* Find first data disk in a raid6 stripe */
 112static inline int raid6_d0(struct stripe_head *sh)
 113{
 114	if (sh->ddf_layout)
 115		/* ddf always start from first device */
 116		return 0;
 117	/* md starts just after Q block */
 118	if (sh->qd_idx == sh->disks - 1)
 119		return 0;
 120	else
 121		return sh->qd_idx + 1;
 122}
 123static inline int raid6_next_disk(int disk, int raid_disks)
 124{
 125	disk++;
 126	return (disk < raid_disks) ? disk : 0;
 127}
 128
 129/* When walking through the disks in a raid5, starting at raid6_d0,
 130 * We need to map each disk to a 'slot', where the data disks are slot
 131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 132 * is raid_disks-1.  This help does that mapping.
 133 */
 134static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
 135			     int *count, int syndrome_disks)
 136{
 137	int slot = *count;
 138
 139	if (sh->ddf_layout)
 140		(*count)++;
 141	if (idx == sh->pd_idx)
 142		return syndrome_disks;
 143	if (idx == sh->qd_idx)
 144		return syndrome_disks + 1;
 145	if (!sh->ddf_layout)
 146		(*count)++;
 147	return slot;
 148}
 149
 150static void print_raid5_conf (struct r5conf *conf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 151
 152static int stripe_operations_active(struct stripe_head *sh)
 153{
 154	return sh->check_state || sh->reconstruct_state ||
 155	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
 156	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
 157}
 158
 159static bool stripe_is_lowprio(struct stripe_head *sh)
 160{
 161	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
 162		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
 163	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
 164}
 165
 166static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
 167{
 168	struct r5conf *conf = sh->raid_conf;
 169	struct r5worker_group *group;
 170	int thread_cnt;
 171	int i, cpu = sh->cpu;
 172
 173	if (!cpu_online(cpu)) {
 174		cpu = cpumask_any(cpu_online_mask);
 175		sh->cpu = cpu;
 176	}
 177
 178	if (list_empty(&sh->lru)) {
 179		struct r5worker_group *group;
 180		group = conf->worker_groups + cpu_to_group(cpu);
 181		if (stripe_is_lowprio(sh))
 182			list_add_tail(&sh->lru, &group->loprio_list);
 183		else
 184			list_add_tail(&sh->lru, &group->handle_list);
 185		group->stripes_cnt++;
 186		sh->group = group;
 187	}
 188
 189	if (conf->worker_cnt_per_group == 0) {
 190		md_wakeup_thread(conf->mddev->thread);
 191		return;
 192	}
 193
 194	group = conf->worker_groups + cpu_to_group(sh->cpu);
 195
 196	group->workers[0].working = true;
 197	/* at least one worker should run to avoid race */
 198	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
 199
 200	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
 201	/* wakeup more workers */
 202	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
 203		if (group->workers[i].working == false) {
 204			group->workers[i].working = true;
 205			queue_work_on(sh->cpu, raid5_wq,
 206				      &group->workers[i].work);
 207			thread_cnt--;
 208		}
 209	}
 210}
 211
 212static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
 213			      struct list_head *temp_inactive_list)
 214{
 215	int i;
 216	int injournal = 0;	/* number of date pages with R5_InJournal */
 217
 218	BUG_ON(!list_empty(&sh->lru));
 219	BUG_ON(atomic_read(&conf->active_stripes)==0);
 220
 221	if (r5c_is_writeback(conf->log))
 222		for (i = sh->disks; i--; )
 223			if (test_bit(R5_InJournal, &sh->dev[i].flags))
 224				injournal++;
 225	/*
 226	 * In the following cases, the stripe cannot be released to cached
 227	 * lists. Therefore, we make the stripe write out and set
 228	 * STRIPE_HANDLE:
 229	 *   1. when quiesce in r5c write back;
 230	 *   2. when resync is requested fot the stripe.
 231	 */
 232	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
 233	    (conf->quiesce && r5c_is_writeback(conf->log) &&
 234	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
 235		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
 236			r5c_make_stripe_write_out(sh);
 237		set_bit(STRIPE_HANDLE, &sh->state);
 238	}
 239
 240	if (test_bit(STRIPE_HANDLE, &sh->state)) {
 241		if (test_bit(STRIPE_DELAYED, &sh->state) &&
 242		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 243			list_add_tail(&sh->lru, &conf->delayed_list);
 244		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
 245			   sh->bm_seq - conf->seq_write > 0)
 246			list_add_tail(&sh->lru, &conf->bitmap_list);
 247		else {
 248			clear_bit(STRIPE_DELAYED, &sh->state);
 249			clear_bit(STRIPE_BIT_DELAY, &sh->state);
 250			if (conf->worker_cnt_per_group == 0) {
 251				if (stripe_is_lowprio(sh))
 252					list_add_tail(&sh->lru,
 253							&conf->loprio_list);
 254				else
 255					list_add_tail(&sh->lru,
 256							&conf->handle_list);
 257			} else {
 258				raid5_wakeup_stripe_thread(sh);
 259				return;
 260			}
 261		}
 262		md_wakeup_thread(conf->mddev->thread);
 263	} else {
 264		BUG_ON(stripe_operations_active(sh));
 265		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 266			if (atomic_dec_return(&conf->preread_active_stripes)
 267			    < IO_THRESHOLD)
 268				md_wakeup_thread(conf->mddev->thread);
 269		atomic_dec(&conf->active_stripes);
 270		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
 271			if (!r5c_is_writeback(conf->log))
 272				list_add_tail(&sh->lru, temp_inactive_list);
 273			else {
 274				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
 275				if (injournal == 0)
 276					list_add_tail(&sh->lru, temp_inactive_list);
 277				else if (injournal == conf->raid_disks - conf->max_degraded) {
 278					/* full stripe */
 279					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
 280						atomic_inc(&conf->r5c_cached_full_stripes);
 281					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
 282						atomic_dec(&conf->r5c_cached_partial_stripes);
 283					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
 284					r5c_check_cached_full_stripe(conf);
 285				} else
 286					/*
 287					 * STRIPE_R5C_PARTIAL_STRIPE is set in
 288					 * r5c_try_caching_write(). No need to
 289					 * set it again.
 290					 */
 291					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
 292			}
 293		}
 294	}
 295}
 296
 297static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
 298			     struct list_head *temp_inactive_list)
 299{
 300	if (atomic_dec_and_test(&sh->count))
 301		do_release_stripe(conf, sh, temp_inactive_list);
 302}
 303
 304/*
 305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
 306 *
 307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
 308 * given time. Adding stripes only takes device lock, while deleting stripes
 309 * only takes hash lock.
 310 */
 311static void release_inactive_stripe_list(struct r5conf *conf,
 312					 struct list_head *temp_inactive_list,
 313					 int hash)
 314{
 315	int size;
 316	bool do_wakeup = false;
 317	unsigned long flags;
 318
 319	if (hash == NR_STRIPE_HASH_LOCKS) {
 320		size = NR_STRIPE_HASH_LOCKS;
 321		hash = NR_STRIPE_HASH_LOCKS - 1;
 322	} else
 323		size = 1;
 324	while (size) {
 325		struct list_head *list = &temp_inactive_list[size - 1];
 326
 327		/*
 328		 * We don't hold any lock here yet, raid5_get_active_stripe() might
 329		 * remove stripes from the list
 330		 */
 331		if (!list_empty_careful(list)) {
 332			spin_lock_irqsave(conf->hash_locks + hash, flags);
 333			if (list_empty(conf->inactive_list + hash) &&
 334			    !list_empty(list))
 335				atomic_dec(&conf->empty_inactive_list_nr);
 336			list_splice_tail_init(list, conf->inactive_list + hash);
 337			do_wakeup = true;
 338			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
 339		}
 340		size--;
 341		hash--;
 342	}
 343
 344	if (do_wakeup) {
 345		wake_up(&conf->wait_for_stripe);
 346		if (atomic_read(&conf->active_stripes) == 0)
 347			wake_up(&conf->wait_for_quiescent);
 348		if (conf->retry_read_aligned)
 349			md_wakeup_thread(conf->mddev->thread);
 350	}
 351}
 352
 353/* should hold conf->device_lock already */
 354static int release_stripe_list(struct r5conf *conf,
 355			       struct list_head *temp_inactive_list)
 356{
 357	struct stripe_head *sh, *t;
 358	int count = 0;
 359	struct llist_node *head;
 360
 361	head = llist_del_all(&conf->released_stripes);
 362	head = llist_reverse_order(head);
 363	llist_for_each_entry_safe(sh, t, head, release_list) {
 364		int hash;
 365
 366		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
 367		smp_mb();
 368		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
 369		/*
 370		 * Don't worry the bit is set here, because if the bit is set
 371		 * again, the count is always > 1. This is true for
 372		 * STRIPE_ON_UNPLUG_LIST bit too.
 373		 */
 374		hash = sh->hash_lock_index;
 375		__release_stripe(conf, sh, &temp_inactive_list[hash]);
 376		count++;
 377	}
 378
 379	return count;
 380}
 381
 382void raid5_release_stripe(struct stripe_head *sh)
 383{
 384	struct r5conf *conf = sh->raid_conf;
 385	unsigned long flags;
 386	struct list_head list;
 387	int hash;
 388	bool wakeup;
 389
 390	/* Avoid release_list until the last reference.
 391	 */
 392	if (atomic_add_unless(&sh->count, -1, 1))
 393		return;
 394
 395	if (unlikely(!conf->mddev->thread) ||
 396		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
 397		goto slow_path;
 398	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
 399	if (wakeup)
 400		md_wakeup_thread(conf->mddev->thread);
 401	return;
 402slow_path:
 403	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
 404	if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
 405		INIT_LIST_HEAD(&list);
 406		hash = sh->hash_lock_index;
 407		do_release_stripe(conf, sh, &list);
 408		spin_unlock_irqrestore(&conf->device_lock, flags);
 409		release_inactive_stripe_list(conf, &list, hash);
 410	}
 411}
 412
 413static inline void remove_hash(struct stripe_head *sh)
 414{
 415	pr_debug("remove_hash(), stripe %llu\n",
 416		(unsigned long long)sh->sector);
 417
 418	hlist_del_init(&sh->hash);
 419}
 420
 421static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
 422{
 423	struct hlist_head *hp = stripe_hash(conf, sh->sector);
 424
 425	pr_debug("insert_hash(), stripe %llu\n",
 426		(unsigned long long)sh->sector);
 427
 
 428	hlist_add_head(&sh->hash, hp);
 429}
 430
 
 431/* find an idle stripe, make sure it is unhashed, and return it. */
 432static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
 433{
 434	struct stripe_head *sh = NULL;
 435	struct list_head *first;
 436
 437	if (list_empty(conf->inactive_list + hash))
 
 438		goto out;
 439	first = (conf->inactive_list + hash)->next;
 440	sh = list_entry(first, struct stripe_head, lru);
 441	list_del_init(first);
 442	remove_hash(sh);
 443	atomic_inc(&conf->active_stripes);
 444	BUG_ON(hash != sh->hash_lock_index);
 445	if (list_empty(conf->inactive_list + hash))
 446		atomic_inc(&conf->empty_inactive_list_nr);
 447out:
 448	return sh;
 449}
 450
 451#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
 452static void free_stripe_pages(struct stripe_head *sh)
 453{
 454	int i;
 455	struct page *p;
 456
 457	/* Have not allocate page pool */
 458	if (!sh->pages)
 459		return;
 460
 461	for (i = 0; i < sh->nr_pages; i++) {
 462		p = sh->pages[i];
 463		if (p)
 464			put_page(p);
 465		sh->pages[i] = NULL;
 466	}
 467}
 468
 469static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
 470{
 471	int i;
 472	struct page *p;
 473
 474	for (i = 0; i < sh->nr_pages; i++) {
 475		/* The page have allocated. */
 476		if (sh->pages[i])
 477			continue;
 478
 479		p = alloc_page(gfp);
 480		if (!p) {
 481			free_stripe_pages(sh);
 482			return -ENOMEM;
 483		}
 484		sh->pages[i] = p;
 485	}
 486	return 0;
 487}
 488
 489static int
 490init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
 491{
 492	int nr_pages, cnt;
 493
 494	if (sh->pages)
 495		return 0;
 496
 497	/* Each of the sh->dev[i] need one conf->stripe_size */
 498	cnt = PAGE_SIZE / conf->stripe_size;
 499	nr_pages = (disks + cnt - 1) / cnt;
 500
 501	sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
 502	if (!sh->pages)
 503		return -ENOMEM;
 504	sh->nr_pages = nr_pages;
 505	sh->stripes_per_page = cnt;
 506	return 0;
 507}
 508#endif
 509
 510static void shrink_buffers(struct stripe_head *sh)
 511{
 512	int i;
 513	int num = sh->raid_conf->pool_size;
 514
 515#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
 516	for (i = 0; i < num ; i++) {
 517		struct page *p;
 518
 519		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
 520		p = sh->dev[i].page;
 521		if (!p)
 522			continue;
 523		sh->dev[i].page = NULL;
 524		put_page(p);
 525	}
 526#else
 527	for (i = 0; i < num; i++)
 528		sh->dev[i].page = NULL;
 529	free_stripe_pages(sh); /* Free pages */
 530#endif
 531}
 532
 533static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
 534{
 535	int i;
 536	int num = sh->raid_conf->pool_size;
 537
 538#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
 539	for (i = 0; i < num; i++) {
 540		struct page *page;
 541
 542		if (!(page = alloc_page(gfp))) {
 543			return 1;
 544		}
 545		sh->dev[i].page = page;
 546		sh->dev[i].orig_page = page;
 547		sh->dev[i].offset = 0;
 548	}
 549#else
 550	if (alloc_stripe_pages(sh, gfp))
 551		return -ENOMEM;
 552
 553	for (i = 0; i < num; i++) {
 554		sh->dev[i].page = raid5_get_dev_page(sh, i);
 555		sh->dev[i].orig_page = sh->dev[i].page;
 556		sh->dev[i].offset = raid5_get_page_offset(sh, i);
 557	}
 558#endif
 559	return 0;
 560}
 561
 562static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
 
 563			    struct stripe_head *sh);
 564
 565static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
 566{
 567	struct r5conf *conf = sh->raid_conf;
 568	int i, seq;
 569
 570	BUG_ON(atomic_read(&sh->count) != 0);
 571	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
 572	BUG_ON(stripe_operations_active(sh));
 573	BUG_ON(sh->batch_head);
 574
 
 575	pr_debug("init_stripe called, stripe %llu\n",
 576		(unsigned long long)sector);
 577retry:
 578	seq = read_seqcount_begin(&conf->gen_lock);
 
 579	sh->generation = conf->generation - previous;
 580	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
 581	sh->sector = sector;
 582	stripe_set_idx(sector, conf, previous, sh);
 583	sh->state = 0;
 584
 
 585	for (i = sh->disks; i--; ) {
 586		struct r5dev *dev = &sh->dev[i];
 587
 588		if (dev->toread || dev->read || dev->towrite || dev->written ||
 589		    test_bit(R5_LOCKED, &dev->flags)) {
 590			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
 591			       (unsigned long long)sh->sector, i, dev->toread,
 592			       dev->read, dev->towrite, dev->written,
 593			       test_bit(R5_LOCKED, &dev->flags));
 594			WARN_ON(1);
 595		}
 596		dev->flags = 0;
 597		dev->sector = raid5_compute_blocknr(sh, i, previous);
 598	}
 599	if (read_seqcount_retry(&conf->gen_lock, seq))
 600		goto retry;
 601	sh->overwrite_disks = 0;
 602	insert_hash(conf, sh);
 603	sh->cpu = smp_processor_id();
 604	set_bit(STRIPE_BATCH_READY, &sh->state);
 605}
 606
 607static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
 608					 short generation)
 609{
 610	struct stripe_head *sh;
 
 611
 
 612	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
 613	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
 614		if (sh->sector == sector && sh->generation == generation)
 615			return sh;
 616	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
 617	return NULL;
 618}
 619
 620/*
 621 * Need to check if array has failed when deciding whether to:
 622 *  - start an array
 623 *  - remove non-faulty devices
 624 *  - add a spare
 625 *  - allow a reshape
 626 * This determination is simple when no reshape is happening.
 627 * However if there is a reshape, we need to carefully check
 628 * both the before and after sections.
 629 * This is because some failed devices may only affect one
 630 * of the two sections, and some non-in_sync devices may
 631 * be insync in the section most affected by failed devices.
 632 */
 633int raid5_calc_degraded(struct r5conf *conf)
 634{
 635	int degraded, degraded2;
 636	int i;
 
 
 637
 638	rcu_read_lock();
 639	degraded = 0;
 640	for (i = 0; i < conf->previous_raid_disks; i++) {
 641		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
 642		if (rdev && test_bit(Faulty, &rdev->flags))
 643			rdev = rcu_dereference(conf->disks[i].replacement);
 644		if (!rdev || test_bit(Faulty, &rdev->flags))
 645			degraded++;
 646		else if (test_bit(In_sync, &rdev->flags))
 647			;
 648		else
 649			/* not in-sync or faulty.
 650			 * If the reshape increases the number of devices,
 651			 * this is being recovered by the reshape, so
 652			 * this 'previous' section is not in_sync.
 653			 * If the number of devices is being reduced however,
 654			 * the device can only be part of the array if
 655			 * we are reverting a reshape, so this section will
 656			 * be in-sync.
 657			 */
 658			if (conf->raid_disks >= conf->previous_raid_disks)
 659				degraded++;
 660	}
 661	rcu_read_unlock();
 662	if (conf->raid_disks == conf->previous_raid_disks)
 663		return degraded;
 664	rcu_read_lock();
 665	degraded2 = 0;
 666	for (i = 0; i < conf->raid_disks; i++) {
 667		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
 668		if (rdev && test_bit(Faulty, &rdev->flags))
 669			rdev = rcu_dereference(conf->disks[i].replacement);
 670		if (!rdev || test_bit(Faulty, &rdev->flags))
 671			degraded2++;
 672		else if (test_bit(In_sync, &rdev->flags))
 673			;
 674		else
 675			/* not in-sync or faulty.
 676			 * If reshape increases the number of devices, this
 677			 * section has already been recovered, else it
 678			 * almost certainly hasn't.
 679			 */
 680			if (conf->raid_disks <= conf->previous_raid_disks)
 681				degraded2++;
 682	}
 683	rcu_read_unlock();
 684	if (degraded2 > degraded)
 685		return degraded2;
 686	return degraded;
 687}
 688
 689static int has_failed(struct r5conf *conf)
 690{
 691	int degraded;
 692
 693	if (conf->mddev->reshape_position == MaxSector)
 694		return conf->mddev->degraded > conf->max_degraded;
 695
 696	degraded = raid5_calc_degraded(conf);
 697	if (degraded > conf->max_degraded)
 698		return 1;
 699	return 0;
 700}
 701
 702struct stripe_head *
 703raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
 704			int previous, int noblock, int noquiesce)
 705{
 706	struct stripe_head *sh;
 707	int hash = stripe_hash_locks_hash(conf, sector);
 708	int inc_empty_inactive_list_flag;
 709
 710	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
 711
 712	spin_lock_irq(conf->hash_locks + hash);
 713
 714	do {
 715		wait_event_lock_irq(conf->wait_for_quiescent,
 716				    conf->quiesce == 0 || noquiesce,
 717				    *(conf->hash_locks + hash));
 718		sh = __find_stripe(conf, sector, conf->generation - previous);
 719		if (!sh) {
 720			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
 721				sh = get_free_stripe(conf, hash);
 722				if (!sh && !test_bit(R5_DID_ALLOC,
 723						     &conf->cache_state))
 724					set_bit(R5_ALLOC_MORE,
 725						&conf->cache_state);
 726			}
 727			if (noblock && sh == NULL)
 728				break;
 729
 730			r5c_check_stripe_cache_usage(conf);
 731			if (!sh) {
 732				set_bit(R5_INACTIVE_BLOCKED,
 733					&conf->cache_state);
 734				r5l_wake_reclaim(conf->log, 0);
 735				wait_event_lock_irq(
 736					conf->wait_for_stripe,
 737					!list_empty(conf->inactive_list + hash) &&
 738					(atomic_read(&conf->active_stripes)
 739					 < (conf->max_nr_stripes * 3 / 4)
 740					 || !test_bit(R5_INACTIVE_BLOCKED,
 741						      &conf->cache_state)),
 742					*(conf->hash_locks + hash));
 743				clear_bit(R5_INACTIVE_BLOCKED,
 744					  &conf->cache_state);
 
 
 745			} else {
 746				init_stripe(sh, sector, previous);
 747				atomic_inc(&sh->count);
 748			}
 749		} else if (!atomic_inc_not_zero(&sh->count)) {
 750			spin_lock(&conf->device_lock);
 751			if (!atomic_read(&sh->count)) {
 752				if (!test_bit(STRIPE_HANDLE, &sh->state))
 753					atomic_inc(&conf->active_stripes);
 754				BUG_ON(list_empty(&sh->lru) &&
 755				       !test_bit(STRIPE_EXPANDING, &sh->state));
 756				inc_empty_inactive_list_flag = 0;
 757				if (!list_empty(conf->inactive_list + hash))
 758					inc_empty_inactive_list_flag = 1;
 759				list_del_init(&sh->lru);
 760				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
 761					atomic_inc(&conf->empty_inactive_list_nr);
 762				if (sh->group) {
 763					sh->group->stripes_cnt--;
 764					sh->group = NULL;
 765				}
 766			}
 767			atomic_inc(&sh->count);
 768			spin_unlock(&conf->device_lock);
 769		}
 770	} while (sh == NULL);
 771
 772	spin_unlock_irq(conf->hash_locks + hash);
 
 
 
 773	return sh;
 774}
 775
 776static bool is_full_stripe_write(struct stripe_head *sh)
 777{
 778	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
 779	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
 780}
 781
 782static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
 783		__acquires(&sh1->stripe_lock)
 784		__acquires(&sh2->stripe_lock)
 785{
 786	if (sh1 > sh2) {
 787		spin_lock_irq(&sh2->stripe_lock);
 788		spin_lock_nested(&sh1->stripe_lock, 1);
 789	} else {
 790		spin_lock_irq(&sh1->stripe_lock);
 791		spin_lock_nested(&sh2->stripe_lock, 1);
 792	}
 793}
 794
 795static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
 796		__releases(&sh1->stripe_lock)
 797		__releases(&sh2->stripe_lock)
 798{
 799	spin_unlock(&sh1->stripe_lock);
 800	spin_unlock_irq(&sh2->stripe_lock);
 801}
 802
 803/* Only freshly new full stripe normal write stripe can be added to a batch list */
 804static bool stripe_can_batch(struct stripe_head *sh)
 805{
 806	struct r5conf *conf = sh->raid_conf;
 807
 808	if (raid5_has_log(conf) || raid5_has_ppl(conf))
 809		return false;
 810	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
 811		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
 812		is_full_stripe_write(sh);
 813}
 814
 815/* we only do back search */
 816static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
 817{
 818	struct stripe_head *head;
 819	sector_t head_sector, tmp_sec;
 820	int hash;
 821	int dd_idx;
 822	int inc_empty_inactive_list_flag;
 823
 824	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
 825	tmp_sec = sh->sector;
 826	if (!sector_div(tmp_sec, conf->chunk_sectors))
 827		return;
 828	head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
 829
 830	hash = stripe_hash_locks_hash(conf, head_sector);
 831	spin_lock_irq(conf->hash_locks + hash);
 832	head = __find_stripe(conf, head_sector, conf->generation);
 833	if (head && !atomic_inc_not_zero(&head->count)) {
 834		spin_lock(&conf->device_lock);
 835		if (!atomic_read(&head->count)) {
 836			if (!test_bit(STRIPE_HANDLE, &head->state))
 837				atomic_inc(&conf->active_stripes);
 838			BUG_ON(list_empty(&head->lru) &&
 839			       !test_bit(STRIPE_EXPANDING, &head->state));
 840			inc_empty_inactive_list_flag = 0;
 841			if (!list_empty(conf->inactive_list + hash))
 842				inc_empty_inactive_list_flag = 1;
 843			list_del_init(&head->lru);
 844			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
 845				atomic_inc(&conf->empty_inactive_list_nr);
 846			if (head->group) {
 847				head->group->stripes_cnt--;
 848				head->group = NULL;
 849			}
 850		}
 851		atomic_inc(&head->count);
 852		spin_unlock(&conf->device_lock);
 853	}
 854	spin_unlock_irq(conf->hash_locks + hash);
 855
 856	if (!head)
 857		return;
 858	if (!stripe_can_batch(head))
 859		goto out;
 860
 861	lock_two_stripes(head, sh);
 862	/* clear_batch_ready clear the flag */
 863	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
 864		goto unlock_out;
 865
 866	if (sh->batch_head)
 867		goto unlock_out;
 868
 869	dd_idx = 0;
 870	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
 871		dd_idx++;
 872	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
 873	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
 874		goto unlock_out;
 875
 876	if (head->batch_head) {
 877		spin_lock(&head->batch_head->batch_lock);
 878		/* This batch list is already running */
 879		if (!stripe_can_batch(head)) {
 880			spin_unlock(&head->batch_head->batch_lock);
 881			goto unlock_out;
 882		}
 883		/*
 884		 * We must assign batch_head of this stripe within the
 885		 * batch_lock, otherwise clear_batch_ready of batch head
 886		 * stripe could clear BATCH_READY bit of this stripe and
 887		 * this stripe->batch_head doesn't get assigned, which
 888		 * could confuse clear_batch_ready for this stripe
 889		 */
 890		sh->batch_head = head->batch_head;
 891
 892		/*
 893		 * at this point, head's BATCH_READY could be cleared, but we
 894		 * can still add the stripe to batch list
 895		 */
 896		list_add(&sh->batch_list, &head->batch_list);
 897		spin_unlock(&head->batch_head->batch_lock);
 898	} else {
 899		head->batch_head = head;
 900		sh->batch_head = head->batch_head;
 901		spin_lock(&head->batch_lock);
 902		list_add_tail(&sh->batch_list, &head->batch_list);
 903		spin_unlock(&head->batch_lock);
 904	}
 905
 906	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 907		if (atomic_dec_return(&conf->preread_active_stripes)
 908		    < IO_THRESHOLD)
 909			md_wakeup_thread(conf->mddev->thread);
 910
 911	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
 912		int seq = sh->bm_seq;
 913		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
 914		    sh->batch_head->bm_seq > seq)
 915			seq = sh->batch_head->bm_seq;
 916		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
 917		sh->batch_head->bm_seq = seq;
 918	}
 919
 920	atomic_inc(&sh->count);
 921unlock_out:
 922	unlock_two_stripes(head, sh);
 923out:
 924	raid5_release_stripe(head);
 925}
 926
 927/* Determine if 'data_offset' or 'new_data_offset' should be used
 928 * in this stripe_head.
 929 */
 930static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
 931{
 932	sector_t progress = conf->reshape_progress;
 933	/* Need a memory barrier to make sure we see the value
 934	 * of conf->generation, or ->data_offset that was set before
 935	 * reshape_progress was updated.
 936	 */
 937	smp_rmb();
 938	if (progress == MaxSector)
 939		return 0;
 940	if (sh->generation == conf->generation - 1)
 941		return 0;
 942	/* We are in a reshape, and this is a new-generation stripe,
 943	 * so use new_data_offset.
 944	 */
 945	return 1;
 946}
 947
 948static void dispatch_bio_list(struct bio_list *tmp)
 949{
 950	struct bio *bio;
 951
 952	while ((bio = bio_list_pop(tmp)))
 953		submit_bio_noacct(bio);
 954}
 955
 956static int cmp_stripe(void *priv, const struct list_head *a,
 957		      const struct list_head *b)
 958{
 959	const struct r5pending_data *da = list_entry(a,
 960				struct r5pending_data, sibling);
 961	const struct r5pending_data *db = list_entry(b,
 962				struct r5pending_data, sibling);
 963	if (da->sector > db->sector)
 964		return 1;
 965	if (da->sector < db->sector)
 966		return -1;
 967	return 0;
 968}
 969
 970static void dispatch_defer_bios(struct r5conf *conf, int target,
 971				struct bio_list *list)
 972{
 973	struct r5pending_data *data;
 974	struct list_head *first, *next = NULL;
 975	int cnt = 0;
 976
 977	if (conf->pending_data_cnt == 0)
 978		return;
 979
 980	list_sort(NULL, &conf->pending_list, cmp_stripe);
 981
 982	first = conf->pending_list.next;
 983
 984	/* temporarily move the head */
 985	if (conf->next_pending_data)
 986		list_move_tail(&conf->pending_list,
 987				&conf->next_pending_data->sibling);
 988
 989	while (!list_empty(&conf->pending_list)) {
 990		data = list_first_entry(&conf->pending_list,
 991			struct r5pending_data, sibling);
 992		if (&data->sibling == first)
 993			first = data->sibling.next;
 994		next = data->sibling.next;
 995
 996		bio_list_merge(list, &data->bios);
 997		list_move(&data->sibling, &conf->free_list);
 998		cnt++;
 999		if (cnt >= target)
1000			break;
1001	}
1002	conf->pending_data_cnt -= cnt;
1003	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1004
1005	if (next != &conf->pending_list)
1006		conf->next_pending_data = list_entry(next,
1007				struct r5pending_data, sibling);
1008	else
1009		conf->next_pending_data = NULL;
1010	/* list isn't empty */
1011	if (first != &conf->pending_list)
1012		list_move_tail(&conf->pending_list, first);
1013}
1014
1015static void flush_deferred_bios(struct r5conf *conf)
1016{
1017	struct bio_list tmp = BIO_EMPTY_LIST;
1018
1019	if (conf->pending_data_cnt == 0)
1020		return;
1021
1022	spin_lock(&conf->pending_bios_lock);
1023	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1024	BUG_ON(conf->pending_data_cnt != 0);
1025	spin_unlock(&conf->pending_bios_lock);
1026
1027	dispatch_bio_list(&tmp);
1028}
1029
1030static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1031				struct bio_list *bios)
1032{
1033	struct bio_list tmp = BIO_EMPTY_LIST;
1034	struct r5pending_data *ent;
1035
1036	spin_lock(&conf->pending_bios_lock);
1037	ent = list_first_entry(&conf->free_list, struct r5pending_data,
1038							sibling);
1039	list_move_tail(&ent->sibling, &conf->pending_list);
1040	ent->sector = sector;
1041	bio_list_init(&ent->bios);
1042	bio_list_merge(&ent->bios, bios);
1043	conf->pending_data_cnt++;
1044	if (conf->pending_data_cnt >= PENDING_IO_MAX)
1045		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1046
1047	spin_unlock(&conf->pending_bios_lock);
1048
1049	dispatch_bio_list(&tmp);
1050}
1051
1052static void
1053raid5_end_read_request(struct bio *bi);
1054static void
1055raid5_end_write_request(struct bio *bi);
1056
1057static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1058{
1059	struct r5conf *conf = sh->raid_conf;
1060	int i, disks = sh->disks;
1061	struct stripe_head *head_sh = sh;
1062	struct bio_list pending_bios = BIO_EMPTY_LIST;
1063	bool should_defer;
1064
1065	might_sleep();
1066
1067	if (log_stripe(sh, s) == 0)
1068		return;
1069
1070	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1071
1072	for (i = disks; i--; ) {
1073		int op, op_flags = 0;
1074		int replace_only = 0;
1075		struct bio *bi, *rbi;
1076		struct md_rdev *rdev, *rrdev = NULL;
1077
1078		sh = head_sh;
1079		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1080			op = REQ_OP_WRITE;
1081			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1082				op_flags = REQ_FUA;
1083			if (test_bit(R5_Discard, &sh->dev[i].flags))
1084				op = REQ_OP_DISCARD;
1085		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1086			op = REQ_OP_READ;
1087		else if (test_and_clear_bit(R5_WantReplace,
1088					    &sh->dev[i].flags)) {
1089			op = REQ_OP_WRITE;
1090			replace_only = 1;
1091		} else
1092			continue;
1093		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1094			op_flags |= REQ_SYNC;
1095
1096again:
1097		bi = &sh->dev[i].req;
1098		rbi = &sh->dev[i].rreq; /* For writing to replacement */
 
 
 
 
 
1099
1100		rcu_read_lock();
1101		rrdev = rcu_dereference(conf->disks[i].replacement);
1102		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1103		rdev = rcu_dereference(conf->disks[i].rdev);
1104		if (!rdev) {
1105			rdev = rrdev;
1106			rrdev = NULL;
1107		}
1108		if (op_is_write(op)) {
1109			if (replace_only)
1110				rdev = NULL;
1111			if (rdev == rrdev)
1112				/* We raced and saw duplicates */
1113				rrdev = NULL;
1114		} else {
1115			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1116				rdev = rrdev;
1117			rrdev = NULL;
1118		}
1119
1120		if (rdev && test_bit(Faulty, &rdev->flags))
1121			rdev = NULL;
1122		if (rdev)
1123			atomic_inc(&rdev->nr_pending);
1124		if (rrdev && test_bit(Faulty, &rrdev->flags))
1125			rrdev = NULL;
1126		if (rrdev)
1127			atomic_inc(&rrdev->nr_pending);
1128		rcu_read_unlock();
1129
1130		/* We have already checked bad blocks for reads.  Now
1131		 * need to check for writes.  We never accept write errors
1132		 * on the replacement, so we don't to check rrdev.
1133		 */
1134		while (op_is_write(op) && rdev &&
1135		       test_bit(WriteErrorSeen, &rdev->flags)) {
1136			sector_t first_bad;
1137			int bad_sectors;
1138			int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
1139					      &first_bad, &bad_sectors);
1140			if (!bad)
1141				break;
1142
1143			if (bad < 0) {
1144				set_bit(BlockedBadBlocks, &rdev->flags);
1145				if (!conf->mddev->external &&
1146				    conf->mddev->sb_flags) {
1147					/* It is very unlikely, but we might
1148					 * still need to write out the
1149					 * bad block log - better give it
1150					 * a chance*/
1151					md_check_recovery(conf->mddev);
1152				}
1153				/*
1154				 * Because md_wait_for_blocked_rdev
1155				 * will dec nr_pending, we must
1156				 * increment it first.
1157				 */
1158				atomic_inc(&rdev->nr_pending);
1159				md_wait_for_blocked_rdev(rdev, conf->mddev);
1160			} else {
1161				/* Acknowledged bad block - skip the write */
1162				rdev_dec_pending(rdev, conf->mddev);
1163				rdev = NULL;
1164			}
1165		}
1166
1167		if (rdev) {
1168			if (s->syncing || s->expanding || s->expanded
1169			    || s->replacing)
1170				md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1171
1172			set_bit(STRIPE_IO_STARTED, &sh->state);
1173
1174			bio_set_dev(bi, rdev->bdev);
1175			bio_set_op_attrs(bi, op, op_flags);
1176			bi->bi_end_io = op_is_write(op)
1177				? raid5_end_write_request
1178				: raid5_end_read_request;
1179			bi->bi_private = sh;
1180
1181			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1182				__func__, (unsigned long long)sh->sector,
1183				bi->bi_opf, i);
1184			atomic_inc(&sh->count);
1185			if (sh != head_sh)
1186				atomic_inc(&head_sh->count);
1187			if (use_new_offset(conf, sh))
1188				bi->bi_iter.bi_sector = (sh->sector
1189						 + rdev->new_data_offset);
1190			else
1191				bi->bi_iter.bi_sector = (sh->sector
1192						 + rdev->data_offset);
1193			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1194				bi->bi_opf |= REQ_NOMERGE;
1195
1196			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1197				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1198
1199			if (!op_is_write(op) &&
1200			    test_bit(R5_InJournal, &sh->dev[i].flags))
1201				/*
1202				 * issuing read for a page in journal, this
1203				 * must be preparing for prexor in rmw; read
1204				 * the data into orig_page
1205				 */
1206				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1207			else
1208				sh->dev[i].vec.bv_page = sh->dev[i].page;
1209			bi->bi_vcnt = 1;
1210			bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1211			bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1212			bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1213			bi->bi_write_hint = sh->dev[i].write_hint;
1214			if (!rrdev)
1215				sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1216			/*
1217			 * If this is discard request, set bi_vcnt 0. We don't
1218			 * want to confuse SCSI because SCSI will replace payload
1219			 */
1220			if (op == REQ_OP_DISCARD)
1221				bi->bi_vcnt = 0;
1222			if (rrdev)
1223				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1224
1225			if (conf->mddev->gendisk)
1226				trace_block_bio_remap(bi,
1227						disk_devt(conf->mddev->gendisk),
1228						sh->dev[i].sector);
1229			if (should_defer && op_is_write(op))
1230				bio_list_add(&pending_bios, bi);
1231			else
1232				submit_bio_noacct(bi);
1233		}
1234		if (rrdev) {
1235			if (s->syncing || s->expanding || s->expanded
1236			    || s->replacing)
1237				md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1238
1239			set_bit(STRIPE_IO_STARTED, &sh->state);
1240
1241			bio_set_dev(rbi, rrdev->bdev);
1242			bio_set_op_attrs(rbi, op, op_flags);
1243			BUG_ON(!op_is_write(op));
1244			rbi->bi_end_io = raid5_end_write_request;
1245			rbi->bi_private = sh;
1246
1247			pr_debug("%s: for %llu schedule op %d on "
1248				 "replacement disc %d\n",
1249				__func__, (unsigned long long)sh->sector,
1250				rbi->bi_opf, i);
1251			atomic_inc(&sh->count);
1252			if (sh != head_sh)
1253				atomic_inc(&head_sh->count);
1254			if (use_new_offset(conf, sh))
1255				rbi->bi_iter.bi_sector = (sh->sector
1256						  + rrdev->new_data_offset);
1257			else
1258				rbi->bi_iter.bi_sector = (sh->sector
1259						  + rrdev->data_offset);
1260			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1261				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1262			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1263			rbi->bi_vcnt = 1;
1264			rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1265			rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1266			rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1267			rbi->bi_write_hint = sh->dev[i].write_hint;
1268			sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1269			/*
1270			 * If this is discard request, set bi_vcnt 0. We don't
1271			 * want to confuse SCSI because SCSI will replace payload
1272			 */
1273			if (op == REQ_OP_DISCARD)
1274				rbi->bi_vcnt = 0;
1275			if (conf->mddev->gendisk)
1276				trace_block_bio_remap(rbi,
1277						disk_devt(conf->mddev->gendisk),
1278						sh->dev[i].sector);
1279			if (should_defer && op_is_write(op))
1280				bio_list_add(&pending_bios, rbi);
1281			else
1282				submit_bio_noacct(rbi);
1283		}
1284		if (!rdev && !rrdev) {
1285			if (op_is_write(op))
1286				set_bit(STRIPE_DEGRADED, &sh->state);
1287			pr_debug("skip op %d on disc %d for sector %llu\n",
1288				bi->bi_opf, i, (unsigned long long)sh->sector);
1289			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1290			set_bit(STRIPE_HANDLE, &sh->state);
1291		}
1292
1293		if (!head_sh->batch_head)
1294			continue;
1295		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1296				      batch_list);
1297		if (sh != head_sh)
1298			goto again;
1299	}
1300
1301	if (should_defer && !bio_list_empty(&pending_bios))
1302		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1303}
1304
1305static struct dma_async_tx_descriptor *
1306async_copy_data(int frombio, struct bio *bio, struct page **page,
1307	unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1308	struct stripe_head *sh, int no_skipcopy)
1309{
1310	struct bio_vec bvl;
1311	struct bvec_iter iter;
1312	struct page *bio_page;
 
1313	int page_offset;
1314	struct async_submit_ctl submit;
1315	enum async_tx_flags flags = 0;
1316	struct r5conf *conf = sh->raid_conf;
1317
1318	if (bio->bi_iter.bi_sector >= sector)
1319		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1320	else
1321		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1322
1323	if (frombio)
1324		flags |= ASYNC_TX_FENCE;
1325	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1326
1327	bio_for_each_segment(bvl, bio, iter) {
1328		int len = bvl.bv_len;
1329		int clen;
1330		int b_offset = 0;
1331
1332		if (page_offset < 0) {
1333			b_offset = -page_offset;
1334			page_offset += b_offset;
1335			len -= b_offset;
1336		}
1337
1338		if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1339			clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1340		else
1341			clen = len;
1342
1343		if (clen > 0) {
1344			b_offset += bvl.bv_offset;
1345			bio_page = bvl.bv_page;
1346			if (frombio) {
1347				if (conf->skip_copy &&
1348				    b_offset == 0 && page_offset == 0 &&
1349				    clen == RAID5_STRIPE_SIZE(conf) &&
1350				    !no_skipcopy)
1351					*page = bio_page;
1352				else
1353					tx = async_memcpy(*page, bio_page, page_offset + poff,
1354						  b_offset, clen, &submit);
1355			} else
1356				tx = async_memcpy(bio_page, *page, b_offset,
1357						  page_offset + poff, clen, &submit);
1358		}
1359		/* chain the operations */
1360		submit.depend_tx = tx;
1361
1362		if (clen < len) /* hit end of page */
1363			break;
1364		page_offset +=  len;
1365	}
1366
1367	return tx;
1368}
1369
1370static void ops_complete_biofill(void *stripe_head_ref)
1371{
1372	struct stripe_head *sh = stripe_head_ref;
 
 
1373	int i;
1374	struct r5conf *conf = sh->raid_conf;
1375
1376	pr_debug("%s: stripe %llu\n", __func__,
1377		(unsigned long long)sh->sector);
1378
1379	/* clear completed biofills */
 
1380	for (i = sh->disks; i--; ) {
1381		struct r5dev *dev = &sh->dev[i];
1382
1383		/* acknowledge completion of a biofill operation */
1384		/* and check if we need to reply to a read request,
1385		 * new R5_Wantfill requests are held off until
1386		 * !STRIPE_BIOFILL_RUN
1387		 */
1388		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1389			struct bio *rbi, *rbi2;
1390
1391			BUG_ON(!dev->read);
1392			rbi = dev->read;
1393			dev->read = NULL;
1394			while (rbi && rbi->bi_iter.bi_sector <
1395				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1396				rbi2 = r5_next_bio(conf, rbi, dev->sector);
1397				bio_endio(rbi);
 
 
 
1398				rbi = rbi2;
1399			}
1400		}
1401	}
 
1402	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1403
 
 
1404	set_bit(STRIPE_HANDLE, &sh->state);
1405	raid5_release_stripe(sh);
1406}
1407
1408static void ops_run_biofill(struct stripe_head *sh)
1409{
1410	struct dma_async_tx_descriptor *tx = NULL;
 
1411	struct async_submit_ctl submit;
1412	int i;
1413	struct r5conf *conf = sh->raid_conf;
1414
1415	BUG_ON(sh->batch_head);
1416	pr_debug("%s: stripe %llu\n", __func__,
1417		(unsigned long long)sh->sector);
1418
1419	for (i = sh->disks; i--; ) {
1420		struct r5dev *dev = &sh->dev[i];
1421		if (test_bit(R5_Wantfill, &dev->flags)) {
1422			struct bio *rbi;
1423			spin_lock_irq(&sh->stripe_lock);
1424			dev->read = rbi = dev->toread;
1425			dev->toread = NULL;
1426			spin_unlock_irq(&sh->stripe_lock);
1427			while (rbi && rbi->bi_iter.bi_sector <
1428				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1429				tx = async_copy_data(0, rbi, &dev->page,
1430						     dev->offset,
1431						     dev->sector, tx, sh, 0);
1432				rbi = r5_next_bio(conf, rbi, dev->sector);
1433			}
1434		}
1435	}
1436
1437	atomic_inc(&sh->count);
1438	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1439	async_trigger_callback(&submit);
1440}
1441
1442static void mark_target_uptodate(struct stripe_head *sh, int target)
1443{
1444	struct r5dev *tgt;
1445
1446	if (target < 0)
1447		return;
1448
1449	tgt = &sh->dev[target];
1450	set_bit(R5_UPTODATE, &tgt->flags);
1451	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1452	clear_bit(R5_Wantcompute, &tgt->flags);
1453}
1454
1455static void ops_complete_compute(void *stripe_head_ref)
1456{
1457	struct stripe_head *sh = stripe_head_ref;
1458
1459	pr_debug("%s: stripe %llu\n", __func__,
1460		(unsigned long long)sh->sector);
1461
1462	/* mark the computed target(s) as uptodate */
1463	mark_target_uptodate(sh, sh->ops.target);
1464	mark_target_uptodate(sh, sh->ops.target2);
1465
1466	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1467	if (sh->check_state == check_state_compute_run)
1468		sh->check_state = check_state_compute_result;
1469	set_bit(STRIPE_HANDLE, &sh->state);
1470	raid5_release_stripe(sh);
1471}
1472
1473/* return a pointer to the address conversion region of the scribble buffer */
1474static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1475{
1476	return percpu->scribble + i * percpu->scribble_obj_size;
1477}
1478
1479/* return a pointer to the address conversion region of the scribble buffer */
1480static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1481				 struct raid5_percpu *percpu, int i)
1482{
1483	return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1484}
1485
1486/*
1487 * Return a pointer to record offset address.
1488 */
1489static unsigned int *
1490to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1491{
1492	return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1493}
1494
1495static struct dma_async_tx_descriptor *
1496ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1497{
1498	int disks = sh->disks;
1499	struct page **xor_srcs = to_addr_page(percpu, 0);
1500	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1501	int target = sh->ops.target;
1502	struct r5dev *tgt = &sh->dev[target];
1503	struct page *xor_dest = tgt->page;
1504	unsigned int off_dest = tgt->offset;
1505	int count = 0;
1506	struct dma_async_tx_descriptor *tx;
1507	struct async_submit_ctl submit;
1508	int i;
1509
1510	BUG_ON(sh->batch_head);
1511
1512	pr_debug("%s: stripe %llu block: %d\n",
1513		__func__, (unsigned long long)sh->sector, target);
1514	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1515
1516	for (i = disks; i--; ) {
1517		if (i != target) {
1518			off_srcs[count] = sh->dev[i].offset;
1519			xor_srcs[count++] = sh->dev[i].page;
1520		}
1521	}
1522
1523	atomic_inc(&sh->count);
1524
1525	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1526			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1527	if (unlikely(count == 1))
1528		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1529				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1530	else
1531		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1532				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1533
1534	return tx;
1535}
1536
1537/* set_syndrome_sources - populate source buffers for gen_syndrome
1538 * @srcs - (struct page *) array of size sh->disks
1539 * @offs - (unsigned int) array of offset for each page
1540 * @sh - stripe_head to parse
1541 *
1542 * Populates srcs in proper layout order for the stripe and returns the
1543 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1544 * destination buffer is recorded in srcs[count] and the Q destination
1545 * is recorded in srcs[count+1]].
1546 */
1547static int set_syndrome_sources(struct page **srcs,
1548				unsigned int *offs,
1549				struct stripe_head *sh,
1550				int srctype)
1551{
1552	int disks = sh->disks;
1553	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1554	int d0_idx = raid6_d0(sh);
1555	int count;
1556	int i;
1557
1558	for (i = 0; i < disks; i++)
1559		srcs[i] = NULL;
1560
1561	count = 0;
1562	i = d0_idx;
1563	do {
1564		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1565		struct r5dev *dev = &sh->dev[i];
1566
1567		if (i == sh->qd_idx || i == sh->pd_idx ||
1568		    (srctype == SYNDROME_SRC_ALL) ||
1569		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1570		     (test_bit(R5_Wantdrain, &dev->flags) ||
1571		      test_bit(R5_InJournal, &dev->flags))) ||
1572		    (srctype == SYNDROME_SRC_WRITTEN &&
1573		     (dev->written ||
1574		      test_bit(R5_InJournal, &dev->flags)))) {
1575			if (test_bit(R5_InJournal, &dev->flags))
1576				srcs[slot] = sh->dev[i].orig_page;
1577			else
1578				srcs[slot] = sh->dev[i].page;
1579			/*
1580			 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1581			 * not shared page. In that case, dev[i].offset
1582			 * is 0.
1583			 */
1584			offs[slot] = sh->dev[i].offset;
1585		}
1586		i = raid6_next_disk(i, disks);
1587	} while (i != d0_idx);
1588
1589	return syndrome_disks;
1590}
1591
1592static struct dma_async_tx_descriptor *
1593ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1594{
1595	int disks = sh->disks;
1596	struct page **blocks = to_addr_page(percpu, 0);
1597	unsigned int *offs = to_addr_offs(sh, percpu);
1598	int target;
1599	int qd_idx = sh->qd_idx;
1600	struct dma_async_tx_descriptor *tx;
1601	struct async_submit_ctl submit;
1602	struct r5dev *tgt;
1603	struct page *dest;
1604	unsigned int dest_off;
1605	int i;
1606	int count;
1607
1608	BUG_ON(sh->batch_head);
1609	if (sh->ops.target < 0)
1610		target = sh->ops.target2;
1611	else if (sh->ops.target2 < 0)
1612		target = sh->ops.target;
1613	else
1614		/* we should only have one valid target */
1615		BUG();
1616	BUG_ON(target < 0);
1617	pr_debug("%s: stripe %llu block: %d\n",
1618		__func__, (unsigned long long)sh->sector, target);
1619
1620	tgt = &sh->dev[target];
1621	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1622	dest = tgt->page;
1623	dest_off = tgt->offset;
1624
1625	atomic_inc(&sh->count);
1626
1627	if (target == qd_idx) {
1628		count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1629		blocks[count] = NULL; /* regenerating p is not necessary */
1630		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1631		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1632				  ops_complete_compute, sh,
1633				  to_addr_conv(sh, percpu, 0));
1634		tx = async_gen_syndrome(blocks, offs, count+2,
1635				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1636	} else {
1637		/* Compute any data- or p-drive using XOR */
1638		count = 0;
1639		for (i = disks; i-- ; ) {
1640			if (i == target || i == qd_idx)
1641				continue;
1642			offs[count] = sh->dev[i].offset;
1643			blocks[count++] = sh->dev[i].page;
1644		}
1645
1646		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1647				  NULL, ops_complete_compute, sh,
1648				  to_addr_conv(sh, percpu, 0));
1649		tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1650				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1651	}
1652
1653	return tx;
1654}
1655
1656static struct dma_async_tx_descriptor *
1657ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1658{
1659	int i, count, disks = sh->disks;
1660	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1661	int d0_idx = raid6_d0(sh);
1662	int faila = -1, failb = -1;
1663	int target = sh->ops.target;
1664	int target2 = sh->ops.target2;
1665	struct r5dev *tgt = &sh->dev[target];
1666	struct r5dev *tgt2 = &sh->dev[target2];
1667	struct dma_async_tx_descriptor *tx;
1668	struct page **blocks = to_addr_page(percpu, 0);
1669	unsigned int *offs = to_addr_offs(sh, percpu);
1670	struct async_submit_ctl submit;
1671
1672	BUG_ON(sh->batch_head);
1673	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1674		 __func__, (unsigned long long)sh->sector, target, target2);
1675	BUG_ON(target < 0 || target2 < 0);
1676	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1677	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1678
1679	/* we need to open-code set_syndrome_sources to handle the
1680	 * slot number conversion for 'faila' and 'failb'
1681	 */
1682	for (i = 0; i < disks ; i++) {
1683		offs[i] = 0;
1684		blocks[i] = NULL;
1685	}
1686	count = 0;
1687	i = d0_idx;
1688	do {
1689		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1690
1691		offs[slot] = sh->dev[i].offset;
1692		blocks[slot] = sh->dev[i].page;
1693
1694		if (i == target)
1695			faila = slot;
1696		if (i == target2)
1697			failb = slot;
1698		i = raid6_next_disk(i, disks);
1699	} while (i != d0_idx);
1700
1701	BUG_ON(faila == failb);
1702	if (failb < faila)
1703		swap(faila, failb);
1704	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1705		 __func__, (unsigned long long)sh->sector, faila, failb);
1706
1707	atomic_inc(&sh->count);
1708
1709	if (failb == syndrome_disks+1) {
1710		/* Q disk is one of the missing disks */
1711		if (faila == syndrome_disks) {
1712			/* Missing P+Q, just recompute */
1713			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1714					  ops_complete_compute, sh,
1715					  to_addr_conv(sh, percpu, 0));
1716			return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1717						  RAID5_STRIPE_SIZE(sh->raid_conf),
1718						  &submit);
1719		} else {
1720			struct page *dest;
1721			unsigned int dest_off;
1722			int data_target;
1723			int qd_idx = sh->qd_idx;
1724
1725			/* Missing D+Q: recompute D from P, then recompute Q */
1726			if (target == qd_idx)
1727				data_target = target2;
1728			else
1729				data_target = target;
1730
1731			count = 0;
1732			for (i = disks; i-- ; ) {
1733				if (i == data_target || i == qd_idx)
1734					continue;
1735				offs[count] = sh->dev[i].offset;
1736				blocks[count++] = sh->dev[i].page;
1737			}
1738			dest = sh->dev[data_target].page;
1739			dest_off = sh->dev[data_target].offset;
1740			init_async_submit(&submit,
1741					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1742					  NULL, NULL, NULL,
1743					  to_addr_conv(sh, percpu, 0));
1744			tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1745				       RAID5_STRIPE_SIZE(sh->raid_conf),
1746				       &submit);
1747
1748			count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1749			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1750					  ops_complete_compute, sh,
1751					  to_addr_conv(sh, percpu, 0));
1752			return async_gen_syndrome(blocks, offs, count+2,
1753						  RAID5_STRIPE_SIZE(sh->raid_conf),
1754						  &submit);
1755		}
1756	} else {
1757		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1758				  ops_complete_compute, sh,
1759				  to_addr_conv(sh, percpu, 0));
1760		if (failb == syndrome_disks) {
1761			/* We're missing D+P. */
1762			return async_raid6_datap_recov(syndrome_disks+2,
1763						RAID5_STRIPE_SIZE(sh->raid_conf),
1764						faila,
1765						blocks, offs, &submit);
1766		} else {
1767			/* We're missing D+D. */
1768			return async_raid6_2data_recov(syndrome_disks+2,
1769						RAID5_STRIPE_SIZE(sh->raid_conf),
1770						faila, failb,
1771						blocks, offs, &submit);
1772		}
1773	}
1774}
1775
 
1776static void ops_complete_prexor(void *stripe_head_ref)
1777{
1778	struct stripe_head *sh = stripe_head_ref;
1779
1780	pr_debug("%s: stripe %llu\n", __func__,
1781		(unsigned long long)sh->sector);
1782
1783	if (r5c_is_writeback(sh->raid_conf->log))
1784		/*
1785		 * raid5-cache write back uses orig_page during prexor.
1786		 * After prexor, it is time to free orig_page
1787		 */
1788		r5c_release_extra_page(sh);
1789}
1790
1791static struct dma_async_tx_descriptor *
1792ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1793		struct dma_async_tx_descriptor *tx)
1794{
1795	int disks = sh->disks;
1796	struct page **xor_srcs = to_addr_page(percpu, 0);
1797	unsigned int *off_srcs = to_addr_offs(sh, percpu);
1798	int count = 0, pd_idx = sh->pd_idx, i;
1799	struct async_submit_ctl submit;
1800
1801	/* existing parity data subtracted */
1802	unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1803	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1804
1805	BUG_ON(sh->batch_head);
1806	pr_debug("%s: stripe %llu\n", __func__,
1807		(unsigned long long)sh->sector);
1808
1809	for (i = disks; i--; ) {
1810		struct r5dev *dev = &sh->dev[i];
1811		/* Only process blocks that are known to be uptodate */
1812		if (test_bit(R5_InJournal, &dev->flags)) {
1813			/*
1814			 * For this case, PAGE_SIZE must be equal to 4KB and
1815			 * page offset is zero.
1816			 */
1817			off_srcs[count] = dev->offset;
1818			xor_srcs[count++] = dev->orig_page;
1819		} else if (test_bit(R5_Wantdrain, &dev->flags)) {
1820			off_srcs[count] = dev->offset;
1821			xor_srcs[count++] = dev->page;
1822		}
1823	}
1824
1825	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1826			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1827	tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1828			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1829
1830	return tx;
1831}
1832
1833static struct dma_async_tx_descriptor *
1834ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1835		struct dma_async_tx_descriptor *tx)
1836{
1837	struct page **blocks = to_addr_page(percpu, 0);
1838	unsigned int *offs = to_addr_offs(sh, percpu);
1839	int count;
1840	struct async_submit_ctl submit;
1841
1842	pr_debug("%s: stripe %llu\n", __func__,
1843		(unsigned long long)sh->sector);
1844
1845	count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1846
1847	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1848			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1849	tx = async_gen_syndrome(blocks, offs, count+2,
1850			RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1851
1852	return tx;
1853}
1854
1855static struct dma_async_tx_descriptor *
1856ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1857{
1858	struct r5conf *conf = sh->raid_conf;
1859	int disks = sh->disks;
1860	int i;
1861	struct stripe_head *head_sh = sh;
1862
1863	pr_debug("%s: stripe %llu\n", __func__,
1864		(unsigned long long)sh->sector);
1865
1866	for (i = disks; i--; ) {
1867		struct r5dev *dev;
1868		struct bio *chosen;
1869
1870		sh = head_sh;
1871		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1872			struct bio *wbi;
1873
1874again:
1875			dev = &sh->dev[i];
1876			/*
1877			 * clear R5_InJournal, so when rewriting a page in
1878			 * journal, it is not skipped by r5l_log_stripe()
1879			 */
1880			clear_bit(R5_InJournal, &dev->flags);
1881			spin_lock_irq(&sh->stripe_lock);
1882			chosen = dev->towrite;
1883			dev->towrite = NULL;
1884			sh->overwrite_disks = 0;
1885			BUG_ON(dev->written);
1886			wbi = dev->written = chosen;
1887			spin_unlock_irq(&sh->stripe_lock);
1888			WARN_ON(dev->page != dev->orig_page);
1889
1890			while (wbi && wbi->bi_iter.bi_sector <
1891				dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1892				if (wbi->bi_opf & REQ_FUA)
1893					set_bit(R5_WantFUA, &dev->flags);
1894				if (wbi->bi_opf & REQ_SYNC)
1895					set_bit(R5_SyncIO, &dev->flags);
1896				if (bio_op(wbi) == REQ_OP_DISCARD)
1897					set_bit(R5_Discard, &dev->flags);
1898				else {
1899					tx = async_copy_data(1, wbi, &dev->page,
1900							     dev->offset,
1901							     dev->sector, tx, sh,
1902							     r5c_is_writeback(conf->log));
1903					if (dev->page != dev->orig_page &&
1904					    !r5c_is_writeback(conf->log)) {
1905						set_bit(R5_SkipCopy, &dev->flags);
1906						clear_bit(R5_UPTODATE, &dev->flags);
1907						clear_bit(R5_OVERWRITE, &dev->flags);
1908					}
1909				}
1910				wbi = r5_next_bio(conf, wbi, dev->sector);
1911			}
1912
1913			if (head_sh->batch_head) {
1914				sh = list_first_entry(&sh->batch_list,
1915						      struct stripe_head,
1916						      batch_list);
1917				if (sh == head_sh)
1918					continue;
1919				goto again;
1920			}
1921		}
1922	}
1923
1924	return tx;
1925}
1926
1927static void ops_complete_reconstruct(void *stripe_head_ref)
1928{
1929	struct stripe_head *sh = stripe_head_ref;
1930	int disks = sh->disks;
1931	int pd_idx = sh->pd_idx;
1932	int qd_idx = sh->qd_idx;
1933	int i;
1934	bool fua = false, sync = false, discard = false;
1935
1936	pr_debug("%s: stripe %llu\n", __func__,
1937		(unsigned long long)sh->sector);
1938
1939	for (i = disks; i--; ) {
1940		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1941		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1942		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1943	}
1944
1945	for (i = disks; i--; ) {
1946		struct r5dev *dev = &sh->dev[i];
1947
1948		if (dev->written || i == pd_idx || i == qd_idx) {
1949			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1950				set_bit(R5_UPTODATE, &dev->flags);
1951				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1952					set_bit(R5_Expanded, &dev->flags);
1953			}
1954			if (fua)
1955				set_bit(R5_WantFUA, &dev->flags);
1956			if (sync)
1957				set_bit(R5_SyncIO, &dev->flags);
1958		}
1959	}
1960
1961	if (sh->reconstruct_state == reconstruct_state_drain_run)
1962		sh->reconstruct_state = reconstruct_state_drain_result;
1963	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1964		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1965	else {
1966		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1967		sh->reconstruct_state = reconstruct_state_result;
1968	}
1969
1970	set_bit(STRIPE_HANDLE, &sh->state);
1971	raid5_release_stripe(sh);
1972}
1973
1974static void
1975ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1976		     struct dma_async_tx_descriptor *tx)
1977{
1978	int disks = sh->disks;
1979	struct page **xor_srcs;
1980	unsigned int *off_srcs;
1981	struct async_submit_ctl submit;
1982	int count, pd_idx = sh->pd_idx, i;
1983	struct page *xor_dest;
1984	unsigned int off_dest;
1985	int prexor = 0;
1986	unsigned long flags;
1987	int j = 0;
1988	struct stripe_head *head_sh = sh;
1989	int last_stripe;
1990
1991	pr_debug("%s: stripe %llu\n", __func__,
1992		(unsigned long long)sh->sector);
1993
1994	for (i = 0; i < sh->disks; i++) {
1995		if (pd_idx == i)
1996			continue;
1997		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1998			break;
1999	}
2000	if (i >= sh->disks) {
2001		atomic_inc(&sh->count);
2002		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2003		ops_complete_reconstruct(sh);
2004		return;
2005	}
2006again:
2007	count = 0;
2008	xor_srcs = to_addr_page(percpu, j);
2009	off_srcs = to_addr_offs(sh, percpu);
2010	/* check if prexor is active which means only process blocks
2011	 * that are part of a read-modify-write (written)
2012	 */
2013	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2014		prexor = 1;
2015		off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2016		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2017		for (i = disks; i--; ) {
2018			struct r5dev *dev = &sh->dev[i];
2019			if (head_sh->dev[i].written ||
2020			    test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2021				off_srcs[count] = dev->offset;
2022				xor_srcs[count++] = dev->page;
2023			}
2024		}
2025	} else {
2026		xor_dest = sh->dev[pd_idx].page;
2027		off_dest = sh->dev[pd_idx].offset;
2028		for (i = disks; i--; ) {
2029			struct r5dev *dev = &sh->dev[i];
2030			if (i != pd_idx) {
2031				off_srcs[count] = dev->offset;
2032				xor_srcs[count++] = dev->page;
2033			}
2034		}
2035	}
2036
2037	/* 1/ if we prexor'd then the dest is reused as a source
2038	 * 2/ if we did not prexor then we are redoing the parity
2039	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2040	 * for the synchronous xor case
2041	 */
2042	last_stripe = !head_sh->batch_head ||
2043		list_first_entry(&sh->batch_list,
2044				 struct stripe_head, batch_list) == head_sh;
2045	if (last_stripe) {
2046		flags = ASYNC_TX_ACK |
2047			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2048
2049		atomic_inc(&head_sh->count);
2050		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2051				  to_addr_conv(sh, percpu, j));
2052	} else {
2053		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2054		init_async_submit(&submit, flags, tx, NULL, NULL,
2055				  to_addr_conv(sh, percpu, j));
2056	}
2057
 
 
2058	if (unlikely(count == 1))
2059		tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2060				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2061	else
2062		tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2063				RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2064	if (!last_stripe) {
2065		j++;
2066		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2067				      batch_list);
2068		goto again;
2069	}
2070}
2071
2072static void
2073ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2074		     struct dma_async_tx_descriptor *tx)
2075{
2076	struct async_submit_ctl submit;
2077	struct page **blocks;
2078	unsigned int *offs;
2079	int count, i, j = 0;
2080	struct stripe_head *head_sh = sh;
2081	int last_stripe;
2082	int synflags;
2083	unsigned long txflags;
2084
2085	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2086
2087	for (i = 0; i < sh->disks; i++) {
2088		if (sh->pd_idx == i || sh->qd_idx == i)
2089			continue;
2090		if (!test_bit(R5_Discard, &sh->dev[i].flags))
2091			break;
2092	}
2093	if (i >= sh->disks) {
2094		atomic_inc(&sh->count);
2095		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2096		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2097		ops_complete_reconstruct(sh);
2098		return;
2099	}
2100
2101again:
2102	blocks = to_addr_page(percpu, j);
2103	offs = to_addr_offs(sh, percpu);
2104
2105	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2106		synflags = SYNDROME_SRC_WRITTEN;
2107		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2108	} else {
2109		synflags = SYNDROME_SRC_ALL;
2110		txflags = ASYNC_TX_ACK;
2111	}
2112
2113	count = set_syndrome_sources(blocks, offs, sh, synflags);
2114	last_stripe = !head_sh->batch_head ||
2115		list_first_entry(&sh->batch_list,
2116				 struct stripe_head, batch_list) == head_sh;
2117
2118	if (last_stripe) {
2119		atomic_inc(&head_sh->count);
2120		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2121				  head_sh, to_addr_conv(sh, percpu, j));
2122	} else
2123		init_async_submit(&submit, 0, tx, NULL, NULL,
2124				  to_addr_conv(sh, percpu, j));
2125	tx = async_gen_syndrome(blocks, offs, count+2,
2126			RAID5_STRIPE_SIZE(sh->raid_conf),  &submit);
2127	if (!last_stripe) {
2128		j++;
2129		sh = list_first_entry(&sh->batch_list, struct stripe_head,
2130				      batch_list);
2131		goto again;
2132	}
2133}
2134
2135static void ops_complete_check(void *stripe_head_ref)
2136{
2137	struct stripe_head *sh = stripe_head_ref;
2138
2139	pr_debug("%s: stripe %llu\n", __func__,
2140		(unsigned long long)sh->sector);
2141
2142	sh->check_state = check_state_check_result;
2143	set_bit(STRIPE_HANDLE, &sh->state);
2144	raid5_release_stripe(sh);
2145}
2146
2147static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2148{
2149	int disks = sh->disks;
2150	int pd_idx = sh->pd_idx;
2151	int qd_idx = sh->qd_idx;
2152	struct page *xor_dest;
2153	unsigned int off_dest;
2154	struct page **xor_srcs = to_addr_page(percpu, 0);
2155	unsigned int *off_srcs = to_addr_offs(sh, percpu);
2156	struct dma_async_tx_descriptor *tx;
2157	struct async_submit_ctl submit;
2158	int count;
2159	int i;
2160
2161	pr_debug("%s: stripe %llu\n", __func__,
2162		(unsigned long long)sh->sector);
2163
2164	BUG_ON(sh->batch_head);
2165	count = 0;
2166	xor_dest = sh->dev[pd_idx].page;
2167	off_dest = sh->dev[pd_idx].offset;
2168	off_srcs[count] = off_dest;
2169	xor_srcs[count++] = xor_dest;
2170	for (i = disks; i--; ) {
2171		if (i == pd_idx || i == qd_idx)
2172			continue;
2173		off_srcs[count] = sh->dev[i].offset;
2174		xor_srcs[count++] = sh->dev[i].page;
2175	}
2176
2177	init_async_submit(&submit, 0, NULL, NULL, NULL,
2178			  to_addr_conv(sh, percpu, 0));
2179	tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2180			   RAID5_STRIPE_SIZE(sh->raid_conf),
2181			   &sh->ops.zero_sum_result, &submit);
2182
2183	atomic_inc(&sh->count);
2184	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2185	tx = async_trigger_callback(&submit);
2186}
2187
2188static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2189{
2190	struct page **srcs = to_addr_page(percpu, 0);
2191	unsigned int *offs = to_addr_offs(sh, percpu);
2192	struct async_submit_ctl submit;
2193	int count;
2194
2195	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2196		(unsigned long long)sh->sector, checkp);
2197
2198	BUG_ON(sh->batch_head);
2199	count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2200	if (!checkp)
2201		srcs[count] = NULL;
2202
2203	atomic_inc(&sh->count);
2204	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2205			  sh, to_addr_conv(sh, percpu, 0));
2206	async_syndrome_val(srcs, offs, count+2,
2207			   RAID5_STRIPE_SIZE(sh->raid_conf),
2208			   &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2209}
2210
2211static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2212{
2213	int overlap_clear = 0, i, disks = sh->disks;
2214	struct dma_async_tx_descriptor *tx = NULL;
2215	struct r5conf *conf = sh->raid_conf;
2216	int level = conf->level;
2217	struct raid5_percpu *percpu;
2218	unsigned long cpu;
2219
2220	cpu = get_cpu();
2221	percpu = per_cpu_ptr(conf->percpu, cpu);
2222	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2223		ops_run_biofill(sh);
2224		overlap_clear++;
2225	}
2226
2227	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2228		if (level < 6)
2229			tx = ops_run_compute5(sh, percpu);
2230		else {
2231			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2232				tx = ops_run_compute6_1(sh, percpu);
2233			else
2234				tx = ops_run_compute6_2(sh, percpu);
2235		}
2236		/* terminate the chain if reconstruct is not set to be run */
2237		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2238			async_tx_ack(tx);
2239	}
2240
2241	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2242		if (level < 6)
2243			tx = ops_run_prexor5(sh, percpu, tx);
2244		else
2245			tx = ops_run_prexor6(sh, percpu, tx);
2246	}
2247
2248	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2249		tx = ops_run_partial_parity(sh, percpu, tx);
2250
2251	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2252		tx = ops_run_biodrain(sh, tx);
2253		overlap_clear++;
2254	}
2255
2256	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2257		if (level < 6)
2258			ops_run_reconstruct5(sh, percpu, tx);
2259		else
2260			ops_run_reconstruct6(sh, percpu, tx);
2261	}
2262
2263	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2264		if (sh->check_state == check_state_run)
2265			ops_run_check_p(sh, percpu);
2266		else if (sh->check_state == check_state_run_q)
2267			ops_run_check_pq(sh, percpu, 0);
2268		else if (sh->check_state == check_state_run_pq)
2269			ops_run_check_pq(sh, percpu, 1);
2270		else
2271			BUG();
2272	}
2273
2274	if (overlap_clear && !sh->batch_head)
2275		for (i = disks; i--; ) {
2276			struct r5dev *dev = &sh->dev[i];
2277			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2278				wake_up(&sh->raid_conf->wait_for_overlap);
2279		}
2280	put_cpu();
2281}
2282
2283static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
 
2284{
2285#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2286	kfree(sh->pages);
2287#endif
2288	if (sh->ppl_page)
2289		__free_page(sh->ppl_page);
2290	kmem_cache_free(sc, sh);
 
 
2291}
2292
2293static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2294	int disks, struct r5conf *conf)
2295{
2296	struct stripe_head *sh;
2297	int i;
 
 
 
 
 
2298
2299	sh = kmem_cache_zalloc(sc, gfp);
2300	if (sh) {
2301		spin_lock_init(&sh->stripe_lock);
2302		spin_lock_init(&sh->batch_lock);
2303		INIT_LIST_HEAD(&sh->batch_list);
2304		INIT_LIST_HEAD(&sh->lru);
2305		INIT_LIST_HEAD(&sh->r5c);
2306		INIT_LIST_HEAD(&sh->log_list);
2307		atomic_set(&sh->count, 1);
2308		sh->raid_conf = conf;
2309		sh->log_start = MaxSector;
2310		for (i = 0; i < disks; i++) {
2311			struct r5dev *dev = &sh->dev[i];
2312
2313			bio_init(&dev->req, &dev->vec, 1);
2314			bio_init(&dev->rreq, &dev->rvec, 1);
2315		}
2316
2317		if (raid5_has_ppl(conf)) {
2318			sh->ppl_page = alloc_page(gfp);
2319			if (!sh->ppl_page) {
2320				free_stripe(sc, sh);
2321				return NULL;
2322			}
2323		}
2324#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2325		if (init_stripe_shared_pages(sh, conf, disks)) {
2326			free_stripe(sc, sh);
2327			return NULL;
2328		}
2329#endif
2330	}
2331	return sh;
2332}
2333static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2334{
2335	struct stripe_head *sh;
2336
2337	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2338	if (!sh)
2339		return 0;
2340
2341	if (grow_buffers(sh, gfp)) {
 
 
 
 
 
2342		shrink_buffers(sh);
2343		free_stripe(conf->slab_cache, sh);
2344		return 0;
2345	}
2346	sh->hash_lock_index =
2347		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2348	/* we just created an active stripe so... */
 
2349	atomic_inc(&conf->active_stripes);
2350
2351	raid5_release_stripe(sh);
2352	conf->max_nr_stripes++;
2353	return 1;
2354}
2355
2356static int grow_stripes(struct r5conf *conf, int num)
2357{
2358	struct kmem_cache *sc;
2359	size_t namelen = sizeof(conf->cache_name[0]);
2360	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2361
2362	if (conf->mddev->gendisk)
2363		snprintf(conf->cache_name[0], namelen,
2364			"raid%d-%s", conf->level, mdname(conf->mddev));
2365	else
2366		snprintf(conf->cache_name[0], namelen,
2367			"raid%d-%p", conf->level, conf->mddev);
2368	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2369
2370	conf->active_name = 0;
2371	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2372			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2373			       0, 0, NULL);
2374	if (!sc)
2375		return 1;
2376	conf->slab_cache = sc;
2377	conf->pool_size = devs;
2378	while (num--)
2379		if (!grow_one_stripe(conf, GFP_KERNEL))
2380			return 1;
2381
2382	return 0;
2383}
2384
2385/**
2386 * scribble_alloc - allocate percpu scribble buffer for required size
2387 *		    of the scribble region
2388 * @percpu: from for_each_present_cpu() of the caller
2389 * @num: total number of disks in the array
2390 * @cnt: scribble objs count for required size of the scribble region
2391 *
2392 * The scribble buffer size must be enough to contain:
2393 * 1/ a struct page pointer for each device in the array +2
2394 * 2/ room to convert each entry in (1) to its corresponding dma
2395 *    (dma_map_page()) or page (page_address()) address.
2396 *
2397 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2398 * calculate over all devices (not just the data blocks), using zeros in place
2399 * of the P and Q blocks.
2400 */
2401static int scribble_alloc(struct raid5_percpu *percpu,
2402			  int num, int cnt)
2403{
2404	size_t obj_size =
2405		sizeof(struct page *) * (num + 2) +
2406		sizeof(addr_conv_t) * (num + 2) +
2407		sizeof(unsigned int) * (num + 2);
2408	void *scribble;
2409
2410	/*
2411	 * If here is in raid array suspend context, it is in memalloc noio
2412	 * context as well, there is no potential recursive memory reclaim
2413	 * I/Os with the GFP_KERNEL flag.
2414	 */
2415	scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2416	if (!scribble)
2417		return -ENOMEM;
2418
2419	kvfree(percpu->scribble);
2420
2421	percpu->scribble = scribble;
2422	percpu->scribble_obj_size = obj_size;
2423	return 0;
2424}
2425
2426static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2427{
2428	unsigned long cpu;
2429	int err = 0;
2430
2431	/*
2432	 * Never shrink. And mddev_suspend() could deadlock if this is called
2433	 * from raid5d. In that case, scribble_disks and scribble_sectors
2434	 * should equal to new_disks and new_sectors
2435	 */
2436	if (conf->scribble_disks >= new_disks &&
2437	    conf->scribble_sectors >= new_sectors)
2438		return 0;
2439	mddev_suspend(conf->mddev);
2440	get_online_cpus();
2441
2442	for_each_present_cpu(cpu) {
2443		struct raid5_percpu *percpu;
2444
2445		percpu = per_cpu_ptr(conf->percpu, cpu);
2446		err = scribble_alloc(percpu, new_disks,
2447				     new_sectors / RAID5_STRIPE_SECTORS(conf));
2448		if (err)
2449			break;
2450	}
2451
2452	put_online_cpus();
2453	mddev_resume(conf->mddev);
2454	if (!err) {
2455		conf->scribble_disks = new_disks;
2456		conf->scribble_sectors = new_sectors;
2457	}
2458	return err;
2459}
2460
2461static int resize_stripes(struct r5conf *conf, int newsize)
2462{
2463	/* Make all the stripes able to hold 'newsize' devices.
2464	 * New slots in each stripe get 'page' set to a new page.
2465	 *
2466	 * This happens in stages:
2467	 * 1/ create a new kmem_cache and allocate the required number of
2468	 *    stripe_heads.
2469	 * 2/ gather all the old stripe_heads and transfer the pages across
2470	 *    to the new stripe_heads.  This will have the side effect of
2471	 *    freezing the array as once all stripe_heads have been collected,
2472	 *    no IO will be possible.  Old stripe heads are freed once their
2473	 *    pages have been transferred over, and the old kmem_cache is
2474	 *    freed when all stripes are done.
2475	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2476	 *    we simple return a failure status - no need to clean anything up.
2477	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2478	 *    If this fails, we don't bother trying the shrink the
2479	 *    stripe_heads down again, we just leave them as they are.
2480	 *    As each stripe_head is processed the new one is released into
2481	 *    active service.
2482	 *
2483	 * Once step2 is started, we cannot afford to wait for a write,
2484	 * so we use GFP_NOIO allocations.
2485	 */
2486	struct stripe_head *osh, *nsh;
2487	LIST_HEAD(newstripes);
2488	struct disk_info *ndisks;
2489	int err = 0;
 
2490	struct kmem_cache *sc;
2491	int i;
2492	int hash, cnt;
2493
2494	md_allow_write(conf->mddev);
 
 
 
 
 
2495
2496	/* Step 1 */
2497	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2498			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2499			       0, 0, NULL);
2500	if (!sc)
2501		return -ENOMEM;
2502
2503	/* Need to ensure auto-resizing doesn't interfere */
2504	mutex_lock(&conf->cache_size_mutex);
2505
2506	for (i = conf->max_nr_stripes; i; i--) {
2507		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2508		if (!nsh)
2509			break;
2510
 
 
 
 
 
2511		list_add(&nsh->lru, &newstripes);
2512	}
2513	if (i) {
2514		/* didn't get enough, give up */
2515		while (!list_empty(&newstripes)) {
2516			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2517			list_del(&nsh->lru);
2518			free_stripe(sc, nsh);
2519		}
2520		kmem_cache_destroy(sc);
2521		mutex_unlock(&conf->cache_size_mutex);
2522		return -ENOMEM;
2523	}
2524	/* Step 2 - Must use GFP_NOIO now.
2525	 * OK, we have enough stripes, start collecting inactive
2526	 * stripes and copying them over
2527	 */
2528	hash = 0;
2529	cnt = 0;
2530	list_for_each_entry(nsh, &newstripes, lru) {
2531		lock_device_hash_lock(conf, hash);
2532		wait_event_cmd(conf->wait_for_stripe,
2533				    !list_empty(conf->inactive_list + hash),
2534				    unlock_device_hash_lock(conf, hash),
2535				    lock_device_hash_lock(conf, hash));
2536		osh = get_free_stripe(conf, hash);
2537		unlock_device_hash_lock(conf, hash);
2538
2539#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2540	for (i = 0; i < osh->nr_pages; i++) {
2541		nsh->pages[i] = osh->pages[i];
2542		osh->pages[i] = NULL;
2543	}
2544#endif
2545		for(i=0; i<conf->pool_size; i++) {
2546			nsh->dev[i].page = osh->dev[i].page;
2547			nsh->dev[i].orig_page = osh->dev[i].page;
2548			nsh->dev[i].offset = osh->dev[i].offset;
2549		}
2550		nsh->hash_lock_index = hash;
2551		free_stripe(conf->slab_cache, osh);
2552		cnt++;
2553		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2554		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2555			hash++;
2556			cnt = 0;
2557		}
2558	}
2559	kmem_cache_destroy(conf->slab_cache);
2560
2561	/* Step 3.
2562	 * At this point, we are holding all the stripes so the array
2563	 * is completely stalled, so now is a good time to resize
2564	 * conf->disks and the scribble region
2565	 */
2566	ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2567	if (ndisks) {
2568		for (i = 0; i < conf->pool_size; i++)
2569			ndisks[i] = conf->disks[i];
 
 
 
 
2570
2571		for (i = conf->pool_size; i < newsize; i++) {
2572			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2573			if (!ndisks[i].extra_page)
2574				err = -ENOMEM;
2575		}
 
 
 
2576
2577		if (err) {
2578			for (i = conf->pool_size; i < newsize; i++)
2579				if (ndisks[i].extra_page)
2580					put_page(ndisks[i].extra_page);
2581			kfree(ndisks);
2582		} else {
2583			kfree(conf->disks);
2584			conf->disks = ndisks;
2585		}
2586	} else
2587		err = -ENOMEM;
2588
2589	conf->slab_cache = sc;
2590	conf->active_name = 1-conf->active_name;
2591
2592	/* Step 4, return new stripes to service */
2593	while(!list_empty(&newstripes)) {
2594		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2595		list_del_init(&nsh->lru);
2596
2597#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2598		for (i = 0; i < nsh->nr_pages; i++) {
2599			if (nsh->pages[i])
2600				continue;
2601			nsh->pages[i] = alloc_page(GFP_NOIO);
2602			if (!nsh->pages[i])
2603				err = -ENOMEM;
2604		}
2605
2606		for (i = conf->raid_disks; i < newsize; i++) {
2607			if (nsh->dev[i].page)
2608				continue;
2609			nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2610			nsh->dev[i].orig_page = nsh->dev[i].page;
2611			nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2612		}
2613#else
2614		for (i=conf->raid_disks; i < newsize; i++)
2615			if (nsh->dev[i].page == NULL) {
2616				struct page *p = alloc_page(GFP_NOIO);
2617				nsh->dev[i].page = p;
2618				nsh->dev[i].orig_page = p;
2619				nsh->dev[i].offset = 0;
2620				if (!p)
2621					err = -ENOMEM;
2622			}
2623#endif
2624		raid5_release_stripe(nsh);
2625	}
2626	/* critical section pass, GFP_NOIO no longer needed */
2627
2628	if (!err)
2629		conf->pool_size = newsize;
2630	mutex_unlock(&conf->cache_size_mutex);
2631
2632	return err;
2633}
2634
2635static int drop_one_stripe(struct r5conf *conf)
2636{
2637	struct stripe_head *sh;
2638	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2639
2640	spin_lock_irq(conf->hash_locks + hash);
2641	sh = get_free_stripe(conf, hash);
2642	spin_unlock_irq(conf->hash_locks + hash);
2643	if (!sh)
2644		return 0;
2645	BUG_ON(atomic_read(&sh->count));
2646	shrink_buffers(sh);
2647	free_stripe(conf->slab_cache, sh);
2648	atomic_dec(&conf->active_stripes);
2649	conf->max_nr_stripes--;
2650	return 1;
2651}
2652
2653static void shrink_stripes(struct r5conf *conf)
2654{
2655	while (conf->max_nr_stripes &&
2656	       drop_one_stripe(conf))
2657		;
2658
2659	kmem_cache_destroy(conf->slab_cache);
 
2660	conf->slab_cache = NULL;
2661}
2662
2663static void raid5_end_read_request(struct bio * bi)
2664{
2665	struct stripe_head *sh = bi->bi_private;
2666	struct r5conf *conf = sh->raid_conf;
2667	int disks = sh->disks, i;
 
2668	char b[BDEVNAME_SIZE];
2669	struct md_rdev *rdev = NULL;
2670	sector_t s;
2671
2672	for (i=0 ; i<disks; i++)
2673		if (bi == &sh->dev[i].req)
2674			break;
2675
2676	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2677		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2678		bi->bi_status);
2679	if (i == disks) {
2680		bio_reset(bi);
2681		BUG();
2682		return;
2683	}
2684	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2685		/* If replacement finished while this request was outstanding,
2686		 * 'replacement' might be NULL already.
2687		 * In that case it moved down to 'rdev'.
2688		 * rdev is not removed until all requests are finished.
2689		 */
2690		rdev = conf->disks[i].replacement;
2691	if (!rdev)
2692		rdev = conf->disks[i].rdev;
2693
2694	if (use_new_offset(conf, sh))
2695		s = sh->sector + rdev->new_data_offset;
2696	else
2697		s = sh->sector + rdev->data_offset;
2698	if (!bi->bi_status) {
2699		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2700		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2701			/* Note that this cannot happen on a
2702			 * replacement device.  We just fail those on
2703			 * any error
2704			 */
2705			pr_info_ratelimited(
2706				"md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2707				mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2708				(unsigned long long)s,
2709				bdevname(rdev->bdev, b));
2710			atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2711			clear_bit(R5_ReadError, &sh->dev[i].flags);
2712			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2713		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2714			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2715
2716		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2717			/*
2718			 * end read for a page in journal, this
2719			 * must be preparing for prexor in rmw
2720			 */
2721			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2722
2723		if (atomic_read(&rdev->read_errors))
2724			atomic_set(&rdev->read_errors, 0);
2725	} else {
2726		const char *bdn = bdevname(rdev->bdev, b);
2727		int retry = 0;
2728		int set_bad = 0;
2729
2730		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2731		if (!(bi->bi_status == BLK_STS_PROTECTION))
2732			atomic_inc(&rdev->read_errors);
2733		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2734			pr_warn_ratelimited(
2735				"md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2736				mdname(conf->mddev),
2737				(unsigned long long)s,
2738				bdn);
2739		else if (conf->mddev->degraded >= conf->max_degraded) {
2740			set_bad = 1;
2741			pr_warn_ratelimited(
2742				"md/raid:%s: read error not correctable (sector %llu on %s).\n",
2743				mdname(conf->mddev),
2744				(unsigned long long)s,
 
2745				bdn);
2746		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2747			/* Oh, no!!! */
2748			set_bad = 1;
2749			pr_warn_ratelimited(
2750				"md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
 
2751				mdname(conf->mddev),
2752				(unsigned long long)s,
 
2753				bdn);
2754		} else if (atomic_read(&rdev->read_errors)
2755			 > conf->max_nr_stripes) {
2756			if (!test_bit(Faulty, &rdev->flags)) {
2757				pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2758				    mdname(conf->mddev),
2759				    atomic_read(&rdev->read_errors),
2760				    conf->max_nr_stripes);
2761				pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2762				    mdname(conf->mddev), bdn);
2763			}
2764		} else
2765			retry = 1;
2766		if (set_bad && test_bit(In_sync, &rdev->flags)
2767		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2768			retry = 1;
2769		if (retry)
2770			if (sh->qd_idx >= 0 && sh->pd_idx == i)
2771				set_bit(R5_ReadError, &sh->dev[i].flags);
2772			else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2773				set_bit(R5_ReadError, &sh->dev[i].flags);
2774				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2775			} else
2776				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2777		else {
2778			clear_bit(R5_ReadError, &sh->dev[i].flags);
2779			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2780			if (!(set_bad
2781			      && test_bit(In_sync, &rdev->flags)
2782			      && rdev_set_badblocks(
2783				      rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2784				md_error(conf->mddev, rdev);
2785		}
2786	}
2787	rdev_dec_pending(rdev, conf->mddev);
2788	bio_reset(bi);
2789	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2790	set_bit(STRIPE_HANDLE, &sh->state);
2791	raid5_release_stripe(sh);
2792}
2793
2794static void raid5_end_write_request(struct bio *bi)
2795{
2796	struct stripe_head *sh = bi->bi_private;
2797	struct r5conf *conf = sh->raid_conf;
2798	int disks = sh->disks, i;
2799	struct md_rdev *rdev;
2800	sector_t first_bad;
2801	int bad_sectors;
2802	int replacement = 0;
2803
2804	for (i = 0 ; i < disks; i++) {
2805		if (bi == &sh->dev[i].req) {
2806			rdev = conf->disks[i].rdev;
2807			break;
2808		}
2809		if (bi == &sh->dev[i].rreq) {
2810			rdev = conf->disks[i].replacement;
2811			if (rdev)
2812				replacement = 1;
2813			else
2814				/* rdev was removed and 'replacement'
2815				 * replaced it.  rdev is not removed
2816				 * until all requests are finished.
2817				 */
2818				rdev = conf->disks[i].rdev;
2819			break;
2820		}
2821	}
2822	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2823		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2824		bi->bi_status);
2825	if (i == disks) {
2826		bio_reset(bi);
2827		BUG();
2828		return;
2829	}
2830
2831	if (replacement) {
2832		if (bi->bi_status)
2833			md_error(conf->mddev, rdev);
2834		else if (is_badblock(rdev, sh->sector,
2835				     RAID5_STRIPE_SECTORS(conf),
2836				     &first_bad, &bad_sectors))
2837			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2838	} else {
2839		if (bi->bi_status) {
2840			set_bit(STRIPE_DEGRADED, &sh->state);
2841			set_bit(WriteErrorSeen, &rdev->flags);
2842			set_bit(R5_WriteError, &sh->dev[i].flags);
2843			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2844				set_bit(MD_RECOVERY_NEEDED,
2845					&rdev->mddev->recovery);
2846		} else if (is_badblock(rdev, sh->sector,
2847				       RAID5_STRIPE_SECTORS(conf),
2848				       &first_bad, &bad_sectors)) {
2849			set_bit(R5_MadeGood, &sh->dev[i].flags);
2850			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2851				/* That was a successful write so make
2852				 * sure it looks like we already did
2853				 * a re-write.
2854				 */
2855				set_bit(R5_ReWrite, &sh->dev[i].flags);
2856		}
2857	}
2858	rdev_dec_pending(rdev, conf->mddev);
2859
2860	if (sh->batch_head && bi->bi_status && !replacement)
2861		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
 
 
 
 
 
2862
2863	bio_reset(bi);
2864	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2865		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2866	set_bit(STRIPE_HANDLE, &sh->state);
2867	raid5_release_stripe(sh);
2868
2869	if (sh->batch_head && sh != sh->batch_head)
2870		raid5_release_stripe(sh->batch_head);
2871}
2872
2873static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2874{
2875	char b[BDEVNAME_SIZE];
2876	struct r5conf *conf = mddev->private;
2877	unsigned long flags;
2878	pr_debug("raid456: error called\n");
2879
2880	spin_lock_irqsave(&conf->device_lock, flags);
2881
2882	if (test_bit(In_sync, &rdev->flags) &&
2883	    mddev->degraded == conf->max_degraded) {
 
2884		/*
2885		 * Don't allow to achieve failed state
2886		 * Don't try to recover this device
2887		 */
2888		conf->recovery_disabled = mddev->recovery_disabled;
2889		spin_unlock_irqrestore(&conf->device_lock, flags);
2890		return;
2891	}
2892
2893	set_bit(Faulty, &rdev->flags);
2894	clear_bit(In_sync, &rdev->flags);
2895	mddev->degraded = raid5_calc_degraded(conf);
2896	spin_unlock_irqrestore(&conf->device_lock, flags);
2897	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2898
2899	set_bit(Blocked, &rdev->flags);
2900	set_mask_bits(&mddev->sb_flags, 0,
2901		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2902	pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2903		"md/raid:%s: Operation continuing on %d devices.\n",
2904		mdname(mddev),
2905		bdevname(rdev->bdev, b),
2906		mdname(mddev),
2907		conf->raid_disks - mddev->degraded);
2908	r5c_update_on_rdev_error(mddev, rdev);
2909}
2910
2911/*
2912 * Input: a 'big' sector number,
2913 * Output: index of the data and parity disk, and the sector # in them.
2914 */
2915sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2916			      int previous, int *dd_idx,
2917			      struct stripe_head *sh)
2918{
2919	sector_t stripe, stripe2;
2920	sector_t chunk_number;
2921	unsigned int chunk_offset;
2922	int pd_idx, qd_idx;
2923	int ddf_layout = 0;
2924	sector_t new_sector;
2925	int algorithm = previous ? conf->prev_algo
2926				 : conf->algorithm;
2927	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2928					 : conf->chunk_sectors;
2929	int raid_disks = previous ? conf->previous_raid_disks
2930				  : conf->raid_disks;
2931	int data_disks = raid_disks - conf->max_degraded;
2932
2933	/* First compute the information on this sector */
2934
2935	/*
2936	 * Compute the chunk number and the sector offset inside the chunk
2937	 */
2938	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2939	chunk_number = r_sector;
2940
2941	/*
2942	 * Compute the stripe number
2943	 */
2944	stripe = chunk_number;
2945	*dd_idx = sector_div(stripe, data_disks);
2946	stripe2 = stripe;
2947	/*
2948	 * Select the parity disk based on the user selected algorithm.
2949	 */
2950	pd_idx = qd_idx = -1;
2951	switch(conf->level) {
2952	case 4:
2953		pd_idx = data_disks;
2954		break;
2955	case 5:
2956		switch (algorithm) {
2957		case ALGORITHM_LEFT_ASYMMETRIC:
2958			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2959			if (*dd_idx >= pd_idx)
2960				(*dd_idx)++;
2961			break;
2962		case ALGORITHM_RIGHT_ASYMMETRIC:
2963			pd_idx = sector_div(stripe2, raid_disks);
2964			if (*dd_idx >= pd_idx)
2965				(*dd_idx)++;
2966			break;
2967		case ALGORITHM_LEFT_SYMMETRIC:
2968			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2969			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2970			break;
2971		case ALGORITHM_RIGHT_SYMMETRIC:
2972			pd_idx = sector_div(stripe2, raid_disks);
2973			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2974			break;
2975		case ALGORITHM_PARITY_0:
2976			pd_idx = 0;
2977			(*dd_idx)++;
2978			break;
2979		case ALGORITHM_PARITY_N:
2980			pd_idx = data_disks;
2981			break;
2982		default:
2983			BUG();
2984		}
2985		break;
2986	case 6:
2987
2988		switch (algorithm) {
2989		case ALGORITHM_LEFT_ASYMMETRIC:
2990			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2991			qd_idx = pd_idx + 1;
2992			if (pd_idx == raid_disks-1) {
2993				(*dd_idx)++;	/* Q D D D P */
2994				qd_idx = 0;
2995			} else if (*dd_idx >= pd_idx)
2996				(*dd_idx) += 2; /* D D P Q D */
2997			break;
2998		case ALGORITHM_RIGHT_ASYMMETRIC:
2999			pd_idx = sector_div(stripe2, raid_disks);
3000			qd_idx = pd_idx + 1;
3001			if (pd_idx == raid_disks-1) {
3002				(*dd_idx)++;	/* Q D D D P */
3003				qd_idx = 0;
3004			} else if (*dd_idx >= pd_idx)
3005				(*dd_idx) += 2; /* D D P Q D */
3006			break;
3007		case ALGORITHM_LEFT_SYMMETRIC:
3008			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3009			qd_idx = (pd_idx + 1) % raid_disks;
3010			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3011			break;
3012		case ALGORITHM_RIGHT_SYMMETRIC:
3013			pd_idx = sector_div(stripe2, raid_disks);
3014			qd_idx = (pd_idx + 1) % raid_disks;
3015			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3016			break;
3017
3018		case ALGORITHM_PARITY_0:
3019			pd_idx = 0;
3020			qd_idx = 1;
3021			(*dd_idx) += 2;
3022			break;
3023		case ALGORITHM_PARITY_N:
3024			pd_idx = data_disks;
3025			qd_idx = data_disks + 1;
3026			break;
3027
3028		case ALGORITHM_ROTATING_ZERO_RESTART:
3029			/* Exactly the same as RIGHT_ASYMMETRIC, but or
3030			 * of blocks for computing Q is different.
3031			 */
3032			pd_idx = sector_div(stripe2, raid_disks);
3033			qd_idx = pd_idx + 1;
3034			if (pd_idx == raid_disks-1) {
3035				(*dd_idx)++;	/* Q D D D P */
3036				qd_idx = 0;
3037			} else if (*dd_idx >= pd_idx)
3038				(*dd_idx) += 2; /* D D P Q D */
3039			ddf_layout = 1;
3040			break;
3041
3042		case ALGORITHM_ROTATING_N_RESTART:
3043			/* Same a left_asymmetric, by first stripe is
3044			 * D D D P Q  rather than
3045			 * Q D D D P
3046			 */
3047			stripe2 += 1;
3048			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3049			qd_idx = pd_idx + 1;
3050			if (pd_idx == raid_disks-1) {
3051				(*dd_idx)++;	/* Q D D D P */
3052				qd_idx = 0;
3053			} else if (*dd_idx >= pd_idx)
3054				(*dd_idx) += 2; /* D D P Q D */
3055			ddf_layout = 1;
3056			break;
3057
3058		case ALGORITHM_ROTATING_N_CONTINUE:
3059			/* Same as left_symmetric but Q is before P */
3060			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3061			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3062			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3063			ddf_layout = 1;
3064			break;
3065
3066		case ALGORITHM_LEFT_ASYMMETRIC_6:
3067			/* RAID5 left_asymmetric, with Q on last device */
3068			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3069			if (*dd_idx >= pd_idx)
3070				(*dd_idx)++;
3071			qd_idx = raid_disks - 1;
3072			break;
3073
3074		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3075			pd_idx = sector_div(stripe2, raid_disks-1);
3076			if (*dd_idx >= pd_idx)
3077				(*dd_idx)++;
3078			qd_idx = raid_disks - 1;
3079			break;
3080
3081		case ALGORITHM_LEFT_SYMMETRIC_6:
3082			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3083			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3084			qd_idx = raid_disks - 1;
3085			break;
3086
3087		case ALGORITHM_RIGHT_SYMMETRIC_6:
3088			pd_idx = sector_div(stripe2, raid_disks-1);
3089			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3090			qd_idx = raid_disks - 1;
3091			break;
3092
3093		case ALGORITHM_PARITY_0_6:
3094			pd_idx = 0;
3095			(*dd_idx)++;
3096			qd_idx = raid_disks - 1;
3097			break;
3098
3099		default:
3100			BUG();
3101		}
3102		break;
3103	}
3104
3105	if (sh) {
3106		sh->pd_idx = pd_idx;
3107		sh->qd_idx = qd_idx;
3108		sh->ddf_layout = ddf_layout;
3109	}
3110	/*
3111	 * Finally, compute the new sector number
3112	 */
3113	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3114	return new_sector;
3115}
3116
3117sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
 
3118{
3119	struct r5conf *conf = sh->raid_conf;
3120	int raid_disks = sh->disks;
3121	int data_disks = raid_disks - conf->max_degraded;
3122	sector_t new_sector = sh->sector, check;
3123	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3124					 : conf->chunk_sectors;
3125	int algorithm = previous ? conf->prev_algo
3126				 : conf->algorithm;
3127	sector_t stripe;
3128	int chunk_offset;
3129	sector_t chunk_number;
3130	int dummy1, dd_idx = i;
3131	sector_t r_sector;
3132	struct stripe_head sh2;
3133
 
3134	chunk_offset = sector_div(new_sector, sectors_per_chunk);
3135	stripe = new_sector;
3136
3137	if (i == sh->pd_idx)
3138		return 0;
3139	switch(conf->level) {
3140	case 4: break;
3141	case 5:
3142		switch (algorithm) {
3143		case ALGORITHM_LEFT_ASYMMETRIC:
3144		case ALGORITHM_RIGHT_ASYMMETRIC:
3145			if (i > sh->pd_idx)
3146				i--;
3147			break;
3148		case ALGORITHM_LEFT_SYMMETRIC:
3149		case ALGORITHM_RIGHT_SYMMETRIC:
3150			if (i < sh->pd_idx)
3151				i += raid_disks;
3152			i -= (sh->pd_idx + 1);
3153			break;
3154		case ALGORITHM_PARITY_0:
3155			i -= 1;
3156			break;
3157		case ALGORITHM_PARITY_N:
3158			break;
3159		default:
3160			BUG();
3161		}
3162		break;
3163	case 6:
3164		if (i == sh->qd_idx)
3165			return 0; /* It is the Q disk */
3166		switch (algorithm) {
3167		case ALGORITHM_LEFT_ASYMMETRIC:
3168		case ALGORITHM_RIGHT_ASYMMETRIC:
3169		case ALGORITHM_ROTATING_ZERO_RESTART:
3170		case ALGORITHM_ROTATING_N_RESTART:
3171			if (sh->pd_idx == raid_disks-1)
3172				i--;	/* Q D D D P */
3173			else if (i > sh->pd_idx)
3174				i -= 2; /* D D P Q D */
3175			break;
3176		case ALGORITHM_LEFT_SYMMETRIC:
3177		case ALGORITHM_RIGHT_SYMMETRIC:
3178			if (sh->pd_idx == raid_disks-1)
3179				i--; /* Q D D D P */
3180			else {
3181				/* D D P Q D */
3182				if (i < sh->pd_idx)
3183					i += raid_disks;
3184				i -= (sh->pd_idx + 2);
3185			}
3186			break;
3187		case ALGORITHM_PARITY_0:
3188			i -= 2;
3189			break;
3190		case ALGORITHM_PARITY_N:
3191			break;
3192		case ALGORITHM_ROTATING_N_CONTINUE:
3193			/* Like left_symmetric, but P is before Q */
3194			if (sh->pd_idx == 0)
3195				i--;	/* P D D D Q */
3196			else {
3197				/* D D Q P D */
3198				if (i < sh->pd_idx)
3199					i += raid_disks;
3200				i -= (sh->pd_idx + 1);
3201			}
3202			break;
3203		case ALGORITHM_LEFT_ASYMMETRIC_6:
3204		case ALGORITHM_RIGHT_ASYMMETRIC_6:
3205			if (i > sh->pd_idx)
3206				i--;
3207			break;
3208		case ALGORITHM_LEFT_SYMMETRIC_6:
3209		case ALGORITHM_RIGHT_SYMMETRIC_6:
3210			if (i < sh->pd_idx)
3211				i += data_disks + 1;
3212			i -= (sh->pd_idx + 1);
3213			break;
3214		case ALGORITHM_PARITY_0_6:
3215			i -= 1;
3216			break;
3217		default:
3218			BUG();
3219		}
3220		break;
3221	}
3222
3223	chunk_number = stripe * data_disks + i;
3224	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3225
3226	check = raid5_compute_sector(conf, r_sector,
3227				     previous, &dummy1, &sh2);
3228	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3229		|| sh2.qd_idx != sh->qd_idx) {
3230		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3231			mdname(conf->mddev));
3232		return 0;
3233	}
3234	return r_sector;
3235}
3236
3237/*
3238 * There are cases where we want handle_stripe_dirtying() and
3239 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3240 *
3241 * This function checks whether we want to delay the towrite. Specifically,
3242 * we delay the towrite when:
3243 *
3244 *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3245 *      stripe has data in journal (for other devices).
3246 *
3247 *      In this case, when reading data for the non-overwrite dev, it is
3248 *      necessary to handle complex rmw of write back cache (prexor with
3249 *      orig_page, and xor with page). To keep read path simple, we would
3250 *      like to flush data in journal to RAID disks first, so complex rmw
3251 *      is handled in the write patch (handle_stripe_dirtying).
3252 *
3253 *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3254 *
3255 *      It is important to be able to flush all stripes in raid5-cache.
3256 *      Therefore, we need reserve some space on the journal device for
3257 *      these flushes. If flush operation includes pending writes to the
3258 *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3259 *      for the flush out. If we exclude these pending writes from flush
3260 *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3261 *      Therefore, excluding pending writes in these cases enables more
3262 *      efficient use of the journal device.
3263 *
3264 *      Note: To make sure the stripe makes progress, we only delay
3265 *      towrite for stripes with data already in journal (injournal > 0).
3266 *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3267 *      no_space_stripes list.
3268 *
3269 *   3. during journal failure
3270 *      In journal failure, we try to flush all cached data to raid disks
3271 *      based on data in stripe cache. The array is read-only to upper
3272 *      layers, so we would skip all pending writes.
3273 *
3274 */
3275static inline bool delay_towrite(struct r5conf *conf,
3276				 struct r5dev *dev,
3277				 struct stripe_head_state *s)
3278{
3279	/* case 1 above */
3280	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3281	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3282		return true;
3283	/* case 2 above */
3284	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3285	    s->injournal > 0)
3286		return true;
3287	/* case 3 above */
3288	if (s->log_failed && s->injournal)
3289		return true;
3290	return false;
3291}
3292
3293static void
3294schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3295			 int rcw, int expand)
3296{
3297	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3298	struct r5conf *conf = sh->raid_conf;
3299	int level = conf->level;
3300
3301	if (rcw) {
3302		/*
3303		 * In some cases, handle_stripe_dirtying initially decided to
3304		 * run rmw and allocates extra page for prexor. However, rcw is
3305		 * cheaper later on. We need to free the extra page now,
3306		 * because we won't be able to do that in ops_complete_prexor().
3307		 */
3308		r5c_release_extra_page(sh);
 
 
 
 
 
 
3309
3310		for (i = disks; i--; ) {
3311			struct r5dev *dev = &sh->dev[i];
3312
3313			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3314				set_bit(R5_LOCKED, &dev->flags);
3315				set_bit(R5_Wantdrain, &dev->flags);
3316				if (!expand)
3317					clear_bit(R5_UPTODATE, &dev->flags);
3318				s->locked++;
3319			} else if (test_bit(R5_InJournal, &dev->flags)) {
3320				set_bit(R5_LOCKED, &dev->flags);
3321				s->locked++;
3322			}
3323		}
3324		/* if we are not expanding this is a proper write request, and
3325		 * there will be bios with new data to be drained into the
3326		 * stripe cache
3327		 */
3328		if (!expand) {
3329			if (!s->locked)
3330				/* False alarm, nothing to do */
3331				return;
3332			sh->reconstruct_state = reconstruct_state_drain_run;
3333			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3334		} else
3335			sh->reconstruct_state = reconstruct_state_run;
3336
3337		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3338
3339		if (s->locked + conf->max_degraded == disks)
3340			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3341				atomic_inc(&conf->pending_full_writes);
3342	} else {
 
3343		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3344			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3345		BUG_ON(level == 6 &&
3346			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3347			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
 
 
3348
3349		for (i = disks; i--; ) {
3350			struct r5dev *dev = &sh->dev[i];
3351			if (i == pd_idx || i == qd_idx)
3352				continue;
3353
3354			if (dev->towrite &&
3355			    (test_bit(R5_UPTODATE, &dev->flags) ||
3356			     test_bit(R5_Wantcompute, &dev->flags))) {
3357				set_bit(R5_Wantdrain, &dev->flags);
3358				set_bit(R5_LOCKED, &dev->flags);
3359				clear_bit(R5_UPTODATE, &dev->flags);
3360				s->locked++;
3361			} else if (test_bit(R5_InJournal, &dev->flags)) {
3362				set_bit(R5_LOCKED, &dev->flags);
3363				s->locked++;
3364			}
3365		}
3366		if (!s->locked)
3367			/* False alarm - nothing to do */
3368			return;
3369		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3370		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3371		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3372		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3373	}
3374
3375	/* keep the parity disk(s) locked while asynchronous operations
3376	 * are in flight
3377	 */
3378	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3379	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3380	s->locked++;
3381
3382	if (level == 6) {
3383		int qd_idx = sh->qd_idx;
3384		struct r5dev *dev = &sh->dev[qd_idx];
3385
3386		set_bit(R5_LOCKED, &dev->flags);
3387		clear_bit(R5_UPTODATE, &dev->flags);
3388		s->locked++;
3389	}
3390
3391	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3392	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3393	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3394	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3395		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3396
3397	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3398		__func__, (unsigned long long)sh->sector,
3399		s->locked, s->ops_request);
3400}
3401
3402/*
3403 * Each stripe/dev can have one or more bion attached.
3404 * toread/towrite point to the first in a chain.
3405 * The bi_next chain must be in order.
3406 */
3407static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3408			  int forwrite, int previous)
3409{
3410	struct bio **bip;
3411	struct r5conf *conf = sh->raid_conf;
3412	int firstwrite=0;
3413
3414	pr_debug("adding bi b#%llu to stripe s#%llu\n",
3415		(unsigned long long)bi->bi_iter.bi_sector,
3416		(unsigned long long)sh->sector);
3417
3418	spin_lock_irq(&sh->stripe_lock);
3419	sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3420	/* Don't allow new IO added to stripes in batch list */
3421	if (sh->batch_head)
3422		goto overlap;
3423	if (forwrite) {
3424		bip = &sh->dev[dd_idx].towrite;
3425		if (*bip == NULL)
3426			firstwrite = 1;
3427	} else
3428		bip = &sh->dev[dd_idx].toread;
3429	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3430		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3431			goto overlap;
3432		bip = & (*bip)->bi_next;
3433	}
3434	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3435		goto overlap;
3436
3437	if (forwrite && raid5_has_ppl(conf)) {
3438		/*
3439		 * With PPL only writes to consecutive data chunks within a
3440		 * stripe are allowed because for a single stripe_head we can
3441		 * only have one PPL entry at a time, which describes one data
3442		 * range. Not really an overlap, but wait_for_overlap can be
3443		 * used to handle this.
3444		 */
3445		sector_t sector;
3446		sector_t first = 0;
3447		sector_t last = 0;
3448		int count = 0;
3449		int i;
3450
3451		for (i = 0; i < sh->disks; i++) {
3452			if (i != sh->pd_idx &&
3453			    (i == dd_idx || sh->dev[i].towrite)) {
3454				sector = sh->dev[i].sector;
3455				if (count == 0 || sector < first)
3456					first = sector;
3457				if (sector > last)
3458					last = sector;
3459				count++;
3460			}
3461		}
3462
3463		if (first + conf->chunk_sectors * (count - 1) != last)
3464			goto overlap;
3465	}
3466
3467	if (!forwrite || previous)
3468		clear_bit(STRIPE_BATCH_READY, &sh->state);
3469
3470	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3471	if (*bip)
3472		bi->bi_next = *bip;
3473	*bip = bi;
3474	bio_inc_remaining(bi);
3475	md_write_inc(conf->mddev, bi);
3476
3477	if (forwrite) {
3478		/* check if page is covered */
3479		sector_t sector = sh->dev[dd_idx].sector;
3480		for (bi=sh->dev[dd_idx].towrite;
3481		     sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3482			     bi && bi->bi_iter.bi_sector <= sector;
3483		     bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3484			if (bio_end_sector(bi) >= sector)
3485				sector = bio_end_sector(bi);
3486		}
3487		if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3488			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3489				sh->overwrite_disks++;
3490	}
 
3491
3492	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3493		(unsigned long long)(*bip)->bi_iter.bi_sector,
3494		(unsigned long long)sh->sector, dd_idx);
3495
3496	if (conf->mddev->bitmap && firstwrite) {
3497		/* Cannot hold spinlock over bitmap_startwrite,
3498		 * but must ensure this isn't added to a batch until
3499		 * we have added to the bitmap and set bm_seq.
3500		 * So set STRIPE_BITMAP_PENDING to prevent
3501		 * batching.
3502		 * If multiple add_stripe_bio() calls race here they
3503		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3504		 * to complete "bitmap_startwrite" gets to set
3505		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3506		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3507		 * any more.
3508		 */
3509		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3510		spin_unlock_irq(&sh->stripe_lock);
3511		md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3512				     RAID5_STRIPE_SECTORS(conf), 0);
3513		spin_lock_irq(&sh->stripe_lock);
3514		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3515		if (!sh->batch_head) {
3516			sh->bm_seq = conf->seq_flush+1;
3517			set_bit(STRIPE_BIT_DELAY, &sh->state);
3518		}
3519	}
3520	spin_unlock_irq(&sh->stripe_lock);
3521
3522	if (stripe_can_batch(sh))
3523		stripe_add_to_batch_list(conf, sh);
3524	return 1;
3525
3526 overlap:
3527	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3528	spin_unlock_irq(&sh->stripe_lock);
3529	return 0;
3530}
3531
3532static void end_reshape(struct r5conf *conf);
3533
3534static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3535			    struct stripe_head *sh)
3536{
3537	int sectors_per_chunk =
3538		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3539	int dd_idx;
3540	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3541	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3542
3543	raid5_compute_sector(conf,
3544			     stripe * (disks - conf->max_degraded)
3545			     *sectors_per_chunk + chunk_offset,
3546			     previous,
3547			     &dd_idx, sh);
3548}
3549
3550static void
3551handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3552		     struct stripe_head_state *s, int disks)
 
3553{
3554	int i;
3555	BUG_ON(sh->batch_head);
3556	for (i = disks; i--; ) {
3557		struct bio *bi;
3558		int bitmap_end = 0;
3559
3560		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3561			struct md_rdev *rdev;
3562			rcu_read_lock();
3563			rdev = rcu_dereference(conf->disks[i].rdev);
3564			if (rdev && test_bit(In_sync, &rdev->flags) &&
3565			    !test_bit(Faulty, &rdev->flags))
3566				atomic_inc(&rdev->nr_pending);
3567			else
3568				rdev = NULL;
3569			rcu_read_unlock();
3570			if (rdev) {
3571				if (!rdev_set_badblocks(
3572					    rdev,
3573					    sh->sector,
3574					    RAID5_STRIPE_SECTORS(conf), 0))
3575					md_error(conf->mddev, rdev);
3576				rdev_dec_pending(rdev, conf->mddev);
3577			}
3578		}
3579		spin_lock_irq(&sh->stripe_lock);
3580		/* fail all writes first */
3581		bi = sh->dev[i].towrite;
3582		sh->dev[i].towrite = NULL;
3583		sh->overwrite_disks = 0;
3584		spin_unlock_irq(&sh->stripe_lock);
3585		if (bi)
3586			bitmap_end = 1;
3587
3588		log_stripe_write_finished(sh);
3589
3590		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3591			wake_up(&conf->wait_for_overlap);
3592
3593		while (bi && bi->bi_iter.bi_sector <
3594			sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3595			struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3596
3597			md_write_end(conf->mddev);
3598			bio_io_error(bi);
 
 
 
3599			bi = nextbi;
3600		}
3601		if (bitmap_end)
3602			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3603					   RAID5_STRIPE_SECTORS(conf), 0, 0);
3604		bitmap_end = 0;
3605		/* and fail all 'written' */
3606		bi = sh->dev[i].written;
3607		sh->dev[i].written = NULL;
3608		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3609			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3610			sh->dev[i].page = sh->dev[i].orig_page;
3611		}
3612
3613		if (bi) bitmap_end = 1;
3614		while (bi && bi->bi_iter.bi_sector <
3615		       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3616			struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3617
3618			md_write_end(conf->mddev);
3619			bio_io_error(bi);
 
 
 
3620			bi = bi2;
3621		}
3622
3623		/* fail any reads if this device is non-operational and
3624		 * the data has not reached the cache yet.
3625		 */
3626		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3627		    s->failed > conf->max_degraded &&
3628		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3629		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3630			spin_lock_irq(&sh->stripe_lock);
3631			bi = sh->dev[i].toread;
3632			sh->dev[i].toread = NULL;
3633			spin_unlock_irq(&sh->stripe_lock);
3634			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3635				wake_up(&conf->wait_for_overlap);
3636			if (bi)
3637				s->to_read--;
3638			while (bi && bi->bi_iter.bi_sector <
3639			       sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3640				struct bio *nextbi =
3641					r5_next_bio(conf, bi, sh->dev[i].sector);
3642
3643				bio_io_error(bi);
 
 
 
3644				bi = nextbi;
3645			}
3646		}
 
3647		if (bitmap_end)
3648			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3649					   RAID5_STRIPE_SECTORS(conf), 0, 0);
3650		/* If we were in the middle of a write the parity block might
3651		 * still be locked - so just clear all R5_LOCKED flags
3652		 */
3653		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3654	}
3655	s->to_write = 0;
3656	s->written = 0;
3657
3658	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3659		if (atomic_dec_and_test(&conf->pending_full_writes))
3660			md_wakeup_thread(conf->mddev->thread);
3661}
3662
3663static void
3664handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3665		   struct stripe_head_state *s)
3666{
3667	int abort = 0;
3668	int i;
3669
3670	BUG_ON(sh->batch_head);
3671	clear_bit(STRIPE_SYNCING, &sh->state);
3672	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3673		wake_up(&conf->wait_for_overlap);
3674	s->syncing = 0;
3675	s->replacing = 0;
3676	/* There is nothing more to do for sync/check/repair.
3677	 * Don't even need to abort as that is handled elsewhere
3678	 * if needed, and not always wanted e.g. if there is a known
3679	 * bad block here.
3680	 * For recover/replace we need to record a bad block on all
3681	 * non-sync devices, or abort the recovery
3682	 */
3683	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3684		/* During recovery devices cannot be removed, so
3685		 * locking and refcounting of rdevs is not needed
3686		 */
3687		rcu_read_lock();
3688		for (i = 0; i < conf->raid_disks; i++) {
3689			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3690			if (rdev
3691			    && !test_bit(Faulty, &rdev->flags)
3692			    && !test_bit(In_sync, &rdev->flags)
3693			    && !rdev_set_badblocks(rdev, sh->sector,
3694						   RAID5_STRIPE_SECTORS(conf), 0))
3695				abort = 1;
3696			rdev = rcu_dereference(conf->disks[i].replacement);
3697			if (rdev
3698			    && !test_bit(Faulty, &rdev->flags)
3699			    && !test_bit(In_sync, &rdev->flags)
3700			    && !rdev_set_badblocks(rdev, sh->sector,
3701						   RAID5_STRIPE_SECTORS(conf), 0))
3702				abort = 1;
3703		}
3704		rcu_read_unlock();
3705		if (abort)
3706			conf->recovery_disabled =
3707				conf->mddev->recovery_disabled;
3708	}
3709	md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3710}
3711
3712static int want_replace(struct stripe_head *sh, int disk_idx)
3713{
3714	struct md_rdev *rdev;
3715	int rv = 0;
3716
3717	rcu_read_lock();
3718	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3719	if (rdev
3720	    && !test_bit(Faulty, &rdev->flags)
3721	    && !test_bit(In_sync, &rdev->flags)
3722	    && (rdev->recovery_offset <= sh->sector
3723		|| rdev->mddev->recovery_cp <= sh->sector))
3724		rv = 1;
3725	rcu_read_unlock();
3726	return rv;
3727}
3728
3729static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3730			   int disk_idx, int disks)
3731{
3732	struct r5dev *dev = &sh->dev[disk_idx];
3733	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3734				  &sh->dev[s->failed_num[1]] };
3735	int i;
3736	bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3737
3738
3739	if (test_bit(R5_LOCKED, &dev->flags) ||
3740	    test_bit(R5_UPTODATE, &dev->flags))
3741		/* No point reading this as we already have it or have
3742		 * decided to get it.
3743		 */
3744		return 0;
3745
3746	if (dev->toread ||
3747	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3748		/* We need this block to directly satisfy a request */
3749		return 1;
3750
3751	if (s->syncing || s->expanding ||
3752	    (s->replacing && want_replace(sh, disk_idx)))
3753		/* When syncing, or expanding we read everything.
3754		 * When replacing, we need the replaced block.
3755		 */
3756		return 1;
3757
3758	if ((s->failed >= 1 && fdev[0]->toread) ||
3759	    (s->failed >= 2 && fdev[1]->toread))
3760		/* If we want to read from a failed device, then
3761		 * we need to actually read every other device.
3762		 */
3763		return 1;
3764
3765	/* Sometimes neither read-modify-write nor reconstruct-write
3766	 * cycles can work.  In those cases we read every block we
3767	 * can.  Then the parity-update is certain to have enough to
3768	 * work with.
3769	 * This can only be a problem when we need to write something,
3770	 * and some device has failed.  If either of those tests
3771	 * fail we need look no further.
3772	 */
3773	if (!s->failed || !s->to_write)
3774		return 0;
3775
3776	if (test_bit(R5_Insync, &dev->flags) &&
3777	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3778		/* Pre-reads at not permitted until after short delay
3779		 * to gather multiple requests.  However if this
3780		 * device is no Insync, the block could only be computed
3781		 * and there is no need to delay that.
3782		 */
3783		return 0;
3784
3785	for (i = 0; i < s->failed && i < 2; i++) {
3786		if (fdev[i]->towrite &&
3787		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3788		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3789			/* If we have a partial write to a failed
3790			 * device, then we will need to reconstruct
3791			 * the content of that device, so all other
3792			 * devices must be read.
3793			 */
3794			return 1;
3795
3796		if (s->failed >= 2 &&
3797		    (fdev[i]->towrite ||
3798		     s->failed_num[i] == sh->pd_idx ||
3799		     s->failed_num[i] == sh->qd_idx) &&
3800		    !test_bit(R5_UPTODATE, &fdev[i]->flags))
3801			/* In max degraded raid6, If the failed disk is P, Q,
3802			 * or we want to read the failed disk, we need to do
3803			 * reconstruct-write.
3804			 */
3805			force_rcw = true;
3806	}
3807
3808	/* If we are forced to do a reconstruct-write, because parity
3809	 * cannot be trusted and we are currently recovering it, there
3810	 * is extra need to be careful.
3811	 * If one of the devices that we would need to read, because
3812	 * it is not being overwritten (and maybe not written at all)
3813	 * is missing/faulty, then we need to read everything we can.
3814	 */
3815	if (!force_rcw &&
3816	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3817		/* reconstruct-write isn't being forced */
3818		return 0;
3819	for (i = 0; i < s->failed && i < 2; i++) {
3820		if (s->failed_num[i] != sh->pd_idx &&
3821		    s->failed_num[i] != sh->qd_idx &&
3822		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3823		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3824			return 1;
3825	}
3826
3827	return 0;
3828}
3829
3830/* fetch_block - checks the given member device to see if its data needs
3831 * to be read or computed to satisfy a request.
3832 *
3833 * Returns 1 when no more member devices need to be checked, otherwise returns
3834 * 0 to tell the loop in handle_stripe_fill to continue
3835 */
3836static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3837		       int disk_idx, int disks)
3838{
3839	struct r5dev *dev = &sh->dev[disk_idx];
 
 
3840
3841	/* is the data in this block needed, and can we get it? */
3842	if (need_this_block(sh, s, disk_idx, disks)) {
 
 
 
 
 
 
 
 
 
3843		/* we would like to get this block, possibly by computing it,
3844		 * otherwise read it if the backing disk is insync
3845		 */
3846		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3847		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3848		BUG_ON(sh->batch_head);
3849
3850		/*
3851		 * In the raid6 case if the only non-uptodate disk is P
3852		 * then we already trusted P to compute the other failed
3853		 * drives. It is safe to compute rather than re-read P.
3854		 * In other cases we only compute blocks from failed
3855		 * devices, otherwise check/repair might fail to detect
3856		 * a real inconsistency.
3857		 */
3858
3859		if ((s->uptodate == disks - 1) &&
3860		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3861		    (s->failed && (disk_idx == s->failed_num[0] ||
3862				   disk_idx == s->failed_num[1])))) {
3863			/* have disk failed, and we're requested to fetch it;
3864			 * do compute it
3865			 */
3866			pr_debug("Computing stripe %llu block %d\n",
3867			       (unsigned long long)sh->sector, disk_idx);
3868			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3869			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3870			set_bit(R5_Wantcompute, &dev->flags);
3871			sh->ops.target = disk_idx;
3872			sh->ops.target2 = -1; /* no 2nd target */
3873			s->req_compute = 1;
3874			/* Careful: from this point on 'uptodate' is in the eye
3875			 * of raid_run_ops which services 'compute' operations
3876			 * before writes. R5_Wantcompute flags a block that will
3877			 * be R5_UPTODATE by the time it is needed for a
3878			 * subsequent operation.
3879			 */
3880			s->uptodate++;
3881			return 1;
3882		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3883			/* Computing 2-failure is *very* expensive; only
3884			 * do it if failed >= 2
3885			 */
3886			int other;
3887			for (other = disks; other--; ) {
3888				if (other == disk_idx)
3889					continue;
3890				if (!test_bit(R5_UPTODATE,
3891				      &sh->dev[other].flags))
3892					break;
3893			}
3894			BUG_ON(other < 0);
3895			pr_debug("Computing stripe %llu blocks %d,%d\n",
3896			       (unsigned long long)sh->sector,
3897			       disk_idx, other);
3898			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3899			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3900			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3901			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3902			sh->ops.target = disk_idx;
3903			sh->ops.target2 = other;
3904			s->uptodate += 2;
3905			s->req_compute = 1;
3906			return 1;
3907		} else if (test_bit(R5_Insync, &dev->flags)) {
3908			set_bit(R5_LOCKED, &dev->flags);
3909			set_bit(R5_Wantread, &dev->flags);
3910			s->locked++;
3911			pr_debug("Reading block %d (sync=%d)\n",
3912				disk_idx, s->syncing);
3913		}
3914	}
3915
3916	return 0;
3917}
3918
3919/*
3920 * handle_stripe_fill - read or compute data to satisfy pending requests.
3921 */
3922static void handle_stripe_fill(struct stripe_head *sh,
3923			       struct stripe_head_state *s,
3924			       int disks)
3925{
3926	int i;
3927
3928	/* look for blocks to read/compute, skip this if a compute
3929	 * is already in flight, or if the stripe contents are in the
3930	 * midst of changing due to a write
3931	 */
3932	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3933	    !sh->reconstruct_state) {
3934
3935		/*
3936		 * For degraded stripe with data in journal, do not handle
3937		 * read requests yet, instead, flush the stripe to raid
3938		 * disks first, this avoids handling complex rmw of write
3939		 * back cache (prexor with orig_page, and then xor with
3940		 * page) in the read path
3941		 */
3942		if (s->injournal && s->failed) {
3943			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3944				r5c_make_stripe_write_out(sh);
3945			goto out;
3946		}
3947
3948		for (i = disks; i--; )
3949			if (fetch_block(sh, s, i, disks))
3950				break;
3951	}
3952out:
3953	set_bit(STRIPE_HANDLE, &sh->state);
3954}
3955
3956static void break_stripe_batch_list(struct stripe_head *head_sh,
3957				    unsigned long handle_flags);
3958/* handle_stripe_clean_event
3959 * any written block on an uptodate or failed drive can be returned.
3960 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3961 * never LOCKED, so we don't need to test 'failed' directly.
3962 */
3963static void handle_stripe_clean_event(struct r5conf *conf,
3964	struct stripe_head *sh, int disks)
3965{
3966	int i;
3967	struct r5dev *dev;
3968	int discard_pending = 0;
3969	struct stripe_head *head_sh = sh;
3970	bool do_endio = false;
3971
3972	for (i = disks; i--; )
3973		if (sh->dev[i].written) {
3974			dev = &sh->dev[i];
3975			if (!test_bit(R5_LOCKED, &dev->flags) &&
3976			    (test_bit(R5_UPTODATE, &dev->flags) ||
3977			     test_bit(R5_Discard, &dev->flags) ||
3978			     test_bit(R5_SkipCopy, &dev->flags))) {
3979				/* We can return any write requests */
3980				struct bio *wbi, *wbi2;
 
3981				pr_debug("Return write for disc %d\n", i);
3982				if (test_and_clear_bit(R5_Discard, &dev->flags))
3983					clear_bit(R5_UPTODATE, &dev->flags);
3984				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3985					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3986				}
3987				do_endio = true;
3988
3989returnbi:
3990				dev->page = dev->orig_page;
3991				wbi = dev->written;
3992				dev->written = NULL;
3993				while (wbi && wbi->bi_iter.bi_sector <
3994					dev->sector + RAID5_STRIPE_SECTORS(conf)) {
3995					wbi2 = r5_next_bio(conf, wbi, dev->sector);
3996					md_write_end(conf->mddev);
3997					bio_endio(wbi);
 
 
 
3998					wbi = wbi2;
3999				}
4000				md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
4001						   RAID5_STRIPE_SECTORS(conf),
4002						   !test_bit(STRIPE_DEGRADED, &sh->state),
4003						   0);
4004				if (head_sh->batch_head) {
4005					sh = list_first_entry(&sh->batch_list,
4006							      struct stripe_head,
4007							      batch_list);
4008					if (sh != head_sh) {
4009						dev = &sh->dev[i];
4010						goto returnbi;
4011					}
4012				}
4013				sh = head_sh;
4014				dev = &sh->dev[i];
4015			} else if (test_bit(R5_Discard, &dev->flags))
4016				discard_pending = 1;
4017		}
4018
4019	log_stripe_write_finished(sh);
4020
4021	if (!discard_pending &&
4022	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4023		int hash;
4024		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4025		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4026		if (sh->qd_idx >= 0) {
4027			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4028			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4029		}
4030		/* now that discard is done we can proceed with any sync */
4031		clear_bit(STRIPE_DISCARD, &sh->state);
4032		/*
4033		 * SCSI discard will change some bio fields and the stripe has
4034		 * no updated data, so remove it from hash list and the stripe
4035		 * will be reinitialized
4036		 */
4037unhash:
4038		hash = sh->hash_lock_index;
4039		spin_lock_irq(conf->hash_locks + hash);
4040		remove_hash(sh);
4041		spin_unlock_irq(conf->hash_locks + hash);
4042		if (head_sh->batch_head) {
4043			sh = list_first_entry(&sh->batch_list,
4044					      struct stripe_head, batch_list);
4045			if (sh != head_sh)
4046					goto unhash;
4047		}
4048		sh = head_sh;
4049
4050		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4051			set_bit(STRIPE_HANDLE, &sh->state);
4052
4053	}
4054
4055	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4056		if (atomic_dec_and_test(&conf->pending_full_writes))
4057			md_wakeup_thread(conf->mddev->thread);
4058
4059	if (head_sh->batch_head && do_endio)
4060		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4061}
4062
4063/*
4064 * For RMW in write back cache, we need extra page in prexor to store the
4065 * old data. This page is stored in dev->orig_page.
4066 *
4067 * This function checks whether we have data for prexor. The exact logic
4068 * is:
4069 *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4070 */
4071static inline bool uptodate_for_rmw(struct r5dev *dev)
4072{
4073	return (test_bit(R5_UPTODATE, &dev->flags)) &&
4074		(!test_bit(R5_InJournal, &dev->flags) ||
4075		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4076}
4077
4078static int handle_stripe_dirtying(struct r5conf *conf,
4079				  struct stripe_head *sh,
4080				  struct stripe_head_state *s,
4081				  int disks)
4082{
4083	int rmw = 0, rcw = 0, i;
4084	sector_t recovery_cp = conf->mddev->recovery_cp;
4085
4086	/* Check whether resync is now happening or should start.
4087	 * If yes, then the array is dirty (after unclean shutdown or
4088	 * initial creation), so parity in some stripes might be inconsistent.
4089	 * In this case, we need to always do reconstruct-write, to ensure
4090	 * that in case of drive failure or read-error correction, we
4091	 * generate correct data from the parity.
4092	 */
4093	if (conf->rmw_level == PARITY_DISABLE_RMW ||
4094	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4095	     s->failed == 0)) {
4096		/* Calculate the real rcw later - for now make it
4097		 * look like rcw is cheaper
4098		 */
4099		rcw = 1; rmw = 2;
4100		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4101			 conf->rmw_level, (unsigned long long)recovery_cp,
4102			 (unsigned long long)sh->sector);
4103	} else for (i = disks; i--; ) {
4104		/* would I have to read this buffer for read_modify_write */
4105		struct r5dev *dev = &sh->dev[i];
4106		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4107		     i == sh->pd_idx || i == sh->qd_idx ||
4108		     test_bit(R5_InJournal, &dev->flags)) &&
4109		    !test_bit(R5_LOCKED, &dev->flags) &&
4110		    !(uptodate_for_rmw(dev) ||
4111		      test_bit(R5_Wantcompute, &dev->flags))) {
4112			if (test_bit(R5_Insync, &dev->flags))
4113				rmw++;
4114			else
4115				rmw += 2*disks;  /* cannot read it */
4116		}
4117		/* Would I have to read this buffer for reconstruct_write */
4118		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4119		    i != sh->pd_idx && i != sh->qd_idx &&
4120		    !test_bit(R5_LOCKED, &dev->flags) &&
4121		    !(test_bit(R5_UPTODATE, &dev->flags) ||
4122		      test_bit(R5_Wantcompute, &dev->flags))) {
4123			if (test_bit(R5_Insync, &dev->flags))
4124				rcw++;
4125			else
4126				rcw += 2*disks;
4127		}
4128	}
4129
4130	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4131		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4132	set_bit(STRIPE_HANDLE, &sh->state);
4133	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4134		/* prefer read-modify-write, but need to get some data */
4135		if (conf->mddev->queue)
4136			blk_add_trace_msg(conf->mddev->queue,
4137					  "raid5 rmw %llu %d",
4138					  (unsigned long long)sh->sector, rmw);
4139		for (i = disks; i--; ) {
4140			struct r5dev *dev = &sh->dev[i];
4141			if (test_bit(R5_InJournal, &dev->flags) &&
4142			    dev->page == dev->orig_page &&
4143			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4144				/* alloc page for prexor */
4145				struct page *p = alloc_page(GFP_NOIO);
4146
4147				if (p) {
4148					dev->orig_page = p;
4149					continue;
4150				}
4151
4152				/*
4153				 * alloc_page() failed, try use
4154				 * disk_info->extra_page
4155				 */
4156				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4157						      &conf->cache_state)) {
4158					r5c_use_extra_page(sh);
4159					break;
4160				}
4161
4162				/* extra_page in use, add to delayed_list */
4163				set_bit(STRIPE_DELAYED, &sh->state);
4164				s->waiting_extra_page = 1;
4165				return -EAGAIN;
4166			}
4167		}
4168
4169		for (i = disks; i--; ) {
4170			struct r5dev *dev = &sh->dev[i];
4171			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4172			     i == sh->pd_idx || i == sh->qd_idx ||
4173			     test_bit(R5_InJournal, &dev->flags)) &&
4174			    !test_bit(R5_LOCKED, &dev->flags) &&
4175			    !(uptodate_for_rmw(dev) ||
4176			      test_bit(R5_Wantcompute, &dev->flags)) &&
4177			    test_bit(R5_Insync, &dev->flags)) {
4178				if (test_bit(STRIPE_PREREAD_ACTIVE,
4179					     &sh->state)) {
4180					pr_debug("Read_old block %d for r-m-w\n",
4181						 i);
4182					set_bit(R5_LOCKED, &dev->flags);
4183					set_bit(R5_Wantread, &dev->flags);
4184					s->locked++;
4185				} else
4186					set_bit(STRIPE_DELAYED, &sh->state);
 
 
4187			}
4188		}
4189	}
4190	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4191		/* want reconstruct write, but need to get some data */
4192		int qread =0;
4193		rcw = 0;
4194		for (i = disks; i--; ) {
4195			struct r5dev *dev = &sh->dev[i];
4196			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4197			    i != sh->pd_idx && i != sh->qd_idx &&
4198			    !test_bit(R5_LOCKED, &dev->flags) &&
4199			    !(test_bit(R5_UPTODATE, &dev->flags) ||
4200			      test_bit(R5_Wantcompute, &dev->flags))) {
4201				rcw++;
4202				if (test_bit(R5_Insync, &dev->flags) &&
4203				    test_bit(STRIPE_PREREAD_ACTIVE,
4204					     &sh->state)) {
 
4205					pr_debug("Read_old block "
4206						"%d for Reconstruct\n", i);
4207					set_bit(R5_LOCKED, &dev->flags);
4208					set_bit(R5_Wantread, &dev->flags);
4209					s->locked++;
4210					qread++;
4211				} else
4212					set_bit(STRIPE_DELAYED, &sh->state);
 
 
4213			}
4214		}
4215		if (rcw && conf->mddev->queue)
4216			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4217					  (unsigned long long)sh->sector,
4218					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4219	}
4220
4221	if (rcw > disks && rmw > disks &&
4222	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4223		set_bit(STRIPE_DELAYED, &sh->state);
4224
4225	/* now if nothing is locked, and if we have enough data,
4226	 * we can start a write request
4227	 */
4228	/* since handle_stripe can be called at any time we need to handle the
4229	 * case where a compute block operation has been submitted and then a
4230	 * subsequent call wants to start a write request.  raid_run_ops only
4231	 * handles the case where compute block and reconstruct are requested
4232	 * simultaneously.  If this is not the case then new writes need to be
4233	 * held off until the compute completes.
4234	 */
4235	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4236	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4237	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4238		schedule_reconstruction(sh, s, rcw == 0, 0);
4239	return 0;
4240}
4241
4242static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4243				struct stripe_head_state *s, int disks)
4244{
4245	struct r5dev *dev = NULL;
4246
4247	BUG_ON(sh->batch_head);
4248	set_bit(STRIPE_HANDLE, &sh->state);
4249
4250	switch (sh->check_state) {
4251	case check_state_idle:
4252		/* start a new check operation if there are no failures */
4253		if (s->failed == 0) {
4254			BUG_ON(s->uptodate != disks);
4255			sh->check_state = check_state_run;
4256			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4257			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4258			s->uptodate--;
4259			break;
4260		}
4261		dev = &sh->dev[s->failed_num[0]];
4262		fallthrough;
4263	case check_state_compute_result:
4264		sh->check_state = check_state_idle;
4265		if (!dev)
4266			dev = &sh->dev[sh->pd_idx];
4267
4268		/* check that a write has not made the stripe insync */
4269		if (test_bit(STRIPE_INSYNC, &sh->state))
4270			break;
4271
4272		/* either failed parity check, or recovery is happening */
4273		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4274		BUG_ON(s->uptodate != disks);
4275
4276		set_bit(R5_LOCKED, &dev->flags);
4277		s->locked++;
4278		set_bit(R5_Wantwrite, &dev->flags);
4279
4280		clear_bit(STRIPE_DEGRADED, &sh->state);
4281		set_bit(STRIPE_INSYNC, &sh->state);
4282		break;
4283	case check_state_run:
4284		break; /* we will be called again upon completion */
4285	case check_state_check_result:
4286		sh->check_state = check_state_idle;
4287
4288		/* if a failure occurred during the check operation, leave
4289		 * STRIPE_INSYNC not set and let the stripe be handled again
4290		 */
4291		if (s->failed)
4292			break;
4293
4294		/* handle a successful check operation, if parity is correct
4295		 * we are done.  Otherwise update the mismatch count and repair
4296		 * parity if !MD_RECOVERY_CHECK
4297		 */
4298		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4299			/* parity is correct (on disc,
4300			 * not in buffer any more)
4301			 */
4302			set_bit(STRIPE_INSYNC, &sh->state);
4303		else {
4304			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4305			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4306				/* don't try to repair!! */
4307				set_bit(STRIPE_INSYNC, &sh->state);
4308				pr_warn_ratelimited("%s: mismatch sector in range "
4309						    "%llu-%llu\n", mdname(conf->mddev),
4310						    (unsigned long long) sh->sector,
4311						    (unsigned long long) sh->sector +
4312						    RAID5_STRIPE_SECTORS(conf));
4313			} else {
4314				sh->check_state = check_state_compute_run;
4315				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4316				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4317				set_bit(R5_Wantcompute,
4318					&sh->dev[sh->pd_idx].flags);
4319				sh->ops.target = sh->pd_idx;
4320				sh->ops.target2 = -1;
4321				s->uptodate++;
4322			}
4323		}
4324		break;
4325	case check_state_compute_run:
4326		break;
4327	default:
4328		pr_err("%s: unknown check_state: %d sector: %llu\n",
4329		       __func__, sh->check_state,
4330		       (unsigned long long) sh->sector);
4331		BUG();
4332	}
4333}
4334
4335static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
 
4336				  struct stripe_head_state *s,
4337				  int disks)
4338{
4339	int pd_idx = sh->pd_idx;
4340	int qd_idx = sh->qd_idx;
4341	struct r5dev *dev;
4342
4343	BUG_ON(sh->batch_head);
4344	set_bit(STRIPE_HANDLE, &sh->state);
4345
4346	BUG_ON(s->failed > 2);
4347
4348	/* Want to check and possibly repair P and Q.
4349	 * However there could be one 'failed' device, in which
4350	 * case we can only check one of them, possibly using the
4351	 * other to generate missing data
4352	 */
4353
4354	switch (sh->check_state) {
4355	case check_state_idle:
4356		/* start a new check operation if there are < 2 failures */
4357		if (s->failed == s->q_failed) {
4358			/* The only possible failed device holds Q, so it
4359			 * makes sense to check P (If anything else were failed,
4360			 * we would have used P to recreate it).
4361			 */
4362			sh->check_state = check_state_run;
4363		}
4364		if (!s->q_failed && s->failed < 2) {
4365			/* Q is not failed, and we didn't use it to generate
4366			 * anything, so it makes sense to check it
4367			 */
4368			if (sh->check_state == check_state_run)
4369				sh->check_state = check_state_run_pq;
4370			else
4371				sh->check_state = check_state_run_q;
4372		}
4373
4374		/* discard potentially stale zero_sum_result */
4375		sh->ops.zero_sum_result = 0;
4376
4377		if (sh->check_state == check_state_run) {
4378			/* async_xor_zero_sum destroys the contents of P */
4379			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4380			s->uptodate--;
4381		}
4382		if (sh->check_state >= check_state_run &&
4383		    sh->check_state <= check_state_run_pq) {
4384			/* async_syndrome_zero_sum preserves P and Q, so
4385			 * no need to mark them !uptodate here
4386			 */
4387			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4388			break;
4389		}
4390
4391		/* we have 2-disk failure */
4392		BUG_ON(s->failed != 2);
4393		fallthrough;
4394	case check_state_compute_result:
4395		sh->check_state = check_state_idle;
4396
4397		/* check that a write has not made the stripe insync */
4398		if (test_bit(STRIPE_INSYNC, &sh->state))
4399			break;
4400
4401		/* now write out any block on a failed drive,
4402		 * or P or Q if they were recomputed
4403		 */
4404		dev = NULL;
4405		if (s->failed == 2) {
4406			dev = &sh->dev[s->failed_num[1]];
4407			s->locked++;
4408			set_bit(R5_LOCKED, &dev->flags);
4409			set_bit(R5_Wantwrite, &dev->flags);
4410		}
4411		if (s->failed >= 1) {
4412			dev = &sh->dev[s->failed_num[0]];
4413			s->locked++;
4414			set_bit(R5_LOCKED, &dev->flags);
4415			set_bit(R5_Wantwrite, &dev->flags);
4416		}
4417		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4418			dev = &sh->dev[pd_idx];
4419			s->locked++;
4420			set_bit(R5_LOCKED, &dev->flags);
4421			set_bit(R5_Wantwrite, &dev->flags);
4422		}
4423		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4424			dev = &sh->dev[qd_idx];
4425			s->locked++;
4426			set_bit(R5_LOCKED, &dev->flags);
4427			set_bit(R5_Wantwrite, &dev->flags);
4428		}
4429		if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4430			      "%s: disk%td not up to date\n",
4431			      mdname(conf->mddev),
4432			      dev - (struct r5dev *) &sh->dev)) {
4433			clear_bit(R5_LOCKED, &dev->flags);
4434			clear_bit(R5_Wantwrite, &dev->flags);
4435			s->locked--;
4436		}
4437		clear_bit(STRIPE_DEGRADED, &sh->state);
4438
4439		set_bit(STRIPE_INSYNC, &sh->state);
4440		break;
4441	case check_state_run:
4442	case check_state_run_q:
4443	case check_state_run_pq:
4444		break; /* we will be called again upon completion */
4445	case check_state_check_result:
4446		sh->check_state = check_state_idle;
4447
4448		/* handle a successful check operation, if parity is correct
4449		 * we are done.  Otherwise update the mismatch count and repair
4450		 * parity if !MD_RECOVERY_CHECK
4451		 */
4452		if (sh->ops.zero_sum_result == 0) {
4453			/* both parities are correct */
4454			if (!s->failed)
4455				set_bit(STRIPE_INSYNC, &sh->state);
4456			else {
4457				/* in contrast to the raid5 case we can validate
4458				 * parity, but still have a failure to write
4459				 * back
4460				 */
4461				sh->check_state = check_state_compute_result;
4462				/* Returning at this point means that we may go
4463				 * off and bring p and/or q uptodate again so
4464				 * we make sure to check zero_sum_result again
4465				 * to verify if p or q need writeback
4466				 */
4467			}
4468		} else {
4469			atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4470			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4471				/* don't try to repair!! */
4472				set_bit(STRIPE_INSYNC, &sh->state);
4473				pr_warn_ratelimited("%s: mismatch sector in range "
4474						    "%llu-%llu\n", mdname(conf->mddev),
4475						    (unsigned long long) sh->sector,
4476						    (unsigned long long) sh->sector +
4477						    RAID5_STRIPE_SECTORS(conf));
4478			} else {
4479				int *target = &sh->ops.target;
4480
4481				sh->ops.target = -1;
4482				sh->ops.target2 = -1;
4483				sh->check_state = check_state_compute_run;
4484				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4485				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4486				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4487					set_bit(R5_Wantcompute,
4488						&sh->dev[pd_idx].flags);
4489					*target = pd_idx;
4490					target = &sh->ops.target2;
4491					s->uptodate++;
4492				}
4493				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4494					set_bit(R5_Wantcompute,
4495						&sh->dev[qd_idx].flags);
4496					*target = qd_idx;
4497					s->uptodate++;
4498				}
4499			}
4500		}
4501		break;
4502	case check_state_compute_run:
4503		break;
4504	default:
4505		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4506			__func__, sh->check_state,
4507			(unsigned long long) sh->sector);
4508		BUG();
4509	}
4510}
4511
4512static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4513{
4514	int i;
4515
4516	/* We have read all the blocks in this stripe and now we need to
4517	 * copy some of them into a target stripe for expand.
4518	 */
4519	struct dma_async_tx_descriptor *tx = NULL;
4520	BUG_ON(sh->batch_head);
4521	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4522	for (i = 0; i < sh->disks; i++)
4523		if (i != sh->pd_idx && i != sh->qd_idx) {
4524			int dd_idx, j;
4525			struct stripe_head *sh2;
4526			struct async_submit_ctl submit;
4527
4528			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4529			sector_t s = raid5_compute_sector(conf, bn, 0,
4530							  &dd_idx, NULL);
4531			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4532			if (sh2 == NULL)
4533				/* so far only the early blocks of this stripe
4534				 * have been requested.  When later blocks
4535				 * get requested, we will try again
4536				 */
4537				continue;
4538			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4539			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4540				/* must have already done this block */
4541				raid5_release_stripe(sh2);
4542				continue;
4543			}
4544
4545			/* place all the copies on one channel */
4546			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4547			tx = async_memcpy(sh2->dev[dd_idx].page,
4548					  sh->dev[i].page, sh2->dev[dd_idx].offset,
4549					  sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4550					  &submit);
4551
4552			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4553			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4554			for (j = 0; j < conf->raid_disks; j++)
4555				if (j != sh2->pd_idx &&
4556				    j != sh2->qd_idx &&
4557				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4558					break;
4559			if (j == conf->raid_disks) {
4560				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4561				set_bit(STRIPE_HANDLE, &sh2->state);
4562			}
4563			raid5_release_stripe(sh2);
4564
4565		}
4566	/* done submitting copies, wait for them to complete */
4567	async_tx_quiesce(&tx);
 
 
 
4568}
4569
 
4570/*
4571 * handle_stripe - do things to a stripe.
4572 *
4573 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4574 * state of various bits to see what needs to be done.
4575 * Possible results:
4576 *    return some read requests which now have data
4577 *    return some write requests which are safely on storage
4578 *    schedule a read on some buffers
4579 *    schedule a write of some buffers
4580 *    return confirmation of parity correctness
4581 *
 
 
 
4582 */
4583
4584static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4585{
4586	struct r5conf *conf = sh->raid_conf;
4587	int disks = sh->disks;
4588	struct r5dev *dev;
4589	int i;
4590	int do_recovery = 0;
4591
4592	memset(s, 0, sizeof(*s));
4593
4594	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4595	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
 
4596	s->failed_num[0] = -1;
4597	s->failed_num[1] = -1;
4598	s->log_failed = r5l_log_disk_error(conf);
4599
4600	/* Now to look around and see what can be done */
4601	rcu_read_lock();
 
4602	for (i=disks; i--; ) {
4603		struct md_rdev *rdev;
4604		sector_t first_bad;
4605		int bad_sectors;
4606		int is_bad = 0;
4607
4608		dev = &sh->dev[i];
4609
4610		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4611			 i, dev->flags,
4612			 dev->toread, dev->towrite, dev->written);
4613		/* maybe we can reply to a read
4614		 *
4615		 * new wantfill requests are only permitted while
4616		 * ops_complete_biofill is guaranteed to be inactive
4617		 */
4618		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4619		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4620			set_bit(R5_Wantfill, &dev->flags);
4621
4622		/* now count some things */
4623		if (test_bit(R5_LOCKED, &dev->flags))
4624			s->locked++;
4625		if (test_bit(R5_UPTODATE, &dev->flags))
4626			s->uptodate++;
4627		if (test_bit(R5_Wantcompute, &dev->flags)) {
4628			s->compute++;
4629			BUG_ON(s->compute > 2);
4630		}
4631
4632		if (test_bit(R5_Wantfill, &dev->flags))
4633			s->to_fill++;
4634		else if (dev->toread)
4635			s->to_read++;
4636		if (dev->towrite) {
4637			s->to_write++;
4638			if (!test_bit(R5_OVERWRITE, &dev->flags))
4639				s->non_overwrite++;
4640		}
4641		if (dev->written)
4642			s->written++;
4643		/* Prefer to use the replacement for reads, but only
4644		 * if it is recovered enough and has no bad blocks.
4645		 */
4646		rdev = rcu_dereference(conf->disks[i].replacement);
4647		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4648		    rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4649		    !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4650				 &first_bad, &bad_sectors))
4651			set_bit(R5_ReadRepl, &dev->flags);
4652		else {
4653			if (rdev && !test_bit(Faulty, &rdev->flags))
4654				set_bit(R5_NeedReplace, &dev->flags);
4655			else
4656				clear_bit(R5_NeedReplace, &dev->flags);
4657			rdev = rcu_dereference(conf->disks[i].rdev);
4658			clear_bit(R5_ReadRepl, &dev->flags);
4659		}
4660		if (rdev && test_bit(Faulty, &rdev->flags))
4661			rdev = NULL;
4662		if (rdev) {
4663			is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4664					     &first_bad, &bad_sectors);
4665			if (s->blocked_rdev == NULL
4666			    && (test_bit(Blocked, &rdev->flags)
4667				|| is_bad < 0)) {
4668				if (is_bad < 0)
4669					set_bit(BlockedBadBlocks,
4670						&rdev->flags);
4671				s->blocked_rdev = rdev;
4672				atomic_inc(&rdev->nr_pending);
4673			}
4674		}
4675		clear_bit(R5_Insync, &dev->flags);
4676		if (!rdev)
4677			/* Not in-sync */;
4678		else if (is_bad) {
4679			/* also not in-sync */
4680			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4681			    test_bit(R5_UPTODATE, &dev->flags)) {
4682				/* treat as in-sync, but with a read error
4683				 * which we can now try to correct
4684				 */
4685				set_bit(R5_Insync, &dev->flags);
4686				set_bit(R5_ReadError, &dev->flags);
4687			}
4688		} else if (test_bit(In_sync, &rdev->flags))
4689			set_bit(R5_Insync, &dev->flags);
4690		else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4691			/* in sync if before recovery_offset */
4692			set_bit(R5_Insync, &dev->flags);
4693		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4694			 test_bit(R5_Expanded, &dev->flags))
4695			/* If we've reshaped into here, we assume it is Insync.
4696			 * We will shortly update recovery_offset to make
4697			 * it official.
4698			 */
4699			set_bit(R5_Insync, &dev->flags);
4700
4701		if (test_bit(R5_WriteError, &dev->flags)) {
4702			/* This flag does not apply to '.replacement'
4703			 * only to .rdev, so make sure to check that*/
4704			struct md_rdev *rdev2 = rcu_dereference(
4705				conf->disks[i].rdev);
4706			if (rdev2 == rdev)
4707				clear_bit(R5_Insync, &dev->flags);
4708			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4709				s->handle_bad_blocks = 1;
4710				atomic_inc(&rdev2->nr_pending);
4711			} else
4712				clear_bit(R5_WriteError, &dev->flags);
4713		}
4714		if (test_bit(R5_MadeGood, &dev->flags)) {
4715			/* This flag does not apply to '.replacement'
4716			 * only to .rdev, so make sure to check that*/
4717			struct md_rdev *rdev2 = rcu_dereference(
4718				conf->disks[i].rdev);
4719			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4720				s->handle_bad_blocks = 1;
4721				atomic_inc(&rdev2->nr_pending);
4722			} else
4723				clear_bit(R5_MadeGood, &dev->flags);
4724		}
4725		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4726			struct md_rdev *rdev2 = rcu_dereference(
4727				conf->disks[i].replacement);
4728			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4729				s->handle_bad_blocks = 1;
4730				atomic_inc(&rdev2->nr_pending);
4731			} else
4732				clear_bit(R5_MadeGoodRepl, &dev->flags);
4733		}
4734		if (!test_bit(R5_Insync, &dev->flags)) {
4735			/* The ReadError flag will just be confusing now */
4736			clear_bit(R5_ReadError, &dev->flags);
4737			clear_bit(R5_ReWrite, &dev->flags);
4738		}
4739		if (test_bit(R5_ReadError, &dev->flags))
4740			clear_bit(R5_Insync, &dev->flags);
4741		if (!test_bit(R5_Insync, &dev->flags)) {
4742			if (s->failed < 2)
4743				s->failed_num[s->failed] = i;
4744			s->failed++;
4745			if (rdev && !test_bit(Faulty, &rdev->flags))
4746				do_recovery = 1;
4747			else if (!rdev) {
4748				rdev = rcu_dereference(
4749				    conf->disks[i].replacement);
4750				if (rdev && !test_bit(Faulty, &rdev->flags))
4751					do_recovery = 1;
4752			}
4753		}
4754
4755		if (test_bit(R5_InJournal, &dev->flags))
4756			s->injournal++;
4757		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4758			s->just_cached++;
4759	}
4760	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4761		/* If there is a failed device being replaced,
4762		 *     we must be recovering.
4763		 * else if we are after recovery_cp, we must be syncing
4764		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4765		 * else we can only be replacing
4766		 * sync and recovery both need to read all devices, and so
4767		 * use the same flag.
4768		 */
4769		if (do_recovery ||
4770		    sh->sector >= conf->mddev->recovery_cp ||
4771		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4772			s->syncing = 1;
4773		else
4774			s->replacing = 1;
4775	}
 
4776	rcu_read_unlock();
4777}
4778
4779/*
4780 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4781 * a head which can now be handled.
4782 */
4783static int clear_batch_ready(struct stripe_head *sh)
4784{
4785	struct stripe_head *tmp;
4786	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4787		return (sh->batch_head && sh->batch_head != sh);
4788	spin_lock(&sh->stripe_lock);
4789	if (!sh->batch_head) {
4790		spin_unlock(&sh->stripe_lock);
4791		return 0;
4792	}
4793
4794	/*
4795	 * this stripe could be added to a batch list before we check
4796	 * BATCH_READY, skips it
4797	 */
4798	if (sh->batch_head != sh) {
4799		spin_unlock(&sh->stripe_lock);
4800		return 1;
4801	}
4802	spin_lock(&sh->batch_lock);
4803	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4804		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4805	spin_unlock(&sh->batch_lock);
4806	spin_unlock(&sh->stripe_lock);
4807
4808	/*
4809	 * BATCH_READY is cleared, no new stripes can be added.
4810	 * batch_list can be accessed without lock
4811	 */
4812	return 0;
4813}
4814
4815static void break_stripe_batch_list(struct stripe_head *head_sh,
4816				    unsigned long handle_flags)
4817{
4818	struct stripe_head *sh, *next;
4819	int i;
4820	int do_wakeup = 0;
4821
4822	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4823
4824		list_del_init(&sh->batch_list);
4825
4826		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4827					  (1 << STRIPE_SYNCING) |
4828					  (1 << STRIPE_REPLACED) |
4829					  (1 << STRIPE_DELAYED) |
4830					  (1 << STRIPE_BIT_DELAY) |
4831					  (1 << STRIPE_FULL_WRITE) |
4832					  (1 << STRIPE_BIOFILL_RUN) |
4833					  (1 << STRIPE_COMPUTE_RUN)  |
4834					  (1 << STRIPE_DISCARD) |
4835					  (1 << STRIPE_BATCH_READY) |
4836					  (1 << STRIPE_BATCH_ERR) |
4837					  (1 << STRIPE_BITMAP_PENDING)),
4838			"stripe state: %lx\n", sh->state);
4839		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4840					      (1 << STRIPE_REPLACED)),
4841			"head stripe state: %lx\n", head_sh->state);
4842
4843		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4844					    (1 << STRIPE_PREREAD_ACTIVE) |
4845					    (1 << STRIPE_DEGRADED) |
4846					    (1 << STRIPE_ON_UNPLUG_LIST)),
4847			      head_sh->state & (1 << STRIPE_INSYNC));
4848
4849		sh->check_state = head_sh->check_state;
4850		sh->reconstruct_state = head_sh->reconstruct_state;
4851		spin_lock_irq(&sh->stripe_lock);
4852		sh->batch_head = NULL;
4853		spin_unlock_irq(&sh->stripe_lock);
4854		for (i = 0; i < sh->disks; i++) {
4855			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4856				do_wakeup = 1;
4857			sh->dev[i].flags = head_sh->dev[i].flags &
4858				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4859		}
4860		if (handle_flags == 0 ||
4861		    sh->state & handle_flags)
4862			set_bit(STRIPE_HANDLE, &sh->state);
4863		raid5_release_stripe(sh);
4864	}
4865	spin_lock_irq(&head_sh->stripe_lock);
4866	head_sh->batch_head = NULL;
4867	spin_unlock_irq(&head_sh->stripe_lock);
4868	for (i = 0; i < head_sh->disks; i++)
4869		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4870			do_wakeup = 1;
4871	if (head_sh->state & handle_flags)
4872		set_bit(STRIPE_HANDLE, &head_sh->state);
4873
4874	if (do_wakeup)
4875		wake_up(&head_sh->raid_conf->wait_for_overlap);
4876}
4877
4878static void handle_stripe(struct stripe_head *sh)
4879{
4880	struct stripe_head_state s;
4881	struct r5conf *conf = sh->raid_conf;
4882	int i;
4883	int prexor;
4884	int disks = sh->disks;
4885	struct r5dev *pdev, *qdev;
4886
4887	clear_bit(STRIPE_HANDLE, &sh->state);
4888
4889	/*
4890	 * handle_stripe should not continue handle the batched stripe, only
4891	 * the head of batch list or lone stripe can continue. Otherwise we
4892	 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4893	 * is set for the batched stripe.
4894	 */
4895	if (clear_batch_ready(sh))
4896		return;
4897
4898	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4899		/* already being handled, ensure it gets handled
4900		 * again when current action finishes */
4901		set_bit(STRIPE_HANDLE, &sh->state);
4902		return;
4903	}
4904
4905	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4906		break_stripe_batch_list(sh, 0);
4907
4908	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4909		spin_lock(&sh->stripe_lock);
4910		/*
4911		 * Cannot process 'sync' concurrently with 'discard'.
4912		 * Flush data in r5cache before 'sync'.
4913		 */
4914		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4915		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4916		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4917		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4918			set_bit(STRIPE_SYNCING, &sh->state);
4919			clear_bit(STRIPE_INSYNC, &sh->state);
4920			clear_bit(STRIPE_REPLACED, &sh->state);
4921		}
4922		spin_unlock(&sh->stripe_lock);
4923	}
4924	clear_bit(STRIPE_DELAYED, &sh->state);
4925
4926	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4927		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4928	       (unsigned long long)sh->sector, sh->state,
4929	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4930	       sh->check_state, sh->reconstruct_state);
4931
4932	analyse_stripe(sh, &s);
4933
4934	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4935		goto finish;
4936
4937	if (s.handle_bad_blocks ||
4938	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4939		set_bit(STRIPE_HANDLE, &sh->state);
4940		goto finish;
4941	}
4942
4943	if (unlikely(s.blocked_rdev)) {
4944		if (s.syncing || s.expanding || s.expanded ||
4945		    s.replacing || s.to_write || s.written) {
4946			set_bit(STRIPE_HANDLE, &sh->state);
4947			goto finish;
4948		}
4949		/* There is nothing for the blocked_rdev to block */
4950		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4951		s.blocked_rdev = NULL;
4952	}
4953
4954	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4955		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4956		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4957	}
4958
4959	pr_debug("locked=%d uptodate=%d to_read=%d"
4960	       " to_write=%d failed=%d failed_num=%d,%d\n",
4961	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4962	       s.failed_num[0], s.failed_num[1]);
 
 
 
 
 
 
 
 
4963	/*
4964	 * check if the array has lost more than max_degraded devices and,
4965	 * if so, some requests might need to be failed.
4966	 *
4967	 * When journal device failed (log_failed), we will only process
4968	 * the stripe if there is data need write to raid disks
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4969	 */
4970	if (s.failed > conf->max_degraded ||
4971	    (s.log_failed && s.injournal == 0)) {
4972		sh->check_state = 0;
4973		sh->reconstruct_state = 0;
4974		break_stripe_batch_list(sh, 0);
4975		if (s.to_read+s.to_write+s.written)
4976			handle_failed_stripe(conf, sh, &s, disks);
4977		if (s.syncing + s.replacing)
4978			handle_failed_sync(conf, sh, &s);
4979	}
4980
4981	/* Now we check to see if any write operations have recently
4982	 * completed
4983	 */
4984	prexor = 0;
4985	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4986		prexor = 1;
4987	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4988	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4989		sh->reconstruct_state = reconstruct_state_idle;
4990
4991		/* All the 'written' buffers and the parity block are ready to
4992		 * be written back to disk
4993		 */
4994		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4995		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4996		BUG_ON(sh->qd_idx >= 0 &&
4997		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4998		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4999		for (i = disks; i--; ) {
5000			struct r5dev *dev = &sh->dev[i];
5001			if (test_bit(R5_LOCKED, &dev->flags) &&
5002				(i == sh->pd_idx || i == sh->qd_idx ||
5003				 dev->written || test_bit(R5_InJournal,
5004							  &dev->flags))) {
5005				pr_debug("Writing block %d\n", i);
5006				set_bit(R5_Wantwrite, &dev->flags);
5007				if (prexor)
5008					continue;
5009				if (s.failed > 1)
5010					continue;
5011				if (!test_bit(R5_Insync, &dev->flags) ||
5012				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
5013				     s.failed == 0))
5014					set_bit(STRIPE_INSYNC, &sh->state);
5015			}
5016		}
5017		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5018			s.dec_preread_active = 1;
5019	}
5020
5021	/*
5022	 * might be able to return some write requests if the parity blocks
5023	 * are safe, or on a failed drive
5024	 */
5025	pdev = &sh->dev[sh->pd_idx];
5026	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5027		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5028	qdev = &sh->dev[sh->qd_idx];
5029	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5030		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5031		|| conf->level < 6;
5032
5033	if (s.written &&
5034	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5035			     && !test_bit(R5_LOCKED, &pdev->flags)
5036			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
5037				 test_bit(R5_Discard, &pdev->flags))))) &&
5038	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5039			     && !test_bit(R5_LOCKED, &qdev->flags)
5040			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
5041				 test_bit(R5_Discard, &qdev->flags))))))
5042		handle_stripe_clean_event(conf, sh, disks);
5043
5044	if (s.just_cached)
5045		r5c_handle_cached_data_endio(conf, sh, disks);
5046	log_stripe_write_finished(sh);
5047
5048	/* Now we might consider reading some blocks, either to check/generate
5049	 * parity, or to satisfy requests
5050	 * or to load a block that is being partially written.
5051	 */
5052	if (s.to_read || s.non_overwrite
5053	    || (s.to_write && s.failed)
5054	    || (s.syncing && (s.uptodate + s.compute < disks))
5055	    || s.replacing
5056	    || s.expanding)
5057		handle_stripe_fill(sh, &s, disks);
5058
5059	/*
5060	 * When the stripe finishes full journal write cycle (write to journal
5061	 * and raid disk), this is the clean up procedure so it is ready for
5062	 * next operation.
5063	 */
5064	r5c_finish_stripe_write_out(conf, sh, &s);
5065
5066	/*
5067	 * Now to consider new write requests, cache write back and what else,
5068	 * if anything should be read.  We do not handle new writes when:
5069	 * 1/ A 'write' operation (copy+xor) is already in flight.
5070	 * 2/ A 'check' operation is in flight, as it may clobber the parity
5071	 *    block.
5072	 * 3/ A r5c cache log write is in flight.
5073	 */
5074
5075	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5076		if (!r5c_is_writeback(conf->log)) {
5077			if (s.to_write)
5078				handle_stripe_dirtying(conf, sh, &s, disks);
5079		} else { /* write back cache */
5080			int ret = 0;
5081
5082			/* First, try handle writes in caching phase */
5083			if (s.to_write)
5084				ret = r5c_try_caching_write(conf, sh, &s,
5085							    disks);
5086			/*
5087			 * If caching phase failed: ret == -EAGAIN
5088			 *    OR
5089			 * stripe under reclaim: !caching && injournal
5090			 *
5091			 * fall back to handle_stripe_dirtying()
5092			 */
5093			if (ret == -EAGAIN ||
5094			    /* stripe under reclaim: !caching && injournal */
5095			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5096			     s.injournal > 0)) {
5097				ret = handle_stripe_dirtying(conf, sh, &s,
5098							     disks);
5099				if (ret == -EAGAIN)
5100					goto finish;
5101			}
5102		}
5103	}
5104
5105	/* maybe we need to check and possibly fix the parity for this stripe
5106	 * Any reads will already have been scheduled, so we just see if enough
5107	 * data is available.  The parity check is held off while parity
5108	 * dependent operations are in flight.
5109	 */
5110	if (sh->check_state ||
5111	    (s.syncing && s.locked == 0 &&
5112	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5113	     !test_bit(STRIPE_INSYNC, &sh->state))) {
5114		if (conf->level == 6)
5115			handle_parity_checks6(conf, sh, &s, disks);
5116		else
5117			handle_parity_checks5(conf, sh, &s, disks);
5118	}
5119
5120	if ((s.replacing || s.syncing) && s.locked == 0
5121	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5122	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
5123		/* Write out to replacement devices where possible */
5124		for (i = 0; i < conf->raid_disks; i++)
5125			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5126				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5127				set_bit(R5_WantReplace, &sh->dev[i].flags);
5128				set_bit(R5_LOCKED, &sh->dev[i].flags);
5129				s.locked++;
5130			}
5131		if (s.replacing)
5132			set_bit(STRIPE_INSYNC, &sh->state);
5133		set_bit(STRIPE_REPLACED, &sh->state);
5134	}
5135	if ((s.syncing || s.replacing) && s.locked == 0 &&
5136	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5137	    test_bit(STRIPE_INSYNC, &sh->state)) {
5138		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5139		clear_bit(STRIPE_SYNCING, &sh->state);
5140		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5141			wake_up(&conf->wait_for_overlap);
5142	}
5143
5144	/* If the failed drives are just a ReadError, then we might need
5145	 * to progress the repair/check process
5146	 */
5147	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5148		for (i = 0; i < s.failed; i++) {
5149			struct r5dev *dev = &sh->dev[s.failed_num[i]];
5150			if (test_bit(R5_ReadError, &dev->flags)
5151			    && !test_bit(R5_LOCKED, &dev->flags)
5152			    && test_bit(R5_UPTODATE, &dev->flags)
5153				) {
5154				if (!test_bit(R5_ReWrite, &dev->flags)) {
5155					set_bit(R5_Wantwrite, &dev->flags);
5156					set_bit(R5_ReWrite, &dev->flags);
5157				} else
 
 
5158					/* let's read it back */
5159					set_bit(R5_Wantread, &dev->flags);
5160				set_bit(R5_LOCKED, &dev->flags);
5161				s.locked++;
 
5162			}
5163		}
5164
 
5165	/* Finish reconstruct operations initiated by the expansion process */
5166	if (sh->reconstruct_state == reconstruct_state_result) {
5167		struct stripe_head *sh_src
5168			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
5169		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5170			/* sh cannot be written until sh_src has been read.
5171			 * so arrange for sh to be delayed a little
5172			 */
5173			set_bit(STRIPE_DELAYED, &sh->state);
5174			set_bit(STRIPE_HANDLE, &sh->state);
5175			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5176					      &sh_src->state))
5177				atomic_inc(&conf->preread_active_stripes);
5178			raid5_release_stripe(sh_src);
5179			goto finish;
5180		}
5181		if (sh_src)
5182			raid5_release_stripe(sh_src);
5183
5184		sh->reconstruct_state = reconstruct_state_idle;
5185		clear_bit(STRIPE_EXPANDING, &sh->state);
5186		for (i = conf->raid_disks; i--; ) {
5187			set_bit(R5_Wantwrite, &sh->dev[i].flags);
5188			set_bit(R5_LOCKED, &sh->dev[i].flags);
5189			s.locked++;
5190		}
5191	}
5192
5193	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5194	    !sh->reconstruct_state) {
5195		/* Need to write out all blocks after computing parity */
5196		sh->disks = conf->raid_disks;
5197		stripe_set_idx(sh->sector, conf, 0, sh);
5198		schedule_reconstruction(sh, &s, 1, 1);
5199	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5200		clear_bit(STRIPE_EXPAND_READY, &sh->state);
5201		atomic_dec(&conf->reshape_stripes);
5202		wake_up(&conf->wait_for_overlap);
5203		md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5204	}
5205
5206	if (s.expanding && s.locked == 0 &&
5207	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5208		handle_stripe_expansion(conf, sh);
5209
5210finish:
5211	/* wait for this device to become unblocked */
5212	if (unlikely(s.blocked_rdev)) {
5213		if (conf->mddev->external)
5214			md_wait_for_blocked_rdev(s.blocked_rdev,
5215						 conf->mddev);
5216		else
5217			/* Internal metadata will immediately
5218			 * be written by raid5d, so we don't
5219			 * need to wait here.
5220			 */
5221			rdev_dec_pending(s.blocked_rdev,
5222					 conf->mddev);
5223	}
5224
5225	if (s.handle_bad_blocks)
5226		for (i = disks; i--; ) {
5227			struct md_rdev *rdev;
5228			struct r5dev *dev = &sh->dev[i];
5229			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5230				/* We own a safe reference to the rdev */
5231				rdev = conf->disks[i].rdev;
5232				if (!rdev_set_badblocks(rdev, sh->sector,
5233							RAID5_STRIPE_SECTORS(conf), 0))
5234					md_error(conf->mddev, rdev);
5235				rdev_dec_pending(rdev, conf->mddev);
5236			}
5237			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5238				rdev = conf->disks[i].rdev;
5239				rdev_clear_badblocks(rdev, sh->sector,
5240						     RAID5_STRIPE_SECTORS(conf), 0);
5241				rdev_dec_pending(rdev, conf->mddev);
5242			}
5243			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5244				rdev = conf->disks[i].replacement;
5245				if (!rdev)
5246					/* rdev have been moved down */
5247					rdev = conf->disks[i].rdev;
5248				rdev_clear_badblocks(rdev, sh->sector,
5249						     RAID5_STRIPE_SECTORS(conf), 0);
5250				rdev_dec_pending(rdev, conf->mddev);
5251			}
5252		}
5253
5254	if (s.ops_request)
5255		raid_run_ops(sh, s.ops_request);
5256
5257	ops_run_io(sh, &s);
5258
5259	if (s.dec_preread_active) {
5260		/* We delay this until after ops_run_io so that if make_request
5261		 * is waiting on a flush, it won't continue until the writes
5262		 * have actually been submitted.
5263		 */
5264		atomic_dec(&conf->preread_active_stripes);
5265		if (atomic_read(&conf->preread_active_stripes) <
5266		    IO_THRESHOLD)
5267			md_wakeup_thread(conf->mddev->thread);
5268	}
5269
5270	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
 
 
5271}
5272
5273static void raid5_activate_delayed(struct r5conf *conf)
5274{
5275	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5276		while (!list_empty(&conf->delayed_list)) {
5277			struct list_head *l = conf->delayed_list.next;
5278			struct stripe_head *sh;
5279			sh = list_entry(l, struct stripe_head, lru);
5280			list_del_init(l);
5281			clear_bit(STRIPE_DELAYED, &sh->state);
5282			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5283				atomic_inc(&conf->preread_active_stripes);
5284			list_add_tail(&sh->lru, &conf->hold_list);
5285			raid5_wakeup_stripe_thread(sh);
5286		}
5287	}
5288}
5289
5290static void activate_bit_delay(struct r5conf *conf,
5291	struct list_head *temp_inactive_list)
5292{
5293	/* device_lock is held */
5294	struct list_head head;
5295	list_add(&head, &conf->bitmap_list);
5296	list_del_init(&conf->bitmap_list);
5297	while (!list_empty(&head)) {
5298		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5299		int hash;
5300		list_del_init(&sh->lru);
5301		atomic_inc(&sh->count);
5302		hash = sh->hash_lock_index;
5303		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5304	}
5305}
5306
5307static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5308{
5309	struct r5conf *conf = mddev->private;
5310	sector_t sector = bio->bi_iter.bi_sector;
5311	unsigned int chunk_sectors;
5312	unsigned int bio_sectors = bio_sectors(bio);
5313
5314	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5315	return  chunk_sectors >=
5316		((sector & (chunk_sectors - 1)) + bio_sectors);
5317}
5318
5319/*
5320 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5321 *  later sampled by raid5d.
5322 */
5323static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5324{
5325	unsigned long flags;
5326
5327	spin_lock_irqsave(&conf->device_lock, flags);
5328
5329	bi->bi_next = conf->retry_read_aligned_list;
5330	conf->retry_read_aligned_list = bi;
5331
5332	spin_unlock_irqrestore(&conf->device_lock, flags);
5333	md_wakeup_thread(conf->mddev->thread);
5334}
5335
5336static struct bio *remove_bio_from_retry(struct r5conf *conf,
5337					 unsigned int *offset)
5338{
5339	struct bio *bi;
5340
5341	bi = conf->retry_read_aligned;
5342	if (bi) {
5343		*offset = conf->retry_read_offset;
5344		conf->retry_read_aligned = NULL;
5345		return bi;
5346	}
5347	bi = conf->retry_read_aligned_list;
5348	if(bi) {
5349		conf->retry_read_aligned_list = bi->bi_next;
5350		bi->bi_next = NULL;
5351		*offset = 0;
 
 
 
 
5352	}
5353
5354	return bi;
5355}
5356
 
5357/*
5358 *  The "raid5_align_endio" should check if the read succeeded and if it
5359 *  did, call bio_endio on the original bio (having bio_put the new bio
5360 *  first).
5361 *  If the read failed..
5362 */
5363static void raid5_align_endio(struct bio *bi)
5364{
5365	struct md_io_acct *md_io_acct = bi->bi_private;
5366	struct bio *raid_bi = md_io_acct->orig_bio;
5367	struct mddev *mddev;
5368	struct r5conf *conf;
5369	struct md_rdev *rdev;
5370	blk_status_t error = bi->bi_status;
5371	unsigned long start_time = md_io_acct->start_time;
5372
5373	bio_put(bi);
5374
5375	rdev = (void*)raid_bi->bi_next;
5376	raid_bi->bi_next = NULL;
5377	mddev = rdev->mddev;
5378	conf = mddev->private;
5379
5380	rdev_dec_pending(rdev, conf->mddev);
5381
5382	if (!error) {
5383		if (blk_queue_io_stat(raid_bi->bi_bdev->bd_disk->queue))
5384			bio_end_io_acct(raid_bi, start_time);
5385		bio_endio(raid_bi);
5386		if (atomic_dec_and_test(&conf->active_aligned_reads))
5387			wake_up(&conf->wait_for_quiescent);
5388		return;
5389	}
5390
 
5391	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5392
5393	add_bio_to_retry(raid_bi, conf);
5394}
5395
5396static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5397{
5398	struct r5conf *conf = mddev->private;
5399	struct bio *align_bio;
5400	struct md_rdev *rdev;
5401	sector_t sector, end_sector, first_bad;
5402	int bad_sectors, dd_idx;
5403	struct md_io_acct *md_io_acct;
5404	bool did_inc;
5405
5406	if (!in_chunk_boundary(mddev, raid_bio)) {
5407		pr_debug("%s: non aligned\n", __func__);
 
 
5408		return 0;
5409	}
5410
5411	sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5412				      &dd_idx, NULL);
5413	end_sector = bio_end_sector(raid_bio);
 
 
5414
5415	rcu_read_lock();
5416	if (r5c_big_stripe_cached(conf, sector))
5417		goto out_rcu_unlock;
5418
5419	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5420	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5421	    rdev->recovery_offset < end_sector) {
5422		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5423		if (!rdev)
5424			goto out_rcu_unlock;
5425		if (test_bit(Faulty, &rdev->flags) ||
5426		    !(test_bit(In_sync, &rdev->flags) ||
5427		      rdev->recovery_offset >= end_sector))
5428			goto out_rcu_unlock;
5429	}
5430
5431	atomic_inc(&rdev->nr_pending);
5432	rcu_read_unlock();
 
 
 
 
5433
5434	if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad,
5435			&bad_sectors)) {
5436		bio_put(raid_bio);
5437		rdev_dec_pending(rdev, mddev);
5438		return 0;
5439	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5440
5441	align_bio = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->io_acct_set);
5442	md_io_acct = container_of(align_bio, struct md_io_acct, bio_clone);
5443	raid_bio->bi_next = (void *)rdev;
5444	if (blk_queue_io_stat(raid_bio->bi_bdev->bd_disk->queue))
5445		md_io_acct->start_time = bio_start_io_acct(raid_bio);
5446	md_io_acct->orig_bio = raid_bio;
5447
5448	bio_set_dev(align_bio, rdev->bdev);
5449	align_bio->bi_end_io = raid5_align_endio;
5450	align_bio->bi_private = md_io_acct;
5451	align_bio->bi_iter.bi_sector = sector;
5452
5453	/* No reshape active, so we can trust rdev->data_offset */
5454	align_bio->bi_iter.bi_sector += rdev->data_offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
5455
5456	did_inc = false;
5457	if (conf->quiesce == 0) {
5458		atomic_inc(&conf->active_aligned_reads);
5459		did_inc = true;
5460	}
5461	/* need a memory barrier to detect the race with raid5_quiesce() */
5462	if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5463		/* quiesce is in progress, so we need to undo io activation and wait
5464		 * for it to finish
5465		 */
5466		if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5467			wake_up(&conf->wait_for_quiescent);
5468		spin_lock_irq(&conf->device_lock);
5469		wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5470				    conf->device_lock);
 
5471		atomic_inc(&conf->active_aligned_reads);
5472		spin_unlock_irq(&conf->device_lock);
5473	}
5474
5475	if (mddev->gendisk)
5476		trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk),
5477				      raid_bio->bi_iter.bi_sector);
5478	submit_bio_noacct(align_bio);
5479	return 1;
5480
5481out_rcu_unlock:
5482	rcu_read_unlock();
5483	return 0;
5484}
5485
5486static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5487{
5488	struct bio *split;
5489	sector_t sector = raid_bio->bi_iter.bi_sector;
5490	unsigned chunk_sects = mddev->chunk_sectors;
5491	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5492
5493	if (sectors < bio_sectors(raid_bio)) {
5494		struct r5conf *conf = mddev->private;
5495		split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5496		bio_chain(split, raid_bio);
5497		submit_bio_noacct(raid_bio);
5498		raid_bio = split;
5499	}
5500
5501	if (!raid5_read_one_chunk(mddev, raid_bio))
5502		return raid_bio;
5503
5504	return NULL;
5505}
5506
5507/* __get_priority_stripe - get the next stripe to process
5508 *
5509 * Full stripe writes are allowed to pass preread active stripes up until
5510 * the bypass_threshold is exceeded.  In general the bypass_count
5511 * increments when the handle_list is handled before the hold_list; however, it
5512 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5513 * stripe with in flight i/o.  The bypass_count will be reset when the
5514 * head of the hold_list has changed, i.e. the head was promoted to the
5515 * handle_list.
5516 */
5517static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5518{
5519	struct stripe_head *sh, *tmp;
5520	struct list_head *handle_list = NULL;
5521	struct r5worker_group *wg;
5522	bool second_try = !r5c_is_writeback(conf->log) &&
5523		!r5l_log_disk_error(conf);
5524	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5525		r5l_log_disk_error(conf);
5526
5527again:
5528	wg = NULL;
5529	sh = NULL;
5530	if (conf->worker_cnt_per_group == 0) {
5531		handle_list = try_loprio ? &conf->loprio_list :
5532					&conf->handle_list;
5533	} else if (group != ANY_GROUP) {
5534		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5535				&conf->worker_groups[group].handle_list;
5536		wg = &conf->worker_groups[group];
5537	} else {
5538		int i;
5539		for (i = 0; i < conf->group_cnt; i++) {
5540			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5541				&conf->worker_groups[i].handle_list;
5542			wg = &conf->worker_groups[i];
5543			if (!list_empty(handle_list))
5544				break;
5545		}
5546	}
5547
5548	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5549		  __func__,
5550		  list_empty(handle_list) ? "empty" : "busy",
5551		  list_empty(&conf->hold_list) ? "empty" : "busy",
5552		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5553
5554	if (!list_empty(handle_list)) {
5555		sh = list_entry(handle_list->next, typeof(*sh), lru);
5556
5557		if (list_empty(&conf->hold_list))
5558			conf->bypass_count = 0;
5559		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5560			if (conf->hold_list.next == conf->last_hold)
5561				conf->bypass_count++;
5562			else {
5563				conf->last_hold = conf->hold_list.next;
5564				conf->bypass_count -= conf->bypass_threshold;
5565				if (conf->bypass_count < 0)
5566					conf->bypass_count = 0;
5567			}
5568		}
5569	} else if (!list_empty(&conf->hold_list) &&
5570		   ((conf->bypass_threshold &&
5571		     conf->bypass_count > conf->bypass_threshold) ||
5572		    atomic_read(&conf->pending_full_writes) == 0)) {
 
 
 
 
 
 
 
5573
5574		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5575			if (conf->worker_cnt_per_group == 0 ||
5576			    group == ANY_GROUP ||
5577			    !cpu_online(tmp->cpu) ||
5578			    cpu_to_group(tmp->cpu) == group) {
5579				sh = tmp;
5580				break;
5581			}
5582		}
5583
5584		if (sh) {
5585			conf->bypass_count -= conf->bypass_threshold;
5586			if (conf->bypass_count < 0)
5587				conf->bypass_count = 0;
5588		}
5589		wg = NULL;
5590	}
5591
5592	if (!sh) {
5593		if (second_try)
5594			return NULL;
5595		second_try = true;
5596		try_loprio = !try_loprio;
5597		goto again;
5598	}
5599
5600	if (wg) {
5601		wg->stripes_cnt--;
5602		sh->group = NULL;
5603	}
5604	list_del_init(&sh->lru);
5605	BUG_ON(atomic_inc_return(&sh->count) != 1);
 
5606	return sh;
5607}
5608
5609struct raid5_plug_cb {
5610	struct blk_plug_cb	cb;
5611	struct list_head	list;
5612	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5613};
5614
5615static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5616{
5617	struct raid5_plug_cb *cb = container_of(
5618		blk_cb, struct raid5_plug_cb, cb);
5619	struct stripe_head *sh;
5620	struct mddev *mddev = cb->cb.data;
5621	struct r5conf *conf = mddev->private;
5622	int cnt = 0;
5623	int hash;
5624
5625	if (cb->list.next && !list_empty(&cb->list)) {
5626		spin_lock_irq(&conf->device_lock);
5627		while (!list_empty(&cb->list)) {
5628			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5629			list_del_init(&sh->lru);
5630			/*
5631			 * avoid race release_stripe_plug() sees
5632			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5633			 * is still in our list
5634			 */
5635			smp_mb__before_atomic();
5636			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5637			/*
5638			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5639			 * case, the count is always > 1 here
5640			 */
5641			hash = sh->hash_lock_index;
5642			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5643			cnt++;
5644		}
5645		spin_unlock_irq(&conf->device_lock);
5646	}
5647	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5648				     NR_STRIPE_HASH_LOCKS);
5649	if (mddev->queue)
5650		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5651	kfree(cb);
5652}
5653
5654static void release_stripe_plug(struct mddev *mddev,
5655				struct stripe_head *sh)
5656{
5657	struct blk_plug_cb *blk_cb = blk_check_plugged(
5658		raid5_unplug, mddev,
5659		sizeof(struct raid5_plug_cb));
5660	struct raid5_plug_cb *cb;
5661
5662	if (!blk_cb) {
5663		raid5_release_stripe(sh);
5664		return;
5665	}
5666
5667	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5668
5669	if (cb->list.next == NULL) {
5670		int i;
5671		INIT_LIST_HEAD(&cb->list);
5672		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5673			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5674	}
5675
5676	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5677		list_add_tail(&sh->lru, &cb->list);
5678	else
5679		raid5_release_stripe(sh);
5680}
5681
5682static void make_discard_request(struct mddev *mddev, struct bio *bi)
5683{
5684	struct r5conf *conf = mddev->private;
5685	sector_t logical_sector, last_sector;
5686	struct stripe_head *sh;
5687	int stripe_sectors;
5688
5689	if (mddev->reshape_position != MaxSector)
5690		/* Skip discard while reshape is happening */
5691		return;
5692
5693	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5694	last_sector = bio_end_sector(bi);
5695
5696	bi->bi_next = NULL;
5697
5698	stripe_sectors = conf->chunk_sectors *
5699		(conf->raid_disks - conf->max_degraded);
5700	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5701					       stripe_sectors);
5702	sector_div(last_sector, stripe_sectors);
5703
5704	logical_sector *= conf->chunk_sectors;
5705	last_sector *= conf->chunk_sectors;
5706
5707	for (; logical_sector < last_sector;
5708	     logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5709		DEFINE_WAIT(w);
5710		int d;
5711	again:
5712		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5713		prepare_to_wait(&conf->wait_for_overlap, &w,
5714				TASK_UNINTERRUPTIBLE);
5715		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5716		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5717			raid5_release_stripe(sh);
5718			schedule();
5719			goto again;
5720		}
5721		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5722		spin_lock_irq(&sh->stripe_lock);
5723		for (d = 0; d < conf->raid_disks; d++) {
5724			if (d == sh->pd_idx || d == sh->qd_idx)
5725				continue;
5726			if (sh->dev[d].towrite || sh->dev[d].toread) {
5727				set_bit(R5_Overlap, &sh->dev[d].flags);
5728				spin_unlock_irq(&sh->stripe_lock);
5729				raid5_release_stripe(sh);
5730				schedule();
5731				goto again;
5732			}
5733		}
5734		set_bit(STRIPE_DISCARD, &sh->state);
5735		finish_wait(&conf->wait_for_overlap, &w);
5736		sh->overwrite_disks = 0;
5737		for (d = 0; d < conf->raid_disks; d++) {
5738			if (d == sh->pd_idx || d == sh->qd_idx)
5739				continue;
5740			sh->dev[d].towrite = bi;
5741			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5742			bio_inc_remaining(bi);
5743			md_write_inc(mddev, bi);
5744			sh->overwrite_disks++;
5745		}
5746		spin_unlock_irq(&sh->stripe_lock);
5747		if (conf->mddev->bitmap) {
5748			for (d = 0;
5749			     d < conf->raid_disks - conf->max_degraded;
5750			     d++)
5751				md_bitmap_startwrite(mddev->bitmap,
5752						     sh->sector,
5753						     RAID5_STRIPE_SECTORS(conf),
5754						     0);
5755			sh->bm_seq = conf->seq_flush + 1;
5756			set_bit(STRIPE_BIT_DELAY, &sh->state);
5757		}
5758
5759		set_bit(STRIPE_HANDLE, &sh->state);
5760		clear_bit(STRIPE_DELAYED, &sh->state);
5761		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5762			atomic_inc(&conf->preread_active_stripes);
5763		release_stripe_plug(mddev, sh);
5764	}
5765
5766	bio_endio(bi);
5767}
5768
5769static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5770{
5771	struct r5conf *conf = mddev->private;
5772	int dd_idx;
5773	sector_t new_sector;
5774	sector_t logical_sector, last_sector;
5775	struct stripe_head *sh;
5776	const int rw = bio_data_dir(bi);
5777	DEFINE_WAIT(w);
5778	bool do_prepare;
5779	bool do_flush = false;
5780
5781	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5782		int ret = log_handle_flush_request(conf, bi);
5783
5784		if (ret == 0)
5785			return true;
5786		if (ret == -ENODEV) {
5787			if (md_flush_request(mddev, bi))
5788				return true;
5789		}
5790		/* ret == -EAGAIN, fallback */
5791		/*
5792		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5793		 * we need to flush journal device
5794		 */
5795		do_flush = bi->bi_opf & REQ_PREFLUSH;
5796	}
5797
5798	if (!md_write_start(mddev, bi))
5799		return false;
5800	/*
5801	 * If array is degraded, better not do chunk aligned read because
5802	 * later we might have to read it again in order to reconstruct
5803	 * data on failed drives.
5804	 */
5805	if (rw == READ && mddev->degraded == 0 &&
5806	    mddev->reshape_position == MaxSector) {
5807		bi = chunk_aligned_read(mddev, bi);
5808		if (!bi)
5809			return true;
5810	}
5811
5812	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5813		make_discard_request(mddev, bi);
5814		md_write_end(mddev);
5815		return true;
5816	}
5817
5818	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5819	last_sector = bio_end_sector(bi);
5820	bi->bi_next = NULL;
 
5821
5822	md_account_bio(mddev, &bi);
5823	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5824	for (; logical_sector < last_sector; logical_sector += RAID5_STRIPE_SECTORS(conf)) {
 
5825		int previous;
5826		int seq;
5827
5828		do_prepare = false;
5829	retry:
5830		seq = read_seqcount_begin(&conf->gen_lock);
5831		previous = 0;
5832		if (do_prepare)
5833			prepare_to_wait(&conf->wait_for_overlap, &w,
5834				TASK_UNINTERRUPTIBLE);
5835		if (unlikely(conf->reshape_progress != MaxSector)) {
5836			/* spinlock is needed as reshape_progress may be
5837			 * 64bit on a 32bit platform, and so it might be
5838			 * possible to see a half-updated value
5839			 * Of course reshape_progress could change after
5840			 * the lock is dropped, so once we get a reference
5841			 * to the stripe that we think it is, we will have
5842			 * to check again.
5843			 */
5844			spin_lock_irq(&conf->device_lock);
5845			if (mddev->reshape_backwards
5846			    ? logical_sector < conf->reshape_progress
5847			    : logical_sector >= conf->reshape_progress) {
 
5848				previous = 1;
5849			} else {
5850				if (mddev->reshape_backwards
5851				    ? logical_sector < conf->reshape_safe
5852				    : logical_sector >= conf->reshape_safe) {
5853					spin_unlock_irq(&conf->device_lock);
5854					schedule();
5855					do_prepare = true;
5856					goto retry;
5857				}
5858			}
5859			spin_unlock_irq(&conf->device_lock);
5860		}
 
5861
5862		new_sector = raid5_compute_sector(conf, logical_sector,
5863						  previous,
5864						  &dd_idx, NULL);
5865		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5866			(unsigned long long)new_sector,
5867			(unsigned long long)logical_sector);
5868
5869		sh = raid5_get_active_stripe(conf, new_sector, previous,
5870				       (bi->bi_opf & REQ_RAHEAD), 0);
5871		if (sh) {
5872			if (unlikely(previous)) {
5873				/* expansion might have moved on while waiting for a
5874				 * stripe, so we must do the range check again.
5875				 * Expansion could still move past after this
5876				 * test, but as we are holding a reference to
5877				 * 'sh', we know that if that happens,
5878				 *  STRIPE_EXPANDING will get set and the expansion
5879				 * won't proceed until we finish with the stripe.
5880				 */
5881				int must_retry = 0;
5882				spin_lock_irq(&conf->device_lock);
5883				if (mddev->reshape_backwards
5884				    ? logical_sector >= conf->reshape_progress
5885				    : logical_sector < conf->reshape_progress)
5886					/* mismatch, need to try again */
5887					must_retry = 1;
5888				spin_unlock_irq(&conf->device_lock);
5889				if (must_retry) {
5890					raid5_release_stripe(sh);
5891					schedule();
5892					do_prepare = true;
5893					goto retry;
5894				}
5895			}
5896			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5897				/* Might have got the wrong stripe_head
5898				 * by accident
 
 
 
 
 
5899				 */
5900				raid5_release_stripe(sh);
 
 
 
 
 
5901				goto retry;
5902			}
5903
5904			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5905			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5906				/* Stripe is busy expanding or
5907				 * add failed due to overlap.  Flush everything
5908				 * and wait a while
5909				 */
5910				md_wakeup_thread(mddev->thread);
5911				raid5_release_stripe(sh);
5912				schedule();
5913				do_prepare = true;
5914				goto retry;
5915			}
5916			if (do_flush) {
5917				set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5918				/* we only need flush for one stripe */
5919				do_flush = false;
5920			}
5921
5922			set_bit(STRIPE_HANDLE, &sh->state);
5923			clear_bit(STRIPE_DELAYED, &sh->state);
5924			if ((!sh->batch_head || sh == sh->batch_head) &&
5925			    (bi->bi_opf & REQ_SYNC) &&
5926			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5927				atomic_inc(&conf->preread_active_stripes);
5928			release_stripe_plug(mddev, sh);
5929		} else {
5930			/* cannot get stripe for read-ahead, just give-up */
5931			bi->bi_status = BLK_STS_IOERR;
 
5932			break;
5933		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5934	}
5935	finish_wait(&conf->wait_for_overlap, &w);
5936
5937	if (rw == WRITE)
5938		md_write_end(mddev);
5939	bio_endio(bi);
5940	return true;
5941}
5942
5943static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5944
5945static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5946{
5947	/* reshaping is quite different to recovery/resync so it is
5948	 * handled quite separately ... here.
5949	 *
5950	 * On each call to sync_request, we gather one chunk worth of
5951	 * destination stripes and flag them as expanding.
5952	 * Then we find all the source stripes and request reads.
5953	 * As the reads complete, handle_stripe will copy the data
5954	 * into the destination stripe and release that stripe.
5955	 */
5956	struct r5conf *conf = mddev->private;
5957	struct stripe_head *sh;
5958	struct md_rdev *rdev;
5959	sector_t first_sector, last_sector;
5960	int raid_disks = conf->previous_raid_disks;
5961	int data_disks = raid_disks - conf->max_degraded;
5962	int new_data_disks = conf->raid_disks - conf->max_degraded;
5963	int i;
5964	int dd_idx;
5965	sector_t writepos, readpos, safepos;
5966	sector_t stripe_addr;
5967	int reshape_sectors;
5968	struct list_head stripes;
5969	sector_t retn;
5970
5971	if (sector_nr == 0) {
5972		/* If restarting in the middle, skip the initial sectors */
5973		if (mddev->reshape_backwards &&
5974		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5975			sector_nr = raid5_size(mddev, 0, 0)
5976				- conf->reshape_progress;
5977		} else if (mddev->reshape_backwards &&
5978			   conf->reshape_progress == MaxSector) {
5979			/* shouldn't happen, but just in case, finish up.*/
5980			sector_nr = MaxSector;
5981		} else if (!mddev->reshape_backwards &&
5982			   conf->reshape_progress > 0)
5983			sector_nr = conf->reshape_progress;
5984		sector_div(sector_nr, new_data_disks);
5985		if (sector_nr) {
5986			mddev->curr_resync_completed = sector_nr;
5987			sysfs_notify_dirent_safe(mddev->sysfs_completed);
5988			*skipped = 1;
5989			retn = sector_nr;
5990			goto finish;
5991		}
5992	}
5993
5994	/* We need to process a full chunk at a time.
5995	 * If old and new chunk sizes differ, we need to process the
5996	 * largest of these
5997	 */
 
 
 
 
5998
5999	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6000
6001	/* We update the metadata at least every 10 seconds, or when
6002	 * the data about to be copied would over-write the source of
6003	 * the data at the front of the range.  i.e. one new_stripe
6004	 * along from reshape_progress new_maps to after where
6005	 * reshape_safe old_maps to
6006	 */
6007	writepos = conf->reshape_progress;
6008	sector_div(writepos, new_data_disks);
6009	readpos = conf->reshape_progress;
6010	sector_div(readpos, data_disks);
6011	safepos = conf->reshape_safe;
6012	sector_div(safepos, data_disks);
6013	if (mddev->reshape_backwards) {
6014		BUG_ON(writepos < reshape_sectors);
6015		writepos -= reshape_sectors;
6016		readpos += reshape_sectors;
6017		safepos += reshape_sectors;
6018	} else {
6019		writepos += reshape_sectors;
6020		/* readpos and safepos are worst-case calculations.
6021		 * A negative number is overly pessimistic, and causes
6022		 * obvious problems for unsigned storage.  So clip to 0.
6023		 */
6024		readpos -= min_t(sector_t, reshape_sectors, readpos);
6025		safepos -= min_t(sector_t, reshape_sectors, safepos);
6026	}
6027
6028	/* Having calculated the 'writepos' possibly use it
6029	 * to set 'stripe_addr' which is where we will write to.
6030	 */
6031	if (mddev->reshape_backwards) {
6032		BUG_ON(conf->reshape_progress == 0);
6033		stripe_addr = writepos;
6034		BUG_ON((mddev->dev_sectors &
6035			~((sector_t)reshape_sectors - 1))
6036		       - reshape_sectors - stripe_addr
6037		       != sector_nr);
6038	} else {
6039		BUG_ON(writepos != sector_nr + reshape_sectors);
6040		stripe_addr = sector_nr;
6041	}
6042
6043	/* 'writepos' is the most advanced device address we might write.
6044	 * 'readpos' is the least advanced device address we might read.
6045	 * 'safepos' is the least address recorded in the metadata as having
6046	 *     been reshaped.
6047	 * If there is a min_offset_diff, these are adjusted either by
6048	 * increasing the safepos/readpos if diff is negative, or
6049	 * increasing writepos if diff is positive.
6050	 * If 'readpos' is then behind 'writepos', there is no way that we can
6051	 * ensure safety in the face of a crash - that must be done by userspace
6052	 * making a backup of the data.  So in that case there is no particular
6053	 * rush to update metadata.
6054	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6055	 * update the metadata to advance 'safepos' to match 'readpos' so that
6056	 * we can be safe in the event of a crash.
6057	 * So we insist on updating metadata if safepos is behind writepos and
6058	 * readpos is beyond writepos.
6059	 * In any case, update the metadata every 10 seconds.
6060	 * Maybe that number should be configurable, but I'm not sure it is
6061	 * worth it.... maybe it could be a multiple of safemode_delay???
6062	 */
6063	if (conf->min_offset_diff < 0) {
6064		safepos += -conf->min_offset_diff;
6065		readpos += -conf->min_offset_diff;
6066	} else
6067		writepos += conf->min_offset_diff;
6068
6069	if ((mddev->reshape_backwards
6070	     ? (safepos > writepos && readpos < writepos)
6071	     : (safepos < writepos && readpos > writepos)) ||
6072	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6073		/* Cannot proceed until we've updated the superblock... */
6074		wait_event(conf->wait_for_overlap,
6075			   atomic_read(&conf->reshape_stripes)==0
6076			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6077		if (atomic_read(&conf->reshape_stripes) != 0)
6078			return 0;
6079		mddev->reshape_position = conf->reshape_progress;
6080		mddev->curr_resync_completed = sector_nr;
6081		if (!mddev->reshape_backwards)
6082			/* Can update recovery_offset */
6083			rdev_for_each(rdev, mddev)
6084				if (rdev->raid_disk >= 0 &&
6085				    !test_bit(Journal, &rdev->flags) &&
6086				    !test_bit(In_sync, &rdev->flags) &&
6087				    rdev->recovery_offset < sector_nr)
6088					rdev->recovery_offset = sector_nr;
6089
6090		conf->reshape_checkpoint = jiffies;
6091		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6092		md_wakeup_thread(mddev->thread);
6093		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6094			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6095		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6096			return 0;
6097		spin_lock_irq(&conf->device_lock);
6098		conf->reshape_safe = mddev->reshape_position;
6099		spin_unlock_irq(&conf->device_lock);
6100		wake_up(&conf->wait_for_overlap);
6101		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6102	}
6103
 
 
 
 
 
 
 
 
 
 
 
6104	INIT_LIST_HEAD(&stripes);
6105	for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6106		int j;
6107		int skipped_disk = 0;
6108		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
6109		set_bit(STRIPE_EXPANDING, &sh->state);
6110		atomic_inc(&conf->reshape_stripes);
6111		/* If any of this stripe is beyond the end of the old
6112		 * array, then we need to zero those blocks
6113		 */
6114		for (j=sh->disks; j--;) {
6115			sector_t s;
6116			if (j == sh->pd_idx)
6117				continue;
6118			if (conf->level == 6 &&
6119			    j == sh->qd_idx)
6120				continue;
6121			s = raid5_compute_blocknr(sh, j, 0);
6122			if (s < raid5_size(mddev, 0, 0)) {
6123				skipped_disk = 1;
6124				continue;
6125			}
6126			memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6127			set_bit(R5_Expanded, &sh->dev[j].flags);
6128			set_bit(R5_UPTODATE, &sh->dev[j].flags);
6129		}
6130		if (!skipped_disk) {
6131			set_bit(STRIPE_EXPAND_READY, &sh->state);
6132			set_bit(STRIPE_HANDLE, &sh->state);
6133		}
6134		list_add(&sh->lru, &stripes);
6135	}
6136	spin_lock_irq(&conf->device_lock);
6137	if (mddev->reshape_backwards)
6138		conf->reshape_progress -= reshape_sectors * new_data_disks;
6139	else
6140		conf->reshape_progress += reshape_sectors * new_data_disks;
6141	spin_unlock_irq(&conf->device_lock);
6142	/* Ok, those stripe are ready. We can start scheduling
6143	 * reads on the source stripes.
6144	 * The source stripes are determined by mapping the first and last
6145	 * block on the destination stripes.
6146	 */
6147	first_sector =
6148		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6149				     1, &dd_idx, NULL);
6150	last_sector =
6151		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6152					    * new_data_disks - 1),
6153				     1, &dd_idx, NULL);
6154	if (last_sector >= mddev->dev_sectors)
6155		last_sector = mddev->dev_sectors - 1;
6156	while (first_sector <= last_sector) {
6157		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
6158		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6159		set_bit(STRIPE_HANDLE, &sh->state);
6160		raid5_release_stripe(sh);
6161		first_sector += RAID5_STRIPE_SECTORS(conf);
6162	}
6163	/* Now that the sources are clearly marked, we can release
6164	 * the destination stripes
6165	 */
6166	while (!list_empty(&stripes)) {
6167		sh = list_entry(stripes.next, struct stripe_head, lru);
6168		list_del_init(&sh->lru);
6169		raid5_release_stripe(sh);
6170	}
6171	/* If this takes us to the resync_max point where we have to pause,
6172	 * then we need to write out the superblock.
6173	 */
6174	sector_nr += reshape_sectors;
6175	retn = reshape_sectors;
6176finish:
6177	if (mddev->curr_resync_completed > mddev->resync_max ||
6178	    (sector_nr - mddev->curr_resync_completed) * 2
6179	    >= mddev->resync_max - mddev->curr_resync_completed) {
6180		/* Cannot proceed until we've updated the superblock... */
6181		wait_event(conf->wait_for_overlap,
6182			   atomic_read(&conf->reshape_stripes) == 0
6183			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6184		if (atomic_read(&conf->reshape_stripes) != 0)
6185			goto ret;
6186		mddev->reshape_position = conf->reshape_progress;
6187		mddev->curr_resync_completed = sector_nr;
6188		if (!mddev->reshape_backwards)
6189			/* Can update recovery_offset */
6190			rdev_for_each(rdev, mddev)
6191				if (rdev->raid_disk >= 0 &&
6192				    !test_bit(Journal, &rdev->flags) &&
6193				    !test_bit(In_sync, &rdev->flags) &&
6194				    rdev->recovery_offset < sector_nr)
6195					rdev->recovery_offset = sector_nr;
6196		conf->reshape_checkpoint = jiffies;
6197		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6198		md_wakeup_thread(mddev->thread);
6199		wait_event(mddev->sb_wait,
6200			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6201			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6202		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6203			goto ret;
6204		spin_lock_irq(&conf->device_lock);
6205		conf->reshape_safe = mddev->reshape_position;
6206		spin_unlock_irq(&conf->device_lock);
6207		wake_up(&conf->wait_for_overlap);
6208		sysfs_notify_dirent_safe(mddev->sysfs_completed);
6209	}
6210ret:
6211	return retn;
6212}
6213
6214static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6215					  int *skipped)
6216{
6217	struct r5conf *conf = mddev->private;
6218	struct stripe_head *sh;
6219	sector_t max_sector = mddev->dev_sectors;
6220	sector_t sync_blocks;
6221	int still_degraded = 0;
6222	int i;
6223
6224	if (sector_nr >= max_sector) {
6225		/* just being told to finish up .. nothing much to do */
6226
6227		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6228			end_reshape(conf);
6229			return 0;
6230		}
6231
6232		if (mddev->curr_resync < max_sector) /* aborted */
6233			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6234					   &sync_blocks, 1);
6235		else /* completed sync */
6236			conf->fullsync = 0;
6237		md_bitmap_close_sync(mddev->bitmap);
6238
6239		return 0;
6240	}
6241
6242	/* Allow raid5_quiesce to complete */
6243	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6244
6245	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6246		return reshape_request(mddev, sector_nr, skipped);
6247
6248	/* No need to check resync_max as we never do more than one
6249	 * stripe, and as resync_max will always be on a chunk boundary,
6250	 * if the check in md_do_sync didn't fire, there is no chance
6251	 * of overstepping resync_max here
6252	 */
6253
6254	/* if there is too many failed drives and we are trying
6255	 * to resync, then assert that we are finished, because there is
6256	 * nothing we can do.
6257	 */
6258	if (mddev->degraded >= conf->max_degraded &&
6259	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6260		sector_t rv = mddev->dev_sectors - sector_nr;
6261		*skipped = 1;
6262		return rv;
6263	}
6264	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6265	    !conf->fullsync &&
6266	    !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6267	    sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6268		/* we can skip this block, and probably more */
6269		do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6270		*skipped = 1;
6271		/* keep things rounded to whole stripes */
6272		return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6273	}
6274
6275	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6276
6277	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
 
 
6278	if (sh == NULL) {
6279		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6280		/* make sure we don't swamp the stripe cache if someone else
6281		 * is trying to get access
6282		 */
6283		schedule_timeout_uninterruptible(1);
6284	}
6285	/* Need to check if array will still be degraded after recovery/resync
6286	 * Note in case of > 1 drive failures it's possible we're rebuilding
6287	 * one drive while leaving another faulty drive in array.
6288	 */
6289	rcu_read_lock();
6290	for (i = 0; i < conf->raid_disks; i++) {
6291		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6292
6293		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6294			still_degraded = 1;
6295	}
6296	rcu_read_unlock();
6297
6298	md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6299
6300	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6301	set_bit(STRIPE_HANDLE, &sh->state);
6302
6303	raid5_release_stripe(sh);
 
6304
6305	return RAID5_STRIPE_SECTORS(conf);
6306}
6307
6308static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6309			       unsigned int offset)
6310{
6311	/* We may not be able to submit a whole bio at once as there
6312	 * may not be enough stripe_heads available.
6313	 * We cannot pre-allocate enough stripe_heads as we may need
6314	 * more than exist in the cache (if we allow ever large chunks).
6315	 * So we do one stripe head at a time and record in
6316	 * ->bi_hw_segments how many have been done.
6317	 *
6318	 * We *know* that this entire raid_bio is in one chunk, so
6319	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6320	 */
6321	struct stripe_head *sh;
6322	int dd_idx;
6323	sector_t sector, logical_sector, last_sector;
6324	int scnt = 0;
 
6325	int handled = 0;
6326
6327	logical_sector = raid_bio->bi_iter.bi_sector &
6328		~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6329	sector = raid5_compute_sector(conf, logical_sector,
6330				      0, &dd_idx, NULL);
6331	last_sector = bio_end_sector(raid_bio);
6332
6333	for (; logical_sector < last_sector;
6334	     logical_sector += RAID5_STRIPE_SECTORS(conf),
6335		     sector += RAID5_STRIPE_SECTORS(conf),
6336		     scnt++) {
6337
6338		if (scnt < offset)
6339			/* already done this stripe */
6340			continue;
6341
6342		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6343
6344		if (!sh) {
6345			/* failed to get a stripe - must wait */
 
6346			conf->retry_read_aligned = raid_bio;
6347			conf->retry_read_offset = scnt;
6348			return handled;
6349		}
6350
6351		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6352			raid5_release_stripe(sh);
 
 
6353			conf->retry_read_aligned = raid_bio;
6354			conf->retry_read_offset = scnt;
6355			return handled;
6356		}
6357
6358		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6359		handle_stripe(sh);
6360		raid5_release_stripe(sh);
6361		handled++;
6362	}
6363
6364	bio_endio(raid_bio);
6365
 
 
6366	if (atomic_dec_and_test(&conf->active_aligned_reads))
6367		wake_up(&conf->wait_for_quiescent);
6368	return handled;
6369}
6370
6371static int handle_active_stripes(struct r5conf *conf, int group,
6372				 struct r5worker *worker,
6373				 struct list_head *temp_inactive_list)
6374		__releases(&conf->device_lock)
6375		__acquires(&conf->device_lock)
6376{
6377	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6378	int i, batch_size = 0, hash;
6379	bool release_inactive = false;
6380
6381	while (batch_size < MAX_STRIPE_BATCH &&
6382			(sh = __get_priority_stripe(conf, group)) != NULL)
6383		batch[batch_size++] = sh;
6384
6385	if (batch_size == 0) {
6386		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6387			if (!list_empty(temp_inactive_list + i))
6388				break;
6389		if (i == NR_STRIPE_HASH_LOCKS) {
6390			spin_unlock_irq(&conf->device_lock);
6391			log_flush_stripe_to_raid(conf);
6392			spin_lock_irq(&conf->device_lock);
6393			return batch_size;
6394		}
6395		release_inactive = true;
6396	}
6397	spin_unlock_irq(&conf->device_lock);
6398
6399	release_inactive_stripe_list(conf, temp_inactive_list,
6400				     NR_STRIPE_HASH_LOCKS);
6401
6402	r5l_flush_stripe_to_raid(conf->log);
6403	if (release_inactive) {
6404		spin_lock_irq(&conf->device_lock);
6405		return 0;
6406	}
6407
6408	for (i = 0; i < batch_size; i++)
6409		handle_stripe(batch[i]);
6410	log_write_stripe_run(conf);
6411
6412	cond_resched();
6413
6414	spin_lock_irq(&conf->device_lock);
6415	for (i = 0; i < batch_size; i++) {
6416		hash = batch[i]->hash_lock_index;
6417		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6418	}
6419	return batch_size;
6420}
6421
6422static void raid5_do_work(struct work_struct *work)
6423{
6424	struct r5worker *worker = container_of(work, struct r5worker, work);
6425	struct r5worker_group *group = worker->group;
6426	struct r5conf *conf = group->conf;
6427	struct mddev *mddev = conf->mddev;
6428	int group_id = group - conf->worker_groups;
6429	int handled;
6430	struct blk_plug plug;
6431
6432	pr_debug("+++ raid5worker active\n");
6433
6434	blk_start_plug(&plug);
6435	handled = 0;
6436	spin_lock_irq(&conf->device_lock);
6437	while (1) {
6438		int batch_size, released;
6439
6440		released = release_stripe_list(conf, worker->temp_inactive_list);
6441
6442		batch_size = handle_active_stripes(conf, group_id, worker,
6443						   worker->temp_inactive_list);
6444		worker->working = false;
6445		if (!batch_size && !released)
6446			break;
6447		handled += batch_size;
6448		wait_event_lock_irq(mddev->sb_wait,
6449			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6450			conf->device_lock);
6451	}
6452	pr_debug("%d stripes handled\n", handled);
6453
6454	spin_unlock_irq(&conf->device_lock);
6455
6456	flush_deferred_bios(conf);
6457
6458	r5l_flush_stripe_to_raid(conf->log);
6459
6460	async_tx_issue_pending_all();
6461	blk_finish_plug(&plug);
6462
6463	pr_debug("--- raid5worker inactive\n");
6464}
6465
6466/*
6467 * This is our raid5 kernel thread.
6468 *
6469 * We scan the hash table for stripes which can be handled now.
6470 * During the scan, completed stripes are saved for us by the interrupt
6471 * handler, so that they will not have to wait for our next wakeup.
6472 */
6473static void raid5d(struct md_thread *thread)
6474{
6475	struct mddev *mddev = thread->mddev;
6476	struct r5conf *conf = mddev->private;
6477	int handled;
6478	struct blk_plug plug;
6479
6480	pr_debug("+++ raid5d active\n");
6481
6482	md_check_recovery(mddev);
6483
6484	blk_start_plug(&plug);
6485	handled = 0;
6486	spin_lock_irq(&conf->device_lock);
6487	while (1) {
6488		struct bio *bio;
6489		int batch_size, released;
6490		unsigned int offset;
6491
6492		released = release_stripe_list(conf, conf->temp_inactive_list);
6493		if (released)
6494			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6495
6496		if (
6497		    !list_empty(&conf->bitmap_list)) {
6498			/* Now is a good time to flush some bitmap updates */
6499			conf->seq_flush++;
6500			spin_unlock_irq(&conf->device_lock);
6501			md_bitmap_unplug(mddev->bitmap);
6502			spin_lock_irq(&conf->device_lock);
6503			conf->seq_write = conf->seq_flush;
6504			activate_bit_delay(conf, conf->temp_inactive_list);
6505		}
6506		raid5_activate_delayed(conf);
 
6507
6508		while ((bio = remove_bio_from_retry(conf, &offset))) {
6509			int ok;
6510			spin_unlock_irq(&conf->device_lock);
6511			ok = retry_aligned_read(conf, bio, offset);
6512			spin_lock_irq(&conf->device_lock);
6513			if (!ok)
6514				break;
6515			handled++;
6516		}
6517
6518		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6519						   conf->temp_inactive_list);
6520		if (!batch_size && !released)
6521			break;
6522		handled += batch_size;
 
 
 
 
 
6523
6524		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6525			spin_unlock_irq(&conf->device_lock);
6526			md_check_recovery(mddev);
6527			spin_lock_irq(&conf->device_lock);
6528		}
6529	}
6530	pr_debug("%d stripes handled\n", handled);
6531
6532	spin_unlock_irq(&conf->device_lock);
6533	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6534	    mutex_trylock(&conf->cache_size_mutex)) {
6535		grow_one_stripe(conf, __GFP_NOWARN);
6536		/* Set flag even if allocation failed.  This helps
6537		 * slow down allocation requests when mem is short
6538		 */
6539		set_bit(R5_DID_ALLOC, &conf->cache_state);
6540		mutex_unlock(&conf->cache_size_mutex);
6541	}
6542
6543	flush_deferred_bios(conf);
6544
6545	r5l_flush_stripe_to_raid(conf->log);
6546
6547	async_tx_issue_pending_all();
6548	blk_finish_plug(&plug);
6549
6550	pr_debug("--- raid5d inactive\n");
6551}
6552
6553static ssize_t
6554raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6555{
6556	struct r5conf *conf;
6557	int ret = 0;
6558	spin_lock(&mddev->lock);
6559	conf = mddev->private;
6560	if (conf)
6561		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6562	spin_unlock(&mddev->lock);
6563	return ret;
6564}
6565
6566int
6567raid5_set_cache_size(struct mddev *mddev, int size)
6568{
6569	int result = 0;
6570	struct r5conf *conf = mddev->private;
6571
6572	if (size <= 16 || size > 32768)
6573		return -EINVAL;
6574
6575	conf->min_nr_stripes = size;
6576	mutex_lock(&conf->cache_size_mutex);
6577	while (size < conf->max_nr_stripes &&
6578	       drop_one_stripe(conf))
6579		;
6580	mutex_unlock(&conf->cache_size_mutex);
6581
6582	md_allow_write(mddev);
6583
6584	mutex_lock(&conf->cache_size_mutex);
6585	while (size > conf->max_nr_stripes)
6586		if (!grow_one_stripe(conf, GFP_KERNEL)) {
6587			conf->min_nr_stripes = conf->max_nr_stripes;
6588			result = -ENOMEM;
6589			break;
6590		}
6591	mutex_unlock(&conf->cache_size_mutex);
6592
6593	return result;
 
 
 
 
 
 
6594}
6595EXPORT_SYMBOL(raid5_set_cache_size);
6596
6597static ssize_t
6598raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6599{
6600	struct r5conf *conf;
6601	unsigned long new;
6602	int err;
6603
6604	if (len >= PAGE_SIZE)
6605		return -EINVAL;
6606	if (kstrtoul(page, 10, &new))
 
 
 
6607		return -EINVAL;
6608	err = mddev_lock(mddev);
6609	if (err)
6610		return err;
6611	conf = mddev->private;
6612	if (!conf)
6613		err = -ENODEV;
6614	else
6615		err = raid5_set_cache_size(mddev, new);
6616	mddev_unlock(mddev);
6617
6618	return err ?: len;
6619}
6620
6621static struct md_sysfs_entry
6622raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6623				raid5_show_stripe_cache_size,
6624				raid5_store_stripe_cache_size);
6625
6626static ssize_t
6627raid5_show_rmw_level(struct mddev  *mddev, char *page)
6628{
6629	struct r5conf *conf = mddev->private;
6630	if (conf)
6631		return sprintf(page, "%d\n", conf->rmw_level);
6632	else
6633		return 0;
6634}
6635
6636static ssize_t
6637raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6638{
6639	struct r5conf *conf = mddev->private;
6640	unsigned long new;
6641
 
6642	if (!conf)
6643		return -ENODEV;
6644
6645	if (len >= PAGE_SIZE)
6646		return -EINVAL;
6647
6648	if (kstrtoul(page, 10, &new))
6649		return -EINVAL;
6650
6651	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6652		return -EINVAL;
6653
6654	if (new != PARITY_DISABLE_RMW &&
6655	    new != PARITY_ENABLE_RMW &&
6656	    new != PARITY_PREFER_RMW)
6657		return -EINVAL;
6658
6659	conf->rmw_level = new;
6660	return len;
6661}
6662
6663static struct md_sysfs_entry
6664raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6665			 raid5_show_rmw_level,
6666			 raid5_store_rmw_level);
6667
6668static ssize_t
6669raid5_show_stripe_size(struct mddev  *mddev, char *page)
6670{
6671	struct r5conf *conf;
6672	int ret = 0;
6673
6674	spin_lock(&mddev->lock);
6675	conf = mddev->private;
6676	if (conf)
6677		ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6678	spin_unlock(&mddev->lock);
6679	return ret;
6680}
6681
6682#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6683static ssize_t
6684raid5_store_stripe_size(struct mddev  *mddev, const char *page, size_t len)
6685{
6686	struct r5conf *conf;
6687	unsigned long new;
6688	int err;
6689	int size;
6690
6691	if (len >= PAGE_SIZE)
6692		return -EINVAL;
6693	if (kstrtoul(page, 10, &new))
6694		return -EINVAL;
6695
6696	/*
6697	 * The value should not be bigger than PAGE_SIZE. It requires to
6698	 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6699	 * of two.
6700	 */
6701	if (new % DEFAULT_STRIPE_SIZE != 0 ||
6702			new > PAGE_SIZE || new == 0 ||
6703			new != roundup_pow_of_two(new))
6704		return -EINVAL;
6705
6706	err = mddev_lock(mddev);
6707	if (err)
6708		return err;
6709
6710	conf = mddev->private;
6711	if (!conf) {
6712		err = -ENODEV;
6713		goto out_unlock;
6714	}
6715
6716	if (new == conf->stripe_size)
6717		goto out_unlock;
6718
6719	pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6720			conf->stripe_size, new);
6721
6722	if (mddev->sync_thread ||
6723		test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6724		mddev->reshape_position != MaxSector ||
6725		mddev->sysfs_active) {
6726		err = -EBUSY;
6727		goto out_unlock;
6728	}
6729
6730	mddev_suspend(mddev);
6731	mutex_lock(&conf->cache_size_mutex);
6732	size = conf->max_nr_stripes;
6733
6734	shrink_stripes(conf);
6735
6736	conf->stripe_size = new;
6737	conf->stripe_shift = ilog2(new) - 9;
6738	conf->stripe_sectors = new >> 9;
6739	if (grow_stripes(conf, size)) {
6740		pr_warn("md/raid:%s: couldn't allocate buffers\n",
6741				mdname(mddev));
6742		err = -ENOMEM;
6743	}
6744	mutex_unlock(&conf->cache_size_mutex);
6745	mddev_resume(mddev);
6746
6747out_unlock:
6748	mddev_unlock(mddev);
6749	return err ?: len;
6750}
6751
6752static struct md_sysfs_entry
6753raid5_stripe_size = __ATTR(stripe_size, 0644,
6754			 raid5_show_stripe_size,
6755			 raid5_store_stripe_size);
6756#else
6757static struct md_sysfs_entry
6758raid5_stripe_size = __ATTR(stripe_size, 0444,
6759			 raid5_show_stripe_size,
6760			 NULL);
6761#endif
6762
6763static ssize_t
6764raid5_show_preread_threshold(struct mddev *mddev, char *page)
6765{
6766	struct r5conf *conf;
6767	int ret = 0;
6768	spin_lock(&mddev->lock);
6769	conf = mddev->private;
6770	if (conf)
6771		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6772	spin_unlock(&mddev->lock);
6773	return ret;
6774}
6775
6776static ssize_t
6777raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6778{
6779	struct r5conf *conf;
6780	unsigned long new;
6781	int err;
6782
6783	if (len >= PAGE_SIZE)
6784		return -EINVAL;
6785	if (kstrtoul(page, 10, &new))
6786		return -EINVAL;
6787
6788	err = mddev_lock(mddev);
6789	if (err)
6790		return err;
6791	conf = mddev->private;
6792	if (!conf)
6793		err = -ENODEV;
6794	else if (new > conf->min_nr_stripes)
6795		err = -EINVAL;
6796	else
6797		conf->bypass_threshold = new;
6798	mddev_unlock(mddev);
6799	return err ?: len;
6800}
6801
6802static struct md_sysfs_entry
6803raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6804					S_IRUGO | S_IWUSR,
6805					raid5_show_preread_threshold,
6806					raid5_store_preread_threshold);
6807
6808static ssize_t
6809raid5_show_skip_copy(struct mddev *mddev, char *page)
6810{
6811	struct r5conf *conf;
6812	int ret = 0;
6813	spin_lock(&mddev->lock);
6814	conf = mddev->private;
6815	if (conf)
6816		ret = sprintf(page, "%d\n", conf->skip_copy);
6817	spin_unlock(&mddev->lock);
6818	return ret;
6819}
6820
6821static ssize_t
6822raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6823{
6824	struct r5conf *conf;
6825	unsigned long new;
6826	int err;
6827
6828	if (len >= PAGE_SIZE)
6829		return -EINVAL;
6830	if (kstrtoul(page, 10, &new))
6831		return -EINVAL;
6832	new = !!new;
6833
6834	err = mddev_lock(mddev);
6835	if (err)
6836		return err;
6837	conf = mddev->private;
6838	if (!conf)
6839		err = -ENODEV;
6840	else if (new != conf->skip_copy) {
6841		struct request_queue *q = mddev->queue;
6842
6843		mddev_suspend(mddev);
6844		conf->skip_copy = new;
6845		if (new)
6846			blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
6847		else
6848			blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
6849		mddev_resume(mddev);
6850	}
6851	mddev_unlock(mddev);
6852	return err ?: len;
6853}
6854
6855static struct md_sysfs_entry
6856raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6857					raid5_show_skip_copy,
6858					raid5_store_skip_copy);
6859
6860static ssize_t
6861stripe_cache_active_show(struct mddev *mddev, char *page)
6862{
6863	struct r5conf *conf = mddev->private;
6864	if (conf)
6865		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6866	else
6867		return 0;
6868}
6869
6870static struct md_sysfs_entry
6871raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6872
6873static ssize_t
6874raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6875{
6876	struct r5conf *conf;
6877	int ret = 0;
6878	spin_lock(&mddev->lock);
6879	conf = mddev->private;
6880	if (conf)
6881		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6882	spin_unlock(&mddev->lock);
6883	return ret;
6884}
6885
6886static int alloc_thread_groups(struct r5conf *conf, int cnt,
6887			       int *group_cnt,
6888			       struct r5worker_group **worker_groups);
6889static ssize_t
6890raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6891{
6892	struct r5conf *conf;
6893	unsigned int new;
6894	int err;
6895	struct r5worker_group *new_groups, *old_groups;
6896	int group_cnt;
6897
6898	if (len >= PAGE_SIZE)
6899		return -EINVAL;
6900	if (kstrtouint(page, 10, &new))
6901		return -EINVAL;
6902	/* 8192 should be big enough */
6903	if (new > 8192)
6904		return -EINVAL;
6905
6906	err = mddev_lock(mddev);
6907	if (err)
6908		return err;
6909	conf = mddev->private;
6910	if (!conf)
6911		err = -ENODEV;
6912	else if (new != conf->worker_cnt_per_group) {
6913		mddev_suspend(mddev);
6914
6915		old_groups = conf->worker_groups;
6916		if (old_groups)
6917			flush_workqueue(raid5_wq);
6918
6919		err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
6920		if (!err) {
6921			spin_lock_irq(&conf->device_lock);
6922			conf->group_cnt = group_cnt;
6923			conf->worker_cnt_per_group = new;
6924			conf->worker_groups = new_groups;
6925			spin_unlock_irq(&conf->device_lock);
6926
6927			if (old_groups)
6928				kfree(old_groups[0].workers);
6929			kfree(old_groups);
6930		}
6931		mddev_resume(mddev);
6932	}
6933	mddev_unlock(mddev);
6934
6935	return err ?: len;
6936}
6937
6938static struct md_sysfs_entry
6939raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6940				raid5_show_group_thread_cnt,
6941				raid5_store_group_thread_cnt);
6942
6943static struct attribute *raid5_attrs[] =  {
6944	&raid5_stripecache_size.attr,
6945	&raid5_stripecache_active.attr,
6946	&raid5_preread_bypass_threshold.attr,
6947	&raid5_group_thread_cnt.attr,
6948	&raid5_skip_copy.attr,
6949	&raid5_rmw_level.attr,
6950	&raid5_stripe_size.attr,
6951	&r5c_journal_mode.attr,
6952	&ppl_write_hint.attr,
6953	NULL,
6954};
6955static const struct attribute_group raid5_attrs_group = {
6956	.name = NULL,
6957	.attrs = raid5_attrs,
6958};
6959
6960static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
6961			       struct r5worker_group **worker_groups)
6962{
6963	int i, j, k;
6964	ssize_t size;
6965	struct r5worker *workers;
6966
6967	if (cnt == 0) {
6968		*group_cnt = 0;
6969		*worker_groups = NULL;
6970		return 0;
6971	}
6972	*group_cnt = num_possible_nodes();
6973	size = sizeof(struct r5worker) * cnt;
6974	workers = kcalloc(size, *group_cnt, GFP_NOIO);
6975	*worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6976				 GFP_NOIO);
6977	if (!*worker_groups || !workers) {
6978		kfree(workers);
6979		kfree(*worker_groups);
6980		return -ENOMEM;
6981	}
6982
6983	for (i = 0; i < *group_cnt; i++) {
6984		struct r5worker_group *group;
6985
6986		group = &(*worker_groups)[i];
6987		INIT_LIST_HEAD(&group->handle_list);
6988		INIT_LIST_HEAD(&group->loprio_list);
6989		group->conf = conf;
6990		group->workers = workers + i * cnt;
6991
6992		for (j = 0; j < cnt; j++) {
6993			struct r5worker *worker = group->workers + j;
6994			worker->group = group;
6995			INIT_WORK(&worker->work, raid5_do_work);
6996
6997			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6998				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6999		}
7000	}
7001
7002	return 0;
7003}
7004
7005static void free_thread_groups(struct r5conf *conf)
7006{
7007	if (conf->worker_groups)
7008		kfree(conf->worker_groups[0].workers);
7009	kfree(conf->worker_groups);
7010	conf->worker_groups = NULL;
7011}
7012
7013static sector_t
7014raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7015{
7016	struct r5conf *conf = mddev->private;
7017
7018	if (!sectors)
7019		sectors = mddev->dev_sectors;
7020	if (!raid_disks)
7021		/* size is defined by the smallest of previous and new size */
7022		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7023
7024	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7025	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7026	return sectors * (raid_disks - conf->max_degraded);
7027}
7028
7029static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7030{
7031	safe_put_page(percpu->spare_page);
7032	percpu->spare_page = NULL;
7033	kvfree(percpu->scribble);
7034	percpu->scribble = NULL;
7035}
7036
7037static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7038{
7039	if (conf->level == 6 && !percpu->spare_page) {
7040		percpu->spare_page = alloc_page(GFP_KERNEL);
7041		if (!percpu->spare_page)
7042			return -ENOMEM;
7043	}
7044
7045	if (scribble_alloc(percpu,
7046			   max(conf->raid_disks,
7047			       conf->previous_raid_disks),
7048			   max(conf->chunk_sectors,
7049			       conf->prev_chunk_sectors)
7050			   / RAID5_STRIPE_SECTORS(conf))) {
7051		free_scratch_buffer(conf, percpu);
7052		return -ENOMEM;
7053	}
 
 
 
 
7054
7055	return 0;
7056}
7057
7058static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7059{
7060	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7061
7062	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7063	return 0;
7064}
7065
7066static void raid5_free_percpu(struct r5conf *conf)
7067{
7068	if (!conf->percpu)
7069		return;
7070
7071	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7072	free_percpu(conf->percpu);
7073}
7074
7075static void free_conf(struct r5conf *conf)
7076{
7077	int i;
7078
7079	log_exit(conf);
7080
7081	unregister_shrinker(&conf->shrinker);
7082	free_thread_groups(conf);
7083	shrink_stripes(conf);
7084	raid5_free_percpu(conf);
7085	for (i = 0; i < conf->pool_size; i++)
7086		if (conf->disks[i].extra_page)
7087			put_page(conf->disks[i].extra_page);
7088	kfree(conf->disks);
7089	bioset_exit(&conf->bio_split);
7090	kfree(conf->stripe_hashtbl);
7091	kfree(conf->pending_data);
7092	kfree(conf);
7093}
7094
7095static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
 
 
7096{
7097	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
 
7098	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7099
7100	if (alloc_scratch_buffer(conf, percpu)) {
7101		pr_warn("%s: failed memory allocation for cpu%u\n",
7102			__func__, cpu);
7103		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7104	}
7105	return 0;
7106}
 
7107
7108static int raid5_alloc_percpu(struct r5conf *conf)
7109{
7110	int err = 0;
 
 
 
 
7111
7112	conf->percpu = alloc_percpu(struct raid5_percpu);
7113	if (!conf->percpu)
7114		return -ENOMEM;
 
7115
7116	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7117	if (!err) {
7118		conf->scribble_disks = max(conf->raid_disks,
7119			conf->previous_raid_disks);
7120		conf->scribble_sectors = max(conf->chunk_sectors,
7121			conf->prev_chunk_sectors);
7122	}
7123	return err;
7124}
7125
7126static unsigned long raid5_cache_scan(struct shrinker *shrink,
7127				      struct shrink_control *sc)
7128{
7129	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7130	unsigned long ret = SHRINK_STOP;
7131
7132	if (mutex_trylock(&conf->cache_size_mutex)) {
7133		ret= 0;
7134		while (ret < sc->nr_to_scan &&
7135		       conf->max_nr_stripes > conf->min_nr_stripes) {
7136			if (drop_one_stripe(conf) == 0) {
7137				ret = SHRINK_STOP;
7138				break;
7139			}
7140			ret++;
 
 
 
 
 
7141		}
7142		mutex_unlock(&conf->cache_size_mutex);
7143	}
7144	return ret;
7145}
 
 
 
 
 
7146
7147static unsigned long raid5_cache_count(struct shrinker *shrink,
7148				       struct shrink_control *sc)
7149{
7150	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7151
7152	if (conf->max_nr_stripes < conf->min_nr_stripes)
7153		/* unlikely, but not impossible */
7154		return 0;
7155	return conf->max_nr_stripes - conf->min_nr_stripes;
7156}
7157
7158static struct r5conf *setup_conf(struct mddev *mddev)
7159{
7160	struct r5conf *conf;
7161	int raid_disk, memory, max_disks;
7162	struct md_rdev *rdev;
7163	struct disk_info *disk;
7164	char pers_name[6];
7165	int i;
7166	int group_cnt;
7167	struct r5worker_group *new_group;
7168	int ret;
7169
7170	if (mddev->new_level != 5
7171	    && mddev->new_level != 4
7172	    && mddev->new_level != 6) {
7173		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7174			mdname(mddev), mddev->new_level);
7175		return ERR_PTR(-EIO);
7176	}
7177	if ((mddev->new_level == 5
7178	     && !algorithm_valid_raid5(mddev->new_layout)) ||
7179	    (mddev->new_level == 6
7180	     && !algorithm_valid_raid6(mddev->new_layout))) {
7181		pr_warn("md/raid:%s: layout %d not supported\n",
7182			mdname(mddev), mddev->new_layout);
7183		return ERR_PTR(-EIO);
7184	}
7185	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7186		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7187			mdname(mddev), mddev->raid_disks);
7188		return ERR_PTR(-EINVAL);
7189	}
7190
7191	if (!mddev->new_chunk_sectors ||
7192	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7193	    !is_power_of_2(mddev->new_chunk_sectors)) {
7194		pr_warn("md/raid:%s: invalid chunk size %d\n",
7195			mdname(mddev), mddev->new_chunk_sectors << 9);
7196		return ERR_PTR(-EINVAL);
7197	}
7198
7199	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7200	if (conf == NULL)
7201		goto abort;
7202
7203#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7204	conf->stripe_size = DEFAULT_STRIPE_SIZE;
7205	conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7206	conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7207#endif
7208	INIT_LIST_HEAD(&conf->free_list);
7209	INIT_LIST_HEAD(&conf->pending_list);
7210	conf->pending_data = kcalloc(PENDING_IO_MAX,
7211				     sizeof(struct r5pending_data),
7212				     GFP_KERNEL);
7213	if (!conf->pending_data)
7214		goto abort;
7215	for (i = 0; i < PENDING_IO_MAX; i++)
7216		list_add(&conf->pending_data[i].sibling, &conf->free_list);
7217	/* Don't enable multi-threading by default*/
7218	if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7219		conf->group_cnt = group_cnt;
7220		conf->worker_cnt_per_group = 0;
7221		conf->worker_groups = new_group;
7222	} else
7223		goto abort;
7224	spin_lock_init(&conf->device_lock);
7225	seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7226	mutex_init(&conf->cache_size_mutex);
7227	init_waitqueue_head(&conf->wait_for_quiescent);
7228	init_waitqueue_head(&conf->wait_for_stripe);
7229	init_waitqueue_head(&conf->wait_for_overlap);
7230	INIT_LIST_HEAD(&conf->handle_list);
7231	INIT_LIST_HEAD(&conf->loprio_list);
7232	INIT_LIST_HEAD(&conf->hold_list);
7233	INIT_LIST_HEAD(&conf->delayed_list);
7234	INIT_LIST_HEAD(&conf->bitmap_list);
7235	init_llist_head(&conf->released_stripes);
7236	atomic_set(&conf->active_stripes, 0);
7237	atomic_set(&conf->preread_active_stripes, 0);
7238	atomic_set(&conf->active_aligned_reads, 0);
7239	spin_lock_init(&conf->pending_bios_lock);
7240	conf->batch_bio_dispatch = true;
7241	rdev_for_each(rdev, mddev) {
7242		if (test_bit(Journal, &rdev->flags))
7243			continue;
7244		if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
7245			conf->batch_bio_dispatch = false;
7246			break;
7247		}
7248	}
7249
7250	conf->bypass_threshold = BYPASS_THRESHOLD;
7251	conf->recovery_disabled = mddev->recovery_disabled - 1;
7252
7253	conf->raid_disks = mddev->raid_disks;
7254	if (mddev->reshape_position == MaxSector)
7255		conf->previous_raid_disks = mddev->raid_disks;
7256	else
7257		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7258	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
 
7259
7260	conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7261			      GFP_KERNEL);
7262
7263	if (!conf->disks)
7264		goto abort;
7265
7266	for (i = 0; i < max_disks; i++) {
7267		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7268		if (!conf->disks[i].extra_page)
7269			goto abort;
7270	}
7271
7272	ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7273	if (ret)
7274		goto abort;
7275	conf->mddev = mddev;
7276
7277	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
7278		goto abort;
7279
7280	/* We init hash_locks[0] separately to that it can be used
7281	 * as the reference lock in the spin_lock_nest_lock() call
7282	 * in lock_all_device_hash_locks_irq in order to convince
7283	 * lockdep that we know what we are doing.
7284	 */
7285	spin_lock_init(conf->hash_locks);
7286	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7287		spin_lock_init(conf->hash_locks + i);
7288
7289	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7290		INIT_LIST_HEAD(conf->inactive_list + i);
7291
7292	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7293		INIT_LIST_HEAD(conf->temp_inactive_list + i);
7294
7295	atomic_set(&conf->r5c_cached_full_stripes, 0);
7296	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7297	atomic_set(&conf->r5c_cached_partial_stripes, 0);
7298	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7299	atomic_set(&conf->r5c_flushing_full_stripes, 0);
7300	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7301
7302	conf->level = mddev->new_level;
7303	conf->chunk_sectors = mddev->new_chunk_sectors;
7304	if (raid5_alloc_percpu(conf) != 0)
7305		goto abort;
7306
7307	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7308
7309	rdev_for_each(rdev, mddev) {
7310		raid_disk = rdev->raid_disk;
7311		if (raid_disk >= max_disks
7312		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7313			continue;
7314		disk = conf->disks + raid_disk;
7315
7316		if (test_bit(Replacement, &rdev->flags)) {
7317			if (disk->replacement)
7318				goto abort;
7319			disk->replacement = rdev;
7320		} else {
7321			if (disk->rdev)
7322				goto abort;
7323			disk->rdev = rdev;
7324		}
7325
7326		if (test_bit(In_sync, &rdev->flags)) {
7327			char b[BDEVNAME_SIZE];
7328			pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7329				mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
 
7330		} else if (rdev->saved_raid_disk != raid_disk)
7331			/* Cannot rely on bitmap to complete recovery */
7332			conf->fullsync = 1;
7333	}
7334
 
7335	conf->level = mddev->new_level;
7336	if (conf->level == 6) {
7337		conf->max_degraded = 2;
7338		if (raid6_call.xor_syndrome)
7339			conf->rmw_level = PARITY_ENABLE_RMW;
7340		else
7341			conf->rmw_level = PARITY_DISABLE_RMW;
7342	} else {
7343		conf->max_degraded = 1;
7344		conf->rmw_level = PARITY_ENABLE_RMW;
7345	}
7346	conf->algorithm = mddev->new_layout;
 
7347	conf->reshape_progress = mddev->reshape_position;
7348	if (conf->reshape_progress != MaxSector) {
7349		conf->prev_chunk_sectors = mddev->chunk_sectors;
7350		conf->prev_algo = mddev->layout;
7351	} else {
7352		conf->prev_chunk_sectors = conf->chunk_sectors;
7353		conf->prev_algo = conf->algorithm;
7354	}
7355
7356	conf->min_nr_stripes = NR_STRIPES;
7357	if (mddev->reshape_position != MaxSector) {
7358		int stripes = max_t(int,
7359			((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7360			((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7361		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7362		if (conf->min_nr_stripes != NR_STRIPES)
7363			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7364				mdname(mddev), conf->min_nr_stripes);
7365	}
7366	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7367		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7368	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7369	if (grow_stripes(conf, conf->min_nr_stripes)) {
7370		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7371			mdname(mddev), memory);
7372		goto abort;
7373	} else
7374		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7375	/*
7376	 * Losing a stripe head costs more than the time to refill it,
7377	 * it reduces the queue depth and so can hurt throughput.
7378	 * So set it rather large, scaled by number of devices.
7379	 */
7380	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7381	conf->shrinker.scan_objects = raid5_cache_scan;
7382	conf->shrinker.count_objects = raid5_cache_count;
7383	conf->shrinker.batch = 128;
7384	conf->shrinker.flags = 0;
7385	if (register_shrinker(&conf->shrinker)) {
7386		pr_warn("md/raid:%s: couldn't register shrinker.\n",
7387			mdname(mddev));
7388		goto abort;
7389	}
7390
7391	sprintf(pers_name, "raid%d", mddev->new_level);
7392	conf->thread = md_register_thread(raid5d, mddev, pers_name);
7393	if (!conf->thread) {
7394		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7395			mdname(mddev));
 
7396		goto abort;
7397	}
7398
7399	return conf;
7400
7401 abort:
7402	if (conf) {
7403		free_conf(conf);
7404		return ERR_PTR(-EIO);
7405	} else
7406		return ERR_PTR(-ENOMEM);
7407}
7408
 
7409static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7410{
7411	switch (algo) {
7412	case ALGORITHM_PARITY_0:
7413		if (raid_disk < max_degraded)
7414			return 1;
7415		break;
7416	case ALGORITHM_PARITY_N:
7417		if (raid_disk >= raid_disks - max_degraded)
7418			return 1;
7419		break;
7420	case ALGORITHM_PARITY_0_6:
7421		if (raid_disk == 0 ||
7422		    raid_disk == raid_disks - 1)
7423			return 1;
7424		break;
7425	case ALGORITHM_LEFT_ASYMMETRIC_6:
7426	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7427	case ALGORITHM_LEFT_SYMMETRIC_6:
7428	case ALGORITHM_RIGHT_SYMMETRIC_6:
7429		if (raid_disk == raid_disks - 1)
7430			return 1;
7431	}
7432	return 0;
7433}
7434
7435static void raid5_set_io_opt(struct r5conf *conf)
7436{
7437	blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) *
7438			 (conf->raid_disks - conf->max_degraded));
7439}
7440
7441static int raid5_run(struct mddev *mddev)
7442{
7443	struct r5conf *conf;
7444	int working_disks = 0;
7445	int dirty_parity_disks = 0;
7446	struct md_rdev *rdev;
7447	struct md_rdev *journal_dev = NULL;
7448	sector_t reshape_offset = 0;
7449	int i;
7450	long long min_offset_diff = 0;
7451	int first = 1;
7452
7453	if (mddev_init_writes_pending(mddev) < 0)
7454		return -ENOMEM;
7455
7456	if (mddev->recovery_cp != MaxSector)
7457		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7458			  mdname(mddev));
7459
7460	rdev_for_each(rdev, mddev) {
7461		long long diff;
7462
7463		if (test_bit(Journal, &rdev->flags)) {
7464			journal_dev = rdev;
7465			continue;
7466		}
7467		if (rdev->raid_disk < 0)
7468			continue;
7469		diff = (rdev->new_data_offset - rdev->data_offset);
7470		if (first) {
7471			min_offset_diff = diff;
7472			first = 0;
7473		} else if (mddev->reshape_backwards &&
7474			 diff < min_offset_diff)
7475			min_offset_diff = diff;
7476		else if (!mddev->reshape_backwards &&
7477			 diff > min_offset_diff)
7478			min_offset_diff = diff;
7479	}
7480
7481	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7482	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7483		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7484			  mdname(mddev));
7485		return -EINVAL;
7486	}
7487
7488	if (mddev->reshape_position != MaxSector) {
7489		/* Check that we can continue the reshape.
7490		 * Difficulties arise if the stripe we would write to
7491		 * next is at or after the stripe we would read from next.
7492		 * For a reshape that changes the number of devices, this
7493		 * is only possible for a very short time, and mdadm makes
7494		 * sure that time appears to have past before assembling
7495		 * the array.  So we fail if that time hasn't passed.
7496		 * For a reshape that keeps the number of devices the same
7497		 * mdadm must be monitoring the reshape can keeping the
7498		 * critical areas read-only and backed up.  It will start
7499		 * the array in read-only mode, so we check for that.
7500		 */
7501		sector_t here_new, here_old;
7502		int old_disks;
7503		int max_degraded = (mddev->level == 6 ? 2 : 1);
7504		int chunk_sectors;
7505		int new_data_disks;
7506
7507		if (journal_dev) {
7508			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7509				mdname(mddev));
7510			return -EINVAL;
7511		}
7512
7513		if (mddev->new_level != mddev->level) {
7514			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7515				mdname(mddev));
 
7516			return -EINVAL;
7517		}
7518		old_disks = mddev->raid_disks - mddev->delta_disks;
7519		/* reshape_position must be on a new-stripe boundary, and one
7520		 * further up in new geometry must map after here in old
7521		 * geometry.
7522		 * If the chunk sizes are different, then as we perform reshape
7523		 * in units of the largest of the two, reshape_position needs
7524		 * be a multiple of the largest chunk size times new data disks.
7525		 */
7526		here_new = mddev->reshape_position;
7527		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7528		new_data_disks = mddev->raid_disks - max_degraded;
7529		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7530			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7531				mdname(mddev));
7532			return -EINVAL;
7533		}
7534		reshape_offset = here_new * chunk_sectors;
7535		/* here_new is the stripe we will write to */
7536		here_old = mddev->reshape_position;
7537		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
 
7538		/* here_old is the first stripe that we might need to read
7539		 * from */
7540		if (mddev->delta_disks == 0) {
7541			/* We cannot be sure it is safe to start an in-place
7542			 * reshape.  It is only safe if user-space is monitoring
7543			 * and taking constant backups.
7544			 * mdadm always starts a situation like this in
7545			 * readonly mode so it can take control before
7546			 * allowing any writes.  So just check for that.
7547			 */
7548			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7549			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7550				/* not really in-place - so OK */;
7551			else if (mddev->ro == 0) {
7552				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7553					mdname(mddev));
7554				return -EINVAL;
7555			}
7556		} else if (mddev->reshape_backwards
7557		    ? (here_new * chunk_sectors + min_offset_diff <=
7558		       here_old * chunk_sectors)
7559		    : (here_new * chunk_sectors >=
7560		       here_old * chunk_sectors + (-min_offset_diff))) {
7561			/* Reading from the same stripe as writing to - bad */
7562			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7563				mdname(mddev));
 
7564			return -EINVAL;
7565		}
7566		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
 
7567		/* OK, we should be able to continue; */
7568	} else {
7569		BUG_ON(mddev->level != mddev->new_level);
7570		BUG_ON(mddev->layout != mddev->new_layout);
7571		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7572		BUG_ON(mddev->delta_disks != 0);
7573	}
7574
7575	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7576	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7577		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7578			mdname(mddev));
7579		clear_bit(MD_HAS_PPL, &mddev->flags);
7580		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7581	}
7582
7583	if (mddev->private == NULL)
7584		conf = setup_conf(mddev);
7585	else
7586		conf = mddev->private;
7587
7588	if (IS_ERR(conf))
7589		return PTR_ERR(conf);
7590
7591	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7592		if (!journal_dev) {
7593			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7594				mdname(mddev));
7595			mddev->ro = 1;
7596			set_disk_ro(mddev->gendisk, 1);
7597		} else if (mddev->recovery_cp == MaxSector)
7598			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7599	}
7600
7601	conf->min_offset_diff = min_offset_diff;
7602	mddev->thread = conf->thread;
7603	conf->thread = NULL;
7604	mddev->private = conf;
7605
7606	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7607	     i++) {
7608		rdev = conf->disks[i].rdev;
7609		if (!rdev && conf->disks[i].replacement) {
7610			/* The replacement is all we have yet */
7611			rdev = conf->disks[i].replacement;
7612			conf->disks[i].replacement = NULL;
7613			clear_bit(Replacement, &rdev->flags);
7614			conf->disks[i].rdev = rdev;
7615		}
7616		if (!rdev)
7617			continue;
7618		if (conf->disks[i].replacement &&
7619		    conf->reshape_progress != MaxSector) {
7620			/* replacements and reshape simply do not mix. */
7621			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7622			goto abort;
7623		}
7624		if (test_bit(In_sync, &rdev->flags)) {
7625			working_disks++;
7626			continue;
7627		}
7628		/* This disc is not fully in-sync.  However if it
7629		 * just stored parity (beyond the recovery_offset),
7630		 * when we don't need to be concerned about the
7631		 * array being dirty.
7632		 * When reshape goes 'backwards', we never have
7633		 * partially completed devices, so we only need
7634		 * to worry about reshape going forwards.
7635		 */
7636		/* Hack because v0.91 doesn't store recovery_offset properly. */
7637		if (mddev->major_version == 0 &&
7638		    mddev->minor_version > 90)
7639			rdev->recovery_offset = reshape_offset;
7640
7641		if (rdev->recovery_offset < reshape_offset) {
7642			/* We need to check old and new layout */
7643			if (!only_parity(rdev->raid_disk,
7644					 conf->algorithm,
7645					 conf->raid_disks,
7646					 conf->max_degraded))
7647				continue;
7648		}
7649		if (!only_parity(rdev->raid_disk,
7650				 conf->prev_algo,
7651				 conf->previous_raid_disks,
7652				 conf->max_degraded))
7653			continue;
7654		dirty_parity_disks++;
7655	}
7656
7657	/*
7658	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7659	 */
7660	mddev->degraded = raid5_calc_degraded(conf);
7661
7662	if (has_failed(conf)) {
7663		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
 
7664			mdname(mddev), mddev->degraded, conf->raid_disks);
7665		goto abort;
7666	}
7667
7668	/* device size must be a multiple of chunk size */
7669	mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7670	mddev->resync_max_sectors = mddev->dev_sectors;
7671
7672	if (mddev->degraded > dirty_parity_disks &&
7673	    mddev->recovery_cp != MaxSector) {
7674		if (test_bit(MD_HAS_PPL, &mddev->flags))
7675			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7676				mdname(mddev));
7677		else if (mddev->ok_start_degraded)
7678			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7679				mdname(mddev));
7680		else {
7681			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7682				mdname(mddev));
 
7683			goto abort;
7684		}
7685	}
7686
7687	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7688		mdname(mddev), conf->level,
7689		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7690		mddev->new_layout);
 
 
 
 
 
 
 
7691
7692	print_raid5_conf(conf);
7693
7694	if (conf->reshape_progress != MaxSector) {
7695		conf->reshape_safe = conf->reshape_progress;
7696		atomic_set(&conf->reshape_stripes, 0);
7697		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7698		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7699		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7700		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7701		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7702							"reshape");
7703		if (!mddev->sync_thread)
7704			goto abort;
7705	}
7706
 
7707	/* Ok, everything is just fine now */
7708	if (mddev->to_remove == &raid5_attrs_group)
7709		mddev->to_remove = NULL;
7710	else if (mddev->kobj.sd &&
7711	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7712		pr_warn("raid5: failed to create sysfs attributes for %s\n",
7713			mdname(mddev));
 
7714	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7715
7716	if (mddev->queue) {
7717		int chunk_size;
7718		/* read-ahead size must cover two whole stripes, which
7719		 * is 2 * (datadisks) * chunksize where 'n' is the
7720		 * number of raid devices
7721		 */
7722		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7723		int stripe = data_disks *
7724			((mddev->chunk_sectors << 9) / PAGE_SIZE);
 
 
 
 
 
 
 
7725
7726		chunk_size = mddev->chunk_sectors << 9;
7727		blk_queue_io_min(mddev->queue, chunk_size);
7728		raid5_set_io_opt(conf);
7729		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7730		/*
7731		 * We can only discard a whole stripe. It doesn't make sense to
7732		 * discard data disk but write parity disk
7733		 */
7734		stripe = stripe * PAGE_SIZE;
7735		/* Round up to power of 2, as discard handling
7736		 * currently assumes that */
7737		while ((stripe-1) & stripe)
7738			stripe = (stripe | (stripe-1)) + 1;
7739		mddev->queue->limits.discard_alignment = stripe;
7740		mddev->queue->limits.discard_granularity = stripe;
7741
7742		blk_queue_max_write_same_sectors(mddev->queue, 0);
7743		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7744
7745		rdev_for_each(rdev, mddev) {
7746			disk_stack_limits(mddev->gendisk, rdev->bdev,
7747					  rdev->data_offset << 9);
7748			disk_stack_limits(mddev->gendisk, rdev->bdev,
7749					  rdev->new_data_offset << 9);
7750		}
7751
7752		/*
7753		 * zeroing is required, otherwise data
7754		 * could be lost. Consider a scenario: discard a stripe
7755		 * (the stripe could be inconsistent if
7756		 * discard_zeroes_data is 0); write one disk of the
7757		 * stripe (the stripe could be inconsistent again
7758		 * depending on which disks are used to calculate
7759		 * parity); the disk is broken; The stripe data of this
7760		 * disk is lost.
7761		 *
7762		 * We only allow DISCARD if the sysadmin has confirmed that
7763		 * only safe devices are in use by setting a module parameter.
7764		 * A better idea might be to turn DISCARD into WRITE_ZEROES
7765		 * requests, as that is required to be safe.
7766		 */
7767		if (devices_handle_discard_safely &&
7768		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7769		    mddev->queue->limits.discard_granularity >= stripe)
7770			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7771						mddev->queue);
7772		else
7773			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7774						mddev->queue);
7775
7776		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7777	}
7778
7779	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7780		goto abort;
7781
7782	return 0;
7783abort:
7784	md_unregister_thread(&mddev->thread);
7785	print_raid5_conf(conf);
7786	free_conf(conf);
 
 
7787	mddev->private = NULL;
7788	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7789	return -EIO;
7790}
7791
7792static void raid5_free(struct mddev *mddev, void *priv)
7793{
7794	struct r5conf *conf = priv;
7795
 
 
 
7796	free_conf(conf);
 
7797	mddev->to_remove = &raid5_attrs_group;
 
7798}
7799
7800static void raid5_status(struct seq_file *seq, struct mddev *mddev)
 
7801{
7802	struct r5conf *conf = mddev->private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7803	int i;
7804
7805	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7806		conf->chunk_sectors / 2, mddev->layout);
7807	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7808	rcu_read_lock();
7809	for (i = 0; i < conf->raid_disks; i++) {
7810		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7811		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7812	}
7813	rcu_read_unlock();
7814	seq_printf (seq, "]");
 
 
 
 
7815}
7816
7817static void print_raid5_conf (struct r5conf *conf)
7818{
7819	int i;
7820	struct disk_info *tmp;
7821
7822	pr_debug("RAID conf printout:\n");
7823	if (!conf) {
7824		pr_debug("(conf==NULL)\n");
7825		return;
7826	}
7827	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7828	       conf->raid_disks,
7829	       conf->raid_disks - conf->mddev->degraded);
7830
7831	for (i = 0; i < conf->raid_disks; i++) {
7832		char b[BDEVNAME_SIZE];
7833		tmp = conf->disks + i;
7834		if (tmp->rdev)
7835			pr_debug(" disk %d, o:%d, dev:%s\n",
7836			       i, !test_bit(Faulty, &tmp->rdev->flags),
7837			       bdevname(tmp->rdev->bdev, b));
7838	}
7839}
7840
7841static int raid5_spare_active(struct mddev *mddev)
7842{
7843	int i;
7844	struct r5conf *conf = mddev->private;
7845	struct disk_info *tmp;
7846	int count = 0;
7847	unsigned long flags;
7848
7849	for (i = 0; i < conf->raid_disks; i++) {
7850		tmp = conf->disks + i;
7851		if (tmp->replacement
7852		    && tmp->replacement->recovery_offset == MaxSector
7853		    && !test_bit(Faulty, &tmp->replacement->flags)
7854		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7855			/* Replacement has just become active. */
7856			if (!tmp->rdev
7857			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7858				count++;
7859			if (tmp->rdev) {
7860				/* Replaced device not technically faulty,
7861				 * but we need to be sure it gets removed
7862				 * and never re-added.
7863				 */
7864				set_bit(Faulty, &tmp->rdev->flags);
7865				sysfs_notify_dirent_safe(
7866					tmp->rdev->sysfs_state);
7867			}
7868			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7869		} else if (tmp->rdev
7870		    && tmp->rdev->recovery_offset == MaxSector
7871		    && !test_bit(Faulty, &tmp->rdev->flags)
7872		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7873			count++;
7874			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7875		}
7876	}
7877	spin_lock_irqsave(&conf->device_lock, flags);
7878	mddev->degraded = raid5_calc_degraded(conf);
7879	spin_unlock_irqrestore(&conf->device_lock, flags);
7880	print_raid5_conf(conf);
7881	return count;
7882}
7883
7884static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7885{
7886	struct r5conf *conf = mddev->private;
7887	int err = 0;
7888	int number = rdev->raid_disk;
7889	struct md_rdev **rdevp;
7890	struct disk_info *p = conf->disks + number;
7891
7892	print_raid5_conf(conf);
7893	if (test_bit(Journal, &rdev->flags) && conf->log) {
7894		/*
7895		 * we can't wait pending write here, as this is called in
7896		 * raid5d, wait will deadlock.
7897		 * neilb: there is no locking about new writes here,
7898		 * so this cannot be safe.
 
 
 
 
 
 
 
7899		 */
7900		if (atomic_read(&conf->active_stripes) ||
7901		    atomic_read(&conf->r5c_cached_full_stripes) ||
7902		    atomic_read(&conf->r5c_cached_partial_stripes)) {
7903			return -EBUSY;
 
 
7904		}
7905		log_exit(conf);
7906		return 0;
7907	}
7908	if (rdev == p->rdev)
7909		rdevp = &p->rdev;
7910	else if (rdev == p->replacement)
7911		rdevp = &p->replacement;
7912	else
7913		return 0;
7914
7915	if (number >= conf->raid_disks &&
7916	    conf->reshape_progress == MaxSector)
7917		clear_bit(In_sync, &rdev->flags);
7918
7919	if (test_bit(In_sync, &rdev->flags) ||
7920	    atomic_read(&rdev->nr_pending)) {
7921		err = -EBUSY;
7922		goto abort;
7923	}
7924	/* Only remove non-faulty devices if recovery
7925	 * isn't possible.
7926	 */
7927	if (!test_bit(Faulty, &rdev->flags) &&
7928	    mddev->recovery_disabled != conf->recovery_disabled &&
7929	    !has_failed(conf) &&
7930	    (!p->replacement || p->replacement == rdev) &&
7931	    number < conf->raid_disks) {
7932		err = -EBUSY;
7933		goto abort;
7934	}
7935	*rdevp = NULL;
7936	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7937		synchronize_rcu();
7938		if (atomic_read(&rdev->nr_pending)) {
7939			/* lost the race, try later */
7940			err = -EBUSY;
7941			*rdevp = rdev;
7942		}
7943	}
7944	if (!err) {
7945		err = log_modify(conf, rdev, false);
7946		if (err)
7947			goto abort;
7948	}
7949	if (p->replacement) {
7950		/* We must have just cleared 'rdev' */
7951		p->rdev = p->replacement;
7952		clear_bit(Replacement, &p->replacement->flags);
7953		smp_mb(); /* Make sure other CPUs may see both as identical
7954			   * but will never see neither - if they are careful
7955			   */
7956		p->replacement = NULL;
7957
7958		if (!err)
7959			err = log_modify(conf, p->rdev, true);
7960	}
7961
7962	clear_bit(WantReplacement, &rdev->flags);
7963abort:
7964
7965	print_raid5_conf(conf);
7966	return err;
7967}
7968
7969static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7970{
7971	struct r5conf *conf = mddev->private;
7972	int ret, err = -EEXIST;
7973	int disk;
7974	struct disk_info *p;
7975	int first = 0;
7976	int last = conf->raid_disks - 1;
7977
7978	if (test_bit(Journal, &rdev->flags)) {
7979		if (conf->log)
7980			return -EBUSY;
7981
7982		rdev->raid_disk = 0;
7983		/*
7984		 * The array is in readonly mode if journal is missing, so no
7985		 * write requests running. We should be safe
7986		 */
7987		ret = log_init(conf, rdev, false);
7988		if (ret)
7989			return ret;
7990
7991		ret = r5l_start(conf->log);
7992		if (ret)
7993			return ret;
7994
7995		return 0;
7996	}
7997	if (mddev->recovery_disabled == conf->recovery_disabled)
7998		return -EBUSY;
7999
8000	if (rdev->saved_raid_disk < 0 && has_failed(conf))
8001		/* no point adding a device */
8002		return -EINVAL;
8003
8004	if (rdev->raid_disk >= 0)
8005		first = last = rdev->raid_disk;
8006
8007	/*
8008	 * find the disk ... but prefer rdev->saved_raid_disk
8009	 * if possible.
8010	 */
8011	if (rdev->saved_raid_disk >= 0 &&
8012	    rdev->saved_raid_disk >= first &&
8013	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
8014		first = rdev->saved_raid_disk;
8015
8016	for (disk = first; disk <= last; disk++) {
8017		p = conf->disks + disk;
8018		if (p->rdev == NULL) {
8019			clear_bit(In_sync, &rdev->flags);
8020			rdev->raid_disk = disk;
 
8021			if (rdev->saved_raid_disk != disk)
8022				conf->fullsync = 1;
8023			rcu_assign_pointer(p->rdev, rdev);
8024
8025			err = log_modify(conf, rdev, true);
8026
8027			goto out;
8028		}
8029	}
8030	for (disk = first; disk <= last; disk++) {
8031		p = conf->disks + disk;
8032		if (test_bit(WantReplacement, &p->rdev->flags) &&
8033		    p->replacement == NULL) {
8034			clear_bit(In_sync, &rdev->flags);
8035			set_bit(Replacement, &rdev->flags);
8036			rdev->raid_disk = disk;
8037			err = 0;
8038			conf->fullsync = 1;
8039			rcu_assign_pointer(p->replacement, rdev);
8040			break;
8041		}
8042	}
8043out:
8044	print_raid5_conf(conf);
8045	return err;
8046}
8047
8048static int raid5_resize(struct mddev *mddev, sector_t sectors)
8049{
8050	/* no resync is happening, and there is enough space
8051	 * on all devices, so we can resize.
8052	 * We need to make sure resync covers any new space.
8053	 * If the array is shrinking we should possibly wait until
8054	 * any io in the removed space completes, but it hardly seems
8055	 * worth it.
8056	 */
8057	sector_t newsize;
8058	struct r5conf *conf = mddev->private;
8059
8060	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8061		return -EINVAL;
8062	sectors &= ~((sector_t)conf->chunk_sectors - 1);
8063	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8064	if (mddev->external_size &&
8065	    mddev->array_sectors > newsize)
8066		return -EINVAL;
8067	if (mddev->bitmap) {
8068		int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
8069		if (ret)
8070			return ret;
8071	}
8072	md_set_array_sectors(mddev, newsize);
8073	if (sectors > mddev->dev_sectors &&
8074	    mddev->recovery_cp > mddev->dev_sectors) {
8075		mddev->recovery_cp = mddev->dev_sectors;
8076		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8077	}
8078	mddev->dev_sectors = sectors;
8079	mddev->resync_max_sectors = sectors;
8080	return 0;
8081}
8082
8083static int check_stripe_cache(struct mddev *mddev)
8084{
8085	/* Can only proceed if there are plenty of stripe_heads.
8086	 * We need a minimum of one full stripe,, and for sensible progress
8087	 * it is best to have about 4 times that.
8088	 * If we require 4 times, then the default 256 4K stripe_heads will
8089	 * allow for chunk sizes up to 256K, which is probably OK.
8090	 * If the chunk size is greater, user-space should request more
8091	 * stripe_heads first.
8092	 */
8093	struct r5conf *conf = mddev->private;
8094	if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8095	    > conf->min_nr_stripes ||
8096	    ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8097	    > conf->min_nr_stripes) {
8098		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
8099			mdname(mddev),
8100			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8101			 / RAID5_STRIPE_SIZE(conf))*4);
8102		return 0;
8103	}
8104	return 1;
8105}
8106
8107static int check_reshape(struct mddev *mddev)
8108{
8109	struct r5conf *conf = mddev->private;
8110
8111	if (raid5_has_log(conf) || raid5_has_ppl(conf))
8112		return -EINVAL;
8113	if (mddev->delta_disks == 0 &&
8114	    mddev->new_layout == mddev->layout &&
8115	    mddev->new_chunk_sectors == mddev->chunk_sectors)
8116		return 0; /* nothing to do */
 
 
 
8117	if (has_failed(conf))
8118		return -EINVAL;
8119	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8120		/* We might be able to shrink, but the devices must
8121		 * be made bigger first.
8122		 * For raid6, 4 is the minimum size.
8123		 * Otherwise 2 is the minimum
8124		 */
8125		int min = 2;
8126		if (mddev->level == 6)
8127			min = 4;
8128		if (mddev->raid_disks + mddev->delta_disks < min)
8129			return -EINVAL;
8130	}
8131
8132	if (!check_stripe_cache(mddev))
8133		return -ENOSPC;
8134
8135	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8136	    mddev->delta_disks > 0)
8137		if (resize_chunks(conf,
8138				  conf->previous_raid_disks
8139				  + max(0, mddev->delta_disks),
8140				  max(mddev->new_chunk_sectors,
8141				      mddev->chunk_sectors)
8142			    ) < 0)
8143			return -ENOMEM;
8144
8145	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8146		return 0; /* never bother to shrink */
8147	return resize_stripes(conf, (conf->previous_raid_disks
8148				     + mddev->delta_disks));
8149}
8150
8151static int raid5_start_reshape(struct mddev *mddev)
8152{
8153	struct r5conf *conf = mddev->private;
8154	struct md_rdev *rdev;
8155	int spares = 0;
8156	unsigned long flags;
8157
8158	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8159		return -EBUSY;
8160
8161	if (!check_stripe_cache(mddev))
8162		return -ENOSPC;
8163
8164	if (has_failed(conf))
8165		return -EINVAL;
8166
8167	rdev_for_each(rdev, mddev) {
8168		if (!test_bit(In_sync, &rdev->flags)
8169		    && !test_bit(Faulty, &rdev->flags))
8170			spares++;
8171	}
8172
8173	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8174		/* Not enough devices even to make a degraded array
8175		 * of that size
8176		 */
8177		return -EINVAL;
8178
8179	/* Refuse to reduce size of the array.  Any reductions in
8180	 * array size must be through explicit setting of array_size
8181	 * attribute.
8182	 */
8183	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8184	    < mddev->array_sectors) {
8185		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8186			mdname(mddev));
8187		return -EINVAL;
8188	}
8189
8190	atomic_set(&conf->reshape_stripes, 0);
8191	spin_lock_irq(&conf->device_lock);
8192	write_seqcount_begin(&conf->gen_lock);
8193	conf->previous_raid_disks = conf->raid_disks;
8194	conf->raid_disks += mddev->delta_disks;
8195	conf->prev_chunk_sectors = conf->chunk_sectors;
8196	conf->chunk_sectors = mddev->new_chunk_sectors;
8197	conf->prev_algo = conf->algorithm;
8198	conf->algorithm = mddev->new_layout;
8199	conf->generation++;
8200	/* Code that selects data_offset needs to see the generation update
8201	 * if reshape_progress has been set - so a memory barrier needed.
8202	 */
8203	smp_mb();
8204	if (mddev->reshape_backwards)
8205		conf->reshape_progress = raid5_size(mddev, 0, 0);
8206	else
8207		conf->reshape_progress = 0;
8208	conf->reshape_safe = conf->reshape_progress;
8209	write_seqcount_end(&conf->gen_lock);
8210	spin_unlock_irq(&conf->device_lock);
8211
8212	/* Now make sure any requests that proceeded on the assumption
8213	 * the reshape wasn't running - like Discard or Read - have
8214	 * completed.
8215	 */
8216	mddev_suspend(mddev);
8217	mddev_resume(mddev);
8218
8219	/* Add some new drives, as many as will fit.
8220	 * We know there are enough to make the newly sized array work.
8221	 * Don't add devices if we are reducing the number of
8222	 * devices in the array.  This is because it is not possible
8223	 * to correctly record the "partially reconstructed" state of
8224	 * such devices during the reshape and confusion could result.
8225	 */
8226	if (mddev->delta_disks >= 0) {
8227		rdev_for_each(rdev, mddev)
 
8228			if (rdev->raid_disk < 0 &&
8229			    !test_bit(Faulty, &rdev->flags)) {
8230				if (raid5_add_disk(mddev, rdev) == 0) {
8231					if (rdev->raid_disk
8232					    >= conf->previous_raid_disks)
8233						set_bit(In_sync, &rdev->flags);
8234					else
 
8235						rdev->recovery_offset = 0;
8236
8237					/* Failure here is OK */
8238					sysfs_link_rdev(mddev, rdev);
8239				}
8240			} else if (rdev->raid_disk >= conf->previous_raid_disks
8241				   && !test_bit(Faulty, &rdev->flags)) {
8242				/* This is a spare that was manually added */
8243				set_bit(In_sync, &rdev->flags);
 
8244			}
8245
8246		/* When a reshape changes the number of devices,
8247		 * ->degraded is measured against the larger of the
8248		 * pre and post number of devices.
8249		 */
8250		spin_lock_irqsave(&conf->device_lock, flags);
8251		mddev->degraded = raid5_calc_degraded(conf);
 
8252		spin_unlock_irqrestore(&conf->device_lock, flags);
8253	}
8254	mddev->raid_disks = conf->raid_disks;
8255	mddev->reshape_position = conf->reshape_progress;
8256	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8257
8258	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8259	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8260	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8261	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8262	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8263	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
8264						"reshape");
8265	if (!mddev->sync_thread) {
8266		mddev->recovery = 0;
8267		spin_lock_irq(&conf->device_lock);
8268		write_seqcount_begin(&conf->gen_lock);
8269		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
8270		mddev->new_chunk_sectors =
8271			conf->chunk_sectors = conf->prev_chunk_sectors;
8272		mddev->new_layout = conf->algorithm = conf->prev_algo;
8273		rdev_for_each(rdev, mddev)
8274			rdev->new_data_offset = rdev->data_offset;
8275		smp_wmb();
8276		conf->generation --;
8277		conf->reshape_progress = MaxSector;
8278		mddev->reshape_position = MaxSector;
8279		write_seqcount_end(&conf->gen_lock);
8280		spin_unlock_irq(&conf->device_lock);
8281		return -EAGAIN;
8282	}
8283	conf->reshape_checkpoint = jiffies;
8284	md_wakeup_thread(mddev->sync_thread);
8285	md_new_event(mddev);
8286	return 0;
8287}
8288
8289/* This is called from the reshape thread and should make any
8290 * changes needed in 'conf'
8291 */
8292static void end_reshape(struct r5conf *conf)
8293{
8294
8295	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8296		struct md_rdev *rdev;
8297
8298		spin_lock_irq(&conf->device_lock);
8299		conf->previous_raid_disks = conf->raid_disks;
8300		md_finish_reshape(conf->mddev);
8301		smp_wmb();
8302		conf->reshape_progress = MaxSector;
8303		conf->mddev->reshape_position = MaxSector;
8304		rdev_for_each(rdev, conf->mddev)
8305			if (rdev->raid_disk >= 0 &&
8306			    !test_bit(Journal, &rdev->flags) &&
8307			    !test_bit(In_sync, &rdev->flags))
8308				rdev->recovery_offset = MaxSector;
8309		spin_unlock_irq(&conf->device_lock);
8310		wake_up(&conf->wait_for_overlap);
8311
8312		if (conf->mddev->queue)
8313			raid5_set_io_opt(conf);
 
 
 
 
 
 
 
 
8314	}
8315}
8316
8317/* This is called from the raid5d thread with mddev_lock held.
8318 * It makes config changes to the device.
8319 */
8320static void raid5_finish_reshape(struct mddev *mddev)
8321{
8322	struct r5conf *conf = mddev->private;
8323
8324	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8325
8326		if (mddev->delta_disks <= 0) {
 
 
 
 
8327			int d;
8328			spin_lock_irq(&conf->device_lock);
8329			mddev->degraded = raid5_calc_degraded(conf);
8330			spin_unlock_irq(&conf->device_lock);
 
 
 
8331			for (d = conf->raid_disks ;
8332			     d < conf->raid_disks - mddev->delta_disks;
8333			     d++) {
8334				struct md_rdev *rdev = conf->disks[d].rdev;
8335				if (rdev)
8336					clear_bit(In_sync, &rdev->flags);
8337				rdev = conf->disks[d].replacement;
8338				if (rdev)
8339					clear_bit(In_sync, &rdev->flags);
8340			}
8341		}
8342		mddev->layout = conf->algorithm;
8343		mddev->chunk_sectors = conf->chunk_sectors;
8344		mddev->reshape_position = MaxSector;
8345		mddev->delta_disks = 0;
8346		mddev->reshape_backwards = 0;
8347	}
8348}
8349
8350static void raid5_quiesce(struct mddev *mddev, int quiesce)
8351{
8352	struct r5conf *conf = mddev->private;
8353
8354	if (quiesce) {
8355		/* stop all writes */
8356		lock_all_device_hash_locks_irq(conf);
 
 
 
 
8357		/* '2' tells resync/reshape to pause so that all
8358		 * active stripes can drain
8359		 */
8360		r5c_flush_cache(conf, INT_MAX);
8361		/* need a memory barrier to make sure read_one_chunk() sees
8362		 * quiesce started and reverts to slow (locked) path.
8363		 */
8364		smp_store_release(&conf->quiesce, 2);
8365		wait_event_cmd(conf->wait_for_quiescent,
8366				    atomic_read(&conf->active_stripes) == 0 &&
8367				    atomic_read(&conf->active_aligned_reads) == 0,
8368				    unlock_all_device_hash_locks_irq(conf),
8369				    lock_all_device_hash_locks_irq(conf));
8370		conf->quiesce = 1;
8371		unlock_all_device_hash_locks_irq(conf);
8372		/* allow reshape to continue */
8373		wake_up(&conf->wait_for_overlap);
8374	} else {
8375		/* re-enable writes */
8376		lock_all_device_hash_locks_irq(conf);
 
8377		conf->quiesce = 0;
8378		wake_up(&conf->wait_for_quiescent);
8379		wake_up(&conf->wait_for_overlap);
8380		unlock_all_device_hash_locks_irq(conf);
 
8381	}
8382	log_quiesce(conf, quiesce);
8383}
8384
8385static void *raid45_takeover_raid0(struct mddev *mddev, int level)
 
8386{
8387	struct r0conf *raid0_conf = mddev->private;
8388	sector_t sectors;
8389
8390	/* for raid0 takeover only one zone is supported */
8391	if (raid0_conf->nr_strip_zones > 1) {
8392		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8393			mdname(mddev));
8394		return ERR_PTR(-EINVAL);
8395	}
8396
8397	sectors = raid0_conf->strip_zone[0].zone_end;
8398	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8399	mddev->dev_sectors = sectors;
8400	mddev->new_level = level;
8401	mddev->new_layout = ALGORITHM_PARITY_N;
8402	mddev->new_chunk_sectors = mddev->chunk_sectors;
8403	mddev->raid_disks += 1;
8404	mddev->delta_disks = 1;
8405	/* make sure it will be not marked as dirty */
8406	mddev->recovery_cp = MaxSector;
8407
8408	return setup_conf(mddev);
8409}
8410
8411static void *raid5_takeover_raid1(struct mddev *mddev)
 
8412{
8413	int chunksect;
8414	void *ret;
8415
8416	if (mddev->raid_disks != 2 ||
8417	    mddev->degraded > 1)
8418		return ERR_PTR(-EINVAL);
8419
8420	/* Should check if there are write-behind devices? */
8421
8422	chunksect = 64*2; /* 64K by default */
8423
8424	/* The array must be an exact multiple of chunksize */
8425	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8426		chunksect >>= 1;
8427
8428	if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8429		/* array size does not allow a suitable chunk size */
8430		return ERR_PTR(-EINVAL);
8431
8432	mddev->new_level = 5;
8433	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8434	mddev->new_chunk_sectors = chunksect;
8435
8436	ret = setup_conf(mddev);
8437	if (!IS_ERR(ret))
8438		mddev_clear_unsupported_flags(mddev,
8439			UNSUPPORTED_MDDEV_FLAGS);
8440	return ret;
8441}
8442
8443static void *raid5_takeover_raid6(struct mddev *mddev)
8444{
8445	int new_layout;
8446
8447	switch (mddev->layout) {
8448	case ALGORITHM_LEFT_ASYMMETRIC_6:
8449		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8450		break;
8451	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8452		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8453		break;
8454	case ALGORITHM_LEFT_SYMMETRIC_6:
8455		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8456		break;
8457	case ALGORITHM_RIGHT_SYMMETRIC_6:
8458		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8459		break;
8460	case ALGORITHM_PARITY_0_6:
8461		new_layout = ALGORITHM_PARITY_0;
8462		break;
8463	case ALGORITHM_PARITY_N:
8464		new_layout = ALGORITHM_PARITY_N;
8465		break;
8466	default:
8467		return ERR_PTR(-EINVAL);
8468	}
8469	mddev->new_level = 5;
8470	mddev->new_layout = new_layout;
8471	mddev->delta_disks = -1;
8472	mddev->raid_disks -= 1;
8473	return setup_conf(mddev);
8474}
8475
8476static int raid5_check_reshape(struct mddev *mddev)
 
8477{
8478	/* For a 2-drive array, the layout and chunk size can be changed
8479	 * immediately as not restriping is needed.
8480	 * For larger arrays we record the new value - after validation
8481	 * to be used by a reshape pass.
8482	 */
8483	struct r5conf *conf = mddev->private;
8484	int new_chunk = mddev->new_chunk_sectors;
8485
8486	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8487		return -EINVAL;
8488	if (new_chunk > 0) {
8489		if (!is_power_of_2(new_chunk))
8490			return -EINVAL;
8491		if (new_chunk < (PAGE_SIZE>>9))
8492			return -EINVAL;
8493		if (mddev->array_sectors & (new_chunk-1))
8494			/* not factor of array size */
8495			return -EINVAL;
8496	}
8497
8498	/* They look valid */
8499
8500	if (mddev->raid_disks == 2) {
8501		/* can make the change immediately */
8502		if (mddev->new_layout >= 0) {
8503			conf->algorithm = mddev->new_layout;
8504			mddev->layout = mddev->new_layout;
8505		}
8506		if (new_chunk > 0) {
8507			conf->chunk_sectors = new_chunk ;
8508			mddev->chunk_sectors = new_chunk;
8509		}
8510		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8511		md_wakeup_thread(mddev->thread);
8512	}
8513	return check_reshape(mddev);
8514}
8515
8516static int raid6_check_reshape(struct mddev *mddev)
8517{
8518	int new_chunk = mddev->new_chunk_sectors;
8519
8520	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8521		return -EINVAL;
8522	if (new_chunk > 0) {
8523		if (!is_power_of_2(new_chunk))
8524			return -EINVAL;
8525		if (new_chunk < (PAGE_SIZE >> 9))
8526			return -EINVAL;
8527		if (mddev->array_sectors & (new_chunk-1))
8528			/* not factor of array size */
8529			return -EINVAL;
8530	}
8531
8532	/* They look valid */
8533	return check_reshape(mddev);
8534}
8535
8536static void *raid5_takeover(struct mddev *mddev)
8537{
8538	/* raid5 can take over:
8539	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8540	 *  raid1 - if there are two drives.  We need to know the chunk size
8541	 *  raid4 - trivial - just use a raid4 layout.
8542	 *  raid6 - Providing it is a *_6 layout
8543	 */
8544	if (mddev->level == 0)
8545		return raid45_takeover_raid0(mddev, 5);
8546	if (mddev->level == 1)
8547		return raid5_takeover_raid1(mddev);
8548	if (mddev->level == 4) {
8549		mddev->new_layout = ALGORITHM_PARITY_N;
8550		mddev->new_level = 5;
8551		return setup_conf(mddev);
8552	}
8553	if (mddev->level == 6)
8554		return raid5_takeover_raid6(mddev);
8555
8556	return ERR_PTR(-EINVAL);
8557}
8558
8559static void *raid4_takeover(struct mddev *mddev)
8560{
8561	/* raid4 can take over:
8562	 *  raid0 - if there is only one strip zone
8563	 *  raid5 - if layout is right
8564	 */
8565	if (mddev->level == 0)
8566		return raid45_takeover_raid0(mddev, 4);
8567	if (mddev->level == 5 &&
8568	    mddev->layout == ALGORITHM_PARITY_N) {
8569		mddev->new_layout = 0;
8570		mddev->new_level = 4;
8571		return setup_conf(mddev);
8572	}
8573	return ERR_PTR(-EINVAL);
8574}
8575
8576static struct md_personality raid5_personality;
8577
8578static void *raid6_takeover(struct mddev *mddev)
8579{
8580	/* Currently can only take over a raid5.  We map the
8581	 * personality to an equivalent raid6 personality
8582	 * with the Q block at the end.
8583	 */
8584	int new_layout;
8585
8586	if (mddev->pers != &raid5_personality)
8587		return ERR_PTR(-EINVAL);
8588	if (mddev->degraded > 1)
8589		return ERR_PTR(-EINVAL);
8590	if (mddev->raid_disks > 253)
8591		return ERR_PTR(-EINVAL);
8592	if (mddev->raid_disks < 3)
8593		return ERR_PTR(-EINVAL);
8594
8595	switch (mddev->layout) {
8596	case ALGORITHM_LEFT_ASYMMETRIC:
8597		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8598		break;
8599	case ALGORITHM_RIGHT_ASYMMETRIC:
8600		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8601		break;
8602	case ALGORITHM_LEFT_SYMMETRIC:
8603		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8604		break;
8605	case ALGORITHM_RIGHT_SYMMETRIC:
8606		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8607		break;
8608	case ALGORITHM_PARITY_0:
8609		new_layout = ALGORITHM_PARITY_0_6;
8610		break;
8611	case ALGORITHM_PARITY_N:
8612		new_layout = ALGORITHM_PARITY_N;
8613		break;
8614	default:
8615		return ERR_PTR(-EINVAL);
8616	}
8617	mddev->new_level = 6;
8618	mddev->new_layout = new_layout;
8619	mddev->delta_disks = 1;
8620	mddev->raid_disks += 1;
8621	return setup_conf(mddev);
8622}
8623
8624static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8625{
8626	struct r5conf *conf;
8627	int err;
8628
8629	err = mddev_lock(mddev);
8630	if (err)
8631		return err;
8632	conf = mddev->private;
8633	if (!conf) {
8634		mddev_unlock(mddev);
8635		return -ENODEV;
8636	}
8637
8638	if (strncmp(buf, "ppl", 3) == 0) {
8639		/* ppl only works with RAID 5 */
8640		if (!raid5_has_ppl(conf) && conf->level == 5) {
8641			err = log_init(conf, NULL, true);
8642			if (!err) {
8643				err = resize_stripes(conf, conf->pool_size);
8644				if (err)
8645					log_exit(conf);
8646			}
8647		} else
8648			err = -EINVAL;
8649	} else if (strncmp(buf, "resync", 6) == 0) {
8650		if (raid5_has_ppl(conf)) {
8651			mddev_suspend(mddev);
8652			log_exit(conf);
8653			mddev_resume(mddev);
8654			err = resize_stripes(conf, conf->pool_size);
8655		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8656			   r5l_log_disk_error(conf)) {
8657			bool journal_dev_exists = false;
8658			struct md_rdev *rdev;
8659
8660			rdev_for_each(rdev, mddev)
8661				if (test_bit(Journal, &rdev->flags)) {
8662					journal_dev_exists = true;
8663					break;
8664				}
8665
8666			if (!journal_dev_exists) {
8667				mddev_suspend(mddev);
8668				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8669				mddev_resume(mddev);
8670			} else  /* need remove journal device first */
8671				err = -EBUSY;
8672		} else
8673			err = -EINVAL;
8674	} else {
8675		err = -EINVAL;
8676	}
8677
8678	if (!err)
8679		md_update_sb(mddev, 1);
8680
8681	mddev_unlock(mddev);
8682
8683	return err;
8684}
8685
8686static int raid5_start(struct mddev *mddev)
8687{
8688	struct r5conf *conf = mddev->private;
8689
8690	return r5l_start(conf->log);
8691}
8692
8693static struct md_personality raid6_personality =
8694{
8695	.name		= "raid6",
8696	.level		= 6,
8697	.owner		= THIS_MODULE,
8698	.make_request	= raid5_make_request,
8699	.run		= raid5_run,
8700	.start		= raid5_start,
8701	.free		= raid5_free,
8702	.status		= raid5_status,
8703	.error_handler	= raid5_error,
8704	.hot_add_disk	= raid5_add_disk,
8705	.hot_remove_disk= raid5_remove_disk,
8706	.spare_active	= raid5_spare_active,
8707	.sync_request	= raid5_sync_request,
8708	.resize		= raid5_resize,
8709	.size		= raid5_size,
8710	.check_reshape	= raid6_check_reshape,
8711	.start_reshape  = raid5_start_reshape,
8712	.finish_reshape = raid5_finish_reshape,
8713	.quiesce	= raid5_quiesce,
8714	.takeover	= raid6_takeover,
8715	.change_consistency_policy = raid5_change_consistency_policy,
8716};
8717static struct md_personality raid5_personality =
8718{
8719	.name		= "raid5",
8720	.level		= 5,
8721	.owner		= THIS_MODULE,
8722	.make_request	= raid5_make_request,
8723	.run		= raid5_run,
8724	.start		= raid5_start,
8725	.free		= raid5_free,
8726	.status		= raid5_status,
8727	.error_handler	= raid5_error,
8728	.hot_add_disk	= raid5_add_disk,
8729	.hot_remove_disk= raid5_remove_disk,
8730	.spare_active	= raid5_spare_active,
8731	.sync_request	= raid5_sync_request,
8732	.resize		= raid5_resize,
8733	.size		= raid5_size,
8734	.check_reshape	= raid5_check_reshape,
8735	.start_reshape  = raid5_start_reshape,
8736	.finish_reshape = raid5_finish_reshape,
8737	.quiesce	= raid5_quiesce,
8738	.takeover	= raid5_takeover,
8739	.change_consistency_policy = raid5_change_consistency_policy,
8740};
8741
8742static struct md_personality raid4_personality =
8743{
8744	.name		= "raid4",
8745	.level		= 4,
8746	.owner		= THIS_MODULE,
8747	.make_request	= raid5_make_request,
8748	.run		= raid5_run,
8749	.start		= raid5_start,
8750	.free		= raid5_free,
8751	.status		= raid5_status,
8752	.error_handler	= raid5_error,
8753	.hot_add_disk	= raid5_add_disk,
8754	.hot_remove_disk= raid5_remove_disk,
8755	.spare_active	= raid5_spare_active,
8756	.sync_request	= raid5_sync_request,
8757	.resize		= raid5_resize,
8758	.size		= raid5_size,
8759	.check_reshape	= raid5_check_reshape,
8760	.start_reshape  = raid5_start_reshape,
8761	.finish_reshape = raid5_finish_reshape,
8762	.quiesce	= raid5_quiesce,
8763	.takeover	= raid4_takeover,
8764	.change_consistency_policy = raid5_change_consistency_policy,
8765};
8766
8767static int __init raid5_init(void)
8768{
8769	int ret;
8770
8771	raid5_wq = alloc_workqueue("raid5wq",
8772		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8773	if (!raid5_wq)
8774		return -ENOMEM;
8775
8776	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8777				      "md/raid5:prepare",
8778				      raid456_cpu_up_prepare,
8779				      raid456_cpu_dead);
8780	if (ret) {
8781		destroy_workqueue(raid5_wq);
8782		return ret;
8783	}
8784	register_md_personality(&raid6_personality);
8785	register_md_personality(&raid5_personality);
8786	register_md_personality(&raid4_personality);
8787	return 0;
8788}
8789
8790static void raid5_exit(void)
8791{
8792	unregister_md_personality(&raid6_personality);
8793	unregister_md_personality(&raid5_personality);
8794	unregister_md_personality(&raid4_personality);
8795	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8796	destroy_workqueue(raid5_wq);
8797}
8798
8799module_init(raid5_init);
8800module_exit(raid5_exit);
8801MODULE_LICENSE("GPL");
8802MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8803MODULE_ALIAS("md-personality-4"); /* RAID5 */
8804MODULE_ALIAS("md-raid5");
8805MODULE_ALIAS("md-raid4");
8806MODULE_ALIAS("md-level-5");
8807MODULE_ALIAS("md-level-4");
8808MODULE_ALIAS("md-personality-8"); /* RAID6 */
8809MODULE_ALIAS("md-raid6");
8810MODULE_ALIAS("md-level-6");
8811
8812/* This used to be two separate modules, they were: */
8813MODULE_ALIAS("raid5");
8814MODULE_ALIAS("raid6");