Loading...
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46#include <linux/blkdev.h>
47#include <linux/kthread.h>
48#include <linux/raid/pq.h>
49#include <linux/async_tx.h>
50#include <linux/async.h>
51#include <linux/seq_file.h>
52#include <linux/cpu.h>
53#include <linux/slab.h>
54#include <linux/ratelimit.h>
55#include "md.h"
56#include "raid5.h"
57#include "raid0.h"
58#include "bitmap.h"
59
60/*
61 * Stripe cache
62 */
63
64#define NR_STRIPES 256
65#define STRIPE_SIZE PAGE_SIZE
66#define STRIPE_SHIFT (PAGE_SHIFT - 9)
67#define STRIPE_SECTORS (STRIPE_SIZE>>9)
68#define IO_THRESHOLD 1
69#define BYPASS_THRESHOLD 1
70#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
71#define HASH_MASK (NR_HASH - 1)
72
73#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
74
75/* bio's attached to a stripe+device for I/O are linked together in bi_sector
76 * order without overlap. There may be several bio's per stripe+device, and
77 * a bio could span several devices.
78 * When walking this list for a particular stripe+device, we must never proceed
79 * beyond a bio that extends past this device, as the next bio might no longer
80 * be valid.
81 * This macro is used to determine the 'next' bio in the list, given the sector
82 * of the current stripe+device
83 */
84#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
85/*
86 * The following can be used to debug the driver
87 */
88#define RAID5_PARANOIA 1
89#if RAID5_PARANOIA && defined(CONFIG_SMP)
90# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
91#else
92# define CHECK_DEVLOCK()
93#endif
94
95#ifdef DEBUG
96#define inline
97#define __inline__
98#endif
99
100/*
101 * We maintain a biased count of active stripes in the bottom 16 bits of
102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103 */
104static inline int raid5_bi_phys_segments(struct bio *bio)
105{
106 return bio->bi_phys_segments & 0xffff;
107}
108
109static inline int raid5_bi_hw_segments(struct bio *bio)
110{
111 return (bio->bi_phys_segments >> 16) & 0xffff;
112}
113
114static inline int raid5_dec_bi_phys_segments(struct bio *bio)
115{
116 --bio->bi_phys_segments;
117 return raid5_bi_phys_segments(bio);
118}
119
120static inline int raid5_dec_bi_hw_segments(struct bio *bio)
121{
122 unsigned short val = raid5_bi_hw_segments(bio);
123
124 --val;
125 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
126 return val;
127}
128
129static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
130{
131 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
132}
133
134/* Find first data disk in a raid6 stripe */
135static inline int raid6_d0(struct stripe_head *sh)
136{
137 if (sh->ddf_layout)
138 /* ddf always start from first device */
139 return 0;
140 /* md starts just after Q block */
141 if (sh->qd_idx == sh->disks - 1)
142 return 0;
143 else
144 return sh->qd_idx + 1;
145}
146static inline int raid6_next_disk(int disk, int raid_disks)
147{
148 disk++;
149 return (disk < raid_disks) ? disk : 0;
150}
151
152/* When walking through the disks in a raid5, starting at raid6_d0,
153 * We need to map each disk to a 'slot', where the data disks are slot
154 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
155 * is raid_disks-1. This help does that mapping.
156 */
157static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
158 int *count, int syndrome_disks)
159{
160 int slot = *count;
161
162 if (sh->ddf_layout)
163 (*count)++;
164 if (idx == sh->pd_idx)
165 return syndrome_disks;
166 if (idx == sh->qd_idx)
167 return syndrome_disks + 1;
168 if (!sh->ddf_layout)
169 (*count)++;
170 return slot;
171}
172
173static void return_io(struct bio *return_bi)
174{
175 struct bio *bi = return_bi;
176 while (bi) {
177
178 return_bi = bi->bi_next;
179 bi->bi_next = NULL;
180 bi->bi_size = 0;
181 bio_endio(bi, 0);
182 bi = return_bi;
183 }
184}
185
186static void print_raid5_conf (raid5_conf_t *conf);
187
188static int stripe_operations_active(struct stripe_head *sh)
189{
190 return sh->check_state || sh->reconstruct_state ||
191 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
192 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
193}
194
195static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
196{
197 if (atomic_dec_and_test(&sh->count)) {
198 BUG_ON(!list_empty(&sh->lru));
199 BUG_ON(atomic_read(&conf->active_stripes)==0);
200 if (test_bit(STRIPE_HANDLE, &sh->state)) {
201 if (test_bit(STRIPE_DELAYED, &sh->state))
202 list_add_tail(&sh->lru, &conf->delayed_list);
203 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
204 sh->bm_seq - conf->seq_write > 0)
205 list_add_tail(&sh->lru, &conf->bitmap_list);
206 else {
207 clear_bit(STRIPE_BIT_DELAY, &sh->state);
208 list_add_tail(&sh->lru, &conf->handle_list);
209 }
210 md_wakeup_thread(conf->mddev->thread);
211 } else {
212 BUG_ON(stripe_operations_active(sh));
213 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
214 atomic_dec(&conf->preread_active_stripes);
215 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
216 md_wakeup_thread(conf->mddev->thread);
217 }
218 atomic_dec(&conf->active_stripes);
219 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
220 list_add_tail(&sh->lru, &conf->inactive_list);
221 wake_up(&conf->wait_for_stripe);
222 if (conf->retry_read_aligned)
223 md_wakeup_thread(conf->mddev->thread);
224 }
225 }
226 }
227}
228
229static void release_stripe(struct stripe_head *sh)
230{
231 raid5_conf_t *conf = sh->raid_conf;
232 unsigned long flags;
233
234 spin_lock_irqsave(&conf->device_lock, flags);
235 __release_stripe(conf, sh);
236 spin_unlock_irqrestore(&conf->device_lock, flags);
237}
238
239static inline void remove_hash(struct stripe_head *sh)
240{
241 pr_debug("remove_hash(), stripe %llu\n",
242 (unsigned long long)sh->sector);
243
244 hlist_del_init(&sh->hash);
245}
246
247static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
248{
249 struct hlist_head *hp = stripe_hash(conf, sh->sector);
250
251 pr_debug("insert_hash(), stripe %llu\n",
252 (unsigned long long)sh->sector);
253
254 CHECK_DEVLOCK();
255 hlist_add_head(&sh->hash, hp);
256}
257
258
259/* find an idle stripe, make sure it is unhashed, and return it. */
260static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
261{
262 struct stripe_head *sh = NULL;
263 struct list_head *first;
264
265 CHECK_DEVLOCK();
266 if (list_empty(&conf->inactive_list))
267 goto out;
268 first = conf->inactive_list.next;
269 sh = list_entry(first, struct stripe_head, lru);
270 list_del_init(first);
271 remove_hash(sh);
272 atomic_inc(&conf->active_stripes);
273out:
274 return sh;
275}
276
277static void shrink_buffers(struct stripe_head *sh)
278{
279 struct page *p;
280 int i;
281 int num = sh->raid_conf->pool_size;
282
283 for (i = 0; i < num ; i++) {
284 p = sh->dev[i].page;
285 if (!p)
286 continue;
287 sh->dev[i].page = NULL;
288 put_page(p);
289 }
290}
291
292static int grow_buffers(struct stripe_head *sh)
293{
294 int i;
295 int num = sh->raid_conf->pool_size;
296
297 for (i = 0; i < num; i++) {
298 struct page *page;
299
300 if (!(page = alloc_page(GFP_KERNEL))) {
301 return 1;
302 }
303 sh->dev[i].page = page;
304 }
305 return 0;
306}
307
308static void raid5_build_block(struct stripe_head *sh, int i, int previous);
309static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
310 struct stripe_head *sh);
311
312static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
313{
314 raid5_conf_t *conf = sh->raid_conf;
315 int i;
316
317 BUG_ON(atomic_read(&sh->count) != 0);
318 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
319 BUG_ON(stripe_operations_active(sh));
320
321 CHECK_DEVLOCK();
322 pr_debug("init_stripe called, stripe %llu\n",
323 (unsigned long long)sh->sector);
324
325 remove_hash(sh);
326
327 sh->generation = conf->generation - previous;
328 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
329 sh->sector = sector;
330 stripe_set_idx(sector, conf, previous, sh);
331 sh->state = 0;
332
333
334 for (i = sh->disks; i--; ) {
335 struct r5dev *dev = &sh->dev[i];
336
337 if (dev->toread || dev->read || dev->towrite || dev->written ||
338 test_bit(R5_LOCKED, &dev->flags)) {
339 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
340 (unsigned long long)sh->sector, i, dev->toread,
341 dev->read, dev->towrite, dev->written,
342 test_bit(R5_LOCKED, &dev->flags));
343 WARN_ON(1);
344 }
345 dev->flags = 0;
346 raid5_build_block(sh, i, previous);
347 }
348 insert_hash(conf, sh);
349}
350
351static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
352 short generation)
353{
354 struct stripe_head *sh;
355 struct hlist_node *hn;
356
357 CHECK_DEVLOCK();
358 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
359 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
360 if (sh->sector == sector && sh->generation == generation)
361 return sh;
362 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
363 return NULL;
364}
365
366/*
367 * Need to check if array has failed when deciding whether to:
368 * - start an array
369 * - remove non-faulty devices
370 * - add a spare
371 * - allow a reshape
372 * This determination is simple when no reshape is happening.
373 * However if there is a reshape, we need to carefully check
374 * both the before and after sections.
375 * This is because some failed devices may only affect one
376 * of the two sections, and some non-in_sync devices may
377 * be insync in the section most affected by failed devices.
378 */
379static int has_failed(raid5_conf_t *conf)
380{
381 int degraded;
382 int i;
383 if (conf->mddev->reshape_position == MaxSector)
384 return conf->mddev->degraded > conf->max_degraded;
385
386 rcu_read_lock();
387 degraded = 0;
388 for (i = 0; i < conf->previous_raid_disks; i++) {
389 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
390 if (!rdev || test_bit(Faulty, &rdev->flags))
391 degraded++;
392 else if (test_bit(In_sync, &rdev->flags))
393 ;
394 else
395 /* not in-sync or faulty.
396 * If the reshape increases the number of devices,
397 * this is being recovered by the reshape, so
398 * this 'previous' section is not in_sync.
399 * If the number of devices is being reduced however,
400 * the device can only be part of the array if
401 * we are reverting a reshape, so this section will
402 * be in-sync.
403 */
404 if (conf->raid_disks >= conf->previous_raid_disks)
405 degraded++;
406 }
407 rcu_read_unlock();
408 if (degraded > conf->max_degraded)
409 return 1;
410 rcu_read_lock();
411 degraded = 0;
412 for (i = 0; i < conf->raid_disks; i++) {
413 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
414 if (!rdev || test_bit(Faulty, &rdev->flags))
415 degraded++;
416 else if (test_bit(In_sync, &rdev->flags))
417 ;
418 else
419 /* not in-sync or faulty.
420 * If reshape increases the number of devices, this
421 * section has already been recovered, else it
422 * almost certainly hasn't.
423 */
424 if (conf->raid_disks <= conf->previous_raid_disks)
425 degraded++;
426 }
427 rcu_read_unlock();
428 if (degraded > conf->max_degraded)
429 return 1;
430 return 0;
431}
432
433static struct stripe_head *
434get_active_stripe(raid5_conf_t *conf, sector_t sector,
435 int previous, int noblock, int noquiesce)
436{
437 struct stripe_head *sh;
438
439 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
440
441 spin_lock_irq(&conf->device_lock);
442
443 do {
444 wait_event_lock_irq(conf->wait_for_stripe,
445 conf->quiesce == 0 || noquiesce,
446 conf->device_lock, /* nothing */);
447 sh = __find_stripe(conf, sector, conf->generation - previous);
448 if (!sh) {
449 if (!conf->inactive_blocked)
450 sh = get_free_stripe(conf);
451 if (noblock && sh == NULL)
452 break;
453 if (!sh) {
454 conf->inactive_blocked = 1;
455 wait_event_lock_irq(conf->wait_for_stripe,
456 !list_empty(&conf->inactive_list) &&
457 (atomic_read(&conf->active_stripes)
458 < (conf->max_nr_stripes *3/4)
459 || !conf->inactive_blocked),
460 conf->device_lock,
461 );
462 conf->inactive_blocked = 0;
463 } else
464 init_stripe(sh, sector, previous);
465 } else {
466 if (atomic_read(&sh->count)) {
467 BUG_ON(!list_empty(&sh->lru)
468 && !test_bit(STRIPE_EXPANDING, &sh->state));
469 } else {
470 if (!test_bit(STRIPE_HANDLE, &sh->state))
471 atomic_inc(&conf->active_stripes);
472 if (list_empty(&sh->lru) &&
473 !test_bit(STRIPE_EXPANDING, &sh->state))
474 BUG();
475 list_del_init(&sh->lru);
476 }
477 }
478 } while (sh == NULL);
479
480 if (sh)
481 atomic_inc(&sh->count);
482
483 spin_unlock_irq(&conf->device_lock);
484 return sh;
485}
486
487static void
488raid5_end_read_request(struct bio *bi, int error);
489static void
490raid5_end_write_request(struct bio *bi, int error);
491
492static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
493{
494 raid5_conf_t *conf = sh->raid_conf;
495 int i, disks = sh->disks;
496
497 might_sleep();
498
499 for (i = disks; i--; ) {
500 int rw;
501 struct bio *bi;
502 mdk_rdev_t *rdev;
503 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
504 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
505 rw = WRITE_FUA;
506 else
507 rw = WRITE;
508 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
509 rw = READ;
510 else
511 continue;
512
513 bi = &sh->dev[i].req;
514
515 bi->bi_rw = rw;
516 if (rw & WRITE)
517 bi->bi_end_io = raid5_end_write_request;
518 else
519 bi->bi_end_io = raid5_end_read_request;
520
521 rcu_read_lock();
522 rdev = rcu_dereference(conf->disks[i].rdev);
523 if (rdev && test_bit(Faulty, &rdev->flags))
524 rdev = NULL;
525 if (rdev)
526 atomic_inc(&rdev->nr_pending);
527 rcu_read_unlock();
528
529 /* We have already checked bad blocks for reads. Now
530 * need to check for writes.
531 */
532 while ((rw & WRITE) && rdev &&
533 test_bit(WriteErrorSeen, &rdev->flags)) {
534 sector_t first_bad;
535 int bad_sectors;
536 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
537 &first_bad, &bad_sectors);
538 if (!bad)
539 break;
540
541 if (bad < 0) {
542 set_bit(BlockedBadBlocks, &rdev->flags);
543 if (!conf->mddev->external &&
544 conf->mddev->flags) {
545 /* It is very unlikely, but we might
546 * still need to write out the
547 * bad block log - better give it
548 * a chance*/
549 md_check_recovery(conf->mddev);
550 }
551 md_wait_for_blocked_rdev(rdev, conf->mddev);
552 } else {
553 /* Acknowledged bad block - skip the write */
554 rdev_dec_pending(rdev, conf->mddev);
555 rdev = NULL;
556 }
557 }
558
559 if (rdev) {
560 if (s->syncing || s->expanding || s->expanded)
561 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
562
563 set_bit(STRIPE_IO_STARTED, &sh->state);
564
565 bi->bi_bdev = rdev->bdev;
566 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
567 __func__, (unsigned long long)sh->sector,
568 bi->bi_rw, i);
569 atomic_inc(&sh->count);
570 bi->bi_sector = sh->sector + rdev->data_offset;
571 bi->bi_flags = 1 << BIO_UPTODATE;
572 bi->bi_vcnt = 1;
573 bi->bi_max_vecs = 1;
574 bi->bi_idx = 0;
575 bi->bi_io_vec = &sh->dev[i].vec;
576 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
577 bi->bi_io_vec[0].bv_offset = 0;
578 bi->bi_size = STRIPE_SIZE;
579 bi->bi_next = NULL;
580 generic_make_request(bi);
581 } else {
582 if (rw & WRITE)
583 set_bit(STRIPE_DEGRADED, &sh->state);
584 pr_debug("skip op %ld on disc %d for sector %llu\n",
585 bi->bi_rw, i, (unsigned long long)sh->sector);
586 clear_bit(R5_LOCKED, &sh->dev[i].flags);
587 set_bit(STRIPE_HANDLE, &sh->state);
588 }
589 }
590}
591
592static struct dma_async_tx_descriptor *
593async_copy_data(int frombio, struct bio *bio, struct page *page,
594 sector_t sector, struct dma_async_tx_descriptor *tx)
595{
596 struct bio_vec *bvl;
597 struct page *bio_page;
598 int i;
599 int page_offset;
600 struct async_submit_ctl submit;
601 enum async_tx_flags flags = 0;
602
603 if (bio->bi_sector >= sector)
604 page_offset = (signed)(bio->bi_sector - sector) * 512;
605 else
606 page_offset = (signed)(sector - bio->bi_sector) * -512;
607
608 if (frombio)
609 flags |= ASYNC_TX_FENCE;
610 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
611
612 bio_for_each_segment(bvl, bio, i) {
613 int len = bvl->bv_len;
614 int clen;
615 int b_offset = 0;
616
617 if (page_offset < 0) {
618 b_offset = -page_offset;
619 page_offset += b_offset;
620 len -= b_offset;
621 }
622
623 if (len > 0 && page_offset + len > STRIPE_SIZE)
624 clen = STRIPE_SIZE - page_offset;
625 else
626 clen = len;
627
628 if (clen > 0) {
629 b_offset += bvl->bv_offset;
630 bio_page = bvl->bv_page;
631 if (frombio)
632 tx = async_memcpy(page, bio_page, page_offset,
633 b_offset, clen, &submit);
634 else
635 tx = async_memcpy(bio_page, page, b_offset,
636 page_offset, clen, &submit);
637 }
638 /* chain the operations */
639 submit.depend_tx = tx;
640
641 if (clen < len) /* hit end of page */
642 break;
643 page_offset += len;
644 }
645
646 return tx;
647}
648
649static void ops_complete_biofill(void *stripe_head_ref)
650{
651 struct stripe_head *sh = stripe_head_ref;
652 struct bio *return_bi = NULL;
653 raid5_conf_t *conf = sh->raid_conf;
654 int i;
655
656 pr_debug("%s: stripe %llu\n", __func__,
657 (unsigned long long)sh->sector);
658
659 /* clear completed biofills */
660 spin_lock_irq(&conf->device_lock);
661 for (i = sh->disks; i--; ) {
662 struct r5dev *dev = &sh->dev[i];
663
664 /* acknowledge completion of a biofill operation */
665 /* and check if we need to reply to a read request,
666 * new R5_Wantfill requests are held off until
667 * !STRIPE_BIOFILL_RUN
668 */
669 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
670 struct bio *rbi, *rbi2;
671
672 BUG_ON(!dev->read);
673 rbi = dev->read;
674 dev->read = NULL;
675 while (rbi && rbi->bi_sector <
676 dev->sector + STRIPE_SECTORS) {
677 rbi2 = r5_next_bio(rbi, dev->sector);
678 if (!raid5_dec_bi_phys_segments(rbi)) {
679 rbi->bi_next = return_bi;
680 return_bi = rbi;
681 }
682 rbi = rbi2;
683 }
684 }
685 }
686 spin_unlock_irq(&conf->device_lock);
687 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
688
689 return_io(return_bi);
690
691 set_bit(STRIPE_HANDLE, &sh->state);
692 release_stripe(sh);
693}
694
695static void ops_run_biofill(struct stripe_head *sh)
696{
697 struct dma_async_tx_descriptor *tx = NULL;
698 raid5_conf_t *conf = sh->raid_conf;
699 struct async_submit_ctl submit;
700 int i;
701
702 pr_debug("%s: stripe %llu\n", __func__,
703 (unsigned long long)sh->sector);
704
705 for (i = sh->disks; i--; ) {
706 struct r5dev *dev = &sh->dev[i];
707 if (test_bit(R5_Wantfill, &dev->flags)) {
708 struct bio *rbi;
709 spin_lock_irq(&conf->device_lock);
710 dev->read = rbi = dev->toread;
711 dev->toread = NULL;
712 spin_unlock_irq(&conf->device_lock);
713 while (rbi && rbi->bi_sector <
714 dev->sector + STRIPE_SECTORS) {
715 tx = async_copy_data(0, rbi, dev->page,
716 dev->sector, tx);
717 rbi = r5_next_bio(rbi, dev->sector);
718 }
719 }
720 }
721
722 atomic_inc(&sh->count);
723 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
724 async_trigger_callback(&submit);
725}
726
727static void mark_target_uptodate(struct stripe_head *sh, int target)
728{
729 struct r5dev *tgt;
730
731 if (target < 0)
732 return;
733
734 tgt = &sh->dev[target];
735 set_bit(R5_UPTODATE, &tgt->flags);
736 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
737 clear_bit(R5_Wantcompute, &tgt->flags);
738}
739
740static void ops_complete_compute(void *stripe_head_ref)
741{
742 struct stripe_head *sh = stripe_head_ref;
743
744 pr_debug("%s: stripe %llu\n", __func__,
745 (unsigned long long)sh->sector);
746
747 /* mark the computed target(s) as uptodate */
748 mark_target_uptodate(sh, sh->ops.target);
749 mark_target_uptodate(sh, sh->ops.target2);
750
751 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
752 if (sh->check_state == check_state_compute_run)
753 sh->check_state = check_state_compute_result;
754 set_bit(STRIPE_HANDLE, &sh->state);
755 release_stripe(sh);
756}
757
758/* return a pointer to the address conversion region of the scribble buffer */
759static addr_conv_t *to_addr_conv(struct stripe_head *sh,
760 struct raid5_percpu *percpu)
761{
762 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
763}
764
765static struct dma_async_tx_descriptor *
766ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
767{
768 int disks = sh->disks;
769 struct page **xor_srcs = percpu->scribble;
770 int target = sh->ops.target;
771 struct r5dev *tgt = &sh->dev[target];
772 struct page *xor_dest = tgt->page;
773 int count = 0;
774 struct dma_async_tx_descriptor *tx;
775 struct async_submit_ctl submit;
776 int i;
777
778 pr_debug("%s: stripe %llu block: %d\n",
779 __func__, (unsigned long long)sh->sector, target);
780 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
781
782 for (i = disks; i--; )
783 if (i != target)
784 xor_srcs[count++] = sh->dev[i].page;
785
786 atomic_inc(&sh->count);
787
788 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
789 ops_complete_compute, sh, to_addr_conv(sh, percpu));
790 if (unlikely(count == 1))
791 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
792 else
793 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
794
795 return tx;
796}
797
798/* set_syndrome_sources - populate source buffers for gen_syndrome
799 * @srcs - (struct page *) array of size sh->disks
800 * @sh - stripe_head to parse
801 *
802 * Populates srcs in proper layout order for the stripe and returns the
803 * 'count' of sources to be used in a call to async_gen_syndrome. The P
804 * destination buffer is recorded in srcs[count] and the Q destination
805 * is recorded in srcs[count+1]].
806 */
807static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
808{
809 int disks = sh->disks;
810 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
811 int d0_idx = raid6_d0(sh);
812 int count;
813 int i;
814
815 for (i = 0; i < disks; i++)
816 srcs[i] = NULL;
817
818 count = 0;
819 i = d0_idx;
820 do {
821 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
822
823 srcs[slot] = sh->dev[i].page;
824 i = raid6_next_disk(i, disks);
825 } while (i != d0_idx);
826
827 return syndrome_disks;
828}
829
830static struct dma_async_tx_descriptor *
831ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
832{
833 int disks = sh->disks;
834 struct page **blocks = percpu->scribble;
835 int target;
836 int qd_idx = sh->qd_idx;
837 struct dma_async_tx_descriptor *tx;
838 struct async_submit_ctl submit;
839 struct r5dev *tgt;
840 struct page *dest;
841 int i;
842 int count;
843
844 if (sh->ops.target < 0)
845 target = sh->ops.target2;
846 else if (sh->ops.target2 < 0)
847 target = sh->ops.target;
848 else
849 /* we should only have one valid target */
850 BUG();
851 BUG_ON(target < 0);
852 pr_debug("%s: stripe %llu block: %d\n",
853 __func__, (unsigned long long)sh->sector, target);
854
855 tgt = &sh->dev[target];
856 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
857 dest = tgt->page;
858
859 atomic_inc(&sh->count);
860
861 if (target == qd_idx) {
862 count = set_syndrome_sources(blocks, sh);
863 blocks[count] = NULL; /* regenerating p is not necessary */
864 BUG_ON(blocks[count+1] != dest); /* q should already be set */
865 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
866 ops_complete_compute, sh,
867 to_addr_conv(sh, percpu));
868 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
869 } else {
870 /* Compute any data- or p-drive using XOR */
871 count = 0;
872 for (i = disks; i-- ; ) {
873 if (i == target || i == qd_idx)
874 continue;
875 blocks[count++] = sh->dev[i].page;
876 }
877
878 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
879 NULL, ops_complete_compute, sh,
880 to_addr_conv(sh, percpu));
881 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
882 }
883
884 return tx;
885}
886
887static struct dma_async_tx_descriptor *
888ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
889{
890 int i, count, disks = sh->disks;
891 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
892 int d0_idx = raid6_d0(sh);
893 int faila = -1, failb = -1;
894 int target = sh->ops.target;
895 int target2 = sh->ops.target2;
896 struct r5dev *tgt = &sh->dev[target];
897 struct r5dev *tgt2 = &sh->dev[target2];
898 struct dma_async_tx_descriptor *tx;
899 struct page **blocks = percpu->scribble;
900 struct async_submit_ctl submit;
901
902 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
903 __func__, (unsigned long long)sh->sector, target, target2);
904 BUG_ON(target < 0 || target2 < 0);
905 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
906 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
907
908 /* we need to open-code set_syndrome_sources to handle the
909 * slot number conversion for 'faila' and 'failb'
910 */
911 for (i = 0; i < disks ; i++)
912 blocks[i] = NULL;
913 count = 0;
914 i = d0_idx;
915 do {
916 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
917
918 blocks[slot] = sh->dev[i].page;
919
920 if (i == target)
921 faila = slot;
922 if (i == target2)
923 failb = slot;
924 i = raid6_next_disk(i, disks);
925 } while (i != d0_idx);
926
927 BUG_ON(faila == failb);
928 if (failb < faila)
929 swap(faila, failb);
930 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
931 __func__, (unsigned long long)sh->sector, faila, failb);
932
933 atomic_inc(&sh->count);
934
935 if (failb == syndrome_disks+1) {
936 /* Q disk is one of the missing disks */
937 if (faila == syndrome_disks) {
938 /* Missing P+Q, just recompute */
939 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
940 ops_complete_compute, sh,
941 to_addr_conv(sh, percpu));
942 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
943 STRIPE_SIZE, &submit);
944 } else {
945 struct page *dest;
946 int data_target;
947 int qd_idx = sh->qd_idx;
948
949 /* Missing D+Q: recompute D from P, then recompute Q */
950 if (target == qd_idx)
951 data_target = target2;
952 else
953 data_target = target;
954
955 count = 0;
956 for (i = disks; i-- ; ) {
957 if (i == data_target || i == qd_idx)
958 continue;
959 blocks[count++] = sh->dev[i].page;
960 }
961 dest = sh->dev[data_target].page;
962 init_async_submit(&submit,
963 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
964 NULL, NULL, NULL,
965 to_addr_conv(sh, percpu));
966 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
967 &submit);
968
969 count = set_syndrome_sources(blocks, sh);
970 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
971 ops_complete_compute, sh,
972 to_addr_conv(sh, percpu));
973 return async_gen_syndrome(blocks, 0, count+2,
974 STRIPE_SIZE, &submit);
975 }
976 } else {
977 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
978 ops_complete_compute, sh,
979 to_addr_conv(sh, percpu));
980 if (failb == syndrome_disks) {
981 /* We're missing D+P. */
982 return async_raid6_datap_recov(syndrome_disks+2,
983 STRIPE_SIZE, faila,
984 blocks, &submit);
985 } else {
986 /* We're missing D+D. */
987 return async_raid6_2data_recov(syndrome_disks+2,
988 STRIPE_SIZE, faila, failb,
989 blocks, &submit);
990 }
991 }
992}
993
994
995static void ops_complete_prexor(void *stripe_head_ref)
996{
997 struct stripe_head *sh = stripe_head_ref;
998
999 pr_debug("%s: stripe %llu\n", __func__,
1000 (unsigned long long)sh->sector);
1001}
1002
1003static struct dma_async_tx_descriptor *
1004ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1005 struct dma_async_tx_descriptor *tx)
1006{
1007 int disks = sh->disks;
1008 struct page **xor_srcs = percpu->scribble;
1009 int count = 0, pd_idx = sh->pd_idx, i;
1010 struct async_submit_ctl submit;
1011
1012 /* existing parity data subtracted */
1013 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1014
1015 pr_debug("%s: stripe %llu\n", __func__,
1016 (unsigned long long)sh->sector);
1017
1018 for (i = disks; i--; ) {
1019 struct r5dev *dev = &sh->dev[i];
1020 /* Only process blocks that are known to be uptodate */
1021 if (test_bit(R5_Wantdrain, &dev->flags))
1022 xor_srcs[count++] = dev->page;
1023 }
1024
1025 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1026 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1027 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1028
1029 return tx;
1030}
1031
1032static struct dma_async_tx_descriptor *
1033ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1034{
1035 int disks = sh->disks;
1036 int i;
1037
1038 pr_debug("%s: stripe %llu\n", __func__,
1039 (unsigned long long)sh->sector);
1040
1041 for (i = disks; i--; ) {
1042 struct r5dev *dev = &sh->dev[i];
1043 struct bio *chosen;
1044
1045 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1046 struct bio *wbi;
1047
1048 spin_lock_irq(&sh->raid_conf->device_lock);
1049 chosen = dev->towrite;
1050 dev->towrite = NULL;
1051 BUG_ON(dev->written);
1052 wbi = dev->written = chosen;
1053 spin_unlock_irq(&sh->raid_conf->device_lock);
1054
1055 while (wbi && wbi->bi_sector <
1056 dev->sector + STRIPE_SECTORS) {
1057 if (wbi->bi_rw & REQ_FUA)
1058 set_bit(R5_WantFUA, &dev->flags);
1059 tx = async_copy_data(1, wbi, dev->page,
1060 dev->sector, tx);
1061 wbi = r5_next_bio(wbi, dev->sector);
1062 }
1063 }
1064 }
1065
1066 return tx;
1067}
1068
1069static void ops_complete_reconstruct(void *stripe_head_ref)
1070{
1071 struct stripe_head *sh = stripe_head_ref;
1072 int disks = sh->disks;
1073 int pd_idx = sh->pd_idx;
1074 int qd_idx = sh->qd_idx;
1075 int i;
1076 bool fua = false;
1077
1078 pr_debug("%s: stripe %llu\n", __func__,
1079 (unsigned long long)sh->sector);
1080
1081 for (i = disks; i--; )
1082 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1083
1084 for (i = disks; i--; ) {
1085 struct r5dev *dev = &sh->dev[i];
1086
1087 if (dev->written || i == pd_idx || i == qd_idx) {
1088 set_bit(R5_UPTODATE, &dev->flags);
1089 if (fua)
1090 set_bit(R5_WantFUA, &dev->flags);
1091 }
1092 }
1093
1094 if (sh->reconstruct_state == reconstruct_state_drain_run)
1095 sh->reconstruct_state = reconstruct_state_drain_result;
1096 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1097 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1098 else {
1099 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1100 sh->reconstruct_state = reconstruct_state_result;
1101 }
1102
1103 set_bit(STRIPE_HANDLE, &sh->state);
1104 release_stripe(sh);
1105}
1106
1107static void
1108ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1109 struct dma_async_tx_descriptor *tx)
1110{
1111 int disks = sh->disks;
1112 struct page **xor_srcs = percpu->scribble;
1113 struct async_submit_ctl submit;
1114 int count = 0, pd_idx = sh->pd_idx, i;
1115 struct page *xor_dest;
1116 int prexor = 0;
1117 unsigned long flags;
1118
1119 pr_debug("%s: stripe %llu\n", __func__,
1120 (unsigned long long)sh->sector);
1121
1122 /* check if prexor is active which means only process blocks
1123 * that are part of a read-modify-write (written)
1124 */
1125 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1126 prexor = 1;
1127 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1128 for (i = disks; i--; ) {
1129 struct r5dev *dev = &sh->dev[i];
1130 if (dev->written)
1131 xor_srcs[count++] = dev->page;
1132 }
1133 } else {
1134 xor_dest = sh->dev[pd_idx].page;
1135 for (i = disks; i--; ) {
1136 struct r5dev *dev = &sh->dev[i];
1137 if (i != pd_idx)
1138 xor_srcs[count++] = dev->page;
1139 }
1140 }
1141
1142 /* 1/ if we prexor'd then the dest is reused as a source
1143 * 2/ if we did not prexor then we are redoing the parity
1144 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1145 * for the synchronous xor case
1146 */
1147 flags = ASYNC_TX_ACK |
1148 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1149
1150 atomic_inc(&sh->count);
1151
1152 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1153 to_addr_conv(sh, percpu));
1154 if (unlikely(count == 1))
1155 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1156 else
1157 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1158}
1159
1160static void
1161ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1162 struct dma_async_tx_descriptor *tx)
1163{
1164 struct async_submit_ctl submit;
1165 struct page **blocks = percpu->scribble;
1166 int count;
1167
1168 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1169
1170 count = set_syndrome_sources(blocks, sh);
1171
1172 atomic_inc(&sh->count);
1173
1174 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1175 sh, to_addr_conv(sh, percpu));
1176 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1177}
1178
1179static void ops_complete_check(void *stripe_head_ref)
1180{
1181 struct stripe_head *sh = stripe_head_ref;
1182
1183 pr_debug("%s: stripe %llu\n", __func__,
1184 (unsigned long long)sh->sector);
1185
1186 sh->check_state = check_state_check_result;
1187 set_bit(STRIPE_HANDLE, &sh->state);
1188 release_stripe(sh);
1189}
1190
1191static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1192{
1193 int disks = sh->disks;
1194 int pd_idx = sh->pd_idx;
1195 int qd_idx = sh->qd_idx;
1196 struct page *xor_dest;
1197 struct page **xor_srcs = percpu->scribble;
1198 struct dma_async_tx_descriptor *tx;
1199 struct async_submit_ctl submit;
1200 int count;
1201 int i;
1202
1203 pr_debug("%s: stripe %llu\n", __func__,
1204 (unsigned long long)sh->sector);
1205
1206 count = 0;
1207 xor_dest = sh->dev[pd_idx].page;
1208 xor_srcs[count++] = xor_dest;
1209 for (i = disks; i--; ) {
1210 if (i == pd_idx || i == qd_idx)
1211 continue;
1212 xor_srcs[count++] = sh->dev[i].page;
1213 }
1214
1215 init_async_submit(&submit, 0, NULL, NULL, NULL,
1216 to_addr_conv(sh, percpu));
1217 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1218 &sh->ops.zero_sum_result, &submit);
1219
1220 atomic_inc(&sh->count);
1221 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1222 tx = async_trigger_callback(&submit);
1223}
1224
1225static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1226{
1227 struct page **srcs = percpu->scribble;
1228 struct async_submit_ctl submit;
1229 int count;
1230
1231 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1232 (unsigned long long)sh->sector, checkp);
1233
1234 count = set_syndrome_sources(srcs, sh);
1235 if (!checkp)
1236 srcs[count] = NULL;
1237
1238 atomic_inc(&sh->count);
1239 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1240 sh, to_addr_conv(sh, percpu));
1241 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1242 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1243}
1244
1245static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1246{
1247 int overlap_clear = 0, i, disks = sh->disks;
1248 struct dma_async_tx_descriptor *tx = NULL;
1249 raid5_conf_t *conf = sh->raid_conf;
1250 int level = conf->level;
1251 struct raid5_percpu *percpu;
1252 unsigned long cpu;
1253
1254 cpu = get_cpu();
1255 percpu = per_cpu_ptr(conf->percpu, cpu);
1256 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1257 ops_run_biofill(sh);
1258 overlap_clear++;
1259 }
1260
1261 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1262 if (level < 6)
1263 tx = ops_run_compute5(sh, percpu);
1264 else {
1265 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1266 tx = ops_run_compute6_1(sh, percpu);
1267 else
1268 tx = ops_run_compute6_2(sh, percpu);
1269 }
1270 /* terminate the chain if reconstruct is not set to be run */
1271 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1272 async_tx_ack(tx);
1273 }
1274
1275 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1276 tx = ops_run_prexor(sh, percpu, tx);
1277
1278 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1279 tx = ops_run_biodrain(sh, tx);
1280 overlap_clear++;
1281 }
1282
1283 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1284 if (level < 6)
1285 ops_run_reconstruct5(sh, percpu, tx);
1286 else
1287 ops_run_reconstruct6(sh, percpu, tx);
1288 }
1289
1290 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1291 if (sh->check_state == check_state_run)
1292 ops_run_check_p(sh, percpu);
1293 else if (sh->check_state == check_state_run_q)
1294 ops_run_check_pq(sh, percpu, 0);
1295 else if (sh->check_state == check_state_run_pq)
1296 ops_run_check_pq(sh, percpu, 1);
1297 else
1298 BUG();
1299 }
1300
1301 if (overlap_clear)
1302 for (i = disks; i--; ) {
1303 struct r5dev *dev = &sh->dev[i];
1304 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1305 wake_up(&sh->raid_conf->wait_for_overlap);
1306 }
1307 put_cpu();
1308}
1309
1310#ifdef CONFIG_MULTICORE_RAID456
1311static void async_run_ops(void *param, async_cookie_t cookie)
1312{
1313 struct stripe_head *sh = param;
1314 unsigned long ops_request = sh->ops.request;
1315
1316 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1317 wake_up(&sh->ops.wait_for_ops);
1318
1319 __raid_run_ops(sh, ops_request);
1320 release_stripe(sh);
1321}
1322
1323static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1324{
1325 /* since handle_stripe can be called outside of raid5d context
1326 * we need to ensure sh->ops.request is de-staged before another
1327 * request arrives
1328 */
1329 wait_event(sh->ops.wait_for_ops,
1330 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1331 sh->ops.request = ops_request;
1332
1333 atomic_inc(&sh->count);
1334 async_schedule(async_run_ops, sh);
1335}
1336#else
1337#define raid_run_ops __raid_run_ops
1338#endif
1339
1340static int grow_one_stripe(raid5_conf_t *conf)
1341{
1342 struct stripe_head *sh;
1343 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1344 if (!sh)
1345 return 0;
1346
1347 sh->raid_conf = conf;
1348 #ifdef CONFIG_MULTICORE_RAID456
1349 init_waitqueue_head(&sh->ops.wait_for_ops);
1350 #endif
1351
1352 if (grow_buffers(sh)) {
1353 shrink_buffers(sh);
1354 kmem_cache_free(conf->slab_cache, sh);
1355 return 0;
1356 }
1357 /* we just created an active stripe so... */
1358 atomic_set(&sh->count, 1);
1359 atomic_inc(&conf->active_stripes);
1360 INIT_LIST_HEAD(&sh->lru);
1361 release_stripe(sh);
1362 return 1;
1363}
1364
1365static int grow_stripes(raid5_conf_t *conf, int num)
1366{
1367 struct kmem_cache *sc;
1368 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1369
1370 if (conf->mddev->gendisk)
1371 sprintf(conf->cache_name[0],
1372 "raid%d-%s", conf->level, mdname(conf->mddev));
1373 else
1374 sprintf(conf->cache_name[0],
1375 "raid%d-%p", conf->level, conf->mddev);
1376 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1377
1378 conf->active_name = 0;
1379 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1380 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1381 0, 0, NULL);
1382 if (!sc)
1383 return 1;
1384 conf->slab_cache = sc;
1385 conf->pool_size = devs;
1386 while (num--)
1387 if (!grow_one_stripe(conf))
1388 return 1;
1389 return 0;
1390}
1391
1392/**
1393 * scribble_len - return the required size of the scribble region
1394 * @num - total number of disks in the array
1395 *
1396 * The size must be enough to contain:
1397 * 1/ a struct page pointer for each device in the array +2
1398 * 2/ room to convert each entry in (1) to its corresponding dma
1399 * (dma_map_page()) or page (page_address()) address.
1400 *
1401 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1402 * calculate over all devices (not just the data blocks), using zeros in place
1403 * of the P and Q blocks.
1404 */
1405static size_t scribble_len(int num)
1406{
1407 size_t len;
1408
1409 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1410
1411 return len;
1412}
1413
1414static int resize_stripes(raid5_conf_t *conf, int newsize)
1415{
1416 /* Make all the stripes able to hold 'newsize' devices.
1417 * New slots in each stripe get 'page' set to a new page.
1418 *
1419 * This happens in stages:
1420 * 1/ create a new kmem_cache and allocate the required number of
1421 * stripe_heads.
1422 * 2/ gather all the old stripe_heads and tranfer the pages across
1423 * to the new stripe_heads. This will have the side effect of
1424 * freezing the array as once all stripe_heads have been collected,
1425 * no IO will be possible. Old stripe heads are freed once their
1426 * pages have been transferred over, and the old kmem_cache is
1427 * freed when all stripes are done.
1428 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1429 * we simple return a failre status - no need to clean anything up.
1430 * 4/ allocate new pages for the new slots in the new stripe_heads.
1431 * If this fails, we don't bother trying the shrink the
1432 * stripe_heads down again, we just leave them as they are.
1433 * As each stripe_head is processed the new one is released into
1434 * active service.
1435 *
1436 * Once step2 is started, we cannot afford to wait for a write,
1437 * so we use GFP_NOIO allocations.
1438 */
1439 struct stripe_head *osh, *nsh;
1440 LIST_HEAD(newstripes);
1441 struct disk_info *ndisks;
1442 unsigned long cpu;
1443 int err;
1444 struct kmem_cache *sc;
1445 int i;
1446
1447 if (newsize <= conf->pool_size)
1448 return 0; /* never bother to shrink */
1449
1450 err = md_allow_write(conf->mddev);
1451 if (err)
1452 return err;
1453
1454 /* Step 1 */
1455 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1456 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1457 0, 0, NULL);
1458 if (!sc)
1459 return -ENOMEM;
1460
1461 for (i = conf->max_nr_stripes; i; i--) {
1462 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1463 if (!nsh)
1464 break;
1465
1466 nsh->raid_conf = conf;
1467 #ifdef CONFIG_MULTICORE_RAID456
1468 init_waitqueue_head(&nsh->ops.wait_for_ops);
1469 #endif
1470
1471 list_add(&nsh->lru, &newstripes);
1472 }
1473 if (i) {
1474 /* didn't get enough, give up */
1475 while (!list_empty(&newstripes)) {
1476 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1477 list_del(&nsh->lru);
1478 kmem_cache_free(sc, nsh);
1479 }
1480 kmem_cache_destroy(sc);
1481 return -ENOMEM;
1482 }
1483 /* Step 2 - Must use GFP_NOIO now.
1484 * OK, we have enough stripes, start collecting inactive
1485 * stripes and copying them over
1486 */
1487 list_for_each_entry(nsh, &newstripes, lru) {
1488 spin_lock_irq(&conf->device_lock);
1489 wait_event_lock_irq(conf->wait_for_stripe,
1490 !list_empty(&conf->inactive_list),
1491 conf->device_lock,
1492 );
1493 osh = get_free_stripe(conf);
1494 spin_unlock_irq(&conf->device_lock);
1495 atomic_set(&nsh->count, 1);
1496 for(i=0; i<conf->pool_size; i++)
1497 nsh->dev[i].page = osh->dev[i].page;
1498 for( ; i<newsize; i++)
1499 nsh->dev[i].page = NULL;
1500 kmem_cache_free(conf->slab_cache, osh);
1501 }
1502 kmem_cache_destroy(conf->slab_cache);
1503
1504 /* Step 3.
1505 * At this point, we are holding all the stripes so the array
1506 * is completely stalled, so now is a good time to resize
1507 * conf->disks and the scribble region
1508 */
1509 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1510 if (ndisks) {
1511 for (i=0; i<conf->raid_disks; i++)
1512 ndisks[i] = conf->disks[i];
1513 kfree(conf->disks);
1514 conf->disks = ndisks;
1515 } else
1516 err = -ENOMEM;
1517
1518 get_online_cpus();
1519 conf->scribble_len = scribble_len(newsize);
1520 for_each_present_cpu(cpu) {
1521 struct raid5_percpu *percpu;
1522 void *scribble;
1523
1524 percpu = per_cpu_ptr(conf->percpu, cpu);
1525 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1526
1527 if (scribble) {
1528 kfree(percpu->scribble);
1529 percpu->scribble = scribble;
1530 } else {
1531 err = -ENOMEM;
1532 break;
1533 }
1534 }
1535 put_online_cpus();
1536
1537 /* Step 4, return new stripes to service */
1538 while(!list_empty(&newstripes)) {
1539 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1540 list_del_init(&nsh->lru);
1541
1542 for (i=conf->raid_disks; i < newsize; i++)
1543 if (nsh->dev[i].page == NULL) {
1544 struct page *p = alloc_page(GFP_NOIO);
1545 nsh->dev[i].page = p;
1546 if (!p)
1547 err = -ENOMEM;
1548 }
1549 release_stripe(nsh);
1550 }
1551 /* critical section pass, GFP_NOIO no longer needed */
1552
1553 conf->slab_cache = sc;
1554 conf->active_name = 1-conf->active_name;
1555 conf->pool_size = newsize;
1556 return err;
1557}
1558
1559static int drop_one_stripe(raid5_conf_t *conf)
1560{
1561 struct stripe_head *sh;
1562
1563 spin_lock_irq(&conf->device_lock);
1564 sh = get_free_stripe(conf);
1565 spin_unlock_irq(&conf->device_lock);
1566 if (!sh)
1567 return 0;
1568 BUG_ON(atomic_read(&sh->count));
1569 shrink_buffers(sh);
1570 kmem_cache_free(conf->slab_cache, sh);
1571 atomic_dec(&conf->active_stripes);
1572 return 1;
1573}
1574
1575static void shrink_stripes(raid5_conf_t *conf)
1576{
1577 while (drop_one_stripe(conf))
1578 ;
1579
1580 if (conf->slab_cache)
1581 kmem_cache_destroy(conf->slab_cache);
1582 conf->slab_cache = NULL;
1583}
1584
1585static void raid5_end_read_request(struct bio * bi, int error)
1586{
1587 struct stripe_head *sh = bi->bi_private;
1588 raid5_conf_t *conf = sh->raid_conf;
1589 int disks = sh->disks, i;
1590 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1591 char b[BDEVNAME_SIZE];
1592 mdk_rdev_t *rdev;
1593
1594
1595 for (i=0 ; i<disks; i++)
1596 if (bi == &sh->dev[i].req)
1597 break;
1598
1599 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1600 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1601 uptodate);
1602 if (i == disks) {
1603 BUG();
1604 return;
1605 }
1606
1607 if (uptodate) {
1608 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1609 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1610 rdev = conf->disks[i].rdev;
1611 printk_ratelimited(
1612 KERN_INFO
1613 "md/raid:%s: read error corrected"
1614 " (%lu sectors at %llu on %s)\n",
1615 mdname(conf->mddev), STRIPE_SECTORS,
1616 (unsigned long long)(sh->sector
1617 + rdev->data_offset),
1618 bdevname(rdev->bdev, b));
1619 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1620 clear_bit(R5_ReadError, &sh->dev[i].flags);
1621 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1622 }
1623 if (atomic_read(&conf->disks[i].rdev->read_errors))
1624 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1625 } else {
1626 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1627 int retry = 0;
1628 rdev = conf->disks[i].rdev;
1629
1630 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1631 atomic_inc(&rdev->read_errors);
1632 if (conf->mddev->degraded >= conf->max_degraded)
1633 printk_ratelimited(
1634 KERN_WARNING
1635 "md/raid:%s: read error not correctable "
1636 "(sector %llu on %s).\n",
1637 mdname(conf->mddev),
1638 (unsigned long long)(sh->sector
1639 + rdev->data_offset),
1640 bdn);
1641 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1642 /* Oh, no!!! */
1643 printk_ratelimited(
1644 KERN_WARNING
1645 "md/raid:%s: read error NOT corrected!! "
1646 "(sector %llu on %s).\n",
1647 mdname(conf->mddev),
1648 (unsigned long long)(sh->sector
1649 + rdev->data_offset),
1650 bdn);
1651 else if (atomic_read(&rdev->read_errors)
1652 > conf->max_nr_stripes)
1653 printk(KERN_WARNING
1654 "md/raid:%s: Too many read errors, failing device %s.\n",
1655 mdname(conf->mddev), bdn);
1656 else
1657 retry = 1;
1658 if (retry)
1659 set_bit(R5_ReadError, &sh->dev[i].flags);
1660 else {
1661 clear_bit(R5_ReadError, &sh->dev[i].flags);
1662 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1663 md_error(conf->mddev, rdev);
1664 }
1665 }
1666 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1667 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1668 set_bit(STRIPE_HANDLE, &sh->state);
1669 release_stripe(sh);
1670}
1671
1672static void raid5_end_write_request(struct bio *bi, int error)
1673{
1674 struct stripe_head *sh = bi->bi_private;
1675 raid5_conf_t *conf = sh->raid_conf;
1676 int disks = sh->disks, i;
1677 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1678 sector_t first_bad;
1679 int bad_sectors;
1680
1681 for (i=0 ; i<disks; i++)
1682 if (bi == &sh->dev[i].req)
1683 break;
1684
1685 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1686 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1687 uptodate);
1688 if (i == disks) {
1689 BUG();
1690 return;
1691 }
1692
1693 if (!uptodate) {
1694 set_bit(WriteErrorSeen, &conf->disks[i].rdev->flags);
1695 set_bit(R5_WriteError, &sh->dev[i].flags);
1696 } else if (is_badblock(conf->disks[i].rdev, sh->sector, STRIPE_SECTORS,
1697 &first_bad, &bad_sectors))
1698 set_bit(R5_MadeGood, &sh->dev[i].flags);
1699
1700 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1701
1702 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1703 set_bit(STRIPE_HANDLE, &sh->state);
1704 release_stripe(sh);
1705}
1706
1707
1708static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1709
1710static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1711{
1712 struct r5dev *dev = &sh->dev[i];
1713
1714 bio_init(&dev->req);
1715 dev->req.bi_io_vec = &dev->vec;
1716 dev->req.bi_vcnt++;
1717 dev->req.bi_max_vecs++;
1718 dev->vec.bv_page = dev->page;
1719 dev->vec.bv_len = STRIPE_SIZE;
1720 dev->vec.bv_offset = 0;
1721
1722 dev->req.bi_sector = sh->sector;
1723 dev->req.bi_private = sh;
1724
1725 dev->flags = 0;
1726 dev->sector = compute_blocknr(sh, i, previous);
1727}
1728
1729static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1730{
1731 char b[BDEVNAME_SIZE];
1732 raid5_conf_t *conf = mddev->private;
1733 pr_debug("raid456: error called\n");
1734
1735 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1736 unsigned long flags;
1737 spin_lock_irqsave(&conf->device_lock, flags);
1738 mddev->degraded++;
1739 spin_unlock_irqrestore(&conf->device_lock, flags);
1740 /*
1741 * if recovery was running, make sure it aborts.
1742 */
1743 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1744 }
1745 set_bit(Blocked, &rdev->flags);
1746 set_bit(Faulty, &rdev->flags);
1747 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1748 printk(KERN_ALERT
1749 "md/raid:%s: Disk failure on %s, disabling device.\n"
1750 "md/raid:%s: Operation continuing on %d devices.\n",
1751 mdname(mddev),
1752 bdevname(rdev->bdev, b),
1753 mdname(mddev),
1754 conf->raid_disks - mddev->degraded);
1755}
1756
1757/*
1758 * Input: a 'big' sector number,
1759 * Output: index of the data and parity disk, and the sector # in them.
1760 */
1761static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1762 int previous, int *dd_idx,
1763 struct stripe_head *sh)
1764{
1765 sector_t stripe, stripe2;
1766 sector_t chunk_number;
1767 unsigned int chunk_offset;
1768 int pd_idx, qd_idx;
1769 int ddf_layout = 0;
1770 sector_t new_sector;
1771 int algorithm = previous ? conf->prev_algo
1772 : conf->algorithm;
1773 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1774 : conf->chunk_sectors;
1775 int raid_disks = previous ? conf->previous_raid_disks
1776 : conf->raid_disks;
1777 int data_disks = raid_disks - conf->max_degraded;
1778
1779 /* First compute the information on this sector */
1780
1781 /*
1782 * Compute the chunk number and the sector offset inside the chunk
1783 */
1784 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1785 chunk_number = r_sector;
1786
1787 /*
1788 * Compute the stripe number
1789 */
1790 stripe = chunk_number;
1791 *dd_idx = sector_div(stripe, data_disks);
1792 stripe2 = stripe;
1793 /*
1794 * Select the parity disk based on the user selected algorithm.
1795 */
1796 pd_idx = qd_idx = -1;
1797 switch(conf->level) {
1798 case 4:
1799 pd_idx = data_disks;
1800 break;
1801 case 5:
1802 switch (algorithm) {
1803 case ALGORITHM_LEFT_ASYMMETRIC:
1804 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1805 if (*dd_idx >= pd_idx)
1806 (*dd_idx)++;
1807 break;
1808 case ALGORITHM_RIGHT_ASYMMETRIC:
1809 pd_idx = sector_div(stripe2, raid_disks);
1810 if (*dd_idx >= pd_idx)
1811 (*dd_idx)++;
1812 break;
1813 case ALGORITHM_LEFT_SYMMETRIC:
1814 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1815 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1816 break;
1817 case ALGORITHM_RIGHT_SYMMETRIC:
1818 pd_idx = sector_div(stripe2, raid_disks);
1819 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1820 break;
1821 case ALGORITHM_PARITY_0:
1822 pd_idx = 0;
1823 (*dd_idx)++;
1824 break;
1825 case ALGORITHM_PARITY_N:
1826 pd_idx = data_disks;
1827 break;
1828 default:
1829 BUG();
1830 }
1831 break;
1832 case 6:
1833
1834 switch (algorithm) {
1835 case ALGORITHM_LEFT_ASYMMETRIC:
1836 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1837 qd_idx = pd_idx + 1;
1838 if (pd_idx == raid_disks-1) {
1839 (*dd_idx)++; /* Q D D D P */
1840 qd_idx = 0;
1841 } else if (*dd_idx >= pd_idx)
1842 (*dd_idx) += 2; /* D D P Q D */
1843 break;
1844 case ALGORITHM_RIGHT_ASYMMETRIC:
1845 pd_idx = sector_div(stripe2, raid_disks);
1846 qd_idx = pd_idx + 1;
1847 if (pd_idx == raid_disks-1) {
1848 (*dd_idx)++; /* Q D D D P */
1849 qd_idx = 0;
1850 } else if (*dd_idx >= pd_idx)
1851 (*dd_idx) += 2; /* D D P Q D */
1852 break;
1853 case ALGORITHM_LEFT_SYMMETRIC:
1854 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1855 qd_idx = (pd_idx + 1) % raid_disks;
1856 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1857 break;
1858 case ALGORITHM_RIGHT_SYMMETRIC:
1859 pd_idx = sector_div(stripe2, raid_disks);
1860 qd_idx = (pd_idx + 1) % raid_disks;
1861 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1862 break;
1863
1864 case ALGORITHM_PARITY_0:
1865 pd_idx = 0;
1866 qd_idx = 1;
1867 (*dd_idx) += 2;
1868 break;
1869 case ALGORITHM_PARITY_N:
1870 pd_idx = data_disks;
1871 qd_idx = data_disks + 1;
1872 break;
1873
1874 case ALGORITHM_ROTATING_ZERO_RESTART:
1875 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1876 * of blocks for computing Q is different.
1877 */
1878 pd_idx = sector_div(stripe2, raid_disks);
1879 qd_idx = pd_idx + 1;
1880 if (pd_idx == raid_disks-1) {
1881 (*dd_idx)++; /* Q D D D P */
1882 qd_idx = 0;
1883 } else if (*dd_idx >= pd_idx)
1884 (*dd_idx) += 2; /* D D P Q D */
1885 ddf_layout = 1;
1886 break;
1887
1888 case ALGORITHM_ROTATING_N_RESTART:
1889 /* Same a left_asymmetric, by first stripe is
1890 * D D D P Q rather than
1891 * Q D D D P
1892 */
1893 stripe2 += 1;
1894 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1895 qd_idx = pd_idx + 1;
1896 if (pd_idx == raid_disks-1) {
1897 (*dd_idx)++; /* Q D D D P */
1898 qd_idx = 0;
1899 } else if (*dd_idx >= pd_idx)
1900 (*dd_idx) += 2; /* D D P Q D */
1901 ddf_layout = 1;
1902 break;
1903
1904 case ALGORITHM_ROTATING_N_CONTINUE:
1905 /* Same as left_symmetric but Q is before P */
1906 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1907 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1908 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1909 ddf_layout = 1;
1910 break;
1911
1912 case ALGORITHM_LEFT_ASYMMETRIC_6:
1913 /* RAID5 left_asymmetric, with Q on last device */
1914 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1915 if (*dd_idx >= pd_idx)
1916 (*dd_idx)++;
1917 qd_idx = raid_disks - 1;
1918 break;
1919
1920 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1921 pd_idx = sector_div(stripe2, raid_disks-1);
1922 if (*dd_idx >= pd_idx)
1923 (*dd_idx)++;
1924 qd_idx = raid_disks - 1;
1925 break;
1926
1927 case ALGORITHM_LEFT_SYMMETRIC_6:
1928 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1929 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1930 qd_idx = raid_disks - 1;
1931 break;
1932
1933 case ALGORITHM_RIGHT_SYMMETRIC_6:
1934 pd_idx = sector_div(stripe2, raid_disks-1);
1935 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1936 qd_idx = raid_disks - 1;
1937 break;
1938
1939 case ALGORITHM_PARITY_0_6:
1940 pd_idx = 0;
1941 (*dd_idx)++;
1942 qd_idx = raid_disks - 1;
1943 break;
1944
1945 default:
1946 BUG();
1947 }
1948 break;
1949 }
1950
1951 if (sh) {
1952 sh->pd_idx = pd_idx;
1953 sh->qd_idx = qd_idx;
1954 sh->ddf_layout = ddf_layout;
1955 }
1956 /*
1957 * Finally, compute the new sector number
1958 */
1959 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1960 return new_sector;
1961}
1962
1963
1964static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1965{
1966 raid5_conf_t *conf = sh->raid_conf;
1967 int raid_disks = sh->disks;
1968 int data_disks = raid_disks - conf->max_degraded;
1969 sector_t new_sector = sh->sector, check;
1970 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1971 : conf->chunk_sectors;
1972 int algorithm = previous ? conf->prev_algo
1973 : conf->algorithm;
1974 sector_t stripe;
1975 int chunk_offset;
1976 sector_t chunk_number;
1977 int dummy1, dd_idx = i;
1978 sector_t r_sector;
1979 struct stripe_head sh2;
1980
1981
1982 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1983 stripe = new_sector;
1984
1985 if (i == sh->pd_idx)
1986 return 0;
1987 switch(conf->level) {
1988 case 4: break;
1989 case 5:
1990 switch (algorithm) {
1991 case ALGORITHM_LEFT_ASYMMETRIC:
1992 case ALGORITHM_RIGHT_ASYMMETRIC:
1993 if (i > sh->pd_idx)
1994 i--;
1995 break;
1996 case ALGORITHM_LEFT_SYMMETRIC:
1997 case ALGORITHM_RIGHT_SYMMETRIC:
1998 if (i < sh->pd_idx)
1999 i += raid_disks;
2000 i -= (sh->pd_idx + 1);
2001 break;
2002 case ALGORITHM_PARITY_0:
2003 i -= 1;
2004 break;
2005 case ALGORITHM_PARITY_N:
2006 break;
2007 default:
2008 BUG();
2009 }
2010 break;
2011 case 6:
2012 if (i == sh->qd_idx)
2013 return 0; /* It is the Q disk */
2014 switch (algorithm) {
2015 case ALGORITHM_LEFT_ASYMMETRIC:
2016 case ALGORITHM_RIGHT_ASYMMETRIC:
2017 case ALGORITHM_ROTATING_ZERO_RESTART:
2018 case ALGORITHM_ROTATING_N_RESTART:
2019 if (sh->pd_idx == raid_disks-1)
2020 i--; /* Q D D D P */
2021 else if (i > sh->pd_idx)
2022 i -= 2; /* D D P Q D */
2023 break;
2024 case ALGORITHM_LEFT_SYMMETRIC:
2025 case ALGORITHM_RIGHT_SYMMETRIC:
2026 if (sh->pd_idx == raid_disks-1)
2027 i--; /* Q D D D P */
2028 else {
2029 /* D D P Q D */
2030 if (i < sh->pd_idx)
2031 i += raid_disks;
2032 i -= (sh->pd_idx + 2);
2033 }
2034 break;
2035 case ALGORITHM_PARITY_0:
2036 i -= 2;
2037 break;
2038 case ALGORITHM_PARITY_N:
2039 break;
2040 case ALGORITHM_ROTATING_N_CONTINUE:
2041 /* Like left_symmetric, but P is before Q */
2042 if (sh->pd_idx == 0)
2043 i--; /* P D D D Q */
2044 else {
2045 /* D D Q P D */
2046 if (i < sh->pd_idx)
2047 i += raid_disks;
2048 i -= (sh->pd_idx + 1);
2049 }
2050 break;
2051 case ALGORITHM_LEFT_ASYMMETRIC_6:
2052 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2053 if (i > sh->pd_idx)
2054 i--;
2055 break;
2056 case ALGORITHM_LEFT_SYMMETRIC_6:
2057 case ALGORITHM_RIGHT_SYMMETRIC_6:
2058 if (i < sh->pd_idx)
2059 i += data_disks + 1;
2060 i -= (sh->pd_idx + 1);
2061 break;
2062 case ALGORITHM_PARITY_0_6:
2063 i -= 1;
2064 break;
2065 default:
2066 BUG();
2067 }
2068 break;
2069 }
2070
2071 chunk_number = stripe * data_disks + i;
2072 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2073
2074 check = raid5_compute_sector(conf, r_sector,
2075 previous, &dummy1, &sh2);
2076 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2077 || sh2.qd_idx != sh->qd_idx) {
2078 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2079 mdname(conf->mddev));
2080 return 0;
2081 }
2082 return r_sector;
2083}
2084
2085
2086static void
2087schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2088 int rcw, int expand)
2089{
2090 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2091 raid5_conf_t *conf = sh->raid_conf;
2092 int level = conf->level;
2093
2094 if (rcw) {
2095 /* if we are not expanding this is a proper write request, and
2096 * there will be bios with new data to be drained into the
2097 * stripe cache
2098 */
2099 if (!expand) {
2100 sh->reconstruct_state = reconstruct_state_drain_run;
2101 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2102 } else
2103 sh->reconstruct_state = reconstruct_state_run;
2104
2105 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2106
2107 for (i = disks; i--; ) {
2108 struct r5dev *dev = &sh->dev[i];
2109
2110 if (dev->towrite) {
2111 set_bit(R5_LOCKED, &dev->flags);
2112 set_bit(R5_Wantdrain, &dev->flags);
2113 if (!expand)
2114 clear_bit(R5_UPTODATE, &dev->flags);
2115 s->locked++;
2116 }
2117 }
2118 if (s->locked + conf->max_degraded == disks)
2119 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2120 atomic_inc(&conf->pending_full_writes);
2121 } else {
2122 BUG_ON(level == 6);
2123 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2124 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2125
2126 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2127 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2128 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2129 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2130
2131 for (i = disks; i--; ) {
2132 struct r5dev *dev = &sh->dev[i];
2133 if (i == pd_idx)
2134 continue;
2135
2136 if (dev->towrite &&
2137 (test_bit(R5_UPTODATE, &dev->flags) ||
2138 test_bit(R5_Wantcompute, &dev->flags))) {
2139 set_bit(R5_Wantdrain, &dev->flags);
2140 set_bit(R5_LOCKED, &dev->flags);
2141 clear_bit(R5_UPTODATE, &dev->flags);
2142 s->locked++;
2143 }
2144 }
2145 }
2146
2147 /* keep the parity disk(s) locked while asynchronous operations
2148 * are in flight
2149 */
2150 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2151 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2152 s->locked++;
2153
2154 if (level == 6) {
2155 int qd_idx = sh->qd_idx;
2156 struct r5dev *dev = &sh->dev[qd_idx];
2157
2158 set_bit(R5_LOCKED, &dev->flags);
2159 clear_bit(R5_UPTODATE, &dev->flags);
2160 s->locked++;
2161 }
2162
2163 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2164 __func__, (unsigned long long)sh->sector,
2165 s->locked, s->ops_request);
2166}
2167
2168/*
2169 * Each stripe/dev can have one or more bion attached.
2170 * toread/towrite point to the first in a chain.
2171 * The bi_next chain must be in order.
2172 */
2173static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2174{
2175 struct bio **bip;
2176 raid5_conf_t *conf = sh->raid_conf;
2177 int firstwrite=0;
2178
2179 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2180 (unsigned long long)bi->bi_sector,
2181 (unsigned long long)sh->sector);
2182
2183
2184 spin_lock_irq(&conf->device_lock);
2185 if (forwrite) {
2186 bip = &sh->dev[dd_idx].towrite;
2187 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2188 firstwrite = 1;
2189 } else
2190 bip = &sh->dev[dd_idx].toread;
2191 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2192 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2193 goto overlap;
2194 bip = & (*bip)->bi_next;
2195 }
2196 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2197 goto overlap;
2198
2199 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2200 if (*bip)
2201 bi->bi_next = *bip;
2202 *bip = bi;
2203 bi->bi_phys_segments++;
2204
2205 if (forwrite) {
2206 /* check if page is covered */
2207 sector_t sector = sh->dev[dd_idx].sector;
2208 for (bi=sh->dev[dd_idx].towrite;
2209 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2210 bi && bi->bi_sector <= sector;
2211 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2212 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2213 sector = bi->bi_sector + (bi->bi_size>>9);
2214 }
2215 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2216 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2217 }
2218 spin_unlock_irq(&conf->device_lock);
2219
2220 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2221 (unsigned long long)(*bip)->bi_sector,
2222 (unsigned long long)sh->sector, dd_idx);
2223
2224 if (conf->mddev->bitmap && firstwrite) {
2225 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2226 STRIPE_SECTORS, 0);
2227 sh->bm_seq = conf->seq_flush+1;
2228 set_bit(STRIPE_BIT_DELAY, &sh->state);
2229 }
2230 return 1;
2231
2232 overlap:
2233 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2234 spin_unlock_irq(&conf->device_lock);
2235 return 0;
2236}
2237
2238static void end_reshape(raid5_conf_t *conf);
2239
2240static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2241 struct stripe_head *sh)
2242{
2243 int sectors_per_chunk =
2244 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2245 int dd_idx;
2246 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2247 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2248
2249 raid5_compute_sector(conf,
2250 stripe * (disks - conf->max_degraded)
2251 *sectors_per_chunk + chunk_offset,
2252 previous,
2253 &dd_idx, sh);
2254}
2255
2256static void
2257handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2258 struct stripe_head_state *s, int disks,
2259 struct bio **return_bi)
2260{
2261 int i;
2262 for (i = disks; i--; ) {
2263 struct bio *bi;
2264 int bitmap_end = 0;
2265
2266 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2267 mdk_rdev_t *rdev;
2268 rcu_read_lock();
2269 rdev = rcu_dereference(conf->disks[i].rdev);
2270 if (rdev && test_bit(In_sync, &rdev->flags))
2271 atomic_inc(&rdev->nr_pending);
2272 else
2273 rdev = NULL;
2274 rcu_read_unlock();
2275 if (rdev) {
2276 if (!rdev_set_badblocks(
2277 rdev,
2278 sh->sector,
2279 STRIPE_SECTORS, 0))
2280 md_error(conf->mddev, rdev);
2281 rdev_dec_pending(rdev, conf->mddev);
2282 }
2283 }
2284 spin_lock_irq(&conf->device_lock);
2285 /* fail all writes first */
2286 bi = sh->dev[i].towrite;
2287 sh->dev[i].towrite = NULL;
2288 if (bi) {
2289 s->to_write--;
2290 bitmap_end = 1;
2291 }
2292
2293 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2294 wake_up(&conf->wait_for_overlap);
2295
2296 while (bi && bi->bi_sector <
2297 sh->dev[i].sector + STRIPE_SECTORS) {
2298 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2299 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2300 if (!raid5_dec_bi_phys_segments(bi)) {
2301 md_write_end(conf->mddev);
2302 bi->bi_next = *return_bi;
2303 *return_bi = bi;
2304 }
2305 bi = nextbi;
2306 }
2307 /* and fail all 'written' */
2308 bi = sh->dev[i].written;
2309 sh->dev[i].written = NULL;
2310 if (bi) bitmap_end = 1;
2311 while (bi && bi->bi_sector <
2312 sh->dev[i].sector + STRIPE_SECTORS) {
2313 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2314 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2315 if (!raid5_dec_bi_phys_segments(bi)) {
2316 md_write_end(conf->mddev);
2317 bi->bi_next = *return_bi;
2318 *return_bi = bi;
2319 }
2320 bi = bi2;
2321 }
2322
2323 /* fail any reads if this device is non-operational and
2324 * the data has not reached the cache yet.
2325 */
2326 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2327 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2328 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2329 bi = sh->dev[i].toread;
2330 sh->dev[i].toread = NULL;
2331 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2332 wake_up(&conf->wait_for_overlap);
2333 if (bi) s->to_read--;
2334 while (bi && bi->bi_sector <
2335 sh->dev[i].sector + STRIPE_SECTORS) {
2336 struct bio *nextbi =
2337 r5_next_bio(bi, sh->dev[i].sector);
2338 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2339 if (!raid5_dec_bi_phys_segments(bi)) {
2340 bi->bi_next = *return_bi;
2341 *return_bi = bi;
2342 }
2343 bi = nextbi;
2344 }
2345 }
2346 spin_unlock_irq(&conf->device_lock);
2347 if (bitmap_end)
2348 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2349 STRIPE_SECTORS, 0, 0);
2350 /* If we were in the middle of a write the parity block might
2351 * still be locked - so just clear all R5_LOCKED flags
2352 */
2353 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2354 }
2355
2356 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2357 if (atomic_dec_and_test(&conf->pending_full_writes))
2358 md_wakeup_thread(conf->mddev->thread);
2359}
2360
2361static void
2362handle_failed_sync(raid5_conf_t *conf, struct stripe_head *sh,
2363 struct stripe_head_state *s)
2364{
2365 int abort = 0;
2366 int i;
2367
2368 md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2369 clear_bit(STRIPE_SYNCING, &sh->state);
2370 s->syncing = 0;
2371 /* There is nothing more to do for sync/check/repair.
2372 * For recover we need to record a bad block on all
2373 * non-sync devices, or abort the recovery
2374 */
2375 if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2376 return;
2377 /* During recovery devices cannot be removed, so locking and
2378 * refcounting of rdevs is not needed
2379 */
2380 for (i = 0; i < conf->raid_disks; i++) {
2381 mdk_rdev_t *rdev = conf->disks[i].rdev;
2382 if (!rdev
2383 || test_bit(Faulty, &rdev->flags)
2384 || test_bit(In_sync, &rdev->flags))
2385 continue;
2386 if (!rdev_set_badblocks(rdev, sh->sector,
2387 STRIPE_SECTORS, 0))
2388 abort = 1;
2389 }
2390 if (abort) {
2391 conf->recovery_disabled = conf->mddev->recovery_disabled;
2392 set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2393 }
2394}
2395
2396/* fetch_block - checks the given member device to see if its data needs
2397 * to be read or computed to satisfy a request.
2398 *
2399 * Returns 1 when no more member devices need to be checked, otherwise returns
2400 * 0 to tell the loop in handle_stripe_fill to continue
2401 */
2402static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2403 int disk_idx, int disks)
2404{
2405 struct r5dev *dev = &sh->dev[disk_idx];
2406 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2407 &sh->dev[s->failed_num[1]] };
2408
2409 /* is the data in this block needed, and can we get it? */
2410 if (!test_bit(R5_LOCKED, &dev->flags) &&
2411 !test_bit(R5_UPTODATE, &dev->flags) &&
2412 (dev->toread ||
2413 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2414 s->syncing || s->expanding ||
2415 (s->failed >= 1 && fdev[0]->toread) ||
2416 (s->failed >= 2 && fdev[1]->toread) ||
2417 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2418 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2419 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2420 /* we would like to get this block, possibly by computing it,
2421 * otherwise read it if the backing disk is insync
2422 */
2423 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2424 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2425 if ((s->uptodate == disks - 1) &&
2426 (s->failed && (disk_idx == s->failed_num[0] ||
2427 disk_idx == s->failed_num[1]))) {
2428 /* have disk failed, and we're requested to fetch it;
2429 * do compute it
2430 */
2431 pr_debug("Computing stripe %llu block %d\n",
2432 (unsigned long long)sh->sector, disk_idx);
2433 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2434 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2435 set_bit(R5_Wantcompute, &dev->flags);
2436 sh->ops.target = disk_idx;
2437 sh->ops.target2 = -1; /* no 2nd target */
2438 s->req_compute = 1;
2439 /* Careful: from this point on 'uptodate' is in the eye
2440 * of raid_run_ops which services 'compute' operations
2441 * before writes. R5_Wantcompute flags a block that will
2442 * be R5_UPTODATE by the time it is needed for a
2443 * subsequent operation.
2444 */
2445 s->uptodate++;
2446 return 1;
2447 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2448 /* Computing 2-failure is *very* expensive; only
2449 * do it if failed >= 2
2450 */
2451 int other;
2452 for (other = disks; other--; ) {
2453 if (other == disk_idx)
2454 continue;
2455 if (!test_bit(R5_UPTODATE,
2456 &sh->dev[other].flags))
2457 break;
2458 }
2459 BUG_ON(other < 0);
2460 pr_debug("Computing stripe %llu blocks %d,%d\n",
2461 (unsigned long long)sh->sector,
2462 disk_idx, other);
2463 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2464 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2465 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2466 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2467 sh->ops.target = disk_idx;
2468 sh->ops.target2 = other;
2469 s->uptodate += 2;
2470 s->req_compute = 1;
2471 return 1;
2472 } else if (test_bit(R5_Insync, &dev->flags)) {
2473 set_bit(R5_LOCKED, &dev->flags);
2474 set_bit(R5_Wantread, &dev->flags);
2475 s->locked++;
2476 pr_debug("Reading block %d (sync=%d)\n",
2477 disk_idx, s->syncing);
2478 }
2479 }
2480
2481 return 0;
2482}
2483
2484/**
2485 * handle_stripe_fill - read or compute data to satisfy pending requests.
2486 */
2487static void handle_stripe_fill(struct stripe_head *sh,
2488 struct stripe_head_state *s,
2489 int disks)
2490{
2491 int i;
2492
2493 /* look for blocks to read/compute, skip this if a compute
2494 * is already in flight, or if the stripe contents are in the
2495 * midst of changing due to a write
2496 */
2497 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2498 !sh->reconstruct_state)
2499 for (i = disks; i--; )
2500 if (fetch_block(sh, s, i, disks))
2501 break;
2502 set_bit(STRIPE_HANDLE, &sh->state);
2503}
2504
2505
2506/* handle_stripe_clean_event
2507 * any written block on an uptodate or failed drive can be returned.
2508 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2509 * never LOCKED, so we don't need to test 'failed' directly.
2510 */
2511static void handle_stripe_clean_event(raid5_conf_t *conf,
2512 struct stripe_head *sh, int disks, struct bio **return_bi)
2513{
2514 int i;
2515 struct r5dev *dev;
2516
2517 for (i = disks; i--; )
2518 if (sh->dev[i].written) {
2519 dev = &sh->dev[i];
2520 if (!test_bit(R5_LOCKED, &dev->flags) &&
2521 test_bit(R5_UPTODATE, &dev->flags)) {
2522 /* We can return any write requests */
2523 struct bio *wbi, *wbi2;
2524 int bitmap_end = 0;
2525 pr_debug("Return write for disc %d\n", i);
2526 spin_lock_irq(&conf->device_lock);
2527 wbi = dev->written;
2528 dev->written = NULL;
2529 while (wbi && wbi->bi_sector <
2530 dev->sector + STRIPE_SECTORS) {
2531 wbi2 = r5_next_bio(wbi, dev->sector);
2532 if (!raid5_dec_bi_phys_segments(wbi)) {
2533 md_write_end(conf->mddev);
2534 wbi->bi_next = *return_bi;
2535 *return_bi = wbi;
2536 }
2537 wbi = wbi2;
2538 }
2539 if (dev->towrite == NULL)
2540 bitmap_end = 1;
2541 spin_unlock_irq(&conf->device_lock);
2542 if (bitmap_end)
2543 bitmap_endwrite(conf->mddev->bitmap,
2544 sh->sector,
2545 STRIPE_SECTORS,
2546 !test_bit(STRIPE_DEGRADED, &sh->state),
2547 0);
2548 }
2549 }
2550
2551 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2552 if (atomic_dec_and_test(&conf->pending_full_writes))
2553 md_wakeup_thread(conf->mddev->thread);
2554}
2555
2556static void handle_stripe_dirtying(raid5_conf_t *conf,
2557 struct stripe_head *sh,
2558 struct stripe_head_state *s,
2559 int disks)
2560{
2561 int rmw = 0, rcw = 0, i;
2562 if (conf->max_degraded == 2) {
2563 /* RAID6 requires 'rcw' in current implementation
2564 * Calculate the real rcw later - for now fake it
2565 * look like rcw is cheaper
2566 */
2567 rcw = 1; rmw = 2;
2568 } else for (i = disks; i--; ) {
2569 /* would I have to read this buffer for read_modify_write */
2570 struct r5dev *dev = &sh->dev[i];
2571 if ((dev->towrite || i == sh->pd_idx) &&
2572 !test_bit(R5_LOCKED, &dev->flags) &&
2573 !(test_bit(R5_UPTODATE, &dev->flags) ||
2574 test_bit(R5_Wantcompute, &dev->flags))) {
2575 if (test_bit(R5_Insync, &dev->flags))
2576 rmw++;
2577 else
2578 rmw += 2*disks; /* cannot read it */
2579 }
2580 /* Would I have to read this buffer for reconstruct_write */
2581 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2582 !test_bit(R5_LOCKED, &dev->flags) &&
2583 !(test_bit(R5_UPTODATE, &dev->flags) ||
2584 test_bit(R5_Wantcompute, &dev->flags))) {
2585 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2586 else
2587 rcw += 2*disks;
2588 }
2589 }
2590 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2591 (unsigned long long)sh->sector, rmw, rcw);
2592 set_bit(STRIPE_HANDLE, &sh->state);
2593 if (rmw < rcw && rmw > 0)
2594 /* prefer read-modify-write, but need to get some data */
2595 for (i = disks; i--; ) {
2596 struct r5dev *dev = &sh->dev[i];
2597 if ((dev->towrite || i == sh->pd_idx) &&
2598 !test_bit(R5_LOCKED, &dev->flags) &&
2599 !(test_bit(R5_UPTODATE, &dev->flags) ||
2600 test_bit(R5_Wantcompute, &dev->flags)) &&
2601 test_bit(R5_Insync, &dev->flags)) {
2602 if (
2603 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2604 pr_debug("Read_old block "
2605 "%d for r-m-w\n", i);
2606 set_bit(R5_LOCKED, &dev->flags);
2607 set_bit(R5_Wantread, &dev->flags);
2608 s->locked++;
2609 } else {
2610 set_bit(STRIPE_DELAYED, &sh->state);
2611 set_bit(STRIPE_HANDLE, &sh->state);
2612 }
2613 }
2614 }
2615 if (rcw <= rmw && rcw > 0) {
2616 /* want reconstruct write, but need to get some data */
2617 rcw = 0;
2618 for (i = disks; i--; ) {
2619 struct r5dev *dev = &sh->dev[i];
2620 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2621 i != sh->pd_idx && i != sh->qd_idx &&
2622 !test_bit(R5_LOCKED, &dev->flags) &&
2623 !(test_bit(R5_UPTODATE, &dev->flags) ||
2624 test_bit(R5_Wantcompute, &dev->flags))) {
2625 rcw++;
2626 if (!test_bit(R5_Insync, &dev->flags))
2627 continue; /* it's a failed drive */
2628 if (
2629 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2630 pr_debug("Read_old block "
2631 "%d for Reconstruct\n", i);
2632 set_bit(R5_LOCKED, &dev->flags);
2633 set_bit(R5_Wantread, &dev->flags);
2634 s->locked++;
2635 } else {
2636 set_bit(STRIPE_DELAYED, &sh->state);
2637 set_bit(STRIPE_HANDLE, &sh->state);
2638 }
2639 }
2640 }
2641 }
2642 /* now if nothing is locked, and if we have enough data,
2643 * we can start a write request
2644 */
2645 /* since handle_stripe can be called at any time we need to handle the
2646 * case where a compute block operation has been submitted and then a
2647 * subsequent call wants to start a write request. raid_run_ops only
2648 * handles the case where compute block and reconstruct are requested
2649 * simultaneously. If this is not the case then new writes need to be
2650 * held off until the compute completes.
2651 */
2652 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2653 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2654 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2655 schedule_reconstruction(sh, s, rcw == 0, 0);
2656}
2657
2658static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2659 struct stripe_head_state *s, int disks)
2660{
2661 struct r5dev *dev = NULL;
2662
2663 set_bit(STRIPE_HANDLE, &sh->state);
2664
2665 switch (sh->check_state) {
2666 case check_state_idle:
2667 /* start a new check operation if there are no failures */
2668 if (s->failed == 0) {
2669 BUG_ON(s->uptodate != disks);
2670 sh->check_state = check_state_run;
2671 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2672 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2673 s->uptodate--;
2674 break;
2675 }
2676 dev = &sh->dev[s->failed_num[0]];
2677 /* fall through */
2678 case check_state_compute_result:
2679 sh->check_state = check_state_idle;
2680 if (!dev)
2681 dev = &sh->dev[sh->pd_idx];
2682
2683 /* check that a write has not made the stripe insync */
2684 if (test_bit(STRIPE_INSYNC, &sh->state))
2685 break;
2686
2687 /* either failed parity check, or recovery is happening */
2688 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2689 BUG_ON(s->uptodate != disks);
2690
2691 set_bit(R5_LOCKED, &dev->flags);
2692 s->locked++;
2693 set_bit(R5_Wantwrite, &dev->flags);
2694
2695 clear_bit(STRIPE_DEGRADED, &sh->state);
2696 set_bit(STRIPE_INSYNC, &sh->state);
2697 break;
2698 case check_state_run:
2699 break; /* we will be called again upon completion */
2700 case check_state_check_result:
2701 sh->check_state = check_state_idle;
2702
2703 /* if a failure occurred during the check operation, leave
2704 * STRIPE_INSYNC not set and let the stripe be handled again
2705 */
2706 if (s->failed)
2707 break;
2708
2709 /* handle a successful check operation, if parity is correct
2710 * we are done. Otherwise update the mismatch count and repair
2711 * parity if !MD_RECOVERY_CHECK
2712 */
2713 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2714 /* parity is correct (on disc,
2715 * not in buffer any more)
2716 */
2717 set_bit(STRIPE_INSYNC, &sh->state);
2718 else {
2719 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2720 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2721 /* don't try to repair!! */
2722 set_bit(STRIPE_INSYNC, &sh->state);
2723 else {
2724 sh->check_state = check_state_compute_run;
2725 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2726 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2727 set_bit(R5_Wantcompute,
2728 &sh->dev[sh->pd_idx].flags);
2729 sh->ops.target = sh->pd_idx;
2730 sh->ops.target2 = -1;
2731 s->uptodate++;
2732 }
2733 }
2734 break;
2735 case check_state_compute_run:
2736 break;
2737 default:
2738 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2739 __func__, sh->check_state,
2740 (unsigned long long) sh->sector);
2741 BUG();
2742 }
2743}
2744
2745
2746static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2747 struct stripe_head_state *s,
2748 int disks)
2749{
2750 int pd_idx = sh->pd_idx;
2751 int qd_idx = sh->qd_idx;
2752 struct r5dev *dev;
2753
2754 set_bit(STRIPE_HANDLE, &sh->state);
2755
2756 BUG_ON(s->failed > 2);
2757
2758 /* Want to check and possibly repair P and Q.
2759 * However there could be one 'failed' device, in which
2760 * case we can only check one of them, possibly using the
2761 * other to generate missing data
2762 */
2763
2764 switch (sh->check_state) {
2765 case check_state_idle:
2766 /* start a new check operation if there are < 2 failures */
2767 if (s->failed == s->q_failed) {
2768 /* The only possible failed device holds Q, so it
2769 * makes sense to check P (If anything else were failed,
2770 * we would have used P to recreate it).
2771 */
2772 sh->check_state = check_state_run;
2773 }
2774 if (!s->q_failed && s->failed < 2) {
2775 /* Q is not failed, and we didn't use it to generate
2776 * anything, so it makes sense to check it
2777 */
2778 if (sh->check_state == check_state_run)
2779 sh->check_state = check_state_run_pq;
2780 else
2781 sh->check_state = check_state_run_q;
2782 }
2783
2784 /* discard potentially stale zero_sum_result */
2785 sh->ops.zero_sum_result = 0;
2786
2787 if (sh->check_state == check_state_run) {
2788 /* async_xor_zero_sum destroys the contents of P */
2789 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2790 s->uptodate--;
2791 }
2792 if (sh->check_state >= check_state_run &&
2793 sh->check_state <= check_state_run_pq) {
2794 /* async_syndrome_zero_sum preserves P and Q, so
2795 * no need to mark them !uptodate here
2796 */
2797 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2798 break;
2799 }
2800
2801 /* we have 2-disk failure */
2802 BUG_ON(s->failed != 2);
2803 /* fall through */
2804 case check_state_compute_result:
2805 sh->check_state = check_state_idle;
2806
2807 /* check that a write has not made the stripe insync */
2808 if (test_bit(STRIPE_INSYNC, &sh->state))
2809 break;
2810
2811 /* now write out any block on a failed drive,
2812 * or P or Q if they were recomputed
2813 */
2814 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2815 if (s->failed == 2) {
2816 dev = &sh->dev[s->failed_num[1]];
2817 s->locked++;
2818 set_bit(R5_LOCKED, &dev->flags);
2819 set_bit(R5_Wantwrite, &dev->flags);
2820 }
2821 if (s->failed >= 1) {
2822 dev = &sh->dev[s->failed_num[0]];
2823 s->locked++;
2824 set_bit(R5_LOCKED, &dev->flags);
2825 set_bit(R5_Wantwrite, &dev->flags);
2826 }
2827 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2828 dev = &sh->dev[pd_idx];
2829 s->locked++;
2830 set_bit(R5_LOCKED, &dev->flags);
2831 set_bit(R5_Wantwrite, &dev->flags);
2832 }
2833 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2834 dev = &sh->dev[qd_idx];
2835 s->locked++;
2836 set_bit(R5_LOCKED, &dev->flags);
2837 set_bit(R5_Wantwrite, &dev->flags);
2838 }
2839 clear_bit(STRIPE_DEGRADED, &sh->state);
2840
2841 set_bit(STRIPE_INSYNC, &sh->state);
2842 break;
2843 case check_state_run:
2844 case check_state_run_q:
2845 case check_state_run_pq:
2846 break; /* we will be called again upon completion */
2847 case check_state_check_result:
2848 sh->check_state = check_state_idle;
2849
2850 /* handle a successful check operation, if parity is correct
2851 * we are done. Otherwise update the mismatch count and repair
2852 * parity if !MD_RECOVERY_CHECK
2853 */
2854 if (sh->ops.zero_sum_result == 0) {
2855 /* both parities are correct */
2856 if (!s->failed)
2857 set_bit(STRIPE_INSYNC, &sh->state);
2858 else {
2859 /* in contrast to the raid5 case we can validate
2860 * parity, but still have a failure to write
2861 * back
2862 */
2863 sh->check_state = check_state_compute_result;
2864 /* Returning at this point means that we may go
2865 * off and bring p and/or q uptodate again so
2866 * we make sure to check zero_sum_result again
2867 * to verify if p or q need writeback
2868 */
2869 }
2870 } else {
2871 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2872 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2873 /* don't try to repair!! */
2874 set_bit(STRIPE_INSYNC, &sh->state);
2875 else {
2876 int *target = &sh->ops.target;
2877
2878 sh->ops.target = -1;
2879 sh->ops.target2 = -1;
2880 sh->check_state = check_state_compute_run;
2881 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2882 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2883 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2884 set_bit(R5_Wantcompute,
2885 &sh->dev[pd_idx].flags);
2886 *target = pd_idx;
2887 target = &sh->ops.target2;
2888 s->uptodate++;
2889 }
2890 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2891 set_bit(R5_Wantcompute,
2892 &sh->dev[qd_idx].flags);
2893 *target = qd_idx;
2894 s->uptodate++;
2895 }
2896 }
2897 }
2898 break;
2899 case check_state_compute_run:
2900 break;
2901 default:
2902 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2903 __func__, sh->check_state,
2904 (unsigned long long) sh->sector);
2905 BUG();
2906 }
2907}
2908
2909static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
2910{
2911 int i;
2912
2913 /* We have read all the blocks in this stripe and now we need to
2914 * copy some of them into a target stripe for expand.
2915 */
2916 struct dma_async_tx_descriptor *tx = NULL;
2917 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2918 for (i = 0; i < sh->disks; i++)
2919 if (i != sh->pd_idx && i != sh->qd_idx) {
2920 int dd_idx, j;
2921 struct stripe_head *sh2;
2922 struct async_submit_ctl submit;
2923
2924 sector_t bn = compute_blocknr(sh, i, 1);
2925 sector_t s = raid5_compute_sector(conf, bn, 0,
2926 &dd_idx, NULL);
2927 sh2 = get_active_stripe(conf, s, 0, 1, 1);
2928 if (sh2 == NULL)
2929 /* so far only the early blocks of this stripe
2930 * have been requested. When later blocks
2931 * get requested, we will try again
2932 */
2933 continue;
2934 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2935 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2936 /* must have already done this block */
2937 release_stripe(sh2);
2938 continue;
2939 }
2940
2941 /* place all the copies on one channel */
2942 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2943 tx = async_memcpy(sh2->dev[dd_idx].page,
2944 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2945 &submit);
2946
2947 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2948 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2949 for (j = 0; j < conf->raid_disks; j++)
2950 if (j != sh2->pd_idx &&
2951 j != sh2->qd_idx &&
2952 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2953 break;
2954 if (j == conf->raid_disks) {
2955 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2956 set_bit(STRIPE_HANDLE, &sh2->state);
2957 }
2958 release_stripe(sh2);
2959
2960 }
2961 /* done submitting copies, wait for them to complete */
2962 if (tx) {
2963 async_tx_ack(tx);
2964 dma_wait_for_async_tx(tx);
2965 }
2966}
2967
2968
2969/*
2970 * handle_stripe - do things to a stripe.
2971 *
2972 * We lock the stripe and then examine the state of various bits
2973 * to see what needs to be done.
2974 * Possible results:
2975 * return some read request which now have data
2976 * return some write requests which are safely on disc
2977 * schedule a read on some buffers
2978 * schedule a write of some buffers
2979 * return confirmation of parity correctness
2980 *
2981 * buffers are taken off read_list or write_list, and bh_cache buffers
2982 * get BH_Lock set before the stripe lock is released.
2983 *
2984 */
2985
2986static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
2987{
2988 raid5_conf_t *conf = sh->raid_conf;
2989 int disks = sh->disks;
2990 struct r5dev *dev;
2991 int i;
2992
2993 memset(s, 0, sizeof(*s));
2994
2995 s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
2996 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2997 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2998 s->failed_num[0] = -1;
2999 s->failed_num[1] = -1;
3000
3001 /* Now to look around and see what can be done */
3002 rcu_read_lock();
3003 spin_lock_irq(&conf->device_lock);
3004 for (i=disks; i--; ) {
3005 mdk_rdev_t *rdev;
3006 sector_t first_bad;
3007 int bad_sectors;
3008 int is_bad = 0;
3009
3010 dev = &sh->dev[i];
3011
3012 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3013 i, dev->flags, dev->toread, dev->towrite, dev->written);
3014 /* maybe we can reply to a read
3015 *
3016 * new wantfill requests are only permitted while
3017 * ops_complete_biofill is guaranteed to be inactive
3018 */
3019 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3020 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3021 set_bit(R5_Wantfill, &dev->flags);
3022
3023 /* now count some things */
3024 if (test_bit(R5_LOCKED, &dev->flags))
3025 s->locked++;
3026 if (test_bit(R5_UPTODATE, &dev->flags))
3027 s->uptodate++;
3028 if (test_bit(R5_Wantcompute, &dev->flags)) {
3029 s->compute++;
3030 BUG_ON(s->compute > 2);
3031 }
3032
3033 if (test_bit(R5_Wantfill, &dev->flags))
3034 s->to_fill++;
3035 else if (dev->toread)
3036 s->to_read++;
3037 if (dev->towrite) {
3038 s->to_write++;
3039 if (!test_bit(R5_OVERWRITE, &dev->flags))
3040 s->non_overwrite++;
3041 }
3042 if (dev->written)
3043 s->written++;
3044 rdev = rcu_dereference(conf->disks[i].rdev);
3045 if (rdev) {
3046 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3047 &first_bad, &bad_sectors);
3048 if (s->blocked_rdev == NULL
3049 && (test_bit(Blocked, &rdev->flags)
3050 || is_bad < 0)) {
3051 if (is_bad < 0)
3052 set_bit(BlockedBadBlocks,
3053 &rdev->flags);
3054 s->blocked_rdev = rdev;
3055 atomic_inc(&rdev->nr_pending);
3056 }
3057 }
3058 clear_bit(R5_Insync, &dev->flags);
3059 if (!rdev)
3060 /* Not in-sync */;
3061 else if (is_bad) {
3062 /* also not in-sync */
3063 if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3064 /* treat as in-sync, but with a read error
3065 * which we can now try to correct
3066 */
3067 set_bit(R5_Insync, &dev->flags);
3068 set_bit(R5_ReadError, &dev->flags);
3069 }
3070 } else if (test_bit(In_sync, &rdev->flags))
3071 set_bit(R5_Insync, &dev->flags);
3072 else {
3073 /* in sync if before recovery_offset */
3074 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3075 set_bit(R5_Insync, &dev->flags);
3076 }
3077 if (test_bit(R5_WriteError, &dev->flags)) {
3078 clear_bit(R5_Insync, &dev->flags);
3079 if (!test_bit(Faulty, &rdev->flags)) {
3080 s->handle_bad_blocks = 1;
3081 atomic_inc(&rdev->nr_pending);
3082 } else
3083 clear_bit(R5_WriteError, &dev->flags);
3084 }
3085 if (test_bit(R5_MadeGood, &dev->flags)) {
3086 if (!test_bit(Faulty, &rdev->flags)) {
3087 s->handle_bad_blocks = 1;
3088 atomic_inc(&rdev->nr_pending);
3089 } else
3090 clear_bit(R5_MadeGood, &dev->flags);
3091 }
3092 if (!test_bit(R5_Insync, &dev->flags)) {
3093 /* The ReadError flag will just be confusing now */
3094 clear_bit(R5_ReadError, &dev->flags);
3095 clear_bit(R5_ReWrite, &dev->flags);
3096 }
3097 if (test_bit(R5_ReadError, &dev->flags))
3098 clear_bit(R5_Insync, &dev->flags);
3099 if (!test_bit(R5_Insync, &dev->flags)) {
3100 if (s->failed < 2)
3101 s->failed_num[s->failed] = i;
3102 s->failed++;
3103 }
3104 }
3105 spin_unlock_irq(&conf->device_lock);
3106 rcu_read_unlock();
3107}
3108
3109static void handle_stripe(struct stripe_head *sh)
3110{
3111 struct stripe_head_state s;
3112 raid5_conf_t *conf = sh->raid_conf;
3113 int i;
3114 int prexor;
3115 int disks = sh->disks;
3116 struct r5dev *pdev, *qdev;
3117
3118 clear_bit(STRIPE_HANDLE, &sh->state);
3119 if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
3120 /* already being handled, ensure it gets handled
3121 * again when current action finishes */
3122 set_bit(STRIPE_HANDLE, &sh->state);
3123 return;
3124 }
3125
3126 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3127 set_bit(STRIPE_SYNCING, &sh->state);
3128 clear_bit(STRIPE_INSYNC, &sh->state);
3129 }
3130 clear_bit(STRIPE_DELAYED, &sh->state);
3131
3132 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3133 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3134 (unsigned long long)sh->sector, sh->state,
3135 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3136 sh->check_state, sh->reconstruct_state);
3137
3138 analyse_stripe(sh, &s);
3139
3140 if (s.handle_bad_blocks) {
3141 set_bit(STRIPE_HANDLE, &sh->state);
3142 goto finish;
3143 }
3144
3145 if (unlikely(s.blocked_rdev)) {
3146 if (s.syncing || s.expanding || s.expanded ||
3147 s.to_write || s.written) {
3148 set_bit(STRIPE_HANDLE, &sh->state);
3149 goto finish;
3150 }
3151 /* There is nothing for the blocked_rdev to block */
3152 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3153 s.blocked_rdev = NULL;
3154 }
3155
3156 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3157 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3158 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3159 }
3160
3161 pr_debug("locked=%d uptodate=%d to_read=%d"
3162 " to_write=%d failed=%d failed_num=%d,%d\n",
3163 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3164 s.failed_num[0], s.failed_num[1]);
3165 /* check if the array has lost more than max_degraded devices and,
3166 * if so, some requests might need to be failed.
3167 */
3168 if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written)
3169 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3170 if (s.failed > conf->max_degraded && s.syncing)
3171 handle_failed_sync(conf, sh, &s);
3172
3173 /*
3174 * might be able to return some write requests if the parity blocks
3175 * are safe, or on a failed drive
3176 */
3177 pdev = &sh->dev[sh->pd_idx];
3178 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3179 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3180 qdev = &sh->dev[sh->qd_idx];
3181 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3182 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3183 || conf->level < 6;
3184
3185 if (s.written &&
3186 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3187 && !test_bit(R5_LOCKED, &pdev->flags)
3188 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3189 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3190 && !test_bit(R5_LOCKED, &qdev->flags)
3191 && test_bit(R5_UPTODATE, &qdev->flags)))))
3192 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3193
3194 /* Now we might consider reading some blocks, either to check/generate
3195 * parity, or to satisfy requests
3196 * or to load a block that is being partially written.
3197 */
3198 if (s.to_read || s.non_overwrite
3199 || (conf->level == 6 && s.to_write && s.failed)
3200 || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3201 handle_stripe_fill(sh, &s, disks);
3202
3203 /* Now we check to see if any write operations have recently
3204 * completed
3205 */
3206 prexor = 0;
3207 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3208 prexor = 1;
3209 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3210 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3211 sh->reconstruct_state = reconstruct_state_idle;
3212
3213 /* All the 'written' buffers and the parity block are ready to
3214 * be written back to disk
3215 */
3216 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3217 BUG_ON(sh->qd_idx >= 0 &&
3218 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3219 for (i = disks; i--; ) {
3220 struct r5dev *dev = &sh->dev[i];
3221 if (test_bit(R5_LOCKED, &dev->flags) &&
3222 (i == sh->pd_idx || i == sh->qd_idx ||
3223 dev->written)) {
3224 pr_debug("Writing block %d\n", i);
3225 set_bit(R5_Wantwrite, &dev->flags);
3226 if (prexor)
3227 continue;
3228 if (!test_bit(R5_Insync, &dev->flags) ||
3229 ((i == sh->pd_idx || i == sh->qd_idx) &&
3230 s.failed == 0))
3231 set_bit(STRIPE_INSYNC, &sh->state);
3232 }
3233 }
3234 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3235 s.dec_preread_active = 1;
3236 }
3237
3238 /* Now to consider new write requests and what else, if anything
3239 * should be read. We do not handle new writes when:
3240 * 1/ A 'write' operation (copy+xor) is already in flight.
3241 * 2/ A 'check' operation is in flight, as it may clobber the parity
3242 * block.
3243 */
3244 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3245 handle_stripe_dirtying(conf, sh, &s, disks);
3246
3247 /* maybe we need to check and possibly fix the parity for this stripe
3248 * Any reads will already have been scheduled, so we just see if enough
3249 * data is available. The parity check is held off while parity
3250 * dependent operations are in flight.
3251 */
3252 if (sh->check_state ||
3253 (s.syncing && s.locked == 0 &&
3254 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3255 !test_bit(STRIPE_INSYNC, &sh->state))) {
3256 if (conf->level == 6)
3257 handle_parity_checks6(conf, sh, &s, disks);
3258 else
3259 handle_parity_checks5(conf, sh, &s, disks);
3260 }
3261
3262 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3263 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3264 clear_bit(STRIPE_SYNCING, &sh->state);
3265 }
3266
3267 /* If the failed drives are just a ReadError, then we might need
3268 * to progress the repair/check process
3269 */
3270 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3271 for (i = 0; i < s.failed; i++) {
3272 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3273 if (test_bit(R5_ReadError, &dev->flags)
3274 && !test_bit(R5_LOCKED, &dev->flags)
3275 && test_bit(R5_UPTODATE, &dev->flags)
3276 ) {
3277 if (!test_bit(R5_ReWrite, &dev->flags)) {
3278 set_bit(R5_Wantwrite, &dev->flags);
3279 set_bit(R5_ReWrite, &dev->flags);
3280 set_bit(R5_LOCKED, &dev->flags);
3281 s.locked++;
3282 } else {
3283 /* let's read it back */
3284 set_bit(R5_Wantread, &dev->flags);
3285 set_bit(R5_LOCKED, &dev->flags);
3286 s.locked++;
3287 }
3288 }
3289 }
3290
3291
3292 /* Finish reconstruct operations initiated by the expansion process */
3293 if (sh->reconstruct_state == reconstruct_state_result) {
3294 struct stripe_head *sh_src
3295 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3296 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3297 /* sh cannot be written until sh_src has been read.
3298 * so arrange for sh to be delayed a little
3299 */
3300 set_bit(STRIPE_DELAYED, &sh->state);
3301 set_bit(STRIPE_HANDLE, &sh->state);
3302 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3303 &sh_src->state))
3304 atomic_inc(&conf->preread_active_stripes);
3305 release_stripe(sh_src);
3306 goto finish;
3307 }
3308 if (sh_src)
3309 release_stripe(sh_src);
3310
3311 sh->reconstruct_state = reconstruct_state_idle;
3312 clear_bit(STRIPE_EXPANDING, &sh->state);
3313 for (i = conf->raid_disks; i--; ) {
3314 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3315 set_bit(R5_LOCKED, &sh->dev[i].flags);
3316 s.locked++;
3317 }
3318 }
3319
3320 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3321 !sh->reconstruct_state) {
3322 /* Need to write out all blocks after computing parity */
3323 sh->disks = conf->raid_disks;
3324 stripe_set_idx(sh->sector, conf, 0, sh);
3325 schedule_reconstruction(sh, &s, 1, 1);
3326 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3327 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3328 atomic_dec(&conf->reshape_stripes);
3329 wake_up(&conf->wait_for_overlap);
3330 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3331 }
3332
3333 if (s.expanding && s.locked == 0 &&
3334 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3335 handle_stripe_expansion(conf, sh);
3336
3337finish:
3338 /* wait for this device to become unblocked */
3339 if (conf->mddev->external && unlikely(s.blocked_rdev))
3340 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3341
3342 if (s.handle_bad_blocks)
3343 for (i = disks; i--; ) {
3344 mdk_rdev_t *rdev;
3345 struct r5dev *dev = &sh->dev[i];
3346 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3347 /* We own a safe reference to the rdev */
3348 rdev = conf->disks[i].rdev;
3349 if (!rdev_set_badblocks(rdev, sh->sector,
3350 STRIPE_SECTORS, 0))
3351 md_error(conf->mddev, rdev);
3352 rdev_dec_pending(rdev, conf->mddev);
3353 }
3354 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3355 rdev = conf->disks[i].rdev;
3356 rdev_clear_badblocks(rdev, sh->sector,
3357 STRIPE_SECTORS);
3358 rdev_dec_pending(rdev, conf->mddev);
3359 }
3360 }
3361
3362 if (s.ops_request)
3363 raid_run_ops(sh, s.ops_request);
3364
3365 ops_run_io(sh, &s);
3366
3367 if (s.dec_preread_active) {
3368 /* We delay this until after ops_run_io so that if make_request
3369 * is waiting on a flush, it won't continue until the writes
3370 * have actually been submitted.
3371 */
3372 atomic_dec(&conf->preread_active_stripes);
3373 if (atomic_read(&conf->preread_active_stripes) <
3374 IO_THRESHOLD)
3375 md_wakeup_thread(conf->mddev->thread);
3376 }
3377
3378 return_io(s.return_bi);
3379
3380 clear_bit(STRIPE_ACTIVE, &sh->state);
3381}
3382
3383static void raid5_activate_delayed(raid5_conf_t *conf)
3384{
3385 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3386 while (!list_empty(&conf->delayed_list)) {
3387 struct list_head *l = conf->delayed_list.next;
3388 struct stripe_head *sh;
3389 sh = list_entry(l, struct stripe_head, lru);
3390 list_del_init(l);
3391 clear_bit(STRIPE_DELAYED, &sh->state);
3392 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3393 atomic_inc(&conf->preread_active_stripes);
3394 list_add_tail(&sh->lru, &conf->hold_list);
3395 }
3396 }
3397}
3398
3399static void activate_bit_delay(raid5_conf_t *conf)
3400{
3401 /* device_lock is held */
3402 struct list_head head;
3403 list_add(&head, &conf->bitmap_list);
3404 list_del_init(&conf->bitmap_list);
3405 while (!list_empty(&head)) {
3406 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3407 list_del_init(&sh->lru);
3408 atomic_inc(&sh->count);
3409 __release_stripe(conf, sh);
3410 }
3411}
3412
3413int md_raid5_congested(mddev_t *mddev, int bits)
3414{
3415 raid5_conf_t *conf = mddev->private;
3416
3417 /* No difference between reads and writes. Just check
3418 * how busy the stripe_cache is
3419 */
3420
3421 if (conf->inactive_blocked)
3422 return 1;
3423 if (conf->quiesce)
3424 return 1;
3425 if (list_empty_careful(&conf->inactive_list))
3426 return 1;
3427
3428 return 0;
3429}
3430EXPORT_SYMBOL_GPL(md_raid5_congested);
3431
3432static int raid5_congested(void *data, int bits)
3433{
3434 mddev_t *mddev = data;
3435
3436 return mddev_congested(mddev, bits) ||
3437 md_raid5_congested(mddev, bits);
3438}
3439
3440/* We want read requests to align with chunks where possible,
3441 * but write requests don't need to.
3442 */
3443static int raid5_mergeable_bvec(struct request_queue *q,
3444 struct bvec_merge_data *bvm,
3445 struct bio_vec *biovec)
3446{
3447 mddev_t *mddev = q->queuedata;
3448 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3449 int max;
3450 unsigned int chunk_sectors = mddev->chunk_sectors;
3451 unsigned int bio_sectors = bvm->bi_size >> 9;
3452
3453 if ((bvm->bi_rw & 1) == WRITE)
3454 return biovec->bv_len; /* always allow writes to be mergeable */
3455
3456 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3457 chunk_sectors = mddev->new_chunk_sectors;
3458 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3459 if (max < 0) max = 0;
3460 if (max <= biovec->bv_len && bio_sectors == 0)
3461 return biovec->bv_len;
3462 else
3463 return max;
3464}
3465
3466
3467static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3468{
3469 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3470 unsigned int chunk_sectors = mddev->chunk_sectors;
3471 unsigned int bio_sectors = bio->bi_size >> 9;
3472
3473 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3474 chunk_sectors = mddev->new_chunk_sectors;
3475 return chunk_sectors >=
3476 ((sector & (chunk_sectors - 1)) + bio_sectors);
3477}
3478
3479/*
3480 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3481 * later sampled by raid5d.
3482 */
3483static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3484{
3485 unsigned long flags;
3486
3487 spin_lock_irqsave(&conf->device_lock, flags);
3488
3489 bi->bi_next = conf->retry_read_aligned_list;
3490 conf->retry_read_aligned_list = bi;
3491
3492 spin_unlock_irqrestore(&conf->device_lock, flags);
3493 md_wakeup_thread(conf->mddev->thread);
3494}
3495
3496
3497static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3498{
3499 struct bio *bi;
3500
3501 bi = conf->retry_read_aligned;
3502 if (bi) {
3503 conf->retry_read_aligned = NULL;
3504 return bi;
3505 }
3506 bi = conf->retry_read_aligned_list;
3507 if(bi) {
3508 conf->retry_read_aligned_list = bi->bi_next;
3509 bi->bi_next = NULL;
3510 /*
3511 * this sets the active strip count to 1 and the processed
3512 * strip count to zero (upper 8 bits)
3513 */
3514 bi->bi_phys_segments = 1; /* biased count of active stripes */
3515 }
3516
3517 return bi;
3518}
3519
3520
3521/*
3522 * The "raid5_align_endio" should check if the read succeeded and if it
3523 * did, call bio_endio on the original bio (having bio_put the new bio
3524 * first).
3525 * If the read failed..
3526 */
3527static void raid5_align_endio(struct bio *bi, int error)
3528{
3529 struct bio* raid_bi = bi->bi_private;
3530 mddev_t *mddev;
3531 raid5_conf_t *conf;
3532 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3533 mdk_rdev_t *rdev;
3534
3535 bio_put(bi);
3536
3537 rdev = (void*)raid_bi->bi_next;
3538 raid_bi->bi_next = NULL;
3539 mddev = rdev->mddev;
3540 conf = mddev->private;
3541
3542 rdev_dec_pending(rdev, conf->mddev);
3543
3544 if (!error && uptodate) {
3545 bio_endio(raid_bi, 0);
3546 if (atomic_dec_and_test(&conf->active_aligned_reads))
3547 wake_up(&conf->wait_for_stripe);
3548 return;
3549 }
3550
3551
3552 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3553
3554 add_bio_to_retry(raid_bi, conf);
3555}
3556
3557static int bio_fits_rdev(struct bio *bi)
3558{
3559 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3560
3561 if ((bi->bi_size>>9) > queue_max_sectors(q))
3562 return 0;
3563 blk_recount_segments(q, bi);
3564 if (bi->bi_phys_segments > queue_max_segments(q))
3565 return 0;
3566
3567 if (q->merge_bvec_fn)
3568 /* it's too hard to apply the merge_bvec_fn at this stage,
3569 * just just give up
3570 */
3571 return 0;
3572
3573 return 1;
3574}
3575
3576
3577static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3578{
3579 raid5_conf_t *conf = mddev->private;
3580 int dd_idx;
3581 struct bio* align_bi;
3582 mdk_rdev_t *rdev;
3583
3584 if (!in_chunk_boundary(mddev, raid_bio)) {
3585 pr_debug("chunk_aligned_read : non aligned\n");
3586 return 0;
3587 }
3588 /*
3589 * use bio_clone_mddev to make a copy of the bio
3590 */
3591 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3592 if (!align_bi)
3593 return 0;
3594 /*
3595 * set bi_end_io to a new function, and set bi_private to the
3596 * original bio.
3597 */
3598 align_bi->bi_end_io = raid5_align_endio;
3599 align_bi->bi_private = raid_bio;
3600 /*
3601 * compute position
3602 */
3603 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3604 0,
3605 &dd_idx, NULL);
3606
3607 rcu_read_lock();
3608 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3609 if (rdev && test_bit(In_sync, &rdev->flags)) {
3610 sector_t first_bad;
3611 int bad_sectors;
3612
3613 atomic_inc(&rdev->nr_pending);
3614 rcu_read_unlock();
3615 raid_bio->bi_next = (void*)rdev;
3616 align_bi->bi_bdev = rdev->bdev;
3617 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3618 align_bi->bi_sector += rdev->data_offset;
3619
3620 if (!bio_fits_rdev(align_bi) ||
3621 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3622 &first_bad, &bad_sectors)) {
3623 /* too big in some way, or has a known bad block */
3624 bio_put(align_bi);
3625 rdev_dec_pending(rdev, mddev);
3626 return 0;
3627 }
3628
3629 spin_lock_irq(&conf->device_lock);
3630 wait_event_lock_irq(conf->wait_for_stripe,
3631 conf->quiesce == 0,
3632 conf->device_lock, /* nothing */);
3633 atomic_inc(&conf->active_aligned_reads);
3634 spin_unlock_irq(&conf->device_lock);
3635
3636 generic_make_request(align_bi);
3637 return 1;
3638 } else {
3639 rcu_read_unlock();
3640 bio_put(align_bi);
3641 return 0;
3642 }
3643}
3644
3645/* __get_priority_stripe - get the next stripe to process
3646 *
3647 * Full stripe writes are allowed to pass preread active stripes up until
3648 * the bypass_threshold is exceeded. In general the bypass_count
3649 * increments when the handle_list is handled before the hold_list; however, it
3650 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3651 * stripe with in flight i/o. The bypass_count will be reset when the
3652 * head of the hold_list has changed, i.e. the head was promoted to the
3653 * handle_list.
3654 */
3655static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3656{
3657 struct stripe_head *sh;
3658
3659 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3660 __func__,
3661 list_empty(&conf->handle_list) ? "empty" : "busy",
3662 list_empty(&conf->hold_list) ? "empty" : "busy",
3663 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3664
3665 if (!list_empty(&conf->handle_list)) {
3666 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3667
3668 if (list_empty(&conf->hold_list))
3669 conf->bypass_count = 0;
3670 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3671 if (conf->hold_list.next == conf->last_hold)
3672 conf->bypass_count++;
3673 else {
3674 conf->last_hold = conf->hold_list.next;
3675 conf->bypass_count -= conf->bypass_threshold;
3676 if (conf->bypass_count < 0)
3677 conf->bypass_count = 0;
3678 }
3679 }
3680 } else if (!list_empty(&conf->hold_list) &&
3681 ((conf->bypass_threshold &&
3682 conf->bypass_count > conf->bypass_threshold) ||
3683 atomic_read(&conf->pending_full_writes) == 0)) {
3684 sh = list_entry(conf->hold_list.next,
3685 typeof(*sh), lru);
3686 conf->bypass_count -= conf->bypass_threshold;
3687 if (conf->bypass_count < 0)
3688 conf->bypass_count = 0;
3689 } else
3690 return NULL;
3691
3692 list_del_init(&sh->lru);
3693 atomic_inc(&sh->count);
3694 BUG_ON(atomic_read(&sh->count) != 1);
3695 return sh;
3696}
3697
3698static int make_request(mddev_t *mddev, struct bio * bi)
3699{
3700 raid5_conf_t *conf = mddev->private;
3701 int dd_idx;
3702 sector_t new_sector;
3703 sector_t logical_sector, last_sector;
3704 struct stripe_head *sh;
3705 const int rw = bio_data_dir(bi);
3706 int remaining;
3707 int plugged;
3708
3709 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3710 md_flush_request(mddev, bi);
3711 return 0;
3712 }
3713
3714 md_write_start(mddev, bi);
3715
3716 if (rw == READ &&
3717 mddev->reshape_position == MaxSector &&
3718 chunk_aligned_read(mddev,bi))
3719 return 0;
3720
3721 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3722 last_sector = bi->bi_sector + (bi->bi_size>>9);
3723 bi->bi_next = NULL;
3724 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3725
3726 plugged = mddev_check_plugged(mddev);
3727 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3728 DEFINE_WAIT(w);
3729 int disks, data_disks;
3730 int previous;
3731
3732 retry:
3733 previous = 0;
3734 disks = conf->raid_disks;
3735 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3736 if (unlikely(conf->reshape_progress != MaxSector)) {
3737 /* spinlock is needed as reshape_progress may be
3738 * 64bit on a 32bit platform, and so it might be
3739 * possible to see a half-updated value
3740 * Of course reshape_progress could change after
3741 * the lock is dropped, so once we get a reference
3742 * to the stripe that we think it is, we will have
3743 * to check again.
3744 */
3745 spin_lock_irq(&conf->device_lock);
3746 if (mddev->delta_disks < 0
3747 ? logical_sector < conf->reshape_progress
3748 : logical_sector >= conf->reshape_progress) {
3749 disks = conf->previous_raid_disks;
3750 previous = 1;
3751 } else {
3752 if (mddev->delta_disks < 0
3753 ? logical_sector < conf->reshape_safe
3754 : logical_sector >= conf->reshape_safe) {
3755 spin_unlock_irq(&conf->device_lock);
3756 schedule();
3757 goto retry;
3758 }
3759 }
3760 spin_unlock_irq(&conf->device_lock);
3761 }
3762 data_disks = disks - conf->max_degraded;
3763
3764 new_sector = raid5_compute_sector(conf, logical_sector,
3765 previous,
3766 &dd_idx, NULL);
3767 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3768 (unsigned long long)new_sector,
3769 (unsigned long long)logical_sector);
3770
3771 sh = get_active_stripe(conf, new_sector, previous,
3772 (bi->bi_rw&RWA_MASK), 0);
3773 if (sh) {
3774 if (unlikely(previous)) {
3775 /* expansion might have moved on while waiting for a
3776 * stripe, so we must do the range check again.
3777 * Expansion could still move past after this
3778 * test, but as we are holding a reference to
3779 * 'sh', we know that if that happens,
3780 * STRIPE_EXPANDING will get set and the expansion
3781 * won't proceed until we finish with the stripe.
3782 */
3783 int must_retry = 0;
3784 spin_lock_irq(&conf->device_lock);
3785 if (mddev->delta_disks < 0
3786 ? logical_sector >= conf->reshape_progress
3787 : logical_sector < conf->reshape_progress)
3788 /* mismatch, need to try again */
3789 must_retry = 1;
3790 spin_unlock_irq(&conf->device_lock);
3791 if (must_retry) {
3792 release_stripe(sh);
3793 schedule();
3794 goto retry;
3795 }
3796 }
3797
3798 if (rw == WRITE &&
3799 logical_sector >= mddev->suspend_lo &&
3800 logical_sector < mddev->suspend_hi) {
3801 release_stripe(sh);
3802 /* As the suspend_* range is controlled by
3803 * userspace, we want an interruptible
3804 * wait.
3805 */
3806 flush_signals(current);
3807 prepare_to_wait(&conf->wait_for_overlap,
3808 &w, TASK_INTERRUPTIBLE);
3809 if (logical_sector >= mddev->suspend_lo &&
3810 logical_sector < mddev->suspend_hi)
3811 schedule();
3812 goto retry;
3813 }
3814
3815 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3816 !add_stripe_bio(sh, bi, dd_idx, rw)) {
3817 /* Stripe is busy expanding or
3818 * add failed due to overlap. Flush everything
3819 * and wait a while
3820 */
3821 md_wakeup_thread(mddev->thread);
3822 release_stripe(sh);
3823 schedule();
3824 goto retry;
3825 }
3826 finish_wait(&conf->wait_for_overlap, &w);
3827 set_bit(STRIPE_HANDLE, &sh->state);
3828 clear_bit(STRIPE_DELAYED, &sh->state);
3829 if ((bi->bi_rw & REQ_SYNC) &&
3830 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3831 atomic_inc(&conf->preread_active_stripes);
3832 release_stripe(sh);
3833 } else {
3834 /* cannot get stripe for read-ahead, just give-up */
3835 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3836 finish_wait(&conf->wait_for_overlap, &w);
3837 break;
3838 }
3839
3840 }
3841 if (!plugged)
3842 md_wakeup_thread(mddev->thread);
3843
3844 spin_lock_irq(&conf->device_lock);
3845 remaining = raid5_dec_bi_phys_segments(bi);
3846 spin_unlock_irq(&conf->device_lock);
3847 if (remaining == 0) {
3848
3849 if ( rw == WRITE )
3850 md_write_end(mddev);
3851
3852 bio_endio(bi, 0);
3853 }
3854
3855 return 0;
3856}
3857
3858static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3859
3860static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3861{
3862 /* reshaping is quite different to recovery/resync so it is
3863 * handled quite separately ... here.
3864 *
3865 * On each call to sync_request, we gather one chunk worth of
3866 * destination stripes and flag them as expanding.
3867 * Then we find all the source stripes and request reads.
3868 * As the reads complete, handle_stripe will copy the data
3869 * into the destination stripe and release that stripe.
3870 */
3871 raid5_conf_t *conf = mddev->private;
3872 struct stripe_head *sh;
3873 sector_t first_sector, last_sector;
3874 int raid_disks = conf->previous_raid_disks;
3875 int data_disks = raid_disks - conf->max_degraded;
3876 int new_data_disks = conf->raid_disks - conf->max_degraded;
3877 int i;
3878 int dd_idx;
3879 sector_t writepos, readpos, safepos;
3880 sector_t stripe_addr;
3881 int reshape_sectors;
3882 struct list_head stripes;
3883
3884 if (sector_nr == 0) {
3885 /* If restarting in the middle, skip the initial sectors */
3886 if (mddev->delta_disks < 0 &&
3887 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3888 sector_nr = raid5_size(mddev, 0, 0)
3889 - conf->reshape_progress;
3890 } else if (mddev->delta_disks >= 0 &&
3891 conf->reshape_progress > 0)
3892 sector_nr = conf->reshape_progress;
3893 sector_div(sector_nr, new_data_disks);
3894 if (sector_nr) {
3895 mddev->curr_resync_completed = sector_nr;
3896 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3897 *skipped = 1;
3898 return sector_nr;
3899 }
3900 }
3901
3902 /* We need to process a full chunk at a time.
3903 * If old and new chunk sizes differ, we need to process the
3904 * largest of these
3905 */
3906 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3907 reshape_sectors = mddev->new_chunk_sectors;
3908 else
3909 reshape_sectors = mddev->chunk_sectors;
3910
3911 /* we update the metadata when there is more than 3Meg
3912 * in the block range (that is rather arbitrary, should
3913 * probably be time based) or when the data about to be
3914 * copied would over-write the source of the data at
3915 * the front of the range.
3916 * i.e. one new_stripe along from reshape_progress new_maps
3917 * to after where reshape_safe old_maps to
3918 */
3919 writepos = conf->reshape_progress;
3920 sector_div(writepos, new_data_disks);
3921 readpos = conf->reshape_progress;
3922 sector_div(readpos, data_disks);
3923 safepos = conf->reshape_safe;
3924 sector_div(safepos, data_disks);
3925 if (mddev->delta_disks < 0) {
3926 writepos -= min_t(sector_t, reshape_sectors, writepos);
3927 readpos += reshape_sectors;
3928 safepos += reshape_sectors;
3929 } else {
3930 writepos += reshape_sectors;
3931 readpos -= min_t(sector_t, reshape_sectors, readpos);
3932 safepos -= min_t(sector_t, reshape_sectors, safepos);
3933 }
3934
3935 /* 'writepos' is the most advanced device address we might write.
3936 * 'readpos' is the least advanced device address we might read.
3937 * 'safepos' is the least address recorded in the metadata as having
3938 * been reshaped.
3939 * If 'readpos' is behind 'writepos', then there is no way that we can
3940 * ensure safety in the face of a crash - that must be done by userspace
3941 * making a backup of the data. So in that case there is no particular
3942 * rush to update metadata.
3943 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3944 * update the metadata to advance 'safepos' to match 'readpos' so that
3945 * we can be safe in the event of a crash.
3946 * So we insist on updating metadata if safepos is behind writepos and
3947 * readpos is beyond writepos.
3948 * In any case, update the metadata every 10 seconds.
3949 * Maybe that number should be configurable, but I'm not sure it is
3950 * worth it.... maybe it could be a multiple of safemode_delay???
3951 */
3952 if ((mddev->delta_disks < 0
3953 ? (safepos > writepos && readpos < writepos)
3954 : (safepos < writepos && readpos > writepos)) ||
3955 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3956 /* Cannot proceed until we've updated the superblock... */
3957 wait_event(conf->wait_for_overlap,
3958 atomic_read(&conf->reshape_stripes)==0);
3959 mddev->reshape_position = conf->reshape_progress;
3960 mddev->curr_resync_completed = sector_nr;
3961 conf->reshape_checkpoint = jiffies;
3962 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3963 md_wakeup_thread(mddev->thread);
3964 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3965 kthread_should_stop());
3966 spin_lock_irq(&conf->device_lock);
3967 conf->reshape_safe = mddev->reshape_position;
3968 spin_unlock_irq(&conf->device_lock);
3969 wake_up(&conf->wait_for_overlap);
3970 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3971 }
3972
3973 if (mddev->delta_disks < 0) {
3974 BUG_ON(conf->reshape_progress == 0);
3975 stripe_addr = writepos;
3976 BUG_ON((mddev->dev_sectors &
3977 ~((sector_t)reshape_sectors - 1))
3978 - reshape_sectors - stripe_addr
3979 != sector_nr);
3980 } else {
3981 BUG_ON(writepos != sector_nr + reshape_sectors);
3982 stripe_addr = sector_nr;
3983 }
3984 INIT_LIST_HEAD(&stripes);
3985 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3986 int j;
3987 int skipped_disk = 0;
3988 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
3989 set_bit(STRIPE_EXPANDING, &sh->state);
3990 atomic_inc(&conf->reshape_stripes);
3991 /* If any of this stripe is beyond the end of the old
3992 * array, then we need to zero those blocks
3993 */
3994 for (j=sh->disks; j--;) {
3995 sector_t s;
3996 if (j == sh->pd_idx)
3997 continue;
3998 if (conf->level == 6 &&
3999 j == sh->qd_idx)
4000 continue;
4001 s = compute_blocknr(sh, j, 0);
4002 if (s < raid5_size(mddev, 0, 0)) {
4003 skipped_disk = 1;
4004 continue;
4005 }
4006 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4007 set_bit(R5_Expanded, &sh->dev[j].flags);
4008 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4009 }
4010 if (!skipped_disk) {
4011 set_bit(STRIPE_EXPAND_READY, &sh->state);
4012 set_bit(STRIPE_HANDLE, &sh->state);
4013 }
4014 list_add(&sh->lru, &stripes);
4015 }
4016 spin_lock_irq(&conf->device_lock);
4017 if (mddev->delta_disks < 0)
4018 conf->reshape_progress -= reshape_sectors * new_data_disks;
4019 else
4020 conf->reshape_progress += reshape_sectors * new_data_disks;
4021 spin_unlock_irq(&conf->device_lock);
4022 /* Ok, those stripe are ready. We can start scheduling
4023 * reads on the source stripes.
4024 * The source stripes are determined by mapping the first and last
4025 * block on the destination stripes.
4026 */
4027 first_sector =
4028 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4029 1, &dd_idx, NULL);
4030 last_sector =
4031 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4032 * new_data_disks - 1),
4033 1, &dd_idx, NULL);
4034 if (last_sector >= mddev->dev_sectors)
4035 last_sector = mddev->dev_sectors - 1;
4036 while (first_sector <= last_sector) {
4037 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4038 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4039 set_bit(STRIPE_HANDLE, &sh->state);
4040 release_stripe(sh);
4041 first_sector += STRIPE_SECTORS;
4042 }
4043 /* Now that the sources are clearly marked, we can release
4044 * the destination stripes
4045 */
4046 while (!list_empty(&stripes)) {
4047 sh = list_entry(stripes.next, struct stripe_head, lru);
4048 list_del_init(&sh->lru);
4049 release_stripe(sh);
4050 }
4051 /* If this takes us to the resync_max point where we have to pause,
4052 * then we need to write out the superblock.
4053 */
4054 sector_nr += reshape_sectors;
4055 if ((sector_nr - mddev->curr_resync_completed) * 2
4056 >= mddev->resync_max - mddev->curr_resync_completed) {
4057 /* Cannot proceed until we've updated the superblock... */
4058 wait_event(conf->wait_for_overlap,
4059 atomic_read(&conf->reshape_stripes) == 0);
4060 mddev->reshape_position = conf->reshape_progress;
4061 mddev->curr_resync_completed = sector_nr;
4062 conf->reshape_checkpoint = jiffies;
4063 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4064 md_wakeup_thread(mddev->thread);
4065 wait_event(mddev->sb_wait,
4066 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4067 || kthread_should_stop());
4068 spin_lock_irq(&conf->device_lock);
4069 conf->reshape_safe = mddev->reshape_position;
4070 spin_unlock_irq(&conf->device_lock);
4071 wake_up(&conf->wait_for_overlap);
4072 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4073 }
4074 return reshape_sectors;
4075}
4076
4077/* FIXME go_faster isn't used */
4078static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4079{
4080 raid5_conf_t *conf = mddev->private;
4081 struct stripe_head *sh;
4082 sector_t max_sector = mddev->dev_sectors;
4083 sector_t sync_blocks;
4084 int still_degraded = 0;
4085 int i;
4086
4087 if (sector_nr >= max_sector) {
4088 /* just being told to finish up .. nothing much to do */
4089
4090 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4091 end_reshape(conf);
4092 return 0;
4093 }
4094
4095 if (mddev->curr_resync < max_sector) /* aborted */
4096 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4097 &sync_blocks, 1);
4098 else /* completed sync */
4099 conf->fullsync = 0;
4100 bitmap_close_sync(mddev->bitmap);
4101
4102 return 0;
4103 }
4104
4105 /* Allow raid5_quiesce to complete */
4106 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4107
4108 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4109 return reshape_request(mddev, sector_nr, skipped);
4110
4111 /* No need to check resync_max as we never do more than one
4112 * stripe, and as resync_max will always be on a chunk boundary,
4113 * if the check in md_do_sync didn't fire, there is no chance
4114 * of overstepping resync_max here
4115 */
4116
4117 /* if there is too many failed drives and we are trying
4118 * to resync, then assert that we are finished, because there is
4119 * nothing we can do.
4120 */
4121 if (mddev->degraded >= conf->max_degraded &&
4122 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4123 sector_t rv = mddev->dev_sectors - sector_nr;
4124 *skipped = 1;
4125 return rv;
4126 }
4127 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4128 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4129 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4130 /* we can skip this block, and probably more */
4131 sync_blocks /= STRIPE_SECTORS;
4132 *skipped = 1;
4133 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4134 }
4135
4136
4137 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4138
4139 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4140 if (sh == NULL) {
4141 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4142 /* make sure we don't swamp the stripe cache if someone else
4143 * is trying to get access
4144 */
4145 schedule_timeout_uninterruptible(1);
4146 }
4147 /* Need to check if array will still be degraded after recovery/resync
4148 * We don't need to check the 'failed' flag as when that gets set,
4149 * recovery aborts.
4150 */
4151 for (i = 0; i < conf->raid_disks; i++)
4152 if (conf->disks[i].rdev == NULL)
4153 still_degraded = 1;
4154
4155 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4156
4157 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4158
4159 handle_stripe(sh);
4160 release_stripe(sh);
4161
4162 return STRIPE_SECTORS;
4163}
4164
4165static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4166{
4167 /* We may not be able to submit a whole bio at once as there
4168 * may not be enough stripe_heads available.
4169 * We cannot pre-allocate enough stripe_heads as we may need
4170 * more than exist in the cache (if we allow ever large chunks).
4171 * So we do one stripe head at a time and record in
4172 * ->bi_hw_segments how many have been done.
4173 *
4174 * We *know* that this entire raid_bio is in one chunk, so
4175 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4176 */
4177 struct stripe_head *sh;
4178 int dd_idx;
4179 sector_t sector, logical_sector, last_sector;
4180 int scnt = 0;
4181 int remaining;
4182 int handled = 0;
4183
4184 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4185 sector = raid5_compute_sector(conf, logical_sector,
4186 0, &dd_idx, NULL);
4187 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4188
4189 for (; logical_sector < last_sector;
4190 logical_sector += STRIPE_SECTORS,
4191 sector += STRIPE_SECTORS,
4192 scnt++) {
4193
4194 if (scnt < raid5_bi_hw_segments(raid_bio))
4195 /* already done this stripe */
4196 continue;
4197
4198 sh = get_active_stripe(conf, sector, 0, 1, 0);
4199
4200 if (!sh) {
4201 /* failed to get a stripe - must wait */
4202 raid5_set_bi_hw_segments(raid_bio, scnt);
4203 conf->retry_read_aligned = raid_bio;
4204 return handled;
4205 }
4206
4207 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4208 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4209 release_stripe(sh);
4210 raid5_set_bi_hw_segments(raid_bio, scnt);
4211 conf->retry_read_aligned = raid_bio;
4212 return handled;
4213 }
4214
4215 handle_stripe(sh);
4216 release_stripe(sh);
4217 handled++;
4218 }
4219 spin_lock_irq(&conf->device_lock);
4220 remaining = raid5_dec_bi_phys_segments(raid_bio);
4221 spin_unlock_irq(&conf->device_lock);
4222 if (remaining == 0)
4223 bio_endio(raid_bio, 0);
4224 if (atomic_dec_and_test(&conf->active_aligned_reads))
4225 wake_up(&conf->wait_for_stripe);
4226 return handled;
4227}
4228
4229
4230/*
4231 * This is our raid5 kernel thread.
4232 *
4233 * We scan the hash table for stripes which can be handled now.
4234 * During the scan, completed stripes are saved for us by the interrupt
4235 * handler, so that they will not have to wait for our next wakeup.
4236 */
4237static void raid5d(mddev_t *mddev)
4238{
4239 struct stripe_head *sh;
4240 raid5_conf_t *conf = mddev->private;
4241 int handled;
4242 struct blk_plug plug;
4243
4244 pr_debug("+++ raid5d active\n");
4245
4246 md_check_recovery(mddev);
4247
4248 blk_start_plug(&plug);
4249 handled = 0;
4250 spin_lock_irq(&conf->device_lock);
4251 while (1) {
4252 struct bio *bio;
4253
4254 if (atomic_read(&mddev->plug_cnt) == 0 &&
4255 !list_empty(&conf->bitmap_list)) {
4256 /* Now is a good time to flush some bitmap updates */
4257 conf->seq_flush++;
4258 spin_unlock_irq(&conf->device_lock);
4259 bitmap_unplug(mddev->bitmap);
4260 spin_lock_irq(&conf->device_lock);
4261 conf->seq_write = conf->seq_flush;
4262 activate_bit_delay(conf);
4263 }
4264 if (atomic_read(&mddev->plug_cnt) == 0)
4265 raid5_activate_delayed(conf);
4266
4267 while ((bio = remove_bio_from_retry(conf))) {
4268 int ok;
4269 spin_unlock_irq(&conf->device_lock);
4270 ok = retry_aligned_read(conf, bio);
4271 spin_lock_irq(&conf->device_lock);
4272 if (!ok)
4273 break;
4274 handled++;
4275 }
4276
4277 sh = __get_priority_stripe(conf);
4278
4279 if (!sh)
4280 break;
4281 spin_unlock_irq(&conf->device_lock);
4282
4283 handled++;
4284 handle_stripe(sh);
4285 release_stripe(sh);
4286 cond_resched();
4287
4288 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4289 md_check_recovery(mddev);
4290
4291 spin_lock_irq(&conf->device_lock);
4292 }
4293 pr_debug("%d stripes handled\n", handled);
4294
4295 spin_unlock_irq(&conf->device_lock);
4296
4297 async_tx_issue_pending_all();
4298 blk_finish_plug(&plug);
4299
4300 pr_debug("--- raid5d inactive\n");
4301}
4302
4303static ssize_t
4304raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4305{
4306 raid5_conf_t *conf = mddev->private;
4307 if (conf)
4308 return sprintf(page, "%d\n", conf->max_nr_stripes);
4309 else
4310 return 0;
4311}
4312
4313int
4314raid5_set_cache_size(mddev_t *mddev, int size)
4315{
4316 raid5_conf_t *conf = mddev->private;
4317 int err;
4318
4319 if (size <= 16 || size > 32768)
4320 return -EINVAL;
4321 while (size < conf->max_nr_stripes) {
4322 if (drop_one_stripe(conf))
4323 conf->max_nr_stripes--;
4324 else
4325 break;
4326 }
4327 err = md_allow_write(mddev);
4328 if (err)
4329 return err;
4330 while (size > conf->max_nr_stripes) {
4331 if (grow_one_stripe(conf))
4332 conf->max_nr_stripes++;
4333 else break;
4334 }
4335 return 0;
4336}
4337EXPORT_SYMBOL(raid5_set_cache_size);
4338
4339static ssize_t
4340raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4341{
4342 raid5_conf_t *conf = mddev->private;
4343 unsigned long new;
4344 int err;
4345
4346 if (len >= PAGE_SIZE)
4347 return -EINVAL;
4348 if (!conf)
4349 return -ENODEV;
4350
4351 if (strict_strtoul(page, 10, &new))
4352 return -EINVAL;
4353 err = raid5_set_cache_size(mddev, new);
4354 if (err)
4355 return err;
4356 return len;
4357}
4358
4359static struct md_sysfs_entry
4360raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4361 raid5_show_stripe_cache_size,
4362 raid5_store_stripe_cache_size);
4363
4364static ssize_t
4365raid5_show_preread_threshold(mddev_t *mddev, char *page)
4366{
4367 raid5_conf_t *conf = mddev->private;
4368 if (conf)
4369 return sprintf(page, "%d\n", conf->bypass_threshold);
4370 else
4371 return 0;
4372}
4373
4374static ssize_t
4375raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4376{
4377 raid5_conf_t *conf = mddev->private;
4378 unsigned long new;
4379 if (len >= PAGE_SIZE)
4380 return -EINVAL;
4381 if (!conf)
4382 return -ENODEV;
4383
4384 if (strict_strtoul(page, 10, &new))
4385 return -EINVAL;
4386 if (new > conf->max_nr_stripes)
4387 return -EINVAL;
4388 conf->bypass_threshold = new;
4389 return len;
4390}
4391
4392static struct md_sysfs_entry
4393raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4394 S_IRUGO | S_IWUSR,
4395 raid5_show_preread_threshold,
4396 raid5_store_preread_threshold);
4397
4398static ssize_t
4399stripe_cache_active_show(mddev_t *mddev, char *page)
4400{
4401 raid5_conf_t *conf = mddev->private;
4402 if (conf)
4403 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4404 else
4405 return 0;
4406}
4407
4408static struct md_sysfs_entry
4409raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4410
4411static struct attribute *raid5_attrs[] = {
4412 &raid5_stripecache_size.attr,
4413 &raid5_stripecache_active.attr,
4414 &raid5_preread_bypass_threshold.attr,
4415 NULL,
4416};
4417static struct attribute_group raid5_attrs_group = {
4418 .name = NULL,
4419 .attrs = raid5_attrs,
4420};
4421
4422static sector_t
4423raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4424{
4425 raid5_conf_t *conf = mddev->private;
4426
4427 if (!sectors)
4428 sectors = mddev->dev_sectors;
4429 if (!raid_disks)
4430 /* size is defined by the smallest of previous and new size */
4431 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4432
4433 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4434 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4435 return sectors * (raid_disks - conf->max_degraded);
4436}
4437
4438static void raid5_free_percpu(raid5_conf_t *conf)
4439{
4440 struct raid5_percpu *percpu;
4441 unsigned long cpu;
4442
4443 if (!conf->percpu)
4444 return;
4445
4446 get_online_cpus();
4447 for_each_possible_cpu(cpu) {
4448 percpu = per_cpu_ptr(conf->percpu, cpu);
4449 safe_put_page(percpu->spare_page);
4450 kfree(percpu->scribble);
4451 }
4452#ifdef CONFIG_HOTPLUG_CPU
4453 unregister_cpu_notifier(&conf->cpu_notify);
4454#endif
4455 put_online_cpus();
4456
4457 free_percpu(conf->percpu);
4458}
4459
4460static void free_conf(raid5_conf_t *conf)
4461{
4462 shrink_stripes(conf);
4463 raid5_free_percpu(conf);
4464 kfree(conf->disks);
4465 kfree(conf->stripe_hashtbl);
4466 kfree(conf);
4467}
4468
4469#ifdef CONFIG_HOTPLUG_CPU
4470static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4471 void *hcpu)
4472{
4473 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4474 long cpu = (long)hcpu;
4475 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4476
4477 switch (action) {
4478 case CPU_UP_PREPARE:
4479 case CPU_UP_PREPARE_FROZEN:
4480 if (conf->level == 6 && !percpu->spare_page)
4481 percpu->spare_page = alloc_page(GFP_KERNEL);
4482 if (!percpu->scribble)
4483 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4484
4485 if (!percpu->scribble ||
4486 (conf->level == 6 && !percpu->spare_page)) {
4487 safe_put_page(percpu->spare_page);
4488 kfree(percpu->scribble);
4489 pr_err("%s: failed memory allocation for cpu%ld\n",
4490 __func__, cpu);
4491 return notifier_from_errno(-ENOMEM);
4492 }
4493 break;
4494 case CPU_DEAD:
4495 case CPU_DEAD_FROZEN:
4496 safe_put_page(percpu->spare_page);
4497 kfree(percpu->scribble);
4498 percpu->spare_page = NULL;
4499 percpu->scribble = NULL;
4500 break;
4501 default:
4502 break;
4503 }
4504 return NOTIFY_OK;
4505}
4506#endif
4507
4508static int raid5_alloc_percpu(raid5_conf_t *conf)
4509{
4510 unsigned long cpu;
4511 struct page *spare_page;
4512 struct raid5_percpu __percpu *allcpus;
4513 void *scribble;
4514 int err;
4515
4516 allcpus = alloc_percpu(struct raid5_percpu);
4517 if (!allcpus)
4518 return -ENOMEM;
4519 conf->percpu = allcpus;
4520
4521 get_online_cpus();
4522 err = 0;
4523 for_each_present_cpu(cpu) {
4524 if (conf->level == 6) {
4525 spare_page = alloc_page(GFP_KERNEL);
4526 if (!spare_page) {
4527 err = -ENOMEM;
4528 break;
4529 }
4530 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4531 }
4532 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4533 if (!scribble) {
4534 err = -ENOMEM;
4535 break;
4536 }
4537 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4538 }
4539#ifdef CONFIG_HOTPLUG_CPU
4540 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4541 conf->cpu_notify.priority = 0;
4542 if (err == 0)
4543 err = register_cpu_notifier(&conf->cpu_notify);
4544#endif
4545 put_online_cpus();
4546
4547 return err;
4548}
4549
4550static raid5_conf_t *setup_conf(mddev_t *mddev)
4551{
4552 raid5_conf_t *conf;
4553 int raid_disk, memory, max_disks;
4554 mdk_rdev_t *rdev;
4555 struct disk_info *disk;
4556
4557 if (mddev->new_level != 5
4558 && mddev->new_level != 4
4559 && mddev->new_level != 6) {
4560 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4561 mdname(mddev), mddev->new_level);
4562 return ERR_PTR(-EIO);
4563 }
4564 if ((mddev->new_level == 5
4565 && !algorithm_valid_raid5(mddev->new_layout)) ||
4566 (mddev->new_level == 6
4567 && !algorithm_valid_raid6(mddev->new_layout))) {
4568 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4569 mdname(mddev), mddev->new_layout);
4570 return ERR_PTR(-EIO);
4571 }
4572 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4573 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4574 mdname(mddev), mddev->raid_disks);
4575 return ERR_PTR(-EINVAL);
4576 }
4577
4578 if (!mddev->new_chunk_sectors ||
4579 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4580 !is_power_of_2(mddev->new_chunk_sectors)) {
4581 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4582 mdname(mddev), mddev->new_chunk_sectors << 9);
4583 return ERR_PTR(-EINVAL);
4584 }
4585
4586 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4587 if (conf == NULL)
4588 goto abort;
4589 spin_lock_init(&conf->device_lock);
4590 init_waitqueue_head(&conf->wait_for_stripe);
4591 init_waitqueue_head(&conf->wait_for_overlap);
4592 INIT_LIST_HEAD(&conf->handle_list);
4593 INIT_LIST_HEAD(&conf->hold_list);
4594 INIT_LIST_HEAD(&conf->delayed_list);
4595 INIT_LIST_HEAD(&conf->bitmap_list);
4596 INIT_LIST_HEAD(&conf->inactive_list);
4597 atomic_set(&conf->active_stripes, 0);
4598 atomic_set(&conf->preread_active_stripes, 0);
4599 atomic_set(&conf->active_aligned_reads, 0);
4600 conf->bypass_threshold = BYPASS_THRESHOLD;
4601
4602 conf->raid_disks = mddev->raid_disks;
4603 if (mddev->reshape_position == MaxSector)
4604 conf->previous_raid_disks = mddev->raid_disks;
4605 else
4606 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4607 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4608 conf->scribble_len = scribble_len(max_disks);
4609
4610 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4611 GFP_KERNEL);
4612 if (!conf->disks)
4613 goto abort;
4614
4615 conf->mddev = mddev;
4616
4617 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4618 goto abort;
4619
4620 conf->level = mddev->new_level;
4621 if (raid5_alloc_percpu(conf) != 0)
4622 goto abort;
4623
4624 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4625
4626 list_for_each_entry(rdev, &mddev->disks, same_set) {
4627 raid_disk = rdev->raid_disk;
4628 if (raid_disk >= max_disks
4629 || raid_disk < 0)
4630 continue;
4631 disk = conf->disks + raid_disk;
4632
4633 disk->rdev = rdev;
4634
4635 if (test_bit(In_sync, &rdev->flags)) {
4636 char b[BDEVNAME_SIZE];
4637 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4638 " disk %d\n",
4639 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4640 } else if (rdev->saved_raid_disk != raid_disk)
4641 /* Cannot rely on bitmap to complete recovery */
4642 conf->fullsync = 1;
4643 }
4644
4645 conf->chunk_sectors = mddev->new_chunk_sectors;
4646 conf->level = mddev->new_level;
4647 if (conf->level == 6)
4648 conf->max_degraded = 2;
4649 else
4650 conf->max_degraded = 1;
4651 conf->algorithm = mddev->new_layout;
4652 conf->max_nr_stripes = NR_STRIPES;
4653 conf->reshape_progress = mddev->reshape_position;
4654 if (conf->reshape_progress != MaxSector) {
4655 conf->prev_chunk_sectors = mddev->chunk_sectors;
4656 conf->prev_algo = mddev->layout;
4657 }
4658
4659 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4660 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4661 if (grow_stripes(conf, conf->max_nr_stripes)) {
4662 printk(KERN_ERR
4663 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4664 mdname(mddev), memory);
4665 goto abort;
4666 } else
4667 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4668 mdname(mddev), memory);
4669
4670 conf->thread = md_register_thread(raid5d, mddev, NULL);
4671 if (!conf->thread) {
4672 printk(KERN_ERR
4673 "md/raid:%s: couldn't allocate thread.\n",
4674 mdname(mddev));
4675 goto abort;
4676 }
4677
4678 return conf;
4679
4680 abort:
4681 if (conf) {
4682 free_conf(conf);
4683 return ERR_PTR(-EIO);
4684 } else
4685 return ERR_PTR(-ENOMEM);
4686}
4687
4688
4689static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4690{
4691 switch (algo) {
4692 case ALGORITHM_PARITY_0:
4693 if (raid_disk < max_degraded)
4694 return 1;
4695 break;
4696 case ALGORITHM_PARITY_N:
4697 if (raid_disk >= raid_disks - max_degraded)
4698 return 1;
4699 break;
4700 case ALGORITHM_PARITY_0_6:
4701 if (raid_disk == 0 ||
4702 raid_disk == raid_disks - 1)
4703 return 1;
4704 break;
4705 case ALGORITHM_LEFT_ASYMMETRIC_6:
4706 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4707 case ALGORITHM_LEFT_SYMMETRIC_6:
4708 case ALGORITHM_RIGHT_SYMMETRIC_6:
4709 if (raid_disk == raid_disks - 1)
4710 return 1;
4711 }
4712 return 0;
4713}
4714
4715static int run(mddev_t *mddev)
4716{
4717 raid5_conf_t *conf;
4718 int working_disks = 0;
4719 int dirty_parity_disks = 0;
4720 mdk_rdev_t *rdev;
4721 sector_t reshape_offset = 0;
4722
4723 if (mddev->recovery_cp != MaxSector)
4724 printk(KERN_NOTICE "md/raid:%s: not clean"
4725 " -- starting background reconstruction\n",
4726 mdname(mddev));
4727 if (mddev->reshape_position != MaxSector) {
4728 /* Check that we can continue the reshape.
4729 * Currently only disks can change, it must
4730 * increase, and we must be past the point where
4731 * a stripe over-writes itself
4732 */
4733 sector_t here_new, here_old;
4734 int old_disks;
4735 int max_degraded = (mddev->level == 6 ? 2 : 1);
4736
4737 if (mddev->new_level != mddev->level) {
4738 printk(KERN_ERR "md/raid:%s: unsupported reshape "
4739 "required - aborting.\n",
4740 mdname(mddev));
4741 return -EINVAL;
4742 }
4743 old_disks = mddev->raid_disks - mddev->delta_disks;
4744 /* reshape_position must be on a new-stripe boundary, and one
4745 * further up in new geometry must map after here in old
4746 * geometry.
4747 */
4748 here_new = mddev->reshape_position;
4749 if (sector_div(here_new, mddev->new_chunk_sectors *
4750 (mddev->raid_disks - max_degraded))) {
4751 printk(KERN_ERR "md/raid:%s: reshape_position not "
4752 "on a stripe boundary\n", mdname(mddev));
4753 return -EINVAL;
4754 }
4755 reshape_offset = here_new * mddev->new_chunk_sectors;
4756 /* here_new is the stripe we will write to */
4757 here_old = mddev->reshape_position;
4758 sector_div(here_old, mddev->chunk_sectors *
4759 (old_disks-max_degraded));
4760 /* here_old is the first stripe that we might need to read
4761 * from */
4762 if (mddev->delta_disks == 0) {
4763 /* We cannot be sure it is safe to start an in-place
4764 * reshape. It is only safe if user-space if monitoring
4765 * and taking constant backups.
4766 * mdadm always starts a situation like this in
4767 * readonly mode so it can take control before
4768 * allowing any writes. So just check for that.
4769 */
4770 if ((here_new * mddev->new_chunk_sectors !=
4771 here_old * mddev->chunk_sectors) ||
4772 mddev->ro == 0) {
4773 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4774 " in read-only mode - aborting\n",
4775 mdname(mddev));
4776 return -EINVAL;
4777 }
4778 } else if (mddev->delta_disks < 0
4779 ? (here_new * mddev->new_chunk_sectors <=
4780 here_old * mddev->chunk_sectors)
4781 : (here_new * mddev->new_chunk_sectors >=
4782 here_old * mddev->chunk_sectors)) {
4783 /* Reading from the same stripe as writing to - bad */
4784 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4785 "auto-recovery - aborting.\n",
4786 mdname(mddev));
4787 return -EINVAL;
4788 }
4789 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4790 mdname(mddev));
4791 /* OK, we should be able to continue; */
4792 } else {
4793 BUG_ON(mddev->level != mddev->new_level);
4794 BUG_ON(mddev->layout != mddev->new_layout);
4795 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4796 BUG_ON(mddev->delta_disks != 0);
4797 }
4798
4799 if (mddev->private == NULL)
4800 conf = setup_conf(mddev);
4801 else
4802 conf = mddev->private;
4803
4804 if (IS_ERR(conf))
4805 return PTR_ERR(conf);
4806
4807 mddev->thread = conf->thread;
4808 conf->thread = NULL;
4809 mddev->private = conf;
4810
4811 /*
4812 * 0 for a fully functional array, 1 or 2 for a degraded array.
4813 */
4814 list_for_each_entry(rdev, &mddev->disks, same_set) {
4815 if (rdev->raid_disk < 0)
4816 continue;
4817 if (test_bit(In_sync, &rdev->flags)) {
4818 working_disks++;
4819 continue;
4820 }
4821 /* This disc is not fully in-sync. However if it
4822 * just stored parity (beyond the recovery_offset),
4823 * when we don't need to be concerned about the
4824 * array being dirty.
4825 * When reshape goes 'backwards', we never have
4826 * partially completed devices, so we only need
4827 * to worry about reshape going forwards.
4828 */
4829 /* Hack because v0.91 doesn't store recovery_offset properly. */
4830 if (mddev->major_version == 0 &&
4831 mddev->minor_version > 90)
4832 rdev->recovery_offset = reshape_offset;
4833
4834 if (rdev->recovery_offset < reshape_offset) {
4835 /* We need to check old and new layout */
4836 if (!only_parity(rdev->raid_disk,
4837 conf->algorithm,
4838 conf->raid_disks,
4839 conf->max_degraded))
4840 continue;
4841 }
4842 if (!only_parity(rdev->raid_disk,
4843 conf->prev_algo,
4844 conf->previous_raid_disks,
4845 conf->max_degraded))
4846 continue;
4847 dirty_parity_disks++;
4848 }
4849
4850 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4851 - working_disks);
4852
4853 if (has_failed(conf)) {
4854 printk(KERN_ERR "md/raid:%s: not enough operational devices"
4855 " (%d/%d failed)\n",
4856 mdname(mddev), mddev->degraded, conf->raid_disks);
4857 goto abort;
4858 }
4859
4860 /* device size must be a multiple of chunk size */
4861 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4862 mddev->resync_max_sectors = mddev->dev_sectors;
4863
4864 if (mddev->degraded > dirty_parity_disks &&
4865 mddev->recovery_cp != MaxSector) {
4866 if (mddev->ok_start_degraded)
4867 printk(KERN_WARNING
4868 "md/raid:%s: starting dirty degraded array"
4869 " - data corruption possible.\n",
4870 mdname(mddev));
4871 else {
4872 printk(KERN_ERR
4873 "md/raid:%s: cannot start dirty degraded array.\n",
4874 mdname(mddev));
4875 goto abort;
4876 }
4877 }
4878
4879 if (mddev->degraded == 0)
4880 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4881 " devices, algorithm %d\n", mdname(mddev), conf->level,
4882 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4883 mddev->new_layout);
4884 else
4885 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4886 " out of %d devices, algorithm %d\n",
4887 mdname(mddev), conf->level,
4888 mddev->raid_disks - mddev->degraded,
4889 mddev->raid_disks, mddev->new_layout);
4890
4891 print_raid5_conf(conf);
4892
4893 if (conf->reshape_progress != MaxSector) {
4894 conf->reshape_safe = conf->reshape_progress;
4895 atomic_set(&conf->reshape_stripes, 0);
4896 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4897 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4898 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4899 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4900 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4901 "reshape");
4902 }
4903
4904
4905 /* Ok, everything is just fine now */
4906 if (mddev->to_remove == &raid5_attrs_group)
4907 mddev->to_remove = NULL;
4908 else if (mddev->kobj.sd &&
4909 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4910 printk(KERN_WARNING
4911 "raid5: failed to create sysfs attributes for %s\n",
4912 mdname(mddev));
4913 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4914
4915 if (mddev->queue) {
4916 int chunk_size;
4917 /* read-ahead size must cover two whole stripes, which
4918 * is 2 * (datadisks) * chunksize where 'n' is the
4919 * number of raid devices
4920 */
4921 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4922 int stripe = data_disks *
4923 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4924 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4925 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4926
4927 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4928
4929 mddev->queue->backing_dev_info.congested_data = mddev;
4930 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4931
4932 chunk_size = mddev->chunk_sectors << 9;
4933 blk_queue_io_min(mddev->queue, chunk_size);
4934 blk_queue_io_opt(mddev->queue, chunk_size *
4935 (conf->raid_disks - conf->max_degraded));
4936
4937 list_for_each_entry(rdev, &mddev->disks, same_set)
4938 disk_stack_limits(mddev->gendisk, rdev->bdev,
4939 rdev->data_offset << 9);
4940 }
4941
4942 return 0;
4943abort:
4944 md_unregister_thread(&mddev->thread);
4945 if (conf) {
4946 print_raid5_conf(conf);
4947 free_conf(conf);
4948 }
4949 mddev->private = NULL;
4950 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
4951 return -EIO;
4952}
4953
4954static int stop(mddev_t *mddev)
4955{
4956 raid5_conf_t *conf = mddev->private;
4957
4958 md_unregister_thread(&mddev->thread);
4959 if (mddev->queue)
4960 mddev->queue->backing_dev_info.congested_fn = NULL;
4961 free_conf(conf);
4962 mddev->private = NULL;
4963 mddev->to_remove = &raid5_attrs_group;
4964 return 0;
4965}
4966
4967#ifdef DEBUG
4968static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4969{
4970 int i;
4971
4972 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4973 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4974 seq_printf(seq, "sh %llu, count %d.\n",
4975 (unsigned long long)sh->sector, atomic_read(&sh->count));
4976 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4977 for (i = 0; i < sh->disks; i++) {
4978 seq_printf(seq, "(cache%d: %p %ld) ",
4979 i, sh->dev[i].page, sh->dev[i].flags);
4980 }
4981 seq_printf(seq, "\n");
4982}
4983
4984static void printall(struct seq_file *seq, raid5_conf_t *conf)
4985{
4986 struct stripe_head *sh;
4987 struct hlist_node *hn;
4988 int i;
4989
4990 spin_lock_irq(&conf->device_lock);
4991 for (i = 0; i < NR_HASH; i++) {
4992 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4993 if (sh->raid_conf != conf)
4994 continue;
4995 print_sh(seq, sh);
4996 }
4997 }
4998 spin_unlock_irq(&conf->device_lock);
4999}
5000#endif
5001
5002static void status(struct seq_file *seq, mddev_t *mddev)
5003{
5004 raid5_conf_t *conf = mddev->private;
5005 int i;
5006
5007 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5008 mddev->chunk_sectors / 2, mddev->layout);
5009 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5010 for (i = 0; i < conf->raid_disks; i++)
5011 seq_printf (seq, "%s",
5012 conf->disks[i].rdev &&
5013 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5014 seq_printf (seq, "]");
5015#ifdef DEBUG
5016 seq_printf (seq, "\n");
5017 printall(seq, conf);
5018#endif
5019}
5020
5021static void print_raid5_conf (raid5_conf_t *conf)
5022{
5023 int i;
5024 struct disk_info *tmp;
5025
5026 printk(KERN_DEBUG "RAID conf printout:\n");
5027 if (!conf) {
5028 printk("(conf==NULL)\n");
5029 return;
5030 }
5031 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5032 conf->raid_disks,
5033 conf->raid_disks - conf->mddev->degraded);
5034
5035 for (i = 0; i < conf->raid_disks; i++) {
5036 char b[BDEVNAME_SIZE];
5037 tmp = conf->disks + i;
5038 if (tmp->rdev)
5039 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5040 i, !test_bit(Faulty, &tmp->rdev->flags),
5041 bdevname(tmp->rdev->bdev, b));
5042 }
5043}
5044
5045static int raid5_spare_active(mddev_t *mddev)
5046{
5047 int i;
5048 raid5_conf_t *conf = mddev->private;
5049 struct disk_info *tmp;
5050 int count = 0;
5051 unsigned long flags;
5052
5053 for (i = 0; i < conf->raid_disks; i++) {
5054 tmp = conf->disks + i;
5055 if (tmp->rdev
5056 && tmp->rdev->recovery_offset == MaxSector
5057 && !test_bit(Faulty, &tmp->rdev->flags)
5058 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5059 count++;
5060 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5061 }
5062 }
5063 spin_lock_irqsave(&conf->device_lock, flags);
5064 mddev->degraded -= count;
5065 spin_unlock_irqrestore(&conf->device_lock, flags);
5066 print_raid5_conf(conf);
5067 return count;
5068}
5069
5070static int raid5_remove_disk(mddev_t *mddev, int number)
5071{
5072 raid5_conf_t *conf = mddev->private;
5073 int err = 0;
5074 mdk_rdev_t *rdev;
5075 struct disk_info *p = conf->disks + number;
5076
5077 print_raid5_conf(conf);
5078 rdev = p->rdev;
5079 if (rdev) {
5080 if (number >= conf->raid_disks &&
5081 conf->reshape_progress == MaxSector)
5082 clear_bit(In_sync, &rdev->flags);
5083
5084 if (test_bit(In_sync, &rdev->flags) ||
5085 atomic_read(&rdev->nr_pending)) {
5086 err = -EBUSY;
5087 goto abort;
5088 }
5089 /* Only remove non-faulty devices if recovery
5090 * isn't possible.
5091 */
5092 if (!test_bit(Faulty, &rdev->flags) &&
5093 mddev->recovery_disabled != conf->recovery_disabled &&
5094 !has_failed(conf) &&
5095 number < conf->raid_disks) {
5096 err = -EBUSY;
5097 goto abort;
5098 }
5099 p->rdev = NULL;
5100 synchronize_rcu();
5101 if (atomic_read(&rdev->nr_pending)) {
5102 /* lost the race, try later */
5103 err = -EBUSY;
5104 p->rdev = rdev;
5105 }
5106 }
5107abort:
5108
5109 print_raid5_conf(conf);
5110 return err;
5111}
5112
5113static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5114{
5115 raid5_conf_t *conf = mddev->private;
5116 int err = -EEXIST;
5117 int disk;
5118 struct disk_info *p;
5119 int first = 0;
5120 int last = conf->raid_disks - 1;
5121
5122 if (mddev->recovery_disabled == conf->recovery_disabled)
5123 return -EBUSY;
5124
5125 if (has_failed(conf))
5126 /* no point adding a device */
5127 return -EINVAL;
5128
5129 if (rdev->raid_disk >= 0)
5130 first = last = rdev->raid_disk;
5131
5132 /*
5133 * find the disk ... but prefer rdev->saved_raid_disk
5134 * if possible.
5135 */
5136 if (rdev->saved_raid_disk >= 0 &&
5137 rdev->saved_raid_disk >= first &&
5138 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5139 disk = rdev->saved_raid_disk;
5140 else
5141 disk = first;
5142 for ( ; disk <= last ; disk++)
5143 if ((p=conf->disks + disk)->rdev == NULL) {
5144 clear_bit(In_sync, &rdev->flags);
5145 rdev->raid_disk = disk;
5146 err = 0;
5147 if (rdev->saved_raid_disk != disk)
5148 conf->fullsync = 1;
5149 rcu_assign_pointer(p->rdev, rdev);
5150 break;
5151 }
5152 print_raid5_conf(conf);
5153 return err;
5154}
5155
5156static int raid5_resize(mddev_t *mddev, sector_t sectors)
5157{
5158 /* no resync is happening, and there is enough space
5159 * on all devices, so we can resize.
5160 * We need to make sure resync covers any new space.
5161 * If the array is shrinking we should possibly wait until
5162 * any io in the removed space completes, but it hardly seems
5163 * worth it.
5164 */
5165 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5166 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5167 mddev->raid_disks));
5168 if (mddev->array_sectors >
5169 raid5_size(mddev, sectors, mddev->raid_disks))
5170 return -EINVAL;
5171 set_capacity(mddev->gendisk, mddev->array_sectors);
5172 revalidate_disk(mddev->gendisk);
5173 if (sectors > mddev->dev_sectors &&
5174 mddev->recovery_cp > mddev->dev_sectors) {
5175 mddev->recovery_cp = mddev->dev_sectors;
5176 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5177 }
5178 mddev->dev_sectors = sectors;
5179 mddev->resync_max_sectors = sectors;
5180 return 0;
5181}
5182
5183static int check_stripe_cache(mddev_t *mddev)
5184{
5185 /* Can only proceed if there are plenty of stripe_heads.
5186 * We need a minimum of one full stripe,, and for sensible progress
5187 * it is best to have about 4 times that.
5188 * If we require 4 times, then the default 256 4K stripe_heads will
5189 * allow for chunk sizes up to 256K, which is probably OK.
5190 * If the chunk size is greater, user-space should request more
5191 * stripe_heads first.
5192 */
5193 raid5_conf_t *conf = mddev->private;
5194 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5195 > conf->max_nr_stripes ||
5196 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5197 > conf->max_nr_stripes) {
5198 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5199 mdname(mddev),
5200 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5201 / STRIPE_SIZE)*4);
5202 return 0;
5203 }
5204 return 1;
5205}
5206
5207static int check_reshape(mddev_t *mddev)
5208{
5209 raid5_conf_t *conf = mddev->private;
5210
5211 if (mddev->delta_disks == 0 &&
5212 mddev->new_layout == mddev->layout &&
5213 mddev->new_chunk_sectors == mddev->chunk_sectors)
5214 return 0; /* nothing to do */
5215 if (mddev->bitmap)
5216 /* Cannot grow a bitmap yet */
5217 return -EBUSY;
5218 if (has_failed(conf))
5219 return -EINVAL;
5220 if (mddev->delta_disks < 0) {
5221 /* We might be able to shrink, but the devices must
5222 * be made bigger first.
5223 * For raid6, 4 is the minimum size.
5224 * Otherwise 2 is the minimum
5225 */
5226 int min = 2;
5227 if (mddev->level == 6)
5228 min = 4;
5229 if (mddev->raid_disks + mddev->delta_disks < min)
5230 return -EINVAL;
5231 }
5232
5233 if (!check_stripe_cache(mddev))
5234 return -ENOSPC;
5235
5236 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5237}
5238
5239static int raid5_start_reshape(mddev_t *mddev)
5240{
5241 raid5_conf_t *conf = mddev->private;
5242 mdk_rdev_t *rdev;
5243 int spares = 0;
5244 unsigned long flags;
5245
5246 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5247 return -EBUSY;
5248
5249 if (!check_stripe_cache(mddev))
5250 return -ENOSPC;
5251
5252 list_for_each_entry(rdev, &mddev->disks, same_set)
5253 if (!test_bit(In_sync, &rdev->flags)
5254 && !test_bit(Faulty, &rdev->flags))
5255 spares++;
5256
5257 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5258 /* Not enough devices even to make a degraded array
5259 * of that size
5260 */
5261 return -EINVAL;
5262
5263 /* Refuse to reduce size of the array. Any reductions in
5264 * array size must be through explicit setting of array_size
5265 * attribute.
5266 */
5267 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5268 < mddev->array_sectors) {
5269 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5270 "before number of disks\n", mdname(mddev));
5271 return -EINVAL;
5272 }
5273
5274 atomic_set(&conf->reshape_stripes, 0);
5275 spin_lock_irq(&conf->device_lock);
5276 conf->previous_raid_disks = conf->raid_disks;
5277 conf->raid_disks += mddev->delta_disks;
5278 conf->prev_chunk_sectors = conf->chunk_sectors;
5279 conf->chunk_sectors = mddev->new_chunk_sectors;
5280 conf->prev_algo = conf->algorithm;
5281 conf->algorithm = mddev->new_layout;
5282 if (mddev->delta_disks < 0)
5283 conf->reshape_progress = raid5_size(mddev, 0, 0);
5284 else
5285 conf->reshape_progress = 0;
5286 conf->reshape_safe = conf->reshape_progress;
5287 conf->generation++;
5288 spin_unlock_irq(&conf->device_lock);
5289
5290 /* Add some new drives, as many as will fit.
5291 * We know there are enough to make the newly sized array work.
5292 * Don't add devices if we are reducing the number of
5293 * devices in the array. This is because it is not possible
5294 * to correctly record the "partially reconstructed" state of
5295 * such devices during the reshape and confusion could result.
5296 */
5297 if (mddev->delta_disks >= 0) {
5298 int added_devices = 0;
5299 list_for_each_entry(rdev, &mddev->disks, same_set)
5300 if (rdev->raid_disk < 0 &&
5301 !test_bit(Faulty, &rdev->flags)) {
5302 if (raid5_add_disk(mddev, rdev) == 0) {
5303 if (rdev->raid_disk
5304 >= conf->previous_raid_disks) {
5305 set_bit(In_sync, &rdev->flags);
5306 added_devices++;
5307 } else
5308 rdev->recovery_offset = 0;
5309
5310 if (sysfs_link_rdev(mddev, rdev))
5311 /* Failure here is OK */;
5312 }
5313 } else if (rdev->raid_disk >= conf->previous_raid_disks
5314 && !test_bit(Faulty, &rdev->flags)) {
5315 /* This is a spare that was manually added */
5316 set_bit(In_sync, &rdev->flags);
5317 added_devices++;
5318 }
5319
5320 /* When a reshape changes the number of devices,
5321 * ->degraded is measured against the larger of the
5322 * pre and post number of devices.
5323 */
5324 spin_lock_irqsave(&conf->device_lock, flags);
5325 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5326 - added_devices;
5327 spin_unlock_irqrestore(&conf->device_lock, flags);
5328 }
5329 mddev->raid_disks = conf->raid_disks;
5330 mddev->reshape_position = conf->reshape_progress;
5331 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5332
5333 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5334 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5335 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5336 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5337 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5338 "reshape");
5339 if (!mddev->sync_thread) {
5340 mddev->recovery = 0;
5341 spin_lock_irq(&conf->device_lock);
5342 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5343 conf->reshape_progress = MaxSector;
5344 spin_unlock_irq(&conf->device_lock);
5345 return -EAGAIN;
5346 }
5347 conf->reshape_checkpoint = jiffies;
5348 md_wakeup_thread(mddev->sync_thread);
5349 md_new_event(mddev);
5350 return 0;
5351}
5352
5353/* This is called from the reshape thread and should make any
5354 * changes needed in 'conf'
5355 */
5356static void end_reshape(raid5_conf_t *conf)
5357{
5358
5359 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5360
5361 spin_lock_irq(&conf->device_lock);
5362 conf->previous_raid_disks = conf->raid_disks;
5363 conf->reshape_progress = MaxSector;
5364 spin_unlock_irq(&conf->device_lock);
5365 wake_up(&conf->wait_for_overlap);
5366
5367 /* read-ahead size must cover two whole stripes, which is
5368 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5369 */
5370 if (conf->mddev->queue) {
5371 int data_disks = conf->raid_disks - conf->max_degraded;
5372 int stripe = data_disks * ((conf->chunk_sectors << 9)
5373 / PAGE_SIZE);
5374 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5375 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5376 }
5377 }
5378}
5379
5380/* This is called from the raid5d thread with mddev_lock held.
5381 * It makes config changes to the device.
5382 */
5383static void raid5_finish_reshape(mddev_t *mddev)
5384{
5385 raid5_conf_t *conf = mddev->private;
5386
5387 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5388
5389 if (mddev->delta_disks > 0) {
5390 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5391 set_capacity(mddev->gendisk, mddev->array_sectors);
5392 revalidate_disk(mddev->gendisk);
5393 } else {
5394 int d;
5395 mddev->degraded = conf->raid_disks;
5396 for (d = 0; d < conf->raid_disks ; d++)
5397 if (conf->disks[d].rdev &&
5398 test_bit(In_sync,
5399 &conf->disks[d].rdev->flags))
5400 mddev->degraded--;
5401 for (d = conf->raid_disks ;
5402 d < conf->raid_disks - mddev->delta_disks;
5403 d++) {
5404 mdk_rdev_t *rdev = conf->disks[d].rdev;
5405 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5406 sysfs_unlink_rdev(mddev, rdev);
5407 rdev->raid_disk = -1;
5408 }
5409 }
5410 }
5411 mddev->layout = conf->algorithm;
5412 mddev->chunk_sectors = conf->chunk_sectors;
5413 mddev->reshape_position = MaxSector;
5414 mddev->delta_disks = 0;
5415 }
5416}
5417
5418static void raid5_quiesce(mddev_t *mddev, int state)
5419{
5420 raid5_conf_t *conf = mddev->private;
5421
5422 switch(state) {
5423 case 2: /* resume for a suspend */
5424 wake_up(&conf->wait_for_overlap);
5425 break;
5426
5427 case 1: /* stop all writes */
5428 spin_lock_irq(&conf->device_lock);
5429 /* '2' tells resync/reshape to pause so that all
5430 * active stripes can drain
5431 */
5432 conf->quiesce = 2;
5433 wait_event_lock_irq(conf->wait_for_stripe,
5434 atomic_read(&conf->active_stripes) == 0 &&
5435 atomic_read(&conf->active_aligned_reads) == 0,
5436 conf->device_lock, /* nothing */);
5437 conf->quiesce = 1;
5438 spin_unlock_irq(&conf->device_lock);
5439 /* allow reshape to continue */
5440 wake_up(&conf->wait_for_overlap);
5441 break;
5442
5443 case 0: /* re-enable writes */
5444 spin_lock_irq(&conf->device_lock);
5445 conf->quiesce = 0;
5446 wake_up(&conf->wait_for_stripe);
5447 wake_up(&conf->wait_for_overlap);
5448 spin_unlock_irq(&conf->device_lock);
5449 break;
5450 }
5451}
5452
5453
5454static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5455{
5456 struct raid0_private_data *raid0_priv = mddev->private;
5457 sector_t sectors;
5458
5459 /* for raid0 takeover only one zone is supported */
5460 if (raid0_priv->nr_strip_zones > 1) {
5461 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5462 mdname(mddev));
5463 return ERR_PTR(-EINVAL);
5464 }
5465
5466 sectors = raid0_priv->strip_zone[0].zone_end;
5467 sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5468 mddev->dev_sectors = sectors;
5469 mddev->new_level = level;
5470 mddev->new_layout = ALGORITHM_PARITY_N;
5471 mddev->new_chunk_sectors = mddev->chunk_sectors;
5472 mddev->raid_disks += 1;
5473 mddev->delta_disks = 1;
5474 /* make sure it will be not marked as dirty */
5475 mddev->recovery_cp = MaxSector;
5476
5477 return setup_conf(mddev);
5478}
5479
5480
5481static void *raid5_takeover_raid1(mddev_t *mddev)
5482{
5483 int chunksect;
5484
5485 if (mddev->raid_disks != 2 ||
5486 mddev->degraded > 1)
5487 return ERR_PTR(-EINVAL);
5488
5489 /* Should check if there are write-behind devices? */
5490
5491 chunksect = 64*2; /* 64K by default */
5492
5493 /* The array must be an exact multiple of chunksize */
5494 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5495 chunksect >>= 1;
5496
5497 if ((chunksect<<9) < STRIPE_SIZE)
5498 /* array size does not allow a suitable chunk size */
5499 return ERR_PTR(-EINVAL);
5500
5501 mddev->new_level = 5;
5502 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5503 mddev->new_chunk_sectors = chunksect;
5504
5505 return setup_conf(mddev);
5506}
5507
5508static void *raid5_takeover_raid6(mddev_t *mddev)
5509{
5510 int new_layout;
5511
5512 switch (mddev->layout) {
5513 case ALGORITHM_LEFT_ASYMMETRIC_6:
5514 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5515 break;
5516 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5517 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5518 break;
5519 case ALGORITHM_LEFT_SYMMETRIC_6:
5520 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5521 break;
5522 case ALGORITHM_RIGHT_SYMMETRIC_6:
5523 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5524 break;
5525 case ALGORITHM_PARITY_0_6:
5526 new_layout = ALGORITHM_PARITY_0;
5527 break;
5528 case ALGORITHM_PARITY_N:
5529 new_layout = ALGORITHM_PARITY_N;
5530 break;
5531 default:
5532 return ERR_PTR(-EINVAL);
5533 }
5534 mddev->new_level = 5;
5535 mddev->new_layout = new_layout;
5536 mddev->delta_disks = -1;
5537 mddev->raid_disks -= 1;
5538 return setup_conf(mddev);
5539}
5540
5541
5542static int raid5_check_reshape(mddev_t *mddev)
5543{
5544 /* For a 2-drive array, the layout and chunk size can be changed
5545 * immediately as not restriping is needed.
5546 * For larger arrays we record the new value - after validation
5547 * to be used by a reshape pass.
5548 */
5549 raid5_conf_t *conf = mddev->private;
5550 int new_chunk = mddev->new_chunk_sectors;
5551
5552 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5553 return -EINVAL;
5554 if (new_chunk > 0) {
5555 if (!is_power_of_2(new_chunk))
5556 return -EINVAL;
5557 if (new_chunk < (PAGE_SIZE>>9))
5558 return -EINVAL;
5559 if (mddev->array_sectors & (new_chunk-1))
5560 /* not factor of array size */
5561 return -EINVAL;
5562 }
5563
5564 /* They look valid */
5565
5566 if (mddev->raid_disks == 2) {
5567 /* can make the change immediately */
5568 if (mddev->new_layout >= 0) {
5569 conf->algorithm = mddev->new_layout;
5570 mddev->layout = mddev->new_layout;
5571 }
5572 if (new_chunk > 0) {
5573 conf->chunk_sectors = new_chunk ;
5574 mddev->chunk_sectors = new_chunk;
5575 }
5576 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5577 md_wakeup_thread(mddev->thread);
5578 }
5579 return check_reshape(mddev);
5580}
5581
5582static int raid6_check_reshape(mddev_t *mddev)
5583{
5584 int new_chunk = mddev->new_chunk_sectors;
5585
5586 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5587 return -EINVAL;
5588 if (new_chunk > 0) {
5589 if (!is_power_of_2(new_chunk))
5590 return -EINVAL;
5591 if (new_chunk < (PAGE_SIZE >> 9))
5592 return -EINVAL;
5593 if (mddev->array_sectors & (new_chunk-1))
5594 /* not factor of array size */
5595 return -EINVAL;
5596 }
5597
5598 /* They look valid */
5599 return check_reshape(mddev);
5600}
5601
5602static void *raid5_takeover(mddev_t *mddev)
5603{
5604 /* raid5 can take over:
5605 * raid0 - if there is only one strip zone - make it a raid4 layout
5606 * raid1 - if there are two drives. We need to know the chunk size
5607 * raid4 - trivial - just use a raid4 layout.
5608 * raid6 - Providing it is a *_6 layout
5609 */
5610 if (mddev->level == 0)
5611 return raid45_takeover_raid0(mddev, 5);
5612 if (mddev->level == 1)
5613 return raid5_takeover_raid1(mddev);
5614 if (mddev->level == 4) {
5615 mddev->new_layout = ALGORITHM_PARITY_N;
5616 mddev->new_level = 5;
5617 return setup_conf(mddev);
5618 }
5619 if (mddev->level == 6)
5620 return raid5_takeover_raid6(mddev);
5621
5622 return ERR_PTR(-EINVAL);
5623}
5624
5625static void *raid4_takeover(mddev_t *mddev)
5626{
5627 /* raid4 can take over:
5628 * raid0 - if there is only one strip zone
5629 * raid5 - if layout is right
5630 */
5631 if (mddev->level == 0)
5632 return raid45_takeover_raid0(mddev, 4);
5633 if (mddev->level == 5 &&
5634 mddev->layout == ALGORITHM_PARITY_N) {
5635 mddev->new_layout = 0;
5636 mddev->new_level = 4;
5637 return setup_conf(mddev);
5638 }
5639 return ERR_PTR(-EINVAL);
5640}
5641
5642static struct mdk_personality raid5_personality;
5643
5644static void *raid6_takeover(mddev_t *mddev)
5645{
5646 /* Currently can only take over a raid5. We map the
5647 * personality to an equivalent raid6 personality
5648 * with the Q block at the end.
5649 */
5650 int new_layout;
5651
5652 if (mddev->pers != &raid5_personality)
5653 return ERR_PTR(-EINVAL);
5654 if (mddev->degraded > 1)
5655 return ERR_PTR(-EINVAL);
5656 if (mddev->raid_disks > 253)
5657 return ERR_PTR(-EINVAL);
5658 if (mddev->raid_disks < 3)
5659 return ERR_PTR(-EINVAL);
5660
5661 switch (mddev->layout) {
5662 case ALGORITHM_LEFT_ASYMMETRIC:
5663 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5664 break;
5665 case ALGORITHM_RIGHT_ASYMMETRIC:
5666 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5667 break;
5668 case ALGORITHM_LEFT_SYMMETRIC:
5669 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5670 break;
5671 case ALGORITHM_RIGHT_SYMMETRIC:
5672 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5673 break;
5674 case ALGORITHM_PARITY_0:
5675 new_layout = ALGORITHM_PARITY_0_6;
5676 break;
5677 case ALGORITHM_PARITY_N:
5678 new_layout = ALGORITHM_PARITY_N;
5679 break;
5680 default:
5681 return ERR_PTR(-EINVAL);
5682 }
5683 mddev->new_level = 6;
5684 mddev->new_layout = new_layout;
5685 mddev->delta_disks = 1;
5686 mddev->raid_disks += 1;
5687 return setup_conf(mddev);
5688}
5689
5690
5691static struct mdk_personality raid6_personality =
5692{
5693 .name = "raid6",
5694 .level = 6,
5695 .owner = THIS_MODULE,
5696 .make_request = make_request,
5697 .run = run,
5698 .stop = stop,
5699 .status = status,
5700 .error_handler = error,
5701 .hot_add_disk = raid5_add_disk,
5702 .hot_remove_disk= raid5_remove_disk,
5703 .spare_active = raid5_spare_active,
5704 .sync_request = sync_request,
5705 .resize = raid5_resize,
5706 .size = raid5_size,
5707 .check_reshape = raid6_check_reshape,
5708 .start_reshape = raid5_start_reshape,
5709 .finish_reshape = raid5_finish_reshape,
5710 .quiesce = raid5_quiesce,
5711 .takeover = raid6_takeover,
5712};
5713static struct mdk_personality raid5_personality =
5714{
5715 .name = "raid5",
5716 .level = 5,
5717 .owner = THIS_MODULE,
5718 .make_request = make_request,
5719 .run = run,
5720 .stop = stop,
5721 .status = status,
5722 .error_handler = error,
5723 .hot_add_disk = raid5_add_disk,
5724 .hot_remove_disk= raid5_remove_disk,
5725 .spare_active = raid5_spare_active,
5726 .sync_request = sync_request,
5727 .resize = raid5_resize,
5728 .size = raid5_size,
5729 .check_reshape = raid5_check_reshape,
5730 .start_reshape = raid5_start_reshape,
5731 .finish_reshape = raid5_finish_reshape,
5732 .quiesce = raid5_quiesce,
5733 .takeover = raid5_takeover,
5734};
5735
5736static struct mdk_personality raid4_personality =
5737{
5738 .name = "raid4",
5739 .level = 4,
5740 .owner = THIS_MODULE,
5741 .make_request = make_request,
5742 .run = run,
5743 .stop = stop,
5744 .status = status,
5745 .error_handler = error,
5746 .hot_add_disk = raid5_add_disk,
5747 .hot_remove_disk= raid5_remove_disk,
5748 .spare_active = raid5_spare_active,
5749 .sync_request = sync_request,
5750 .resize = raid5_resize,
5751 .size = raid5_size,
5752 .check_reshape = raid5_check_reshape,
5753 .start_reshape = raid5_start_reshape,
5754 .finish_reshape = raid5_finish_reshape,
5755 .quiesce = raid5_quiesce,
5756 .takeover = raid4_takeover,
5757};
5758
5759static int __init raid5_init(void)
5760{
5761 register_md_personality(&raid6_personality);
5762 register_md_personality(&raid5_personality);
5763 register_md_personality(&raid4_personality);
5764 return 0;
5765}
5766
5767static void raid5_exit(void)
5768{
5769 unregister_md_personality(&raid6_personality);
5770 unregister_md_personality(&raid5_personality);
5771 unregister_md_personality(&raid4_personality);
5772}
5773
5774module_init(raid5_init);
5775module_exit(raid5_exit);
5776MODULE_LICENSE("GPL");
5777MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5778MODULE_ALIAS("md-personality-4"); /* RAID5 */
5779MODULE_ALIAS("md-raid5");
5780MODULE_ALIAS("md-raid4");
5781MODULE_ALIAS("md-level-5");
5782MODULE_ALIAS("md-level-4");
5783MODULE_ALIAS("md-personality-8"); /* RAID6 */
5784MODULE_ALIAS("md-raid6");
5785MODULE_ALIAS("md-level-6");
5786
5787/* This used to be two separate modules, they were: */
5788MODULE_ALIAS("raid5");
5789MODULE_ALIAS("raid6");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
6 * Copyright (C) 2002, 2003 H. Peter Anvin
7 *
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
11 */
12
13/*
14 * BITMAP UNPLUGGING:
15 *
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
18 * explanation.
19 *
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
24 * new additions.
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27 * the number of the batch it will be in. This is seq_flush+1.
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
31 * batch.
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
35 * miss any bits.
36 */
37
38#include <linux/blkdev.h>
39#include <linux/kthread.h>
40#include <linux/raid/pq.h>
41#include <linux/async_tx.h>
42#include <linux/module.h>
43#include <linux/async.h>
44#include <linux/seq_file.h>
45#include <linux/cpu.h>
46#include <linux/slab.h>
47#include <linux/ratelimit.h>
48#include <linux/nodemask.h>
49
50#include <trace/events/block.h>
51#include <linux/list_sort.h>
52
53#include "md.h"
54#include "raid5.h"
55#include "raid0.h"
56#include "md-bitmap.h"
57#include "raid5-log.h"
58
59#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
60
61#define cpu_to_group(cpu) cpu_to_node(cpu)
62#define ANY_GROUP NUMA_NO_NODE
63
64static bool devices_handle_discard_safely = false;
65module_param(devices_handle_discard_safely, bool, 0644);
66MODULE_PARM_DESC(devices_handle_discard_safely,
67 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
68static struct workqueue_struct *raid5_wq;
69
70static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
71{
72 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
73 return &conf->stripe_hashtbl[hash];
74}
75
76static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
77{
78 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
79}
80
81static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
82{
83 spin_lock_irq(conf->hash_locks + hash);
84 spin_lock(&conf->device_lock);
85}
86
87static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
88{
89 spin_unlock(&conf->device_lock);
90 spin_unlock_irq(conf->hash_locks + hash);
91}
92
93static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
94{
95 int i;
96 spin_lock_irq(conf->hash_locks);
97 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
98 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
99 spin_lock(&conf->device_lock);
100}
101
102static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
103{
104 int i;
105 spin_unlock(&conf->device_lock);
106 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
107 spin_unlock(conf->hash_locks + i);
108 spin_unlock_irq(conf->hash_locks);
109}
110
111/* Find first data disk in a raid6 stripe */
112static inline int raid6_d0(struct stripe_head *sh)
113{
114 if (sh->ddf_layout)
115 /* ddf always start from first device */
116 return 0;
117 /* md starts just after Q block */
118 if (sh->qd_idx == sh->disks - 1)
119 return 0;
120 else
121 return sh->qd_idx + 1;
122}
123static inline int raid6_next_disk(int disk, int raid_disks)
124{
125 disk++;
126 return (disk < raid_disks) ? disk : 0;
127}
128
129/* When walking through the disks in a raid5, starting at raid6_d0,
130 * We need to map each disk to a 'slot', where the data disks are slot
131 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
132 * is raid_disks-1. This help does that mapping.
133 */
134static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
135 int *count, int syndrome_disks)
136{
137 int slot = *count;
138
139 if (sh->ddf_layout)
140 (*count)++;
141 if (idx == sh->pd_idx)
142 return syndrome_disks;
143 if (idx == sh->qd_idx)
144 return syndrome_disks + 1;
145 if (!sh->ddf_layout)
146 (*count)++;
147 return slot;
148}
149
150static void print_raid5_conf (struct r5conf *conf);
151
152static int stripe_operations_active(struct stripe_head *sh)
153{
154 return sh->check_state || sh->reconstruct_state ||
155 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
156 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
157}
158
159static bool stripe_is_lowprio(struct stripe_head *sh)
160{
161 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
162 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
163 !test_bit(STRIPE_R5C_CACHING, &sh->state);
164}
165
166static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
167{
168 struct r5conf *conf = sh->raid_conf;
169 struct r5worker_group *group;
170 int thread_cnt;
171 int i, cpu = sh->cpu;
172
173 if (!cpu_online(cpu)) {
174 cpu = cpumask_any(cpu_online_mask);
175 sh->cpu = cpu;
176 }
177
178 if (list_empty(&sh->lru)) {
179 struct r5worker_group *group;
180 group = conf->worker_groups + cpu_to_group(cpu);
181 if (stripe_is_lowprio(sh))
182 list_add_tail(&sh->lru, &group->loprio_list);
183 else
184 list_add_tail(&sh->lru, &group->handle_list);
185 group->stripes_cnt++;
186 sh->group = group;
187 }
188
189 if (conf->worker_cnt_per_group == 0) {
190 md_wakeup_thread(conf->mddev->thread);
191 return;
192 }
193
194 group = conf->worker_groups + cpu_to_group(sh->cpu);
195
196 group->workers[0].working = true;
197 /* at least one worker should run to avoid race */
198 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
199
200 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
201 /* wakeup more workers */
202 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
203 if (group->workers[i].working == false) {
204 group->workers[i].working = true;
205 queue_work_on(sh->cpu, raid5_wq,
206 &group->workers[i].work);
207 thread_cnt--;
208 }
209 }
210}
211
212static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
213 struct list_head *temp_inactive_list)
214{
215 int i;
216 int injournal = 0; /* number of date pages with R5_InJournal */
217
218 BUG_ON(!list_empty(&sh->lru));
219 BUG_ON(atomic_read(&conf->active_stripes)==0);
220
221 if (r5c_is_writeback(conf->log))
222 for (i = sh->disks; i--; )
223 if (test_bit(R5_InJournal, &sh->dev[i].flags))
224 injournal++;
225 /*
226 * In the following cases, the stripe cannot be released to cached
227 * lists. Therefore, we make the stripe write out and set
228 * STRIPE_HANDLE:
229 * 1. when quiesce in r5c write back;
230 * 2. when resync is requested fot the stripe.
231 */
232 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
233 (conf->quiesce && r5c_is_writeback(conf->log) &&
234 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
235 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
236 r5c_make_stripe_write_out(sh);
237 set_bit(STRIPE_HANDLE, &sh->state);
238 }
239
240 if (test_bit(STRIPE_HANDLE, &sh->state)) {
241 if (test_bit(STRIPE_DELAYED, &sh->state) &&
242 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
243 list_add_tail(&sh->lru, &conf->delayed_list);
244 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
245 sh->bm_seq - conf->seq_write > 0)
246 list_add_tail(&sh->lru, &conf->bitmap_list);
247 else {
248 clear_bit(STRIPE_DELAYED, &sh->state);
249 clear_bit(STRIPE_BIT_DELAY, &sh->state);
250 if (conf->worker_cnt_per_group == 0) {
251 if (stripe_is_lowprio(sh))
252 list_add_tail(&sh->lru,
253 &conf->loprio_list);
254 else
255 list_add_tail(&sh->lru,
256 &conf->handle_list);
257 } else {
258 raid5_wakeup_stripe_thread(sh);
259 return;
260 }
261 }
262 md_wakeup_thread(conf->mddev->thread);
263 } else {
264 BUG_ON(stripe_operations_active(sh));
265 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
266 if (atomic_dec_return(&conf->preread_active_stripes)
267 < IO_THRESHOLD)
268 md_wakeup_thread(conf->mddev->thread);
269 atomic_dec(&conf->active_stripes);
270 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
271 if (!r5c_is_writeback(conf->log))
272 list_add_tail(&sh->lru, temp_inactive_list);
273 else {
274 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
275 if (injournal == 0)
276 list_add_tail(&sh->lru, temp_inactive_list);
277 else if (injournal == conf->raid_disks - conf->max_degraded) {
278 /* full stripe */
279 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
280 atomic_inc(&conf->r5c_cached_full_stripes);
281 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
282 atomic_dec(&conf->r5c_cached_partial_stripes);
283 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
284 r5c_check_cached_full_stripe(conf);
285 } else
286 /*
287 * STRIPE_R5C_PARTIAL_STRIPE is set in
288 * r5c_try_caching_write(). No need to
289 * set it again.
290 */
291 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
292 }
293 }
294 }
295}
296
297static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
298 struct list_head *temp_inactive_list)
299{
300 if (atomic_dec_and_test(&sh->count))
301 do_release_stripe(conf, sh, temp_inactive_list);
302}
303
304/*
305 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
306 *
307 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
308 * given time. Adding stripes only takes device lock, while deleting stripes
309 * only takes hash lock.
310 */
311static void release_inactive_stripe_list(struct r5conf *conf,
312 struct list_head *temp_inactive_list,
313 int hash)
314{
315 int size;
316 bool do_wakeup = false;
317 unsigned long flags;
318
319 if (hash == NR_STRIPE_HASH_LOCKS) {
320 size = NR_STRIPE_HASH_LOCKS;
321 hash = NR_STRIPE_HASH_LOCKS - 1;
322 } else
323 size = 1;
324 while (size) {
325 struct list_head *list = &temp_inactive_list[size - 1];
326
327 /*
328 * We don't hold any lock here yet, raid5_get_active_stripe() might
329 * remove stripes from the list
330 */
331 if (!list_empty_careful(list)) {
332 spin_lock_irqsave(conf->hash_locks + hash, flags);
333 if (list_empty(conf->inactive_list + hash) &&
334 !list_empty(list))
335 atomic_dec(&conf->empty_inactive_list_nr);
336 list_splice_tail_init(list, conf->inactive_list + hash);
337 do_wakeup = true;
338 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
339 }
340 size--;
341 hash--;
342 }
343
344 if (do_wakeup) {
345 wake_up(&conf->wait_for_stripe);
346 if (atomic_read(&conf->active_stripes) == 0)
347 wake_up(&conf->wait_for_quiescent);
348 if (conf->retry_read_aligned)
349 md_wakeup_thread(conf->mddev->thread);
350 }
351}
352
353/* should hold conf->device_lock already */
354static int release_stripe_list(struct r5conf *conf,
355 struct list_head *temp_inactive_list)
356{
357 struct stripe_head *sh, *t;
358 int count = 0;
359 struct llist_node *head;
360
361 head = llist_del_all(&conf->released_stripes);
362 head = llist_reverse_order(head);
363 llist_for_each_entry_safe(sh, t, head, release_list) {
364 int hash;
365
366 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
367 smp_mb();
368 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
369 /*
370 * Don't worry the bit is set here, because if the bit is set
371 * again, the count is always > 1. This is true for
372 * STRIPE_ON_UNPLUG_LIST bit too.
373 */
374 hash = sh->hash_lock_index;
375 __release_stripe(conf, sh, &temp_inactive_list[hash]);
376 count++;
377 }
378
379 return count;
380}
381
382void raid5_release_stripe(struct stripe_head *sh)
383{
384 struct r5conf *conf = sh->raid_conf;
385 unsigned long flags;
386 struct list_head list;
387 int hash;
388 bool wakeup;
389
390 /* Avoid release_list until the last reference.
391 */
392 if (atomic_add_unless(&sh->count, -1, 1))
393 return;
394
395 if (unlikely(!conf->mddev->thread) ||
396 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
397 goto slow_path;
398 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
399 if (wakeup)
400 md_wakeup_thread(conf->mddev->thread);
401 return;
402slow_path:
403 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
404 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
405 INIT_LIST_HEAD(&list);
406 hash = sh->hash_lock_index;
407 do_release_stripe(conf, sh, &list);
408 spin_unlock_irqrestore(&conf->device_lock, flags);
409 release_inactive_stripe_list(conf, &list, hash);
410 }
411}
412
413static inline void remove_hash(struct stripe_head *sh)
414{
415 pr_debug("remove_hash(), stripe %llu\n",
416 (unsigned long long)sh->sector);
417
418 hlist_del_init(&sh->hash);
419}
420
421static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
422{
423 struct hlist_head *hp = stripe_hash(conf, sh->sector);
424
425 pr_debug("insert_hash(), stripe %llu\n",
426 (unsigned long long)sh->sector);
427
428 hlist_add_head(&sh->hash, hp);
429}
430
431/* find an idle stripe, make sure it is unhashed, and return it. */
432static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
433{
434 struct stripe_head *sh = NULL;
435 struct list_head *first;
436
437 if (list_empty(conf->inactive_list + hash))
438 goto out;
439 first = (conf->inactive_list + hash)->next;
440 sh = list_entry(first, struct stripe_head, lru);
441 list_del_init(first);
442 remove_hash(sh);
443 atomic_inc(&conf->active_stripes);
444 BUG_ON(hash != sh->hash_lock_index);
445 if (list_empty(conf->inactive_list + hash))
446 atomic_inc(&conf->empty_inactive_list_nr);
447out:
448 return sh;
449}
450
451#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
452static void free_stripe_pages(struct stripe_head *sh)
453{
454 int i;
455 struct page *p;
456
457 /* Have not allocate page pool */
458 if (!sh->pages)
459 return;
460
461 for (i = 0; i < sh->nr_pages; i++) {
462 p = sh->pages[i];
463 if (p)
464 put_page(p);
465 sh->pages[i] = NULL;
466 }
467}
468
469static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
470{
471 int i;
472 struct page *p;
473
474 for (i = 0; i < sh->nr_pages; i++) {
475 /* The page have allocated. */
476 if (sh->pages[i])
477 continue;
478
479 p = alloc_page(gfp);
480 if (!p) {
481 free_stripe_pages(sh);
482 return -ENOMEM;
483 }
484 sh->pages[i] = p;
485 }
486 return 0;
487}
488
489static int
490init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
491{
492 int nr_pages, cnt;
493
494 if (sh->pages)
495 return 0;
496
497 /* Each of the sh->dev[i] need one conf->stripe_size */
498 cnt = PAGE_SIZE / conf->stripe_size;
499 nr_pages = (disks + cnt - 1) / cnt;
500
501 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
502 if (!sh->pages)
503 return -ENOMEM;
504 sh->nr_pages = nr_pages;
505 sh->stripes_per_page = cnt;
506 return 0;
507}
508#endif
509
510static void shrink_buffers(struct stripe_head *sh)
511{
512 int i;
513 int num = sh->raid_conf->pool_size;
514
515#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
516 for (i = 0; i < num ; i++) {
517 struct page *p;
518
519 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
520 p = sh->dev[i].page;
521 if (!p)
522 continue;
523 sh->dev[i].page = NULL;
524 put_page(p);
525 }
526#else
527 for (i = 0; i < num; i++)
528 sh->dev[i].page = NULL;
529 free_stripe_pages(sh); /* Free pages */
530#endif
531}
532
533static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
534{
535 int i;
536 int num = sh->raid_conf->pool_size;
537
538#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
539 for (i = 0; i < num; i++) {
540 struct page *page;
541
542 if (!(page = alloc_page(gfp))) {
543 return 1;
544 }
545 sh->dev[i].page = page;
546 sh->dev[i].orig_page = page;
547 sh->dev[i].offset = 0;
548 }
549#else
550 if (alloc_stripe_pages(sh, gfp))
551 return -ENOMEM;
552
553 for (i = 0; i < num; i++) {
554 sh->dev[i].page = raid5_get_dev_page(sh, i);
555 sh->dev[i].orig_page = sh->dev[i].page;
556 sh->dev[i].offset = raid5_get_page_offset(sh, i);
557 }
558#endif
559 return 0;
560}
561
562static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
563 struct stripe_head *sh);
564
565static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
566{
567 struct r5conf *conf = sh->raid_conf;
568 int i, seq;
569
570 BUG_ON(atomic_read(&sh->count) != 0);
571 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
572 BUG_ON(stripe_operations_active(sh));
573 BUG_ON(sh->batch_head);
574
575 pr_debug("init_stripe called, stripe %llu\n",
576 (unsigned long long)sector);
577retry:
578 seq = read_seqcount_begin(&conf->gen_lock);
579 sh->generation = conf->generation - previous;
580 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
581 sh->sector = sector;
582 stripe_set_idx(sector, conf, previous, sh);
583 sh->state = 0;
584
585 for (i = sh->disks; i--; ) {
586 struct r5dev *dev = &sh->dev[i];
587
588 if (dev->toread || dev->read || dev->towrite || dev->written ||
589 test_bit(R5_LOCKED, &dev->flags)) {
590 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
591 (unsigned long long)sh->sector, i, dev->toread,
592 dev->read, dev->towrite, dev->written,
593 test_bit(R5_LOCKED, &dev->flags));
594 WARN_ON(1);
595 }
596 dev->flags = 0;
597 dev->sector = raid5_compute_blocknr(sh, i, previous);
598 }
599 if (read_seqcount_retry(&conf->gen_lock, seq))
600 goto retry;
601 sh->overwrite_disks = 0;
602 insert_hash(conf, sh);
603 sh->cpu = smp_processor_id();
604 set_bit(STRIPE_BATCH_READY, &sh->state);
605}
606
607static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
608 short generation)
609{
610 struct stripe_head *sh;
611
612 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
613 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
614 if (sh->sector == sector && sh->generation == generation)
615 return sh;
616 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
617 return NULL;
618}
619
620/*
621 * Need to check if array has failed when deciding whether to:
622 * - start an array
623 * - remove non-faulty devices
624 * - add a spare
625 * - allow a reshape
626 * This determination is simple when no reshape is happening.
627 * However if there is a reshape, we need to carefully check
628 * both the before and after sections.
629 * This is because some failed devices may only affect one
630 * of the two sections, and some non-in_sync devices may
631 * be insync in the section most affected by failed devices.
632 */
633int raid5_calc_degraded(struct r5conf *conf)
634{
635 int degraded, degraded2;
636 int i;
637
638 rcu_read_lock();
639 degraded = 0;
640 for (i = 0; i < conf->previous_raid_disks; i++) {
641 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
642 if (rdev && test_bit(Faulty, &rdev->flags))
643 rdev = rcu_dereference(conf->disks[i].replacement);
644 if (!rdev || test_bit(Faulty, &rdev->flags))
645 degraded++;
646 else if (test_bit(In_sync, &rdev->flags))
647 ;
648 else
649 /* not in-sync or faulty.
650 * If the reshape increases the number of devices,
651 * this is being recovered by the reshape, so
652 * this 'previous' section is not in_sync.
653 * If the number of devices is being reduced however,
654 * the device can only be part of the array if
655 * we are reverting a reshape, so this section will
656 * be in-sync.
657 */
658 if (conf->raid_disks >= conf->previous_raid_disks)
659 degraded++;
660 }
661 rcu_read_unlock();
662 if (conf->raid_disks == conf->previous_raid_disks)
663 return degraded;
664 rcu_read_lock();
665 degraded2 = 0;
666 for (i = 0; i < conf->raid_disks; i++) {
667 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
668 if (rdev && test_bit(Faulty, &rdev->flags))
669 rdev = rcu_dereference(conf->disks[i].replacement);
670 if (!rdev || test_bit(Faulty, &rdev->flags))
671 degraded2++;
672 else if (test_bit(In_sync, &rdev->flags))
673 ;
674 else
675 /* not in-sync or faulty.
676 * If reshape increases the number of devices, this
677 * section has already been recovered, else it
678 * almost certainly hasn't.
679 */
680 if (conf->raid_disks <= conf->previous_raid_disks)
681 degraded2++;
682 }
683 rcu_read_unlock();
684 if (degraded2 > degraded)
685 return degraded2;
686 return degraded;
687}
688
689static int has_failed(struct r5conf *conf)
690{
691 int degraded;
692
693 if (conf->mddev->reshape_position == MaxSector)
694 return conf->mddev->degraded > conf->max_degraded;
695
696 degraded = raid5_calc_degraded(conf);
697 if (degraded > conf->max_degraded)
698 return 1;
699 return 0;
700}
701
702struct stripe_head *
703raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
704 int previous, int noblock, int noquiesce)
705{
706 struct stripe_head *sh;
707 int hash = stripe_hash_locks_hash(conf, sector);
708 int inc_empty_inactive_list_flag;
709
710 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
711
712 spin_lock_irq(conf->hash_locks + hash);
713
714 do {
715 wait_event_lock_irq(conf->wait_for_quiescent,
716 conf->quiesce == 0 || noquiesce,
717 *(conf->hash_locks + hash));
718 sh = __find_stripe(conf, sector, conf->generation - previous);
719 if (!sh) {
720 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
721 sh = get_free_stripe(conf, hash);
722 if (!sh && !test_bit(R5_DID_ALLOC,
723 &conf->cache_state))
724 set_bit(R5_ALLOC_MORE,
725 &conf->cache_state);
726 }
727 if (noblock && sh == NULL)
728 break;
729
730 r5c_check_stripe_cache_usage(conf);
731 if (!sh) {
732 set_bit(R5_INACTIVE_BLOCKED,
733 &conf->cache_state);
734 r5l_wake_reclaim(conf->log, 0);
735 wait_event_lock_irq(
736 conf->wait_for_stripe,
737 !list_empty(conf->inactive_list + hash) &&
738 (atomic_read(&conf->active_stripes)
739 < (conf->max_nr_stripes * 3 / 4)
740 || !test_bit(R5_INACTIVE_BLOCKED,
741 &conf->cache_state)),
742 *(conf->hash_locks + hash));
743 clear_bit(R5_INACTIVE_BLOCKED,
744 &conf->cache_state);
745 } else {
746 init_stripe(sh, sector, previous);
747 atomic_inc(&sh->count);
748 }
749 } else if (!atomic_inc_not_zero(&sh->count)) {
750 spin_lock(&conf->device_lock);
751 if (!atomic_read(&sh->count)) {
752 if (!test_bit(STRIPE_HANDLE, &sh->state))
753 atomic_inc(&conf->active_stripes);
754 BUG_ON(list_empty(&sh->lru) &&
755 !test_bit(STRIPE_EXPANDING, &sh->state));
756 inc_empty_inactive_list_flag = 0;
757 if (!list_empty(conf->inactive_list + hash))
758 inc_empty_inactive_list_flag = 1;
759 list_del_init(&sh->lru);
760 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
761 atomic_inc(&conf->empty_inactive_list_nr);
762 if (sh->group) {
763 sh->group->stripes_cnt--;
764 sh->group = NULL;
765 }
766 }
767 atomic_inc(&sh->count);
768 spin_unlock(&conf->device_lock);
769 }
770 } while (sh == NULL);
771
772 spin_unlock_irq(conf->hash_locks + hash);
773 return sh;
774}
775
776static bool is_full_stripe_write(struct stripe_head *sh)
777{
778 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
779 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
780}
781
782static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
783 __acquires(&sh1->stripe_lock)
784 __acquires(&sh2->stripe_lock)
785{
786 if (sh1 > sh2) {
787 spin_lock_irq(&sh2->stripe_lock);
788 spin_lock_nested(&sh1->stripe_lock, 1);
789 } else {
790 spin_lock_irq(&sh1->stripe_lock);
791 spin_lock_nested(&sh2->stripe_lock, 1);
792 }
793}
794
795static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
796 __releases(&sh1->stripe_lock)
797 __releases(&sh2->stripe_lock)
798{
799 spin_unlock(&sh1->stripe_lock);
800 spin_unlock_irq(&sh2->stripe_lock);
801}
802
803/* Only freshly new full stripe normal write stripe can be added to a batch list */
804static bool stripe_can_batch(struct stripe_head *sh)
805{
806 struct r5conf *conf = sh->raid_conf;
807
808 if (raid5_has_log(conf) || raid5_has_ppl(conf))
809 return false;
810 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
811 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
812 is_full_stripe_write(sh);
813}
814
815/* we only do back search */
816static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
817{
818 struct stripe_head *head;
819 sector_t head_sector, tmp_sec;
820 int hash;
821 int dd_idx;
822 int inc_empty_inactive_list_flag;
823
824 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
825 tmp_sec = sh->sector;
826 if (!sector_div(tmp_sec, conf->chunk_sectors))
827 return;
828 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
829
830 hash = stripe_hash_locks_hash(conf, head_sector);
831 spin_lock_irq(conf->hash_locks + hash);
832 head = __find_stripe(conf, head_sector, conf->generation);
833 if (head && !atomic_inc_not_zero(&head->count)) {
834 spin_lock(&conf->device_lock);
835 if (!atomic_read(&head->count)) {
836 if (!test_bit(STRIPE_HANDLE, &head->state))
837 atomic_inc(&conf->active_stripes);
838 BUG_ON(list_empty(&head->lru) &&
839 !test_bit(STRIPE_EXPANDING, &head->state));
840 inc_empty_inactive_list_flag = 0;
841 if (!list_empty(conf->inactive_list + hash))
842 inc_empty_inactive_list_flag = 1;
843 list_del_init(&head->lru);
844 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
845 atomic_inc(&conf->empty_inactive_list_nr);
846 if (head->group) {
847 head->group->stripes_cnt--;
848 head->group = NULL;
849 }
850 }
851 atomic_inc(&head->count);
852 spin_unlock(&conf->device_lock);
853 }
854 spin_unlock_irq(conf->hash_locks + hash);
855
856 if (!head)
857 return;
858 if (!stripe_can_batch(head))
859 goto out;
860
861 lock_two_stripes(head, sh);
862 /* clear_batch_ready clear the flag */
863 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
864 goto unlock_out;
865
866 if (sh->batch_head)
867 goto unlock_out;
868
869 dd_idx = 0;
870 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
871 dd_idx++;
872 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
873 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
874 goto unlock_out;
875
876 if (head->batch_head) {
877 spin_lock(&head->batch_head->batch_lock);
878 /* This batch list is already running */
879 if (!stripe_can_batch(head)) {
880 spin_unlock(&head->batch_head->batch_lock);
881 goto unlock_out;
882 }
883 /*
884 * We must assign batch_head of this stripe within the
885 * batch_lock, otherwise clear_batch_ready of batch head
886 * stripe could clear BATCH_READY bit of this stripe and
887 * this stripe->batch_head doesn't get assigned, which
888 * could confuse clear_batch_ready for this stripe
889 */
890 sh->batch_head = head->batch_head;
891
892 /*
893 * at this point, head's BATCH_READY could be cleared, but we
894 * can still add the stripe to batch list
895 */
896 list_add(&sh->batch_list, &head->batch_list);
897 spin_unlock(&head->batch_head->batch_lock);
898 } else {
899 head->batch_head = head;
900 sh->batch_head = head->batch_head;
901 spin_lock(&head->batch_lock);
902 list_add_tail(&sh->batch_list, &head->batch_list);
903 spin_unlock(&head->batch_lock);
904 }
905
906 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
907 if (atomic_dec_return(&conf->preread_active_stripes)
908 < IO_THRESHOLD)
909 md_wakeup_thread(conf->mddev->thread);
910
911 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
912 int seq = sh->bm_seq;
913 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
914 sh->batch_head->bm_seq > seq)
915 seq = sh->batch_head->bm_seq;
916 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
917 sh->batch_head->bm_seq = seq;
918 }
919
920 atomic_inc(&sh->count);
921unlock_out:
922 unlock_two_stripes(head, sh);
923out:
924 raid5_release_stripe(head);
925}
926
927/* Determine if 'data_offset' or 'new_data_offset' should be used
928 * in this stripe_head.
929 */
930static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
931{
932 sector_t progress = conf->reshape_progress;
933 /* Need a memory barrier to make sure we see the value
934 * of conf->generation, or ->data_offset that was set before
935 * reshape_progress was updated.
936 */
937 smp_rmb();
938 if (progress == MaxSector)
939 return 0;
940 if (sh->generation == conf->generation - 1)
941 return 0;
942 /* We are in a reshape, and this is a new-generation stripe,
943 * so use new_data_offset.
944 */
945 return 1;
946}
947
948static void dispatch_bio_list(struct bio_list *tmp)
949{
950 struct bio *bio;
951
952 while ((bio = bio_list_pop(tmp)))
953 submit_bio_noacct(bio);
954}
955
956static int cmp_stripe(void *priv, const struct list_head *a,
957 const struct list_head *b)
958{
959 const struct r5pending_data *da = list_entry(a,
960 struct r5pending_data, sibling);
961 const struct r5pending_data *db = list_entry(b,
962 struct r5pending_data, sibling);
963 if (da->sector > db->sector)
964 return 1;
965 if (da->sector < db->sector)
966 return -1;
967 return 0;
968}
969
970static void dispatch_defer_bios(struct r5conf *conf, int target,
971 struct bio_list *list)
972{
973 struct r5pending_data *data;
974 struct list_head *first, *next = NULL;
975 int cnt = 0;
976
977 if (conf->pending_data_cnt == 0)
978 return;
979
980 list_sort(NULL, &conf->pending_list, cmp_stripe);
981
982 first = conf->pending_list.next;
983
984 /* temporarily move the head */
985 if (conf->next_pending_data)
986 list_move_tail(&conf->pending_list,
987 &conf->next_pending_data->sibling);
988
989 while (!list_empty(&conf->pending_list)) {
990 data = list_first_entry(&conf->pending_list,
991 struct r5pending_data, sibling);
992 if (&data->sibling == first)
993 first = data->sibling.next;
994 next = data->sibling.next;
995
996 bio_list_merge(list, &data->bios);
997 list_move(&data->sibling, &conf->free_list);
998 cnt++;
999 if (cnt >= target)
1000 break;
1001 }
1002 conf->pending_data_cnt -= cnt;
1003 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1004
1005 if (next != &conf->pending_list)
1006 conf->next_pending_data = list_entry(next,
1007 struct r5pending_data, sibling);
1008 else
1009 conf->next_pending_data = NULL;
1010 /* list isn't empty */
1011 if (first != &conf->pending_list)
1012 list_move_tail(&conf->pending_list, first);
1013}
1014
1015static void flush_deferred_bios(struct r5conf *conf)
1016{
1017 struct bio_list tmp = BIO_EMPTY_LIST;
1018
1019 if (conf->pending_data_cnt == 0)
1020 return;
1021
1022 spin_lock(&conf->pending_bios_lock);
1023 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1024 BUG_ON(conf->pending_data_cnt != 0);
1025 spin_unlock(&conf->pending_bios_lock);
1026
1027 dispatch_bio_list(&tmp);
1028}
1029
1030static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1031 struct bio_list *bios)
1032{
1033 struct bio_list tmp = BIO_EMPTY_LIST;
1034 struct r5pending_data *ent;
1035
1036 spin_lock(&conf->pending_bios_lock);
1037 ent = list_first_entry(&conf->free_list, struct r5pending_data,
1038 sibling);
1039 list_move_tail(&ent->sibling, &conf->pending_list);
1040 ent->sector = sector;
1041 bio_list_init(&ent->bios);
1042 bio_list_merge(&ent->bios, bios);
1043 conf->pending_data_cnt++;
1044 if (conf->pending_data_cnt >= PENDING_IO_MAX)
1045 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1046
1047 spin_unlock(&conf->pending_bios_lock);
1048
1049 dispatch_bio_list(&tmp);
1050}
1051
1052static void
1053raid5_end_read_request(struct bio *bi);
1054static void
1055raid5_end_write_request(struct bio *bi);
1056
1057static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1058{
1059 struct r5conf *conf = sh->raid_conf;
1060 int i, disks = sh->disks;
1061 struct stripe_head *head_sh = sh;
1062 struct bio_list pending_bios = BIO_EMPTY_LIST;
1063 bool should_defer;
1064
1065 might_sleep();
1066
1067 if (log_stripe(sh, s) == 0)
1068 return;
1069
1070 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1071
1072 for (i = disks; i--; ) {
1073 int op, op_flags = 0;
1074 int replace_only = 0;
1075 struct bio *bi, *rbi;
1076 struct md_rdev *rdev, *rrdev = NULL;
1077
1078 sh = head_sh;
1079 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1080 op = REQ_OP_WRITE;
1081 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1082 op_flags = REQ_FUA;
1083 if (test_bit(R5_Discard, &sh->dev[i].flags))
1084 op = REQ_OP_DISCARD;
1085 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1086 op = REQ_OP_READ;
1087 else if (test_and_clear_bit(R5_WantReplace,
1088 &sh->dev[i].flags)) {
1089 op = REQ_OP_WRITE;
1090 replace_only = 1;
1091 } else
1092 continue;
1093 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1094 op_flags |= REQ_SYNC;
1095
1096again:
1097 bi = &sh->dev[i].req;
1098 rbi = &sh->dev[i].rreq; /* For writing to replacement */
1099
1100 rcu_read_lock();
1101 rrdev = rcu_dereference(conf->disks[i].replacement);
1102 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1103 rdev = rcu_dereference(conf->disks[i].rdev);
1104 if (!rdev) {
1105 rdev = rrdev;
1106 rrdev = NULL;
1107 }
1108 if (op_is_write(op)) {
1109 if (replace_only)
1110 rdev = NULL;
1111 if (rdev == rrdev)
1112 /* We raced and saw duplicates */
1113 rrdev = NULL;
1114 } else {
1115 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1116 rdev = rrdev;
1117 rrdev = NULL;
1118 }
1119
1120 if (rdev && test_bit(Faulty, &rdev->flags))
1121 rdev = NULL;
1122 if (rdev)
1123 atomic_inc(&rdev->nr_pending);
1124 if (rrdev && test_bit(Faulty, &rrdev->flags))
1125 rrdev = NULL;
1126 if (rrdev)
1127 atomic_inc(&rrdev->nr_pending);
1128 rcu_read_unlock();
1129
1130 /* We have already checked bad blocks for reads. Now
1131 * need to check for writes. We never accept write errors
1132 * on the replacement, so we don't to check rrdev.
1133 */
1134 while (op_is_write(op) && rdev &&
1135 test_bit(WriteErrorSeen, &rdev->flags)) {
1136 sector_t first_bad;
1137 int bad_sectors;
1138 int bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
1139 &first_bad, &bad_sectors);
1140 if (!bad)
1141 break;
1142
1143 if (bad < 0) {
1144 set_bit(BlockedBadBlocks, &rdev->flags);
1145 if (!conf->mddev->external &&
1146 conf->mddev->sb_flags) {
1147 /* It is very unlikely, but we might
1148 * still need to write out the
1149 * bad block log - better give it
1150 * a chance*/
1151 md_check_recovery(conf->mddev);
1152 }
1153 /*
1154 * Because md_wait_for_blocked_rdev
1155 * will dec nr_pending, we must
1156 * increment it first.
1157 */
1158 atomic_inc(&rdev->nr_pending);
1159 md_wait_for_blocked_rdev(rdev, conf->mddev);
1160 } else {
1161 /* Acknowledged bad block - skip the write */
1162 rdev_dec_pending(rdev, conf->mddev);
1163 rdev = NULL;
1164 }
1165 }
1166
1167 if (rdev) {
1168 if (s->syncing || s->expanding || s->expanded
1169 || s->replacing)
1170 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1171
1172 set_bit(STRIPE_IO_STARTED, &sh->state);
1173
1174 bio_set_dev(bi, rdev->bdev);
1175 bio_set_op_attrs(bi, op, op_flags);
1176 bi->bi_end_io = op_is_write(op)
1177 ? raid5_end_write_request
1178 : raid5_end_read_request;
1179 bi->bi_private = sh;
1180
1181 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1182 __func__, (unsigned long long)sh->sector,
1183 bi->bi_opf, i);
1184 atomic_inc(&sh->count);
1185 if (sh != head_sh)
1186 atomic_inc(&head_sh->count);
1187 if (use_new_offset(conf, sh))
1188 bi->bi_iter.bi_sector = (sh->sector
1189 + rdev->new_data_offset);
1190 else
1191 bi->bi_iter.bi_sector = (sh->sector
1192 + rdev->data_offset);
1193 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1194 bi->bi_opf |= REQ_NOMERGE;
1195
1196 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1197 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1198
1199 if (!op_is_write(op) &&
1200 test_bit(R5_InJournal, &sh->dev[i].flags))
1201 /*
1202 * issuing read for a page in journal, this
1203 * must be preparing for prexor in rmw; read
1204 * the data into orig_page
1205 */
1206 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1207 else
1208 sh->dev[i].vec.bv_page = sh->dev[i].page;
1209 bi->bi_vcnt = 1;
1210 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1211 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1212 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1213 bi->bi_write_hint = sh->dev[i].write_hint;
1214 if (!rrdev)
1215 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1216 /*
1217 * If this is discard request, set bi_vcnt 0. We don't
1218 * want to confuse SCSI because SCSI will replace payload
1219 */
1220 if (op == REQ_OP_DISCARD)
1221 bi->bi_vcnt = 0;
1222 if (rrdev)
1223 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1224
1225 if (conf->mddev->gendisk)
1226 trace_block_bio_remap(bi,
1227 disk_devt(conf->mddev->gendisk),
1228 sh->dev[i].sector);
1229 if (should_defer && op_is_write(op))
1230 bio_list_add(&pending_bios, bi);
1231 else
1232 submit_bio_noacct(bi);
1233 }
1234 if (rrdev) {
1235 if (s->syncing || s->expanding || s->expanded
1236 || s->replacing)
1237 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1238
1239 set_bit(STRIPE_IO_STARTED, &sh->state);
1240
1241 bio_set_dev(rbi, rrdev->bdev);
1242 bio_set_op_attrs(rbi, op, op_flags);
1243 BUG_ON(!op_is_write(op));
1244 rbi->bi_end_io = raid5_end_write_request;
1245 rbi->bi_private = sh;
1246
1247 pr_debug("%s: for %llu schedule op %d on "
1248 "replacement disc %d\n",
1249 __func__, (unsigned long long)sh->sector,
1250 rbi->bi_opf, i);
1251 atomic_inc(&sh->count);
1252 if (sh != head_sh)
1253 atomic_inc(&head_sh->count);
1254 if (use_new_offset(conf, sh))
1255 rbi->bi_iter.bi_sector = (sh->sector
1256 + rrdev->new_data_offset);
1257 else
1258 rbi->bi_iter.bi_sector = (sh->sector
1259 + rrdev->data_offset);
1260 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1261 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1262 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1263 rbi->bi_vcnt = 1;
1264 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1265 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1266 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1267 rbi->bi_write_hint = sh->dev[i].write_hint;
1268 sh->dev[i].write_hint = RWH_WRITE_LIFE_NOT_SET;
1269 /*
1270 * If this is discard request, set bi_vcnt 0. We don't
1271 * want to confuse SCSI because SCSI will replace payload
1272 */
1273 if (op == REQ_OP_DISCARD)
1274 rbi->bi_vcnt = 0;
1275 if (conf->mddev->gendisk)
1276 trace_block_bio_remap(rbi,
1277 disk_devt(conf->mddev->gendisk),
1278 sh->dev[i].sector);
1279 if (should_defer && op_is_write(op))
1280 bio_list_add(&pending_bios, rbi);
1281 else
1282 submit_bio_noacct(rbi);
1283 }
1284 if (!rdev && !rrdev) {
1285 if (op_is_write(op))
1286 set_bit(STRIPE_DEGRADED, &sh->state);
1287 pr_debug("skip op %d on disc %d for sector %llu\n",
1288 bi->bi_opf, i, (unsigned long long)sh->sector);
1289 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1290 set_bit(STRIPE_HANDLE, &sh->state);
1291 }
1292
1293 if (!head_sh->batch_head)
1294 continue;
1295 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1296 batch_list);
1297 if (sh != head_sh)
1298 goto again;
1299 }
1300
1301 if (should_defer && !bio_list_empty(&pending_bios))
1302 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1303}
1304
1305static struct dma_async_tx_descriptor *
1306async_copy_data(int frombio, struct bio *bio, struct page **page,
1307 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1308 struct stripe_head *sh, int no_skipcopy)
1309{
1310 struct bio_vec bvl;
1311 struct bvec_iter iter;
1312 struct page *bio_page;
1313 int page_offset;
1314 struct async_submit_ctl submit;
1315 enum async_tx_flags flags = 0;
1316 struct r5conf *conf = sh->raid_conf;
1317
1318 if (bio->bi_iter.bi_sector >= sector)
1319 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1320 else
1321 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1322
1323 if (frombio)
1324 flags |= ASYNC_TX_FENCE;
1325 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1326
1327 bio_for_each_segment(bvl, bio, iter) {
1328 int len = bvl.bv_len;
1329 int clen;
1330 int b_offset = 0;
1331
1332 if (page_offset < 0) {
1333 b_offset = -page_offset;
1334 page_offset += b_offset;
1335 len -= b_offset;
1336 }
1337
1338 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1339 clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1340 else
1341 clen = len;
1342
1343 if (clen > 0) {
1344 b_offset += bvl.bv_offset;
1345 bio_page = bvl.bv_page;
1346 if (frombio) {
1347 if (conf->skip_copy &&
1348 b_offset == 0 && page_offset == 0 &&
1349 clen == RAID5_STRIPE_SIZE(conf) &&
1350 !no_skipcopy)
1351 *page = bio_page;
1352 else
1353 tx = async_memcpy(*page, bio_page, page_offset + poff,
1354 b_offset, clen, &submit);
1355 } else
1356 tx = async_memcpy(bio_page, *page, b_offset,
1357 page_offset + poff, clen, &submit);
1358 }
1359 /* chain the operations */
1360 submit.depend_tx = tx;
1361
1362 if (clen < len) /* hit end of page */
1363 break;
1364 page_offset += len;
1365 }
1366
1367 return tx;
1368}
1369
1370static void ops_complete_biofill(void *stripe_head_ref)
1371{
1372 struct stripe_head *sh = stripe_head_ref;
1373 int i;
1374 struct r5conf *conf = sh->raid_conf;
1375
1376 pr_debug("%s: stripe %llu\n", __func__,
1377 (unsigned long long)sh->sector);
1378
1379 /* clear completed biofills */
1380 for (i = sh->disks; i--; ) {
1381 struct r5dev *dev = &sh->dev[i];
1382
1383 /* acknowledge completion of a biofill operation */
1384 /* and check if we need to reply to a read request,
1385 * new R5_Wantfill requests are held off until
1386 * !STRIPE_BIOFILL_RUN
1387 */
1388 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1389 struct bio *rbi, *rbi2;
1390
1391 BUG_ON(!dev->read);
1392 rbi = dev->read;
1393 dev->read = NULL;
1394 while (rbi && rbi->bi_iter.bi_sector <
1395 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1396 rbi2 = r5_next_bio(conf, rbi, dev->sector);
1397 bio_endio(rbi);
1398 rbi = rbi2;
1399 }
1400 }
1401 }
1402 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1403
1404 set_bit(STRIPE_HANDLE, &sh->state);
1405 raid5_release_stripe(sh);
1406}
1407
1408static void ops_run_biofill(struct stripe_head *sh)
1409{
1410 struct dma_async_tx_descriptor *tx = NULL;
1411 struct async_submit_ctl submit;
1412 int i;
1413 struct r5conf *conf = sh->raid_conf;
1414
1415 BUG_ON(sh->batch_head);
1416 pr_debug("%s: stripe %llu\n", __func__,
1417 (unsigned long long)sh->sector);
1418
1419 for (i = sh->disks; i--; ) {
1420 struct r5dev *dev = &sh->dev[i];
1421 if (test_bit(R5_Wantfill, &dev->flags)) {
1422 struct bio *rbi;
1423 spin_lock_irq(&sh->stripe_lock);
1424 dev->read = rbi = dev->toread;
1425 dev->toread = NULL;
1426 spin_unlock_irq(&sh->stripe_lock);
1427 while (rbi && rbi->bi_iter.bi_sector <
1428 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1429 tx = async_copy_data(0, rbi, &dev->page,
1430 dev->offset,
1431 dev->sector, tx, sh, 0);
1432 rbi = r5_next_bio(conf, rbi, dev->sector);
1433 }
1434 }
1435 }
1436
1437 atomic_inc(&sh->count);
1438 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1439 async_trigger_callback(&submit);
1440}
1441
1442static void mark_target_uptodate(struct stripe_head *sh, int target)
1443{
1444 struct r5dev *tgt;
1445
1446 if (target < 0)
1447 return;
1448
1449 tgt = &sh->dev[target];
1450 set_bit(R5_UPTODATE, &tgt->flags);
1451 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1452 clear_bit(R5_Wantcompute, &tgt->flags);
1453}
1454
1455static void ops_complete_compute(void *stripe_head_ref)
1456{
1457 struct stripe_head *sh = stripe_head_ref;
1458
1459 pr_debug("%s: stripe %llu\n", __func__,
1460 (unsigned long long)sh->sector);
1461
1462 /* mark the computed target(s) as uptodate */
1463 mark_target_uptodate(sh, sh->ops.target);
1464 mark_target_uptodate(sh, sh->ops.target2);
1465
1466 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1467 if (sh->check_state == check_state_compute_run)
1468 sh->check_state = check_state_compute_result;
1469 set_bit(STRIPE_HANDLE, &sh->state);
1470 raid5_release_stripe(sh);
1471}
1472
1473/* return a pointer to the address conversion region of the scribble buffer */
1474static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1475{
1476 return percpu->scribble + i * percpu->scribble_obj_size;
1477}
1478
1479/* return a pointer to the address conversion region of the scribble buffer */
1480static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1481 struct raid5_percpu *percpu, int i)
1482{
1483 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1484}
1485
1486/*
1487 * Return a pointer to record offset address.
1488 */
1489static unsigned int *
1490to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1491{
1492 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1493}
1494
1495static struct dma_async_tx_descriptor *
1496ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1497{
1498 int disks = sh->disks;
1499 struct page **xor_srcs = to_addr_page(percpu, 0);
1500 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1501 int target = sh->ops.target;
1502 struct r5dev *tgt = &sh->dev[target];
1503 struct page *xor_dest = tgt->page;
1504 unsigned int off_dest = tgt->offset;
1505 int count = 0;
1506 struct dma_async_tx_descriptor *tx;
1507 struct async_submit_ctl submit;
1508 int i;
1509
1510 BUG_ON(sh->batch_head);
1511
1512 pr_debug("%s: stripe %llu block: %d\n",
1513 __func__, (unsigned long long)sh->sector, target);
1514 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1515
1516 for (i = disks; i--; ) {
1517 if (i != target) {
1518 off_srcs[count] = sh->dev[i].offset;
1519 xor_srcs[count++] = sh->dev[i].page;
1520 }
1521 }
1522
1523 atomic_inc(&sh->count);
1524
1525 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1526 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1527 if (unlikely(count == 1))
1528 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1529 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1530 else
1531 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1532 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1533
1534 return tx;
1535}
1536
1537/* set_syndrome_sources - populate source buffers for gen_syndrome
1538 * @srcs - (struct page *) array of size sh->disks
1539 * @offs - (unsigned int) array of offset for each page
1540 * @sh - stripe_head to parse
1541 *
1542 * Populates srcs in proper layout order for the stripe and returns the
1543 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1544 * destination buffer is recorded in srcs[count] and the Q destination
1545 * is recorded in srcs[count+1]].
1546 */
1547static int set_syndrome_sources(struct page **srcs,
1548 unsigned int *offs,
1549 struct stripe_head *sh,
1550 int srctype)
1551{
1552 int disks = sh->disks;
1553 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1554 int d0_idx = raid6_d0(sh);
1555 int count;
1556 int i;
1557
1558 for (i = 0; i < disks; i++)
1559 srcs[i] = NULL;
1560
1561 count = 0;
1562 i = d0_idx;
1563 do {
1564 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1565 struct r5dev *dev = &sh->dev[i];
1566
1567 if (i == sh->qd_idx || i == sh->pd_idx ||
1568 (srctype == SYNDROME_SRC_ALL) ||
1569 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1570 (test_bit(R5_Wantdrain, &dev->flags) ||
1571 test_bit(R5_InJournal, &dev->flags))) ||
1572 (srctype == SYNDROME_SRC_WRITTEN &&
1573 (dev->written ||
1574 test_bit(R5_InJournal, &dev->flags)))) {
1575 if (test_bit(R5_InJournal, &dev->flags))
1576 srcs[slot] = sh->dev[i].orig_page;
1577 else
1578 srcs[slot] = sh->dev[i].page;
1579 /*
1580 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1581 * not shared page. In that case, dev[i].offset
1582 * is 0.
1583 */
1584 offs[slot] = sh->dev[i].offset;
1585 }
1586 i = raid6_next_disk(i, disks);
1587 } while (i != d0_idx);
1588
1589 return syndrome_disks;
1590}
1591
1592static struct dma_async_tx_descriptor *
1593ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1594{
1595 int disks = sh->disks;
1596 struct page **blocks = to_addr_page(percpu, 0);
1597 unsigned int *offs = to_addr_offs(sh, percpu);
1598 int target;
1599 int qd_idx = sh->qd_idx;
1600 struct dma_async_tx_descriptor *tx;
1601 struct async_submit_ctl submit;
1602 struct r5dev *tgt;
1603 struct page *dest;
1604 unsigned int dest_off;
1605 int i;
1606 int count;
1607
1608 BUG_ON(sh->batch_head);
1609 if (sh->ops.target < 0)
1610 target = sh->ops.target2;
1611 else if (sh->ops.target2 < 0)
1612 target = sh->ops.target;
1613 else
1614 /* we should only have one valid target */
1615 BUG();
1616 BUG_ON(target < 0);
1617 pr_debug("%s: stripe %llu block: %d\n",
1618 __func__, (unsigned long long)sh->sector, target);
1619
1620 tgt = &sh->dev[target];
1621 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1622 dest = tgt->page;
1623 dest_off = tgt->offset;
1624
1625 atomic_inc(&sh->count);
1626
1627 if (target == qd_idx) {
1628 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1629 blocks[count] = NULL; /* regenerating p is not necessary */
1630 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1631 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1632 ops_complete_compute, sh,
1633 to_addr_conv(sh, percpu, 0));
1634 tx = async_gen_syndrome(blocks, offs, count+2,
1635 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1636 } else {
1637 /* Compute any data- or p-drive using XOR */
1638 count = 0;
1639 for (i = disks; i-- ; ) {
1640 if (i == target || i == qd_idx)
1641 continue;
1642 offs[count] = sh->dev[i].offset;
1643 blocks[count++] = sh->dev[i].page;
1644 }
1645
1646 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1647 NULL, ops_complete_compute, sh,
1648 to_addr_conv(sh, percpu, 0));
1649 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1650 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1651 }
1652
1653 return tx;
1654}
1655
1656static struct dma_async_tx_descriptor *
1657ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1658{
1659 int i, count, disks = sh->disks;
1660 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1661 int d0_idx = raid6_d0(sh);
1662 int faila = -1, failb = -1;
1663 int target = sh->ops.target;
1664 int target2 = sh->ops.target2;
1665 struct r5dev *tgt = &sh->dev[target];
1666 struct r5dev *tgt2 = &sh->dev[target2];
1667 struct dma_async_tx_descriptor *tx;
1668 struct page **blocks = to_addr_page(percpu, 0);
1669 unsigned int *offs = to_addr_offs(sh, percpu);
1670 struct async_submit_ctl submit;
1671
1672 BUG_ON(sh->batch_head);
1673 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1674 __func__, (unsigned long long)sh->sector, target, target2);
1675 BUG_ON(target < 0 || target2 < 0);
1676 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1677 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1678
1679 /* we need to open-code set_syndrome_sources to handle the
1680 * slot number conversion for 'faila' and 'failb'
1681 */
1682 for (i = 0; i < disks ; i++) {
1683 offs[i] = 0;
1684 blocks[i] = NULL;
1685 }
1686 count = 0;
1687 i = d0_idx;
1688 do {
1689 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1690
1691 offs[slot] = sh->dev[i].offset;
1692 blocks[slot] = sh->dev[i].page;
1693
1694 if (i == target)
1695 faila = slot;
1696 if (i == target2)
1697 failb = slot;
1698 i = raid6_next_disk(i, disks);
1699 } while (i != d0_idx);
1700
1701 BUG_ON(faila == failb);
1702 if (failb < faila)
1703 swap(faila, failb);
1704 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1705 __func__, (unsigned long long)sh->sector, faila, failb);
1706
1707 atomic_inc(&sh->count);
1708
1709 if (failb == syndrome_disks+1) {
1710 /* Q disk is one of the missing disks */
1711 if (faila == syndrome_disks) {
1712 /* Missing P+Q, just recompute */
1713 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1714 ops_complete_compute, sh,
1715 to_addr_conv(sh, percpu, 0));
1716 return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1717 RAID5_STRIPE_SIZE(sh->raid_conf),
1718 &submit);
1719 } else {
1720 struct page *dest;
1721 unsigned int dest_off;
1722 int data_target;
1723 int qd_idx = sh->qd_idx;
1724
1725 /* Missing D+Q: recompute D from P, then recompute Q */
1726 if (target == qd_idx)
1727 data_target = target2;
1728 else
1729 data_target = target;
1730
1731 count = 0;
1732 for (i = disks; i-- ; ) {
1733 if (i == data_target || i == qd_idx)
1734 continue;
1735 offs[count] = sh->dev[i].offset;
1736 blocks[count++] = sh->dev[i].page;
1737 }
1738 dest = sh->dev[data_target].page;
1739 dest_off = sh->dev[data_target].offset;
1740 init_async_submit(&submit,
1741 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1742 NULL, NULL, NULL,
1743 to_addr_conv(sh, percpu, 0));
1744 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1745 RAID5_STRIPE_SIZE(sh->raid_conf),
1746 &submit);
1747
1748 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1749 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1750 ops_complete_compute, sh,
1751 to_addr_conv(sh, percpu, 0));
1752 return async_gen_syndrome(blocks, offs, count+2,
1753 RAID5_STRIPE_SIZE(sh->raid_conf),
1754 &submit);
1755 }
1756 } else {
1757 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1758 ops_complete_compute, sh,
1759 to_addr_conv(sh, percpu, 0));
1760 if (failb == syndrome_disks) {
1761 /* We're missing D+P. */
1762 return async_raid6_datap_recov(syndrome_disks+2,
1763 RAID5_STRIPE_SIZE(sh->raid_conf),
1764 faila,
1765 blocks, offs, &submit);
1766 } else {
1767 /* We're missing D+D. */
1768 return async_raid6_2data_recov(syndrome_disks+2,
1769 RAID5_STRIPE_SIZE(sh->raid_conf),
1770 faila, failb,
1771 blocks, offs, &submit);
1772 }
1773 }
1774}
1775
1776static void ops_complete_prexor(void *stripe_head_ref)
1777{
1778 struct stripe_head *sh = stripe_head_ref;
1779
1780 pr_debug("%s: stripe %llu\n", __func__,
1781 (unsigned long long)sh->sector);
1782
1783 if (r5c_is_writeback(sh->raid_conf->log))
1784 /*
1785 * raid5-cache write back uses orig_page during prexor.
1786 * After prexor, it is time to free orig_page
1787 */
1788 r5c_release_extra_page(sh);
1789}
1790
1791static struct dma_async_tx_descriptor *
1792ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1793 struct dma_async_tx_descriptor *tx)
1794{
1795 int disks = sh->disks;
1796 struct page **xor_srcs = to_addr_page(percpu, 0);
1797 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1798 int count = 0, pd_idx = sh->pd_idx, i;
1799 struct async_submit_ctl submit;
1800
1801 /* existing parity data subtracted */
1802 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1803 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1804
1805 BUG_ON(sh->batch_head);
1806 pr_debug("%s: stripe %llu\n", __func__,
1807 (unsigned long long)sh->sector);
1808
1809 for (i = disks; i--; ) {
1810 struct r5dev *dev = &sh->dev[i];
1811 /* Only process blocks that are known to be uptodate */
1812 if (test_bit(R5_InJournal, &dev->flags)) {
1813 /*
1814 * For this case, PAGE_SIZE must be equal to 4KB and
1815 * page offset is zero.
1816 */
1817 off_srcs[count] = dev->offset;
1818 xor_srcs[count++] = dev->orig_page;
1819 } else if (test_bit(R5_Wantdrain, &dev->flags)) {
1820 off_srcs[count] = dev->offset;
1821 xor_srcs[count++] = dev->page;
1822 }
1823 }
1824
1825 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1826 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1827 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1828 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1829
1830 return tx;
1831}
1832
1833static struct dma_async_tx_descriptor *
1834ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1835 struct dma_async_tx_descriptor *tx)
1836{
1837 struct page **blocks = to_addr_page(percpu, 0);
1838 unsigned int *offs = to_addr_offs(sh, percpu);
1839 int count;
1840 struct async_submit_ctl submit;
1841
1842 pr_debug("%s: stripe %llu\n", __func__,
1843 (unsigned long long)sh->sector);
1844
1845 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1846
1847 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1848 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1849 tx = async_gen_syndrome(blocks, offs, count+2,
1850 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1851
1852 return tx;
1853}
1854
1855static struct dma_async_tx_descriptor *
1856ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1857{
1858 struct r5conf *conf = sh->raid_conf;
1859 int disks = sh->disks;
1860 int i;
1861 struct stripe_head *head_sh = sh;
1862
1863 pr_debug("%s: stripe %llu\n", __func__,
1864 (unsigned long long)sh->sector);
1865
1866 for (i = disks; i--; ) {
1867 struct r5dev *dev;
1868 struct bio *chosen;
1869
1870 sh = head_sh;
1871 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1872 struct bio *wbi;
1873
1874again:
1875 dev = &sh->dev[i];
1876 /*
1877 * clear R5_InJournal, so when rewriting a page in
1878 * journal, it is not skipped by r5l_log_stripe()
1879 */
1880 clear_bit(R5_InJournal, &dev->flags);
1881 spin_lock_irq(&sh->stripe_lock);
1882 chosen = dev->towrite;
1883 dev->towrite = NULL;
1884 sh->overwrite_disks = 0;
1885 BUG_ON(dev->written);
1886 wbi = dev->written = chosen;
1887 spin_unlock_irq(&sh->stripe_lock);
1888 WARN_ON(dev->page != dev->orig_page);
1889
1890 while (wbi && wbi->bi_iter.bi_sector <
1891 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1892 if (wbi->bi_opf & REQ_FUA)
1893 set_bit(R5_WantFUA, &dev->flags);
1894 if (wbi->bi_opf & REQ_SYNC)
1895 set_bit(R5_SyncIO, &dev->flags);
1896 if (bio_op(wbi) == REQ_OP_DISCARD)
1897 set_bit(R5_Discard, &dev->flags);
1898 else {
1899 tx = async_copy_data(1, wbi, &dev->page,
1900 dev->offset,
1901 dev->sector, tx, sh,
1902 r5c_is_writeback(conf->log));
1903 if (dev->page != dev->orig_page &&
1904 !r5c_is_writeback(conf->log)) {
1905 set_bit(R5_SkipCopy, &dev->flags);
1906 clear_bit(R5_UPTODATE, &dev->flags);
1907 clear_bit(R5_OVERWRITE, &dev->flags);
1908 }
1909 }
1910 wbi = r5_next_bio(conf, wbi, dev->sector);
1911 }
1912
1913 if (head_sh->batch_head) {
1914 sh = list_first_entry(&sh->batch_list,
1915 struct stripe_head,
1916 batch_list);
1917 if (sh == head_sh)
1918 continue;
1919 goto again;
1920 }
1921 }
1922 }
1923
1924 return tx;
1925}
1926
1927static void ops_complete_reconstruct(void *stripe_head_ref)
1928{
1929 struct stripe_head *sh = stripe_head_ref;
1930 int disks = sh->disks;
1931 int pd_idx = sh->pd_idx;
1932 int qd_idx = sh->qd_idx;
1933 int i;
1934 bool fua = false, sync = false, discard = false;
1935
1936 pr_debug("%s: stripe %llu\n", __func__,
1937 (unsigned long long)sh->sector);
1938
1939 for (i = disks; i--; ) {
1940 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1941 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1942 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1943 }
1944
1945 for (i = disks; i--; ) {
1946 struct r5dev *dev = &sh->dev[i];
1947
1948 if (dev->written || i == pd_idx || i == qd_idx) {
1949 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1950 set_bit(R5_UPTODATE, &dev->flags);
1951 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1952 set_bit(R5_Expanded, &dev->flags);
1953 }
1954 if (fua)
1955 set_bit(R5_WantFUA, &dev->flags);
1956 if (sync)
1957 set_bit(R5_SyncIO, &dev->flags);
1958 }
1959 }
1960
1961 if (sh->reconstruct_state == reconstruct_state_drain_run)
1962 sh->reconstruct_state = reconstruct_state_drain_result;
1963 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1964 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1965 else {
1966 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1967 sh->reconstruct_state = reconstruct_state_result;
1968 }
1969
1970 set_bit(STRIPE_HANDLE, &sh->state);
1971 raid5_release_stripe(sh);
1972}
1973
1974static void
1975ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1976 struct dma_async_tx_descriptor *tx)
1977{
1978 int disks = sh->disks;
1979 struct page **xor_srcs;
1980 unsigned int *off_srcs;
1981 struct async_submit_ctl submit;
1982 int count, pd_idx = sh->pd_idx, i;
1983 struct page *xor_dest;
1984 unsigned int off_dest;
1985 int prexor = 0;
1986 unsigned long flags;
1987 int j = 0;
1988 struct stripe_head *head_sh = sh;
1989 int last_stripe;
1990
1991 pr_debug("%s: stripe %llu\n", __func__,
1992 (unsigned long long)sh->sector);
1993
1994 for (i = 0; i < sh->disks; i++) {
1995 if (pd_idx == i)
1996 continue;
1997 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1998 break;
1999 }
2000 if (i >= sh->disks) {
2001 atomic_inc(&sh->count);
2002 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2003 ops_complete_reconstruct(sh);
2004 return;
2005 }
2006again:
2007 count = 0;
2008 xor_srcs = to_addr_page(percpu, j);
2009 off_srcs = to_addr_offs(sh, percpu);
2010 /* check if prexor is active which means only process blocks
2011 * that are part of a read-modify-write (written)
2012 */
2013 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2014 prexor = 1;
2015 off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2016 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2017 for (i = disks; i--; ) {
2018 struct r5dev *dev = &sh->dev[i];
2019 if (head_sh->dev[i].written ||
2020 test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2021 off_srcs[count] = dev->offset;
2022 xor_srcs[count++] = dev->page;
2023 }
2024 }
2025 } else {
2026 xor_dest = sh->dev[pd_idx].page;
2027 off_dest = sh->dev[pd_idx].offset;
2028 for (i = disks; i--; ) {
2029 struct r5dev *dev = &sh->dev[i];
2030 if (i != pd_idx) {
2031 off_srcs[count] = dev->offset;
2032 xor_srcs[count++] = dev->page;
2033 }
2034 }
2035 }
2036
2037 /* 1/ if we prexor'd then the dest is reused as a source
2038 * 2/ if we did not prexor then we are redoing the parity
2039 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2040 * for the synchronous xor case
2041 */
2042 last_stripe = !head_sh->batch_head ||
2043 list_first_entry(&sh->batch_list,
2044 struct stripe_head, batch_list) == head_sh;
2045 if (last_stripe) {
2046 flags = ASYNC_TX_ACK |
2047 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2048
2049 atomic_inc(&head_sh->count);
2050 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2051 to_addr_conv(sh, percpu, j));
2052 } else {
2053 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2054 init_async_submit(&submit, flags, tx, NULL, NULL,
2055 to_addr_conv(sh, percpu, j));
2056 }
2057
2058 if (unlikely(count == 1))
2059 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2060 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2061 else
2062 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2063 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2064 if (!last_stripe) {
2065 j++;
2066 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2067 batch_list);
2068 goto again;
2069 }
2070}
2071
2072static void
2073ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2074 struct dma_async_tx_descriptor *tx)
2075{
2076 struct async_submit_ctl submit;
2077 struct page **blocks;
2078 unsigned int *offs;
2079 int count, i, j = 0;
2080 struct stripe_head *head_sh = sh;
2081 int last_stripe;
2082 int synflags;
2083 unsigned long txflags;
2084
2085 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2086
2087 for (i = 0; i < sh->disks; i++) {
2088 if (sh->pd_idx == i || sh->qd_idx == i)
2089 continue;
2090 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2091 break;
2092 }
2093 if (i >= sh->disks) {
2094 atomic_inc(&sh->count);
2095 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2096 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2097 ops_complete_reconstruct(sh);
2098 return;
2099 }
2100
2101again:
2102 blocks = to_addr_page(percpu, j);
2103 offs = to_addr_offs(sh, percpu);
2104
2105 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2106 synflags = SYNDROME_SRC_WRITTEN;
2107 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2108 } else {
2109 synflags = SYNDROME_SRC_ALL;
2110 txflags = ASYNC_TX_ACK;
2111 }
2112
2113 count = set_syndrome_sources(blocks, offs, sh, synflags);
2114 last_stripe = !head_sh->batch_head ||
2115 list_first_entry(&sh->batch_list,
2116 struct stripe_head, batch_list) == head_sh;
2117
2118 if (last_stripe) {
2119 atomic_inc(&head_sh->count);
2120 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2121 head_sh, to_addr_conv(sh, percpu, j));
2122 } else
2123 init_async_submit(&submit, 0, tx, NULL, NULL,
2124 to_addr_conv(sh, percpu, j));
2125 tx = async_gen_syndrome(blocks, offs, count+2,
2126 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2127 if (!last_stripe) {
2128 j++;
2129 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2130 batch_list);
2131 goto again;
2132 }
2133}
2134
2135static void ops_complete_check(void *stripe_head_ref)
2136{
2137 struct stripe_head *sh = stripe_head_ref;
2138
2139 pr_debug("%s: stripe %llu\n", __func__,
2140 (unsigned long long)sh->sector);
2141
2142 sh->check_state = check_state_check_result;
2143 set_bit(STRIPE_HANDLE, &sh->state);
2144 raid5_release_stripe(sh);
2145}
2146
2147static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2148{
2149 int disks = sh->disks;
2150 int pd_idx = sh->pd_idx;
2151 int qd_idx = sh->qd_idx;
2152 struct page *xor_dest;
2153 unsigned int off_dest;
2154 struct page **xor_srcs = to_addr_page(percpu, 0);
2155 unsigned int *off_srcs = to_addr_offs(sh, percpu);
2156 struct dma_async_tx_descriptor *tx;
2157 struct async_submit_ctl submit;
2158 int count;
2159 int i;
2160
2161 pr_debug("%s: stripe %llu\n", __func__,
2162 (unsigned long long)sh->sector);
2163
2164 BUG_ON(sh->batch_head);
2165 count = 0;
2166 xor_dest = sh->dev[pd_idx].page;
2167 off_dest = sh->dev[pd_idx].offset;
2168 off_srcs[count] = off_dest;
2169 xor_srcs[count++] = xor_dest;
2170 for (i = disks; i--; ) {
2171 if (i == pd_idx || i == qd_idx)
2172 continue;
2173 off_srcs[count] = sh->dev[i].offset;
2174 xor_srcs[count++] = sh->dev[i].page;
2175 }
2176
2177 init_async_submit(&submit, 0, NULL, NULL, NULL,
2178 to_addr_conv(sh, percpu, 0));
2179 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2180 RAID5_STRIPE_SIZE(sh->raid_conf),
2181 &sh->ops.zero_sum_result, &submit);
2182
2183 atomic_inc(&sh->count);
2184 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2185 tx = async_trigger_callback(&submit);
2186}
2187
2188static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2189{
2190 struct page **srcs = to_addr_page(percpu, 0);
2191 unsigned int *offs = to_addr_offs(sh, percpu);
2192 struct async_submit_ctl submit;
2193 int count;
2194
2195 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2196 (unsigned long long)sh->sector, checkp);
2197
2198 BUG_ON(sh->batch_head);
2199 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2200 if (!checkp)
2201 srcs[count] = NULL;
2202
2203 atomic_inc(&sh->count);
2204 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2205 sh, to_addr_conv(sh, percpu, 0));
2206 async_syndrome_val(srcs, offs, count+2,
2207 RAID5_STRIPE_SIZE(sh->raid_conf),
2208 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2209}
2210
2211static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2212{
2213 int overlap_clear = 0, i, disks = sh->disks;
2214 struct dma_async_tx_descriptor *tx = NULL;
2215 struct r5conf *conf = sh->raid_conf;
2216 int level = conf->level;
2217 struct raid5_percpu *percpu;
2218 unsigned long cpu;
2219
2220 cpu = get_cpu();
2221 percpu = per_cpu_ptr(conf->percpu, cpu);
2222 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2223 ops_run_biofill(sh);
2224 overlap_clear++;
2225 }
2226
2227 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2228 if (level < 6)
2229 tx = ops_run_compute5(sh, percpu);
2230 else {
2231 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2232 tx = ops_run_compute6_1(sh, percpu);
2233 else
2234 tx = ops_run_compute6_2(sh, percpu);
2235 }
2236 /* terminate the chain if reconstruct is not set to be run */
2237 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2238 async_tx_ack(tx);
2239 }
2240
2241 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2242 if (level < 6)
2243 tx = ops_run_prexor5(sh, percpu, tx);
2244 else
2245 tx = ops_run_prexor6(sh, percpu, tx);
2246 }
2247
2248 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2249 tx = ops_run_partial_parity(sh, percpu, tx);
2250
2251 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2252 tx = ops_run_biodrain(sh, tx);
2253 overlap_clear++;
2254 }
2255
2256 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2257 if (level < 6)
2258 ops_run_reconstruct5(sh, percpu, tx);
2259 else
2260 ops_run_reconstruct6(sh, percpu, tx);
2261 }
2262
2263 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2264 if (sh->check_state == check_state_run)
2265 ops_run_check_p(sh, percpu);
2266 else if (sh->check_state == check_state_run_q)
2267 ops_run_check_pq(sh, percpu, 0);
2268 else if (sh->check_state == check_state_run_pq)
2269 ops_run_check_pq(sh, percpu, 1);
2270 else
2271 BUG();
2272 }
2273
2274 if (overlap_clear && !sh->batch_head)
2275 for (i = disks; i--; ) {
2276 struct r5dev *dev = &sh->dev[i];
2277 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2278 wake_up(&sh->raid_conf->wait_for_overlap);
2279 }
2280 put_cpu();
2281}
2282
2283static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2284{
2285#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2286 kfree(sh->pages);
2287#endif
2288 if (sh->ppl_page)
2289 __free_page(sh->ppl_page);
2290 kmem_cache_free(sc, sh);
2291}
2292
2293static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2294 int disks, struct r5conf *conf)
2295{
2296 struct stripe_head *sh;
2297 int i;
2298
2299 sh = kmem_cache_zalloc(sc, gfp);
2300 if (sh) {
2301 spin_lock_init(&sh->stripe_lock);
2302 spin_lock_init(&sh->batch_lock);
2303 INIT_LIST_HEAD(&sh->batch_list);
2304 INIT_LIST_HEAD(&sh->lru);
2305 INIT_LIST_HEAD(&sh->r5c);
2306 INIT_LIST_HEAD(&sh->log_list);
2307 atomic_set(&sh->count, 1);
2308 sh->raid_conf = conf;
2309 sh->log_start = MaxSector;
2310 for (i = 0; i < disks; i++) {
2311 struct r5dev *dev = &sh->dev[i];
2312
2313 bio_init(&dev->req, &dev->vec, 1);
2314 bio_init(&dev->rreq, &dev->rvec, 1);
2315 }
2316
2317 if (raid5_has_ppl(conf)) {
2318 sh->ppl_page = alloc_page(gfp);
2319 if (!sh->ppl_page) {
2320 free_stripe(sc, sh);
2321 return NULL;
2322 }
2323 }
2324#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2325 if (init_stripe_shared_pages(sh, conf, disks)) {
2326 free_stripe(sc, sh);
2327 return NULL;
2328 }
2329#endif
2330 }
2331 return sh;
2332}
2333static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2334{
2335 struct stripe_head *sh;
2336
2337 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2338 if (!sh)
2339 return 0;
2340
2341 if (grow_buffers(sh, gfp)) {
2342 shrink_buffers(sh);
2343 free_stripe(conf->slab_cache, sh);
2344 return 0;
2345 }
2346 sh->hash_lock_index =
2347 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2348 /* we just created an active stripe so... */
2349 atomic_inc(&conf->active_stripes);
2350
2351 raid5_release_stripe(sh);
2352 conf->max_nr_stripes++;
2353 return 1;
2354}
2355
2356static int grow_stripes(struct r5conf *conf, int num)
2357{
2358 struct kmem_cache *sc;
2359 size_t namelen = sizeof(conf->cache_name[0]);
2360 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2361
2362 if (conf->mddev->gendisk)
2363 snprintf(conf->cache_name[0], namelen,
2364 "raid%d-%s", conf->level, mdname(conf->mddev));
2365 else
2366 snprintf(conf->cache_name[0], namelen,
2367 "raid%d-%p", conf->level, conf->mddev);
2368 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2369
2370 conf->active_name = 0;
2371 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2372 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2373 0, 0, NULL);
2374 if (!sc)
2375 return 1;
2376 conf->slab_cache = sc;
2377 conf->pool_size = devs;
2378 while (num--)
2379 if (!grow_one_stripe(conf, GFP_KERNEL))
2380 return 1;
2381
2382 return 0;
2383}
2384
2385/**
2386 * scribble_alloc - allocate percpu scribble buffer for required size
2387 * of the scribble region
2388 * @percpu: from for_each_present_cpu() of the caller
2389 * @num: total number of disks in the array
2390 * @cnt: scribble objs count for required size of the scribble region
2391 *
2392 * The scribble buffer size must be enough to contain:
2393 * 1/ a struct page pointer for each device in the array +2
2394 * 2/ room to convert each entry in (1) to its corresponding dma
2395 * (dma_map_page()) or page (page_address()) address.
2396 *
2397 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2398 * calculate over all devices (not just the data blocks), using zeros in place
2399 * of the P and Q blocks.
2400 */
2401static int scribble_alloc(struct raid5_percpu *percpu,
2402 int num, int cnt)
2403{
2404 size_t obj_size =
2405 sizeof(struct page *) * (num + 2) +
2406 sizeof(addr_conv_t) * (num + 2) +
2407 sizeof(unsigned int) * (num + 2);
2408 void *scribble;
2409
2410 /*
2411 * If here is in raid array suspend context, it is in memalloc noio
2412 * context as well, there is no potential recursive memory reclaim
2413 * I/Os with the GFP_KERNEL flag.
2414 */
2415 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2416 if (!scribble)
2417 return -ENOMEM;
2418
2419 kvfree(percpu->scribble);
2420
2421 percpu->scribble = scribble;
2422 percpu->scribble_obj_size = obj_size;
2423 return 0;
2424}
2425
2426static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2427{
2428 unsigned long cpu;
2429 int err = 0;
2430
2431 /*
2432 * Never shrink. And mddev_suspend() could deadlock if this is called
2433 * from raid5d. In that case, scribble_disks and scribble_sectors
2434 * should equal to new_disks and new_sectors
2435 */
2436 if (conf->scribble_disks >= new_disks &&
2437 conf->scribble_sectors >= new_sectors)
2438 return 0;
2439 mddev_suspend(conf->mddev);
2440 get_online_cpus();
2441
2442 for_each_present_cpu(cpu) {
2443 struct raid5_percpu *percpu;
2444
2445 percpu = per_cpu_ptr(conf->percpu, cpu);
2446 err = scribble_alloc(percpu, new_disks,
2447 new_sectors / RAID5_STRIPE_SECTORS(conf));
2448 if (err)
2449 break;
2450 }
2451
2452 put_online_cpus();
2453 mddev_resume(conf->mddev);
2454 if (!err) {
2455 conf->scribble_disks = new_disks;
2456 conf->scribble_sectors = new_sectors;
2457 }
2458 return err;
2459}
2460
2461static int resize_stripes(struct r5conf *conf, int newsize)
2462{
2463 /* Make all the stripes able to hold 'newsize' devices.
2464 * New slots in each stripe get 'page' set to a new page.
2465 *
2466 * This happens in stages:
2467 * 1/ create a new kmem_cache and allocate the required number of
2468 * stripe_heads.
2469 * 2/ gather all the old stripe_heads and transfer the pages across
2470 * to the new stripe_heads. This will have the side effect of
2471 * freezing the array as once all stripe_heads have been collected,
2472 * no IO will be possible. Old stripe heads are freed once their
2473 * pages have been transferred over, and the old kmem_cache is
2474 * freed when all stripes are done.
2475 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2476 * we simple return a failure status - no need to clean anything up.
2477 * 4/ allocate new pages for the new slots in the new stripe_heads.
2478 * If this fails, we don't bother trying the shrink the
2479 * stripe_heads down again, we just leave them as they are.
2480 * As each stripe_head is processed the new one is released into
2481 * active service.
2482 *
2483 * Once step2 is started, we cannot afford to wait for a write,
2484 * so we use GFP_NOIO allocations.
2485 */
2486 struct stripe_head *osh, *nsh;
2487 LIST_HEAD(newstripes);
2488 struct disk_info *ndisks;
2489 int err = 0;
2490 struct kmem_cache *sc;
2491 int i;
2492 int hash, cnt;
2493
2494 md_allow_write(conf->mddev);
2495
2496 /* Step 1 */
2497 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2498 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2499 0, 0, NULL);
2500 if (!sc)
2501 return -ENOMEM;
2502
2503 /* Need to ensure auto-resizing doesn't interfere */
2504 mutex_lock(&conf->cache_size_mutex);
2505
2506 for (i = conf->max_nr_stripes; i; i--) {
2507 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2508 if (!nsh)
2509 break;
2510
2511 list_add(&nsh->lru, &newstripes);
2512 }
2513 if (i) {
2514 /* didn't get enough, give up */
2515 while (!list_empty(&newstripes)) {
2516 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2517 list_del(&nsh->lru);
2518 free_stripe(sc, nsh);
2519 }
2520 kmem_cache_destroy(sc);
2521 mutex_unlock(&conf->cache_size_mutex);
2522 return -ENOMEM;
2523 }
2524 /* Step 2 - Must use GFP_NOIO now.
2525 * OK, we have enough stripes, start collecting inactive
2526 * stripes and copying them over
2527 */
2528 hash = 0;
2529 cnt = 0;
2530 list_for_each_entry(nsh, &newstripes, lru) {
2531 lock_device_hash_lock(conf, hash);
2532 wait_event_cmd(conf->wait_for_stripe,
2533 !list_empty(conf->inactive_list + hash),
2534 unlock_device_hash_lock(conf, hash),
2535 lock_device_hash_lock(conf, hash));
2536 osh = get_free_stripe(conf, hash);
2537 unlock_device_hash_lock(conf, hash);
2538
2539#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2540 for (i = 0; i < osh->nr_pages; i++) {
2541 nsh->pages[i] = osh->pages[i];
2542 osh->pages[i] = NULL;
2543 }
2544#endif
2545 for(i=0; i<conf->pool_size; i++) {
2546 nsh->dev[i].page = osh->dev[i].page;
2547 nsh->dev[i].orig_page = osh->dev[i].page;
2548 nsh->dev[i].offset = osh->dev[i].offset;
2549 }
2550 nsh->hash_lock_index = hash;
2551 free_stripe(conf->slab_cache, osh);
2552 cnt++;
2553 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2554 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2555 hash++;
2556 cnt = 0;
2557 }
2558 }
2559 kmem_cache_destroy(conf->slab_cache);
2560
2561 /* Step 3.
2562 * At this point, we are holding all the stripes so the array
2563 * is completely stalled, so now is a good time to resize
2564 * conf->disks and the scribble region
2565 */
2566 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2567 if (ndisks) {
2568 for (i = 0; i < conf->pool_size; i++)
2569 ndisks[i] = conf->disks[i];
2570
2571 for (i = conf->pool_size; i < newsize; i++) {
2572 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2573 if (!ndisks[i].extra_page)
2574 err = -ENOMEM;
2575 }
2576
2577 if (err) {
2578 for (i = conf->pool_size; i < newsize; i++)
2579 if (ndisks[i].extra_page)
2580 put_page(ndisks[i].extra_page);
2581 kfree(ndisks);
2582 } else {
2583 kfree(conf->disks);
2584 conf->disks = ndisks;
2585 }
2586 } else
2587 err = -ENOMEM;
2588
2589 conf->slab_cache = sc;
2590 conf->active_name = 1-conf->active_name;
2591
2592 /* Step 4, return new stripes to service */
2593 while(!list_empty(&newstripes)) {
2594 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2595 list_del_init(&nsh->lru);
2596
2597#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2598 for (i = 0; i < nsh->nr_pages; i++) {
2599 if (nsh->pages[i])
2600 continue;
2601 nsh->pages[i] = alloc_page(GFP_NOIO);
2602 if (!nsh->pages[i])
2603 err = -ENOMEM;
2604 }
2605
2606 for (i = conf->raid_disks; i < newsize; i++) {
2607 if (nsh->dev[i].page)
2608 continue;
2609 nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2610 nsh->dev[i].orig_page = nsh->dev[i].page;
2611 nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2612 }
2613#else
2614 for (i=conf->raid_disks; i < newsize; i++)
2615 if (nsh->dev[i].page == NULL) {
2616 struct page *p = alloc_page(GFP_NOIO);
2617 nsh->dev[i].page = p;
2618 nsh->dev[i].orig_page = p;
2619 nsh->dev[i].offset = 0;
2620 if (!p)
2621 err = -ENOMEM;
2622 }
2623#endif
2624 raid5_release_stripe(nsh);
2625 }
2626 /* critical section pass, GFP_NOIO no longer needed */
2627
2628 if (!err)
2629 conf->pool_size = newsize;
2630 mutex_unlock(&conf->cache_size_mutex);
2631
2632 return err;
2633}
2634
2635static int drop_one_stripe(struct r5conf *conf)
2636{
2637 struct stripe_head *sh;
2638 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2639
2640 spin_lock_irq(conf->hash_locks + hash);
2641 sh = get_free_stripe(conf, hash);
2642 spin_unlock_irq(conf->hash_locks + hash);
2643 if (!sh)
2644 return 0;
2645 BUG_ON(atomic_read(&sh->count));
2646 shrink_buffers(sh);
2647 free_stripe(conf->slab_cache, sh);
2648 atomic_dec(&conf->active_stripes);
2649 conf->max_nr_stripes--;
2650 return 1;
2651}
2652
2653static void shrink_stripes(struct r5conf *conf)
2654{
2655 while (conf->max_nr_stripes &&
2656 drop_one_stripe(conf))
2657 ;
2658
2659 kmem_cache_destroy(conf->slab_cache);
2660 conf->slab_cache = NULL;
2661}
2662
2663static void raid5_end_read_request(struct bio * bi)
2664{
2665 struct stripe_head *sh = bi->bi_private;
2666 struct r5conf *conf = sh->raid_conf;
2667 int disks = sh->disks, i;
2668 char b[BDEVNAME_SIZE];
2669 struct md_rdev *rdev = NULL;
2670 sector_t s;
2671
2672 for (i=0 ; i<disks; i++)
2673 if (bi == &sh->dev[i].req)
2674 break;
2675
2676 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2677 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2678 bi->bi_status);
2679 if (i == disks) {
2680 bio_reset(bi);
2681 BUG();
2682 return;
2683 }
2684 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2685 /* If replacement finished while this request was outstanding,
2686 * 'replacement' might be NULL already.
2687 * In that case it moved down to 'rdev'.
2688 * rdev is not removed until all requests are finished.
2689 */
2690 rdev = conf->disks[i].replacement;
2691 if (!rdev)
2692 rdev = conf->disks[i].rdev;
2693
2694 if (use_new_offset(conf, sh))
2695 s = sh->sector + rdev->new_data_offset;
2696 else
2697 s = sh->sector + rdev->data_offset;
2698 if (!bi->bi_status) {
2699 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2700 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2701 /* Note that this cannot happen on a
2702 * replacement device. We just fail those on
2703 * any error
2704 */
2705 pr_info_ratelimited(
2706 "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2707 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2708 (unsigned long long)s,
2709 bdevname(rdev->bdev, b));
2710 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2711 clear_bit(R5_ReadError, &sh->dev[i].flags);
2712 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2713 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2714 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2715
2716 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2717 /*
2718 * end read for a page in journal, this
2719 * must be preparing for prexor in rmw
2720 */
2721 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2722
2723 if (atomic_read(&rdev->read_errors))
2724 atomic_set(&rdev->read_errors, 0);
2725 } else {
2726 const char *bdn = bdevname(rdev->bdev, b);
2727 int retry = 0;
2728 int set_bad = 0;
2729
2730 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2731 if (!(bi->bi_status == BLK_STS_PROTECTION))
2732 atomic_inc(&rdev->read_errors);
2733 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2734 pr_warn_ratelimited(
2735 "md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2736 mdname(conf->mddev),
2737 (unsigned long long)s,
2738 bdn);
2739 else if (conf->mddev->degraded >= conf->max_degraded) {
2740 set_bad = 1;
2741 pr_warn_ratelimited(
2742 "md/raid:%s: read error not correctable (sector %llu on %s).\n",
2743 mdname(conf->mddev),
2744 (unsigned long long)s,
2745 bdn);
2746 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2747 /* Oh, no!!! */
2748 set_bad = 1;
2749 pr_warn_ratelimited(
2750 "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2751 mdname(conf->mddev),
2752 (unsigned long long)s,
2753 bdn);
2754 } else if (atomic_read(&rdev->read_errors)
2755 > conf->max_nr_stripes) {
2756 if (!test_bit(Faulty, &rdev->flags)) {
2757 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2758 mdname(conf->mddev),
2759 atomic_read(&rdev->read_errors),
2760 conf->max_nr_stripes);
2761 pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2762 mdname(conf->mddev), bdn);
2763 }
2764 } else
2765 retry = 1;
2766 if (set_bad && test_bit(In_sync, &rdev->flags)
2767 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2768 retry = 1;
2769 if (retry)
2770 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2771 set_bit(R5_ReadError, &sh->dev[i].flags);
2772 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2773 set_bit(R5_ReadError, &sh->dev[i].flags);
2774 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2775 } else
2776 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2777 else {
2778 clear_bit(R5_ReadError, &sh->dev[i].flags);
2779 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2780 if (!(set_bad
2781 && test_bit(In_sync, &rdev->flags)
2782 && rdev_set_badblocks(
2783 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2784 md_error(conf->mddev, rdev);
2785 }
2786 }
2787 rdev_dec_pending(rdev, conf->mddev);
2788 bio_reset(bi);
2789 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2790 set_bit(STRIPE_HANDLE, &sh->state);
2791 raid5_release_stripe(sh);
2792}
2793
2794static void raid5_end_write_request(struct bio *bi)
2795{
2796 struct stripe_head *sh = bi->bi_private;
2797 struct r5conf *conf = sh->raid_conf;
2798 int disks = sh->disks, i;
2799 struct md_rdev *rdev;
2800 sector_t first_bad;
2801 int bad_sectors;
2802 int replacement = 0;
2803
2804 for (i = 0 ; i < disks; i++) {
2805 if (bi == &sh->dev[i].req) {
2806 rdev = conf->disks[i].rdev;
2807 break;
2808 }
2809 if (bi == &sh->dev[i].rreq) {
2810 rdev = conf->disks[i].replacement;
2811 if (rdev)
2812 replacement = 1;
2813 else
2814 /* rdev was removed and 'replacement'
2815 * replaced it. rdev is not removed
2816 * until all requests are finished.
2817 */
2818 rdev = conf->disks[i].rdev;
2819 break;
2820 }
2821 }
2822 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2823 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2824 bi->bi_status);
2825 if (i == disks) {
2826 bio_reset(bi);
2827 BUG();
2828 return;
2829 }
2830
2831 if (replacement) {
2832 if (bi->bi_status)
2833 md_error(conf->mddev, rdev);
2834 else if (is_badblock(rdev, sh->sector,
2835 RAID5_STRIPE_SECTORS(conf),
2836 &first_bad, &bad_sectors))
2837 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2838 } else {
2839 if (bi->bi_status) {
2840 set_bit(STRIPE_DEGRADED, &sh->state);
2841 set_bit(WriteErrorSeen, &rdev->flags);
2842 set_bit(R5_WriteError, &sh->dev[i].flags);
2843 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2844 set_bit(MD_RECOVERY_NEEDED,
2845 &rdev->mddev->recovery);
2846 } else if (is_badblock(rdev, sh->sector,
2847 RAID5_STRIPE_SECTORS(conf),
2848 &first_bad, &bad_sectors)) {
2849 set_bit(R5_MadeGood, &sh->dev[i].flags);
2850 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2851 /* That was a successful write so make
2852 * sure it looks like we already did
2853 * a re-write.
2854 */
2855 set_bit(R5_ReWrite, &sh->dev[i].flags);
2856 }
2857 }
2858 rdev_dec_pending(rdev, conf->mddev);
2859
2860 if (sh->batch_head && bi->bi_status && !replacement)
2861 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2862
2863 bio_reset(bi);
2864 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2865 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2866 set_bit(STRIPE_HANDLE, &sh->state);
2867 raid5_release_stripe(sh);
2868
2869 if (sh->batch_head && sh != sh->batch_head)
2870 raid5_release_stripe(sh->batch_head);
2871}
2872
2873static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2874{
2875 char b[BDEVNAME_SIZE];
2876 struct r5conf *conf = mddev->private;
2877 unsigned long flags;
2878 pr_debug("raid456: error called\n");
2879
2880 spin_lock_irqsave(&conf->device_lock, flags);
2881
2882 if (test_bit(In_sync, &rdev->flags) &&
2883 mddev->degraded == conf->max_degraded) {
2884 /*
2885 * Don't allow to achieve failed state
2886 * Don't try to recover this device
2887 */
2888 conf->recovery_disabled = mddev->recovery_disabled;
2889 spin_unlock_irqrestore(&conf->device_lock, flags);
2890 return;
2891 }
2892
2893 set_bit(Faulty, &rdev->flags);
2894 clear_bit(In_sync, &rdev->flags);
2895 mddev->degraded = raid5_calc_degraded(conf);
2896 spin_unlock_irqrestore(&conf->device_lock, flags);
2897 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2898
2899 set_bit(Blocked, &rdev->flags);
2900 set_mask_bits(&mddev->sb_flags, 0,
2901 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2902 pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2903 "md/raid:%s: Operation continuing on %d devices.\n",
2904 mdname(mddev),
2905 bdevname(rdev->bdev, b),
2906 mdname(mddev),
2907 conf->raid_disks - mddev->degraded);
2908 r5c_update_on_rdev_error(mddev, rdev);
2909}
2910
2911/*
2912 * Input: a 'big' sector number,
2913 * Output: index of the data and parity disk, and the sector # in them.
2914 */
2915sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2916 int previous, int *dd_idx,
2917 struct stripe_head *sh)
2918{
2919 sector_t stripe, stripe2;
2920 sector_t chunk_number;
2921 unsigned int chunk_offset;
2922 int pd_idx, qd_idx;
2923 int ddf_layout = 0;
2924 sector_t new_sector;
2925 int algorithm = previous ? conf->prev_algo
2926 : conf->algorithm;
2927 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2928 : conf->chunk_sectors;
2929 int raid_disks = previous ? conf->previous_raid_disks
2930 : conf->raid_disks;
2931 int data_disks = raid_disks - conf->max_degraded;
2932
2933 /* First compute the information on this sector */
2934
2935 /*
2936 * Compute the chunk number and the sector offset inside the chunk
2937 */
2938 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2939 chunk_number = r_sector;
2940
2941 /*
2942 * Compute the stripe number
2943 */
2944 stripe = chunk_number;
2945 *dd_idx = sector_div(stripe, data_disks);
2946 stripe2 = stripe;
2947 /*
2948 * Select the parity disk based on the user selected algorithm.
2949 */
2950 pd_idx = qd_idx = -1;
2951 switch(conf->level) {
2952 case 4:
2953 pd_idx = data_disks;
2954 break;
2955 case 5:
2956 switch (algorithm) {
2957 case ALGORITHM_LEFT_ASYMMETRIC:
2958 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2959 if (*dd_idx >= pd_idx)
2960 (*dd_idx)++;
2961 break;
2962 case ALGORITHM_RIGHT_ASYMMETRIC:
2963 pd_idx = sector_div(stripe2, raid_disks);
2964 if (*dd_idx >= pd_idx)
2965 (*dd_idx)++;
2966 break;
2967 case ALGORITHM_LEFT_SYMMETRIC:
2968 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2969 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2970 break;
2971 case ALGORITHM_RIGHT_SYMMETRIC:
2972 pd_idx = sector_div(stripe2, raid_disks);
2973 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2974 break;
2975 case ALGORITHM_PARITY_0:
2976 pd_idx = 0;
2977 (*dd_idx)++;
2978 break;
2979 case ALGORITHM_PARITY_N:
2980 pd_idx = data_disks;
2981 break;
2982 default:
2983 BUG();
2984 }
2985 break;
2986 case 6:
2987
2988 switch (algorithm) {
2989 case ALGORITHM_LEFT_ASYMMETRIC:
2990 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2991 qd_idx = pd_idx + 1;
2992 if (pd_idx == raid_disks-1) {
2993 (*dd_idx)++; /* Q D D D P */
2994 qd_idx = 0;
2995 } else if (*dd_idx >= pd_idx)
2996 (*dd_idx) += 2; /* D D P Q D */
2997 break;
2998 case ALGORITHM_RIGHT_ASYMMETRIC:
2999 pd_idx = sector_div(stripe2, raid_disks);
3000 qd_idx = pd_idx + 1;
3001 if (pd_idx == raid_disks-1) {
3002 (*dd_idx)++; /* Q D D D P */
3003 qd_idx = 0;
3004 } else if (*dd_idx >= pd_idx)
3005 (*dd_idx) += 2; /* D D P Q D */
3006 break;
3007 case ALGORITHM_LEFT_SYMMETRIC:
3008 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3009 qd_idx = (pd_idx + 1) % raid_disks;
3010 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3011 break;
3012 case ALGORITHM_RIGHT_SYMMETRIC:
3013 pd_idx = sector_div(stripe2, raid_disks);
3014 qd_idx = (pd_idx + 1) % raid_disks;
3015 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3016 break;
3017
3018 case ALGORITHM_PARITY_0:
3019 pd_idx = 0;
3020 qd_idx = 1;
3021 (*dd_idx) += 2;
3022 break;
3023 case ALGORITHM_PARITY_N:
3024 pd_idx = data_disks;
3025 qd_idx = data_disks + 1;
3026 break;
3027
3028 case ALGORITHM_ROTATING_ZERO_RESTART:
3029 /* Exactly the same as RIGHT_ASYMMETRIC, but or
3030 * of blocks for computing Q is different.
3031 */
3032 pd_idx = sector_div(stripe2, raid_disks);
3033 qd_idx = pd_idx + 1;
3034 if (pd_idx == raid_disks-1) {
3035 (*dd_idx)++; /* Q D D D P */
3036 qd_idx = 0;
3037 } else if (*dd_idx >= pd_idx)
3038 (*dd_idx) += 2; /* D D P Q D */
3039 ddf_layout = 1;
3040 break;
3041
3042 case ALGORITHM_ROTATING_N_RESTART:
3043 /* Same a left_asymmetric, by first stripe is
3044 * D D D P Q rather than
3045 * Q D D D P
3046 */
3047 stripe2 += 1;
3048 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3049 qd_idx = pd_idx + 1;
3050 if (pd_idx == raid_disks-1) {
3051 (*dd_idx)++; /* Q D D D P */
3052 qd_idx = 0;
3053 } else if (*dd_idx >= pd_idx)
3054 (*dd_idx) += 2; /* D D P Q D */
3055 ddf_layout = 1;
3056 break;
3057
3058 case ALGORITHM_ROTATING_N_CONTINUE:
3059 /* Same as left_symmetric but Q is before P */
3060 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3061 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3062 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3063 ddf_layout = 1;
3064 break;
3065
3066 case ALGORITHM_LEFT_ASYMMETRIC_6:
3067 /* RAID5 left_asymmetric, with Q on last device */
3068 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3069 if (*dd_idx >= pd_idx)
3070 (*dd_idx)++;
3071 qd_idx = raid_disks - 1;
3072 break;
3073
3074 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3075 pd_idx = sector_div(stripe2, raid_disks-1);
3076 if (*dd_idx >= pd_idx)
3077 (*dd_idx)++;
3078 qd_idx = raid_disks - 1;
3079 break;
3080
3081 case ALGORITHM_LEFT_SYMMETRIC_6:
3082 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3083 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3084 qd_idx = raid_disks - 1;
3085 break;
3086
3087 case ALGORITHM_RIGHT_SYMMETRIC_6:
3088 pd_idx = sector_div(stripe2, raid_disks-1);
3089 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3090 qd_idx = raid_disks - 1;
3091 break;
3092
3093 case ALGORITHM_PARITY_0_6:
3094 pd_idx = 0;
3095 (*dd_idx)++;
3096 qd_idx = raid_disks - 1;
3097 break;
3098
3099 default:
3100 BUG();
3101 }
3102 break;
3103 }
3104
3105 if (sh) {
3106 sh->pd_idx = pd_idx;
3107 sh->qd_idx = qd_idx;
3108 sh->ddf_layout = ddf_layout;
3109 }
3110 /*
3111 * Finally, compute the new sector number
3112 */
3113 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3114 return new_sector;
3115}
3116
3117sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3118{
3119 struct r5conf *conf = sh->raid_conf;
3120 int raid_disks = sh->disks;
3121 int data_disks = raid_disks - conf->max_degraded;
3122 sector_t new_sector = sh->sector, check;
3123 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3124 : conf->chunk_sectors;
3125 int algorithm = previous ? conf->prev_algo
3126 : conf->algorithm;
3127 sector_t stripe;
3128 int chunk_offset;
3129 sector_t chunk_number;
3130 int dummy1, dd_idx = i;
3131 sector_t r_sector;
3132 struct stripe_head sh2;
3133
3134 chunk_offset = sector_div(new_sector, sectors_per_chunk);
3135 stripe = new_sector;
3136
3137 if (i == sh->pd_idx)
3138 return 0;
3139 switch(conf->level) {
3140 case 4: break;
3141 case 5:
3142 switch (algorithm) {
3143 case ALGORITHM_LEFT_ASYMMETRIC:
3144 case ALGORITHM_RIGHT_ASYMMETRIC:
3145 if (i > sh->pd_idx)
3146 i--;
3147 break;
3148 case ALGORITHM_LEFT_SYMMETRIC:
3149 case ALGORITHM_RIGHT_SYMMETRIC:
3150 if (i < sh->pd_idx)
3151 i += raid_disks;
3152 i -= (sh->pd_idx + 1);
3153 break;
3154 case ALGORITHM_PARITY_0:
3155 i -= 1;
3156 break;
3157 case ALGORITHM_PARITY_N:
3158 break;
3159 default:
3160 BUG();
3161 }
3162 break;
3163 case 6:
3164 if (i == sh->qd_idx)
3165 return 0; /* It is the Q disk */
3166 switch (algorithm) {
3167 case ALGORITHM_LEFT_ASYMMETRIC:
3168 case ALGORITHM_RIGHT_ASYMMETRIC:
3169 case ALGORITHM_ROTATING_ZERO_RESTART:
3170 case ALGORITHM_ROTATING_N_RESTART:
3171 if (sh->pd_idx == raid_disks-1)
3172 i--; /* Q D D D P */
3173 else if (i > sh->pd_idx)
3174 i -= 2; /* D D P Q D */
3175 break;
3176 case ALGORITHM_LEFT_SYMMETRIC:
3177 case ALGORITHM_RIGHT_SYMMETRIC:
3178 if (sh->pd_idx == raid_disks-1)
3179 i--; /* Q D D D P */
3180 else {
3181 /* D D P Q D */
3182 if (i < sh->pd_idx)
3183 i += raid_disks;
3184 i -= (sh->pd_idx + 2);
3185 }
3186 break;
3187 case ALGORITHM_PARITY_0:
3188 i -= 2;
3189 break;
3190 case ALGORITHM_PARITY_N:
3191 break;
3192 case ALGORITHM_ROTATING_N_CONTINUE:
3193 /* Like left_symmetric, but P is before Q */
3194 if (sh->pd_idx == 0)
3195 i--; /* P D D D Q */
3196 else {
3197 /* D D Q P D */
3198 if (i < sh->pd_idx)
3199 i += raid_disks;
3200 i -= (sh->pd_idx + 1);
3201 }
3202 break;
3203 case ALGORITHM_LEFT_ASYMMETRIC_6:
3204 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3205 if (i > sh->pd_idx)
3206 i--;
3207 break;
3208 case ALGORITHM_LEFT_SYMMETRIC_6:
3209 case ALGORITHM_RIGHT_SYMMETRIC_6:
3210 if (i < sh->pd_idx)
3211 i += data_disks + 1;
3212 i -= (sh->pd_idx + 1);
3213 break;
3214 case ALGORITHM_PARITY_0_6:
3215 i -= 1;
3216 break;
3217 default:
3218 BUG();
3219 }
3220 break;
3221 }
3222
3223 chunk_number = stripe * data_disks + i;
3224 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3225
3226 check = raid5_compute_sector(conf, r_sector,
3227 previous, &dummy1, &sh2);
3228 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3229 || sh2.qd_idx != sh->qd_idx) {
3230 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3231 mdname(conf->mddev));
3232 return 0;
3233 }
3234 return r_sector;
3235}
3236
3237/*
3238 * There are cases where we want handle_stripe_dirtying() and
3239 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3240 *
3241 * This function checks whether we want to delay the towrite. Specifically,
3242 * we delay the towrite when:
3243 *
3244 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3245 * stripe has data in journal (for other devices).
3246 *
3247 * In this case, when reading data for the non-overwrite dev, it is
3248 * necessary to handle complex rmw of write back cache (prexor with
3249 * orig_page, and xor with page). To keep read path simple, we would
3250 * like to flush data in journal to RAID disks first, so complex rmw
3251 * is handled in the write patch (handle_stripe_dirtying).
3252 *
3253 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3254 *
3255 * It is important to be able to flush all stripes in raid5-cache.
3256 * Therefore, we need reserve some space on the journal device for
3257 * these flushes. If flush operation includes pending writes to the
3258 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3259 * for the flush out. If we exclude these pending writes from flush
3260 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3261 * Therefore, excluding pending writes in these cases enables more
3262 * efficient use of the journal device.
3263 *
3264 * Note: To make sure the stripe makes progress, we only delay
3265 * towrite for stripes with data already in journal (injournal > 0).
3266 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3267 * no_space_stripes list.
3268 *
3269 * 3. during journal failure
3270 * In journal failure, we try to flush all cached data to raid disks
3271 * based on data in stripe cache. The array is read-only to upper
3272 * layers, so we would skip all pending writes.
3273 *
3274 */
3275static inline bool delay_towrite(struct r5conf *conf,
3276 struct r5dev *dev,
3277 struct stripe_head_state *s)
3278{
3279 /* case 1 above */
3280 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3281 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3282 return true;
3283 /* case 2 above */
3284 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3285 s->injournal > 0)
3286 return true;
3287 /* case 3 above */
3288 if (s->log_failed && s->injournal)
3289 return true;
3290 return false;
3291}
3292
3293static void
3294schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3295 int rcw, int expand)
3296{
3297 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3298 struct r5conf *conf = sh->raid_conf;
3299 int level = conf->level;
3300
3301 if (rcw) {
3302 /*
3303 * In some cases, handle_stripe_dirtying initially decided to
3304 * run rmw and allocates extra page for prexor. However, rcw is
3305 * cheaper later on. We need to free the extra page now,
3306 * because we won't be able to do that in ops_complete_prexor().
3307 */
3308 r5c_release_extra_page(sh);
3309
3310 for (i = disks; i--; ) {
3311 struct r5dev *dev = &sh->dev[i];
3312
3313 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3314 set_bit(R5_LOCKED, &dev->flags);
3315 set_bit(R5_Wantdrain, &dev->flags);
3316 if (!expand)
3317 clear_bit(R5_UPTODATE, &dev->flags);
3318 s->locked++;
3319 } else if (test_bit(R5_InJournal, &dev->flags)) {
3320 set_bit(R5_LOCKED, &dev->flags);
3321 s->locked++;
3322 }
3323 }
3324 /* if we are not expanding this is a proper write request, and
3325 * there will be bios with new data to be drained into the
3326 * stripe cache
3327 */
3328 if (!expand) {
3329 if (!s->locked)
3330 /* False alarm, nothing to do */
3331 return;
3332 sh->reconstruct_state = reconstruct_state_drain_run;
3333 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3334 } else
3335 sh->reconstruct_state = reconstruct_state_run;
3336
3337 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3338
3339 if (s->locked + conf->max_degraded == disks)
3340 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3341 atomic_inc(&conf->pending_full_writes);
3342 } else {
3343 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3344 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3345 BUG_ON(level == 6 &&
3346 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3347 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3348
3349 for (i = disks; i--; ) {
3350 struct r5dev *dev = &sh->dev[i];
3351 if (i == pd_idx || i == qd_idx)
3352 continue;
3353
3354 if (dev->towrite &&
3355 (test_bit(R5_UPTODATE, &dev->flags) ||
3356 test_bit(R5_Wantcompute, &dev->flags))) {
3357 set_bit(R5_Wantdrain, &dev->flags);
3358 set_bit(R5_LOCKED, &dev->flags);
3359 clear_bit(R5_UPTODATE, &dev->flags);
3360 s->locked++;
3361 } else if (test_bit(R5_InJournal, &dev->flags)) {
3362 set_bit(R5_LOCKED, &dev->flags);
3363 s->locked++;
3364 }
3365 }
3366 if (!s->locked)
3367 /* False alarm - nothing to do */
3368 return;
3369 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3370 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3371 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3372 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3373 }
3374
3375 /* keep the parity disk(s) locked while asynchronous operations
3376 * are in flight
3377 */
3378 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3379 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3380 s->locked++;
3381
3382 if (level == 6) {
3383 int qd_idx = sh->qd_idx;
3384 struct r5dev *dev = &sh->dev[qd_idx];
3385
3386 set_bit(R5_LOCKED, &dev->flags);
3387 clear_bit(R5_UPTODATE, &dev->flags);
3388 s->locked++;
3389 }
3390
3391 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3392 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3393 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3394 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3395 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3396
3397 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3398 __func__, (unsigned long long)sh->sector,
3399 s->locked, s->ops_request);
3400}
3401
3402/*
3403 * Each stripe/dev can have one or more bion attached.
3404 * toread/towrite point to the first in a chain.
3405 * The bi_next chain must be in order.
3406 */
3407static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3408 int forwrite, int previous)
3409{
3410 struct bio **bip;
3411 struct r5conf *conf = sh->raid_conf;
3412 int firstwrite=0;
3413
3414 pr_debug("adding bi b#%llu to stripe s#%llu\n",
3415 (unsigned long long)bi->bi_iter.bi_sector,
3416 (unsigned long long)sh->sector);
3417
3418 spin_lock_irq(&sh->stripe_lock);
3419 sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3420 /* Don't allow new IO added to stripes in batch list */
3421 if (sh->batch_head)
3422 goto overlap;
3423 if (forwrite) {
3424 bip = &sh->dev[dd_idx].towrite;
3425 if (*bip == NULL)
3426 firstwrite = 1;
3427 } else
3428 bip = &sh->dev[dd_idx].toread;
3429 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3430 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3431 goto overlap;
3432 bip = & (*bip)->bi_next;
3433 }
3434 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3435 goto overlap;
3436
3437 if (forwrite && raid5_has_ppl(conf)) {
3438 /*
3439 * With PPL only writes to consecutive data chunks within a
3440 * stripe are allowed because for a single stripe_head we can
3441 * only have one PPL entry at a time, which describes one data
3442 * range. Not really an overlap, but wait_for_overlap can be
3443 * used to handle this.
3444 */
3445 sector_t sector;
3446 sector_t first = 0;
3447 sector_t last = 0;
3448 int count = 0;
3449 int i;
3450
3451 for (i = 0; i < sh->disks; i++) {
3452 if (i != sh->pd_idx &&
3453 (i == dd_idx || sh->dev[i].towrite)) {
3454 sector = sh->dev[i].sector;
3455 if (count == 0 || sector < first)
3456 first = sector;
3457 if (sector > last)
3458 last = sector;
3459 count++;
3460 }
3461 }
3462
3463 if (first + conf->chunk_sectors * (count - 1) != last)
3464 goto overlap;
3465 }
3466
3467 if (!forwrite || previous)
3468 clear_bit(STRIPE_BATCH_READY, &sh->state);
3469
3470 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3471 if (*bip)
3472 bi->bi_next = *bip;
3473 *bip = bi;
3474 bio_inc_remaining(bi);
3475 md_write_inc(conf->mddev, bi);
3476
3477 if (forwrite) {
3478 /* check if page is covered */
3479 sector_t sector = sh->dev[dd_idx].sector;
3480 for (bi=sh->dev[dd_idx].towrite;
3481 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3482 bi && bi->bi_iter.bi_sector <= sector;
3483 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3484 if (bio_end_sector(bi) >= sector)
3485 sector = bio_end_sector(bi);
3486 }
3487 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3488 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3489 sh->overwrite_disks++;
3490 }
3491
3492 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3493 (unsigned long long)(*bip)->bi_iter.bi_sector,
3494 (unsigned long long)sh->sector, dd_idx);
3495
3496 if (conf->mddev->bitmap && firstwrite) {
3497 /* Cannot hold spinlock over bitmap_startwrite,
3498 * but must ensure this isn't added to a batch until
3499 * we have added to the bitmap and set bm_seq.
3500 * So set STRIPE_BITMAP_PENDING to prevent
3501 * batching.
3502 * If multiple add_stripe_bio() calls race here they
3503 * much all set STRIPE_BITMAP_PENDING. So only the first one
3504 * to complete "bitmap_startwrite" gets to set
3505 * STRIPE_BIT_DELAY. This is important as once a stripe
3506 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3507 * any more.
3508 */
3509 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3510 spin_unlock_irq(&sh->stripe_lock);
3511 md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3512 RAID5_STRIPE_SECTORS(conf), 0);
3513 spin_lock_irq(&sh->stripe_lock);
3514 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3515 if (!sh->batch_head) {
3516 sh->bm_seq = conf->seq_flush+1;
3517 set_bit(STRIPE_BIT_DELAY, &sh->state);
3518 }
3519 }
3520 spin_unlock_irq(&sh->stripe_lock);
3521
3522 if (stripe_can_batch(sh))
3523 stripe_add_to_batch_list(conf, sh);
3524 return 1;
3525
3526 overlap:
3527 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3528 spin_unlock_irq(&sh->stripe_lock);
3529 return 0;
3530}
3531
3532static void end_reshape(struct r5conf *conf);
3533
3534static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3535 struct stripe_head *sh)
3536{
3537 int sectors_per_chunk =
3538 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3539 int dd_idx;
3540 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3541 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3542
3543 raid5_compute_sector(conf,
3544 stripe * (disks - conf->max_degraded)
3545 *sectors_per_chunk + chunk_offset,
3546 previous,
3547 &dd_idx, sh);
3548}
3549
3550static void
3551handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3552 struct stripe_head_state *s, int disks)
3553{
3554 int i;
3555 BUG_ON(sh->batch_head);
3556 for (i = disks; i--; ) {
3557 struct bio *bi;
3558 int bitmap_end = 0;
3559
3560 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3561 struct md_rdev *rdev;
3562 rcu_read_lock();
3563 rdev = rcu_dereference(conf->disks[i].rdev);
3564 if (rdev && test_bit(In_sync, &rdev->flags) &&
3565 !test_bit(Faulty, &rdev->flags))
3566 atomic_inc(&rdev->nr_pending);
3567 else
3568 rdev = NULL;
3569 rcu_read_unlock();
3570 if (rdev) {
3571 if (!rdev_set_badblocks(
3572 rdev,
3573 sh->sector,
3574 RAID5_STRIPE_SECTORS(conf), 0))
3575 md_error(conf->mddev, rdev);
3576 rdev_dec_pending(rdev, conf->mddev);
3577 }
3578 }
3579 spin_lock_irq(&sh->stripe_lock);
3580 /* fail all writes first */
3581 bi = sh->dev[i].towrite;
3582 sh->dev[i].towrite = NULL;
3583 sh->overwrite_disks = 0;
3584 spin_unlock_irq(&sh->stripe_lock);
3585 if (bi)
3586 bitmap_end = 1;
3587
3588 log_stripe_write_finished(sh);
3589
3590 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3591 wake_up(&conf->wait_for_overlap);
3592
3593 while (bi && bi->bi_iter.bi_sector <
3594 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3595 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3596
3597 md_write_end(conf->mddev);
3598 bio_io_error(bi);
3599 bi = nextbi;
3600 }
3601 if (bitmap_end)
3602 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3603 RAID5_STRIPE_SECTORS(conf), 0, 0);
3604 bitmap_end = 0;
3605 /* and fail all 'written' */
3606 bi = sh->dev[i].written;
3607 sh->dev[i].written = NULL;
3608 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3609 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3610 sh->dev[i].page = sh->dev[i].orig_page;
3611 }
3612
3613 if (bi) bitmap_end = 1;
3614 while (bi && bi->bi_iter.bi_sector <
3615 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3616 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3617
3618 md_write_end(conf->mddev);
3619 bio_io_error(bi);
3620 bi = bi2;
3621 }
3622
3623 /* fail any reads if this device is non-operational and
3624 * the data has not reached the cache yet.
3625 */
3626 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3627 s->failed > conf->max_degraded &&
3628 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3629 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3630 spin_lock_irq(&sh->stripe_lock);
3631 bi = sh->dev[i].toread;
3632 sh->dev[i].toread = NULL;
3633 spin_unlock_irq(&sh->stripe_lock);
3634 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3635 wake_up(&conf->wait_for_overlap);
3636 if (bi)
3637 s->to_read--;
3638 while (bi && bi->bi_iter.bi_sector <
3639 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3640 struct bio *nextbi =
3641 r5_next_bio(conf, bi, sh->dev[i].sector);
3642
3643 bio_io_error(bi);
3644 bi = nextbi;
3645 }
3646 }
3647 if (bitmap_end)
3648 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3649 RAID5_STRIPE_SECTORS(conf), 0, 0);
3650 /* If we were in the middle of a write the parity block might
3651 * still be locked - so just clear all R5_LOCKED flags
3652 */
3653 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3654 }
3655 s->to_write = 0;
3656 s->written = 0;
3657
3658 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3659 if (atomic_dec_and_test(&conf->pending_full_writes))
3660 md_wakeup_thread(conf->mddev->thread);
3661}
3662
3663static void
3664handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3665 struct stripe_head_state *s)
3666{
3667 int abort = 0;
3668 int i;
3669
3670 BUG_ON(sh->batch_head);
3671 clear_bit(STRIPE_SYNCING, &sh->state);
3672 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3673 wake_up(&conf->wait_for_overlap);
3674 s->syncing = 0;
3675 s->replacing = 0;
3676 /* There is nothing more to do for sync/check/repair.
3677 * Don't even need to abort as that is handled elsewhere
3678 * if needed, and not always wanted e.g. if there is a known
3679 * bad block here.
3680 * For recover/replace we need to record a bad block on all
3681 * non-sync devices, or abort the recovery
3682 */
3683 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3684 /* During recovery devices cannot be removed, so
3685 * locking and refcounting of rdevs is not needed
3686 */
3687 rcu_read_lock();
3688 for (i = 0; i < conf->raid_disks; i++) {
3689 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3690 if (rdev
3691 && !test_bit(Faulty, &rdev->flags)
3692 && !test_bit(In_sync, &rdev->flags)
3693 && !rdev_set_badblocks(rdev, sh->sector,
3694 RAID5_STRIPE_SECTORS(conf), 0))
3695 abort = 1;
3696 rdev = rcu_dereference(conf->disks[i].replacement);
3697 if (rdev
3698 && !test_bit(Faulty, &rdev->flags)
3699 && !test_bit(In_sync, &rdev->flags)
3700 && !rdev_set_badblocks(rdev, sh->sector,
3701 RAID5_STRIPE_SECTORS(conf), 0))
3702 abort = 1;
3703 }
3704 rcu_read_unlock();
3705 if (abort)
3706 conf->recovery_disabled =
3707 conf->mddev->recovery_disabled;
3708 }
3709 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3710}
3711
3712static int want_replace(struct stripe_head *sh, int disk_idx)
3713{
3714 struct md_rdev *rdev;
3715 int rv = 0;
3716
3717 rcu_read_lock();
3718 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3719 if (rdev
3720 && !test_bit(Faulty, &rdev->flags)
3721 && !test_bit(In_sync, &rdev->flags)
3722 && (rdev->recovery_offset <= sh->sector
3723 || rdev->mddev->recovery_cp <= sh->sector))
3724 rv = 1;
3725 rcu_read_unlock();
3726 return rv;
3727}
3728
3729static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3730 int disk_idx, int disks)
3731{
3732 struct r5dev *dev = &sh->dev[disk_idx];
3733 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3734 &sh->dev[s->failed_num[1]] };
3735 int i;
3736 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3737
3738
3739 if (test_bit(R5_LOCKED, &dev->flags) ||
3740 test_bit(R5_UPTODATE, &dev->flags))
3741 /* No point reading this as we already have it or have
3742 * decided to get it.
3743 */
3744 return 0;
3745
3746 if (dev->toread ||
3747 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3748 /* We need this block to directly satisfy a request */
3749 return 1;
3750
3751 if (s->syncing || s->expanding ||
3752 (s->replacing && want_replace(sh, disk_idx)))
3753 /* When syncing, or expanding we read everything.
3754 * When replacing, we need the replaced block.
3755 */
3756 return 1;
3757
3758 if ((s->failed >= 1 && fdev[0]->toread) ||
3759 (s->failed >= 2 && fdev[1]->toread))
3760 /* If we want to read from a failed device, then
3761 * we need to actually read every other device.
3762 */
3763 return 1;
3764
3765 /* Sometimes neither read-modify-write nor reconstruct-write
3766 * cycles can work. In those cases we read every block we
3767 * can. Then the parity-update is certain to have enough to
3768 * work with.
3769 * This can only be a problem when we need to write something,
3770 * and some device has failed. If either of those tests
3771 * fail we need look no further.
3772 */
3773 if (!s->failed || !s->to_write)
3774 return 0;
3775
3776 if (test_bit(R5_Insync, &dev->flags) &&
3777 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3778 /* Pre-reads at not permitted until after short delay
3779 * to gather multiple requests. However if this
3780 * device is no Insync, the block could only be computed
3781 * and there is no need to delay that.
3782 */
3783 return 0;
3784
3785 for (i = 0; i < s->failed && i < 2; i++) {
3786 if (fdev[i]->towrite &&
3787 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3788 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3789 /* If we have a partial write to a failed
3790 * device, then we will need to reconstruct
3791 * the content of that device, so all other
3792 * devices must be read.
3793 */
3794 return 1;
3795
3796 if (s->failed >= 2 &&
3797 (fdev[i]->towrite ||
3798 s->failed_num[i] == sh->pd_idx ||
3799 s->failed_num[i] == sh->qd_idx) &&
3800 !test_bit(R5_UPTODATE, &fdev[i]->flags))
3801 /* In max degraded raid6, If the failed disk is P, Q,
3802 * or we want to read the failed disk, we need to do
3803 * reconstruct-write.
3804 */
3805 force_rcw = true;
3806 }
3807
3808 /* If we are forced to do a reconstruct-write, because parity
3809 * cannot be trusted and we are currently recovering it, there
3810 * is extra need to be careful.
3811 * If one of the devices that we would need to read, because
3812 * it is not being overwritten (and maybe not written at all)
3813 * is missing/faulty, then we need to read everything we can.
3814 */
3815 if (!force_rcw &&
3816 sh->sector < sh->raid_conf->mddev->recovery_cp)
3817 /* reconstruct-write isn't being forced */
3818 return 0;
3819 for (i = 0; i < s->failed && i < 2; i++) {
3820 if (s->failed_num[i] != sh->pd_idx &&
3821 s->failed_num[i] != sh->qd_idx &&
3822 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3823 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3824 return 1;
3825 }
3826
3827 return 0;
3828}
3829
3830/* fetch_block - checks the given member device to see if its data needs
3831 * to be read or computed to satisfy a request.
3832 *
3833 * Returns 1 when no more member devices need to be checked, otherwise returns
3834 * 0 to tell the loop in handle_stripe_fill to continue
3835 */
3836static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3837 int disk_idx, int disks)
3838{
3839 struct r5dev *dev = &sh->dev[disk_idx];
3840
3841 /* is the data in this block needed, and can we get it? */
3842 if (need_this_block(sh, s, disk_idx, disks)) {
3843 /* we would like to get this block, possibly by computing it,
3844 * otherwise read it if the backing disk is insync
3845 */
3846 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3847 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3848 BUG_ON(sh->batch_head);
3849
3850 /*
3851 * In the raid6 case if the only non-uptodate disk is P
3852 * then we already trusted P to compute the other failed
3853 * drives. It is safe to compute rather than re-read P.
3854 * In other cases we only compute blocks from failed
3855 * devices, otherwise check/repair might fail to detect
3856 * a real inconsistency.
3857 */
3858
3859 if ((s->uptodate == disks - 1) &&
3860 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3861 (s->failed && (disk_idx == s->failed_num[0] ||
3862 disk_idx == s->failed_num[1])))) {
3863 /* have disk failed, and we're requested to fetch it;
3864 * do compute it
3865 */
3866 pr_debug("Computing stripe %llu block %d\n",
3867 (unsigned long long)sh->sector, disk_idx);
3868 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3869 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3870 set_bit(R5_Wantcompute, &dev->flags);
3871 sh->ops.target = disk_idx;
3872 sh->ops.target2 = -1; /* no 2nd target */
3873 s->req_compute = 1;
3874 /* Careful: from this point on 'uptodate' is in the eye
3875 * of raid_run_ops which services 'compute' operations
3876 * before writes. R5_Wantcompute flags a block that will
3877 * be R5_UPTODATE by the time it is needed for a
3878 * subsequent operation.
3879 */
3880 s->uptodate++;
3881 return 1;
3882 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3883 /* Computing 2-failure is *very* expensive; only
3884 * do it if failed >= 2
3885 */
3886 int other;
3887 for (other = disks; other--; ) {
3888 if (other == disk_idx)
3889 continue;
3890 if (!test_bit(R5_UPTODATE,
3891 &sh->dev[other].flags))
3892 break;
3893 }
3894 BUG_ON(other < 0);
3895 pr_debug("Computing stripe %llu blocks %d,%d\n",
3896 (unsigned long long)sh->sector,
3897 disk_idx, other);
3898 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3899 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3900 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3901 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3902 sh->ops.target = disk_idx;
3903 sh->ops.target2 = other;
3904 s->uptodate += 2;
3905 s->req_compute = 1;
3906 return 1;
3907 } else if (test_bit(R5_Insync, &dev->flags)) {
3908 set_bit(R5_LOCKED, &dev->flags);
3909 set_bit(R5_Wantread, &dev->flags);
3910 s->locked++;
3911 pr_debug("Reading block %d (sync=%d)\n",
3912 disk_idx, s->syncing);
3913 }
3914 }
3915
3916 return 0;
3917}
3918
3919/*
3920 * handle_stripe_fill - read or compute data to satisfy pending requests.
3921 */
3922static void handle_stripe_fill(struct stripe_head *sh,
3923 struct stripe_head_state *s,
3924 int disks)
3925{
3926 int i;
3927
3928 /* look for blocks to read/compute, skip this if a compute
3929 * is already in flight, or if the stripe contents are in the
3930 * midst of changing due to a write
3931 */
3932 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3933 !sh->reconstruct_state) {
3934
3935 /*
3936 * For degraded stripe with data in journal, do not handle
3937 * read requests yet, instead, flush the stripe to raid
3938 * disks first, this avoids handling complex rmw of write
3939 * back cache (prexor with orig_page, and then xor with
3940 * page) in the read path
3941 */
3942 if (s->injournal && s->failed) {
3943 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3944 r5c_make_stripe_write_out(sh);
3945 goto out;
3946 }
3947
3948 for (i = disks; i--; )
3949 if (fetch_block(sh, s, i, disks))
3950 break;
3951 }
3952out:
3953 set_bit(STRIPE_HANDLE, &sh->state);
3954}
3955
3956static void break_stripe_batch_list(struct stripe_head *head_sh,
3957 unsigned long handle_flags);
3958/* handle_stripe_clean_event
3959 * any written block on an uptodate or failed drive can be returned.
3960 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3961 * never LOCKED, so we don't need to test 'failed' directly.
3962 */
3963static void handle_stripe_clean_event(struct r5conf *conf,
3964 struct stripe_head *sh, int disks)
3965{
3966 int i;
3967 struct r5dev *dev;
3968 int discard_pending = 0;
3969 struct stripe_head *head_sh = sh;
3970 bool do_endio = false;
3971
3972 for (i = disks; i--; )
3973 if (sh->dev[i].written) {
3974 dev = &sh->dev[i];
3975 if (!test_bit(R5_LOCKED, &dev->flags) &&
3976 (test_bit(R5_UPTODATE, &dev->flags) ||
3977 test_bit(R5_Discard, &dev->flags) ||
3978 test_bit(R5_SkipCopy, &dev->flags))) {
3979 /* We can return any write requests */
3980 struct bio *wbi, *wbi2;
3981 pr_debug("Return write for disc %d\n", i);
3982 if (test_and_clear_bit(R5_Discard, &dev->flags))
3983 clear_bit(R5_UPTODATE, &dev->flags);
3984 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3985 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3986 }
3987 do_endio = true;
3988
3989returnbi:
3990 dev->page = dev->orig_page;
3991 wbi = dev->written;
3992 dev->written = NULL;
3993 while (wbi && wbi->bi_iter.bi_sector <
3994 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
3995 wbi2 = r5_next_bio(conf, wbi, dev->sector);
3996 md_write_end(conf->mddev);
3997 bio_endio(wbi);
3998 wbi = wbi2;
3999 }
4000 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
4001 RAID5_STRIPE_SECTORS(conf),
4002 !test_bit(STRIPE_DEGRADED, &sh->state),
4003 0);
4004 if (head_sh->batch_head) {
4005 sh = list_first_entry(&sh->batch_list,
4006 struct stripe_head,
4007 batch_list);
4008 if (sh != head_sh) {
4009 dev = &sh->dev[i];
4010 goto returnbi;
4011 }
4012 }
4013 sh = head_sh;
4014 dev = &sh->dev[i];
4015 } else if (test_bit(R5_Discard, &dev->flags))
4016 discard_pending = 1;
4017 }
4018
4019 log_stripe_write_finished(sh);
4020
4021 if (!discard_pending &&
4022 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4023 int hash;
4024 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4025 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4026 if (sh->qd_idx >= 0) {
4027 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4028 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4029 }
4030 /* now that discard is done we can proceed with any sync */
4031 clear_bit(STRIPE_DISCARD, &sh->state);
4032 /*
4033 * SCSI discard will change some bio fields and the stripe has
4034 * no updated data, so remove it from hash list and the stripe
4035 * will be reinitialized
4036 */
4037unhash:
4038 hash = sh->hash_lock_index;
4039 spin_lock_irq(conf->hash_locks + hash);
4040 remove_hash(sh);
4041 spin_unlock_irq(conf->hash_locks + hash);
4042 if (head_sh->batch_head) {
4043 sh = list_first_entry(&sh->batch_list,
4044 struct stripe_head, batch_list);
4045 if (sh != head_sh)
4046 goto unhash;
4047 }
4048 sh = head_sh;
4049
4050 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4051 set_bit(STRIPE_HANDLE, &sh->state);
4052
4053 }
4054
4055 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4056 if (atomic_dec_and_test(&conf->pending_full_writes))
4057 md_wakeup_thread(conf->mddev->thread);
4058
4059 if (head_sh->batch_head && do_endio)
4060 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4061}
4062
4063/*
4064 * For RMW in write back cache, we need extra page in prexor to store the
4065 * old data. This page is stored in dev->orig_page.
4066 *
4067 * This function checks whether we have data for prexor. The exact logic
4068 * is:
4069 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4070 */
4071static inline bool uptodate_for_rmw(struct r5dev *dev)
4072{
4073 return (test_bit(R5_UPTODATE, &dev->flags)) &&
4074 (!test_bit(R5_InJournal, &dev->flags) ||
4075 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4076}
4077
4078static int handle_stripe_dirtying(struct r5conf *conf,
4079 struct stripe_head *sh,
4080 struct stripe_head_state *s,
4081 int disks)
4082{
4083 int rmw = 0, rcw = 0, i;
4084 sector_t recovery_cp = conf->mddev->recovery_cp;
4085
4086 /* Check whether resync is now happening or should start.
4087 * If yes, then the array is dirty (after unclean shutdown or
4088 * initial creation), so parity in some stripes might be inconsistent.
4089 * In this case, we need to always do reconstruct-write, to ensure
4090 * that in case of drive failure or read-error correction, we
4091 * generate correct data from the parity.
4092 */
4093 if (conf->rmw_level == PARITY_DISABLE_RMW ||
4094 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4095 s->failed == 0)) {
4096 /* Calculate the real rcw later - for now make it
4097 * look like rcw is cheaper
4098 */
4099 rcw = 1; rmw = 2;
4100 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4101 conf->rmw_level, (unsigned long long)recovery_cp,
4102 (unsigned long long)sh->sector);
4103 } else for (i = disks; i--; ) {
4104 /* would I have to read this buffer for read_modify_write */
4105 struct r5dev *dev = &sh->dev[i];
4106 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4107 i == sh->pd_idx || i == sh->qd_idx ||
4108 test_bit(R5_InJournal, &dev->flags)) &&
4109 !test_bit(R5_LOCKED, &dev->flags) &&
4110 !(uptodate_for_rmw(dev) ||
4111 test_bit(R5_Wantcompute, &dev->flags))) {
4112 if (test_bit(R5_Insync, &dev->flags))
4113 rmw++;
4114 else
4115 rmw += 2*disks; /* cannot read it */
4116 }
4117 /* Would I have to read this buffer for reconstruct_write */
4118 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4119 i != sh->pd_idx && i != sh->qd_idx &&
4120 !test_bit(R5_LOCKED, &dev->flags) &&
4121 !(test_bit(R5_UPTODATE, &dev->flags) ||
4122 test_bit(R5_Wantcompute, &dev->flags))) {
4123 if (test_bit(R5_Insync, &dev->flags))
4124 rcw++;
4125 else
4126 rcw += 2*disks;
4127 }
4128 }
4129
4130 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4131 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4132 set_bit(STRIPE_HANDLE, &sh->state);
4133 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4134 /* prefer read-modify-write, but need to get some data */
4135 if (conf->mddev->queue)
4136 blk_add_trace_msg(conf->mddev->queue,
4137 "raid5 rmw %llu %d",
4138 (unsigned long long)sh->sector, rmw);
4139 for (i = disks; i--; ) {
4140 struct r5dev *dev = &sh->dev[i];
4141 if (test_bit(R5_InJournal, &dev->flags) &&
4142 dev->page == dev->orig_page &&
4143 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4144 /* alloc page for prexor */
4145 struct page *p = alloc_page(GFP_NOIO);
4146
4147 if (p) {
4148 dev->orig_page = p;
4149 continue;
4150 }
4151
4152 /*
4153 * alloc_page() failed, try use
4154 * disk_info->extra_page
4155 */
4156 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4157 &conf->cache_state)) {
4158 r5c_use_extra_page(sh);
4159 break;
4160 }
4161
4162 /* extra_page in use, add to delayed_list */
4163 set_bit(STRIPE_DELAYED, &sh->state);
4164 s->waiting_extra_page = 1;
4165 return -EAGAIN;
4166 }
4167 }
4168
4169 for (i = disks; i--; ) {
4170 struct r5dev *dev = &sh->dev[i];
4171 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4172 i == sh->pd_idx || i == sh->qd_idx ||
4173 test_bit(R5_InJournal, &dev->flags)) &&
4174 !test_bit(R5_LOCKED, &dev->flags) &&
4175 !(uptodate_for_rmw(dev) ||
4176 test_bit(R5_Wantcompute, &dev->flags)) &&
4177 test_bit(R5_Insync, &dev->flags)) {
4178 if (test_bit(STRIPE_PREREAD_ACTIVE,
4179 &sh->state)) {
4180 pr_debug("Read_old block %d for r-m-w\n",
4181 i);
4182 set_bit(R5_LOCKED, &dev->flags);
4183 set_bit(R5_Wantread, &dev->flags);
4184 s->locked++;
4185 } else
4186 set_bit(STRIPE_DELAYED, &sh->state);
4187 }
4188 }
4189 }
4190 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4191 /* want reconstruct write, but need to get some data */
4192 int qread =0;
4193 rcw = 0;
4194 for (i = disks; i--; ) {
4195 struct r5dev *dev = &sh->dev[i];
4196 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4197 i != sh->pd_idx && i != sh->qd_idx &&
4198 !test_bit(R5_LOCKED, &dev->flags) &&
4199 !(test_bit(R5_UPTODATE, &dev->flags) ||
4200 test_bit(R5_Wantcompute, &dev->flags))) {
4201 rcw++;
4202 if (test_bit(R5_Insync, &dev->flags) &&
4203 test_bit(STRIPE_PREREAD_ACTIVE,
4204 &sh->state)) {
4205 pr_debug("Read_old block "
4206 "%d for Reconstruct\n", i);
4207 set_bit(R5_LOCKED, &dev->flags);
4208 set_bit(R5_Wantread, &dev->flags);
4209 s->locked++;
4210 qread++;
4211 } else
4212 set_bit(STRIPE_DELAYED, &sh->state);
4213 }
4214 }
4215 if (rcw && conf->mddev->queue)
4216 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
4217 (unsigned long long)sh->sector,
4218 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4219 }
4220
4221 if (rcw > disks && rmw > disks &&
4222 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4223 set_bit(STRIPE_DELAYED, &sh->state);
4224
4225 /* now if nothing is locked, and if we have enough data,
4226 * we can start a write request
4227 */
4228 /* since handle_stripe can be called at any time we need to handle the
4229 * case where a compute block operation has been submitted and then a
4230 * subsequent call wants to start a write request. raid_run_ops only
4231 * handles the case where compute block and reconstruct are requested
4232 * simultaneously. If this is not the case then new writes need to be
4233 * held off until the compute completes.
4234 */
4235 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4236 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4237 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4238 schedule_reconstruction(sh, s, rcw == 0, 0);
4239 return 0;
4240}
4241
4242static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4243 struct stripe_head_state *s, int disks)
4244{
4245 struct r5dev *dev = NULL;
4246
4247 BUG_ON(sh->batch_head);
4248 set_bit(STRIPE_HANDLE, &sh->state);
4249
4250 switch (sh->check_state) {
4251 case check_state_idle:
4252 /* start a new check operation if there are no failures */
4253 if (s->failed == 0) {
4254 BUG_ON(s->uptodate != disks);
4255 sh->check_state = check_state_run;
4256 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4257 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4258 s->uptodate--;
4259 break;
4260 }
4261 dev = &sh->dev[s->failed_num[0]];
4262 fallthrough;
4263 case check_state_compute_result:
4264 sh->check_state = check_state_idle;
4265 if (!dev)
4266 dev = &sh->dev[sh->pd_idx];
4267
4268 /* check that a write has not made the stripe insync */
4269 if (test_bit(STRIPE_INSYNC, &sh->state))
4270 break;
4271
4272 /* either failed parity check, or recovery is happening */
4273 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4274 BUG_ON(s->uptodate != disks);
4275
4276 set_bit(R5_LOCKED, &dev->flags);
4277 s->locked++;
4278 set_bit(R5_Wantwrite, &dev->flags);
4279
4280 clear_bit(STRIPE_DEGRADED, &sh->state);
4281 set_bit(STRIPE_INSYNC, &sh->state);
4282 break;
4283 case check_state_run:
4284 break; /* we will be called again upon completion */
4285 case check_state_check_result:
4286 sh->check_state = check_state_idle;
4287
4288 /* if a failure occurred during the check operation, leave
4289 * STRIPE_INSYNC not set and let the stripe be handled again
4290 */
4291 if (s->failed)
4292 break;
4293
4294 /* handle a successful check operation, if parity is correct
4295 * we are done. Otherwise update the mismatch count and repair
4296 * parity if !MD_RECOVERY_CHECK
4297 */
4298 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4299 /* parity is correct (on disc,
4300 * not in buffer any more)
4301 */
4302 set_bit(STRIPE_INSYNC, &sh->state);
4303 else {
4304 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4305 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4306 /* don't try to repair!! */
4307 set_bit(STRIPE_INSYNC, &sh->state);
4308 pr_warn_ratelimited("%s: mismatch sector in range "
4309 "%llu-%llu\n", mdname(conf->mddev),
4310 (unsigned long long) sh->sector,
4311 (unsigned long long) sh->sector +
4312 RAID5_STRIPE_SECTORS(conf));
4313 } else {
4314 sh->check_state = check_state_compute_run;
4315 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4316 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4317 set_bit(R5_Wantcompute,
4318 &sh->dev[sh->pd_idx].flags);
4319 sh->ops.target = sh->pd_idx;
4320 sh->ops.target2 = -1;
4321 s->uptodate++;
4322 }
4323 }
4324 break;
4325 case check_state_compute_run:
4326 break;
4327 default:
4328 pr_err("%s: unknown check_state: %d sector: %llu\n",
4329 __func__, sh->check_state,
4330 (unsigned long long) sh->sector);
4331 BUG();
4332 }
4333}
4334
4335static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4336 struct stripe_head_state *s,
4337 int disks)
4338{
4339 int pd_idx = sh->pd_idx;
4340 int qd_idx = sh->qd_idx;
4341 struct r5dev *dev;
4342
4343 BUG_ON(sh->batch_head);
4344 set_bit(STRIPE_HANDLE, &sh->state);
4345
4346 BUG_ON(s->failed > 2);
4347
4348 /* Want to check and possibly repair P and Q.
4349 * However there could be one 'failed' device, in which
4350 * case we can only check one of them, possibly using the
4351 * other to generate missing data
4352 */
4353
4354 switch (sh->check_state) {
4355 case check_state_idle:
4356 /* start a new check operation if there are < 2 failures */
4357 if (s->failed == s->q_failed) {
4358 /* The only possible failed device holds Q, so it
4359 * makes sense to check P (If anything else were failed,
4360 * we would have used P to recreate it).
4361 */
4362 sh->check_state = check_state_run;
4363 }
4364 if (!s->q_failed && s->failed < 2) {
4365 /* Q is not failed, and we didn't use it to generate
4366 * anything, so it makes sense to check it
4367 */
4368 if (sh->check_state == check_state_run)
4369 sh->check_state = check_state_run_pq;
4370 else
4371 sh->check_state = check_state_run_q;
4372 }
4373
4374 /* discard potentially stale zero_sum_result */
4375 sh->ops.zero_sum_result = 0;
4376
4377 if (sh->check_state == check_state_run) {
4378 /* async_xor_zero_sum destroys the contents of P */
4379 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4380 s->uptodate--;
4381 }
4382 if (sh->check_state >= check_state_run &&
4383 sh->check_state <= check_state_run_pq) {
4384 /* async_syndrome_zero_sum preserves P and Q, so
4385 * no need to mark them !uptodate here
4386 */
4387 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4388 break;
4389 }
4390
4391 /* we have 2-disk failure */
4392 BUG_ON(s->failed != 2);
4393 fallthrough;
4394 case check_state_compute_result:
4395 sh->check_state = check_state_idle;
4396
4397 /* check that a write has not made the stripe insync */
4398 if (test_bit(STRIPE_INSYNC, &sh->state))
4399 break;
4400
4401 /* now write out any block on a failed drive,
4402 * or P or Q if they were recomputed
4403 */
4404 dev = NULL;
4405 if (s->failed == 2) {
4406 dev = &sh->dev[s->failed_num[1]];
4407 s->locked++;
4408 set_bit(R5_LOCKED, &dev->flags);
4409 set_bit(R5_Wantwrite, &dev->flags);
4410 }
4411 if (s->failed >= 1) {
4412 dev = &sh->dev[s->failed_num[0]];
4413 s->locked++;
4414 set_bit(R5_LOCKED, &dev->flags);
4415 set_bit(R5_Wantwrite, &dev->flags);
4416 }
4417 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4418 dev = &sh->dev[pd_idx];
4419 s->locked++;
4420 set_bit(R5_LOCKED, &dev->flags);
4421 set_bit(R5_Wantwrite, &dev->flags);
4422 }
4423 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4424 dev = &sh->dev[qd_idx];
4425 s->locked++;
4426 set_bit(R5_LOCKED, &dev->flags);
4427 set_bit(R5_Wantwrite, &dev->flags);
4428 }
4429 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4430 "%s: disk%td not up to date\n",
4431 mdname(conf->mddev),
4432 dev - (struct r5dev *) &sh->dev)) {
4433 clear_bit(R5_LOCKED, &dev->flags);
4434 clear_bit(R5_Wantwrite, &dev->flags);
4435 s->locked--;
4436 }
4437 clear_bit(STRIPE_DEGRADED, &sh->state);
4438
4439 set_bit(STRIPE_INSYNC, &sh->state);
4440 break;
4441 case check_state_run:
4442 case check_state_run_q:
4443 case check_state_run_pq:
4444 break; /* we will be called again upon completion */
4445 case check_state_check_result:
4446 sh->check_state = check_state_idle;
4447
4448 /* handle a successful check operation, if parity is correct
4449 * we are done. Otherwise update the mismatch count and repair
4450 * parity if !MD_RECOVERY_CHECK
4451 */
4452 if (sh->ops.zero_sum_result == 0) {
4453 /* both parities are correct */
4454 if (!s->failed)
4455 set_bit(STRIPE_INSYNC, &sh->state);
4456 else {
4457 /* in contrast to the raid5 case we can validate
4458 * parity, but still have a failure to write
4459 * back
4460 */
4461 sh->check_state = check_state_compute_result;
4462 /* Returning at this point means that we may go
4463 * off and bring p and/or q uptodate again so
4464 * we make sure to check zero_sum_result again
4465 * to verify if p or q need writeback
4466 */
4467 }
4468 } else {
4469 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4470 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4471 /* don't try to repair!! */
4472 set_bit(STRIPE_INSYNC, &sh->state);
4473 pr_warn_ratelimited("%s: mismatch sector in range "
4474 "%llu-%llu\n", mdname(conf->mddev),
4475 (unsigned long long) sh->sector,
4476 (unsigned long long) sh->sector +
4477 RAID5_STRIPE_SECTORS(conf));
4478 } else {
4479 int *target = &sh->ops.target;
4480
4481 sh->ops.target = -1;
4482 sh->ops.target2 = -1;
4483 sh->check_state = check_state_compute_run;
4484 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4485 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4486 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4487 set_bit(R5_Wantcompute,
4488 &sh->dev[pd_idx].flags);
4489 *target = pd_idx;
4490 target = &sh->ops.target2;
4491 s->uptodate++;
4492 }
4493 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4494 set_bit(R5_Wantcompute,
4495 &sh->dev[qd_idx].flags);
4496 *target = qd_idx;
4497 s->uptodate++;
4498 }
4499 }
4500 }
4501 break;
4502 case check_state_compute_run:
4503 break;
4504 default:
4505 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4506 __func__, sh->check_state,
4507 (unsigned long long) sh->sector);
4508 BUG();
4509 }
4510}
4511
4512static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4513{
4514 int i;
4515
4516 /* We have read all the blocks in this stripe and now we need to
4517 * copy some of them into a target stripe for expand.
4518 */
4519 struct dma_async_tx_descriptor *tx = NULL;
4520 BUG_ON(sh->batch_head);
4521 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4522 for (i = 0; i < sh->disks; i++)
4523 if (i != sh->pd_idx && i != sh->qd_idx) {
4524 int dd_idx, j;
4525 struct stripe_head *sh2;
4526 struct async_submit_ctl submit;
4527
4528 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4529 sector_t s = raid5_compute_sector(conf, bn, 0,
4530 &dd_idx, NULL);
4531 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4532 if (sh2 == NULL)
4533 /* so far only the early blocks of this stripe
4534 * have been requested. When later blocks
4535 * get requested, we will try again
4536 */
4537 continue;
4538 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4539 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4540 /* must have already done this block */
4541 raid5_release_stripe(sh2);
4542 continue;
4543 }
4544
4545 /* place all the copies on one channel */
4546 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4547 tx = async_memcpy(sh2->dev[dd_idx].page,
4548 sh->dev[i].page, sh2->dev[dd_idx].offset,
4549 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4550 &submit);
4551
4552 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4553 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4554 for (j = 0; j < conf->raid_disks; j++)
4555 if (j != sh2->pd_idx &&
4556 j != sh2->qd_idx &&
4557 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4558 break;
4559 if (j == conf->raid_disks) {
4560 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4561 set_bit(STRIPE_HANDLE, &sh2->state);
4562 }
4563 raid5_release_stripe(sh2);
4564
4565 }
4566 /* done submitting copies, wait for them to complete */
4567 async_tx_quiesce(&tx);
4568}
4569
4570/*
4571 * handle_stripe - do things to a stripe.
4572 *
4573 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4574 * state of various bits to see what needs to be done.
4575 * Possible results:
4576 * return some read requests which now have data
4577 * return some write requests which are safely on storage
4578 * schedule a read on some buffers
4579 * schedule a write of some buffers
4580 * return confirmation of parity correctness
4581 *
4582 */
4583
4584static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4585{
4586 struct r5conf *conf = sh->raid_conf;
4587 int disks = sh->disks;
4588 struct r5dev *dev;
4589 int i;
4590 int do_recovery = 0;
4591
4592 memset(s, 0, sizeof(*s));
4593
4594 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4595 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4596 s->failed_num[0] = -1;
4597 s->failed_num[1] = -1;
4598 s->log_failed = r5l_log_disk_error(conf);
4599
4600 /* Now to look around and see what can be done */
4601 rcu_read_lock();
4602 for (i=disks; i--; ) {
4603 struct md_rdev *rdev;
4604 sector_t first_bad;
4605 int bad_sectors;
4606 int is_bad = 0;
4607
4608 dev = &sh->dev[i];
4609
4610 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4611 i, dev->flags,
4612 dev->toread, dev->towrite, dev->written);
4613 /* maybe we can reply to a read
4614 *
4615 * new wantfill requests are only permitted while
4616 * ops_complete_biofill is guaranteed to be inactive
4617 */
4618 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4619 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4620 set_bit(R5_Wantfill, &dev->flags);
4621
4622 /* now count some things */
4623 if (test_bit(R5_LOCKED, &dev->flags))
4624 s->locked++;
4625 if (test_bit(R5_UPTODATE, &dev->flags))
4626 s->uptodate++;
4627 if (test_bit(R5_Wantcompute, &dev->flags)) {
4628 s->compute++;
4629 BUG_ON(s->compute > 2);
4630 }
4631
4632 if (test_bit(R5_Wantfill, &dev->flags))
4633 s->to_fill++;
4634 else if (dev->toread)
4635 s->to_read++;
4636 if (dev->towrite) {
4637 s->to_write++;
4638 if (!test_bit(R5_OVERWRITE, &dev->flags))
4639 s->non_overwrite++;
4640 }
4641 if (dev->written)
4642 s->written++;
4643 /* Prefer to use the replacement for reads, but only
4644 * if it is recovered enough and has no bad blocks.
4645 */
4646 rdev = rcu_dereference(conf->disks[i].replacement);
4647 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4648 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4649 !is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4650 &first_bad, &bad_sectors))
4651 set_bit(R5_ReadRepl, &dev->flags);
4652 else {
4653 if (rdev && !test_bit(Faulty, &rdev->flags))
4654 set_bit(R5_NeedReplace, &dev->flags);
4655 else
4656 clear_bit(R5_NeedReplace, &dev->flags);
4657 rdev = rcu_dereference(conf->disks[i].rdev);
4658 clear_bit(R5_ReadRepl, &dev->flags);
4659 }
4660 if (rdev && test_bit(Faulty, &rdev->flags))
4661 rdev = NULL;
4662 if (rdev) {
4663 is_bad = is_badblock(rdev, sh->sector, RAID5_STRIPE_SECTORS(conf),
4664 &first_bad, &bad_sectors);
4665 if (s->blocked_rdev == NULL
4666 && (test_bit(Blocked, &rdev->flags)
4667 || is_bad < 0)) {
4668 if (is_bad < 0)
4669 set_bit(BlockedBadBlocks,
4670 &rdev->flags);
4671 s->blocked_rdev = rdev;
4672 atomic_inc(&rdev->nr_pending);
4673 }
4674 }
4675 clear_bit(R5_Insync, &dev->flags);
4676 if (!rdev)
4677 /* Not in-sync */;
4678 else if (is_bad) {
4679 /* also not in-sync */
4680 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4681 test_bit(R5_UPTODATE, &dev->flags)) {
4682 /* treat as in-sync, but with a read error
4683 * which we can now try to correct
4684 */
4685 set_bit(R5_Insync, &dev->flags);
4686 set_bit(R5_ReadError, &dev->flags);
4687 }
4688 } else if (test_bit(In_sync, &rdev->flags))
4689 set_bit(R5_Insync, &dev->flags);
4690 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4691 /* in sync if before recovery_offset */
4692 set_bit(R5_Insync, &dev->flags);
4693 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4694 test_bit(R5_Expanded, &dev->flags))
4695 /* If we've reshaped into here, we assume it is Insync.
4696 * We will shortly update recovery_offset to make
4697 * it official.
4698 */
4699 set_bit(R5_Insync, &dev->flags);
4700
4701 if (test_bit(R5_WriteError, &dev->flags)) {
4702 /* This flag does not apply to '.replacement'
4703 * only to .rdev, so make sure to check that*/
4704 struct md_rdev *rdev2 = rcu_dereference(
4705 conf->disks[i].rdev);
4706 if (rdev2 == rdev)
4707 clear_bit(R5_Insync, &dev->flags);
4708 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4709 s->handle_bad_blocks = 1;
4710 atomic_inc(&rdev2->nr_pending);
4711 } else
4712 clear_bit(R5_WriteError, &dev->flags);
4713 }
4714 if (test_bit(R5_MadeGood, &dev->flags)) {
4715 /* This flag does not apply to '.replacement'
4716 * only to .rdev, so make sure to check that*/
4717 struct md_rdev *rdev2 = rcu_dereference(
4718 conf->disks[i].rdev);
4719 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4720 s->handle_bad_blocks = 1;
4721 atomic_inc(&rdev2->nr_pending);
4722 } else
4723 clear_bit(R5_MadeGood, &dev->flags);
4724 }
4725 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4726 struct md_rdev *rdev2 = rcu_dereference(
4727 conf->disks[i].replacement);
4728 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4729 s->handle_bad_blocks = 1;
4730 atomic_inc(&rdev2->nr_pending);
4731 } else
4732 clear_bit(R5_MadeGoodRepl, &dev->flags);
4733 }
4734 if (!test_bit(R5_Insync, &dev->flags)) {
4735 /* The ReadError flag will just be confusing now */
4736 clear_bit(R5_ReadError, &dev->flags);
4737 clear_bit(R5_ReWrite, &dev->flags);
4738 }
4739 if (test_bit(R5_ReadError, &dev->flags))
4740 clear_bit(R5_Insync, &dev->flags);
4741 if (!test_bit(R5_Insync, &dev->flags)) {
4742 if (s->failed < 2)
4743 s->failed_num[s->failed] = i;
4744 s->failed++;
4745 if (rdev && !test_bit(Faulty, &rdev->flags))
4746 do_recovery = 1;
4747 else if (!rdev) {
4748 rdev = rcu_dereference(
4749 conf->disks[i].replacement);
4750 if (rdev && !test_bit(Faulty, &rdev->flags))
4751 do_recovery = 1;
4752 }
4753 }
4754
4755 if (test_bit(R5_InJournal, &dev->flags))
4756 s->injournal++;
4757 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4758 s->just_cached++;
4759 }
4760 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4761 /* If there is a failed device being replaced,
4762 * we must be recovering.
4763 * else if we are after recovery_cp, we must be syncing
4764 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4765 * else we can only be replacing
4766 * sync and recovery both need to read all devices, and so
4767 * use the same flag.
4768 */
4769 if (do_recovery ||
4770 sh->sector >= conf->mddev->recovery_cp ||
4771 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4772 s->syncing = 1;
4773 else
4774 s->replacing = 1;
4775 }
4776 rcu_read_unlock();
4777}
4778
4779/*
4780 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4781 * a head which can now be handled.
4782 */
4783static int clear_batch_ready(struct stripe_head *sh)
4784{
4785 struct stripe_head *tmp;
4786 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4787 return (sh->batch_head && sh->batch_head != sh);
4788 spin_lock(&sh->stripe_lock);
4789 if (!sh->batch_head) {
4790 spin_unlock(&sh->stripe_lock);
4791 return 0;
4792 }
4793
4794 /*
4795 * this stripe could be added to a batch list before we check
4796 * BATCH_READY, skips it
4797 */
4798 if (sh->batch_head != sh) {
4799 spin_unlock(&sh->stripe_lock);
4800 return 1;
4801 }
4802 spin_lock(&sh->batch_lock);
4803 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4804 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4805 spin_unlock(&sh->batch_lock);
4806 spin_unlock(&sh->stripe_lock);
4807
4808 /*
4809 * BATCH_READY is cleared, no new stripes can be added.
4810 * batch_list can be accessed without lock
4811 */
4812 return 0;
4813}
4814
4815static void break_stripe_batch_list(struct stripe_head *head_sh,
4816 unsigned long handle_flags)
4817{
4818 struct stripe_head *sh, *next;
4819 int i;
4820 int do_wakeup = 0;
4821
4822 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4823
4824 list_del_init(&sh->batch_list);
4825
4826 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4827 (1 << STRIPE_SYNCING) |
4828 (1 << STRIPE_REPLACED) |
4829 (1 << STRIPE_DELAYED) |
4830 (1 << STRIPE_BIT_DELAY) |
4831 (1 << STRIPE_FULL_WRITE) |
4832 (1 << STRIPE_BIOFILL_RUN) |
4833 (1 << STRIPE_COMPUTE_RUN) |
4834 (1 << STRIPE_DISCARD) |
4835 (1 << STRIPE_BATCH_READY) |
4836 (1 << STRIPE_BATCH_ERR) |
4837 (1 << STRIPE_BITMAP_PENDING)),
4838 "stripe state: %lx\n", sh->state);
4839 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4840 (1 << STRIPE_REPLACED)),
4841 "head stripe state: %lx\n", head_sh->state);
4842
4843 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4844 (1 << STRIPE_PREREAD_ACTIVE) |
4845 (1 << STRIPE_DEGRADED) |
4846 (1 << STRIPE_ON_UNPLUG_LIST)),
4847 head_sh->state & (1 << STRIPE_INSYNC));
4848
4849 sh->check_state = head_sh->check_state;
4850 sh->reconstruct_state = head_sh->reconstruct_state;
4851 spin_lock_irq(&sh->stripe_lock);
4852 sh->batch_head = NULL;
4853 spin_unlock_irq(&sh->stripe_lock);
4854 for (i = 0; i < sh->disks; i++) {
4855 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4856 do_wakeup = 1;
4857 sh->dev[i].flags = head_sh->dev[i].flags &
4858 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4859 }
4860 if (handle_flags == 0 ||
4861 sh->state & handle_flags)
4862 set_bit(STRIPE_HANDLE, &sh->state);
4863 raid5_release_stripe(sh);
4864 }
4865 spin_lock_irq(&head_sh->stripe_lock);
4866 head_sh->batch_head = NULL;
4867 spin_unlock_irq(&head_sh->stripe_lock);
4868 for (i = 0; i < head_sh->disks; i++)
4869 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4870 do_wakeup = 1;
4871 if (head_sh->state & handle_flags)
4872 set_bit(STRIPE_HANDLE, &head_sh->state);
4873
4874 if (do_wakeup)
4875 wake_up(&head_sh->raid_conf->wait_for_overlap);
4876}
4877
4878static void handle_stripe(struct stripe_head *sh)
4879{
4880 struct stripe_head_state s;
4881 struct r5conf *conf = sh->raid_conf;
4882 int i;
4883 int prexor;
4884 int disks = sh->disks;
4885 struct r5dev *pdev, *qdev;
4886
4887 clear_bit(STRIPE_HANDLE, &sh->state);
4888
4889 /*
4890 * handle_stripe should not continue handle the batched stripe, only
4891 * the head of batch list or lone stripe can continue. Otherwise we
4892 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4893 * is set for the batched stripe.
4894 */
4895 if (clear_batch_ready(sh))
4896 return;
4897
4898 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4899 /* already being handled, ensure it gets handled
4900 * again when current action finishes */
4901 set_bit(STRIPE_HANDLE, &sh->state);
4902 return;
4903 }
4904
4905 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4906 break_stripe_batch_list(sh, 0);
4907
4908 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4909 spin_lock(&sh->stripe_lock);
4910 /*
4911 * Cannot process 'sync' concurrently with 'discard'.
4912 * Flush data in r5cache before 'sync'.
4913 */
4914 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4915 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4916 !test_bit(STRIPE_DISCARD, &sh->state) &&
4917 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4918 set_bit(STRIPE_SYNCING, &sh->state);
4919 clear_bit(STRIPE_INSYNC, &sh->state);
4920 clear_bit(STRIPE_REPLACED, &sh->state);
4921 }
4922 spin_unlock(&sh->stripe_lock);
4923 }
4924 clear_bit(STRIPE_DELAYED, &sh->state);
4925
4926 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4927 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4928 (unsigned long long)sh->sector, sh->state,
4929 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4930 sh->check_state, sh->reconstruct_state);
4931
4932 analyse_stripe(sh, &s);
4933
4934 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4935 goto finish;
4936
4937 if (s.handle_bad_blocks ||
4938 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4939 set_bit(STRIPE_HANDLE, &sh->state);
4940 goto finish;
4941 }
4942
4943 if (unlikely(s.blocked_rdev)) {
4944 if (s.syncing || s.expanding || s.expanded ||
4945 s.replacing || s.to_write || s.written) {
4946 set_bit(STRIPE_HANDLE, &sh->state);
4947 goto finish;
4948 }
4949 /* There is nothing for the blocked_rdev to block */
4950 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4951 s.blocked_rdev = NULL;
4952 }
4953
4954 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4955 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4956 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4957 }
4958
4959 pr_debug("locked=%d uptodate=%d to_read=%d"
4960 " to_write=%d failed=%d failed_num=%d,%d\n",
4961 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4962 s.failed_num[0], s.failed_num[1]);
4963 /*
4964 * check if the array has lost more than max_degraded devices and,
4965 * if so, some requests might need to be failed.
4966 *
4967 * When journal device failed (log_failed), we will only process
4968 * the stripe if there is data need write to raid disks
4969 */
4970 if (s.failed > conf->max_degraded ||
4971 (s.log_failed && s.injournal == 0)) {
4972 sh->check_state = 0;
4973 sh->reconstruct_state = 0;
4974 break_stripe_batch_list(sh, 0);
4975 if (s.to_read+s.to_write+s.written)
4976 handle_failed_stripe(conf, sh, &s, disks);
4977 if (s.syncing + s.replacing)
4978 handle_failed_sync(conf, sh, &s);
4979 }
4980
4981 /* Now we check to see if any write operations have recently
4982 * completed
4983 */
4984 prexor = 0;
4985 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4986 prexor = 1;
4987 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4988 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4989 sh->reconstruct_state = reconstruct_state_idle;
4990
4991 /* All the 'written' buffers and the parity block are ready to
4992 * be written back to disk
4993 */
4994 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4995 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4996 BUG_ON(sh->qd_idx >= 0 &&
4997 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4998 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4999 for (i = disks; i--; ) {
5000 struct r5dev *dev = &sh->dev[i];
5001 if (test_bit(R5_LOCKED, &dev->flags) &&
5002 (i == sh->pd_idx || i == sh->qd_idx ||
5003 dev->written || test_bit(R5_InJournal,
5004 &dev->flags))) {
5005 pr_debug("Writing block %d\n", i);
5006 set_bit(R5_Wantwrite, &dev->flags);
5007 if (prexor)
5008 continue;
5009 if (s.failed > 1)
5010 continue;
5011 if (!test_bit(R5_Insync, &dev->flags) ||
5012 ((i == sh->pd_idx || i == sh->qd_idx) &&
5013 s.failed == 0))
5014 set_bit(STRIPE_INSYNC, &sh->state);
5015 }
5016 }
5017 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5018 s.dec_preread_active = 1;
5019 }
5020
5021 /*
5022 * might be able to return some write requests if the parity blocks
5023 * are safe, or on a failed drive
5024 */
5025 pdev = &sh->dev[sh->pd_idx];
5026 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5027 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5028 qdev = &sh->dev[sh->qd_idx];
5029 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5030 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5031 || conf->level < 6;
5032
5033 if (s.written &&
5034 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5035 && !test_bit(R5_LOCKED, &pdev->flags)
5036 && (test_bit(R5_UPTODATE, &pdev->flags) ||
5037 test_bit(R5_Discard, &pdev->flags))))) &&
5038 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5039 && !test_bit(R5_LOCKED, &qdev->flags)
5040 && (test_bit(R5_UPTODATE, &qdev->flags) ||
5041 test_bit(R5_Discard, &qdev->flags))))))
5042 handle_stripe_clean_event(conf, sh, disks);
5043
5044 if (s.just_cached)
5045 r5c_handle_cached_data_endio(conf, sh, disks);
5046 log_stripe_write_finished(sh);
5047
5048 /* Now we might consider reading some blocks, either to check/generate
5049 * parity, or to satisfy requests
5050 * or to load a block that is being partially written.
5051 */
5052 if (s.to_read || s.non_overwrite
5053 || (s.to_write && s.failed)
5054 || (s.syncing && (s.uptodate + s.compute < disks))
5055 || s.replacing
5056 || s.expanding)
5057 handle_stripe_fill(sh, &s, disks);
5058
5059 /*
5060 * When the stripe finishes full journal write cycle (write to journal
5061 * and raid disk), this is the clean up procedure so it is ready for
5062 * next operation.
5063 */
5064 r5c_finish_stripe_write_out(conf, sh, &s);
5065
5066 /*
5067 * Now to consider new write requests, cache write back and what else,
5068 * if anything should be read. We do not handle new writes when:
5069 * 1/ A 'write' operation (copy+xor) is already in flight.
5070 * 2/ A 'check' operation is in flight, as it may clobber the parity
5071 * block.
5072 * 3/ A r5c cache log write is in flight.
5073 */
5074
5075 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5076 if (!r5c_is_writeback(conf->log)) {
5077 if (s.to_write)
5078 handle_stripe_dirtying(conf, sh, &s, disks);
5079 } else { /* write back cache */
5080 int ret = 0;
5081
5082 /* First, try handle writes in caching phase */
5083 if (s.to_write)
5084 ret = r5c_try_caching_write(conf, sh, &s,
5085 disks);
5086 /*
5087 * If caching phase failed: ret == -EAGAIN
5088 * OR
5089 * stripe under reclaim: !caching && injournal
5090 *
5091 * fall back to handle_stripe_dirtying()
5092 */
5093 if (ret == -EAGAIN ||
5094 /* stripe under reclaim: !caching && injournal */
5095 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5096 s.injournal > 0)) {
5097 ret = handle_stripe_dirtying(conf, sh, &s,
5098 disks);
5099 if (ret == -EAGAIN)
5100 goto finish;
5101 }
5102 }
5103 }
5104
5105 /* maybe we need to check and possibly fix the parity for this stripe
5106 * Any reads will already have been scheduled, so we just see if enough
5107 * data is available. The parity check is held off while parity
5108 * dependent operations are in flight.
5109 */
5110 if (sh->check_state ||
5111 (s.syncing && s.locked == 0 &&
5112 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5113 !test_bit(STRIPE_INSYNC, &sh->state))) {
5114 if (conf->level == 6)
5115 handle_parity_checks6(conf, sh, &s, disks);
5116 else
5117 handle_parity_checks5(conf, sh, &s, disks);
5118 }
5119
5120 if ((s.replacing || s.syncing) && s.locked == 0
5121 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5122 && !test_bit(STRIPE_REPLACED, &sh->state)) {
5123 /* Write out to replacement devices where possible */
5124 for (i = 0; i < conf->raid_disks; i++)
5125 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5126 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5127 set_bit(R5_WantReplace, &sh->dev[i].flags);
5128 set_bit(R5_LOCKED, &sh->dev[i].flags);
5129 s.locked++;
5130 }
5131 if (s.replacing)
5132 set_bit(STRIPE_INSYNC, &sh->state);
5133 set_bit(STRIPE_REPLACED, &sh->state);
5134 }
5135 if ((s.syncing || s.replacing) && s.locked == 0 &&
5136 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5137 test_bit(STRIPE_INSYNC, &sh->state)) {
5138 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5139 clear_bit(STRIPE_SYNCING, &sh->state);
5140 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5141 wake_up(&conf->wait_for_overlap);
5142 }
5143
5144 /* If the failed drives are just a ReadError, then we might need
5145 * to progress the repair/check process
5146 */
5147 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5148 for (i = 0; i < s.failed; i++) {
5149 struct r5dev *dev = &sh->dev[s.failed_num[i]];
5150 if (test_bit(R5_ReadError, &dev->flags)
5151 && !test_bit(R5_LOCKED, &dev->flags)
5152 && test_bit(R5_UPTODATE, &dev->flags)
5153 ) {
5154 if (!test_bit(R5_ReWrite, &dev->flags)) {
5155 set_bit(R5_Wantwrite, &dev->flags);
5156 set_bit(R5_ReWrite, &dev->flags);
5157 } else
5158 /* let's read it back */
5159 set_bit(R5_Wantread, &dev->flags);
5160 set_bit(R5_LOCKED, &dev->flags);
5161 s.locked++;
5162 }
5163 }
5164
5165 /* Finish reconstruct operations initiated by the expansion process */
5166 if (sh->reconstruct_state == reconstruct_state_result) {
5167 struct stripe_head *sh_src
5168 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
5169 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5170 /* sh cannot be written until sh_src has been read.
5171 * so arrange for sh to be delayed a little
5172 */
5173 set_bit(STRIPE_DELAYED, &sh->state);
5174 set_bit(STRIPE_HANDLE, &sh->state);
5175 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5176 &sh_src->state))
5177 atomic_inc(&conf->preread_active_stripes);
5178 raid5_release_stripe(sh_src);
5179 goto finish;
5180 }
5181 if (sh_src)
5182 raid5_release_stripe(sh_src);
5183
5184 sh->reconstruct_state = reconstruct_state_idle;
5185 clear_bit(STRIPE_EXPANDING, &sh->state);
5186 for (i = conf->raid_disks; i--; ) {
5187 set_bit(R5_Wantwrite, &sh->dev[i].flags);
5188 set_bit(R5_LOCKED, &sh->dev[i].flags);
5189 s.locked++;
5190 }
5191 }
5192
5193 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5194 !sh->reconstruct_state) {
5195 /* Need to write out all blocks after computing parity */
5196 sh->disks = conf->raid_disks;
5197 stripe_set_idx(sh->sector, conf, 0, sh);
5198 schedule_reconstruction(sh, &s, 1, 1);
5199 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5200 clear_bit(STRIPE_EXPAND_READY, &sh->state);
5201 atomic_dec(&conf->reshape_stripes);
5202 wake_up(&conf->wait_for_overlap);
5203 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5204 }
5205
5206 if (s.expanding && s.locked == 0 &&
5207 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5208 handle_stripe_expansion(conf, sh);
5209
5210finish:
5211 /* wait for this device to become unblocked */
5212 if (unlikely(s.blocked_rdev)) {
5213 if (conf->mddev->external)
5214 md_wait_for_blocked_rdev(s.blocked_rdev,
5215 conf->mddev);
5216 else
5217 /* Internal metadata will immediately
5218 * be written by raid5d, so we don't
5219 * need to wait here.
5220 */
5221 rdev_dec_pending(s.blocked_rdev,
5222 conf->mddev);
5223 }
5224
5225 if (s.handle_bad_blocks)
5226 for (i = disks; i--; ) {
5227 struct md_rdev *rdev;
5228 struct r5dev *dev = &sh->dev[i];
5229 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5230 /* We own a safe reference to the rdev */
5231 rdev = conf->disks[i].rdev;
5232 if (!rdev_set_badblocks(rdev, sh->sector,
5233 RAID5_STRIPE_SECTORS(conf), 0))
5234 md_error(conf->mddev, rdev);
5235 rdev_dec_pending(rdev, conf->mddev);
5236 }
5237 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5238 rdev = conf->disks[i].rdev;
5239 rdev_clear_badblocks(rdev, sh->sector,
5240 RAID5_STRIPE_SECTORS(conf), 0);
5241 rdev_dec_pending(rdev, conf->mddev);
5242 }
5243 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5244 rdev = conf->disks[i].replacement;
5245 if (!rdev)
5246 /* rdev have been moved down */
5247 rdev = conf->disks[i].rdev;
5248 rdev_clear_badblocks(rdev, sh->sector,
5249 RAID5_STRIPE_SECTORS(conf), 0);
5250 rdev_dec_pending(rdev, conf->mddev);
5251 }
5252 }
5253
5254 if (s.ops_request)
5255 raid_run_ops(sh, s.ops_request);
5256
5257 ops_run_io(sh, &s);
5258
5259 if (s.dec_preread_active) {
5260 /* We delay this until after ops_run_io so that if make_request
5261 * is waiting on a flush, it won't continue until the writes
5262 * have actually been submitted.
5263 */
5264 atomic_dec(&conf->preread_active_stripes);
5265 if (atomic_read(&conf->preread_active_stripes) <
5266 IO_THRESHOLD)
5267 md_wakeup_thread(conf->mddev->thread);
5268 }
5269
5270 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5271}
5272
5273static void raid5_activate_delayed(struct r5conf *conf)
5274{
5275 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5276 while (!list_empty(&conf->delayed_list)) {
5277 struct list_head *l = conf->delayed_list.next;
5278 struct stripe_head *sh;
5279 sh = list_entry(l, struct stripe_head, lru);
5280 list_del_init(l);
5281 clear_bit(STRIPE_DELAYED, &sh->state);
5282 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5283 atomic_inc(&conf->preread_active_stripes);
5284 list_add_tail(&sh->lru, &conf->hold_list);
5285 raid5_wakeup_stripe_thread(sh);
5286 }
5287 }
5288}
5289
5290static void activate_bit_delay(struct r5conf *conf,
5291 struct list_head *temp_inactive_list)
5292{
5293 /* device_lock is held */
5294 struct list_head head;
5295 list_add(&head, &conf->bitmap_list);
5296 list_del_init(&conf->bitmap_list);
5297 while (!list_empty(&head)) {
5298 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5299 int hash;
5300 list_del_init(&sh->lru);
5301 atomic_inc(&sh->count);
5302 hash = sh->hash_lock_index;
5303 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5304 }
5305}
5306
5307static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5308{
5309 struct r5conf *conf = mddev->private;
5310 sector_t sector = bio->bi_iter.bi_sector;
5311 unsigned int chunk_sectors;
5312 unsigned int bio_sectors = bio_sectors(bio);
5313
5314 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5315 return chunk_sectors >=
5316 ((sector & (chunk_sectors - 1)) + bio_sectors);
5317}
5318
5319/*
5320 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5321 * later sampled by raid5d.
5322 */
5323static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5324{
5325 unsigned long flags;
5326
5327 spin_lock_irqsave(&conf->device_lock, flags);
5328
5329 bi->bi_next = conf->retry_read_aligned_list;
5330 conf->retry_read_aligned_list = bi;
5331
5332 spin_unlock_irqrestore(&conf->device_lock, flags);
5333 md_wakeup_thread(conf->mddev->thread);
5334}
5335
5336static struct bio *remove_bio_from_retry(struct r5conf *conf,
5337 unsigned int *offset)
5338{
5339 struct bio *bi;
5340
5341 bi = conf->retry_read_aligned;
5342 if (bi) {
5343 *offset = conf->retry_read_offset;
5344 conf->retry_read_aligned = NULL;
5345 return bi;
5346 }
5347 bi = conf->retry_read_aligned_list;
5348 if(bi) {
5349 conf->retry_read_aligned_list = bi->bi_next;
5350 bi->bi_next = NULL;
5351 *offset = 0;
5352 }
5353
5354 return bi;
5355}
5356
5357/*
5358 * The "raid5_align_endio" should check if the read succeeded and if it
5359 * did, call bio_endio on the original bio (having bio_put the new bio
5360 * first).
5361 * If the read failed..
5362 */
5363static void raid5_align_endio(struct bio *bi)
5364{
5365 struct md_io_acct *md_io_acct = bi->bi_private;
5366 struct bio *raid_bi = md_io_acct->orig_bio;
5367 struct mddev *mddev;
5368 struct r5conf *conf;
5369 struct md_rdev *rdev;
5370 blk_status_t error = bi->bi_status;
5371 unsigned long start_time = md_io_acct->start_time;
5372
5373 bio_put(bi);
5374
5375 rdev = (void*)raid_bi->bi_next;
5376 raid_bi->bi_next = NULL;
5377 mddev = rdev->mddev;
5378 conf = mddev->private;
5379
5380 rdev_dec_pending(rdev, conf->mddev);
5381
5382 if (!error) {
5383 if (blk_queue_io_stat(raid_bi->bi_bdev->bd_disk->queue))
5384 bio_end_io_acct(raid_bi, start_time);
5385 bio_endio(raid_bi);
5386 if (atomic_dec_and_test(&conf->active_aligned_reads))
5387 wake_up(&conf->wait_for_quiescent);
5388 return;
5389 }
5390
5391 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5392
5393 add_bio_to_retry(raid_bi, conf);
5394}
5395
5396static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5397{
5398 struct r5conf *conf = mddev->private;
5399 struct bio *align_bio;
5400 struct md_rdev *rdev;
5401 sector_t sector, end_sector, first_bad;
5402 int bad_sectors, dd_idx;
5403 struct md_io_acct *md_io_acct;
5404 bool did_inc;
5405
5406 if (!in_chunk_boundary(mddev, raid_bio)) {
5407 pr_debug("%s: non aligned\n", __func__);
5408 return 0;
5409 }
5410
5411 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5412 &dd_idx, NULL);
5413 end_sector = bio_end_sector(raid_bio);
5414
5415 rcu_read_lock();
5416 if (r5c_big_stripe_cached(conf, sector))
5417 goto out_rcu_unlock;
5418
5419 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5420 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5421 rdev->recovery_offset < end_sector) {
5422 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5423 if (!rdev)
5424 goto out_rcu_unlock;
5425 if (test_bit(Faulty, &rdev->flags) ||
5426 !(test_bit(In_sync, &rdev->flags) ||
5427 rdev->recovery_offset >= end_sector))
5428 goto out_rcu_unlock;
5429 }
5430
5431 atomic_inc(&rdev->nr_pending);
5432 rcu_read_unlock();
5433
5434 if (is_badblock(rdev, sector, bio_sectors(raid_bio), &first_bad,
5435 &bad_sectors)) {
5436 bio_put(raid_bio);
5437 rdev_dec_pending(rdev, mddev);
5438 return 0;
5439 }
5440
5441 align_bio = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->io_acct_set);
5442 md_io_acct = container_of(align_bio, struct md_io_acct, bio_clone);
5443 raid_bio->bi_next = (void *)rdev;
5444 if (blk_queue_io_stat(raid_bio->bi_bdev->bd_disk->queue))
5445 md_io_acct->start_time = bio_start_io_acct(raid_bio);
5446 md_io_acct->orig_bio = raid_bio;
5447
5448 bio_set_dev(align_bio, rdev->bdev);
5449 align_bio->bi_end_io = raid5_align_endio;
5450 align_bio->bi_private = md_io_acct;
5451 align_bio->bi_iter.bi_sector = sector;
5452
5453 /* No reshape active, so we can trust rdev->data_offset */
5454 align_bio->bi_iter.bi_sector += rdev->data_offset;
5455
5456 did_inc = false;
5457 if (conf->quiesce == 0) {
5458 atomic_inc(&conf->active_aligned_reads);
5459 did_inc = true;
5460 }
5461 /* need a memory barrier to detect the race with raid5_quiesce() */
5462 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5463 /* quiesce is in progress, so we need to undo io activation and wait
5464 * for it to finish
5465 */
5466 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5467 wake_up(&conf->wait_for_quiescent);
5468 spin_lock_irq(&conf->device_lock);
5469 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5470 conf->device_lock);
5471 atomic_inc(&conf->active_aligned_reads);
5472 spin_unlock_irq(&conf->device_lock);
5473 }
5474
5475 if (mddev->gendisk)
5476 trace_block_bio_remap(align_bio, disk_devt(mddev->gendisk),
5477 raid_bio->bi_iter.bi_sector);
5478 submit_bio_noacct(align_bio);
5479 return 1;
5480
5481out_rcu_unlock:
5482 rcu_read_unlock();
5483 return 0;
5484}
5485
5486static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5487{
5488 struct bio *split;
5489 sector_t sector = raid_bio->bi_iter.bi_sector;
5490 unsigned chunk_sects = mddev->chunk_sectors;
5491 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5492
5493 if (sectors < bio_sectors(raid_bio)) {
5494 struct r5conf *conf = mddev->private;
5495 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5496 bio_chain(split, raid_bio);
5497 submit_bio_noacct(raid_bio);
5498 raid_bio = split;
5499 }
5500
5501 if (!raid5_read_one_chunk(mddev, raid_bio))
5502 return raid_bio;
5503
5504 return NULL;
5505}
5506
5507/* __get_priority_stripe - get the next stripe to process
5508 *
5509 * Full stripe writes are allowed to pass preread active stripes up until
5510 * the bypass_threshold is exceeded. In general the bypass_count
5511 * increments when the handle_list is handled before the hold_list; however, it
5512 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5513 * stripe with in flight i/o. The bypass_count will be reset when the
5514 * head of the hold_list has changed, i.e. the head was promoted to the
5515 * handle_list.
5516 */
5517static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5518{
5519 struct stripe_head *sh, *tmp;
5520 struct list_head *handle_list = NULL;
5521 struct r5worker_group *wg;
5522 bool second_try = !r5c_is_writeback(conf->log) &&
5523 !r5l_log_disk_error(conf);
5524 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5525 r5l_log_disk_error(conf);
5526
5527again:
5528 wg = NULL;
5529 sh = NULL;
5530 if (conf->worker_cnt_per_group == 0) {
5531 handle_list = try_loprio ? &conf->loprio_list :
5532 &conf->handle_list;
5533 } else if (group != ANY_GROUP) {
5534 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5535 &conf->worker_groups[group].handle_list;
5536 wg = &conf->worker_groups[group];
5537 } else {
5538 int i;
5539 for (i = 0; i < conf->group_cnt; i++) {
5540 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5541 &conf->worker_groups[i].handle_list;
5542 wg = &conf->worker_groups[i];
5543 if (!list_empty(handle_list))
5544 break;
5545 }
5546 }
5547
5548 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5549 __func__,
5550 list_empty(handle_list) ? "empty" : "busy",
5551 list_empty(&conf->hold_list) ? "empty" : "busy",
5552 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5553
5554 if (!list_empty(handle_list)) {
5555 sh = list_entry(handle_list->next, typeof(*sh), lru);
5556
5557 if (list_empty(&conf->hold_list))
5558 conf->bypass_count = 0;
5559 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5560 if (conf->hold_list.next == conf->last_hold)
5561 conf->bypass_count++;
5562 else {
5563 conf->last_hold = conf->hold_list.next;
5564 conf->bypass_count -= conf->bypass_threshold;
5565 if (conf->bypass_count < 0)
5566 conf->bypass_count = 0;
5567 }
5568 }
5569 } else if (!list_empty(&conf->hold_list) &&
5570 ((conf->bypass_threshold &&
5571 conf->bypass_count > conf->bypass_threshold) ||
5572 atomic_read(&conf->pending_full_writes) == 0)) {
5573
5574 list_for_each_entry(tmp, &conf->hold_list, lru) {
5575 if (conf->worker_cnt_per_group == 0 ||
5576 group == ANY_GROUP ||
5577 !cpu_online(tmp->cpu) ||
5578 cpu_to_group(tmp->cpu) == group) {
5579 sh = tmp;
5580 break;
5581 }
5582 }
5583
5584 if (sh) {
5585 conf->bypass_count -= conf->bypass_threshold;
5586 if (conf->bypass_count < 0)
5587 conf->bypass_count = 0;
5588 }
5589 wg = NULL;
5590 }
5591
5592 if (!sh) {
5593 if (second_try)
5594 return NULL;
5595 second_try = true;
5596 try_loprio = !try_loprio;
5597 goto again;
5598 }
5599
5600 if (wg) {
5601 wg->stripes_cnt--;
5602 sh->group = NULL;
5603 }
5604 list_del_init(&sh->lru);
5605 BUG_ON(atomic_inc_return(&sh->count) != 1);
5606 return sh;
5607}
5608
5609struct raid5_plug_cb {
5610 struct blk_plug_cb cb;
5611 struct list_head list;
5612 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5613};
5614
5615static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5616{
5617 struct raid5_plug_cb *cb = container_of(
5618 blk_cb, struct raid5_plug_cb, cb);
5619 struct stripe_head *sh;
5620 struct mddev *mddev = cb->cb.data;
5621 struct r5conf *conf = mddev->private;
5622 int cnt = 0;
5623 int hash;
5624
5625 if (cb->list.next && !list_empty(&cb->list)) {
5626 spin_lock_irq(&conf->device_lock);
5627 while (!list_empty(&cb->list)) {
5628 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5629 list_del_init(&sh->lru);
5630 /*
5631 * avoid race release_stripe_plug() sees
5632 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5633 * is still in our list
5634 */
5635 smp_mb__before_atomic();
5636 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5637 /*
5638 * STRIPE_ON_RELEASE_LIST could be set here. In that
5639 * case, the count is always > 1 here
5640 */
5641 hash = sh->hash_lock_index;
5642 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5643 cnt++;
5644 }
5645 spin_unlock_irq(&conf->device_lock);
5646 }
5647 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5648 NR_STRIPE_HASH_LOCKS);
5649 if (mddev->queue)
5650 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5651 kfree(cb);
5652}
5653
5654static void release_stripe_plug(struct mddev *mddev,
5655 struct stripe_head *sh)
5656{
5657 struct blk_plug_cb *blk_cb = blk_check_plugged(
5658 raid5_unplug, mddev,
5659 sizeof(struct raid5_plug_cb));
5660 struct raid5_plug_cb *cb;
5661
5662 if (!blk_cb) {
5663 raid5_release_stripe(sh);
5664 return;
5665 }
5666
5667 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5668
5669 if (cb->list.next == NULL) {
5670 int i;
5671 INIT_LIST_HEAD(&cb->list);
5672 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5673 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5674 }
5675
5676 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5677 list_add_tail(&sh->lru, &cb->list);
5678 else
5679 raid5_release_stripe(sh);
5680}
5681
5682static void make_discard_request(struct mddev *mddev, struct bio *bi)
5683{
5684 struct r5conf *conf = mddev->private;
5685 sector_t logical_sector, last_sector;
5686 struct stripe_head *sh;
5687 int stripe_sectors;
5688
5689 if (mddev->reshape_position != MaxSector)
5690 /* Skip discard while reshape is happening */
5691 return;
5692
5693 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5694 last_sector = bio_end_sector(bi);
5695
5696 bi->bi_next = NULL;
5697
5698 stripe_sectors = conf->chunk_sectors *
5699 (conf->raid_disks - conf->max_degraded);
5700 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5701 stripe_sectors);
5702 sector_div(last_sector, stripe_sectors);
5703
5704 logical_sector *= conf->chunk_sectors;
5705 last_sector *= conf->chunk_sectors;
5706
5707 for (; logical_sector < last_sector;
5708 logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5709 DEFINE_WAIT(w);
5710 int d;
5711 again:
5712 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5713 prepare_to_wait(&conf->wait_for_overlap, &w,
5714 TASK_UNINTERRUPTIBLE);
5715 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5716 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5717 raid5_release_stripe(sh);
5718 schedule();
5719 goto again;
5720 }
5721 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5722 spin_lock_irq(&sh->stripe_lock);
5723 for (d = 0; d < conf->raid_disks; d++) {
5724 if (d == sh->pd_idx || d == sh->qd_idx)
5725 continue;
5726 if (sh->dev[d].towrite || sh->dev[d].toread) {
5727 set_bit(R5_Overlap, &sh->dev[d].flags);
5728 spin_unlock_irq(&sh->stripe_lock);
5729 raid5_release_stripe(sh);
5730 schedule();
5731 goto again;
5732 }
5733 }
5734 set_bit(STRIPE_DISCARD, &sh->state);
5735 finish_wait(&conf->wait_for_overlap, &w);
5736 sh->overwrite_disks = 0;
5737 for (d = 0; d < conf->raid_disks; d++) {
5738 if (d == sh->pd_idx || d == sh->qd_idx)
5739 continue;
5740 sh->dev[d].towrite = bi;
5741 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5742 bio_inc_remaining(bi);
5743 md_write_inc(mddev, bi);
5744 sh->overwrite_disks++;
5745 }
5746 spin_unlock_irq(&sh->stripe_lock);
5747 if (conf->mddev->bitmap) {
5748 for (d = 0;
5749 d < conf->raid_disks - conf->max_degraded;
5750 d++)
5751 md_bitmap_startwrite(mddev->bitmap,
5752 sh->sector,
5753 RAID5_STRIPE_SECTORS(conf),
5754 0);
5755 sh->bm_seq = conf->seq_flush + 1;
5756 set_bit(STRIPE_BIT_DELAY, &sh->state);
5757 }
5758
5759 set_bit(STRIPE_HANDLE, &sh->state);
5760 clear_bit(STRIPE_DELAYED, &sh->state);
5761 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5762 atomic_inc(&conf->preread_active_stripes);
5763 release_stripe_plug(mddev, sh);
5764 }
5765
5766 bio_endio(bi);
5767}
5768
5769static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5770{
5771 struct r5conf *conf = mddev->private;
5772 int dd_idx;
5773 sector_t new_sector;
5774 sector_t logical_sector, last_sector;
5775 struct stripe_head *sh;
5776 const int rw = bio_data_dir(bi);
5777 DEFINE_WAIT(w);
5778 bool do_prepare;
5779 bool do_flush = false;
5780
5781 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5782 int ret = log_handle_flush_request(conf, bi);
5783
5784 if (ret == 0)
5785 return true;
5786 if (ret == -ENODEV) {
5787 if (md_flush_request(mddev, bi))
5788 return true;
5789 }
5790 /* ret == -EAGAIN, fallback */
5791 /*
5792 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5793 * we need to flush journal device
5794 */
5795 do_flush = bi->bi_opf & REQ_PREFLUSH;
5796 }
5797
5798 if (!md_write_start(mddev, bi))
5799 return false;
5800 /*
5801 * If array is degraded, better not do chunk aligned read because
5802 * later we might have to read it again in order to reconstruct
5803 * data on failed drives.
5804 */
5805 if (rw == READ && mddev->degraded == 0 &&
5806 mddev->reshape_position == MaxSector) {
5807 bi = chunk_aligned_read(mddev, bi);
5808 if (!bi)
5809 return true;
5810 }
5811
5812 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5813 make_discard_request(mddev, bi);
5814 md_write_end(mddev);
5815 return true;
5816 }
5817
5818 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5819 last_sector = bio_end_sector(bi);
5820 bi->bi_next = NULL;
5821
5822 md_account_bio(mddev, &bi);
5823 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5824 for (; logical_sector < last_sector; logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5825 int previous;
5826 int seq;
5827
5828 do_prepare = false;
5829 retry:
5830 seq = read_seqcount_begin(&conf->gen_lock);
5831 previous = 0;
5832 if (do_prepare)
5833 prepare_to_wait(&conf->wait_for_overlap, &w,
5834 TASK_UNINTERRUPTIBLE);
5835 if (unlikely(conf->reshape_progress != MaxSector)) {
5836 /* spinlock is needed as reshape_progress may be
5837 * 64bit on a 32bit platform, and so it might be
5838 * possible to see a half-updated value
5839 * Of course reshape_progress could change after
5840 * the lock is dropped, so once we get a reference
5841 * to the stripe that we think it is, we will have
5842 * to check again.
5843 */
5844 spin_lock_irq(&conf->device_lock);
5845 if (mddev->reshape_backwards
5846 ? logical_sector < conf->reshape_progress
5847 : logical_sector >= conf->reshape_progress) {
5848 previous = 1;
5849 } else {
5850 if (mddev->reshape_backwards
5851 ? logical_sector < conf->reshape_safe
5852 : logical_sector >= conf->reshape_safe) {
5853 spin_unlock_irq(&conf->device_lock);
5854 schedule();
5855 do_prepare = true;
5856 goto retry;
5857 }
5858 }
5859 spin_unlock_irq(&conf->device_lock);
5860 }
5861
5862 new_sector = raid5_compute_sector(conf, logical_sector,
5863 previous,
5864 &dd_idx, NULL);
5865 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5866 (unsigned long long)new_sector,
5867 (unsigned long long)logical_sector);
5868
5869 sh = raid5_get_active_stripe(conf, new_sector, previous,
5870 (bi->bi_opf & REQ_RAHEAD), 0);
5871 if (sh) {
5872 if (unlikely(previous)) {
5873 /* expansion might have moved on while waiting for a
5874 * stripe, so we must do the range check again.
5875 * Expansion could still move past after this
5876 * test, but as we are holding a reference to
5877 * 'sh', we know that if that happens,
5878 * STRIPE_EXPANDING will get set and the expansion
5879 * won't proceed until we finish with the stripe.
5880 */
5881 int must_retry = 0;
5882 spin_lock_irq(&conf->device_lock);
5883 if (mddev->reshape_backwards
5884 ? logical_sector >= conf->reshape_progress
5885 : logical_sector < conf->reshape_progress)
5886 /* mismatch, need to try again */
5887 must_retry = 1;
5888 spin_unlock_irq(&conf->device_lock);
5889 if (must_retry) {
5890 raid5_release_stripe(sh);
5891 schedule();
5892 do_prepare = true;
5893 goto retry;
5894 }
5895 }
5896 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5897 /* Might have got the wrong stripe_head
5898 * by accident
5899 */
5900 raid5_release_stripe(sh);
5901 goto retry;
5902 }
5903
5904 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5905 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5906 /* Stripe is busy expanding or
5907 * add failed due to overlap. Flush everything
5908 * and wait a while
5909 */
5910 md_wakeup_thread(mddev->thread);
5911 raid5_release_stripe(sh);
5912 schedule();
5913 do_prepare = true;
5914 goto retry;
5915 }
5916 if (do_flush) {
5917 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5918 /* we only need flush for one stripe */
5919 do_flush = false;
5920 }
5921
5922 set_bit(STRIPE_HANDLE, &sh->state);
5923 clear_bit(STRIPE_DELAYED, &sh->state);
5924 if ((!sh->batch_head || sh == sh->batch_head) &&
5925 (bi->bi_opf & REQ_SYNC) &&
5926 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5927 atomic_inc(&conf->preread_active_stripes);
5928 release_stripe_plug(mddev, sh);
5929 } else {
5930 /* cannot get stripe for read-ahead, just give-up */
5931 bi->bi_status = BLK_STS_IOERR;
5932 break;
5933 }
5934 }
5935 finish_wait(&conf->wait_for_overlap, &w);
5936
5937 if (rw == WRITE)
5938 md_write_end(mddev);
5939 bio_endio(bi);
5940 return true;
5941}
5942
5943static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5944
5945static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5946{
5947 /* reshaping is quite different to recovery/resync so it is
5948 * handled quite separately ... here.
5949 *
5950 * On each call to sync_request, we gather one chunk worth of
5951 * destination stripes and flag them as expanding.
5952 * Then we find all the source stripes and request reads.
5953 * As the reads complete, handle_stripe will copy the data
5954 * into the destination stripe and release that stripe.
5955 */
5956 struct r5conf *conf = mddev->private;
5957 struct stripe_head *sh;
5958 struct md_rdev *rdev;
5959 sector_t first_sector, last_sector;
5960 int raid_disks = conf->previous_raid_disks;
5961 int data_disks = raid_disks - conf->max_degraded;
5962 int new_data_disks = conf->raid_disks - conf->max_degraded;
5963 int i;
5964 int dd_idx;
5965 sector_t writepos, readpos, safepos;
5966 sector_t stripe_addr;
5967 int reshape_sectors;
5968 struct list_head stripes;
5969 sector_t retn;
5970
5971 if (sector_nr == 0) {
5972 /* If restarting in the middle, skip the initial sectors */
5973 if (mddev->reshape_backwards &&
5974 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5975 sector_nr = raid5_size(mddev, 0, 0)
5976 - conf->reshape_progress;
5977 } else if (mddev->reshape_backwards &&
5978 conf->reshape_progress == MaxSector) {
5979 /* shouldn't happen, but just in case, finish up.*/
5980 sector_nr = MaxSector;
5981 } else if (!mddev->reshape_backwards &&
5982 conf->reshape_progress > 0)
5983 sector_nr = conf->reshape_progress;
5984 sector_div(sector_nr, new_data_disks);
5985 if (sector_nr) {
5986 mddev->curr_resync_completed = sector_nr;
5987 sysfs_notify_dirent_safe(mddev->sysfs_completed);
5988 *skipped = 1;
5989 retn = sector_nr;
5990 goto finish;
5991 }
5992 }
5993
5994 /* We need to process a full chunk at a time.
5995 * If old and new chunk sizes differ, we need to process the
5996 * largest of these
5997 */
5998
5999 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6000
6001 /* We update the metadata at least every 10 seconds, or when
6002 * the data about to be copied would over-write the source of
6003 * the data at the front of the range. i.e. one new_stripe
6004 * along from reshape_progress new_maps to after where
6005 * reshape_safe old_maps to
6006 */
6007 writepos = conf->reshape_progress;
6008 sector_div(writepos, new_data_disks);
6009 readpos = conf->reshape_progress;
6010 sector_div(readpos, data_disks);
6011 safepos = conf->reshape_safe;
6012 sector_div(safepos, data_disks);
6013 if (mddev->reshape_backwards) {
6014 BUG_ON(writepos < reshape_sectors);
6015 writepos -= reshape_sectors;
6016 readpos += reshape_sectors;
6017 safepos += reshape_sectors;
6018 } else {
6019 writepos += reshape_sectors;
6020 /* readpos and safepos are worst-case calculations.
6021 * A negative number is overly pessimistic, and causes
6022 * obvious problems for unsigned storage. So clip to 0.
6023 */
6024 readpos -= min_t(sector_t, reshape_sectors, readpos);
6025 safepos -= min_t(sector_t, reshape_sectors, safepos);
6026 }
6027
6028 /* Having calculated the 'writepos' possibly use it
6029 * to set 'stripe_addr' which is where we will write to.
6030 */
6031 if (mddev->reshape_backwards) {
6032 BUG_ON(conf->reshape_progress == 0);
6033 stripe_addr = writepos;
6034 BUG_ON((mddev->dev_sectors &
6035 ~((sector_t)reshape_sectors - 1))
6036 - reshape_sectors - stripe_addr
6037 != sector_nr);
6038 } else {
6039 BUG_ON(writepos != sector_nr + reshape_sectors);
6040 stripe_addr = sector_nr;
6041 }
6042
6043 /* 'writepos' is the most advanced device address we might write.
6044 * 'readpos' is the least advanced device address we might read.
6045 * 'safepos' is the least address recorded in the metadata as having
6046 * been reshaped.
6047 * If there is a min_offset_diff, these are adjusted either by
6048 * increasing the safepos/readpos if diff is negative, or
6049 * increasing writepos if diff is positive.
6050 * If 'readpos' is then behind 'writepos', there is no way that we can
6051 * ensure safety in the face of a crash - that must be done by userspace
6052 * making a backup of the data. So in that case there is no particular
6053 * rush to update metadata.
6054 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6055 * update the metadata to advance 'safepos' to match 'readpos' so that
6056 * we can be safe in the event of a crash.
6057 * So we insist on updating metadata if safepos is behind writepos and
6058 * readpos is beyond writepos.
6059 * In any case, update the metadata every 10 seconds.
6060 * Maybe that number should be configurable, but I'm not sure it is
6061 * worth it.... maybe it could be a multiple of safemode_delay???
6062 */
6063 if (conf->min_offset_diff < 0) {
6064 safepos += -conf->min_offset_diff;
6065 readpos += -conf->min_offset_diff;
6066 } else
6067 writepos += conf->min_offset_diff;
6068
6069 if ((mddev->reshape_backwards
6070 ? (safepos > writepos && readpos < writepos)
6071 : (safepos < writepos && readpos > writepos)) ||
6072 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6073 /* Cannot proceed until we've updated the superblock... */
6074 wait_event(conf->wait_for_overlap,
6075 atomic_read(&conf->reshape_stripes)==0
6076 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6077 if (atomic_read(&conf->reshape_stripes) != 0)
6078 return 0;
6079 mddev->reshape_position = conf->reshape_progress;
6080 mddev->curr_resync_completed = sector_nr;
6081 if (!mddev->reshape_backwards)
6082 /* Can update recovery_offset */
6083 rdev_for_each(rdev, mddev)
6084 if (rdev->raid_disk >= 0 &&
6085 !test_bit(Journal, &rdev->flags) &&
6086 !test_bit(In_sync, &rdev->flags) &&
6087 rdev->recovery_offset < sector_nr)
6088 rdev->recovery_offset = sector_nr;
6089
6090 conf->reshape_checkpoint = jiffies;
6091 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6092 md_wakeup_thread(mddev->thread);
6093 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6094 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6095 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6096 return 0;
6097 spin_lock_irq(&conf->device_lock);
6098 conf->reshape_safe = mddev->reshape_position;
6099 spin_unlock_irq(&conf->device_lock);
6100 wake_up(&conf->wait_for_overlap);
6101 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6102 }
6103
6104 INIT_LIST_HEAD(&stripes);
6105 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6106 int j;
6107 int skipped_disk = 0;
6108 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
6109 set_bit(STRIPE_EXPANDING, &sh->state);
6110 atomic_inc(&conf->reshape_stripes);
6111 /* If any of this stripe is beyond the end of the old
6112 * array, then we need to zero those blocks
6113 */
6114 for (j=sh->disks; j--;) {
6115 sector_t s;
6116 if (j == sh->pd_idx)
6117 continue;
6118 if (conf->level == 6 &&
6119 j == sh->qd_idx)
6120 continue;
6121 s = raid5_compute_blocknr(sh, j, 0);
6122 if (s < raid5_size(mddev, 0, 0)) {
6123 skipped_disk = 1;
6124 continue;
6125 }
6126 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6127 set_bit(R5_Expanded, &sh->dev[j].flags);
6128 set_bit(R5_UPTODATE, &sh->dev[j].flags);
6129 }
6130 if (!skipped_disk) {
6131 set_bit(STRIPE_EXPAND_READY, &sh->state);
6132 set_bit(STRIPE_HANDLE, &sh->state);
6133 }
6134 list_add(&sh->lru, &stripes);
6135 }
6136 spin_lock_irq(&conf->device_lock);
6137 if (mddev->reshape_backwards)
6138 conf->reshape_progress -= reshape_sectors * new_data_disks;
6139 else
6140 conf->reshape_progress += reshape_sectors * new_data_disks;
6141 spin_unlock_irq(&conf->device_lock);
6142 /* Ok, those stripe are ready. We can start scheduling
6143 * reads on the source stripes.
6144 * The source stripes are determined by mapping the first and last
6145 * block on the destination stripes.
6146 */
6147 first_sector =
6148 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6149 1, &dd_idx, NULL);
6150 last_sector =
6151 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6152 * new_data_disks - 1),
6153 1, &dd_idx, NULL);
6154 if (last_sector >= mddev->dev_sectors)
6155 last_sector = mddev->dev_sectors - 1;
6156 while (first_sector <= last_sector) {
6157 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
6158 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6159 set_bit(STRIPE_HANDLE, &sh->state);
6160 raid5_release_stripe(sh);
6161 first_sector += RAID5_STRIPE_SECTORS(conf);
6162 }
6163 /* Now that the sources are clearly marked, we can release
6164 * the destination stripes
6165 */
6166 while (!list_empty(&stripes)) {
6167 sh = list_entry(stripes.next, struct stripe_head, lru);
6168 list_del_init(&sh->lru);
6169 raid5_release_stripe(sh);
6170 }
6171 /* If this takes us to the resync_max point where we have to pause,
6172 * then we need to write out the superblock.
6173 */
6174 sector_nr += reshape_sectors;
6175 retn = reshape_sectors;
6176finish:
6177 if (mddev->curr_resync_completed > mddev->resync_max ||
6178 (sector_nr - mddev->curr_resync_completed) * 2
6179 >= mddev->resync_max - mddev->curr_resync_completed) {
6180 /* Cannot proceed until we've updated the superblock... */
6181 wait_event(conf->wait_for_overlap,
6182 atomic_read(&conf->reshape_stripes) == 0
6183 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6184 if (atomic_read(&conf->reshape_stripes) != 0)
6185 goto ret;
6186 mddev->reshape_position = conf->reshape_progress;
6187 mddev->curr_resync_completed = sector_nr;
6188 if (!mddev->reshape_backwards)
6189 /* Can update recovery_offset */
6190 rdev_for_each(rdev, mddev)
6191 if (rdev->raid_disk >= 0 &&
6192 !test_bit(Journal, &rdev->flags) &&
6193 !test_bit(In_sync, &rdev->flags) &&
6194 rdev->recovery_offset < sector_nr)
6195 rdev->recovery_offset = sector_nr;
6196 conf->reshape_checkpoint = jiffies;
6197 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6198 md_wakeup_thread(mddev->thread);
6199 wait_event(mddev->sb_wait,
6200 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6201 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6202 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6203 goto ret;
6204 spin_lock_irq(&conf->device_lock);
6205 conf->reshape_safe = mddev->reshape_position;
6206 spin_unlock_irq(&conf->device_lock);
6207 wake_up(&conf->wait_for_overlap);
6208 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6209 }
6210ret:
6211 return retn;
6212}
6213
6214static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6215 int *skipped)
6216{
6217 struct r5conf *conf = mddev->private;
6218 struct stripe_head *sh;
6219 sector_t max_sector = mddev->dev_sectors;
6220 sector_t sync_blocks;
6221 int still_degraded = 0;
6222 int i;
6223
6224 if (sector_nr >= max_sector) {
6225 /* just being told to finish up .. nothing much to do */
6226
6227 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6228 end_reshape(conf);
6229 return 0;
6230 }
6231
6232 if (mddev->curr_resync < max_sector) /* aborted */
6233 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6234 &sync_blocks, 1);
6235 else /* completed sync */
6236 conf->fullsync = 0;
6237 md_bitmap_close_sync(mddev->bitmap);
6238
6239 return 0;
6240 }
6241
6242 /* Allow raid5_quiesce to complete */
6243 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6244
6245 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6246 return reshape_request(mddev, sector_nr, skipped);
6247
6248 /* No need to check resync_max as we never do more than one
6249 * stripe, and as resync_max will always be on a chunk boundary,
6250 * if the check in md_do_sync didn't fire, there is no chance
6251 * of overstepping resync_max here
6252 */
6253
6254 /* if there is too many failed drives and we are trying
6255 * to resync, then assert that we are finished, because there is
6256 * nothing we can do.
6257 */
6258 if (mddev->degraded >= conf->max_degraded &&
6259 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6260 sector_t rv = mddev->dev_sectors - sector_nr;
6261 *skipped = 1;
6262 return rv;
6263 }
6264 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6265 !conf->fullsync &&
6266 !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6267 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6268 /* we can skip this block, and probably more */
6269 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6270 *skipped = 1;
6271 /* keep things rounded to whole stripes */
6272 return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6273 }
6274
6275 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6276
6277 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6278 if (sh == NULL) {
6279 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6280 /* make sure we don't swamp the stripe cache if someone else
6281 * is trying to get access
6282 */
6283 schedule_timeout_uninterruptible(1);
6284 }
6285 /* Need to check if array will still be degraded after recovery/resync
6286 * Note in case of > 1 drive failures it's possible we're rebuilding
6287 * one drive while leaving another faulty drive in array.
6288 */
6289 rcu_read_lock();
6290 for (i = 0; i < conf->raid_disks; i++) {
6291 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6292
6293 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6294 still_degraded = 1;
6295 }
6296 rcu_read_unlock();
6297
6298 md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6299
6300 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6301 set_bit(STRIPE_HANDLE, &sh->state);
6302
6303 raid5_release_stripe(sh);
6304
6305 return RAID5_STRIPE_SECTORS(conf);
6306}
6307
6308static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6309 unsigned int offset)
6310{
6311 /* We may not be able to submit a whole bio at once as there
6312 * may not be enough stripe_heads available.
6313 * We cannot pre-allocate enough stripe_heads as we may need
6314 * more than exist in the cache (if we allow ever large chunks).
6315 * So we do one stripe head at a time and record in
6316 * ->bi_hw_segments how many have been done.
6317 *
6318 * We *know* that this entire raid_bio is in one chunk, so
6319 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6320 */
6321 struct stripe_head *sh;
6322 int dd_idx;
6323 sector_t sector, logical_sector, last_sector;
6324 int scnt = 0;
6325 int handled = 0;
6326
6327 logical_sector = raid_bio->bi_iter.bi_sector &
6328 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6329 sector = raid5_compute_sector(conf, logical_sector,
6330 0, &dd_idx, NULL);
6331 last_sector = bio_end_sector(raid_bio);
6332
6333 for (; logical_sector < last_sector;
6334 logical_sector += RAID5_STRIPE_SECTORS(conf),
6335 sector += RAID5_STRIPE_SECTORS(conf),
6336 scnt++) {
6337
6338 if (scnt < offset)
6339 /* already done this stripe */
6340 continue;
6341
6342 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6343
6344 if (!sh) {
6345 /* failed to get a stripe - must wait */
6346 conf->retry_read_aligned = raid_bio;
6347 conf->retry_read_offset = scnt;
6348 return handled;
6349 }
6350
6351 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6352 raid5_release_stripe(sh);
6353 conf->retry_read_aligned = raid_bio;
6354 conf->retry_read_offset = scnt;
6355 return handled;
6356 }
6357
6358 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6359 handle_stripe(sh);
6360 raid5_release_stripe(sh);
6361 handled++;
6362 }
6363
6364 bio_endio(raid_bio);
6365
6366 if (atomic_dec_and_test(&conf->active_aligned_reads))
6367 wake_up(&conf->wait_for_quiescent);
6368 return handled;
6369}
6370
6371static int handle_active_stripes(struct r5conf *conf, int group,
6372 struct r5worker *worker,
6373 struct list_head *temp_inactive_list)
6374 __releases(&conf->device_lock)
6375 __acquires(&conf->device_lock)
6376{
6377 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6378 int i, batch_size = 0, hash;
6379 bool release_inactive = false;
6380
6381 while (batch_size < MAX_STRIPE_BATCH &&
6382 (sh = __get_priority_stripe(conf, group)) != NULL)
6383 batch[batch_size++] = sh;
6384
6385 if (batch_size == 0) {
6386 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6387 if (!list_empty(temp_inactive_list + i))
6388 break;
6389 if (i == NR_STRIPE_HASH_LOCKS) {
6390 spin_unlock_irq(&conf->device_lock);
6391 log_flush_stripe_to_raid(conf);
6392 spin_lock_irq(&conf->device_lock);
6393 return batch_size;
6394 }
6395 release_inactive = true;
6396 }
6397 spin_unlock_irq(&conf->device_lock);
6398
6399 release_inactive_stripe_list(conf, temp_inactive_list,
6400 NR_STRIPE_HASH_LOCKS);
6401
6402 r5l_flush_stripe_to_raid(conf->log);
6403 if (release_inactive) {
6404 spin_lock_irq(&conf->device_lock);
6405 return 0;
6406 }
6407
6408 for (i = 0; i < batch_size; i++)
6409 handle_stripe(batch[i]);
6410 log_write_stripe_run(conf);
6411
6412 cond_resched();
6413
6414 spin_lock_irq(&conf->device_lock);
6415 for (i = 0; i < batch_size; i++) {
6416 hash = batch[i]->hash_lock_index;
6417 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6418 }
6419 return batch_size;
6420}
6421
6422static void raid5_do_work(struct work_struct *work)
6423{
6424 struct r5worker *worker = container_of(work, struct r5worker, work);
6425 struct r5worker_group *group = worker->group;
6426 struct r5conf *conf = group->conf;
6427 struct mddev *mddev = conf->mddev;
6428 int group_id = group - conf->worker_groups;
6429 int handled;
6430 struct blk_plug plug;
6431
6432 pr_debug("+++ raid5worker active\n");
6433
6434 blk_start_plug(&plug);
6435 handled = 0;
6436 spin_lock_irq(&conf->device_lock);
6437 while (1) {
6438 int batch_size, released;
6439
6440 released = release_stripe_list(conf, worker->temp_inactive_list);
6441
6442 batch_size = handle_active_stripes(conf, group_id, worker,
6443 worker->temp_inactive_list);
6444 worker->working = false;
6445 if (!batch_size && !released)
6446 break;
6447 handled += batch_size;
6448 wait_event_lock_irq(mddev->sb_wait,
6449 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6450 conf->device_lock);
6451 }
6452 pr_debug("%d stripes handled\n", handled);
6453
6454 spin_unlock_irq(&conf->device_lock);
6455
6456 flush_deferred_bios(conf);
6457
6458 r5l_flush_stripe_to_raid(conf->log);
6459
6460 async_tx_issue_pending_all();
6461 blk_finish_plug(&plug);
6462
6463 pr_debug("--- raid5worker inactive\n");
6464}
6465
6466/*
6467 * This is our raid5 kernel thread.
6468 *
6469 * We scan the hash table for stripes which can be handled now.
6470 * During the scan, completed stripes are saved for us by the interrupt
6471 * handler, so that they will not have to wait for our next wakeup.
6472 */
6473static void raid5d(struct md_thread *thread)
6474{
6475 struct mddev *mddev = thread->mddev;
6476 struct r5conf *conf = mddev->private;
6477 int handled;
6478 struct blk_plug plug;
6479
6480 pr_debug("+++ raid5d active\n");
6481
6482 md_check_recovery(mddev);
6483
6484 blk_start_plug(&plug);
6485 handled = 0;
6486 spin_lock_irq(&conf->device_lock);
6487 while (1) {
6488 struct bio *bio;
6489 int batch_size, released;
6490 unsigned int offset;
6491
6492 released = release_stripe_list(conf, conf->temp_inactive_list);
6493 if (released)
6494 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6495
6496 if (
6497 !list_empty(&conf->bitmap_list)) {
6498 /* Now is a good time to flush some bitmap updates */
6499 conf->seq_flush++;
6500 spin_unlock_irq(&conf->device_lock);
6501 md_bitmap_unplug(mddev->bitmap);
6502 spin_lock_irq(&conf->device_lock);
6503 conf->seq_write = conf->seq_flush;
6504 activate_bit_delay(conf, conf->temp_inactive_list);
6505 }
6506 raid5_activate_delayed(conf);
6507
6508 while ((bio = remove_bio_from_retry(conf, &offset))) {
6509 int ok;
6510 spin_unlock_irq(&conf->device_lock);
6511 ok = retry_aligned_read(conf, bio, offset);
6512 spin_lock_irq(&conf->device_lock);
6513 if (!ok)
6514 break;
6515 handled++;
6516 }
6517
6518 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6519 conf->temp_inactive_list);
6520 if (!batch_size && !released)
6521 break;
6522 handled += batch_size;
6523
6524 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6525 spin_unlock_irq(&conf->device_lock);
6526 md_check_recovery(mddev);
6527 spin_lock_irq(&conf->device_lock);
6528 }
6529 }
6530 pr_debug("%d stripes handled\n", handled);
6531
6532 spin_unlock_irq(&conf->device_lock);
6533 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6534 mutex_trylock(&conf->cache_size_mutex)) {
6535 grow_one_stripe(conf, __GFP_NOWARN);
6536 /* Set flag even if allocation failed. This helps
6537 * slow down allocation requests when mem is short
6538 */
6539 set_bit(R5_DID_ALLOC, &conf->cache_state);
6540 mutex_unlock(&conf->cache_size_mutex);
6541 }
6542
6543 flush_deferred_bios(conf);
6544
6545 r5l_flush_stripe_to_raid(conf->log);
6546
6547 async_tx_issue_pending_all();
6548 blk_finish_plug(&plug);
6549
6550 pr_debug("--- raid5d inactive\n");
6551}
6552
6553static ssize_t
6554raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6555{
6556 struct r5conf *conf;
6557 int ret = 0;
6558 spin_lock(&mddev->lock);
6559 conf = mddev->private;
6560 if (conf)
6561 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6562 spin_unlock(&mddev->lock);
6563 return ret;
6564}
6565
6566int
6567raid5_set_cache_size(struct mddev *mddev, int size)
6568{
6569 int result = 0;
6570 struct r5conf *conf = mddev->private;
6571
6572 if (size <= 16 || size > 32768)
6573 return -EINVAL;
6574
6575 conf->min_nr_stripes = size;
6576 mutex_lock(&conf->cache_size_mutex);
6577 while (size < conf->max_nr_stripes &&
6578 drop_one_stripe(conf))
6579 ;
6580 mutex_unlock(&conf->cache_size_mutex);
6581
6582 md_allow_write(mddev);
6583
6584 mutex_lock(&conf->cache_size_mutex);
6585 while (size > conf->max_nr_stripes)
6586 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6587 conf->min_nr_stripes = conf->max_nr_stripes;
6588 result = -ENOMEM;
6589 break;
6590 }
6591 mutex_unlock(&conf->cache_size_mutex);
6592
6593 return result;
6594}
6595EXPORT_SYMBOL(raid5_set_cache_size);
6596
6597static ssize_t
6598raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6599{
6600 struct r5conf *conf;
6601 unsigned long new;
6602 int err;
6603
6604 if (len >= PAGE_SIZE)
6605 return -EINVAL;
6606 if (kstrtoul(page, 10, &new))
6607 return -EINVAL;
6608 err = mddev_lock(mddev);
6609 if (err)
6610 return err;
6611 conf = mddev->private;
6612 if (!conf)
6613 err = -ENODEV;
6614 else
6615 err = raid5_set_cache_size(mddev, new);
6616 mddev_unlock(mddev);
6617
6618 return err ?: len;
6619}
6620
6621static struct md_sysfs_entry
6622raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6623 raid5_show_stripe_cache_size,
6624 raid5_store_stripe_cache_size);
6625
6626static ssize_t
6627raid5_show_rmw_level(struct mddev *mddev, char *page)
6628{
6629 struct r5conf *conf = mddev->private;
6630 if (conf)
6631 return sprintf(page, "%d\n", conf->rmw_level);
6632 else
6633 return 0;
6634}
6635
6636static ssize_t
6637raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6638{
6639 struct r5conf *conf = mddev->private;
6640 unsigned long new;
6641
6642 if (!conf)
6643 return -ENODEV;
6644
6645 if (len >= PAGE_SIZE)
6646 return -EINVAL;
6647
6648 if (kstrtoul(page, 10, &new))
6649 return -EINVAL;
6650
6651 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6652 return -EINVAL;
6653
6654 if (new != PARITY_DISABLE_RMW &&
6655 new != PARITY_ENABLE_RMW &&
6656 new != PARITY_PREFER_RMW)
6657 return -EINVAL;
6658
6659 conf->rmw_level = new;
6660 return len;
6661}
6662
6663static struct md_sysfs_entry
6664raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6665 raid5_show_rmw_level,
6666 raid5_store_rmw_level);
6667
6668static ssize_t
6669raid5_show_stripe_size(struct mddev *mddev, char *page)
6670{
6671 struct r5conf *conf;
6672 int ret = 0;
6673
6674 spin_lock(&mddev->lock);
6675 conf = mddev->private;
6676 if (conf)
6677 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6678 spin_unlock(&mddev->lock);
6679 return ret;
6680}
6681
6682#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6683static ssize_t
6684raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len)
6685{
6686 struct r5conf *conf;
6687 unsigned long new;
6688 int err;
6689 int size;
6690
6691 if (len >= PAGE_SIZE)
6692 return -EINVAL;
6693 if (kstrtoul(page, 10, &new))
6694 return -EINVAL;
6695
6696 /*
6697 * The value should not be bigger than PAGE_SIZE. It requires to
6698 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6699 * of two.
6700 */
6701 if (new % DEFAULT_STRIPE_SIZE != 0 ||
6702 new > PAGE_SIZE || new == 0 ||
6703 new != roundup_pow_of_two(new))
6704 return -EINVAL;
6705
6706 err = mddev_lock(mddev);
6707 if (err)
6708 return err;
6709
6710 conf = mddev->private;
6711 if (!conf) {
6712 err = -ENODEV;
6713 goto out_unlock;
6714 }
6715
6716 if (new == conf->stripe_size)
6717 goto out_unlock;
6718
6719 pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6720 conf->stripe_size, new);
6721
6722 if (mddev->sync_thread ||
6723 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6724 mddev->reshape_position != MaxSector ||
6725 mddev->sysfs_active) {
6726 err = -EBUSY;
6727 goto out_unlock;
6728 }
6729
6730 mddev_suspend(mddev);
6731 mutex_lock(&conf->cache_size_mutex);
6732 size = conf->max_nr_stripes;
6733
6734 shrink_stripes(conf);
6735
6736 conf->stripe_size = new;
6737 conf->stripe_shift = ilog2(new) - 9;
6738 conf->stripe_sectors = new >> 9;
6739 if (grow_stripes(conf, size)) {
6740 pr_warn("md/raid:%s: couldn't allocate buffers\n",
6741 mdname(mddev));
6742 err = -ENOMEM;
6743 }
6744 mutex_unlock(&conf->cache_size_mutex);
6745 mddev_resume(mddev);
6746
6747out_unlock:
6748 mddev_unlock(mddev);
6749 return err ?: len;
6750}
6751
6752static struct md_sysfs_entry
6753raid5_stripe_size = __ATTR(stripe_size, 0644,
6754 raid5_show_stripe_size,
6755 raid5_store_stripe_size);
6756#else
6757static struct md_sysfs_entry
6758raid5_stripe_size = __ATTR(stripe_size, 0444,
6759 raid5_show_stripe_size,
6760 NULL);
6761#endif
6762
6763static ssize_t
6764raid5_show_preread_threshold(struct mddev *mddev, char *page)
6765{
6766 struct r5conf *conf;
6767 int ret = 0;
6768 spin_lock(&mddev->lock);
6769 conf = mddev->private;
6770 if (conf)
6771 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6772 spin_unlock(&mddev->lock);
6773 return ret;
6774}
6775
6776static ssize_t
6777raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6778{
6779 struct r5conf *conf;
6780 unsigned long new;
6781 int err;
6782
6783 if (len >= PAGE_SIZE)
6784 return -EINVAL;
6785 if (kstrtoul(page, 10, &new))
6786 return -EINVAL;
6787
6788 err = mddev_lock(mddev);
6789 if (err)
6790 return err;
6791 conf = mddev->private;
6792 if (!conf)
6793 err = -ENODEV;
6794 else if (new > conf->min_nr_stripes)
6795 err = -EINVAL;
6796 else
6797 conf->bypass_threshold = new;
6798 mddev_unlock(mddev);
6799 return err ?: len;
6800}
6801
6802static struct md_sysfs_entry
6803raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6804 S_IRUGO | S_IWUSR,
6805 raid5_show_preread_threshold,
6806 raid5_store_preread_threshold);
6807
6808static ssize_t
6809raid5_show_skip_copy(struct mddev *mddev, char *page)
6810{
6811 struct r5conf *conf;
6812 int ret = 0;
6813 spin_lock(&mddev->lock);
6814 conf = mddev->private;
6815 if (conf)
6816 ret = sprintf(page, "%d\n", conf->skip_copy);
6817 spin_unlock(&mddev->lock);
6818 return ret;
6819}
6820
6821static ssize_t
6822raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6823{
6824 struct r5conf *conf;
6825 unsigned long new;
6826 int err;
6827
6828 if (len >= PAGE_SIZE)
6829 return -EINVAL;
6830 if (kstrtoul(page, 10, &new))
6831 return -EINVAL;
6832 new = !!new;
6833
6834 err = mddev_lock(mddev);
6835 if (err)
6836 return err;
6837 conf = mddev->private;
6838 if (!conf)
6839 err = -ENODEV;
6840 else if (new != conf->skip_copy) {
6841 struct request_queue *q = mddev->queue;
6842
6843 mddev_suspend(mddev);
6844 conf->skip_copy = new;
6845 if (new)
6846 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
6847 else
6848 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
6849 mddev_resume(mddev);
6850 }
6851 mddev_unlock(mddev);
6852 return err ?: len;
6853}
6854
6855static struct md_sysfs_entry
6856raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6857 raid5_show_skip_copy,
6858 raid5_store_skip_copy);
6859
6860static ssize_t
6861stripe_cache_active_show(struct mddev *mddev, char *page)
6862{
6863 struct r5conf *conf = mddev->private;
6864 if (conf)
6865 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6866 else
6867 return 0;
6868}
6869
6870static struct md_sysfs_entry
6871raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6872
6873static ssize_t
6874raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6875{
6876 struct r5conf *conf;
6877 int ret = 0;
6878 spin_lock(&mddev->lock);
6879 conf = mddev->private;
6880 if (conf)
6881 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6882 spin_unlock(&mddev->lock);
6883 return ret;
6884}
6885
6886static int alloc_thread_groups(struct r5conf *conf, int cnt,
6887 int *group_cnt,
6888 struct r5worker_group **worker_groups);
6889static ssize_t
6890raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6891{
6892 struct r5conf *conf;
6893 unsigned int new;
6894 int err;
6895 struct r5worker_group *new_groups, *old_groups;
6896 int group_cnt;
6897
6898 if (len >= PAGE_SIZE)
6899 return -EINVAL;
6900 if (kstrtouint(page, 10, &new))
6901 return -EINVAL;
6902 /* 8192 should be big enough */
6903 if (new > 8192)
6904 return -EINVAL;
6905
6906 err = mddev_lock(mddev);
6907 if (err)
6908 return err;
6909 conf = mddev->private;
6910 if (!conf)
6911 err = -ENODEV;
6912 else if (new != conf->worker_cnt_per_group) {
6913 mddev_suspend(mddev);
6914
6915 old_groups = conf->worker_groups;
6916 if (old_groups)
6917 flush_workqueue(raid5_wq);
6918
6919 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
6920 if (!err) {
6921 spin_lock_irq(&conf->device_lock);
6922 conf->group_cnt = group_cnt;
6923 conf->worker_cnt_per_group = new;
6924 conf->worker_groups = new_groups;
6925 spin_unlock_irq(&conf->device_lock);
6926
6927 if (old_groups)
6928 kfree(old_groups[0].workers);
6929 kfree(old_groups);
6930 }
6931 mddev_resume(mddev);
6932 }
6933 mddev_unlock(mddev);
6934
6935 return err ?: len;
6936}
6937
6938static struct md_sysfs_entry
6939raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6940 raid5_show_group_thread_cnt,
6941 raid5_store_group_thread_cnt);
6942
6943static struct attribute *raid5_attrs[] = {
6944 &raid5_stripecache_size.attr,
6945 &raid5_stripecache_active.attr,
6946 &raid5_preread_bypass_threshold.attr,
6947 &raid5_group_thread_cnt.attr,
6948 &raid5_skip_copy.attr,
6949 &raid5_rmw_level.attr,
6950 &raid5_stripe_size.attr,
6951 &r5c_journal_mode.attr,
6952 &ppl_write_hint.attr,
6953 NULL,
6954};
6955static const struct attribute_group raid5_attrs_group = {
6956 .name = NULL,
6957 .attrs = raid5_attrs,
6958};
6959
6960static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
6961 struct r5worker_group **worker_groups)
6962{
6963 int i, j, k;
6964 ssize_t size;
6965 struct r5worker *workers;
6966
6967 if (cnt == 0) {
6968 *group_cnt = 0;
6969 *worker_groups = NULL;
6970 return 0;
6971 }
6972 *group_cnt = num_possible_nodes();
6973 size = sizeof(struct r5worker) * cnt;
6974 workers = kcalloc(size, *group_cnt, GFP_NOIO);
6975 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6976 GFP_NOIO);
6977 if (!*worker_groups || !workers) {
6978 kfree(workers);
6979 kfree(*worker_groups);
6980 return -ENOMEM;
6981 }
6982
6983 for (i = 0; i < *group_cnt; i++) {
6984 struct r5worker_group *group;
6985
6986 group = &(*worker_groups)[i];
6987 INIT_LIST_HEAD(&group->handle_list);
6988 INIT_LIST_HEAD(&group->loprio_list);
6989 group->conf = conf;
6990 group->workers = workers + i * cnt;
6991
6992 for (j = 0; j < cnt; j++) {
6993 struct r5worker *worker = group->workers + j;
6994 worker->group = group;
6995 INIT_WORK(&worker->work, raid5_do_work);
6996
6997 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6998 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6999 }
7000 }
7001
7002 return 0;
7003}
7004
7005static void free_thread_groups(struct r5conf *conf)
7006{
7007 if (conf->worker_groups)
7008 kfree(conf->worker_groups[0].workers);
7009 kfree(conf->worker_groups);
7010 conf->worker_groups = NULL;
7011}
7012
7013static sector_t
7014raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7015{
7016 struct r5conf *conf = mddev->private;
7017
7018 if (!sectors)
7019 sectors = mddev->dev_sectors;
7020 if (!raid_disks)
7021 /* size is defined by the smallest of previous and new size */
7022 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7023
7024 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7025 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7026 return sectors * (raid_disks - conf->max_degraded);
7027}
7028
7029static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7030{
7031 safe_put_page(percpu->spare_page);
7032 percpu->spare_page = NULL;
7033 kvfree(percpu->scribble);
7034 percpu->scribble = NULL;
7035}
7036
7037static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7038{
7039 if (conf->level == 6 && !percpu->spare_page) {
7040 percpu->spare_page = alloc_page(GFP_KERNEL);
7041 if (!percpu->spare_page)
7042 return -ENOMEM;
7043 }
7044
7045 if (scribble_alloc(percpu,
7046 max(conf->raid_disks,
7047 conf->previous_raid_disks),
7048 max(conf->chunk_sectors,
7049 conf->prev_chunk_sectors)
7050 / RAID5_STRIPE_SECTORS(conf))) {
7051 free_scratch_buffer(conf, percpu);
7052 return -ENOMEM;
7053 }
7054
7055 return 0;
7056}
7057
7058static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7059{
7060 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7061
7062 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7063 return 0;
7064}
7065
7066static void raid5_free_percpu(struct r5conf *conf)
7067{
7068 if (!conf->percpu)
7069 return;
7070
7071 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7072 free_percpu(conf->percpu);
7073}
7074
7075static void free_conf(struct r5conf *conf)
7076{
7077 int i;
7078
7079 log_exit(conf);
7080
7081 unregister_shrinker(&conf->shrinker);
7082 free_thread_groups(conf);
7083 shrink_stripes(conf);
7084 raid5_free_percpu(conf);
7085 for (i = 0; i < conf->pool_size; i++)
7086 if (conf->disks[i].extra_page)
7087 put_page(conf->disks[i].extra_page);
7088 kfree(conf->disks);
7089 bioset_exit(&conf->bio_split);
7090 kfree(conf->stripe_hashtbl);
7091 kfree(conf->pending_data);
7092 kfree(conf);
7093}
7094
7095static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7096{
7097 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7098 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7099
7100 if (alloc_scratch_buffer(conf, percpu)) {
7101 pr_warn("%s: failed memory allocation for cpu%u\n",
7102 __func__, cpu);
7103 return -ENOMEM;
7104 }
7105 return 0;
7106}
7107
7108static int raid5_alloc_percpu(struct r5conf *conf)
7109{
7110 int err = 0;
7111
7112 conf->percpu = alloc_percpu(struct raid5_percpu);
7113 if (!conf->percpu)
7114 return -ENOMEM;
7115
7116 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7117 if (!err) {
7118 conf->scribble_disks = max(conf->raid_disks,
7119 conf->previous_raid_disks);
7120 conf->scribble_sectors = max(conf->chunk_sectors,
7121 conf->prev_chunk_sectors);
7122 }
7123 return err;
7124}
7125
7126static unsigned long raid5_cache_scan(struct shrinker *shrink,
7127 struct shrink_control *sc)
7128{
7129 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7130 unsigned long ret = SHRINK_STOP;
7131
7132 if (mutex_trylock(&conf->cache_size_mutex)) {
7133 ret= 0;
7134 while (ret < sc->nr_to_scan &&
7135 conf->max_nr_stripes > conf->min_nr_stripes) {
7136 if (drop_one_stripe(conf) == 0) {
7137 ret = SHRINK_STOP;
7138 break;
7139 }
7140 ret++;
7141 }
7142 mutex_unlock(&conf->cache_size_mutex);
7143 }
7144 return ret;
7145}
7146
7147static unsigned long raid5_cache_count(struct shrinker *shrink,
7148 struct shrink_control *sc)
7149{
7150 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
7151
7152 if (conf->max_nr_stripes < conf->min_nr_stripes)
7153 /* unlikely, but not impossible */
7154 return 0;
7155 return conf->max_nr_stripes - conf->min_nr_stripes;
7156}
7157
7158static struct r5conf *setup_conf(struct mddev *mddev)
7159{
7160 struct r5conf *conf;
7161 int raid_disk, memory, max_disks;
7162 struct md_rdev *rdev;
7163 struct disk_info *disk;
7164 char pers_name[6];
7165 int i;
7166 int group_cnt;
7167 struct r5worker_group *new_group;
7168 int ret;
7169
7170 if (mddev->new_level != 5
7171 && mddev->new_level != 4
7172 && mddev->new_level != 6) {
7173 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7174 mdname(mddev), mddev->new_level);
7175 return ERR_PTR(-EIO);
7176 }
7177 if ((mddev->new_level == 5
7178 && !algorithm_valid_raid5(mddev->new_layout)) ||
7179 (mddev->new_level == 6
7180 && !algorithm_valid_raid6(mddev->new_layout))) {
7181 pr_warn("md/raid:%s: layout %d not supported\n",
7182 mdname(mddev), mddev->new_layout);
7183 return ERR_PTR(-EIO);
7184 }
7185 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7186 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7187 mdname(mddev), mddev->raid_disks);
7188 return ERR_PTR(-EINVAL);
7189 }
7190
7191 if (!mddev->new_chunk_sectors ||
7192 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7193 !is_power_of_2(mddev->new_chunk_sectors)) {
7194 pr_warn("md/raid:%s: invalid chunk size %d\n",
7195 mdname(mddev), mddev->new_chunk_sectors << 9);
7196 return ERR_PTR(-EINVAL);
7197 }
7198
7199 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7200 if (conf == NULL)
7201 goto abort;
7202
7203#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7204 conf->stripe_size = DEFAULT_STRIPE_SIZE;
7205 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7206 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7207#endif
7208 INIT_LIST_HEAD(&conf->free_list);
7209 INIT_LIST_HEAD(&conf->pending_list);
7210 conf->pending_data = kcalloc(PENDING_IO_MAX,
7211 sizeof(struct r5pending_data),
7212 GFP_KERNEL);
7213 if (!conf->pending_data)
7214 goto abort;
7215 for (i = 0; i < PENDING_IO_MAX; i++)
7216 list_add(&conf->pending_data[i].sibling, &conf->free_list);
7217 /* Don't enable multi-threading by default*/
7218 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7219 conf->group_cnt = group_cnt;
7220 conf->worker_cnt_per_group = 0;
7221 conf->worker_groups = new_group;
7222 } else
7223 goto abort;
7224 spin_lock_init(&conf->device_lock);
7225 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7226 mutex_init(&conf->cache_size_mutex);
7227 init_waitqueue_head(&conf->wait_for_quiescent);
7228 init_waitqueue_head(&conf->wait_for_stripe);
7229 init_waitqueue_head(&conf->wait_for_overlap);
7230 INIT_LIST_HEAD(&conf->handle_list);
7231 INIT_LIST_HEAD(&conf->loprio_list);
7232 INIT_LIST_HEAD(&conf->hold_list);
7233 INIT_LIST_HEAD(&conf->delayed_list);
7234 INIT_LIST_HEAD(&conf->bitmap_list);
7235 init_llist_head(&conf->released_stripes);
7236 atomic_set(&conf->active_stripes, 0);
7237 atomic_set(&conf->preread_active_stripes, 0);
7238 atomic_set(&conf->active_aligned_reads, 0);
7239 spin_lock_init(&conf->pending_bios_lock);
7240 conf->batch_bio_dispatch = true;
7241 rdev_for_each(rdev, mddev) {
7242 if (test_bit(Journal, &rdev->flags))
7243 continue;
7244 if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
7245 conf->batch_bio_dispatch = false;
7246 break;
7247 }
7248 }
7249
7250 conf->bypass_threshold = BYPASS_THRESHOLD;
7251 conf->recovery_disabled = mddev->recovery_disabled - 1;
7252
7253 conf->raid_disks = mddev->raid_disks;
7254 if (mddev->reshape_position == MaxSector)
7255 conf->previous_raid_disks = mddev->raid_disks;
7256 else
7257 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7258 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7259
7260 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7261 GFP_KERNEL);
7262
7263 if (!conf->disks)
7264 goto abort;
7265
7266 for (i = 0; i < max_disks; i++) {
7267 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7268 if (!conf->disks[i].extra_page)
7269 goto abort;
7270 }
7271
7272 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7273 if (ret)
7274 goto abort;
7275 conf->mddev = mddev;
7276
7277 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
7278 goto abort;
7279
7280 /* We init hash_locks[0] separately to that it can be used
7281 * as the reference lock in the spin_lock_nest_lock() call
7282 * in lock_all_device_hash_locks_irq in order to convince
7283 * lockdep that we know what we are doing.
7284 */
7285 spin_lock_init(conf->hash_locks);
7286 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7287 spin_lock_init(conf->hash_locks + i);
7288
7289 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7290 INIT_LIST_HEAD(conf->inactive_list + i);
7291
7292 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7293 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7294
7295 atomic_set(&conf->r5c_cached_full_stripes, 0);
7296 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7297 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7298 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7299 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7300 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7301
7302 conf->level = mddev->new_level;
7303 conf->chunk_sectors = mddev->new_chunk_sectors;
7304 if (raid5_alloc_percpu(conf) != 0)
7305 goto abort;
7306
7307 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7308
7309 rdev_for_each(rdev, mddev) {
7310 raid_disk = rdev->raid_disk;
7311 if (raid_disk >= max_disks
7312 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7313 continue;
7314 disk = conf->disks + raid_disk;
7315
7316 if (test_bit(Replacement, &rdev->flags)) {
7317 if (disk->replacement)
7318 goto abort;
7319 disk->replacement = rdev;
7320 } else {
7321 if (disk->rdev)
7322 goto abort;
7323 disk->rdev = rdev;
7324 }
7325
7326 if (test_bit(In_sync, &rdev->flags)) {
7327 char b[BDEVNAME_SIZE];
7328 pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7329 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7330 } else if (rdev->saved_raid_disk != raid_disk)
7331 /* Cannot rely on bitmap to complete recovery */
7332 conf->fullsync = 1;
7333 }
7334
7335 conf->level = mddev->new_level;
7336 if (conf->level == 6) {
7337 conf->max_degraded = 2;
7338 if (raid6_call.xor_syndrome)
7339 conf->rmw_level = PARITY_ENABLE_RMW;
7340 else
7341 conf->rmw_level = PARITY_DISABLE_RMW;
7342 } else {
7343 conf->max_degraded = 1;
7344 conf->rmw_level = PARITY_ENABLE_RMW;
7345 }
7346 conf->algorithm = mddev->new_layout;
7347 conf->reshape_progress = mddev->reshape_position;
7348 if (conf->reshape_progress != MaxSector) {
7349 conf->prev_chunk_sectors = mddev->chunk_sectors;
7350 conf->prev_algo = mddev->layout;
7351 } else {
7352 conf->prev_chunk_sectors = conf->chunk_sectors;
7353 conf->prev_algo = conf->algorithm;
7354 }
7355
7356 conf->min_nr_stripes = NR_STRIPES;
7357 if (mddev->reshape_position != MaxSector) {
7358 int stripes = max_t(int,
7359 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7360 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7361 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7362 if (conf->min_nr_stripes != NR_STRIPES)
7363 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7364 mdname(mddev), conf->min_nr_stripes);
7365 }
7366 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7367 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7368 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7369 if (grow_stripes(conf, conf->min_nr_stripes)) {
7370 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7371 mdname(mddev), memory);
7372 goto abort;
7373 } else
7374 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7375 /*
7376 * Losing a stripe head costs more than the time to refill it,
7377 * it reduces the queue depth and so can hurt throughput.
7378 * So set it rather large, scaled by number of devices.
7379 */
7380 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7381 conf->shrinker.scan_objects = raid5_cache_scan;
7382 conf->shrinker.count_objects = raid5_cache_count;
7383 conf->shrinker.batch = 128;
7384 conf->shrinker.flags = 0;
7385 if (register_shrinker(&conf->shrinker)) {
7386 pr_warn("md/raid:%s: couldn't register shrinker.\n",
7387 mdname(mddev));
7388 goto abort;
7389 }
7390
7391 sprintf(pers_name, "raid%d", mddev->new_level);
7392 conf->thread = md_register_thread(raid5d, mddev, pers_name);
7393 if (!conf->thread) {
7394 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7395 mdname(mddev));
7396 goto abort;
7397 }
7398
7399 return conf;
7400
7401 abort:
7402 if (conf) {
7403 free_conf(conf);
7404 return ERR_PTR(-EIO);
7405 } else
7406 return ERR_PTR(-ENOMEM);
7407}
7408
7409static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7410{
7411 switch (algo) {
7412 case ALGORITHM_PARITY_0:
7413 if (raid_disk < max_degraded)
7414 return 1;
7415 break;
7416 case ALGORITHM_PARITY_N:
7417 if (raid_disk >= raid_disks - max_degraded)
7418 return 1;
7419 break;
7420 case ALGORITHM_PARITY_0_6:
7421 if (raid_disk == 0 ||
7422 raid_disk == raid_disks - 1)
7423 return 1;
7424 break;
7425 case ALGORITHM_LEFT_ASYMMETRIC_6:
7426 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7427 case ALGORITHM_LEFT_SYMMETRIC_6:
7428 case ALGORITHM_RIGHT_SYMMETRIC_6:
7429 if (raid_disk == raid_disks - 1)
7430 return 1;
7431 }
7432 return 0;
7433}
7434
7435static void raid5_set_io_opt(struct r5conf *conf)
7436{
7437 blk_queue_io_opt(conf->mddev->queue, (conf->chunk_sectors << 9) *
7438 (conf->raid_disks - conf->max_degraded));
7439}
7440
7441static int raid5_run(struct mddev *mddev)
7442{
7443 struct r5conf *conf;
7444 int working_disks = 0;
7445 int dirty_parity_disks = 0;
7446 struct md_rdev *rdev;
7447 struct md_rdev *journal_dev = NULL;
7448 sector_t reshape_offset = 0;
7449 int i;
7450 long long min_offset_diff = 0;
7451 int first = 1;
7452
7453 if (mddev_init_writes_pending(mddev) < 0)
7454 return -ENOMEM;
7455
7456 if (mddev->recovery_cp != MaxSector)
7457 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7458 mdname(mddev));
7459
7460 rdev_for_each(rdev, mddev) {
7461 long long diff;
7462
7463 if (test_bit(Journal, &rdev->flags)) {
7464 journal_dev = rdev;
7465 continue;
7466 }
7467 if (rdev->raid_disk < 0)
7468 continue;
7469 diff = (rdev->new_data_offset - rdev->data_offset);
7470 if (first) {
7471 min_offset_diff = diff;
7472 first = 0;
7473 } else if (mddev->reshape_backwards &&
7474 diff < min_offset_diff)
7475 min_offset_diff = diff;
7476 else if (!mddev->reshape_backwards &&
7477 diff > min_offset_diff)
7478 min_offset_diff = diff;
7479 }
7480
7481 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7482 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7483 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7484 mdname(mddev));
7485 return -EINVAL;
7486 }
7487
7488 if (mddev->reshape_position != MaxSector) {
7489 /* Check that we can continue the reshape.
7490 * Difficulties arise if the stripe we would write to
7491 * next is at or after the stripe we would read from next.
7492 * For a reshape that changes the number of devices, this
7493 * is only possible for a very short time, and mdadm makes
7494 * sure that time appears to have past before assembling
7495 * the array. So we fail if that time hasn't passed.
7496 * For a reshape that keeps the number of devices the same
7497 * mdadm must be monitoring the reshape can keeping the
7498 * critical areas read-only and backed up. It will start
7499 * the array in read-only mode, so we check for that.
7500 */
7501 sector_t here_new, here_old;
7502 int old_disks;
7503 int max_degraded = (mddev->level == 6 ? 2 : 1);
7504 int chunk_sectors;
7505 int new_data_disks;
7506
7507 if (journal_dev) {
7508 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7509 mdname(mddev));
7510 return -EINVAL;
7511 }
7512
7513 if (mddev->new_level != mddev->level) {
7514 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7515 mdname(mddev));
7516 return -EINVAL;
7517 }
7518 old_disks = mddev->raid_disks - mddev->delta_disks;
7519 /* reshape_position must be on a new-stripe boundary, and one
7520 * further up in new geometry must map after here in old
7521 * geometry.
7522 * If the chunk sizes are different, then as we perform reshape
7523 * in units of the largest of the two, reshape_position needs
7524 * be a multiple of the largest chunk size times new data disks.
7525 */
7526 here_new = mddev->reshape_position;
7527 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7528 new_data_disks = mddev->raid_disks - max_degraded;
7529 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7530 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7531 mdname(mddev));
7532 return -EINVAL;
7533 }
7534 reshape_offset = here_new * chunk_sectors;
7535 /* here_new is the stripe we will write to */
7536 here_old = mddev->reshape_position;
7537 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7538 /* here_old is the first stripe that we might need to read
7539 * from */
7540 if (mddev->delta_disks == 0) {
7541 /* We cannot be sure it is safe to start an in-place
7542 * reshape. It is only safe if user-space is monitoring
7543 * and taking constant backups.
7544 * mdadm always starts a situation like this in
7545 * readonly mode so it can take control before
7546 * allowing any writes. So just check for that.
7547 */
7548 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7549 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7550 /* not really in-place - so OK */;
7551 else if (mddev->ro == 0) {
7552 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7553 mdname(mddev));
7554 return -EINVAL;
7555 }
7556 } else if (mddev->reshape_backwards
7557 ? (here_new * chunk_sectors + min_offset_diff <=
7558 here_old * chunk_sectors)
7559 : (here_new * chunk_sectors >=
7560 here_old * chunk_sectors + (-min_offset_diff))) {
7561 /* Reading from the same stripe as writing to - bad */
7562 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7563 mdname(mddev));
7564 return -EINVAL;
7565 }
7566 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7567 /* OK, we should be able to continue; */
7568 } else {
7569 BUG_ON(mddev->level != mddev->new_level);
7570 BUG_ON(mddev->layout != mddev->new_layout);
7571 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7572 BUG_ON(mddev->delta_disks != 0);
7573 }
7574
7575 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7576 test_bit(MD_HAS_PPL, &mddev->flags)) {
7577 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7578 mdname(mddev));
7579 clear_bit(MD_HAS_PPL, &mddev->flags);
7580 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7581 }
7582
7583 if (mddev->private == NULL)
7584 conf = setup_conf(mddev);
7585 else
7586 conf = mddev->private;
7587
7588 if (IS_ERR(conf))
7589 return PTR_ERR(conf);
7590
7591 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7592 if (!journal_dev) {
7593 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7594 mdname(mddev));
7595 mddev->ro = 1;
7596 set_disk_ro(mddev->gendisk, 1);
7597 } else if (mddev->recovery_cp == MaxSector)
7598 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7599 }
7600
7601 conf->min_offset_diff = min_offset_diff;
7602 mddev->thread = conf->thread;
7603 conf->thread = NULL;
7604 mddev->private = conf;
7605
7606 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7607 i++) {
7608 rdev = conf->disks[i].rdev;
7609 if (!rdev && conf->disks[i].replacement) {
7610 /* The replacement is all we have yet */
7611 rdev = conf->disks[i].replacement;
7612 conf->disks[i].replacement = NULL;
7613 clear_bit(Replacement, &rdev->flags);
7614 conf->disks[i].rdev = rdev;
7615 }
7616 if (!rdev)
7617 continue;
7618 if (conf->disks[i].replacement &&
7619 conf->reshape_progress != MaxSector) {
7620 /* replacements and reshape simply do not mix. */
7621 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7622 goto abort;
7623 }
7624 if (test_bit(In_sync, &rdev->flags)) {
7625 working_disks++;
7626 continue;
7627 }
7628 /* This disc is not fully in-sync. However if it
7629 * just stored parity (beyond the recovery_offset),
7630 * when we don't need to be concerned about the
7631 * array being dirty.
7632 * When reshape goes 'backwards', we never have
7633 * partially completed devices, so we only need
7634 * to worry about reshape going forwards.
7635 */
7636 /* Hack because v0.91 doesn't store recovery_offset properly. */
7637 if (mddev->major_version == 0 &&
7638 mddev->minor_version > 90)
7639 rdev->recovery_offset = reshape_offset;
7640
7641 if (rdev->recovery_offset < reshape_offset) {
7642 /* We need to check old and new layout */
7643 if (!only_parity(rdev->raid_disk,
7644 conf->algorithm,
7645 conf->raid_disks,
7646 conf->max_degraded))
7647 continue;
7648 }
7649 if (!only_parity(rdev->raid_disk,
7650 conf->prev_algo,
7651 conf->previous_raid_disks,
7652 conf->max_degraded))
7653 continue;
7654 dirty_parity_disks++;
7655 }
7656
7657 /*
7658 * 0 for a fully functional array, 1 or 2 for a degraded array.
7659 */
7660 mddev->degraded = raid5_calc_degraded(conf);
7661
7662 if (has_failed(conf)) {
7663 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7664 mdname(mddev), mddev->degraded, conf->raid_disks);
7665 goto abort;
7666 }
7667
7668 /* device size must be a multiple of chunk size */
7669 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7670 mddev->resync_max_sectors = mddev->dev_sectors;
7671
7672 if (mddev->degraded > dirty_parity_disks &&
7673 mddev->recovery_cp != MaxSector) {
7674 if (test_bit(MD_HAS_PPL, &mddev->flags))
7675 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7676 mdname(mddev));
7677 else if (mddev->ok_start_degraded)
7678 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7679 mdname(mddev));
7680 else {
7681 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7682 mdname(mddev));
7683 goto abort;
7684 }
7685 }
7686
7687 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7688 mdname(mddev), conf->level,
7689 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7690 mddev->new_layout);
7691
7692 print_raid5_conf(conf);
7693
7694 if (conf->reshape_progress != MaxSector) {
7695 conf->reshape_safe = conf->reshape_progress;
7696 atomic_set(&conf->reshape_stripes, 0);
7697 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7698 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7699 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7700 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7701 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7702 "reshape");
7703 if (!mddev->sync_thread)
7704 goto abort;
7705 }
7706
7707 /* Ok, everything is just fine now */
7708 if (mddev->to_remove == &raid5_attrs_group)
7709 mddev->to_remove = NULL;
7710 else if (mddev->kobj.sd &&
7711 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7712 pr_warn("raid5: failed to create sysfs attributes for %s\n",
7713 mdname(mddev));
7714 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7715
7716 if (mddev->queue) {
7717 int chunk_size;
7718 /* read-ahead size must cover two whole stripes, which
7719 * is 2 * (datadisks) * chunksize where 'n' is the
7720 * number of raid devices
7721 */
7722 int data_disks = conf->previous_raid_disks - conf->max_degraded;
7723 int stripe = data_disks *
7724 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
7725
7726 chunk_size = mddev->chunk_sectors << 9;
7727 blk_queue_io_min(mddev->queue, chunk_size);
7728 raid5_set_io_opt(conf);
7729 mddev->queue->limits.raid_partial_stripes_expensive = 1;
7730 /*
7731 * We can only discard a whole stripe. It doesn't make sense to
7732 * discard data disk but write parity disk
7733 */
7734 stripe = stripe * PAGE_SIZE;
7735 /* Round up to power of 2, as discard handling
7736 * currently assumes that */
7737 while ((stripe-1) & stripe)
7738 stripe = (stripe | (stripe-1)) + 1;
7739 mddev->queue->limits.discard_alignment = stripe;
7740 mddev->queue->limits.discard_granularity = stripe;
7741
7742 blk_queue_max_write_same_sectors(mddev->queue, 0);
7743 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7744
7745 rdev_for_each(rdev, mddev) {
7746 disk_stack_limits(mddev->gendisk, rdev->bdev,
7747 rdev->data_offset << 9);
7748 disk_stack_limits(mddev->gendisk, rdev->bdev,
7749 rdev->new_data_offset << 9);
7750 }
7751
7752 /*
7753 * zeroing is required, otherwise data
7754 * could be lost. Consider a scenario: discard a stripe
7755 * (the stripe could be inconsistent if
7756 * discard_zeroes_data is 0); write one disk of the
7757 * stripe (the stripe could be inconsistent again
7758 * depending on which disks are used to calculate
7759 * parity); the disk is broken; The stripe data of this
7760 * disk is lost.
7761 *
7762 * We only allow DISCARD if the sysadmin has confirmed that
7763 * only safe devices are in use by setting a module parameter.
7764 * A better idea might be to turn DISCARD into WRITE_ZEROES
7765 * requests, as that is required to be safe.
7766 */
7767 if (devices_handle_discard_safely &&
7768 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7769 mddev->queue->limits.discard_granularity >= stripe)
7770 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7771 mddev->queue);
7772 else
7773 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7774 mddev->queue);
7775
7776 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7777 }
7778
7779 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7780 goto abort;
7781
7782 return 0;
7783abort:
7784 md_unregister_thread(&mddev->thread);
7785 print_raid5_conf(conf);
7786 free_conf(conf);
7787 mddev->private = NULL;
7788 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7789 return -EIO;
7790}
7791
7792static void raid5_free(struct mddev *mddev, void *priv)
7793{
7794 struct r5conf *conf = priv;
7795
7796 free_conf(conf);
7797 mddev->to_remove = &raid5_attrs_group;
7798}
7799
7800static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7801{
7802 struct r5conf *conf = mddev->private;
7803 int i;
7804
7805 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7806 conf->chunk_sectors / 2, mddev->layout);
7807 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7808 rcu_read_lock();
7809 for (i = 0; i < conf->raid_disks; i++) {
7810 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7811 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7812 }
7813 rcu_read_unlock();
7814 seq_printf (seq, "]");
7815}
7816
7817static void print_raid5_conf (struct r5conf *conf)
7818{
7819 int i;
7820 struct disk_info *tmp;
7821
7822 pr_debug("RAID conf printout:\n");
7823 if (!conf) {
7824 pr_debug("(conf==NULL)\n");
7825 return;
7826 }
7827 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7828 conf->raid_disks,
7829 conf->raid_disks - conf->mddev->degraded);
7830
7831 for (i = 0; i < conf->raid_disks; i++) {
7832 char b[BDEVNAME_SIZE];
7833 tmp = conf->disks + i;
7834 if (tmp->rdev)
7835 pr_debug(" disk %d, o:%d, dev:%s\n",
7836 i, !test_bit(Faulty, &tmp->rdev->flags),
7837 bdevname(tmp->rdev->bdev, b));
7838 }
7839}
7840
7841static int raid5_spare_active(struct mddev *mddev)
7842{
7843 int i;
7844 struct r5conf *conf = mddev->private;
7845 struct disk_info *tmp;
7846 int count = 0;
7847 unsigned long flags;
7848
7849 for (i = 0; i < conf->raid_disks; i++) {
7850 tmp = conf->disks + i;
7851 if (tmp->replacement
7852 && tmp->replacement->recovery_offset == MaxSector
7853 && !test_bit(Faulty, &tmp->replacement->flags)
7854 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7855 /* Replacement has just become active. */
7856 if (!tmp->rdev
7857 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7858 count++;
7859 if (tmp->rdev) {
7860 /* Replaced device not technically faulty,
7861 * but we need to be sure it gets removed
7862 * and never re-added.
7863 */
7864 set_bit(Faulty, &tmp->rdev->flags);
7865 sysfs_notify_dirent_safe(
7866 tmp->rdev->sysfs_state);
7867 }
7868 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7869 } else if (tmp->rdev
7870 && tmp->rdev->recovery_offset == MaxSector
7871 && !test_bit(Faulty, &tmp->rdev->flags)
7872 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7873 count++;
7874 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7875 }
7876 }
7877 spin_lock_irqsave(&conf->device_lock, flags);
7878 mddev->degraded = raid5_calc_degraded(conf);
7879 spin_unlock_irqrestore(&conf->device_lock, flags);
7880 print_raid5_conf(conf);
7881 return count;
7882}
7883
7884static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7885{
7886 struct r5conf *conf = mddev->private;
7887 int err = 0;
7888 int number = rdev->raid_disk;
7889 struct md_rdev **rdevp;
7890 struct disk_info *p = conf->disks + number;
7891
7892 print_raid5_conf(conf);
7893 if (test_bit(Journal, &rdev->flags) && conf->log) {
7894 /*
7895 * we can't wait pending write here, as this is called in
7896 * raid5d, wait will deadlock.
7897 * neilb: there is no locking about new writes here,
7898 * so this cannot be safe.
7899 */
7900 if (atomic_read(&conf->active_stripes) ||
7901 atomic_read(&conf->r5c_cached_full_stripes) ||
7902 atomic_read(&conf->r5c_cached_partial_stripes)) {
7903 return -EBUSY;
7904 }
7905 log_exit(conf);
7906 return 0;
7907 }
7908 if (rdev == p->rdev)
7909 rdevp = &p->rdev;
7910 else if (rdev == p->replacement)
7911 rdevp = &p->replacement;
7912 else
7913 return 0;
7914
7915 if (number >= conf->raid_disks &&
7916 conf->reshape_progress == MaxSector)
7917 clear_bit(In_sync, &rdev->flags);
7918
7919 if (test_bit(In_sync, &rdev->flags) ||
7920 atomic_read(&rdev->nr_pending)) {
7921 err = -EBUSY;
7922 goto abort;
7923 }
7924 /* Only remove non-faulty devices if recovery
7925 * isn't possible.
7926 */
7927 if (!test_bit(Faulty, &rdev->flags) &&
7928 mddev->recovery_disabled != conf->recovery_disabled &&
7929 !has_failed(conf) &&
7930 (!p->replacement || p->replacement == rdev) &&
7931 number < conf->raid_disks) {
7932 err = -EBUSY;
7933 goto abort;
7934 }
7935 *rdevp = NULL;
7936 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7937 synchronize_rcu();
7938 if (atomic_read(&rdev->nr_pending)) {
7939 /* lost the race, try later */
7940 err = -EBUSY;
7941 *rdevp = rdev;
7942 }
7943 }
7944 if (!err) {
7945 err = log_modify(conf, rdev, false);
7946 if (err)
7947 goto abort;
7948 }
7949 if (p->replacement) {
7950 /* We must have just cleared 'rdev' */
7951 p->rdev = p->replacement;
7952 clear_bit(Replacement, &p->replacement->flags);
7953 smp_mb(); /* Make sure other CPUs may see both as identical
7954 * but will never see neither - if they are careful
7955 */
7956 p->replacement = NULL;
7957
7958 if (!err)
7959 err = log_modify(conf, p->rdev, true);
7960 }
7961
7962 clear_bit(WantReplacement, &rdev->flags);
7963abort:
7964
7965 print_raid5_conf(conf);
7966 return err;
7967}
7968
7969static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7970{
7971 struct r5conf *conf = mddev->private;
7972 int ret, err = -EEXIST;
7973 int disk;
7974 struct disk_info *p;
7975 int first = 0;
7976 int last = conf->raid_disks - 1;
7977
7978 if (test_bit(Journal, &rdev->flags)) {
7979 if (conf->log)
7980 return -EBUSY;
7981
7982 rdev->raid_disk = 0;
7983 /*
7984 * The array is in readonly mode if journal is missing, so no
7985 * write requests running. We should be safe
7986 */
7987 ret = log_init(conf, rdev, false);
7988 if (ret)
7989 return ret;
7990
7991 ret = r5l_start(conf->log);
7992 if (ret)
7993 return ret;
7994
7995 return 0;
7996 }
7997 if (mddev->recovery_disabled == conf->recovery_disabled)
7998 return -EBUSY;
7999
8000 if (rdev->saved_raid_disk < 0 && has_failed(conf))
8001 /* no point adding a device */
8002 return -EINVAL;
8003
8004 if (rdev->raid_disk >= 0)
8005 first = last = rdev->raid_disk;
8006
8007 /*
8008 * find the disk ... but prefer rdev->saved_raid_disk
8009 * if possible.
8010 */
8011 if (rdev->saved_raid_disk >= 0 &&
8012 rdev->saved_raid_disk >= first &&
8013 conf->disks[rdev->saved_raid_disk].rdev == NULL)
8014 first = rdev->saved_raid_disk;
8015
8016 for (disk = first; disk <= last; disk++) {
8017 p = conf->disks + disk;
8018 if (p->rdev == NULL) {
8019 clear_bit(In_sync, &rdev->flags);
8020 rdev->raid_disk = disk;
8021 if (rdev->saved_raid_disk != disk)
8022 conf->fullsync = 1;
8023 rcu_assign_pointer(p->rdev, rdev);
8024
8025 err = log_modify(conf, rdev, true);
8026
8027 goto out;
8028 }
8029 }
8030 for (disk = first; disk <= last; disk++) {
8031 p = conf->disks + disk;
8032 if (test_bit(WantReplacement, &p->rdev->flags) &&
8033 p->replacement == NULL) {
8034 clear_bit(In_sync, &rdev->flags);
8035 set_bit(Replacement, &rdev->flags);
8036 rdev->raid_disk = disk;
8037 err = 0;
8038 conf->fullsync = 1;
8039 rcu_assign_pointer(p->replacement, rdev);
8040 break;
8041 }
8042 }
8043out:
8044 print_raid5_conf(conf);
8045 return err;
8046}
8047
8048static int raid5_resize(struct mddev *mddev, sector_t sectors)
8049{
8050 /* no resync is happening, and there is enough space
8051 * on all devices, so we can resize.
8052 * We need to make sure resync covers any new space.
8053 * If the array is shrinking we should possibly wait until
8054 * any io in the removed space completes, but it hardly seems
8055 * worth it.
8056 */
8057 sector_t newsize;
8058 struct r5conf *conf = mddev->private;
8059
8060 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8061 return -EINVAL;
8062 sectors &= ~((sector_t)conf->chunk_sectors - 1);
8063 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8064 if (mddev->external_size &&
8065 mddev->array_sectors > newsize)
8066 return -EINVAL;
8067 if (mddev->bitmap) {
8068 int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
8069 if (ret)
8070 return ret;
8071 }
8072 md_set_array_sectors(mddev, newsize);
8073 if (sectors > mddev->dev_sectors &&
8074 mddev->recovery_cp > mddev->dev_sectors) {
8075 mddev->recovery_cp = mddev->dev_sectors;
8076 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8077 }
8078 mddev->dev_sectors = sectors;
8079 mddev->resync_max_sectors = sectors;
8080 return 0;
8081}
8082
8083static int check_stripe_cache(struct mddev *mddev)
8084{
8085 /* Can only proceed if there are plenty of stripe_heads.
8086 * We need a minimum of one full stripe,, and for sensible progress
8087 * it is best to have about 4 times that.
8088 * If we require 4 times, then the default 256 4K stripe_heads will
8089 * allow for chunk sizes up to 256K, which is probably OK.
8090 * If the chunk size is greater, user-space should request more
8091 * stripe_heads first.
8092 */
8093 struct r5conf *conf = mddev->private;
8094 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8095 > conf->min_nr_stripes ||
8096 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8097 > conf->min_nr_stripes) {
8098 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
8099 mdname(mddev),
8100 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8101 / RAID5_STRIPE_SIZE(conf))*4);
8102 return 0;
8103 }
8104 return 1;
8105}
8106
8107static int check_reshape(struct mddev *mddev)
8108{
8109 struct r5conf *conf = mddev->private;
8110
8111 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8112 return -EINVAL;
8113 if (mddev->delta_disks == 0 &&
8114 mddev->new_layout == mddev->layout &&
8115 mddev->new_chunk_sectors == mddev->chunk_sectors)
8116 return 0; /* nothing to do */
8117 if (has_failed(conf))
8118 return -EINVAL;
8119 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8120 /* We might be able to shrink, but the devices must
8121 * be made bigger first.
8122 * For raid6, 4 is the minimum size.
8123 * Otherwise 2 is the minimum
8124 */
8125 int min = 2;
8126 if (mddev->level == 6)
8127 min = 4;
8128 if (mddev->raid_disks + mddev->delta_disks < min)
8129 return -EINVAL;
8130 }
8131
8132 if (!check_stripe_cache(mddev))
8133 return -ENOSPC;
8134
8135 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8136 mddev->delta_disks > 0)
8137 if (resize_chunks(conf,
8138 conf->previous_raid_disks
8139 + max(0, mddev->delta_disks),
8140 max(mddev->new_chunk_sectors,
8141 mddev->chunk_sectors)
8142 ) < 0)
8143 return -ENOMEM;
8144
8145 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8146 return 0; /* never bother to shrink */
8147 return resize_stripes(conf, (conf->previous_raid_disks
8148 + mddev->delta_disks));
8149}
8150
8151static int raid5_start_reshape(struct mddev *mddev)
8152{
8153 struct r5conf *conf = mddev->private;
8154 struct md_rdev *rdev;
8155 int spares = 0;
8156 unsigned long flags;
8157
8158 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8159 return -EBUSY;
8160
8161 if (!check_stripe_cache(mddev))
8162 return -ENOSPC;
8163
8164 if (has_failed(conf))
8165 return -EINVAL;
8166
8167 rdev_for_each(rdev, mddev) {
8168 if (!test_bit(In_sync, &rdev->flags)
8169 && !test_bit(Faulty, &rdev->flags))
8170 spares++;
8171 }
8172
8173 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8174 /* Not enough devices even to make a degraded array
8175 * of that size
8176 */
8177 return -EINVAL;
8178
8179 /* Refuse to reduce size of the array. Any reductions in
8180 * array size must be through explicit setting of array_size
8181 * attribute.
8182 */
8183 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8184 < mddev->array_sectors) {
8185 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8186 mdname(mddev));
8187 return -EINVAL;
8188 }
8189
8190 atomic_set(&conf->reshape_stripes, 0);
8191 spin_lock_irq(&conf->device_lock);
8192 write_seqcount_begin(&conf->gen_lock);
8193 conf->previous_raid_disks = conf->raid_disks;
8194 conf->raid_disks += mddev->delta_disks;
8195 conf->prev_chunk_sectors = conf->chunk_sectors;
8196 conf->chunk_sectors = mddev->new_chunk_sectors;
8197 conf->prev_algo = conf->algorithm;
8198 conf->algorithm = mddev->new_layout;
8199 conf->generation++;
8200 /* Code that selects data_offset needs to see the generation update
8201 * if reshape_progress has been set - so a memory barrier needed.
8202 */
8203 smp_mb();
8204 if (mddev->reshape_backwards)
8205 conf->reshape_progress = raid5_size(mddev, 0, 0);
8206 else
8207 conf->reshape_progress = 0;
8208 conf->reshape_safe = conf->reshape_progress;
8209 write_seqcount_end(&conf->gen_lock);
8210 spin_unlock_irq(&conf->device_lock);
8211
8212 /* Now make sure any requests that proceeded on the assumption
8213 * the reshape wasn't running - like Discard or Read - have
8214 * completed.
8215 */
8216 mddev_suspend(mddev);
8217 mddev_resume(mddev);
8218
8219 /* Add some new drives, as many as will fit.
8220 * We know there are enough to make the newly sized array work.
8221 * Don't add devices if we are reducing the number of
8222 * devices in the array. This is because it is not possible
8223 * to correctly record the "partially reconstructed" state of
8224 * such devices during the reshape and confusion could result.
8225 */
8226 if (mddev->delta_disks >= 0) {
8227 rdev_for_each(rdev, mddev)
8228 if (rdev->raid_disk < 0 &&
8229 !test_bit(Faulty, &rdev->flags)) {
8230 if (raid5_add_disk(mddev, rdev) == 0) {
8231 if (rdev->raid_disk
8232 >= conf->previous_raid_disks)
8233 set_bit(In_sync, &rdev->flags);
8234 else
8235 rdev->recovery_offset = 0;
8236
8237 /* Failure here is OK */
8238 sysfs_link_rdev(mddev, rdev);
8239 }
8240 } else if (rdev->raid_disk >= conf->previous_raid_disks
8241 && !test_bit(Faulty, &rdev->flags)) {
8242 /* This is a spare that was manually added */
8243 set_bit(In_sync, &rdev->flags);
8244 }
8245
8246 /* When a reshape changes the number of devices,
8247 * ->degraded is measured against the larger of the
8248 * pre and post number of devices.
8249 */
8250 spin_lock_irqsave(&conf->device_lock, flags);
8251 mddev->degraded = raid5_calc_degraded(conf);
8252 spin_unlock_irqrestore(&conf->device_lock, flags);
8253 }
8254 mddev->raid_disks = conf->raid_disks;
8255 mddev->reshape_position = conf->reshape_progress;
8256 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8257
8258 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8259 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8260 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8261 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8262 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8263 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
8264 "reshape");
8265 if (!mddev->sync_thread) {
8266 mddev->recovery = 0;
8267 spin_lock_irq(&conf->device_lock);
8268 write_seqcount_begin(&conf->gen_lock);
8269 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
8270 mddev->new_chunk_sectors =
8271 conf->chunk_sectors = conf->prev_chunk_sectors;
8272 mddev->new_layout = conf->algorithm = conf->prev_algo;
8273 rdev_for_each(rdev, mddev)
8274 rdev->new_data_offset = rdev->data_offset;
8275 smp_wmb();
8276 conf->generation --;
8277 conf->reshape_progress = MaxSector;
8278 mddev->reshape_position = MaxSector;
8279 write_seqcount_end(&conf->gen_lock);
8280 spin_unlock_irq(&conf->device_lock);
8281 return -EAGAIN;
8282 }
8283 conf->reshape_checkpoint = jiffies;
8284 md_wakeup_thread(mddev->sync_thread);
8285 md_new_event(mddev);
8286 return 0;
8287}
8288
8289/* This is called from the reshape thread and should make any
8290 * changes needed in 'conf'
8291 */
8292static void end_reshape(struct r5conf *conf)
8293{
8294
8295 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8296 struct md_rdev *rdev;
8297
8298 spin_lock_irq(&conf->device_lock);
8299 conf->previous_raid_disks = conf->raid_disks;
8300 md_finish_reshape(conf->mddev);
8301 smp_wmb();
8302 conf->reshape_progress = MaxSector;
8303 conf->mddev->reshape_position = MaxSector;
8304 rdev_for_each(rdev, conf->mddev)
8305 if (rdev->raid_disk >= 0 &&
8306 !test_bit(Journal, &rdev->flags) &&
8307 !test_bit(In_sync, &rdev->flags))
8308 rdev->recovery_offset = MaxSector;
8309 spin_unlock_irq(&conf->device_lock);
8310 wake_up(&conf->wait_for_overlap);
8311
8312 if (conf->mddev->queue)
8313 raid5_set_io_opt(conf);
8314 }
8315}
8316
8317/* This is called from the raid5d thread with mddev_lock held.
8318 * It makes config changes to the device.
8319 */
8320static void raid5_finish_reshape(struct mddev *mddev)
8321{
8322 struct r5conf *conf = mddev->private;
8323
8324 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8325
8326 if (mddev->delta_disks <= 0) {
8327 int d;
8328 spin_lock_irq(&conf->device_lock);
8329 mddev->degraded = raid5_calc_degraded(conf);
8330 spin_unlock_irq(&conf->device_lock);
8331 for (d = conf->raid_disks ;
8332 d < conf->raid_disks - mddev->delta_disks;
8333 d++) {
8334 struct md_rdev *rdev = conf->disks[d].rdev;
8335 if (rdev)
8336 clear_bit(In_sync, &rdev->flags);
8337 rdev = conf->disks[d].replacement;
8338 if (rdev)
8339 clear_bit(In_sync, &rdev->flags);
8340 }
8341 }
8342 mddev->layout = conf->algorithm;
8343 mddev->chunk_sectors = conf->chunk_sectors;
8344 mddev->reshape_position = MaxSector;
8345 mddev->delta_disks = 0;
8346 mddev->reshape_backwards = 0;
8347 }
8348}
8349
8350static void raid5_quiesce(struct mddev *mddev, int quiesce)
8351{
8352 struct r5conf *conf = mddev->private;
8353
8354 if (quiesce) {
8355 /* stop all writes */
8356 lock_all_device_hash_locks_irq(conf);
8357 /* '2' tells resync/reshape to pause so that all
8358 * active stripes can drain
8359 */
8360 r5c_flush_cache(conf, INT_MAX);
8361 /* need a memory barrier to make sure read_one_chunk() sees
8362 * quiesce started and reverts to slow (locked) path.
8363 */
8364 smp_store_release(&conf->quiesce, 2);
8365 wait_event_cmd(conf->wait_for_quiescent,
8366 atomic_read(&conf->active_stripes) == 0 &&
8367 atomic_read(&conf->active_aligned_reads) == 0,
8368 unlock_all_device_hash_locks_irq(conf),
8369 lock_all_device_hash_locks_irq(conf));
8370 conf->quiesce = 1;
8371 unlock_all_device_hash_locks_irq(conf);
8372 /* allow reshape to continue */
8373 wake_up(&conf->wait_for_overlap);
8374 } else {
8375 /* re-enable writes */
8376 lock_all_device_hash_locks_irq(conf);
8377 conf->quiesce = 0;
8378 wake_up(&conf->wait_for_quiescent);
8379 wake_up(&conf->wait_for_overlap);
8380 unlock_all_device_hash_locks_irq(conf);
8381 }
8382 log_quiesce(conf, quiesce);
8383}
8384
8385static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8386{
8387 struct r0conf *raid0_conf = mddev->private;
8388 sector_t sectors;
8389
8390 /* for raid0 takeover only one zone is supported */
8391 if (raid0_conf->nr_strip_zones > 1) {
8392 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8393 mdname(mddev));
8394 return ERR_PTR(-EINVAL);
8395 }
8396
8397 sectors = raid0_conf->strip_zone[0].zone_end;
8398 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8399 mddev->dev_sectors = sectors;
8400 mddev->new_level = level;
8401 mddev->new_layout = ALGORITHM_PARITY_N;
8402 mddev->new_chunk_sectors = mddev->chunk_sectors;
8403 mddev->raid_disks += 1;
8404 mddev->delta_disks = 1;
8405 /* make sure it will be not marked as dirty */
8406 mddev->recovery_cp = MaxSector;
8407
8408 return setup_conf(mddev);
8409}
8410
8411static void *raid5_takeover_raid1(struct mddev *mddev)
8412{
8413 int chunksect;
8414 void *ret;
8415
8416 if (mddev->raid_disks != 2 ||
8417 mddev->degraded > 1)
8418 return ERR_PTR(-EINVAL);
8419
8420 /* Should check if there are write-behind devices? */
8421
8422 chunksect = 64*2; /* 64K by default */
8423
8424 /* The array must be an exact multiple of chunksize */
8425 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8426 chunksect >>= 1;
8427
8428 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8429 /* array size does not allow a suitable chunk size */
8430 return ERR_PTR(-EINVAL);
8431
8432 mddev->new_level = 5;
8433 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8434 mddev->new_chunk_sectors = chunksect;
8435
8436 ret = setup_conf(mddev);
8437 if (!IS_ERR(ret))
8438 mddev_clear_unsupported_flags(mddev,
8439 UNSUPPORTED_MDDEV_FLAGS);
8440 return ret;
8441}
8442
8443static void *raid5_takeover_raid6(struct mddev *mddev)
8444{
8445 int new_layout;
8446
8447 switch (mddev->layout) {
8448 case ALGORITHM_LEFT_ASYMMETRIC_6:
8449 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8450 break;
8451 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8452 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8453 break;
8454 case ALGORITHM_LEFT_SYMMETRIC_6:
8455 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8456 break;
8457 case ALGORITHM_RIGHT_SYMMETRIC_6:
8458 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8459 break;
8460 case ALGORITHM_PARITY_0_6:
8461 new_layout = ALGORITHM_PARITY_0;
8462 break;
8463 case ALGORITHM_PARITY_N:
8464 new_layout = ALGORITHM_PARITY_N;
8465 break;
8466 default:
8467 return ERR_PTR(-EINVAL);
8468 }
8469 mddev->new_level = 5;
8470 mddev->new_layout = new_layout;
8471 mddev->delta_disks = -1;
8472 mddev->raid_disks -= 1;
8473 return setup_conf(mddev);
8474}
8475
8476static int raid5_check_reshape(struct mddev *mddev)
8477{
8478 /* For a 2-drive array, the layout and chunk size can be changed
8479 * immediately as not restriping is needed.
8480 * For larger arrays we record the new value - after validation
8481 * to be used by a reshape pass.
8482 */
8483 struct r5conf *conf = mddev->private;
8484 int new_chunk = mddev->new_chunk_sectors;
8485
8486 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8487 return -EINVAL;
8488 if (new_chunk > 0) {
8489 if (!is_power_of_2(new_chunk))
8490 return -EINVAL;
8491 if (new_chunk < (PAGE_SIZE>>9))
8492 return -EINVAL;
8493 if (mddev->array_sectors & (new_chunk-1))
8494 /* not factor of array size */
8495 return -EINVAL;
8496 }
8497
8498 /* They look valid */
8499
8500 if (mddev->raid_disks == 2) {
8501 /* can make the change immediately */
8502 if (mddev->new_layout >= 0) {
8503 conf->algorithm = mddev->new_layout;
8504 mddev->layout = mddev->new_layout;
8505 }
8506 if (new_chunk > 0) {
8507 conf->chunk_sectors = new_chunk ;
8508 mddev->chunk_sectors = new_chunk;
8509 }
8510 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8511 md_wakeup_thread(mddev->thread);
8512 }
8513 return check_reshape(mddev);
8514}
8515
8516static int raid6_check_reshape(struct mddev *mddev)
8517{
8518 int new_chunk = mddev->new_chunk_sectors;
8519
8520 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8521 return -EINVAL;
8522 if (new_chunk > 0) {
8523 if (!is_power_of_2(new_chunk))
8524 return -EINVAL;
8525 if (new_chunk < (PAGE_SIZE >> 9))
8526 return -EINVAL;
8527 if (mddev->array_sectors & (new_chunk-1))
8528 /* not factor of array size */
8529 return -EINVAL;
8530 }
8531
8532 /* They look valid */
8533 return check_reshape(mddev);
8534}
8535
8536static void *raid5_takeover(struct mddev *mddev)
8537{
8538 /* raid5 can take over:
8539 * raid0 - if there is only one strip zone - make it a raid4 layout
8540 * raid1 - if there are two drives. We need to know the chunk size
8541 * raid4 - trivial - just use a raid4 layout.
8542 * raid6 - Providing it is a *_6 layout
8543 */
8544 if (mddev->level == 0)
8545 return raid45_takeover_raid0(mddev, 5);
8546 if (mddev->level == 1)
8547 return raid5_takeover_raid1(mddev);
8548 if (mddev->level == 4) {
8549 mddev->new_layout = ALGORITHM_PARITY_N;
8550 mddev->new_level = 5;
8551 return setup_conf(mddev);
8552 }
8553 if (mddev->level == 6)
8554 return raid5_takeover_raid6(mddev);
8555
8556 return ERR_PTR(-EINVAL);
8557}
8558
8559static void *raid4_takeover(struct mddev *mddev)
8560{
8561 /* raid4 can take over:
8562 * raid0 - if there is only one strip zone
8563 * raid5 - if layout is right
8564 */
8565 if (mddev->level == 0)
8566 return raid45_takeover_raid0(mddev, 4);
8567 if (mddev->level == 5 &&
8568 mddev->layout == ALGORITHM_PARITY_N) {
8569 mddev->new_layout = 0;
8570 mddev->new_level = 4;
8571 return setup_conf(mddev);
8572 }
8573 return ERR_PTR(-EINVAL);
8574}
8575
8576static struct md_personality raid5_personality;
8577
8578static void *raid6_takeover(struct mddev *mddev)
8579{
8580 /* Currently can only take over a raid5. We map the
8581 * personality to an equivalent raid6 personality
8582 * with the Q block at the end.
8583 */
8584 int new_layout;
8585
8586 if (mddev->pers != &raid5_personality)
8587 return ERR_PTR(-EINVAL);
8588 if (mddev->degraded > 1)
8589 return ERR_PTR(-EINVAL);
8590 if (mddev->raid_disks > 253)
8591 return ERR_PTR(-EINVAL);
8592 if (mddev->raid_disks < 3)
8593 return ERR_PTR(-EINVAL);
8594
8595 switch (mddev->layout) {
8596 case ALGORITHM_LEFT_ASYMMETRIC:
8597 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8598 break;
8599 case ALGORITHM_RIGHT_ASYMMETRIC:
8600 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8601 break;
8602 case ALGORITHM_LEFT_SYMMETRIC:
8603 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8604 break;
8605 case ALGORITHM_RIGHT_SYMMETRIC:
8606 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8607 break;
8608 case ALGORITHM_PARITY_0:
8609 new_layout = ALGORITHM_PARITY_0_6;
8610 break;
8611 case ALGORITHM_PARITY_N:
8612 new_layout = ALGORITHM_PARITY_N;
8613 break;
8614 default:
8615 return ERR_PTR(-EINVAL);
8616 }
8617 mddev->new_level = 6;
8618 mddev->new_layout = new_layout;
8619 mddev->delta_disks = 1;
8620 mddev->raid_disks += 1;
8621 return setup_conf(mddev);
8622}
8623
8624static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8625{
8626 struct r5conf *conf;
8627 int err;
8628
8629 err = mddev_lock(mddev);
8630 if (err)
8631 return err;
8632 conf = mddev->private;
8633 if (!conf) {
8634 mddev_unlock(mddev);
8635 return -ENODEV;
8636 }
8637
8638 if (strncmp(buf, "ppl", 3) == 0) {
8639 /* ppl only works with RAID 5 */
8640 if (!raid5_has_ppl(conf) && conf->level == 5) {
8641 err = log_init(conf, NULL, true);
8642 if (!err) {
8643 err = resize_stripes(conf, conf->pool_size);
8644 if (err)
8645 log_exit(conf);
8646 }
8647 } else
8648 err = -EINVAL;
8649 } else if (strncmp(buf, "resync", 6) == 0) {
8650 if (raid5_has_ppl(conf)) {
8651 mddev_suspend(mddev);
8652 log_exit(conf);
8653 mddev_resume(mddev);
8654 err = resize_stripes(conf, conf->pool_size);
8655 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8656 r5l_log_disk_error(conf)) {
8657 bool journal_dev_exists = false;
8658 struct md_rdev *rdev;
8659
8660 rdev_for_each(rdev, mddev)
8661 if (test_bit(Journal, &rdev->flags)) {
8662 journal_dev_exists = true;
8663 break;
8664 }
8665
8666 if (!journal_dev_exists) {
8667 mddev_suspend(mddev);
8668 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8669 mddev_resume(mddev);
8670 } else /* need remove journal device first */
8671 err = -EBUSY;
8672 } else
8673 err = -EINVAL;
8674 } else {
8675 err = -EINVAL;
8676 }
8677
8678 if (!err)
8679 md_update_sb(mddev, 1);
8680
8681 mddev_unlock(mddev);
8682
8683 return err;
8684}
8685
8686static int raid5_start(struct mddev *mddev)
8687{
8688 struct r5conf *conf = mddev->private;
8689
8690 return r5l_start(conf->log);
8691}
8692
8693static struct md_personality raid6_personality =
8694{
8695 .name = "raid6",
8696 .level = 6,
8697 .owner = THIS_MODULE,
8698 .make_request = raid5_make_request,
8699 .run = raid5_run,
8700 .start = raid5_start,
8701 .free = raid5_free,
8702 .status = raid5_status,
8703 .error_handler = raid5_error,
8704 .hot_add_disk = raid5_add_disk,
8705 .hot_remove_disk= raid5_remove_disk,
8706 .spare_active = raid5_spare_active,
8707 .sync_request = raid5_sync_request,
8708 .resize = raid5_resize,
8709 .size = raid5_size,
8710 .check_reshape = raid6_check_reshape,
8711 .start_reshape = raid5_start_reshape,
8712 .finish_reshape = raid5_finish_reshape,
8713 .quiesce = raid5_quiesce,
8714 .takeover = raid6_takeover,
8715 .change_consistency_policy = raid5_change_consistency_policy,
8716};
8717static struct md_personality raid5_personality =
8718{
8719 .name = "raid5",
8720 .level = 5,
8721 .owner = THIS_MODULE,
8722 .make_request = raid5_make_request,
8723 .run = raid5_run,
8724 .start = raid5_start,
8725 .free = raid5_free,
8726 .status = raid5_status,
8727 .error_handler = raid5_error,
8728 .hot_add_disk = raid5_add_disk,
8729 .hot_remove_disk= raid5_remove_disk,
8730 .spare_active = raid5_spare_active,
8731 .sync_request = raid5_sync_request,
8732 .resize = raid5_resize,
8733 .size = raid5_size,
8734 .check_reshape = raid5_check_reshape,
8735 .start_reshape = raid5_start_reshape,
8736 .finish_reshape = raid5_finish_reshape,
8737 .quiesce = raid5_quiesce,
8738 .takeover = raid5_takeover,
8739 .change_consistency_policy = raid5_change_consistency_policy,
8740};
8741
8742static struct md_personality raid4_personality =
8743{
8744 .name = "raid4",
8745 .level = 4,
8746 .owner = THIS_MODULE,
8747 .make_request = raid5_make_request,
8748 .run = raid5_run,
8749 .start = raid5_start,
8750 .free = raid5_free,
8751 .status = raid5_status,
8752 .error_handler = raid5_error,
8753 .hot_add_disk = raid5_add_disk,
8754 .hot_remove_disk= raid5_remove_disk,
8755 .spare_active = raid5_spare_active,
8756 .sync_request = raid5_sync_request,
8757 .resize = raid5_resize,
8758 .size = raid5_size,
8759 .check_reshape = raid5_check_reshape,
8760 .start_reshape = raid5_start_reshape,
8761 .finish_reshape = raid5_finish_reshape,
8762 .quiesce = raid5_quiesce,
8763 .takeover = raid4_takeover,
8764 .change_consistency_policy = raid5_change_consistency_policy,
8765};
8766
8767static int __init raid5_init(void)
8768{
8769 int ret;
8770
8771 raid5_wq = alloc_workqueue("raid5wq",
8772 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8773 if (!raid5_wq)
8774 return -ENOMEM;
8775
8776 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8777 "md/raid5:prepare",
8778 raid456_cpu_up_prepare,
8779 raid456_cpu_dead);
8780 if (ret) {
8781 destroy_workqueue(raid5_wq);
8782 return ret;
8783 }
8784 register_md_personality(&raid6_personality);
8785 register_md_personality(&raid5_personality);
8786 register_md_personality(&raid4_personality);
8787 return 0;
8788}
8789
8790static void raid5_exit(void)
8791{
8792 unregister_md_personality(&raid6_personality);
8793 unregister_md_personality(&raid5_personality);
8794 unregister_md_personality(&raid4_personality);
8795 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8796 destroy_workqueue(raid5_wq);
8797}
8798
8799module_init(raid5_init);
8800module_exit(raid5_exit);
8801MODULE_LICENSE("GPL");
8802MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8803MODULE_ALIAS("md-personality-4"); /* RAID5 */
8804MODULE_ALIAS("md-raid5");
8805MODULE_ALIAS("md-raid4");
8806MODULE_ALIAS("md-level-5");
8807MODULE_ALIAS("md-level-4");
8808MODULE_ALIAS("md-personality-8"); /* RAID6 */
8809MODULE_ALIAS("md-raid6");
8810MODULE_ALIAS("md-level-6");
8811
8812/* This used to be two separate modules, they were: */
8813MODULE_ALIAS("raid5");
8814MODULE_ALIAS("raid6");