Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * raid5.c : Multiple Devices driver for Linux
   3 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   4 *	   Copyright (C) 1999, 2000 Ingo Molnar
   5 *	   Copyright (C) 2002, 2003 H. Peter Anvin
   6 *
   7 * RAID-4/5/6 management functions.
   8 * Thanks to Penguin Computing for making the RAID-6 development possible
   9 * by donating a test server!
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21/*
  22 * BITMAP UNPLUGGING:
  23 *
  24 * The sequencing for updating the bitmap reliably is a little
  25 * subtle (and I got it wrong the first time) so it deserves some
  26 * explanation.
  27 *
  28 * We group bitmap updates into batches.  Each batch has a number.
  29 * We may write out several batches at once, but that isn't very important.
  30 * conf->seq_write is the number of the last batch successfully written.
  31 * conf->seq_flush is the number of the last batch that was closed to
  32 *    new additions.
  33 * When we discover that we will need to write to any block in a stripe
  34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
  35 * the number of the batch it will be in. This is seq_flush+1.
  36 * When we are ready to do a write, if that batch hasn't been written yet,
  37 *   we plug the array and queue the stripe for later.
  38 * When an unplug happens, we increment bm_flush, thus closing the current
  39 *   batch.
  40 * When we notice that bm_flush > bm_write, we write out all pending updates
  41 * to the bitmap, and advance bm_write to where bm_flush was.
  42 * This may occasionally write a bit out twice, but is sure never to
  43 * miss any bits.
  44 */
  45
  46#include <linux/blkdev.h>
  47#include <linux/kthread.h>
  48#include <linux/raid/pq.h>
  49#include <linux/async_tx.h>
 
  50#include <linux/async.h>
  51#include <linux/seq_file.h>
  52#include <linux/cpu.h>
  53#include <linux/slab.h>
  54#include <linux/ratelimit.h>
 
 
 
 
 
 
  55#include "md.h"
  56#include "raid5.h"
  57#include "raid0.h"
  58#include "bitmap.h"
 
  59
  60/*
  61 * Stripe cache
  62 */
  63
  64#define NR_STRIPES		256
  65#define STRIPE_SIZE		PAGE_SIZE
  66#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
  67#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
  68#define	IO_THRESHOLD		1
  69#define BYPASS_THRESHOLD	1
  70#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
  71#define HASH_MASK		(NR_HASH - 1)
  72
  73#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
  74
  75/* bio's attached to a stripe+device for I/O are linked together in bi_sector
  76 * order without overlap.  There may be several bio's per stripe+device, and
  77 * a bio could span several devices.
  78 * When walking this list for a particular stripe+device, we must never proceed
  79 * beyond a bio that extends past this device, as the next bio might no longer
  80 * be valid.
  81 * This macro is used to determine the 'next' bio in the list, given the sector
  82 * of the current stripe+device
  83 */
  84#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
  85/*
  86 * The following can be used to debug the driver
  87 */
  88#define RAID5_PARANOIA	1
  89#if RAID5_PARANOIA && defined(CONFIG_SMP)
  90# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
  91#else
  92# define CHECK_DEVLOCK()
  93#endif
  94
  95#ifdef DEBUG
  96#define inline
  97#define __inline__
  98#endif
  99
 100/*
 101 * We maintain a biased count of active stripes in the bottom 16 bits of
 102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
 103 */
 104static inline int raid5_bi_phys_segments(struct bio *bio)
 
 
 105{
 106	return bio->bi_phys_segments & 0xffff;
 
 107}
 108
 109static inline int raid5_bi_hw_segments(struct bio *bio)
 110{
 111	return (bio->bi_phys_segments >> 16) & 0xffff;
 112}
 113
 114static inline int raid5_dec_bi_phys_segments(struct bio *bio)
 115{
 116	--bio->bi_phys_segments;
 117	return raid5_bi_phys_segments(bio);
 118}
 119
 120static inline int raid5_dec_bi_hw_segments(struct bio *bio)
 121{
 122	unsigned short val = raid5_bi_hw_segments(bio);
 
 
 123
 124	--val;
 125	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
 126	return val;
 
 
 
 
 127}
 128
 129static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
 130{
 131	bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
 
 
 
 
 132}
 133
 134/* Find first data disk in a raid6 stripe */
 135static inline int raid6_d0(struct stripe_head *sh)
 136{
 137	if (sh->ddf_layout)
 138		/* ddf always start from first device */
 139		return 0;
 140	/* md starts just after Q block */
 141	if (sh->qd_idx == sh->disks - 1)
 142		return 0;
 143	else
 144		return sh->qd_idx + 1;
 145}
 146static inline int raid6_next_disk(int disk, int raid_disks)
 147{
 148	disk++;
 149	return (disk < raid_disks) ? disk : 0;
 150}
 151
 152/* When walking through the disks in a raid5, starting at raid6_d0,
 153 * We need to map each disk to a 'slot', where the data disks are slot
 154 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 155 * is raid_disks-1.  This help does that mapping.
 156 */
 157static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
 158			     int *count, int syndrome_disks)
 159{
 160	int slot = *count;
 161
 162	if (sh->ddf_layout)
 163		(*count)++;
 164	if (idx == sh->pd_idx)
 165		return syndrome_disks;
 166	if (idx == sh->qd_idx)
 167		return syndrome_disks + 1;
 168	if (!sh->ddf_layout)
 169		(*count)++;
 170	return slot;
 171}
 172
 173static void return_io(struct bio *return_bi)
 174{
 175	struct bio *bi = return_bi;
 176	while (bi) {
 177
 178		return_bi = bi->bi_next;
 179		bi->bi_next = NULL;
 180		bi->bi_size = 0;
 181		bio_endio(bi, 0);
 182		bi = return_bi;
 183	}
 184}
 185
 186static void print_raid5_conf (raid5_conf_t *conf);
 187
 188static int stripe_operations_active(struct stripe_head *sh)
 189{
 190	return sh->check_state || sh->reconstruct_state ||
 191	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
 192	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
 193}
 194
 195static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
 196{
 197	if (atomic_dec_and_test(&sh->count)) {
 198		BUG_ON(!list_empty(&sh->lru));
 199		BUG_ON(atomic_read(&conf->active_stripes)==0);
 200		if (test_bit(STRIPE_HANDLE, &sh->state)) {
 201			if (test_bit(STRIPE_DELAYED, &sh->state))
 202				list_add_tail(&sh->lru, &conf->delayed_list);
 203			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
 204				   sh->bm_seq - conf->seq_write > 0)
 205				list_add_tail(&sh->lru, &conf->bitmap_list);
 206			else {
 207				clear_bit(STRIPE_BIT_DELAY, &sh->state);
 208				list_add_tail(&sh->lru, &conf->handle_list);
 209			}
 210			md_wakeup_thread(conf->mddev->thread);
 211		} else {
 212			BUG_ON(stripe_operations_active(sh));
 213			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
 214				atomic_dec(&conf->preread_active_stripes);
 215				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
 216					md_wakeup_thread(conf->mddev->thread);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 217			}
 218			atomic_dec(&conf->active_stripes);
 219			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
 220				list_add_tail(&sh->lru, &conf->inactive_list);
 221				wake_up(&conf->wait_for_stripe);
 222				if (conf->retry_read_aligned)
 223					md_wakeup_thread(conf->mddev->thread);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 224			}
 225		}
 226	}
 227}
 228
 229static void release_stripe(struct stripe_head *sh)
 
 230{
 231	raid5_conf_t *conf = sh->raid_conf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 232	unsigned long flags;
 233
 234	spin_lock_irqsave(&conf->device_lock, flags);
 235	__release_stripe(conf, sh);
 236	spin_unlock_irqrestore(&conf->device_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 237}
 238
 239static inline void remove_hash(struct stripe_head *sh)
 240{
 241	pr_debug("remove_hash(), stripe %llu\n",
 242		(unsigned long long)sh->sector);
 243
 244	hlist_del_init(&sh->hash);
 245}
 246
 247static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
 248{
 249	struct hlist_head *hp = stripe_hash(conf, sh->sector);
 250
 251	pr_debug("insert_hash(), stripe %llu\n",
 252		(unsigned long long)sh->sector);
 253
 254	CHECK_DEVLOCK();
 255	hlist_add_head(&sh->hash, hp);
 256}
 257
 258
 259/* find an idle stripe, make sure it is unhashed, and return it. */
 260static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
 261{
 262	struct stripe_head *sh = NULL;
 263	struct list_head *first;
 264
 265	CHECK_DEVLOCK();
 266	if (list_empty(&conf->inactive_list))
 267		goto out;
 268	first = conf->inactive_list.next;
 269	sh = list_entry(first, struct stripe_head, lru);
 270	list_del_init(first);
 271	remove_hash(sh);
 272	atomic_inc(&conf->active_stripes);
 
 
 
 273out:
 274	return sh;
 275}
 276
 277static void shrink_buffers(struct stripe_head *sh)
 278{
 279	struct page *p;
 280	int i;
 281	int num = sh->raid_conf->pool_size;
 282
 283	for (i = 0; i < num ; i++) {
 
 284		p = sh->dev[i].page;
 285		if (!p)
 286			continue;
 287		sh->dev[i].page = NULL;
 288		put_page(p);
 289	}
 290}
 291
 292static int grow_buffers(struct stripe_head *sh)
 293{
 294	int i;
 295	int num = sh->raid_conf->pool_size;
 296
 297	for (i = 0; i < num; i++) {
 298		struct page *page;
 299
 300		if (!(page = alloc_page(GFP_KERNEL))) {
 301			return 1;
 302		}
 303		sh->dev[i].page = page;
 
 304	}
 
 305	return 0;
 306}
 307
 308static void raid5_build_block(struct stripe_head *sh, int i, int previous);
 309static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
 310			    struct stripe_head *sh);
 311
 312static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
 313{
 314	raid5_conf_t *conf = sh->raid_conf;
 315	int i;
 316
 317	BUG_ON(atomic_read(&sh->count) != 0);
 318	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
 319	BUG_ON(stripe_operations_active(sh));
 
 320
 321	CHECK_DEVLOCK();
 322	pr_debug("init_stripe called, stripe %llu\n",
 323		(unsigned long long)sh->sector);
 324
 325	remove_hash(sh);
 326
 327	sh->generation = conf->generation - previous;
 328	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
 329	sh->sector = sector;
 330	stripe_set_idx(sector, conf, previous, sh);
 331	sh->state = 0;
 332
 333
 334	for (i = sh->disks; i--; ) {
 335		struct r5dev *dev = &sh->dev[i];
 336
 337		if (dev->toread || dev->read || dev->towrite || dev->written ||
 338		    test_bit(R5_LOCKED, &dev->flags)) {
 339			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
 340			       (unsigned long long)sh->sector, i, dev->toread,
 341			       dev->read, dev->towrite, dev->written,
 342			       test_bit(R5_LOCKED, &dev->flags));
 343			WARN_ON(1);
 344		}
 345		dev->flags = 0;
 346		raid5_build_block(sh, i, previous);
 347	}
 
 
 
 348	insert_hash(conf, sh);
 
 
 349}
 350
 351static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
 352					 short generation)
 353{
 354	struct stripe_head *sh;
 355	struct hlist_node *hn;
 356
 357	CHECK_DEVLOCK();
 358	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
 359	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
 360		if (sh->sector == sector && sh->generation == generation)
 361			return sh;
 362	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
 363	return NULL;
 364}
 365
 366/*
 367 * Need to check if array has failed when deciding whether to:
 368 *  - start an array
 369 *  - remove non-faulty devices
 370 *  - add a spare
 371 *  - allow a reshape
 372 * This determination is simple when no reshape is happening.
 373 * However if there is a reshape, we need to carefully check
 374 * both the before and after sections.
 375 * This is because some failed devices may only affect one
 376 * of the two sections, and some non-in_sync devices may
 377 * be insync in the section most affected by failed devices.
 378 */
 379static int has_failed(raid5_conf_t *conf)
 380{
 381	int degraded;
 382	int i;
 383	if (conf->mddev->reshape_position == MaxSector)
 384		return conf->mddev->degraded > conf->max_degraded;
 385
 386	rcu_read_lock();
 387	degraded = 0;
 388	for (i = 0; i < conf->previous_raid_disks; i++) {
 389		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
 
 
 390		if (!rdev || test_bit(Faulty, &rdev->flags))
 391			degraded++;
 392		else if (test_bit(In_sync, &rdev->flags))
 393			;
 394		else
 395			/* not in-sync or faulty.
 396			 * If the reshape increases the number of devices,
 397			 * this is being recovered by the reshape, so
 398			 * this 'previous' section is not in_sync.
 399			 * If the number of devices is being reduced however,
 400			 * the device can only be part of the array if
 401			 * we are reverting a reshape, so this section will
 402			 * be in-sync.
 403			 */
 404			if (conf->raid_disks >= conf->previous_raid_disks)
 405				degraded++;
 406	}
 407	rcu_read_unlock();
 408	if (degraded > conf->max_degraded)
 409		return 1;
 410	rcu_read_lock();
 411	degraded = 0;
 412	for (i = 0; i < conf->raid_disks; i++) {
 413		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
 
 
 414		if (!rdev || test_bit(Faulty, &rdev->flags))
 415			degraded++;
 416		else if (test_bit(In_sync, &rdev->flags))
 417			;
 418		else
 419			/* not in-sync or faulty.
 420			 * If reshape increases the number of devices, this
 421			 * section has already been recovered, else it
 422			 * almost certainly hasn't.
 423			 */
 424			if (conf->raid_disks <= conf->previous_raid_disks)
 425				degraded++;
 426	}
 427	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 428	if (degraded > conf->max_degraded)
 429		return 1;
 430	return 0;
 431}
 432
 433static struct stripe_head *
 434get_active_stripe(raid5_conf_t *conf, sector_t sector,
 435		  int previous, int noblock, int noquiesce)
 436{
 437	struct stripe_head *sh;
 
 
 438
 439	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
 440
 441	spin_lock_irq(&conf->device_lock);
 442
 443	do {
 444		wait_event_lock_irq(conf->wait_for_stripe,
 445				    conf->quiesce == 0 || noquiesce,
 446				    conf->device_lock, /* nothing */);
 447		sh = __find_stripe(conf, sector, conf->generation - previous);
 448		if (!sh) {
 449			if (!conf->inactive_blocked)
 450				sh = get_free_stripe(conf);
 
 
 
 
 
 451			if (noblock && sh == NULL)
 452				break;
 
 
 453			if (!sh) {
 454				conf->inactive_blocked = 1;
 455				wait_event_lock_irq(conf->wait_for_stripe,
 456						    !list_empty(&conf->inactive_list) &&
 457						    (atomic_read(&conf->active_stripes)
 458						     < (conf->max_nr_stripes *3/4)
 459						     || !conf->inactive_blocked),
 460						    conf->device_lock,
 461						    );
 462				conf->inactive_blocked = 0;
 463			} else
 464				init_stripe(sh, sector, previous);
 465		} else {
 466			if (atomic_read(&sh->count)) {
 467				BUG_ON(!list_empty(&sh->lru)
 468				    && !test_bit(STRIPE_EXPANDING, &sh->state));
 469			} else {
 
 
 
 
 
 
 470				if (!test_bit(STRIPE_HANDLE, &sh->state))
 471					atomic_inc(&conf->active_stripes);
 472				if (list_empty(&sh->lru) &&
 473				    !test_bit(STRIPE_EXPANDING, &sh->state))
 474					BUG();
 
 
 475				list_del_init(&sh->lru);
 
 
 
 
 
 
 476			}
 
 
 477		}
 478	} while (sh == NULL);
 479
 480	if (sh)
 481		atomic_inc(&sh->count);
 482
 483	spin_unlock_irq(&conf->device_lock);
 484	return sh;
 485}
 486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 487static void
 488raid5_end_read_request(struct bio *bi, int error);
 489static void
 490raid5_end_write_request(struct bio *bi, int error);
 491
 492static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
 493{
 494	raid5_conf_t *conf = sh->raid_conf;
 495	int i, disks = sh->disks;
 
 
 
 496
 497	might_sleep();
 498
 
 
 
 
 
 499	for (i = disks; i--; ) {
 500		int rw;
 501		struct bio *bi;
 502		mdk_rdev_t *rdev;
 
 
 
 503		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
 
 504			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
 505				rw = WRITE_FUA;
 506			else
 507				rw = WRITE;
 508		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
 509			rw = READ;
 510		else
 
 
 
 
 511			continue;
 
 
 512
 
 513		bi = &sh->dev[i].req;
 514
 515		bi->bi_rw = rw;
 516		if (rw & WRITE)
 517			bi->bi_end_io = raid5_end_write_request;
 518		else
 519			bi->bi_end_io = raid5_end_read_request;
 520
 521		rcu_read_lock();
 
 
 522		rdev = rcu_dereference(conf->disks[i].rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 523		if (rdev && test_bit(Faulty, &rdev->flags))
 524			rdev = NULL;
 525		if (rdev)
 526			atomic_inc(&rdev->nr_pending);
 
 
 
 
 527		rcu_read_unlock();
 528
 529		/* We have already checked bad blocks for reads.  Now
 530		 * need to check for writes.
 
 531		 */
 532		while ((rw & WRITE) && rdev &&
 533		       test_bit(WriteErrorSeen, &rdev->flags)) {
 534			sector_t first_bad;
 535			int bad_sectors;
 536			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
 537					      &first_bad, &bad_sectors);
 538			if (!bad)
 539				break;
 540
 541			if (bad < 0) {
 542				set_bit(BlockedBadBlocks, &rdev->flags);
 543				if (!conf->mddev->external &&
 544				    conf->mddev->flags) {
 545					/* It is very unlikely, but we might
 546					 * still need to write out the
 547					 * bad block log - better give it
 548					 * a chance*/
 549					md_check_recovery(conf->mddev);
 550				}
 
 
 
 
 
 
 551				md_wait_for_blocked_rdev(rdev, conf->mddev);
 552			} else {
 553				/* Acknowledged bad block - skip the write */
 554				rdev_dec_pending(rdev, conf->mddev);
 555				rdev = NULL;
 556			}
 557		}
 558
 559		if (rdev) {
 560			if (s->syncing || s->expanding || s->expanded)
 
 561				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
 562
 563			set_bit(STRIPE_IO_STARTED, &sh->state);
 564
 565			bi->bi_bdev = rdev->bdev;
 566			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
 
 
 
 
 
 
 567				__func__, (unsigned long long)sh->sector,
 568				bi->bi_rw, i);
 569			atomic_inc(&sh->count);
 570			bi->bi_sector = sh->sector + rdev->data_offset;
 571			bi->bi_flags = 1 << BIO_UPTODATE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 572			bi->bi_vcnt = 1;
 573			bi->bi_max_vecs = 1;
 574			bi->bi_idx = 0;
 575			bi->bi_io_vec = &sh->dev[i].vec;
 576			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
 577			bi->bi_io_vec[0].bv_offset = 0;
 578			bi->bi_size = STRIPE_SIZE;
 579			bi->bi_next = NULL;
 580			generic_make_request(bi);
 581		} else {
 582			if (rw & WRITE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 583				set_bit(STRIPE_DEGRADED, &sh->state);
 584			pr_debug("skip op %ld on disc %d for sector %llu\n",
 585				bi->bi_rw, i, (unsigned long long)sh->sector);
 586			clear_bit(R5_LOCKED, &sh->dev[i].flags);
 587			set_bit(STRIPE_HANDLE, &sh->state);
 588		}
 
 
 
 
 
 
 
 589	}
 
 
 
 590}
 591
 592static struct dma_async_tx_descriptor *
 593async_copy_data(int frombio, struct bio *bio, struct page *page,
 594	sector_t sector, struct dma_async_tx_descriptor *tx)
 
 595{
 596	struct bio_vec *bvl;
 
 597	struct page *bio_page;
 598	int i;
 599	int page_offset;
 600	struct async_submit_ctl submit;
 601	enum async_tx_flags flags = 0;
 602
 603	if (bio->bi_sector >= sector)
 604		page_offset = (signed)(bio->bi_sector - sector) * 512;
 605	else
 606		page_offset = (signed)(sector - bio->bi_sector) * -512;
 607
 608	if (frombio)
 609		flags |= ASYNC_TX_FENCE;
 610	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
 611
 612	bio_for_each_segment(bvl, bio, i) {
 613		int len = bvl->bv_len;
 614		int clen;
 615		int b_offset = 0;
 616
 617		if (page_offset < 0) {
 618			b_offset = -page_offset;
 619			page_offset += b_offset;
 620			len -= b_offset;
 621		}
 622
 623		if (len > 0 && page_offset + len > STRIPE_SIZE)
 624			clen = STRIPE_SIZE - page_offset;
 625		else
 626			clen = len;
 627
 628		if (clen > 0) {
 629			b_offset += bvl->bv_offset;
 630			bio_page = bvl->bv_page;
 631			if (frombio)
 632				tx = async_memcpy(page, bio_page, page_offset,
 
 
 
 
 
 
 633						  b_offset, clen, &submit);
 634			else
 635				tx = async_memcpy(bio_page, page, b_offset,
 636						  page_offset, clen, &submit);
 637		}
 638		/* chain the operations */
 639		submit.depend_tx = tx;
 640
 641		if (clen < len) /* hit end of page */
 642			break;
 643		page_offset +=  len;
 644	}
 645
 646	return tx;
 647}
 648
 649static void ops_complete_biofill(void *stripe_head_ref)
 650{
 651	struct stripe_head *sh = stripe_head_ref;
 652	struct bio *return_bi = NULL;
 653	raid5_conf_t *conf = sh->raid_conf;
 654	int i;
 655
 656	pr_debug("%s: stripe %llu\n", __func__,
 657		(unsigned long long)sh->sector);
 658
 659	/* clear completed biofills */
 660	spin_lock_irq(&conf->device_lock);
 661	for (i = sh->disks; i--; ) {
 662		struct r5dev *dev = &sh->dev[i];
 663
 664		/* acknowledge completion of a biofill operation */
 665		/* and check if we need to reply to a read request,
 666		 * new R5_Wantfill requests are held off until
 667		 * !STRIPE_BIOFILL_RUN
 668		 */
 669		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
 670			struct bio *rbi, *rbi2;
 671
 672			BUG_ON(!dev->read);
 673			rbi = dev->read;
 674			dev->read = NULL;
 675			while (rbi && rbi->bi_sector <
 676				dev->sector + STRIPE_SECTORS) {
 677				rbi2 = r5_next_bio(rbi, dev->sector);
 678				if (!raid5_dec_bi_phys_segments(rbi)) {
 679					rbi->bi_next = return_bi;
 680					return_bi = rbi;
 681				}
 682				rbi = rbi2;
 683			}
 684		}
 685	}
 686	spin_unlock_irq(&conf->device_lock);
 687	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
 688
 689	return_io(return_bi);
 690
 691	set_bit(STRIPE_HANDLE, &sh->state);
 692	release_stripe(sh);
 693}
 694
 695static void ops_run_biofill(struct stripe_head *sh)
 696{
 697	struct dma_async_tx_descriptor *tx = NULL;
 698	raid5_conf_t *conf = sh->raid_conf;
 699	struct async_submit_ctl submit;
 700	int i;
 701
 
 702	pr_debug("%s: stripe %llu\n", __func__,
 703		(unsigned long long)sh->sector);
 704
 705	for (i = sh->disks; i--; ) {
 706		struct r5dev *dev = &sh->dev[i];
 707		if (test_bit(R5_Wantfill, &dev->flags)) {
 708			struct bio *rbi;
 709			spin_lock_irq(&conf->device_lock);
 710			dev->read = rbi = dev->toread;
 711			dev->toread = NULL;
 712			spin_unlock_irq(&conf->device_lock);
 713			while (rbi && rbi->bi_sector <
 714				dev->sector + STRIPE_SECTORS) {
 715				tx = async_copy_data(0, rbi, dev->page,
 716					dev->sector, tx);
 717				rbi = r5_next_bio(rbi, dev->sector);
 718			}
 719		}
 720	}
 721
 722	atomic_inc(&sh->count);
 723	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
 724	async_trigger_callback(&submit);
 725}
 726
 727static void mark_target_uptodate(struct stripe_head *sh, int target)
 728{
 729	struct r5dev *tgt;
 730
 731	if (target < 0)
 732		return;
 733
 734	tgt = &sh->dev[target];
 735	set_bit(R5_UPTODATE, &tgt->flags);
 736	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
 737	clear_bit(R5_Wantcompute, &tgt->flags);
 738}
 739
 740static void ops_complete_compute(void *stripe_head_ref)
 741{
 742	struct stripe_head *sh = stripe_head_ref;
 743
 744	pr_debug("%s: stripe %llu\n", __func__,
 745		(unsigned long long)sh->sector);
 746
 747	/* mark the computed target(s) as uptodate */
 748	mark_target_uptodate(sh, sh->ops.target);
 749	mark_target_uptodate(sh, sh->ops.target2);
 750
 751	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
 752	if (sh->check_state == check_state_compute_run)
 753		sh->check_state = check_state_compute_result;
 754	set_bit(STRIPE_HANDLE, &sh->state);
 755	release_stripe(sh);
 756}
 757
 758/* return a pointer to the address conversion region of the scribble buffer */
 759static addr_conv_t *to_addr_conv(struct stripe_head *sh,
 760				 struct raid5_percpu *percpu)
 
 
 
 
 
 
 
 
 
 761{
 762	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
 
 
 
 763}
 764
 765static struct dma_async_tx_descriptor *
 766ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
 767{
 768	int disks = sh->disks;
 769	struct page **xor_srcs = percpu->scribble;
 770	int target = sh->ops.target;
 771	struct r5dev *tgt = &sh->dev[target];
 772	struct page *xor_dest = tgt->page;
 773	int count = 0;
 774	struct dma_async_tx_descriptor *tx;
 775	struct async_submit_ctl submit;
 776	int i;
 777
 
 
 778	pr_debug("%s: stripe %llu block: %d\n",
 779		__func__, (unsigned long long)sh->sector, target);
 780	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
 781
 782	for (i = disks; i--; )
 783		if (i != target)
 784			xor_srcs[count++] = sh->dev[i].page;
 785
 786	atomic_inc(&sh->count);
 787
 788	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
 789			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
 790	if (unlikely(count == 1))
 791		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
 792	else
 793		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
 794
 795	return tx;
 796}
 797
 798/* set_syndrome_sources - populate source buffers for gen_syndrome
 799 * @srcs - (struct page *) array of size sh->disks
 800 * @sh - stripe_head to parse
 801 *
 802 * Populates srcs in proper layout order for the stripe and returns the
 803 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
 804 * destination buffer is recorded in srcs[count] and the Q destination
 805 * is recorded in srcs[count+1]].
 806 */
 807static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
 
 
 808{
 809	int disks = sh->disks;
 810	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
 811	int d0_idx = raid6_d0(sh);
 812	int count;
 813	int i;
 814
 815	for (i = 0; i < disks; i++)
 816		srcs[i] = NULL;
 817
 818	count = 0;
 819	i = d0_idx;
 820	do {
 821		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
 
 822
 823		srcs[slot] = sh->dev[i].page;
 
 
 
 
 
 
 
 
 
 
 
 
 824		i = raid6_next_disk(i, disks);
 825	} while (i != d0_idx);
 826
 827	return syndrome_disks;
 828}
 829
 830static struct dma_async_tx_descriptor *
 831ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
 832{
 833	int disks = sh->disks;
 834	struct page **blocks = percpu->scribble;
 835	int target;
 836	int qd_idx = sh->qd_idx;
 837	struct dma_async_tx_descriptor *tx;
 838	struct async_submit_ctl submit;
 839	struct r5dev *tgt;
 840	struct page *dest;
 841	int i;
 842	int count;
 843
 
 844	if (sh->ops.target < 0)
 845		target = sh->ops.target2;
 846	else if (sh->ops.target2 < 0)
 847		target = sh->ops.target;
 848	else
 849		/* we should only have one valid target */
 850		BUG();
 851	BUG_ON(target < 0);
 852	pr_debug("%s: stripe %llu block: %d\n",
 853		__func__, (unsigned long long)sh->sector, target);
 854
 855	tgt = &sh->dev[target];
 856	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
 857	dest = tgt->page;
 858
 859	atomic_inc(&sh->count);
 860
 861	if (target == qd_idx) {
 862		count = set_syndrome_sources(blocks, sh);
 863		blocks[count] = NULL; /* regenerating p is not necessary */
 864		BUG_ON(blocks[count+1] != dest); /* q should already be set */
 865		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
 866				  ops_complete_compute, sh,
 867				  to_addr_conv(sh, percpu));
 868		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
 869	} else {
 870		/* Compute any data- or p-drive using XOR */
 871		count = 0;
 872		for (i = disks; i-- ; ) {
 873			if (i == target || i == qd_idx)
 874				continue;
 875			blocks[count++] = sh->dev[i].page;
 876		}
 877
 878		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
 879				  NULL, ops_complete_compute, sh,
 880				  to_addr_conv(sh, percpu));
 881		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
 882	}
 883
 884	return tx;
 885}
 886
 887static struct dma_async_tx_descriptor *
 888ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
 889{
 890	int i, count, disks = sh->disks;
 891	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
 892	int d0_idx = raid6_d0(sh);
 893	int faila = -1, failb = -1;
 894	int target = sh->ops.target;
 895	int target2 = sh->ops.target2;
 896	struct r5dev *tgt = &sh->dev[target];
 897	struct r5dev *tgt2 = &sh->dev[target2];
 898	struct dma_async_tx_descriptor *tx;
 899	struct page **blocks = percpu->scribble;
 900	struct async_submit_ctl submit;
 901
 
 902	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
 903		 __func__, (unsigned long long)sh->sector, target, target2);
 904	BUG_ON(target < 0 || target2 < 0);
 905	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
 906	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
 907
 908	/* we need to open-code set_syndrome_sources to handle the
 909	 * slot number conversion for 'faila' and 'failb'
 910	 */
 911	for (i = 0; i < disks ; i++)
 912		blocks[i] = NULL;
 913	count = 0;
 914	i = d0_idx;
 915	do {
 916		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
 917
 918		blocks[slot] = sh->dev[i].page;
 919
 920		if (i == target)
 921			faila = slot;
 922		if (i == target2)
 923			failb = slot;
 924		i = raid6_next_disk(i, disks);
 925	} while (i != d0_idx);
 926
 927	BUG_ON(faila == failb);
 928	if (failb < faila)
 929		swap(faila, failb);
 930	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
 931		 __func__, (unsigned long long)sh->sector, faila, failb);
 932
 933	atomic_inc(&sh->count);
 934
 935	if (failb == syndrome_disks+1) {
 936		/* Q disk is one of the missing disks */
 937		if (faila == syndrome_disks) {
 938			/* Missing P+Q, just recompute */
 939			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
 940					  ops_complete_compute, sh,
 941					  to_addr_conv(sh, percpu));
 942			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
 943						  STRIPE_SIZE, &submit);
 944		} else {
 945			struct page *dest;
 946			int data_target;
 947			int qd_idx = sh->qd_idx;
 948
 949			/* Missing D+Q: recompute D from P, then recompute Q */
 950			if (target == qd_idx)
 951				data_target = target2;
 952			else
 953				data_target = target;
 954
 955			count = 0;
 956			for (i = disks; i-- ; ) {
 957				if (i == data_target || i == qd_idx)
 958					continue;
 959				blocks[count++] = sh->dev[i].page;
 960			}
 961			dest = sh->dev[data_target].page;
 962			init_async_submit(&submit,
 963					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
 964					  NULL, NULL, NULL,
 965					  to_addr_conv(sh, percpu));
 966			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
 967				       &submit);
 968
 969			count = set_syndrome_sources(blocks, sh);
 970			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
 971					  ops_complete_compute, sh,
 972					  to_addr_conv(sh, percpu));
 973			return async_gen_syndrome(blocks, 0, count+2,
 974						  STRIPE_SIZE, &submit);
 975		}
 976	} else {
 977		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
 978				  ops_complete_compute, sh,
 979				  to_addr_conv(sh, percpu));
 980		if (failb == syndrome_disks) {
 981			/* We're missing D+P. */
 982			return async_raid6_datap_recov(syndrome_disks+2,
 983						       STRIPE_SIZE, faila,
 984						       blocks, &submit);
 985		} else {
 986			/* We're missing D+D. */
 987			return async_raid6_2data_recov(syndrome_disks+2,
 988						       STRIPE_SIZE, faila, failb,
 989						       blocks, &submit);
 990		}
 991	}
 992}
 993
 994
 995static void ops_complete_prexor(void *stripe_head_ref)
 996{
 997	struct stripe_head *sh = stripe_head_ref;
 998
 999	pr_debug("%s: stripe %llu\n", __func__,
1000		(unsigned long long)sh->sector);
 
 
 
 
 
 
 
1001}
1002
1003static struct dma_async_tx_descriptor *
1004ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1005	       struct dma_async_tx_descriptor *tx)
1006{
1007	int disks = sh->disks;
1008	struct page **xor_srcs = percpu->scribble;
1009	int count = 0, pd_idx = sh->pd_idx, i;
1010	struct async_submit_ctl submit;
1011
1012	/* existing parity data subtracted */
1013	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1014
 
1015	pr_debug("%s: stripe %llu\n", __func__,
1016		(unsigned long long)sh->sector);
1017
1018	for (i = disks; i--; ) {
1019		struct r5dev *dev = &sh->dev[i];
1020		/* Only process blocks that are known to be uptodate */
1021		if (test_bit(R5_Wantdrain, &dev->flags))
 
 
1022			xor_srcs[count++] = dev->page;
1023	}
1024
1025	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1026			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1027	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1028
1029	return tx;
1030}
1031
1032static struct dma_async_tx_descriptor *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1034{
 
1035	int disks = sh->disks;
1036	int i;
 
1037
1038	pr_debug("%s: stripe %llu\n", __func__,
1039		(unsigned long long)sh->sector);
1040
1041	for (i = disks; i--; ) {
1042		struct r5dev *dev = &sh->dev[i];
1043		struct bio *chosen;
1044
1045		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
 
1046			struct bio *wbi;
1047
1048			spin_lock_irq(&sh->raid_conf->device_lock);
 
 
 
 
 
 
 
1049			chosen = dev->towrite;
1050			dev->towrite = NULL;
 
1051			BUG_ON(dev->written);
1052			wbi = dev->written = chosen;
1053			spin_unlock_irq(&sh->raid_conf->device_lock);
 
1054
1055			while (wbi && wbi->bi_sector <
1056				dev->sector + STRIPE_SECTORS) {
1057				if (wbi->bi_rw & REQ_FUA)
1058					set_bit(R5_WantFUA, &dev->flags);
1059				tx = async_copy_data(1, wbi, dev->page,
1060					dev->sector, tx);
 
 
 
 
 
 
 
 
 
 
 
 
 
1061				wbi = r5_next_bio(wbi, dev->sector);
1062			}
 
 
 
 
 
 
 
 
 
1063		}
1064	}
1065
1066	return tx;
1067}
1068
1069static void ops_complete_reconstruct(void *stripe_head_ref)
1070{
1071	struct stripe_head *sh = stripe_head_ref;
1072	int disks = sh->disks;
1073	int pd_idx = sh->pd_idx;
1074	int qd_idx = sh->qd_idx;
1075	int i;
1076	bool fua = false;
1077
1078	pr_debug("%s: stripe %llu\n", __func__,
1079		(unsigned long long)sh->sector);
1080
1081	for (i = disks; i--; )
1082		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
 
 
 
1083
1084	for (i = disks; i--; ) {
1085		struct r5dev *dev = &sh->dev[i];
1086
1087		if (dev->written || i == pd_idx || i == qd_idx) {
1088			set_bit(R5_UPTODATE, &dev->flags);
 
 
 
 
1089			if (fua)
1090				set_bit(R5_WantFUA, &dev->flags);
 
 
1091		}
1092	}
1093
1094	if (sh->reconstruct_state == reconstruct_state_drain_run)
1095		sh->reconstruct_state = reconstruct_state_drain_result;
1096	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1097		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1098	else {
1099		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1100		sh->reconstruct_state = reconstruct_state_result;
1101	}
1102
1103	set_bit(STRIPE_HANDLE, &sh->state);
1104	release_stripe(sh);
1105}
1106
1107static void
1108ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1109		     struct dma_async_tx_descriptor *tx)
1110{
1111	int disks = sh->disks;
1112	struct page **xor_srcs = percpu->scribble;
1113	struct async_submit_ctl submit;
1114	int count = 0, pd_idx = sh->pd_idx, i;
1115	struct page *xor_dest;
1116	int prexor = 0;
1117	unsigned long flags;
 
 
 
1118
1119	pr_debug("%s: stripe %llu\n", __func__,
1120		(unsigned long long)sh->sector);
1121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122	/* check if prexor is active which means only process blocks
1123	 * that are part of a read-modify-write (written)
1124	 */
1125	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1126		prexor = 1;
1127		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1128		for (i = disks; i--; ) {
1129			struct r5dev *dev = &sh->dev[i];
1130			if (dev->written)
 
1131				xor_srcs[count++] = dev->page;
1132		}
1133	} else {
1134		xor_dest = sh->dev[pd_idx].page;
1135		for (i = disks; i--; ) {
1136			struct r5dev *dev = &sh->dev[i];
1137			if (i != pd_idx)
1138				xor_srcs[count++] = dev->page;
1139		}
1140	}
1141
1142	/* 1/ if we prexor'd then the dest is reused as a source
1143	 * 2/ if we did not prexor then we are redoing the parity
1144	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1145	 * for the synchronous xor case
1146	 */
1147	flags = ASYNC_TX_ACK |
1148		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1149
1150	atomic_inc(&sh->count);
 
 
 
 
 
 
 
 
 
 
 
1151
1152	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1153			  to_addr_conv(sh, percpu));
1154	if (unlikely(count == 1))
1155		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1156	else
1157		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
 
 
 
 
 
 
1158}
1159
1160static void
1161ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1162		     struct dma_async_tx_descriptor *tx)
1163{
1164	struct async_submit_ctl submit;
1165	struct page **blocks = percpu->scribble;
1166	int count;
 
 
 
 
1167
1168	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1169
1170	count = set_syndrome_sources(blocks, sh);
 
 
 
 
 
 
 
 
 
 
 
 
1171
1172	atomic_inc(&sh->count);
 
 
 
 
 
 
 
 
 
1173
1174	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1175			  sh, to_addr_conv(sh, percpu));
1176	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1177}
1178
1179static void ops_complete_check(void *stripe_head_ref)
1180{
1181	struct stripe_head *sh = stripe_head_ref;
1182
1183	pr_debug("%s: stripe %llu\n", __func__,
1184		(unsigned long long)sh->sector);
1185
1186	sh->check_state = check_state_check_result;
1187	set_bit(STRIPE_HANDLE, &sh->state);
1188	release_stripe(sh);
1189}
1190
1191static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1192{
1193	int disks = sh->disks;
1194	int pd_idx = sh->pd_idx;
1195	int qd_idx = sh->qd_idx;
1196	struct page *xor_dest;
1197	struct page **xor_srcs = percpu->scribble;
1198	struct dma_async_tx_descriptor *tx;
1199	struct async_submit_ctl submit;
1200	int count;
1201	int i;
1202
1203	pr_debug("%s: stripe %llu\n", __func__,
1204		(unsigned long long)sh->sector);
1205
 
1206	count = 0;
1207	xor_dest = sh->dev[pd_idx].page;
1208	xor_srcs[count++] = xor_dest;
1209	for (i = disks; i--; ) {
1210		if (i == pd_idx || i == qd_idx)
1211			continue;
1212		xor_srcs[count++] = sh->dev[i].page;
1213	}
1214
1215	init_async_submit(&submit, 0, NULL, NULL, NULL,
1216			  to_addr_conv(sh, percpu));
1217	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1218			   &sh->ops.zero_sum_result, &submit);
1219
1220	atomic_inc(&sh->count);
1221	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1222	tx = async_trigger_callback(&submit);
1223}
1224
1225static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1226{
1227	struct page **srcs = percpu->scribble;
1228	struct async_submit_ctl submit;
1229	int count;
1230
1231	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1232		(unsigned long long)sh->sector, checkp);
1233
1234	count = set_syndrome_sources(srcs, sh);
 
1235	if (!checkp)
1236		srcs[count] = NULL;
1237
1238	atomic_inc(&sh->count);
1239	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1240			  sh, to_addr_conv(sh, percpu));
1241	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1242			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1243}
1244
1245static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1246{
1247	int overlap_clear = 0, i, disks = sh->disks;
1248	struct dma_async_tx_descriptor *tx = NULL;
1249	raid5_conf_t *conf = sh->raid_conf;
1250	int level = conf->level;
1251	struct raid5_percpu *percpu;
1252	unsigned long cpu;
1253
1254	cpu = get_cpu();
1255	percpu = per_cpu_ptr(conf->percpu, cpu);
1256	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1257		ops_run_biofill(sh);
1258		overlap_clear++;
1259	}
1260
1261	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1262		if (level < 6)
1263			tx = ops_run_compute5(sh, percpu);
1264		else {
1265			if (sh->ops.target2 < 0 || sh->ops.target < 0)
1266				tx = ops_run_compute6_1(sh, percpu);
1267			else
1268				tx = ops_run_compute6_2(sh, percpu);
1269		}
1270		/* terminate the chain if reconstruct is not set to be run */
1271		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1272			async_tx_ack(tx);
1273	}
1274
1275	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1276		tx = ops_run_prexor(sh, percpu, tx);
 
 
 
 
 
 
 
1277
1278	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1279		tx = ops_run_biodrain(sh, tx);
1280		overlap_clear++;
1281	}
1282
1283	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1284		if (level < 6)
1285			ops_run_reconstruct5(sh, percpu, tx);
1286		else
1287			ops_run_reconstruct6(sh, percpu, tx);
1288	}
1289
1290	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1291		if (sh->check_state == check_state_run)
1292			ops_run_check_p(sh, percpu);
1293		else if (sh->check_state == check_state_run_q)
1294			ops_run_check_pq(sh, percpu, 0);
1295		else if (sh->check_state == check_state_run_pq)
1296			ops_run_check_pq(sh, percpu, 1);
1297		else
1298			BUG();
1299	}
1300
1301	if (overlap_clear)
1302		for (i = disks; i--; ) {
1303			struct r5dev *dev = &sh->dev[i];
1304			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1305				wake_up(&sh->raid_conf->wait_for_overlap);
1306		}
1307	put_cpu();
1308}
1309
1310#ifdef CONFIG_MULTICORE_RAID456
1311static void async_run_ops(void *param, async_cookie_t cookie)
1312{
1313	struct stripe_head *sh = param;
1314	unsigned long ops_request = sh->ops.request;
1315
1316	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1317	wake_up(&sh->ops.wait_for_ops);
1318
1319	__raid_run_ops(sh, ops_request);
1320	release_stripe(sh);
1321}
1322
1323static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
 
1324{
1325	/* since handle_stripe can be called outside of raid5d context
1326	 * we need to ensure sh->ops.request is de-staged before another
1327	 * request arrives
1328	 */
1329	wait_event(sh->ops.wait_for_ops,
1330		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1331	sh->ops.request = ops_request;
1332
1333	atomic_inc(&sh->count);
1334	async_schedule(async_run_ops, sh);
1335}
1336#else
1337#define raid_run_ops __raid_run_ops
1338#endif
 
 
 
 
 
 
 
1339
1340static int grow_one_stripe(raid5_conf_t *conf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1341{
1342	struct stripe_head *sh;
1343	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
 
1344	if (!sh)
1345		return 0;
1346
1347	sh->raid_conf = conf;
1348	#ifdef CONFIG_MULTICORE_RAID456
1349	init_waitqueue_head(&sh->ops.wait_for_ops);
1350	#endif
1351
1352	if (grow_buffers(sh)) {
1353		shrink_buffers(sh);
1354		kmem_cache_free(conf->slab_cache, sh);
1355		return 0;
1356	}
 
 
1357	/* we just created an active stripe so... */
1358	atomic_set(&sh->count, 1);
1359	atomic_inc(&conf->active_stripes);
1360	INIT_LIST_HEAD(&sh->lru);
1361	release_stripe(sh);
 
1362	return 1;
1363}
1364
1365static int grow_stripes(raid5_conf_t *conf, int num)
1366{
1367	struct kmem_cache *sc;
 
1368	int devs = max(conf->raid_disks, conf->previous_raid_disks);
1369
1370	if (conf->mddev->gendisk)
1371		sprintf(conf->cache_name[0],
1372			"raid%d-%s", conf->level, mdname(conf->mddev));
1373	else
1374		sprintf(conf->cache_name[0],
1375			"raid%d-%p", conf->level, conf->mddev);
1376	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1377
1378	conf->active_name = 0;
1379	sc = kmem_cache_create(conf->cache_name[conf->active_name],
1380			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1381			       0, 0, NULL);
1382	if (!sc)
1383		return 1;
1384	conf->slab_cache = sc;
1385	conf->pool_size = devs;
1386	while (num--)
1387		if (!grow_one_stripe(conf))
1388			return 1;
 
1389	return 0;
1390}
1391
1392/**
1393 * scribble_len - return the required size of the scribble region
1394 * @num - total number of disks in the array
1395 *
1396 * The size must be enough to contain:
1397 * 1/ a struct page pointer for each device in the array +2
1398 * 2/ room to convert each entry in (1) to its corresponding dma
1399 *    (dma_map_page()) or page (page_address()) address.
1400 *
1401 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1402 * calculate over all devices (not just the data blocks), using zeros in place
1403 * of the P and Q blocks.
1404 */
1405static size_t scribble_len(int num)
1406{
 
1407	size_t len;
1408
1409	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
 
 
 
 
 
 
 
 
 
 
1410
1411	return len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1412}
1413
1414static int resize_stripes(raid5_conf_t *conf, int newsize)
1415{
1416	/* Make all the stripes able to hold 'newsize' devices.
1417	 * New slots in each stripe get 'page' set to a new page.
1418	 *
1419	 * This happens in stages:
1420	 * 1/ create a new kmem_cache and allocate the required number of
1421	 *    stripe_heads.
1422	 * 2/ gather all the old stripe_heads and tranfer the pages across
1423	 *    to the new stripe_heads.  This will have the side effect of
1424	 *    freezing the array as once all stripe_heads have been collected,
1425	 *    no IO will be possible.  Old stripe heads are freed once their
1426	 *    pages have been transferred over, and the old kmem_cache is
1427	 *    freed when all stripes are done.
1428	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1429	 *    we simple return a failre status - no need to clean anything up.
1430	 * 4/ allocate new pages for the new slots in the new stripe_heads.
1431	 *    If this fails, we don't bother trying the shrink the
1432	 *    stripe_heads down again, we just leave them as they are.
1433	 *    As each stripe_head is processed the new one is released into
1434	 *    active service.
1435	 *
1436	 * Once step2 is started, we cannot afford to wait for a write,
1437	 * so we use GFP_NOIO allocations.
1438	 */
1439	struct stripe_head *osh, *nsh;
1440	LIST_HEAD(newstripes);
1441	struct disk_info *ndisks;
1442	unsigned long cpu;
1443	int err;
1444	struct kmem_cache *sc;
1445	int i;
 
1446
1447	if (newsize <= conf->pool_size)
1448		return 0; /* never bother to shrink */
1449
1450	err = md_allow_write(conf->mddev);
1451	if (err)
1452		return err;
1453
1454	/* Step 1 */
1455	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1456			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1457			       0, 0, NULL);
1458	if (!sc)
1459		return -ENOMEM;
1460
 
 
 
1461	for (i = conf->max_nr_stripes; i; i--) {
1462		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1463		if (!nsh)
1464			break;
1465
1466		nsh->raid_conf = conf;
1467		#ifdef CONFIG_MULTICORE_RAID456
1468		init_waitqueue_head(&nsh->ops.wait_for_ops);
1469		#endif
1470
1471		list_add(&nsh->lru, &newstripes);
1472	}
1473	if (i) {
1474		/* didn't get enough, give up */
1475		while (!list_empty(&newstripes)) {
1476			nsh = list_entry(newstripes.next, struct stripe_head, lru);
1477			list_del(&nsh->lru);
1478			kmem_cache_free(sc, nsh);
1479		}
1480		kmem_cache_destroy(sc);
 
1481		return -ENOMEM;
1482	}
1483	/* Step 2 - Must use GFP_NOIO now.
1484	 * OK, we have enough stripes, start collecting inactive
1485	 * stripes and copying them over
1486	 */
 
 
1487	list_for_each_entry(nsh, &newstripes, lru) {
1488		spin_lock_irq(&conf->device_lock);
1489		wait_event_lock_irq(conf->wait_for_stripe,
1490				    !list_empty(&conf->inactive_list),
1491				    conf->device_lock,
1492				    );
1493		osh = get_free_stripe(conf);
1494		spin_unlock_irq(&conf->device_lock);
1495		atomic_set(&nsh->count, 1);
1496		for(i=0; i<conf->pool_size; i++)
1497			nsh->dev[i].page = osh->dev[i].page;
1498		for( ; i<newsize; i++)
1499			nsh->dev[i].page = NULL;
1500		kmem_cache_free(conf->slab_cache, osh);
 
 
 
 
 
 
 
1501	}
1502	kmem_cache_destroy(conf->slab_cache);
1503
1504	/* Step 3.
1505	 * At this point, we are holding all the stripes so the array
1506	 * is completely stalled, so now is a good time to resize
1507	 * conf->disks and the scribble region
1508	 */
1509	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1510	if (ndisks) {
1511		for (i=0; i<conf->raid_disks; i++)
1512			ndisks[i] = conf->disks[i];
1513		kfree(conf->disks);
1514		conf->disks = ndisks;
1515	} else
1516		err = -ENOMEM;
1517
1518	get_online_cpus();
1519	conf->scribble_len = scribble_len(newsize);
1520	for_each_present_cpu(cpu) {
1521		struct raid5_percpu *percpu;
1522		void *scribble;
1523
1524		percpu = per_cpu_ptr(conf->percpu, cpu);
1525		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1526
1527		if (scribble) {
1528			kfree(percpu->scribble);
1529			percpu->scribble = scribble;
 
 
1530		} else {
1531			err = -ENOMEM;
1532			break;
1533		}
1534	}
1535	put_online_cpus();
 
 
 
 
 
1536
1537	/* Step 4, return new stripes to service */
1538	while(!list_empty(&newstripes)) {
1539		nsh = list_entry(newstripes.next, struct stripe_head, lru);
1540		list_del_init(&nsh->lru);
1541
1542		for (i=conf->raid_disks; i < newsize; i++)
1543			if (nsh->dev[i].page == NULL) {
1544				struct page *p = alloc_page(GFP_NOIO);
1545				nsh->dev[i].page = p;
 
1546				if (!p)
1547					err = -ENOMEM;
1548			}
1549		release_stripe(nsh);
1550	}
1551	/* critical section pass, GFP_NOIO no longer needed */
1552
1553	conf->slab_cache = sc;
1554	conf->active_name = 1-conf->active_name;
1555	conf->pool_size = newsize;
1556	return err;
1557}
1558
1559static int drop_one_stripe(raid5_conf_t *conf)
1560{
1561	struct stripe_head *sh;
 
1562
1563	spin_lock_irq(&conf->device_lock);
1564	sh = get_free_stripe(conf);
1565	spin_unlock_irq(&conf->device_lock);
1566	if (!sh)
1567		return 0;
1568	BUG_ON(atomic_read(&sh->count));
1569	shrink_buffers(sh);
1570	kmem_cache_free(conf->slab_cache, sh);
1571	atomic_dec(&conf->active_stripes);
 
1572	return 1;
1573}
1574
1575static void shrink_stripes(raid5_conf_t *conf)
1576{
1577	while (drop_one_stripe(conf))
 
1578		;
1579
1580	if (conf->slab_cache)
1581		kmem_cache_destroy(conf->slab_cache);
1582	conf->slab_cache = NULL;
1583}
1584
1585static void raid5_end_read_request(struct bio * bi, int error)
1586{
1587	struct stripe_head *sh = bi->bi_private;
1588	raid5_conf_t *conf = sh->raid_conf;
1589	int disks = sh->disks, i;
1590	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1591	char b[BDEVNAME_SIZE];
1592	mdk_rdev_t *rdev;
1593
1594
1595	for (i=0 ; i<disks; i++)
1596		if (bi == &sh->dev[i].req)
1597			break;
1598
1599	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1600		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1601		uptodate);
1602	if (i == disks) {
 
1603		BUG();
1604		return;
1605	}
 
 
 
 
 
 
 
 
 
1606
1607	if (uptodate) {
 
 
 
 
1608		set_bit(R5_UPTODATE, &sh->dev[i].flags);
1609		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1610			rdev = conf->disks[i].rdev;
1611			printk_ratelimited(
1612				KERN_INFO
1613				"md/raid:%s: read error corrected"
1614				" (%lu sectors at %llu on %s)\n",
 
1615				mdname(conf->mddev), STRIPE_SECTORS,
1616				(unsigned long long)(sh->sector
1617						     + rdev->data_offset),
1618				bdevname(rdev->bdev, b));
1619			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1620			clear_bit(R5_ReadError, &sh->dev[i].flags);
1621			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1622		}
1623		if (atomic_read(&conf->disks[i].rdev->read_errors))
1624			atomic_set(&conf->disks[i].rdev->read_errors, 0);
 
 
 
 
 
 
 
 
 
1625	} else {
1626		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1627		int retry = 0;
1628		rdev = conf->disks[i].rdev;
1629
1630		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1631		atomic_inc(&rdev->read_errors);
1632		if (conf->mddev->degraded >= conf->max_degraded)
1633			printk_ratelimited(
1634				KERN_WARNING
1635				"md/raid:%s: read error not correctable "
1636				"(sector %llu on %s).\n",
1637				mdname(conf->mddev),
1638				(unsigned long long)(sh->sector
1639						     + rdev->data_offset),
1640				bdn);
1641		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
 
 
 
 
 
 
 
1642			/* Oh, no!!! */
1643			printk_ratelimited(
1644				KERN_WARNING
1645				"md/raid:%s: read error NOT corrected!! "
1646				"(sector %llu on %s).\n",
1647				mdname(conf->mddev),
1648				(unsigned long long)(sh->sector
1649						     + rdev->data_offset),
1650				bdn);
1651		else if (atomic_read(&rdev->read_errors)
1652			 > conf->max_nr_stripes)
1653			printk(KERN_WARNING
1654			       "md/raid:%s: Too many read errors, failing device %s.\n",
1655			       mdname(conf->mddev), bdn);
1656		else
1657			retry = 1;
 
 
 
1658		if (retry)
1659			set_bit(R5_ReadError, &sh->dev[i].flags);
 
 
 
 
1660		else {
1661			clear_bit(R5_ReadError, &sh->dev[i].flags);
1662			clear_bit(R5_ReWrite, &sh->dev[i].flags);
1663			md_error(conf->mddev, rdev);
 
 
 
 
1664		}
1665	}
1666	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
 
1667	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1668	set_bit(STRIPE_HANDLE, &sh->state);
1669	release_stripe(sh);
1670}
1671
1672static void raid5_end_write_request(struct bio *bi, int error)
1673{
1674	struct stripe_head *sh = bi->bi_private;
1675	raid5_conf_t *conf = sh->raid_conf;
1676	int disks = sh->disks, i;
1677	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1678	sector_t first_bad;
1679	int bad_sectors;
 
1680
1681	for (i=0 ; i<disks; i++)
1682		if (bi == &sh->dev[i].req)
 
1683			break;
1684
1685	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
1686		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
1687		uptodate);
1688	if (i == disks) {
 
1689		BUG();
1690		return;
1691	}
1692
1693	if (!uptodate) {
1694		set_bit(WriteErrorSeen, &conf->disks[i].rdev->flags);
1695		set_bit(R5_WriteError, &sh->dev[i].flags);
1696	} else if (is_badblock(conf->disks[i].rdev, sh->sector, STRIPE_SECTORS,
1697			       &first_bad, &bad_sectors))
1698		set_bit(R5_MadeGood, &sh->dev[i].flags);
1699
1700	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1701	
1702	clear_bit(R5_LOCKED, &sh->dev[i].flags);
1703	set_bit(STRIPE_HANDLE, &sh->state);
1704	release_stripe(sh);
1705}
1706
1707
1708static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1709	
1710static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1711{
1712	struct r5dev *dev = &sh->dev[i];
 
 
 
 
 
 
 
 
1713
1714	bio_init(&dev->req);
1715	dev->req.bi_io_vec = &dev->vec;
1716	dev->req.bi_vcnt++;
1717	dev->req.bi_max_vecs++;
1718	dev->vec.bv_page = dev->page;
1719	dev->vec.bv_len = STRIPE_SIZE;
1720	dev->vec.bv_offset = 0;
1721
1722	dev->req.bi_sector = sh->sector;
1723	dev->req.bi_private = sh;
 
 
 
1724
1725	dev->flags = 0;
1726	dev->sector = compute_blocknr(sh, i, previous);
1727}
1728
1729static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1730{
1731	char b[BDEVNAME_SIZE];
1732	raid5_conf_t *conf = mddev->private;
 
1733	pr_debug("raid456: error called\n");
1734
1735	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1736		unsigned long flags;
1737		spin_lock_irqsave(&conf->device_lock, flags);
1738		mddev->degraded++;
1739		spin_unlock_irqrestore(&conf->device_lock, flags);
1740		/*
1741		 * if recovery was running, make sure it aborts.
1742		 */
1743		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1744	}
1745	set_bit(Blocked, &rdev->flags);
1746	set_bit(Faulty, &rdev->flags);
1747	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1748	printk(KERN_ALERT
1749	       "md/raid:%s: Disk failure on %s, disabling device.\n"
1750	       "md/raid:%s: Operation continuing on %d devices.\n",
1751	       mdname(mddev),
1752	       bdevname(rdev->bdev, b),
1753	       mdname(mddev),
1754	       conf->raid_disks - mddev->degraded);
 
 
 
 
 
 
 
1755}
1756
1757/*
1758 * Input: a 'big' sector number,
1759 * Output: index of the data and parity disk, and the sector # in them.
1760 */
1761static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1762				     int previous, int *dd_idx,
1763				     struct stripe_head *sh)
1764{
1765	sector_t stripe, stripe2;
1766	sector_t chunk_number;
1767	unsigned int chunk_offset;
1768	int pd_idx, qd_idx;
1769	int ddf_layout = 0;
1770	sector_t new_sector;
1771	int algorithm = previous ? conf->prev_algo
1772				 : conf->algorithm;
1773	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1774					 : conf->chunk_sectors;
1775	int raid_disks = previous ? conf->previous_raid_disks
1776				  : conf->raid_disks;
1777	int data_disks = raid_disks - conf->max_degraded;
1778
1779	/* First compute the information on this sector */
1780
1781	/*
1782	 * Compute the chunk number and the sector offset inside the chunk
1783	 */
1784	chunk_offset = sector_div(r_sector, sectors_per_chunk);
1785	chunk_number = r_sector;
1786
1787	/*
1788	 * Compute the stripe number
1789	 */
1790	stripe = chunk_number;
1791	*dd_idx = sector_div(stripe, data_disks);
1792	stripe2 = stripe;
1793	/*
1794	 * Select the parity disk based on the user selected algorithm.
1795	 */
1796	pd_idx = qd_idx = -1;
1797	switch(conf->level) {
1798	case 4:
1799		pd_idx = data_disks;
1800		break;
1801	case 5:
1802		switch (algorithm) {
1803		case ALGORITHM_LEFT_ASYMMETRIC:
1804			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1805			if (*dd_idx >= pd_idx)
1806				(*dd_idx)++;
1807			break;
1808		case ALGORITHM_RIGHT_ASYMMETRIC:
1809			pd_idx = sector_div(stripe2, raid_disks);
1810			if (*dd_idx >= pd_idx)
1811				(*dd_idx)++;
1812			break;
1813		case ALGORITHM_LEFT_SYMMETRIC:
1814			pd_idx = data_disks - sector_div(stripe2, raid_disks);
1815			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1816			break;
1817		case ALGORITHM_RIGHT_SYMMETRIC:
1818			pd_idx = sector_div(stripe2, raid_disks);
1819			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1820			break;
1821		case ALGORITHM_PARITY_0:
1822			pd_idx = 0;
1823			(*dd_idx)++;
1824			break;
1825		case ALGORITHM_PARITY_N:
1826			pd_idx = data_disks;
1827			break;
1828		default:
1829			BUG();
1830		}
1831		break;
1832	case 6:
1833
1834		switch (algorithm) {
1835		case ALGORITHM_LEFT_ASYMMETRIC:
1836			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1837			qd_idx = pd_idx + 1;
1838			if (pd_idx == raid_disks-1) {
1839				(*dd_idx)++;	/* Q D D D P */
1840				qd_idx = 0;
1841			} else if (*dd_idx >= pd_idx)
1842				(*dd_idx) += 2; /* D D P Q D */
1843			break;
1844		case ALGORITHM_RIGHT_ASYMMETRIC:
1845			pd_idx = sector_div(stripe2, raid_disks);
1846			qd_idx = pd_idx + 1;
1847			if (pd_idx == raid_disks-1) {
1848				(*dd_idx)++;	/* Q D D D P */
1849				qd_idx = 0;
1850			} else if (*dd_idx >= pd_idx)
1851				(*dd_idx) += 2; /* D D P Q D */
1852			break;
1853		case ALGORITHM_LEFT_SYMMETRIC:
1854			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1855			qd_idx = (pd_idx + 1) % raid_disks;
1856			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1857			break;
1858		case ALGORITHM_RIGHT_SYMMETRIC:
1859			pd_idx = sector_div(stripe2, raid_disks);
1860			qd_idx = (pd_idx + 1) % raid_disks;
1861			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1862			break;
1863
1864		case ALGORITHM_PARITY_0:
1865			pd_idx = 0;
1866			qd_idx = 1;
1867			(*dd_idx) += 2;
1868			break;
1869		case ALGORITHM_PARITY_N:
1870			pd_idx = data_disks;
1871			qd_idx = data_disks + 1;
1872			break;
1873
1874		case ALGORITHM_ROTATING_ZERO_RESTART:
1875			/* Exactly the same as RIGHT_ASYMMETRIC, but or
1876			 * of blocks for computing Q is different.
1877			 */
1878			pd_idx = sector_div(stripe2, raid_disks);
1879			qd_idx = pd_idx + 1;
1880			if (pd_idx == raid_disks-1) {
1881				(*dd_idx)++;	/* Q D D D P */
1882				qd_idx = 0;
1883			} else if (*dd_idx >= pd_idx)
1884				(*dd_idx) += 2; /* D D P Q D */
1885			ddf_layout = 1;
1886			break;
1887
1888		case ALGORITHM_ROTATING_N_RESTART:
1889			/* Same a left_asymmetric, by first stripe is
1890			 * D D D P Q  rather than
1891			 * Q D D D P
1892			 */
1893			stripe2 += 1;
1894			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1895			qd_idx = pd_idx + 1;
1896			if (pd_idx == raid_disks-1) {
1897				(*dd_idx)++;	/* Q D D D P */
1898				qd_idx = 0;
1899			} else if (*dd_idx >= pd_idx)
1900				(*dd_idx) += 2; /* D D P Q D */
1901			ddf_layout = 1;
1902			break;
1903
1904		case ALGORITHM_ROTATING_N_CONTINUE:
1905			/* Same as left_symmetric but Q is before P */
1906			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1907			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1908			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1909			ddf_layout = 1;
1910			break;
1911
1912		case ALGORITHM_LEFT_ASYMMETRIC_6:
1913			/* RAID5 left_asymmetric, with Q on last device */
1914			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1915			if (*dd_idx >= pd_idx)
1916				(*dd_idx)++;
1917			qd_idx = raid_disks - 1;
1918			break;
1919
1920		case ALGORITHM_RIGHT_ASYMMETRIC_6:
1921			pd_idx = sector_div(stripe2, raid_disks-1);
1922			if (*dd_idx >= pd_idx)
1923				(*dd_idx)++;
1924			qd_idx = raid_disks - 1;
1925			break;
1926
1927		case ALGORITHM_LEFT_SYMMETRIC_6:
1928			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1929			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1930			qd_idx = raid_disks - 1;
1931			break;
1932
1933		case ALGORITHM_RIGHT_SYMMETRIC_6:
1934			pd_idx = sector_div(stripe2, raid_disks-1);
1935			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1936			qd_idx = raid_disks - 1;
1937			break;
1938
1939		case ALGORITHM_PARITY_0_6:
1940			pd_idx = 0;
1941			(*dd_idx)++;
1942			qd_idx = raid_disks - 1;
1943			break;
1944
1945		default:
1946			BUG();
1947		}
1948		break;
1949	}
1950
1951	if (sh) {
1952		sh->pd_idx = pd_idx;
1953		sh->qd_idx = qd_idx;
1954		sh->ddf_layout = ddf_layout;
1955	}
1956	/*
1957	 * Finally, compute the new sector number
1958	 */
1959	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1960	return new_sector;
1961}
1962
1963
1964static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1965{
1966	raid5_conf_t *conf = sh->raid_conf;
1967	int raid_disks = sh->disks;
1968	int data_disks = raid_disks - conf->max_degraded;
1969	sector_t new_sector = sh->sector, check;
1970	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1971					 : conf->chunk_sectors;
1972	int algorithm = previous ? conf->prev_algo
1973				 : conf->algorithm;
1974	sector_t stripe;
1975	int chunk_offset;
1976	sector_t chunk_number;
1977	int dummy1, dd_idx = i;
1978	sector_t r_sector;
1979	struct stripe_head sh2;
1980
1981
1982	chunk_offset = sector_div(new_sector, sectors_per_chunk);
1983	stripe = new_sector;
1984
1985	if (i == sh->pd_idx)
1986		return 0;
1987	switch(conf->level) {
1988	case 4: break;
1989	case 5:
1990		switch (algorithm) {
1991		case ALGORITHM_LEFT_ASYMMETRIC:
1992		case ALGORITHM_RIGHT_ASYMMETRIC:
1993			if (i > sh->pd_idx)
1994				i--;
1995			break;
1996		case ALGORITHM_LEFT_SYMMETRIC:
1997		case ALGORITHM_RIGHT_SYMMETRIC:
1998			if (i < sh->pd_idx)
1999				i += raid_disks;
2000			i -= (sh->pd_idx + 1);
2001			break;
2002		case ALGORITHM_PARITY_0:
2003			i -= 1;
2004			break;
2005		case ALGORITHM_PARITY_N:
2006			break;
2007		default:
2008			BUG();
2009		}
2010		break;
2011	case 6:
2012		if (i == sh->qd_idx)
2013			return 0; /* It is the Q disk */
2014		switch (algorithm) {
2015		case ALGORITHM_LEFT_ASYMMETRIC:
2016		case ALGORITHM_RIGHT_ASYMMETRIC:
2017		case ALGORITHM_ROTATING_ZERO_RESTART:
2018		case ALGORITHM_ROTATING_N_RESTART:
2019			if (sh->pd_idx == raid_disks-1)
2020				i--;	/* Q D D D P */
2021			else if (i > sh->pd_idx)
2022				i -= 2; /* D D P Q D */
2023			break;
2024		case ALGORITHM_LEFT_SYMMETRIC:
2025		case ALGORITHM_RIGHT_SYMMETRIC:
2026			if (sh->pd_idx == raid_disks-1)
2027				i--; /* Q D D D P */
2028			else {
2029				/* D D P Q D */
2030				if (i < sh->pd_idx)
2031					i += raid_disks;
2032				i -= (sh->pd_idx + 2);
2033			}
2034			break;
2035		case ALGORITHM_PARITY_0:
2036			i -= 2;
2037			break;
2038		case ALGORITHM_PARITY_N:
2039			break;
2040		case ALGORITHM_ROTATING_N_CONTINUE:
2041			/* Like left_symmetric, but P is before Q */
2042			if (sh->pd_idx == 0)
2043				i--;	/* P D D D Q */
2044			else {
2045				/* D D Q P D */
2046				if (i < sh->pd_idx)
2047					i += raid_disks;
2048				i -= (sh->pd_idx + 1);
2049			}
2050			break;
2051		case ALGORITHM_LEFT_ASYMMETRIC_6:
2052		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2053			if (i > sh->pd_idx)
2054				i--;
2055			break;
2056		case ALGORITHM_LEFT_SYMMETRIC_6:
2057		case ALGORITHM_RIGHT_SYMMETRIC_6:
2058			if (i < sh->pd_idx)
2059				i += data_disks + 1;
2060			i -= (sh->pd_idx + 1);
2061			break;
2062		case ALGORITHM_PARITY_0_6:
2063			i -= 1;
2064			break;
2065		default:
2066			BUG();
2067		}
2068		break;
2069	}
2070
2071	chunk_number = stripe * data_disks + i;
2072	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2073
2074	check = raid5_compute_sector(conf, r_sector,
2075				     previous, &dummy1, &sh2);
2076	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2077		|| sh2.qd_idx != sh->qd_idx) {
2078		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2079		       mdname(conf->mddev));
2080		return 0;
2081	}
2082	return r_sector;
2083}
2084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2085
2086static void
2087schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2088			 int rcw, int expand)
2089{
2090	int i, pd_idx = sh->pd_idx, disks = sh->disks;
2091	raid5_conf_t *conf = sh->raid_conf;
2092	int level = conf->level;
2093
2094	if (rcw) {
2095		/* if we are not expanding this is a proper write request, and
2096		 * there will be bios with new data to be drained into the
2097		 * stripe cache
 
 
2098		 */
2099		if (!expand) {
2100			sh->reconstruct_state = reconstruct_state_drain_run;
2101			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2102		} else
2103			sh->reconstruct_state = reconstruct_state_run;
2104
2105		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2106
2107		for (i = disks; i--; ) {
2108			struct r5dev *dev = &sh->dev[i];
2109
2110			if (dev->towrite) {
2111				set_bit(R5_LOCKED, &dev->flags);
2112				set_bit(R5_Wantdrain, &dev->flags);
2113				if (!expand)
2114					clear_bit(R5_UPTODATE, &dev->flags);
2115				s->locked++;
 
 
 
2116			}
2117		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2118		if (s->locked + conf->max_degraded == disks)
2119			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2120				atomic_inc(&conf->pending_full_writes);
2121	} else {
2122		BUG_ON(level == 6);
2123		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2124			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2125
2126		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2127		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2128		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2129		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2130
2131		for (i = disks; i--; ) {
2132			struct r5dev *dev = &sh->dev[i];
2133			if (i == pd_idx)
2134				continue;
2135
2136			if (dev->towrite &&
2137			    (test_bit(R5_UPTODATE, &dev->flags) ||
2138			     test_bit(R5_Wantcompute, &dev->flags))) {
2139				set_bit(R5_Wantdrain, &dev->flags);
2140				set_bit(R5_LOCKED, &dev->flags);
2141				clear_bit(R5_UPTODATE, &dev->flags);
2142				s->locked++;
 
 
 
2143			}
2144		}
 
 
 
 
 
 
 
2145	}
2146
2147	/* keep the parity disk(s) locked while asynchronous operations
2148	 * are in flight
2149	 */
2150	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2151	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2152	s->locked++;
2153
2154	if (level == 6) {
2155		int qd_idx = sh->qd_idx;
2156		struct r5dev *dev = &sh->dev[qd_idx];
2157
2158		set_bit(R5_LOCKED, &dev->flags);
2159		clear_bit(R5_UPTODATE, &dev->flags);
2160		s->locked++;
2161	}
2162
 
 
 
 
 
 
2163	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2164		__func__, (unsigned long long)sh->sector,
2165		s->locked, s->ops_request);
2166}
2167
2168/*
2169 * Each stripe/dev can have one or more bion attached.
2170 * toread/towrite point to the first in a chain.
2171 * The bi_next chain must be in order.
2172 */
2173static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
 
2174{
2175	struct bio **bip;
2176	raid5_conf_t *conf = sh->raid_conf;
2177	int firstwrite=0;
2178
2179	pr_debug("adding bi b#%llu to stripe s#%llu\n",
2180		(unsigned long long)bi->bi_sector,
2181		(unsigned long long)sh->sector);
2182
2183
2184	spin_lock_irq(&conf->device_lock);
 
 
2185	if (forwrite) {
2186		bip = &sh->dev[dd_idx].towrite;
2187		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2188			firstwrite = 1;
2189	} else
2190		bip = &sh->dev[dd_idx].toread;
2191	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2192		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2193			goto overlap;
2194		bip = & (*bip)->bi_next;
2195	}
2196	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2197		goto overlap;
2198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2199	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2200	if (*bip)
2201		bi->bi_next = *bip;
2202	*bip = bi;
2203	bi->bi_phys_segments++;
 
2204
2205	if (forwrite) {
2206		/* check if page is covered */
2207		sector_t sector = sh->dev[dd_idx].sector;
2208		for (bi=sh->dev[dd_idx].towrite;
2209		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2210			     bi && bi->bi_sector <= sector;
2211		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2212			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2213				sector = bi->bi_sector + (bi->bi_size>>9);
2214		}
2215		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2216			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
 
2217	}
2218	spin_unlock_irq(&conf->device_lock);
2219
2220	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2221		(unsigned long long)(*bip)->bi_sector,
2222		(unsigned long long)sh->sector, dd_idx);
2223
2224	if (conf->mddev->bitmap && firstwrite) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2225		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2226				  STRIPE_SECTORS, 0);
2227		sh->bm_seq = conf->seq_flush+1;
2228		set_bit(STRIPE_BIT_DELAY, &sh->state);
 
 
 
 
2229	}
 
 
 
 
2230	return 1;
2231
2232 overlap:
2233	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2234	spin_unlock_irq(&conf->device_lock);
2235	return 0;
2236}
2237
2238static void end_reshape(raid5_conf_t *conf);
2239
2240static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2241			    struct stripe_head *sh)
2242{
2243	int sectors_per_chunk =
2244		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2245	int dd_idx;
2246	int chunk_offset = sector_div(stripe, sectors_per_chunk);
2247	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2248
2249	raid5_compute_sector(conf,
2250			     stripe * (disks - conf->max_degraded)
2251			     *sectors_per_chunk + chunk_offset,
2252			     previous,
2253			     &dd_idx, sh);
2254}
2255
2256static void
2257handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2258				struct stripe_head_state *s, int disks,
2259				struct bio **return_bi)
2260{
2261	int i;
 
2262	for (i = disks; i--; ) {
2263		struct bio *bi;
2264		int bitmap_end = 0;
2265
2266		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2267			mdk_rdev_t *rdev;
2268			rcu_read_lock();
2269			rdev = rcu_dereference(conf->disks[i].rdev);
2270			if (rdev && test_bit(In_sync, &rdev->flags))
 
2271				atomic_inc(&rdev->nr_pending);
2272			else
2273				rdev = NULL;
2274			rcu_read_unlock();
2275			if (rdev) {
2276				if (!rdev_set_badblocks(
2277					    rdev,
2278					    sh->sector,
2279					    STRIPE_SECTORS, 0))
2280					md_error(conf->mddev, rdev);
2281				rdev_dec_pending(rdev, conf->mddev);
2282			}
2283		}
2284		spin_lock_irq(&conf->device_lock);
2285		/* fail all writes first */
2286		bi = sh->dev[i].towrite;
2287		sh->dev[i].towrite = NULL;
2288		if (bi) {
2289			s->to_write--;
 
2290			bitmap_end = 1;
2291		}
 
2292
2293		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2294			wake_up(&conf->wait_for_overlap);
2295
2296		while (bi && bi->bi_sector <
2297			sh->dev[i].sector + STRIPE_SECTORS) {
2298			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2299			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2300			if (!raid5_dec_bi_phys_segments(bi)) {
2301				md_write_end(conf->mddev);
2302				bi->bi_next = *return_bi;
2303				*return_bi = bi;
2304			}
2305			bi = nextbi;
2306		}
 
 
 
 
2307		/* and fail all 'written' */
2308		bi = sh->dev[i].written;
2309		sh->dev[i].written = NULL;
 
 
 
 
 
2310		if (bi) bitmap_end = 1;
2311		while (bi && bi->bi_sector <
2312		       sh->dev[i].sector + STRIPE_SECTORS) {
2313			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2314			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2315			if (!raid5_dec_bi_phys_segments(bi)) {
2316				md_write_end(conf->mddev);
2317				bi->bi_next = *return_bi;
2318				*return_bi = bi;
2319			}
2320			bi = bi2;
2321		}
2322
2323		/* fail any reads if this device is non-operational and
2324		 * the data has not reached the cache yet.
2325		 */
2326		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
 
2327		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2328		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
 
2329			bi = sh->dev[i].toread;
2330			sh->dev[i].toread = NULL;
 
2331			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2332				wake_up(&conf->wait_for_overlap);
2333			if (bi) s->to_read--;
2334			while (bi && bi->bi_sector <
 
2335			       sh->dev[i].sector + STRIPE_SECTORS) {
2336				struct bio *nextbi =
2337					r5_next_bio(bi, sh->dev[i].sector);
2338				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2339				if (!raid5_dec_bi_phys_segments(bi)) {
2340					bi->bi_next = *return_bi;
2341					*return_bi = bi;
2342				}
2343				bi = nextbi;
2344			}
2345		}
2346		spin_unlock_irq(&conf->device_lock);
2347		if (bitmap_end)
2348			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2349					STRIPE_SECTORS, 0, 0);
2350		/* If we were in the middle of a write the parity block might
2351		 * still be locked - so just clear all R5_LOCKED flags
2352		 */
2353		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2354	}
 
 
2355
2356	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2357		if (atomic_dec_and_test(&conf->pending_full_writes))
2358			md_wakeup_thread(conf->mddev->thread);
2359}
2360
2361static void
2362handle_failed_sync(raid5_conf_t *conf, struct stripe_head *sh,
2363		   struct stripe_head_state *s)
2364{
2365	int abort = 0;
2366	int i;
2367
2368	md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2369	clear_bit(STRIPE_SYNCING, &sh->state);
 
 
2370	s->syncing = 0;
 
2371	/* There is nothing more to do for sync/check/repair.
2372	 * For recover we need to record a bad block on all
 
 
 
2373	 * non-sync devices, or abort the recovery
2374	 */
2375	if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2376		return;
2377	/* During recovery devices cannot be removed, so locking and
2378	 * refcounting of rdevs is not needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2379	 */
2380	for (i = 0; i < conf->raid_disks; i++) {
2381		mdk_rdev_t *rdev = conf->disks[i].rdev;
2382		if (!rdev
2383		    || test_bit(Faulty, &rdev->flags)
2384		    || test_bit(In_sync, &rdev->flags))
2385			continue;
2386		if (!rdev_set_badblocks(rdev, sh->sector,
2387					STRIPE_SECTORS, 0))
2388			abort = 1;
2389	}
2390	if (abort) {
2391		conf->recovery_disabled = conf->mddev->recovery_disabled;
2392		set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
 
 
 
 
 
 
 
 
 
2393	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2394}
2395
2396/* fetch_block - checks the given member device to see if its data needs
2397 * to be read or computed to satisfy a request.
2398 *
2399 * Returns 1 when no more member devices need to be checked, otherwise returns
2400 * 0 to tell the loop in handle_stripe_fill to continue
2401 */
2402static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2403		       int disk_idx, int disks)
2404{
2405	struct r5dev *dev = &sh->dev[disk_idx];
2406	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2407				  &sh->dev[s->failed_num[1]] };
2408
2409	/* is the data in this block needed, and can we get it? */
2410	if (!test_bit(R5_LOCKED, &dev->flags) &&
2411	    !test_bit(R5_UPTODATE, &dev->flags) &&
2412	    (dev->toread ||
2413	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2414	     s->syncing || s->expanding ||
2415	     (s->failed >= 1 && fdev[0]->toread) ||
2416	     (s->failed >= 2 && fdev[1]->toread) ||
2417	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2418	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2419	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2420		/* we would like to get this block, possibly by computing it,
2421		 * otherwise read it if the backing disk is insync
2422		 */
2423		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2424		BUG_ON(test_bit(R5_Wantread, &dev->flags));
 
 
 
 
 
 
 
 
 
 
 
2425		if ((s->uptodate == disks - 1) &&
 
2426		    (s->failed && (disk_idx == s->failed_num[0] ||
2427				   disk_idx == s->failed_num[1]))) {
2428			/* have disk failed, and we're requested to fetch it;
2429			 * do compute it
2430			 */
2431			pr_debug("Computing stripe %llu block %d\n",
2432			       (unsigned long long)sh->sector, disk_idx);
2433			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2434			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2435			set_bit(R5_Wantcompute, &dev->flags);
2436			sh->ops.target = disk_idx;
2437			sh->ops.target2 = -1; /* no 2nd target */
2438			s->req_compute = 1;
2439			/* Careful: from this point on 'uptodate' is in the eye
2440			 * of raid_run_ops which services 'compute' operations
2441			 * before writes. R5_Wantcompute flags a block that will
2442			 * be R5_UPTODATE by the time it is needed for a
2443			 * subsequent operation.
2444			 */
2445			s->uptodate++;
2446			return 1;
2447		} else if (s->uptodate == disks-2 && s->failed >= 2) {
2448			/* Computing 2-failure is *very* expensive; only
2449			 * do it if failed >= 2
2450			 */
2451			int other;
2452			for (other = disks; other--; ) {
2453				if (other == disk_idx)
2454					continue;
2455				if (!test_bit(R5_UPTODATE,
2456				      &sh->dev[other].flags))
2457					break;
2458			}
2459			BUG_ON(other < 0);
2460			pr_debug("Computing stripe %llu blocks %d,%d\n",
2461			       (unsigned long long)sh->sector,
2462			       disk_idx, other);
2463			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2464			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2465			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2466			set_bit(R5_Wantcompute, &sh->dev[other].flags);
2467			sh->ops.target = disk_idx;
2468			sh->ops.target2 = other;
2469			s->uptodate += 2;
2470			s->req_compute = 1;
2471			return 1;
2472		} else if (test_bit(R5_Insync, &dev->flags)) {
2473			set_bit(R5_LOCKED, &dev->flags);
2474			set_bit(R5_Wantread, &dev->flags);
2475			s->locked++;
2476			pr_debug("Reading block %d (sync=%d)\n",
2477				disk_idx, s->syncing);
2478		}
2479	}
2480
2481	return 0;
2482}
2483
2484/**
2485 * handle_stripe_fill - read or compute data to satisfy pending requests.
2486 */
2487static void handle_stripe_fill(struct stripe_head *sh,
2488			       struct stripe_head_state *s,
2489			       int disks)
2490{
2491	int i;
2492
2493	/* look for blocks to read/compute, skip this if a compute
2494	 * is already in flight, or if the stripe contents are in the
2495	 * midst of changing due to a write
2496	 */
2497	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2498	    !sh->reconstruct_state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2499		for (i = disks; i--; )
2500			if (fetch_block(sh, s, i, disks))
2501				break;
 
 
2502	set_bit(STRIPE_HANDLE, &sh->state);
2503}
2504
2505
 
2506/* handle_stripe_clean_event
2507 * any written block on an uptodate or failed drive can be returned.
2508 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2509 * never LOCKED, so we don't need to test 'failed' directly.
2510 */
2511static void handle_stripe_clean_event(raid5_conf_t *conf,
2512	struct stripe_head *sh, int disks, struct bio **return_bi)
2513{
2514	int i;
2515	struct r5dev *dev;
 
 
 
2516
2517	for (i = disks; i--; )
2518		if (sh->dev[i].written) {
2519			dev = &sh->dev[i];
2520			if (!test_bit(R5_LOCKED, &dev->flags) &&
2521				test_bit(R5_UPTODATE, &dev->flags)) {
 
 
2522				/* We can return any write requests */
2523				struct bio *wbi, *wbi2;
2524				int bitmap_end = 0;
2525				pr_debug("Return write for disc %d\n", i);
2526				spin_lock_irq(&conf->device_lock);
 
 
 
 
 
 
 
 
2527				wbi = dev->written;
2528				dev->written = NULL;
2529				while (wbi && wbi->bi_sector <
2530					dev->sector + STRIPE_SECTORS) {
2531					wbi2 = r5_next_bio(wbi, dev->sector);
2532					if (!raid5_dec_bi_phys_segments(wbi)) {
2533						md_write_end(conf->mddev);
2534						wbi->bi_next = *return_bi;
2535						*return_bi = wbi;
2536					}
2537					wbi = wbi2;
2538				}
2539				if (dev->towrite == NULL)
2540					bitmap_end = 1;
2541				spin_unlock_irq(&conf->device_lock);
2542				if (bitmap_end)
2543					bitmap_endwrite(conf->mddev->bitmap,
2544							sh->sector,
2545							STRIPE_SECTORS,
2546					 !test_bit(STRIPE_DEGRADED, &sh->state),
2547							0);
2548			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2549		}
 
 
 
 
 
 
2550
2551	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2552		if (atomic_dec_and_test(&conf->pending_full_writes))
2553			md_wakeup_thread(conf->mddev->thread);
 
 
 
2554}
2555
2556static void handle_stripe_dirtying(raid5_conf_t *conf,
2557				   struct stripe_head *sh,
2558				   struct stripe_head_state *s,
2559				   int disks)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2560{
2561	int rmw = 0, rcw = 0, i;
2562	if (conf->max_degraded == 2) {
2563		/* RAID6 requires 'rcw' in current implementation
2564		 * Calculate the real rcw later - for now fake it
 
 
 
 
 
 
 
 
 
 
2565		 * look like rcw is cheaper
2566		 */
2567		rcw = 1; rmw = 2;
 
 
 
2568	} else for (i = disks; i--; ) {
2569		/* would I have to read this buffer for read_modify_write */
2570		struct r5dev *dev = &sh->dev[i];
2571		if ((dev->towrite || i == sh->pd_idx) &&
 
 
2572		    !test_bit(R5_LOCKED, &dev->flags) &&
2573		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2574		      test_bit(R5_Wantcompute, &dev->flags))) {
2575			if (test_bit(R5_Insync, &dev->flags))
2576				rmw++;
2577			else
2578				rmw += 2*disks;  /* cannot read it */
2579		}
2580		/* Would I have to read this buffer for reconstruct_write */
2581		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
 
2582		    !test_bit(R5_LOCKED, &dev->flags) &&
2583		    !(test_bit(R5_UPTODATE, &dev->flags) ||
2584		    test_bit(R5_Wantcompute, &dev->flags))) {
2585			if (test_bit(R5_Insync, &dev->flags)) rcw++;
 
2586			else
2587				rcw += 2*disks;
2588		}
2589	}
2590	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2591		(unsigned long long)sh->sector, rmw, rcw);
 
2592	set_bit(STRIPE_HANDLE, &sh->state);
2593	if (rmw < rcw && rmw > 0)
2594		/* prefer read-modify-write, but need to get some data */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2595		for (i = disks; i--; ) {
2596			struct r5dev *dev = &sh->dev[i];
2597			if ((dev->towrite || i == sh->pd_idx) &&
 
 
2598			    !test_bit(R5_LOCKED, &dev->flags) &&
2599			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2600			    test_bit(R5_Wantcompute, &dev->flags)) &&
2601			    test_bit(R5_Insync, &dev->flags)) {
2602				if (
2603				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2604					pr_debug("Read_old block "
2605						"%d for r-m-w\n", i);
2606					set_bit(R5_LOCKED, &dev->flags);
2607					set_bit(R5_Wantread, &dev->flags);
2608					s->locked++;
2609				} else {
2610					set_bit(STRIPE_DELAYED, &sh->state);
2611					set_bit(STRIPE_HANDLE, &sh->state);
2612				}
2613			}
2614		}
2615	if (rcw <= rmw && rcw > 0) {
 
2616		/* want reconstruct write, but need to get some data */
 
2617		rcw = 0;
2618		for (i = disks; i--; ) {
2619			struct r5dev *dev = &sh->dev[i];
2620			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2621			    i != sh->pd_idx && i != sh->qd_idx &&
2622			    !test_bit(R5_LOCKED, &dev->flags) &&
2623			    !(test_bit(R5_UPTODATE, &dev->flags) ||
2624			      test_bit(R5_Wantcompute, &dev->flags))) {
2625				rcw++;
2626				if (!test_bit(R5_Insync, &dev->flags))
2627					continue; /* it's a failed drive */
2628				if (
2629				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2630					pr_debug("Read_old block "
2631						"%d for Reconstruct\n", i);
2632					set_bit(R5_LOCKED, &dev->flags);
2633					set_bit(R5_Wantread, &dev->flags);
2634					s->locked++;
 
2635				} else {
2636					set_bit(STRIPE_DELAYED, &sh->state);
2637					set_bit(STRIPE_HANDLE, &sh->state);
2638				}
2639			}
2640		}
 
 
 
 
2641	}
 
 
 
 
 
2642	/* now if nothing is locked, and if we have enough data,
2643	 * we can start a write request
2644	 */
2645	/* since handle_stripe can be called at any time we need to handle the
2646	 * case where a compute block operation has been submitted and then a
2647	 * subsequent call wants to start a write request.  raid_run_ops only
2648	 * handles the case where compute block and reconstruct are requested
2649	 * simultaneously.  If this is not the case then new writes need to be
2650	 * held off until the compute completes.
2651	 */
2652	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2653	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2654	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2655		schedule_reconstruction(sh, s, rcw == 0, 0);
 
2656}
2657
2658static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2659				struct stripe_head_state *s, int disks)
2660{
2661	struct r5dev *dev = NULL;
2662
 
2663	set_bit(STRIPE_HANDLE, &sh->state);
2664
2665	switch (sh->check_state) {
2666	case check_state_idle:
2667		/* start a new check operation if there are no failures */
2668		if (s->failed == 0) {
2669			BUG_ON(s->uptodate != disks);
2670			sh->check_state = check_state_run;
2671			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2672			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2673			s->uptodate--;
2674			break;
2675		}
2676		dev = &sh->dev[s->failed_num[0]];
2677		/* fall through */
2678	case check_state_compute_result:
2679		sh->check_state = check_state_idle;
2680		if (!dev)
2681			dev = &sh->dev[sh->pd_idx];
2682
2683		/* check that a write has not made the stripe insync */
2684		if (test_bit(STRIPE_INSYNC, &sh->state))
2685			break;
2686
2687		/* either failed parity check, or recovery is happening */
2688		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2689		BUG_ON(s->uptodate != disks);
2690
2691		set_bit(R5_LOCKED, &dev->flags);
2692		s->locked++;
2693		set_bit(R5_Wantwrite, &dev->flags);
2694
2695		clear_bit(STRIPE_DEGRADED, &sh->state);
2696		set_bit(STRIPE_INSYNC, &sh->state);
2697		break;
2698	case check_state_run:
2699		break; /* we will be called again upon completion */
2700	case check_state_check_result:
2701		sh->check_state = check_state_idle;
2702
2703		/* if a failure occurred during the check operation, leave
2704		 * STRIPE_INSYNC not set and let the stripe be handled again
2705		 */
2706		if (s->failed)
2707			break;
2708
2709		/* handle a successful check operation, if parity is correct
2710		 * we are done.  Otherwise update the mismatch count and repair
2711		 * parity if !MD_RECOVERY_CHECK
2712		 */
2713		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2714			/* parity is correct (on disc,
2715			 * not in buffer any more)
2716			 */
2717			set_bit(STRIPE_INSYNC, &sh->state);
2718		else {
2719			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2720			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2721				/* don't try to repair!! */
2722				set_bit(STRIPE_INSYNC, &sh->state);
2723			else {
 
 
 
 
 
2724				sh->check_state = check_state_compute_run;
2725				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2726				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2727				set_bit(R5_Wantcompute,
2728					&sh->dev[sh->pd_idx].flags);
2729				sh->ops.target = sh->pd_idx;
2730				sh->ops.target2 = -1;
2731				s->uptodate++;
2732			}
2733		}
2734		break;
2735	case check_state_compute_run:
2736		break;
2737	default:
2738		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2739		       __func__, sh->check_state,
2740		       (unsigned long long) sh->sector);
2741		BUG();
2742	}
2743}
2744
2745
2746static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2747				  struct stripe_head_state *s,
2748				  int disks)
2749{
2750	int pd_idx = sh->pd_idx;
2751	int qd_idx = sh->qd_idx;
2752	struct r5dev *dev;
2753
 
2754	set_bit(STRIPE_HANDLE, &sh->state);
2755
2756	BUG_ON(s->failed > 2);
2757
2758	/* Want to check and possibly repair P and Q.
2759	 * However there could be one 'failed' device, in which
2760	 * case we can only check one of them, possibly using the
2761	 * other to generate missing data
2762	 */
2763
2764	switch (sh->check_state) {
2765	case check_state_idle:
2766		/* start a new check operation if there are < 2 failures */
2767		if (s->failed == s->q_failed) {
2768			/* The only possible failed device holds Q, so it
2769			 * makes sense to check P (If anything else were failed,
2770			 * we would have used P to recreate it).
2771			 */
2772			sh->check_state = check_state_run;
2773		}
2774		if (!s->q_failed && s->failed < 2) {
2775			/* Q is not failed, and we didn't use it to generate
2776			 * anything, so it makes sense to check it
2777			 */
2778			if (sh->check_state == check_state_run)
2779				sh->check_state = check_state_run_pq;
2780			else
2781				sh->check_state = check_state_run_q;
2782		}
2783
2784		/* discard potentially stale zero_sum_result */
2785		sh->ops.zero_sum_result = 0;
2786
2787		if (sh->check_state == check_state_run) {
2788			/* async_xor_zero_sum destroys the contents of P */
2789			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2790			s->uptodate--;
2791		}
2792		if (sh->check_state >= check_state_run &&
2793		    sh->check_state <= check_state_run_pq) {
2794			/* async_syndrome_zero_sum preserves P and Q, so
2795			 * no need to mark them !uptodate here
2796			 */
2797			set_bit(STRIPE_OP_CHECK, &s->ops_request);
2798			break;
2799		}
2800
2801		/* we have 2-disk failure */
2802		BUG_ON(s->failed != 2);
2803		/* fall through */
2804	case check_state_compute_result:
2805		sh->check_state = check_state_idle;
2806
2807		/* check that a write has not made the stripe insync */
2808		if (test_bit(STRIPE_INSYNC, &sh->state))
2809			break;
2810
2811		/* now write out any block on a failed drive,
2812		 * or P or Q if they were recomputed
2813		 */
2814		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2815		if (s->failed == 2) {
2816			dev = &sh->dev[s->failed_num[1]];
2817			s->locked++;
2818			set_bit(R5_LOCKED, &dev->flags);
2819			set_bit(R5_Wantwrite, &dev->flags);
2820		}
2821		if (s->failed >= 1) {
2822			dev = &sh->dev[s->failed_num[0]];
2823			s->locked++;
2824			set_bit(R5_LOCKED, &dev->flags);
2825			set_bit(R5_Wantwrite, &dev->flags);
2826		}
2827		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2828			dev = &sh->dev[pd_idx];
2829			s->locked++;
2830			set_bit(R5_LOCKED, &dev->flags);
2831			set_bit(R5_Wantwrite, &dev->flags);
2832		}
2833		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2834			dev = &sh->dev[qd_idx];
2835			s->locked++;
2836			set_bit(R5_LOCKED, &dev->flags);
2837			set_bit(R5_Wantwrite, &dev->flags);
2838		}
2839		clear_bit(STRIPE_DEGRADED, &sh->state);
2840
2841		set_bit(STRIPE_INSYNC, &sh->state);
2842		break;
2843	case check_state_run:
2844	case check_state_run_q:
2845	case check_state_run_pq:
2846		break; /* we will be called again upon completion */
2847	case check_state_check_result:
2848		sh->check_state = check_state_idle;
2849
2850		/* handle a successful check operation, if parity is correct
2851		 * we are done.  Otherwise update the mismatch count and repair
2852		 * parity if !MD_RECOVERY_CHECK
2853		 */
2854		if (sh->ops.zero_sum_result == 0) {
2855			/* both parities are correct */
2856			if (!s->failed)
2857				set_bit(STRIPE_INSYNC, &sh->state);
2858			else {
2859				/* in contrast to the raid5 case we can validate
2860				 * parity, but still have a failure to write
2861				 * back
2862				 */
2863				sh->check_state = check_state_compute_result;
2864				/* Returning at this point means that we may go
2865				 * off and bring p and/or q uptodate again so
2866				 * we make sure to check zero_sum_result again
2867				 * to verify if p or q need writeback
2868				 */
2869			}
2870		} else {
2871			conf->mddev->resync_mismatches += STRIPE_SECTORS;
2872			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2873				/* don't try to repair!! */
2874				set_bit(STRIPE_INSYNC, &sh->state);
2875			else {
 
 
 
 
 
2876				int *target = &sh->ops.target;
2877
2878				sh->ops.target = -1;
2879				sh->ops.target2 = -1;
2880				sh->check_state = check_state_compute_run;
2881				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2882				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2883				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2884					set_bit(R5_Wantcompute,
2885						&sh->dev[pd_idx].flags);
2886					*target = pd_idx;
2887					target = &sh->ops.target2;
2888					s->uptodate++;
2889				}
2890				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2891					set_bit(R5_Wantcompute,
2892						&sh->dev[qd_idx].flags);
2893					*target = qd_idx;
2894					s->uptodate++;
2895				}
2896			}
2897		}
2898		break;
2899	case check_state_compute_run:
2900		break;
2901	default:
2902		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2903		       __func__, sh->check_state,
2904		       (unsigned long long) sh->sector);
2905		BUG();
2906	}
2907}
2908
2909static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
2910{
2911	int i;
2912
2913	/* We have read all the blocks in this stripe and now we need to
2914	 * copy some of them into a target stripe for expand.
2915	 */
2916	struct dma_async_tx_descriptor *tx = NULL;
 
2917	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2918	for (i = 0; i < sh->disks; i++)
2919		if (i != sh->pd_idx && i != sh->qd_idx) {
2920			int dd_idx, j;
2921			struct stripe_head *sh2;
2922			struct async_submit_ctl submit;
2923
2924			sector_t bn = compute_blocknr(sh, i, 1);
2925			sector_t s = raid5_compute_sector(conf, bn, 0,
2926							  &dd_idx, NULL);
2927			sh2 = get_active_stripe(conf, s, 0, 1, 1);
2928			if (sh2 == NULL)
2929				/* so far only the early blocks of this stripe
2930				 * have been requested.  When later blocks
2931				 * get requested, we will try again
2932				 */
2933				continue;
2934			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2935			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2936				/* must have already done this block */
2937				release_stripe(sh2);
2938				continue;
2939			}
2940
2941			/* place all the copies on one channel */
2942			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2943			tx = async_memcpy(sh2->dev[dd_idx].page,
2944					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
2945					  &submit);
2946
2947			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2948			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2949			for (j = 0; j < conf->raid_disks; j++)
2950				if (j != sh2->pd_idx &&
2951				    j != sh2->qd_idx &&
2952				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
2953					break;
2954			if (j == conf->raid_disks) {
2955				set_bit(STRIPE_EXPAND_READY, &sh2->state);
2956				set_bit(STRIPE_HANDLE, &sh2->state);
2957			}
2958			release_stripe(sh2);
2959
2960		}
2961	/* done submitting copies, wait for them to complete */
2962	if (tx) {
2963		async_tx_ack(tx);
2964		dma_wait_for_async_tx(tx);
2965	}
2966}
2967
2968
2969/*
2970 * handle_stripe - do things to a stripe.
2971 *
2972 * We lock the stripe and then examine the state of various bits
2973 * to see what needs to be done.
2974 * Possible results:
2975 *    return some read request which now have data
2976 *    return some write requests which are safely on disc
2977 *    schedule a read on some buffers
2978 *    schedule a write of some buffers
2979 *    return confirmation of parity correctness
2980 *
2981 * buffers are taken off read_list or write_list, and bh_cache buffers
2982 * get BH_Lock set before the stripe lock is released.
2983 *
2984 */
2985
2986static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
2987{
2988	raid5_conf_t *conf = sh->raid_conf;
2989	int disks = sh->disks;
2990	struct r5dev *dev;
2991	int i;
 
2992
2993	memset(s, 0, sizeof(*s));
2994
2995	s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
2996	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2997	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2998	s->failed_num[0] = -1;
2999	s->failed_num[1] = -1;
 
3000
3001	/* Now to look around and see what can be done */
3002	rcu_read_lock();
3003	spin_lock_irq(&conf->device_lock);
3004	for (i=disks; i--; ) {
3005		mdk_rdev_t *rdev;
3006		sector_t first_bad;
3007		int bad_sectors;
3008		int is_bad = 0;
3009
3010		dev = &sh->dev[i];
3011
3012		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3013			i, dev->flags, dev->toread, dev->towrite, dev->written);
 
3014		/* maybe we can reply to a read
3015		 *
3016		 * new wantfill requests are only permitted while
3017		 * ops_complete_biofill is guaranteed to be inactive
3018		 */
3019		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3020		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3021			set_bit(R5_Wantfill, &dev->flags);
3022
3023		/* now count some things */
3024		if (test_bit(R5_LOCKED, &dev->flags))
3025			s->locked++;
3026		if (test_bit(R5_UPTODATE, &dev->flags))
3027			s->uptodate++;
3028		if (test_bit(R5_Wantcompute, &dev->flags)) {
3029			s->compute++;
3030			BUG_ON(s->compute > 2);
3031		}
3032
3033		if (test_bit(R5_Wantfill, &dev->flags))
3034			s->to_fill++;
3035		else if (dev->toread)
3036			s->to_read++;
3037		if (dev->towrite) {
3038			s->to_write++;
3039			if (!test_bit(R5_OVERWRITE, &dev->flags))
3040				s->non_overwrite++;
3041		}
3042		if (dev->written)
3043			s->written++;
3044		rdev = rcu_dereference(conf->disks[i].rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3045		if (rdev) {
3046			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3047					     &first_bad, &bad_sectors);
3048			if (s->blocked_rdev == NULL
3049			    && (test_bit(Blocked, &rdev->flags)
3050				|| is_bad < 0)) {
3051				if (is_bad < 0)
3052					set_bit(BlockedBadBlocks,
3053						&rdev->flags);
3054				s->blocked_rdev = rdev;
3055				atomic_inc(&rdev->nr_pending);
3056			}
3057		}
3058		clear_bit(R5_Insync, &dev->flags);
3059		if (!rdev)
3060			/* Not in-sync */;
3061		else if (is_bad) {
3062			/* also not in-sync */
3063			if (!test_bit(WriteErrorSeen, &rdev->flags)) {
 
3064				/* treat as in-sync, but with a read error
3065				 * which we can now try to correct
3066				 */
3067				set_bit(R5_Insync, &dev->flags);
3068				set_bit(R5_ReadError, &dev->flags);
3069			}
3070		} else if (test_bit(In_sync, &rdev->flags))
3071			set_bit(R5_Insync, &dev->flags);
3072		else {
3073			/* in sync if before recovery_offset */
3074			if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3075				set_bit(R5_Insync, &dev->flags);
3076		}
 
 
 
 
 
 
3077		if (test_bit(R5_WriteError, &dev->flags)) {
3078			clear_bit(R5_Insync, &dev->flags);
3079			if (!test_bit(Faulty, &rdev->flags)) {
 
 
 
 
 
3080				s->handle_bad_blocks = 1;
3081				atomic_inc(&rdev->nr_pending);
3082			} else
3083				clear_bit(R5_WriteError, &dev->flags);
3084		}
3085		if (test_bit(R5_MadeGood, &dev->flags)) {
3086			if (!test_bit(Faulty, &rdev->flags)) {
 
 
 
 
3087				s->handle_bad_blocks = 1;
3088				atomic_inc(&rdev->nr_pending);
3089			} else
3090				clear_bit(R5_MadeGood, &dev->flags);
3091		}
 
 
 
 
 
 
 
 
 
3092		if (!test_bit(R5_Insync, &dev->flags)) {
3093			/* The ReadError flag will just be confusing now */
3094			clear_bit(R5_ReadError, &dev->flags);
3095			clear_bit(R5_ReWrite, &dev->flags);
3096		}
3097		if (test_bit(R5_ReadError, &dev->flags))
3098			clear_bit(R5_Insync, &dev->flags);
3099		if (!test_bit(R5_Insync, &dev->flags)) {
3100			if (s->failed < 2)
3101				s->failed_num[s->failed] = i;
3102			s->failed++;
 
 
3103		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3104	}
3105	spin_unlock_irq(&conf->device_lock);
3106	rcu_read_unlock();
3107}
3108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3109static void handle_stripe(struct stripe_head *sh)
3110{
3111	struct stripe_head_state s;
3112	raid5_conf_t *conf = sh->raid_conf;
3113	int i;
3114	int prexor;
3115	int disks = sh->disks;
3116	struct r5dev *pdev, *qdev;
3117
3118	clear_bit(STRIPE_HANDLE, &sh->state);
3119	if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
3120		/* already being handled, ensure it gets handled
3121		 * again when current action finishes */
3122		set_bit(STRIPE_HANDLE, &sh->state);
3123		return;
3124	}
3125
3126	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3127		set_bit(STRIPE_SYNCING, &sh->state);
3128		clear_bit(STRIPE_INSYNC, &sh->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3129	}
3130	clear_bit(STRIPE_DELAYED, &sh->state);
3131
3132	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3133		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3134	       (unsigned long long)sh->sector, sh->state,
3135	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3136	       sh->check_state, sh->reconstruct_state);
3137
3138	analyse_stripe(sh, &s);
3139
3140	if (s.handle_bad_blocks) {
 
 
 
 
3141		set_bit(STRIPE_HANDLE, &sh->state);
3142		goto finish;
3143	}
3144
3145	if (unlikely(s.blocked_rdev)) {
3146		if (s.syncing || s.expanding || s.expanded ||
3147		    s.to_write || s.written) {
3148			set_bit(STRIPE_HANDLE, &sh->state);
3149			goto finish;
3150		}
3151		/* There is nothing for the blocked_rdev to block */
3152		rdev_dec_pending(s.blocked_rdev, conf->mddev);
3153		s.blocked_rdev = NULL;
3154	}
3155
3156	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3157		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3158		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3159	}
3160
3161	pr_debug("locked=%d uptodate=%d to_read=%d"
3162	       " to_write=%d failed=%d failed_num=%d,%d\n",
3163	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3164	       s.failed_num[0], s.failed_num[1]);
3165	/* check if the array has lost more than max_degraded devices and,
3166	 * if so, some requests might need to be failed.
3167	 */
3168	if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written)
3169		handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3170	if (s.failed > conf->max_degraded && s.syncing)
3171		handle_failed_sync(conf, sh, &s);
3172
3173	/*
3174	 * might be able to return some write requests if the parity blocks
3175	 * are safe, or on a failed drive
3176	 */
3177	pdev = &sh->dev[sh->pd_idx];
3178	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3179		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3180	qdev = &sh->dev[sh->qd_idx];
3181	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3182		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3183		|| conf->level < 6;
3184
3185	if (s.written &&
3186	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3187			     && !test_bit(R5_LOCKED, &pdev->flags)
3188			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3189	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3190			     && !test_bit(R5_LOCKED, &qdev->flags)
3191			     && test_bit(R5_UPTODATE, &qdev->flags)))))
3192		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3193
3194	/* Now we might consider reading some blocks, either to check/generate
3195	 * parity, or to satisfy requests
3196	 * or to load a block that is being partially written.
3197	 */
3198	if (s.to_read || s.non_overwrite
3199	    || (conf->level == 6 && s.to_write && s.failed)
3200	    || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3201		handle_stripe_fill(sh, &s, disks);
 
 
 
 
 
 
3202
3203	/* Now we check to see if any write operations have recently
3204	 * completed
3205	 */
3206	prexor = 0;
3207	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3208		prexor = 1;
3209	if (sh->reconstruct_state == reconstruct_state_drain_result ||
3210	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3211		sh->reconstruct_state = reconstruct_state_idle;
3212
3213		/* All the 'written' buffers and the parity block are ready to
3214		 * be written back to disk
3215		 */
3216		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
 
3217		BUG_ON(sh->qd_idx >= 0 &&
3218		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
 
3219		for (i = disks; i--; ) {
3220			struct r5dev *dev = &sh->dev[i];
3221			if (test_bit(R5_LOCKED, &dev->flags) &&
3222				(i == sh->pd_idx || i == sh->qd_idx ||
3223				 dev->written)) {
 
3224				pr_debug("Writing block %d\n", i);
3225				set_bit(R5_Wantwrite, &dev->flags);
3226				if (prexor)
3227					continue;
 
 
3228				if (!test_bit(R5_Insync, &dev->flags) ||
3229				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
3230				     s.failed == 0))
3231					set_bit(STRIPE_INSYNC, &sh->state);
3232			}
3233		}
3234		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3235			s.dec_preread_active = 1;
3236	}
3237
3238	/* Now to consider new write requests and what else, if anything
3239	 * should be read.  We do not handle new writes when:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3240	 * 1/ A 'write' operation (copy+xor) is already in flight.
3241	 * 2/ A 'check' operation is in flight, as it may clobber the parity
3242	 *    block.
 
3243	 */
3244	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3245		handle_stripe_dirtying(conf, sh, &s, disks);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3246
3247	/* maybe we need to check and possibly fix the parity for this stripe
3248	 * Any reads will already have been scheduled, so we just see if enough
3249	 * data is available.  The parity check is held off while parity
3250	 * dependent operations are in flight.
3251	 */
3252	if (sh->check_state ||
3253	    (s.syncing && s.locked == 0 &&
3254	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3255	     !test_bit(STRIPE_INSYNC, &sh->state))) {
3256		if (conf->level == 6)
3257			handle_parity_checks6(conf, sh, &s, disks);
3258		else
3259			handle_parity_checks5(conf, sh, &s, disks);
3260	}
3261
3262	if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3263		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3264		clear_bit(STRIPE_SYNCING, &sh->state);
 
 
3265	}
3266
3267	/* If the failed drives are just a ReadError, then we might need
3268	 * to progress the repair/check process
3269	 */
3270	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3271		for (i = 0; i < s.failed; i++) {
3272			struct r5dev *dev = &sh->dev[s.failed_num[i]];
3273			if (test_bit(R5_ReadError, &dev->flags)
3274			    && !test_bit(R5_LOCKED, &dev->flags)
3275			    && test_bit(R5_UPTODATE, &dev->flags)
3276				) {
3277				if (!test_bit(R5_ReWrite, &dev->flags)) {
3278					set_bit(R5_Wantwrite, &dev->flags);
3279					set_bit(R5_ReWrite, &dev->flags);
3280					set_bit(R5_LOCKED, &dev->flags);
3281					s.locked++;
3282				} else {
3283					/* let's read it back */
3284					set_bit(R5_Wantread, &dev->flags);
3285					set_bit(R5_LOCKED, &dev->flags);
3286					s.locked++;
3287				}
3288			}
3289		}
3290
3291
3292	/* Finish reconstruct operations initiated by the expansion process */
3293	if (sh->reconstruct_state == reconstruct_state_result) {
3294		struct stripe_head *sh_src
3295			= get_active_stripe(conf, sh->sector, 1, 1, 1);
3296		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3297			/* sh cannot be written until sh_src has been read.
3298			 * so arrange for sh to be delayed a little
3299			 */
3300			set_bit(STRIPE_DELAYED, &sh->state);
3301			set_bit(STRIPE_HANDLE, &sh->state);
3302			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3303					      &sh_src->state))
3304				atomic_inc(&conf->preread_active_stripes);
3305			release_stripe(sh_src);
3306			goto finish;
3307		}
3308		if (sh_src)
3309			release_stripe(sh_src);
3310
3311		sh->reconstruct_state = reconstruct_state_idle;
3312		clear_bit(STRIPE_EXPANDING, &sh->state);
3313		for (i = conf->raid_disks; i--; ) {
3314			set_bit(R5_Wantwrite, &sh->dev[i].flags);
3315			set_bit(R5_LOCKED, &sh->dev[i].flags);
3316			s.locked++;
3317		}
3318	}
3319
3320	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3321	    !sh->reconstruct_state) {
3322		/* Need to write out all blocks after computing parity */
3323		sh->disks = conf->raid_disks;
3324		stripe_set_idx(sh->sector, conf, 0, sh);
3325		schedule_reconstruction(sh, &s, 1, 1);
3326	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3327		clear_bit(STRIPE_EXPAND_READY, &sh->state);
3328		atomic_dec(&conf->reshape_stripes);
3329		wake_up(&conf->wait_for_overlap);
3330		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3331	}
3332
3333	if (s.expanding && s.locked == 0 &&
3334	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3335		handle_stripe_expansion(conf, sh);
3336
3337finish:
3338	/* wait for this device to become unblocked */
3339	if (conf->mddev->external && unlikely(s.blocked_rdev))
3340		md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
 
 
 
 
 
 
 
 
 
 
3341
3342	if (s.handle_bad_blocks)
3343		for (i = disks; i--; ) {
3344			mdk_rdev_t *rdev;
3345			struct r5dev *dev = &sh->dev[i];
3346			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3347				/* We own a safe reference to the rdev */
3348				rdev = conf->disks[i].rdev;
3349				if (!rdev_set_badblocks(rdev, sh->sector,
3350							STRIPE_SECTORS, 0))
3351					md_error(conf->mddev, rdev);
3352				rdev_dec_pending(rdev, conf->mddev);
3353			}
3354			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3355				rdev = conf->disks[i].rdev;
3356				rdev_clear_badblocks(rdev, sh->sector,
3357						     STRIPE_SECTORS);
 
 
 
 
 
 
 
 
 
3358				rdev_dec_pending(rdev, conf->mddev);
3359			}
3360		}
3361
3362	if (s.ops_request)
3363		raid_run_ops(sh, s.ops_request);
3364
3365	ops_run_io(sh, &s);
3366
3367	if (s.dec_preread_active) {
3368		/* We delay this until after ops_run_io so that if make_request
3369		 * is waiting on a flush, it won't continue until the writes
3370		 * have actually been submitted.
3371		 */
3372		atomic_dec(&conf->preread_active_stripes);
3373		if (atomic_read(&conf->preread_active_stripes) <
3374		    IO_THRESHOLD)
3375			md_wakeup_thread(conf->mddev->thread);
3376	}
3377
3378	return_io(s.return_bi);
3379
3380	clear_bit(STRIPE_ACTIVE, &sh->state);
3381}
3382
3383static void raid5_activate_delayed(raid5_conf_t *conf)
3384{
3385	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3386		while (!list_empty(&conf->delayed_list)) {
3387			struct list_head *l = conf->delayed_list.next;
3388			struct stripe_head *sh;
3389			sh = list_entry(l, struct stripe_head, lru);
3390			list_del_init(l);
3391			clear_bit(STRIPE_DELAYED, &sh->state);
3392			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3393				atomic_inc(&conf->preread_active_stripes);
3394			list_add_tail(&sh->lru, &conf->hold_list);
 
3395		}
3396	}
3397}
3398
3399static void activate_bit_delay(raid5_conf_t *conf)
 
3400{
3401	/* device_lock is held */
3402	struct list_head head;
3403	list_add(&head, &conf->bitmap_list);
3404	list_del_init(&conf->bitmap_list);
3405	while (!list_empty(&head)) {
3406		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
 
3407		list_del_init(&sh->lru);
3408		atomic_inc(&sh->count);
3409		__release_stripe(conf, sh);
 
3410	}
3411}
3412
3413int md_raid5_congested(mddev_t *mddev, int bits)
3414{
3415	raid5_conf_t *conf = mddev->private;
3416
3417	/* No difference between reads and writes.  Just check
3418	 * how busy the stripe_cache is
3419	 */
3420
3421	if (conf->inactive_blocked)
 
 
 
 
3422		return 1;
3423	if (conf->quiesce)
3424		return 1;
3425	if (list_empty_careful(&conf->inactive_list))
3426		return 1;
3427
3428	return 0;
3429}
3430EXPORT_SYMBOL_GPL(md_raid5_congested);
3431
3432static int raid5_congested(void *data, int bits)
3433{
3434	mddev_t *mddev = data;
3435
3436	return mddev_congested(mddev, bits) ||
3437		md_raid5_congested(mddev, bits);
3438}
3439
3440/* We want read requests to align with chunks where possible,
3441 * but write requests don't need to.
3442 */
3443static int raid5_mergeable_bvec(struct request_queue *q,
3444				struct bvec_merge_data *bvm,
3445				struct bio_vec *biovec)
3446{
3447	mddev_t *mddev = q->queuedata;
3448	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3449	int max;
3450	unsigned int chunk_sectors = mddev->chunk_sectors;
3451	unsigned int bio_sectors = bvm->bi_size >> 9;
3452
3453	if ((bvm->bi_rw & 1) == WRITE)
3454		return biovec->bv_len; /* always allow writes to be mergeable */
3455
3456	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3457		chunk_sectors = mddev->new_chunk_sectors;
3458	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3459	if (max < 0) max = 0;
3460	if (max <= biovec->bv_len && bio_sectors == 0)
3461		return biovec->bv_len;
3462	else
3463		return max;
3464}
3465
3466
3467static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3468{
3469	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3470	unsigned int chunk_sectors = mddev->chunk_sectors;
3471	unsigned int bio_sectors = bio->bi_size >> 9;
3472
3473	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3474		chunk_sectors = mddev->new_chunk_sectors;
3475	return  chunk_sectors >=
3476		((sector & (chunk_sectors - 1)) + bio_sectors);
3477}
3478
3479/*
3480 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3481 *  later sampled by raid5d.
3482 */
3483static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3484{
3485	unsigned long flags;
3486
3487	spin_lock_irqsave(&conf->device_lock, flags);
3488
3489	bi->bi_next = conf->retry_read_aligned_list;
3490	conf->retry_read_aligned_list = bi;
3491
3492	spin_unlock_irqrestore(&conf->device_lock, flags);
3493	md_wakeup_thread(conf->mddev->thread);
3494}
3495
3496
3497static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3498{
3499	struct bio *bi;
3500
3501	bi = conf->retry_read_aligned;
3502	if (bi) {
 
3503		conf->retry_read_aligned = NULL;
3504		return bi;
3505	}
3506	bi = conf->retry_read_aligned_list;
3507	if(bi) {
3508		conf->retry_read_aligned_list = bi->bi_next;
3509		bi->bi_next = NULL;
3510		/*
3511		 * this sets the active strip count to 1 and the processed
3512		 * strip count to zero (upper 8 bits)
3513		 */
3514		bi->bi_phys_segments = 1; /* biased count of active stripes */
3515	}
3516
3517	return bi;
3518}
3519
3520
3521/*
3522 *  The "raid5_align_endio" should check if the read succeeded and if it
3523 *  did, call bio_endio on the original bio (having bio_put the new bio
3524 *  first).
3525 *  If the read failed..
3526 */
3527static void raid5_align_endio(struct bio *bi, int error)
3528{
3529	struct bio* raid_bi  = bi->bi_private;
3530	mddev_t *mddev;
3531	raid5_conf_t *conf;
3532	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3533	mdk_rdev_t *rdev;
3534
3535	bio_put(bi);
3536
3537	rdev = (void*)raid_bi->bi_next;
3538	raid_bi->bi_next = NULL;
3539	mddev = rdev->mddev;
3540	conf = mddev->private;
3541
3542	rdev_dec_pending(rdev, conf->mddev);
3543
3544	if (!error && uptodate) {
3545		bio_endio(raid_bi, 0);
3546		if (atomic_dec_and_test(&conf->active_aligned_reads))
3547			wake_up(&conf->wait_for_stripe);
3548		return;
3549	}
3550
3551
3552	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3553
3554	add_bio_to_retry(raid_bi, conf);
3555}
3556
3557static int bio_fits_rdev(struct bio *bi)
3558{
3559	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3560
3561	if ((bi->bi_size>>9) > queue_max_sectors(q))
3562		return 0;
3563	blk_recount_segments(q, bi);
3564	if (bi->bi_phys_segments > queue_max_segments(q))
3565		return 0;
3566
3567	if (q->merge_bvec_fn)
3568		/* it's too hard to apply the merge_bvec_fn at this stage,
3569		 * just just give up
3570		 */
3571		return 0;
3572
3573	return 1;
3574}
3575
3576
3577static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3578{
3579	raid5_conf_t *conf = mddev->private;
3580	int dd_idx;
3581	struct bio* align_bi;
3582	mdk_rdev_t *rdev;
 
3583
3584	if (!in_chunk_boundary(mddev, raid_bio)) {
3585		pr_debug("chunk_aligned_read : non aligned\n");
3586		return 0;
3587	}
3588	/*
3589	 * use bio_clone_mddev to make a copy of the bio
3590	 */
3591	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3592	if (!align_bi)
3593		return 0;
3594	/*
3595	 *   set bi_end_io to a new function, and set bi_private to the
3596	 *     original bio.
3597	 */
3598	align_bi->bi_end_io  = raid5_align_endio;
3599	align_bi->bi_private = raid_bio;
3600	/*
3601	 *	compute position
3602	 */
3603	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3604						    0,
3605						    &dd_idx, NULL);
3606
 
3607	rcu_read_lock();
3608	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3609	if (rdev && test_bit(In_sync, &rdev->flags)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3610		sector_t first_bad;
3611		int bad_sectors;
3612
3613		atomic_inc(&rdev->nr_pending);
3614		rcu_read_unlock();
3615		raid_bio->bi_next = (void*)rdev;
3616		align_bi->bi_bdev =  rdev->bdev;
3617		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3618		align_bi->bi_sector += rdev->data_offset;
3619
3620		if (!bio_fits_rdev(align_bi) ||
3621		    is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3622				&first_bad, &bad_sectors)) {
3623			/* too big in some way, or has a known bad block */
3624			bio_put(align_bi);
3625			rdev_dec_pending(rdev, mddev);
3626			return 0;
3627		}
3628
 
 
 
3629		spin_lock_irq(&conf->device_lock);
3630		wait_event_lock_irq(conf->wait_for_stripe,
3631				    conf->quiesce == 0,
3632				    conf->device_lock, /* nothing */);
3633		atomic_inc(&conf->active_aligned_reads);
3634		spin_unlock_irq(&conf->device_lock);
3635
 
 
 
 
3636		generic_make_request(align_bi);
3637		return 1;
3638	} else {
3639		rcu_read_unlock();
3640		bio_put(align_bi);
3641		return 0;
3642	}
3643}
3644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3645/* __get_priority_stripe - get the next stripe to process
3646 *
3647 * Full stripe writes are allowed to pass preread active stripes up until
3648 * the bypass_threshold is exceeded.  In general the bypass_count
3649 * increments when the handle_list is handled before the hold_list; however, it
3650 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3651 * stripe with in flight i/o.  The bypass_count will be reset when the
3652 * head of the hold_list has changed, i.e. the head was promoted to the
3653 * handle_list.
3654 */
3655static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3656{
3657	struct stripe_head *sh;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3658
3659	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3660		  __func__,
3661		  list_empty(&conf->handle_list) ? "empty" : "busy",
3662		  list_empty(&conf->hold_list) ? "empty" : "busy",
3663		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
3664
3665	if (!list_empty(&conf->handle_list)) {
3666		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3667
3668		if (list_empty(&conf->hold_list))
3669			conf->bypass_count = 0;
3670		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3671			if (conf->hold_list.next == conf->last_hold)
3672				conf->bypass_count++;
3673			else {
3674				conf->last_hold = conf->hold_list.next;
3675				conf->bypass_count -= conf->bypass_threshold;
3676				if (conf->bypass_count < 0)
3677					conf->bypass_count = 0;
3678			}
3679		}
3680	} else if (!list_empty(&conf->hold_list) &&
3681		   ((conf->bypass_threshold &&
3682		     conf->bypass_count > conf->bypass_threshold) ||
3683		    atomic_read(&conf->pending_full_writes) == 0)) {
3684		sh = list_entry(conf->hold_list.next,
3685				typeof(*sh), lru);
3686		conf->bypass_count -= conf->bypass_threshold;
3687		if (conf->bypass_count < 0)
3688			conf->bypass_count = 0;
3689	} else
3690		return NULL;
3691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3692	list_del_init(&sh->lru);
3693	atomic_inc(&sh->count);
3694	BUG_ON(atomic_read(&sh->count) != 1);
3695	return sh;
3696}
3697
3698static int make_request(mddev_t *mddev, struct bio * bi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3699{
3700	raid5_conf_t *conf = mddev->private;
3701	int dd_idx;
3702	sector_t new_sector;
3703	sector_t logical_sector, last_sector;
3704	struct stripe_head *sh;
3705	const int rw = bio_data_dir(bi);
3706	int remaining;
3707	int plugged;
3708
3709	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3710		md_flush_request(mddev, bi);
3711		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
3712	}
3713
3714	md_write_start(mddev, bi);
 
 
 
 
 
 
 
 
 
 
 
 
3715
3716	if (rw == READ &&
3717	     mddev->reshape_position == MaxSector &&
3718	     chunk_aligned_read(mddev,bi))
3719		return 0;
 
3720
3721	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3722	last_sector = bi->bi_sector + (bi->bi_size>>9);
3723	bi->bi_next = NULL;
3724	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
3725
3726	plugged = mddev_check_plugged(mddev);
3727	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3728		DEFINE_WAIT(w);
3729		int disks, data_disks;
3730		int previous;
 
3731
 
3732	retry:
 
3733		previous = 0;
3734		disks = conf->raid_disks;
3735		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
 
3736		if (unlikely(conf->reshape_progress != MaxSector)) {
3737			/* spinlock is needed as reshape_progress may be
3738			 * 64bit on a 32bit platform, and so it might be
3739			 * possible to see a half-updated value
3740			 * Of course reshape_progress could change after
3741			 * the lock is dropped, so once we get a reference
3742			 * to the stripe that we think it is, we will have
3743			 * to check again.
3744			 */
3745			spin_lock_irq(&conf->device_lock);
3746			if (mddev->delta_disks < 0
3747			    ? logical_sector < conf->reshape_progress
3748			    : logical_sector >= conf->reshape_progress) {
3749				disks = conf->previous_raid_disks;
3750				previous = 1;
3751			} else {
3752				if (mddev->delta_disks < 0
3753				    ? logical_sector < conf->reshape_safe
3754				    : logical_sector >= conf->reshape_safe) {
3755					spin_unlock_irq(&conf->device_lock);
3756					schedule();
 
3757					goto retry;
3758				}
3759			}
3760			spin_unlock_irq(&conf->device_lock);
3761		}
3762		data_disks = disks - conf->max_degraded;
3763
3764		new_sector = raid5_compute_sector(conf, logical_sector,
3765						  previous,
3766						  &dd_idx, NULL);
3767		pr_debug("raid456: make_request, sector %llu logical %llu\n",
3768			(unsigned long long)new_sector, 
3769			(unsigned long long)logical_sector);
3770
3771		sh = get_active_stripe(conf, new_sector, previous,
3772				       (bi->bi_rw&RWA_MASK), 0);
3773		if (sh) {
3774			if (unlikely(previous)) {
3775				/* expansion might have moved on while waiting for a
3776				 * stripe, so we must do the range check again.
3777				 * Expansion could still move past after this
3778				 * test, but as we are holding a reference to
3779				 * 'sh', we know that if that happens,
3780				 *  STRIPE_EXPANDING will get set and the expansion
3781				 * won't proceed until we finish with the stripe.
3782				 */
3783				int must_retry = 0;
3784				spin_lock_irq(&conf->device_lock);
3785				if (mddev->delta_disks < 0
3786				    ? logical_sector >= conf->reshape_progress
3787				    : logical_sector < conf->reshape_progress)
3788					/* mismatch, need to try again */
3789					must_retry = 1;
3790				spin_unlock_irq(&conf->device_lock);
3791				if (must_retry) {
3792					release_stripe(sh);
3793					schedule();
 
3794					goto retry;
3795				}
3796			}
3797
3798			if (rw == WRITE &&
3799			    logical_sector >= mddev->suspend_lo &&
3800			    logical_sector < mddev->suspend_hi) {
3801				release_stripe(sh);
3802				/* As the suspend_* range is controlled by
3803				 * userspace, we want an interruptible
3804				 * wait.
3805				 */
3806				flush_signals(current);
3807				prepare_to_wait(&conf->wait_for_overlap,
3808						&w, TASK_INTERRUPTIBLE);
3809				if (logical_sector >= mddev->suspend_lo &&
3810				    logical_sector < mddev->suspend_hi)
3811					schedule();
3812				goto retry;
3813			}
3814
3815			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3816			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
3817				/* Stripe is busy expanding or
3818				 * add failed due to overlap.  Flush everything
3819				 * and wait a while
3820				 */
3821				md_wakeup_thread(mddev->thread);
3822				release_stripe(sh);
3823				schedule();
 
3824				goto retry;
3825			}
3826			finish_wait(&conf->wait_for_overlap, &w);
 
 
 
 
 
3827			set_bit(STRIPE_HANDLE, &sh->state);
3828			clear_bit(STRIPE_DELAYED, &sh->state);
3829			if ((bi->bi_rw & REQ_SYNC) &&
 
3830			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3831				atomic_inc(&conf->preread_active_stripes);
3832			release_stripe(sh);
3833		} else {
3834			/* cannot get stripe for read-ahead, just give-up */
3835			clear_bit(BIO_UPTODATE, &bi->bi_flags);
3836			finish_wait(&conf->wait_for_overlap, &w);
3837			break;
3838		}
3839			
3840	}
3841	if (!plugged)
3842		md_wakeup_thread(mddev->thread);
3843
3844	spin_lock_irq(&conf->device_lock);
3845	remaining = raid5_dec_bi_phys_segments(bi);
3846	spin_unlock_irq(&conf->device_lock);
3847	if (remaining == 0) {
3848
3849		if ( rw == WRITE )
3850			md_write_end(mddev);
3851
3852		bio_endio(bi, 0);
3853	}
3854
3855	return 0;
3856}
3857
3858static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3859
3860static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3861{
3862	/* reshaping is quite different to recovery/resync so it is
3863	 * handled quite separately ... here.
3864	 *
3865	 * On each call to sync_request, we gather one chunk worth of
3866	 * destination stripes and flag them as expanding.
3867	 * Then we find all the source stripes and request reads.
3868	 * As the reads complete, handle_stripe will copy the data
3869	 * into the destination stripe and release that stripe.
3870	 */
3871	raid5_conf_t *conf = mddev->private;
3872	struct stripe_head *sh;
 
3873	sector_t first_sector, last_sector;
3874	int raid_disks = conf->previous_raid_disks;
3875	int data_disks = raid_disks - conf->max_degraded;
3876	int new_data_disks = conf->raid_disks - conf->max_degraded;
3877	int i;
3878	int dd_idx;
3879	sector_t writepos, readpos, safepos;
3880	sector_t stripe_addr;
3881	int reshape_sectors;
3882	struct list_head stripes;
 
3883
3884	if (sector_nr == 0) {
3885		/* If restarting in the middle, skip the initial sectors */
3886		if (mddev->delta_disks < 0 &&
3887		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3888			sector_nr = raid5_size(mddev, 0, 0)
3889				- conf->reshape_progress;
3890		} else if (mddev->delta_disks >= 0 &&
 
 
 
 
3891			   conf->reshape_progress > 0)
3892			sector_nr = conf->reshape_progress;
3893		sector_div(sector_nr, new_data_disks);
3894		if (sector_nr) {
3895			mddev->curr_resync_completed = sector_nr;
3896			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3897			*skipped = 1;
3898			return sector_nr;
 
3899		}
3900	}
3901
3902	/* We need to process a full chunk at a time.
3903	 * If old and new chunk sizes differ, we need to process the
3904	 * largest of these
3905	 */
3906	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3907		reshape_sectors = mddev->new_chunk_sectors;
3908	else
3909		reshape_sectors = mddev->chunk_sectors;
3910
3911	/* we update the metadata when there is more than 3Meg
3912	 * in the block range (that is rather arbitrary, should
3913	 * probably be time based) or when the data about to be
3914	 * copied would over-write the source of the data at
3915	 * the front of the range.
3916	 * i.e. one new_stripe along from reshape_progress new_maps
3917	 * to after where reshape_safe old_maps to
3918	 */
3919	writepos = conf->reshape_progress;
3920	sector_div(writepos, new_data_disks);
3921	readpos = conf->reshape_progress;
3922	sector_div(readpos, data_disks);
3923	safepos = conf->reshape_safe;
3924	sector_div(safepos, data_disks);
3925	if (mddev->delta_disks < 0) {
3926		writepos -= min_t(sector_t, reshape_sectors, writepos);
 
3927		readpos += reshape_sectors;
3928		safepos += reshape_sectors;
3929	} else {
3930		writepos += reshape_sectors;
 
 
 
 
3931		readpos -= min_t(sector_t, reshape_sectors, readpos);
3932		safepos -= min_t(sector_t, reshape_sectors, safepos);
3933	}
3934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3935	/* 'writepos' is the most advanced device address we might write.
3936	 * 'readpos' is the least advanced device address we might read.
3937	 * 'safepos' is the least address recorded in the metadata as having
3938	 *     been reshaped.
3939	 * If 'readpos' is behind 'writepos', then there is no way that we can
 
 
 
3940	 * ensure safety in the face of a crash - that must be done by userspace
3941	 * making a backup of the data.  So in that case there is no particular
3942	 * rush to update metadata.
3943	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3944	 * update the metadata to advance 'safepos' to match 'readpos' so that
3945	 * we can be safe in the event of a crash.
3946	 * So we insist on updating metadata if safepos is behind writepos and
3947	 * readpos is beyond writepos.
3948	 * In any case, update the metadata every 10 seconds.
3949	 * Maybe that number should be configurable, but I'm not sure it is
3950	 * worth it.... maybe it could be a multiple of safemode_delay???
3951	 */
3952	if ((mddev->delta_disks < 0
 
 
 
 
 
 
3953	     ? (safepos > writepos && readpos < writepos)
3954	     : (safepos < writepos && readpos > writepos)) ||
3955	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3956		/* Cannot proceed until we've updated the superblock... */
3957		wait_event(conf->wait_for_overlap,
3958			   atomic_read(&conf->reshape_stripes)==0);
 
 
 
3959		mddev->reshape_position = conf->reshape_progress;
3960		mddev->curr_resync_completed = sector_nr;
 
 
 
 
 
 
 
 
 
3961		conf->reshape_checkpoint = jiffies;
3962		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3963		md_wakeup_thread(mddev->thread);
3964		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3965			   kthread_should_stop());
 
 
3966		spin_lock_irq(&conf->device_lock);
3967		conf->reshape_safe = mddev->reshape_position;
3968		spin_unlock_irq(&conf->device_lock);
3969		wake_up(&conf->wait_for_overlap);
3970		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3971	}
3972
3973	if (mddev->delta_disks < 0) {
3974		BUG_ON(conf->reshape_progress == 0);
3975		stripe_addr = writepos;
3976		BUG_ON((mddev->dev_sectors &
3977			~((sector_t)reshape_sectors - 1))
3978		       - reshape_sectors - stripe_addr
3979		       != sector_nr);
3980	} else {
3981		BUG_ON(writepos != sector_nr + reshape_sectors);
3982		stripe_addr = sector_nr;
3983	}
3984	INIT_LIST_HEAD(&stripes);
3985	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3986		int j;
3987		int skipped_disk = 0;
3988		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
3989		set_bit(STRIPE_EXPANDING, &sh->state);
3990		atomic_inc(&conf->reshape_stripes);
3991		/* If any of this stripe is beyond the end of the old
3992		 * array, then we need to zero those blocks
3993		 */
3994		for (j=sh->disks; j--;) {
3995			sector_t s;
3996			if (j == sh->pd_idx)
3997				continue;
3998			if (conf->level == 6 &&
3999			    j == sh->qd_idx)
4000				continue;
4001			s = compute_blocknr(sh, j, 0);
4002			if (s < raid5_size(mddev, 0, 0)) {
4003				skipped_disk = 1;
4004				continue;
4005			}
4006			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4007			set_bit(R5_Expanded, &sh->dev[j].flags);
4008			set_bit(R5_UPTODATE, &sh->dev[j].flags);
4009		}
4010		if (!skipped_disk) {
4011			set_bit(STRIPE_EXPAND_READY, &sh->state);
4012			set_bit(STRIPE_HANDLE, &sh->state);
4013		}
4014		list_add(&sh->lru, &stripes);
4015	}
4016	spin_lock_irq(&conf->device_lock);
4017	if (mddev->delta_disks < 0)
4018		conf->reshape_progress -= reshape_sectors * new_data_disks;
4019	else
4020		conf->reshape_progress += reshape_sectors * new_data_disks;
4021	spin_unlock_irq(&conf->device_lock);
4022	/* Ok, those stripe are ready. We can start scheduling
4023	 * reads on the source stripes.
4024	 * The source stripes are determined by mapping the first and last
4025	 * block on the destination stripes.
4026	 */
4027	first_sector =
4028		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4029				     1, &dd_idx, NULL);
4030	last_sector =
4031		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4032					    * new_data_disks - 1),
4033				     1, &dd_idx, NULL);
4034	if (last_sector >= mddev->dev_sectors)
4035		last_sector = mddev->dev_sectors - 1;
4036	while (first_sector <= last_sector) {
4037		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4038		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4039		set_bit(STRIPE_HANDLE, &sh->state);
4040		release_stripe(sh);
4041		first_sector += STRIPE_SECTORS;
4042	}
4043	/* Now that the sources are clearly marked, we can release
4044	 * the destination stripes
4045	 */
4046	while (!list_empty(&stripes)) {
4047		sh = list_entry(stripes.next, struct stripe_head, lru);
4048		list_del_init(&sh->lru);
4049		release_stripe(sh);
4050	}
4051	/* If this takes us to the resync_max point where we have to pause,
4052	 * then we need to write out the superblock.
4053	 */
4054	sector_nr += reshape_sectors;
4055	if ((sector_nr - mddev->curr_resync_completed) * 2
 
 
 
4056	    >= mddev->resync_max - mddev->curr_resync_completed) {
4057		/* Cannot proceed until we've updated the superblock... */
4058		wait_event(conf->wait_for_overlap,
4059			   atomic_read(&conf->reshape_stripes) == 0);
 
 
 
4060		mddev->reshape_position = conf->reshape_progress;
4061		mddev->curr_resync_completed = sector_nr;
 
 
 
 
 
 
 
 
4062		conf->reshape_checkpoint = jiffies;
4063		set_bit(MD_CHANGE_DEVS, &mddev->flags);
4064		md_wakeup_thread(mddev->thread);
4065		wait_event(mddev->sb_wait,
4066			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4067			   || kthread_should_stop());
 
 
4068		spin_lock_irq(&conf->device_lock);
4069		conf->reshape_safe = mddev->reshape_position;
4070		spin_unlock_irq(&conf->device_lock);
4071		wake_up(&conf->wait_for_overlap);
4072		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4073	}
4074	return reshape_sectors;
 
4075}
4076
4077/* FIXME go_faster isn't used */
4078static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4079{
4080	raid5_conf_t *conf = mddev->private;
4081	struct stripe_head *sh;
4082	sector_t max_sector = mddev->dev_sectors;
4083	sector_t sync_blocks;
4084	int still_degraded = 0;
4085	int i;
4086
4087	if (sector_nr >= max_sector) {
4088		/* just being told to finish up .. nothing much to do */
4089
4090		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4091			end_reshape(conf);
4092			return 0;
4093		}
4094
4095		if (mddev->curr_resync < max_sector) /* aborted */
4096			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4097					&sync_blocks, 1);
4098		else /* completed sync */
4099			conf->fullsync = 0;
4100		bitmap_close_sync(mddev->bitmap);
4101
4102		return 0;
4103	}
4104
4105	/* Allow raid5_quiesce to complete */
4106	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4107
4108	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4109		return reshape_request(mddev, sector_nr, skipped);
4110
4111	/* No need to check resync_max as we never do more than one
4112	 * stripe, and as resync_max will always be on a chunk boundary,
4113	 * if the check in md_do_sync didn't fire, there is no chance
4114	 * of overstepping resync_max here
4115	 */
4116
4117	/* if there is too many failed drives and we are trying
4118	 * to resync, then assert that we are finished, because there is
4119	 * nothing we can do.
4120	 */
4121	if (mddev->degraded >= conf->max_degraded &&
4122	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4123		sector_t rv = mddev->dev_sectors - sector_nr;
4124		*skipped = 1;
4125		return rv;
4126	}
4127	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4128	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4129	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
 
4130		/* we can skip this block, and probably more */
4131		sync_blocks /= STRIPE_SECTORS;
4132		*skipped = 1;
4133		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4134	}
4135
 
4136
4137	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4138
4139	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4140	if (sh == NULL) {
4141		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4142		/* make sure we don't swamp the stripe cache if someone else
4143		 * is trying to get access
4144		 */
4145		schedule_timeout_uninterruptible(1);
4146	}
4147	/* Need to check if array will still be degraded after recovery/resync
4148	 * We don't need to check the 'failed' flag as when that gets set,
4149	 * recovery aborts.
4150	 */
4151	for (i = 0; i < conf->raid_disks; i++)
4152		if (conf->disks[i].rdev == NULL)
 
 
 
4153			still_degraded = 1;
 
 
4154
4155	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4156
4157	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
 
4158
4159	handle_stripe(sh);
4160	release_stripe(sh);
4161
4162	return STRIPE_SECTORS;
4163}
4164
4165static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
 
4166{
4167	/* We may not be able to submit a whole bio at once as there
4168	 * may not be enough stripe_heads available.
4169	 * We cannot pre-allocate enough stripe_heads as we may need
4170	 * more than exist in the cache (if we allow ever large chunks).
4171	 * So we do one stripe head at a time and record in
4172	 * ->bi_hw_segments how many have been done.
4173	 *
4174	 * We *know* that this entire raid_bio is in one chunk, so
4175	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4176	 */
4177	struct stripe_head *sh;
4178	int dd_idx;
4179	sector_t sector, logical_sector, last_sector;
4180	int scnt = 0;
4181	int remaining;
4182	int handled = 0;
4183
4184	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
 
4185	sector = raid5_compute_sector(conf, logical_sector,
4186				      0, &dd_idx, NULL);
4187	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4188
4189	for (; logical_sector < last_sector;
4190	     logical_sector += STRIPE_SECTORS,
4191		     sector += STRIPE_SECTORS,
4192		     scnt++) {
4193
4194		if (scnt < raid5_bi_hw_segments(raid_bio))
4195			/* already done this stripe */
4196			continue;
4197
4198		sh = get_active_stripe(conf, sector, 0, 1, 0);
4199
4200		if (!sh) {
4201			/* failed to get a stripe - must wait */
4202			raid5_set_bi_hw_segments(raid_bio, scnt);
4203			conf->retry_read_aligned = raid_bio;
 
4204			return handled;
4205		}
4206
4207		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4208		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4209			release_stripe(sh);
4210			raid5_set_bi_hw_segments(raid_bio, scnt);
4211			conf->retry_read_aligned = raid_bio;
 
4212			return handled;
4213		}
4214
 
4215		handle_stripe(sh);
4216		release_stripe(sh);
4217		handled++;
4218	}
4219	spin_lock_irq(&conf->device_lock);
4220	remaining = raid5_dec_bi_phys_segments(raid_bio);
4221	spin_unlock_irq(&conf->device_lock);
4222	if (remaining == 0)
4223		bio_endio(raid_bio, 0);
4224	if (atomic_dec_and_test(&conf->active_aligned_reads))
4225		wake_up(&conf->wait_for_stripe);
4226	return handled;
4227}
4228
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4229
4230/*
4231 * This is our raid5 kernel thread.
4232 *
4233 * We scan the hash table for stripes which can be handled now.
4234 * During the scan, completed stripes are saved for us by the interrupt
4235 * handler, so that they will not have to wait for our next wakeup.
4236 */
4237static void raid5d(mddev_t *mddev)
4238{
4239	struct stripe_head *sh;
4240	raid5_conf_t *conf = mddev->private;
4241	int handled;
4242	struct blk_plug plug;
4243
4244	pr_debug("+++ raid5d active\n");
4245
4246	md_check_recovery(mddev);
4247
4248	blk_start_plug(&plug);
4249	handled = 0;
4250	spin_lock_irq(&conf->device_lock);
4251	while (1) {
4252		struct bio *bio;
 
 
 
 
 
 
4253
4254		if (atomic_read(&mddev->plug_cnt) == 0 &&
4255		    !list_empty(&conf->bitmap_list)) {
4256			/* Now is a good time to flush some bitmap updates */
4257			conf->seq_flush++;
4258			spin_unlock_irq(&conf->device_lock);
4259			bitmap_unplug(mddev->bitmap);
4260			spin_lock_irq(&conf->device_lock);
4261			conf->seq_write = conf->seq_flush;
4262			activate_bit_delay(conf);
4263		}
4264		if (atomic_read(&mddev->plug_cnt) == 0)
4265			raid5_activate_delayed(conf);
4266
4267		while ((bio = remove_bio_from_retry(conf))) {
4268			int ok;
4269			spin_unlock_irq(&conf->device_lock);
4270			ok = retry_aligned_read(conf, bio);
4271			spin_lock_irq(&conf->device_lock);
4272			if (!ok)
4273				break;
4274			handled++;
4275		}
4276
4277		sh = __get_priority_stripe(conf);
4278
4279		if (!sh)
4280			break;
4281		spin_unlock_irq(&conf->device_lock);
4282		
4283		handled++;
4284		handle_stripe(sh);
4285		release_stripe(sh);
4286		cond_resched();
4287
4288		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
 
4289			md_check_recovery(mddev);
4290
4291		spin_lock_irq(&conf->device_lock);
4292	}
4293	pr_debug("%d stripes handled\n", handled);
4294
4295	spin_unlock_irq(&conf->device_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
4296
4297	async_tx_issue_pending_all();
4298	blk_finish_plug(&plug);
4299
4300	pr_debug("--- raid5d inactive\n");
4301}
4302
4303static ssize_t
4304raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4305{
4306	raid5_conf_t *conf = mddev->private;
 
 
 
4307	if (conf)
4308		return sprintf(page, "%d\n", conf->max_nr_stripes);
4309	else
4310		return 0;
4311}
4312
4313int
4314raid5_set_cache_size(mddev_t *mddev, int size)
4315{
4316	raid5_conf_t *conf = mddev->private;
4317	int err;
4318
4319	if (size <= 16 || size > 32768)
4320		return -EINVAL;
4321	while (size < conf->max_nr_stripes) {
4322		if (drop_one_stripe(conf))
4323			conf->max_nr_stripes--;
4324		else
 
 
 
 
 
 
 
 
 
4325			break;
4326	}
4327	err = md_allow_write(mddev);
4328	if (err)
4329		return err;
4330	while (size > conf->max_nr_stripes) {
4331		if (grow_one_stripe(conf))
4332			conf->max_nr_stripes++;
4333		else break;
4334	}
4335	return 0;
4336}
4337EXPORT_SYMBOL(raid5_set_cache_size);
4338
4339static ssize_t
4340raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4341{
4342	raid5_conf_t *conf = mddev->private;
4343	unsigned long new;
4344	int err;
4345
4346	if (len >= PAGE_SIZE)
4347		return -EINVAL;
4348	if (!conf)
4349		return -ENODEV;
4350
4351	if (strict_strtoul(page, 10, &new))
4352		return -EINVAL;
4353	err = raid5_set_cache_size(mddev, new);
4354	if (err)
4355		return err;
4356	return len;
 
 
 
 
 
 
 
4357}
4358
4359static struct md_sysfs_entry
4360raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4361				raid5_show_stripe_cache_size,
4362				raid5_store_stripe_cache_size);
4363
4364static ssize_t
4365raid5_show_preread_threshold(mddev_t *mddev, char *page)
4366{
4367	raid5_conf_t *conf = mddev->private;
4368	if (conf)
4369		return sprintf(page, "%d\n", conf->bypass_threshold);
4370	else
4371		return 0;
4372}
4373
4374static ssize_t
4375raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4376{
4377	raid5_conf_t *conf = mddev->private;
4378	unsigned long new;
4379	if (len >= PAGE_SIZE)
4380		return -EINVAL;
4381	if (!conf)
4382		return -ENODEV;
4383
4384	if (strict_strtoul(page, 10, &new))
 
 
 
 
 
 
4385		return -EINVAL;
4386	if (new > conf->max_nr_stripes)
 
 
 
4387		return -EINVAL;
4388	conf->bypass_threshold = new;
 
4389	return len;
4390}
4391
4392static struct md_sysfs_entry
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4393raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4394					S_IRUGO | S_IWUSR,
4395					raid5_show_preread_threshold,
4396					raid5_store_preread_threshold);
4397
4398static ssize_t
4399stripe_cache_active_show(mddev_t *mddev, char *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
4400{
4401	raid5_conf_t *conf = mddev->private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4402	if (conf)
4403		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4404	else
4405		return 0;
4406}
4407
4408static struct md_sysfs_entry
4409raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4411static struct attribute *raid5_attrs[] =  {
4412	&raid5_stripecache_size.attr,
4413	&raid5_stripecache_active.attr,
4414	&raid5_preread_bypass_threshold.attr,
 
 
 
 
4415	NULL,
4416};
4417static struct attribute_group raid5_attrs_group = {
4418	.name = NULL,
4419	.attrs = raid5_attrs,
4420};
4421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4422static sector_t
4423raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4424{
4425	raid5_conf_t *conf = mddev->private;
4426
4427	if (!sectors)
4428		sectors = mddev->dev_sectors;
4429	if (!raid_disks)
4430		/* size is defined by the smallest of previous and new size */
4431		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4432
4433	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4434	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4435	return sectors * (raid_disks - conf->max_degraded);
4436}
4437
4438static void raid5_free_percpu(raid5_conf_t *conf)
4439{
4440	struct raid5_percpu *percpu;
4441	unsigned long cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4442
 
 
4443	if (!conf->percpu)
4444		return;
4445
4446	get_online_cpus();
4447	for_each_possible_cpu(cpu) {
4448		percpu = per_cpu_ptr(conf->percpu, cpu);
4449		safe_put_page(percpu->spare_page);
4450		kfree(percpu->scribble);
4451	}
4452#ifdef CONFIG_HOTPLUG_CPU
4453	unregister_cpu_notifier(&conf->cpu_notify);
4454#endif
4455	put_online_cpus();
4456
4457	free_percpu(conf->percpu);
4458}
4459
4460static void free_conf(raid5_conf_t *conf)
4461{
 
 
 
 
 
 
4462	shrink_stripes(conf);
4463	raid5_free_percpu(conf);
 
 
 
4464	kfree(conf->disks);
 
 
4465	kfree(conf->stripe_hashtbl);
 
4466	kfree(conf);
4467}
4468
4469#ifdef CONFIG_HOTPLUG_CPU
4470static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4471			      void *hcpu)
4472{
4473	raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4474	long cpu = (long)hcpu;
4475	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4476
4477	switch (action) {
4478	case CPU_UP_PREPARE:
4479	case CPU_UP_PREPARE_FROZEN:
4480		if (conf->level == 6 && !percpu->spare_page)
4481			percpu->spare_page = alloc_page(GFP_KERNEL);
4482		if (!percpu->scribble)
4483			percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4484
4485		if (!percpu->scribble ||
4486		    (conf->level == 6 && !percpu->spare_page)) {
4487			safe_put_page(percpu->spare_page);
4488			kfree(percpu->scribble);
4489			pr_err("%s: failed memory allocation for cpu%ld\n",
4490			       __func__, cpu);
4491			return notifier_from_errno(-ENOMEM);
4492		}
4493		break;
4494	case CPU_DEAD:
4495	case CPU_DEAD_FROZEN:
4496		safe_put_page(percpu->spare_page);
4497		kfree(percpu->scribble);
4498		percpu->spare_page = NULL;
4499		percpu->scribble = NULL;
4500		break;
4501	default:
4502		break;
4503	}
4504	return NOTIFY_OK;
4505}
4506#endif
4507
4508static int raid5_alloc_percpu(raid5_conf_t *conf)
4509{
4510	unsigned long cpu;
4511	struct page *spare_page;
4512	struct raid5_percpu __percpu *allcpus;
4513	void *scribble;
4514	int err;
4515
4516	allcpus = alloc_percpu(struct raid5_percpu);
4517	if (!allcpus)
4518		return -ENOMEM;
4519	conf->percpu = allcpus;
4520
4521	get_online_cpus();
4522	err = 0;
4523	for_each_present_cpu(cpu) {
4524		if (conf->level == 6) {
4525			spare_page = alloc_page(GFP_KERNEL);
4526			if (!spare_page) {
4527				err = -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4528				break;
4529			}
4530			per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4531		}
4532		scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4533		if (!scribble) {
4534			err = -ENOMEM;
4535			break;
4536		}
4537		per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4538	}
4539#ifdef CONFIG_HOTPLUG_CPU
4540	conf->cpu_notify.notifier_call = raid456_cpu_notify;
4541	conf->cpu_notify.priority = 0;
4542	if (err == 0)
4543		err = register_cpu_notifier(&conf->cpu_notify);
4544#endif
4545	put_online_cpus();
4546
4547	return err;
 
 
 
 
 
 
 
 
4548}
4549
4550static raid5_conf_t *setup_conf(mddev_t *mddev)
4551{
4552	raid5_conf_t *conf;
4553	int raid_disk, memory, max_disks;
4554	mdk_rdev_t *rdev;
4555	struct disk_info *disk;
 
 
 
 
4556
4557	if (mddev->new_level != 5
4558	    && mddev->new_level != 4
4559	    && mddev->new_level != 6) {
4560		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4561		       mdname(mddev), mddev->new_level);
4562		return ERR_PTR(-EIO);
4563	}
4564	if ((mddev->new_level == 5
4565	     && !algorithm_valid_raid5(mddev->new_layout)) ||
4566	    (mddev->new_level == 6
4567	     && !algorithm_valid_raid6(mddev->new_layout))) {
4568		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4569		       mdname(mddev), mddev->new_layout);
4570		return ERR_PTR(-EIO);
4571	}
4572	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4573		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4574		       mdname(mddev), mddev->raid_disks);
4575		return ERR_PTR(-EINVAL);
4576	}
4577
4578	if (!mddev->new_chunk_sectors ||
4579	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4580	    !is_power_of_2(mddev->new_chunk_sectors)) {
4581		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4582		       mdname(mddev), mddev->new_chunk_sectors << 9);
4583		return ERR_PTR(-EINVAL);
4584	}
4585
4586	conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4587	if (conf == NULL)
4588		goto abort;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4589	spin_lock_init(&conf->device_lock);
 
 
 
4590	init_waitqueue_head(&conf->wait_for_stripe);
4591	init_waitqueue_head(&conf->wait_for_overlap);
4592	INIT_LIST_HEAD(&conf->handle_list);
 
4593	INIT_LIST_HEAD(&conf->hold_list);
4594	INIT_LIST_HEAD(&conf->delayed_list);
4595	INIT_LIST_HEAD(&conf->bitmap_list);
4596	INIT_LIST_HEAD(&conf->inactive_list);
4597	atomic_set(&conf->active_stripes, 0);
4598	atomic_set(&conf->preread_active_stripes, 0);
4599	atomic_set(&conf->active_aligned_reads, 0);
 
 
 
 
 
 
 
 
 
 
 
4600	conf->bypass_threshold = BYPASS_THRESHOLD;
 
4601
4602	conf->raid_disks = mddev->raid_disks;
4603	if (mddev->reshape_position == MaxSector)
4604		conf->previous_raid_disks = mddev->raid_disks;
4605	else
4606		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4607	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4608	conf->scribble_len = scribble_len(max_disks);
4609
4610	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4611			      GFP_KERNEL);
 
4612	if (!conf->disks)
4613		goto abort;
4614
 
 
 
 
 
 
 
 
 
4615	conf->mddev = mddev;
4616
4617	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4618		goto abort;
4619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4620	conf->level = mddev->new_level;
 
4621	if (raid5_alloc_percpu(conf) != 0)
4622		goto abort;
4623
4624	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4625
4626	list_for_each_entry(rdev, &mddev->disks, same_set) {
4627		raid_disk = rdev->raid_disk;
4628		if (raid_disk >= max_disks
4629		    || raid_disk < 0)
4630			continue;
4631		disk = conf->disks + raid_disk;
4632
4633		disk->rdev = rdev;
 
 
 
 
 
 
 
 
4634
4635		if (test_bit(In_sync, &rdev->flags)) {
4636			char b[BDEVNAME_SIZE];
4637			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4638			       " disk %d\n",
4639			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4640		} else if (rdev->saved_raid_disk != raid_disk)
4641			/* Cannot rely on bitmap to complete recovery */
4642			conf->fullsync = 1;
4643	}
4644
4645	conf->chunk_sectors = mddev->new_chunk_sectors;
4646	conf->level = mddev->new_level;
4647	if (conf->level == 6)
4648		conf->max_degraded = 2;
4649	else
 
 
 
 
4650		conf->max_degraded = 1;
 
 
4651	conf->algorithm = mddev->new_layout;
4652	conf->max_nr_stripes = NR_STRIPES;
4653	conf->reshape_progress = mddev->reshape_position;
4654	if (conf->reshape_progress != MaxSector) {
4655		conf->prev_chunk_sectors = mddev->chunk_sectors;
4656		conf->prev_algo = mddev->layout;
 
 
 
4657	}
4658
4659	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
 
 
 
 
 
 
 
 
 
 
4660		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4661	if (grow_stripes(conf, conf->max_nr_stripes)) {
4662		printk(KERN_ERR
4663		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
4664		       mdname(mddev), memory);
4665		goto abort;
4666	} else
4667		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4668		       mdname(mddev), memory);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4669
4670	conf->thread = md_register_thread(raid5d, mddev, NULL);
 
4671	if (!conf->thread) {
4672		printk(KERN_ERR
4673		       "md/raid:%s: couldn't allocate thread.\n",
4674		       mdname(mddev));
4675		goto abort;
4676	}
4677
4678	return conf;
4679
4680 abort:
4681	if (conf) {
4682		free_conf(conf);
4683		return ERR_PTR(-EIO);
4684	} else
4685		return ERR_PTR(-ENOMEM);
4686}
4687
4688
4689static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4690{
4691	switch (algo) {
4692	case ALGORITHM_PARITY_0:
4693		if (raid_disk < max_degraded)
4694			return 1;
4695		break;
4696	case ALGORITHM_PARITY_N:
4697		if (raid_disk >= raid_disks - max_degraded)
4698			return 1;
4699		break;
4700	case ALGORITHM_PARITY_0_6:
4701		if (raid_disk == 0 || 
4702		    raid_disk == raid_disks - 1)
4703			return 1;
4704		break;
4705	case ALGORITHM_LEFT_ASYMMETRIC_6:
4706	case ALGORITHM_RIGHT_ASYMMETRIC_6:
4707	case ALGORITHM_LEFT_SYMMETRIC_6:
4708	case ALGORITHM_RIGHT_SYMMETRIC_6:
4709		if (raid_disk == raid_disks - 1)
4710			return 1;
4711	}
4712	return 0;
4713}
4714
4715static int run(mddev_t *mddev)
4716{
4717	raid5_conf_t *conf;
4718	int working_disks = 0;
4719	int dirty_parity_disks = 0;
4720	mdk_rdev_t *rdev;
 
4721	sector_t reshape_offset = 0;
 
 
 
 
 
 
4722
4723	if (mddev->recovery_cp != MaxSector)
4724		printk(KERN_NOTICE "md/raid:%s: not clean"
4725		       " -- starting background reconstruction\n",
4726		       mdname(mddev));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4727	if (mddev->reshape_position != MaxSector) {
4728		/* Check that we can continue the reshape.
4729		 * Currently only disks can change, it must
4730		 * increase, and we must be past the point where
4731		 * a stripe over-writes itself
 
 
 
 
 
 
 
4732		 */
4733		sector_t here_new, here_old;
4734		int old_disks;
4735		int max_degraded = (mddev->level == 6 ? 2 : 1);
 
 
 
 
 
 
 
 
4736
4737		if (mddev->new_level != mddev->level) {
4738			printk(KERN_ERR "md/raid:%s: unsupported reshape "
4739			       "required - aborting.\n",
4740			       mdname(mddev));
4741			return -EINVAL;
4742		}
4743		old_disks = mddev->raid_disks - mddev->delta_disks;
4744		/* reshape_position must be on a new-stripe boundary, and one
4745		 * further up in new geometry must map after here in old
4746		 * geometry.
 
 
 
4747		 */
4748		here_new = mddev->reshape_position;
4749		if (sector_div(here_new, mddev->new_chunk_sectors *
4750			       (mddev->raid_disks - max_degraded))) {
4751			printk(KERN_ERR "md/raid:%s: reshape_position not "
4752			       "on a stripe boundary\n", mdname(mddev));
 
4753			return -EINVAL;
4754		}
4755		reshape_offset = here_new * mddev->new_chunk_sectors;
4756		/* here_new is the stripe we will write to */
4757		here_old = mddev->reshape_position;
4758		sector_div(here_old, mddev->chunk_sectors *
4759			   (old_disks-max_degraded));
4760		/* here_old is the first stripe that we might need to read
4761		 * from */
4762		if (mddev->delta_disks == 0) {
4763			/* We cannot be sure it is safe to start an in-place
4764			 * reshape.  It is only safe if user-space if monitoring
4765			 * and taking constant backups.
4766			 * mdadm always starts a situation like this in
4767			 * readonly mode so it can take control before
4768			 * allowing any writes.  So just check for that.
4769			 */
4770			if ((here_new * mddev->new_chunk_sectors != 
4771			     here_old * mddev->chunk_sectors) ||
4772			    mddev->ro == 0) {
4773				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4774				       " in read-only mode - aborting\n",
4775				       mdname(mddev));
4776				return -EINVAL;
4777			}
4778		} else if (mddev->delta_disks < 0
4779		    ? (here_new * mddev->new_chunk_sectors <=
4780		       here_old * mddev->chunk_sectors)
4781		    : (here_new * mddev->new_chunk_sectors >=
4782		       here_old * mddev->chunk_sectors)) {
4783			/* Reading from the same stripe as writing to - bad */
4784			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4785			       "auto-recovery - aborting.\n",
4786			       mdname(mddev));
4787			return -EINVAL;
4788		}
4789		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4790		       mdname(mddev));
4791		/* OK, we should be able to continue; */
4792	} else {
4793		BUG_ON(mddev->level != mddev->new_level);
4794		BUG_ON(mddev->layout != mddev->new_layout);
4795		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4796		BUG_ON(mddev->delta_disks != 0);
4797	}
4798
 
 
 
 
 
 
 
 
4799	if (mddev->private == NULL)
4800		conf = setup_conf(mddev);
4801	else
4802		conf = mddev->private;
4803
4804	if (IS_ERR(conf))
4805		return PTR_ERR(conf);
4806
 
 
 
 
 
 
 
 
 
 
 
4807	mddev->thread = conf->thread;
4808	conf->thread = NULL;
4809	mddev->private = conf;
4810
4811	/*
4812	 * 0 for a fully functional array, 1 or 2 for a degraded array.
4813	 */
4814	list_for_each_entry(rdev, &mddev->disks, same_set) {
4815		if (rdev->raid_disk < 0)
 
 
 
 
 
 
4816			continue;
 
 
 
 
 
 
4817		if (test_bit(In_sync, &rdev->flags)) {
4818			working_disks++;
4819			continue;
4820		}
4821		/* This disc is not fully in-sync.  However if it
4822		 * just stored parity (beyond the recovery_offset),
4823		 * when we don't need to be concerned about the
4824		 * array being dirty.
4825		 * When reshape goes 'backwards', we never have
4826		 * partially completed devices, so we only need
4827		 * to worry about reshape going forwards.
4828		 */
4829		/* Hack because v0.91 doesn't store recovery_offset properly. */
4830		if (mddev->major_version == 0 &&
4831		    mddev->minor_version > 90)
4832			rdev->recovery_offset = reshape_offset;
4833			
4834		if (rdev->recovery_offset < reshape_offset) {
4835			/* We need to check old and new layout */
4836			if (!only_parity(rdev->raid_disk,
4837					 conf->algorithm,
4838					 conf->raid_disks,
4839					 conf->max_degraded))
4840				continue;
4841		}
4842		if (!only_parity(rdev->raid_disk,
4843				 conf->prev_algo,
4844				 conf->previous_raid_disks,
4845				 conf->max_degraded))
4846			continue;
4847		dirty_parity_disks++;
4848	}
4849
4850	mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4851			   - working_disks);
 
 
4852
4853	if (has_failed(conf)) {
4854		printk(KERN_ERR "md/raid:%s: not enough operational devices"
4855			" (%d/%d failed)\n",
4856			mdname(mddev), mddev->degraded, conf->raid_disks);
4857		goto abort;
4858	}
4859
4860	/* device size must be a multiple of chunk size */
4861	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4862	mddev->resync_max_sectors = mddev->dev_sectors;
4863
4864	if (mddev->degraded > dirty_parity_disks &&
4865	    mddev->recovery_cp != MaxSector) {
4866		if (mddev->ok_start_degraded)
4867			printk(KERN_WARNING
4868			       "md/raid:%s: starting dirty degraded array"
4869			       " - data corruption possible.\n",
4870			       mdname(mddev));
 
4871		else {
4872			printk(KERN_ERR
4873			       "md/raid:%s: cannot start dirty degraded array.\n",
4874			       mdname(mddev));
4875			goto abort;
4876		}
4877	}
4878
4879	if (mddev->degraded == 0)
4880		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4881		       " devices, algorithm %d\n", mdname(mddev), conf->level,
4882		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4883		       mddev->new_layout);
4884	else
4885		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4886		       " out of %d devices, algorithm %d\n",
4887		       mdname(mddev), conf->level,
4888		       mddev->raid_disks - mddev->degraded,
4889		       mddev->raid_disks, mddev->new_layout);
4890
4891	print_raid5_conf(conf);
4892
4893	if (conf->reshape_progress != MaxSector) {
4894		conf->reshape_safe = conf->reshape_progress;
4895		atomic_set(&conf->reshape_stripes, 0);
4896		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4897		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4898		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4899		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4900		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4901							"reshape");
4902	}
4903
4904
4905	/* Ok, everything is just fine now */
4906	if (mddev->to_remove == &raid5_attrs_group)
4907		mddev->to_remove = NULL;
4908	else if (mddev->kobj.sd &&
4909	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4910		printk(KERN_WARNING
4911		       "raid5: failed to create sysfs attributes for %s\n",
4912		       mdname(mddev));
4913	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4914
4915	if (mddev->queue) {
4916		int chunk_size;
4917		/* read-ahead size must cover two whole stripes, which
4918		 * is 2 * (datadisks) * chunksize where 'n' is the
4919		 * number of raid devices
4920		 */
4921		int data_disks = conf->previous_raid_disks - conf->max_degraded;
4922		int stripe = data_disks *
4923			((mddev->chunk_sectors << 9) / PAGE_SIZE);
4924		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4925			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4926
4927		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4928
4929		mddev->queue->backing_dev_info.congested_data = mddev;
4930		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4931
4932		chunk_size = mddev->chunk_sectors << 9;
4933		blk_queue_io_min(mddev->queue, chunk_size);
4934		blk_queue_io_opt(mddev->queue, chunk_size *
4935				 (conf->raid_disks - conf->max_degraded));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4936
4937		list_for_each_entry(rdev, &mddev->disks, same_set)
4938			disk_stack_limits(mddev->gendisk, rdev->bdev,
4939					  rdev->data_offset << 9);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4940	}
4941
 
 
 
4942	return 0;
4943abort:
4944	md_unregister_thread(&mddev->thread);
4945	if (conf) {
4946		print_raid5_conf(conf);
4947		free_conf(conf);
4948	}
4949	mddev->private = NULL;
4950	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
4951	return -EIO;
4952}
4953
4954static int stop(mddev_t *mddev)
4955{
4956	raid5_conf_t *conf = mddev->private;
4957
4958	md_unregister_thread(&mddev->thread);
4959	if (mddev->queue)
4960		mddev->queue->backing_dev_info.congested_fn = NULL;
4961	free_conf(conf);
4962	mddev->private = NULL;
4963	mddev->to_remove = &raid5_attrs_group;
4964	return 0;
4965}
4966
4967#ifdef DEBUG
4968static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4969{
4970	int i;
4971
4972	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4973		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4974	seq_printf(seq, "sh %llu,  count %d.\n",
4975		   (unsigned long long)sh->sector, atomic_read(&sh->count));
4976	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4977	for (i = 0; i < sh->disks; i++) {
4978		seq_printf(seq, "(cache%d: %p %ld) ",
4979			   i, sh->dev[i].page, sh->dev[i].flags);
4980	}
4981	seq_printf(seq, "\n");
4982}
4983
4984static void printall(struct seq_file *seq, raid5_conf_t *conf)
4985{
4986	struct stripe_head *sh;
4987	struct hlist_node *hn;
4988	int i;
4989
4990	spin_lock_irq(&conf->device_lock);
4991	for (i = 0; i < NR_HASH; i++) {
4992		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4993			if (sh->raid_conf != conf)
4994				continue;
4995			print_sh(seq, sh);
4996		}
4997	}
4998	spin_unlock_irq(&conf->device_lock);
4999}
5000#endif
5001
5002static void status(struct seq_file *seq, mddev_t *mddev)
5003{
5004	raid5_conf_t *conf = mddev->private;
5005	int i;
5006
5007	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5008		mddev->chunk_sectors / 2, mddev->layout);
5009	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5010	for (i = 0; i < conf->raid_disks; i++)
5011		seq_printf (seq, "%s",
5012			       conf->disks[i].rdev &&
5013			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
 
 
5014	seq_printf (seq, "]");
5015#ifdef DEBUG
5016	seq_printf (seq, "\n");
5017	printall(seq, conf);
5018#endif
5019}
5020
5021static void print_raid5_conf (raid5_conf_t *conf)
5022{
5023	int i;
5024	struct disk_info *tmp;
5025
5026	printk(KERN_DEBUG "RAID conf printout:\n");
5027	if (!conf) {
5028		printk("(conf==NULL)\n");
5029		return;
5030	}
5031	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5032	       conf->raid_disks,
5033	       conf->raid_disks - conf->mddev->degraded);
5034
5035	for (i = 0; i < conf->raid_disks; i++) {
5036		char b[BDEVNAME_SIZE];
5037		tmp = conf->disks + i;
5038		if (tmp->rdev)
5039			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5040			       i, !test_bit(Faulty, &tmp->rdev->flags),
5041			       bdevname(tmp->rdev->bdev, b));
5042	}
5043}
5044
5045static int raid5_spare_active(mddev_t *mddev)
5046{
5047	int i;
5048	raid5_conf_t *conf = mddev->private;
5049	struct disk_info *tmp;
5050	int count = 0;
5051	unsigned long flags;
5052
5053	for (i = 0; i < conf->raid_disks; i++) {
5054		tmp = conf->disks + i;
5055		if (tmp->rdev
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5056		    && tmp->rdev->recovery_offset == MaxSector
5057		    && !test_bit(Faulty, &tmp->rdev->flags)
5058		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5059			count++;
5060			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5061		}
5062	}
5063	spin_lock_irqsave(&conf->device_lock, flags);
5064	mddev->degraded -= count;
5065	spin_unlock_irqrestore(&conf->device_lock, flags);
5066	print_raid5_conf(conf);
5067	return count;
5068}
5069
5070static int raid5_remove_disk(mddev_t *mddev, int number)
5071{
5072	raid5_conf_t *conf = mddev->private;
5073	int err = 0;
5074	mdk_rdev_t *rdev;
 
5075	struct disk_info *p = conf->disks + number;
5076
5077	print_raid5_conf(conf);
5078	rdev = p->rdev;
5079	if (rdev) {
5080		if (number >= conf->raid_disks &&
5081		    conf->reshape_progress == MaxSector)
5082			clear_bit(In_sync, &rdev->flags);
5083
5084		if (test_bit(In_sync, &rdev->flags) ||
5085		    atomic_read(&rdev->nr_pending)) {
5086			err = -EBUSY;
5087			goto abort;
5088		}
5089		/* Only remove non-faulty devices if recovery
5090		 * isn't possible.
5091		 */
5092		if (!test_bit(Faulty, &rdev->flags) &&
5093		    mddev->recovery_disabled != conf->recovery_disabled &&
5094		    !has_failed(conf) &&
5095		    number < conf->raid_disks) {
5096			err = -EBUSY;
5097			goto abort;
5098		}
5099		p->rdev = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5100		synchronize_rcu();
5101		if (atomic_read(&rdev->nr_pending)) {
5102			/* lost the race, try later */
5103			err = -EBUSY;
5104			p->rdev = rdev;
5105		}
5106	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5107abort:
5108
5109	print_raid5_conf(conf);
5110	return err;
5111}
5112
5113static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5114{
5115	raid5_conf_t *conf = mddev->private;
5116	int err = -EEXIST;
5117	int disk;
5118	struct disk_info *p;
5119	int first = 0;
5120	int last = conf->raid_disks - 1;
5121
 
 
 
 
 
 
 
 
 
 
 
 
5122	if (mddev->recovery_disabled == conf->recovery_disabled)
5123		return -EBUSY;
5124
5125	if (has_failed(conf))
5126		/* no point adding a device */
5127		return -EINVAL;
5128
5129	if (rdev->raid_disk >= 0)
5130		first = last = rdev->raid_disk;
5131
5132	/*
5133	 * find the disk ... but prefer rdev->saved_raid_disk
5134	 * if possible.
5135	 */
5136	if (rdev->saved_raid_disk >= 0 &&
5137	    rdev->saved_raid_disk >= first &&
5138	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
5139		disk = rdev->saved_raid_disk;
5140	else
5141		disk = first;
5142	for ( ; disk <= last ; disk++)
5143		if ((p=conf->disks + disk)->rdev == NULL) {
5144			clear_bit(In_sync, &rdev->flags);
5145			rdev->raid_disk = disk;
5146			err = 0;
5147			if (rdev->saved_raid_disk != disk)
5148				conf->fullsync = 1;
5149			rcu_assign_pointer(p->rdev, rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5150			break;
5151		}
 
 
5152	print_raid5_conf(conf);
5153	return err;
5154}
5155
5156static int raid5_resize(mddev_t *mddev, sector_t sectors)
5157{
5158	/* no resync is happening, and there is enough space
5159	 * on all devices, so we can resize.
5160	 * We need to make sure resync covers any new space.
5161	 * If the array is shrinking we should possibly wait until
5162	 * any io in the removed space completes, but it hardly seems
5163	 * worth it.
5164	 */
5165	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5166	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5167					       mddev->raid_disks));
5168	if (mddev->array_sectors >
5169	    raid5_size(mddev, sectors, mddev->raid_disks))
 
 
 
 
5170		return -EINVAL;
5171	set_capacity(mddev->gendisk, mddev->array_sectors);
5172	revalidate_disk(mddev->gendisk);
 
 
 
 
5173	if (sectors > mddev->dev_sectors &&
5174	    mddev->recovery_cp > mddev->dev_sectors) {
5175		mddev->recovery_cp = mddev->dev_sectors;
5176		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5177	}
5178	mddev->dev_sectors = sectors;
5179	mddev->resync_max_sectors = sectors;
5180	return 0;
5181}
5182
5183static int check_stripe_cache(mddev_t *mddev)
5184{
5185	/* Can only proceed if there are plenty of stripe_heads.
5186	 * We need a minimum of one full stripe,, and for sensible progress
5187	 * it is best to have about 4 times that.
5188	 * If we require 4 times, then the default 256 4K stripe_heads will
5189	 * allow for chunk sizes up to 256K, which is probably OK.
5190	 * If the chunk size is greater, user-space should request more
5191	 * stripe_heads first.
5192	 */
5193	raid5_conf_t *conf = mddev->private;
5194	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5195	    > conf->max_nr_stripes ||
5196	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5197	    > conf->max_nr_stripes) {
5198		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5199		       mdname(mddev),
5200		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5201			/ STRIPE_SIZE)*4);
5202		return 0;
5203	}
5204	return 1;
5205}
5206
5207static int check_reshape(mddev_t *mddev)
5208{
5209	raid5_conf_t *conf = mddev->private;
5210
 
 
5211	if (mddev->delta_disks == 0 &&
5212	    mddev->new_layout == mddev->layout &&
5213	    mddev->new_chunk_sectors == mddev->chunk_sectors)
5214		return 0; /* nothing to do */
5215	if (mddev->bitmap)
5216		/* Cannot grow a bitmap yet */
5217		return -EBUSY;
5218	if (has_failed(conf))
5219		return -EINVAL;
5220	if (mddev->delta_disks < 0) {
5221		/* We might be able to shrink, but the devices must
5222		 * be made bigger first.
5223		 * For raid6, 4 is the minimum size.
5224		 * Otherwise 2 is the minimum
5225		 */
5226		int min = 2;
5227		if (mddev->level == 6)
5228			min = 4;
5229		if (mddev->raid_disks + mddev->delta_disks < min)
5230			return -EINVAL;
5231	}
5232
5233	if (!check_stripe_cache(mddev))
5234		return -ENOSPC;
5235
5236	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
 
 
 
 
 
 
 
 
 
 
 
 
 
5237}
5238
5239static int raid5_start_reshape(mddev_t *mddev)
5240{
5241	raid5_conf_t *conf = mddev->private;
5242	mdk_rdev_t *rdev;
5243	int spares = 0;
5244	unsigned long flags;
5245
5246	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5247		return -EBUSY;
5248
5249	if (!check_stripe_cache(mddev))
5250		return -ENOSPC;
5251
5252	list_for_each_entry(rdev, &mddev->disks, same_set)
 
 
 
5253		if (!test_bit(In_sync, &rdev->flags)
5254		    && !test_bit(Faulty, &rdev->flags))
5255			spares++;
 
5256
5257	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5258		/* Not enough devices even to make a degraded array
5259		 * of that size
5260		 */
5261		return -EINVAL;
5262
5263	/* Refuse to reduce size of the array.  Any reductions in
5264	 * array size must be through explicit setting of array_size
5265	 * attribute.
5266	 */
5267	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5268	    < mddev->array_sectors) {
5269		printk(KERN_ERR "md/raid:%s: array size must be reduced "
5270		       "before number of disks\n", mdname(mddev));
5271		return -EINVAL;
5272	}
5273
5274	atomic_set(&conf->reshape_stripes, 0);
5275	spin_lock_irq(&conf->device_lock);
 
5276	conf->previous_raid_disks = conf->raid_disks;
5277	conf->raid_disks += mddev->delta_disks;
5278	conf->prev_chunk_sectors = conf->chunk_sectors;
5279	conf->chunk_sectors = mddev->new_chunk_sectors;
5280	conf->prev_algo = conf->algorithm;
5281	conf->algorithm = mddev->new_layout;
5282	if (mddev->delta_disks < 0)
 
 
 
 
 
5283		conf->reshape_progress = raid5_size(mddev, 0, 0);
5284	else
5285		conf->reshape_progress = 0;
5286	conf->reshape_safe = conf->reshape_progress;
5287	conf->generation++;
5288	spin_unlock_irq(&conf->device_lock);
5289
 
 
 
 
 
 
 
5290	/* Add some new drives, as many as will fit.
5291	 * We know there are enough to make the newly sized array work.
5292	 * Don't add devices if we are reducing the number of
5293	 * devices in the array.  This is because it is not possible
5294	 * to correctly record the "partially reconstructed" state of
5295	 * such devices during the reshape and confusion could result.
5296	 */
5297	if (mddev->delta_disks >= 0) {
5298		int added_devices = 0;
5299		list_for_each_entry(rdev, &mddev->disks, same_set)
5300			if (rdev->raid_disk < 0 &&
5301			    !test_bit(Faulty, &rdev->flags)) {
5302				if (raid5_add_disk(mddev, rdev) == 0) {
5303					if (rdev->raid_disk
5304					    >= conf->previous_raid_disks) {
5305						set_bit(In_sync, &rdev->flags);
5306						added_devices++;
5307					} else
5308						rdev->recovery_offset = 0;
5309
5310					if (sysfs_link_rdev(mddev, rdev))
5311						/* Failure here is OK */;
5312				}
5313			} else if (rdev->raid_disk >= conf->previous_raid_disks
5314				   && !test_bit(Faulty, &rdev->flags)) {
5315				/* This is a spare that was manually added */
5316				set_bit(In_sync, &rdev->flags);
5317				added_devices++;
5318			}
5319
5320		/* When a reshape changes the number of devices,
5321		 * ->degraded is measured against the larger of the
5322		 * pre and post number of devices.
5323		 */
5324		spin_lock_irqsave(&conf->device_lock, flags);
5325		mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5326			- added_devices;
5327		spin_unlock_irqrestore(&conf->device_lock, flags);
5328	}
5329	mddev->raid_disks = conf->raid_disks;
5330	mddev->reshape_position = conf->reshape_progress;
5331	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5332
5333	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5334	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
 
5335	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5336	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5337	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5338						"reshape");
5339	if (!mddev->sync_thread) {
5340		mddev->recovery = 0;
5341		spin_lock_irq(&conf->device_lock);
 
5342		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
 
 
 
 
 
 
 
5343		conf->reshape_progress = MaxSector;
 
 
5344		spin_unlock_irq(&conf->device_lock);
5345		return -EAGAIN;
5346	}
5347	conf->reshape_checkpoint = jiffies;
5348	md_wakeup_thread(mddev->sync_thread);
5349	md_new_event(mddev);
5350	return 0;
5351}
5352
5353/* This is called from the reshape thread and should make any
5354 * changes needed in 'conf'
5355 */
5356static void end_reshape(raid5_conf_t *conf)
5357{
5358
5359	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
 
5360
5361		spin_lock_irq(&conf->device_lock);
5362		conf->previous_raid_disks = conf->raid_disks;
 
 
5363		conf->reshape_progress = MaxSector;
 
 
 
 
 
 
5364		spin_unlock_irq(&conf->device_lock);
5365		wake_up(&conf->wait_for_overlap);
5366
5367		/* read-ahead size must cover two whole stripes, which is
5368		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5369		 */
5370		if (conf->mddev->queue) {
5371			int data_disks = conf->raid_disks - conf->max_degraded;
5372			int stripe = data_disks * ((conf->chunk_sectors << 9)
5373						   / PAGE_SIZE);
5374			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5375				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5376		}
5377	}
5378}
5379
5380/* This is called from the raid5d thread with mddev_lock held.
5381 * It makes config changes to the device.
5382 */
5383static void raid5_finish_reshape(mddev_t *mddev)
5384{
5385	raid5_conf_t *conf = mddev->private;
5386
5387	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5388
5389		if (mddev->delta_disks > 0) {
5390			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5391			set_capacity(mddev->gendisk, mddev->array_sectors);
5392			revalidate_disk(mddev->gendisk);
5393		} else {
5394			int d;
5395			mddev->degraded = conf->raid_disks;
5396			for (d = 0; d < conf->raid_disks ; d++)
5397				if (conf->disks[d].rdev &&
5398				    test_bit(In_sync,
5399					     &conf->disks[d].rdev->flags))
5400					mddev->degraded--;
5401			for (d = conf->raid_disks ;
5402			     d < conf->raid_disks - mddev->delta_disks;
5403			     d++) {
5404				mdk_rdev_t *rdev = conf->disks[d].rdev;
5405				if (rdev && raid5_remove_disk(mddev, d) == 0) {
5406					sysfs_unlink_rdev(mddev, rdev);
5407					rdev->raid_disk = -1;
5408				}
 
5409			}
5410		}
5411		mddev->layout = conf->algorithm;
5412		mddev->chunk_sectors = conf->chunk_sectors;
5413		mddev->reshape_position = MaxSector;
5414		mddev->delta_disks = 0;
 
5415	}
5416}
5417
5418static void raid5_quiesce(mddev_t *mddev, int state)
5419{
5420	raid5_conf_t *conf = mddev->private;
5421
5422	switch(state) {
5423	case 2: /* resume for a suspend */
5424		wake_up(&conf->wait_for_overlap);
5425		break;
5426
5427	case 1: /* stop all writes */
5428		spin_lock_irq(&conf->device_lock);
5429		/* '2' tells resync/reshape to pause so that all
5430		 * active stripes can drain
5431		 */
 
5432		conf->quiesce = 2;
5433		wait_event_lock_irq(conf->wait_for_stripe,
5434				    atomic_read(&conf->active_stripes) == 0 &&
5435				    atomic_read(&conf->active_aligned_reads) == 0,
5436				    conf->device_lock, /* nothing */);
 
5437		conf->quiesce = 1;
5438		spin_unlock_irq(&conf->device_lock);
5439		/* allow reshape to continue */
5440		wake_up(&conf->wait_for_overlap);
5441		break;
5442
5443	case 0: /* re-enable writes */
5444		spin_lock_irq(&conf->device_lock);
5445		conf->quiesce = 0;
5446		wake_up(&conf->wait_for_stripe);
5447		wake_up(&conf->wait_for_overlap);
5448		spin_unlock_irq(&conf->device_lock);
5449		break;
5450	}
 
5451}
5452
5453
5454static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5455{
5456	struct raid0_private_data *raid0_priv = mddev->private;
5457	sector_t sectors;
5458
5459	/* for raid0 takeover only one zone is supported */
5460	if (raid0_priv->nr_strip_zones > 1) {
5461		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5462		       mdname(mddev));
5463		return ERR_PTR(-EINVAL);
5464	}
5465
5466	sectors = raid0_priv->strip_zone[0].zone_end;
5467	sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5468	mddev->dev_sectors = sectors;
5469	mddev->new_level = level;
5470	mddev->new_layout = ALGORITHM_PARITY_N;
5471	mddev->new_chunk_sectors = mddev->chunk_sectors;
5472	mddev->raid_disks += 1;
5473	mddev->delta_disks = 1;
5474	/* make sure it will be not marked as dirty */
5475	mddev->recovery_cp = MaxSector;
5476
5477	return setup_conf(mddev);
5478}
5479
5480
5481static void *raid5_takeover_raid1(mddev_t *mddev)
5482{
5483	int chunksect;
 
5484
5485	if (mddev->raid_disks != 2 ||
5486	    mddev->degraded > 1)
5487		return ERR_PTR(-EINVAL);
5488
5489	/* Should check if there are write-behind devices? */
5490
5491	chunksect = 64*2; /* 64K by default */
5492
5493	/* The array must be an exact multiple of chunksize */
5494	while (chunksect && (mddev->array_sectors & (chunksect-1)))
5495		chunksect >>= 1;
5496
5497	if ((chunksect<<9) < STRIPE_SIZE)
5498		/* array size does not allow a suitable chunk size */
5499		return ERR_PTR(-EINVAL);
5500
5501	mddev->new_level = 5;
5502	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5503	mddev->new_chunk_sectors = chunksect;
5504
5505	return setup_conf(mddev);
 
 
 
 
5506}
5507
5508static void *raid5_takeover_raid6(mddev_t *mddev)
5509{
5510	int new_layout;
5511
5512	switch (mddev->layout) {
5513	case ALGORITHM_LEFT_ASYMMETRIC_6:
5514		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5515		break;
5516	case ALGORITHM_RIGHT_ASYMMETRIC_6:
5517		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5518		break;
5519	case ALGORITHM_LEFT_SYMMETRIC_6:
5520		new_layout = ALGORITHM_LEFT_SYMMETRIC;
5521		break;
5522	case ALGORITHM_RIGHT_SYMMETRIC_6:
5523		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5524		break;
5525	case ALGORITHM_PARITY_0_6:
5526		new_layout = ALGORITHM_PARITY_0;
5527		break;
5528	case ALGORITHM_PARITY_N:
5529		new_layout = ALGORITHM_PARITY_N;
5530		break;
5531	default:
5532		return ERR_PTR(-EINVAL);
5533	}
5534	mddev->new_level = 5;
5535	mddev->new_layout = new_layout;
5536	mddev->delta_disks = -1;
5537	mddev->raid_disks -= 1;
5538	return setup_conf(mddev);
5539}
5540
5541
5542static int raid5_check_reshape(mddev_t *mddev)
5543{
5544	/* For a 2-drive array, the layout and chunk size can be changed
5545	 * immediately as not restriping is needed.
5546	 * For larger arrays we record the new value - after validation
5547	 * to be used by a reshape pass.
5548	 */
5549	raid5_conf_t *conf = mddev->private;
5550	int new_chunk = mddev->new_chunk_sectors;
5551
5552	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5553		return -EINVAL;
5554	if (new_chunk > 0) {
5555		if (!is_power_of_2(new_chunk))
5556			return -EINVAL;
5557		if (new_chunk < (PAGE_SIZE>>9))
5558			return -EINVAL;
5559		if (mddev->array_sectors & (new_chunk-1))
5560			/* not factor of array size */
5561			return -EINVAL;
5562	}
5563
5564	/* They look valid */
5565
5566	if (mddev->raid_disks == 2) {
5567		/* can make the change immediately */
5568		if (mddev->new_layout >= 0) {
5569			conf->algorithm = mddev->new_layout;
5570			mddev->layout = mddev->new_layout;
5571		}
5572		if (new_chunk > 0) {
5573			conf->chunk_sectors = new_chunk ;
5574			mddev->chunk_sectors = new_chunk;
5575		}
5576		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5577		md_wakeup_thread(mddev->thread);
5578	}
5579	return check_reshape(mddev);
5580}
5581
5582static int raid6_check_reshape(mddev_t *mddev)
5583{
5584	int new_chunk = mddev->new_chunk_sectors;
5585
5586	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5587		return -EINVAL;
5588	if (new_chunk > 0) {
5589		if (!is_power_of_2(new_chunk))
5590			return -EINVAL;
5591		if (new_chunk < (PAGE_SIZE >> 9))
5592			return -EINVAL;
5593		if (mddev->array_sectors & (new_chunk-1))
5594			/* not factor of array size */
5595			return -EINVAL;
5596	}
5597
5598	/* They look valid */
5599	return check_reshape(mddev);
5600}
5601
5602static void *raid5_takeover(mddev_t *mddev)
5603{
5604	/* raid5 can take over:
5605	 *  raid0 - if there is only one strip zone - make it a raid4 layout
5606	 *  raid1 - if there are two drives.  We need to know the chunk size
5607	 *  raid4 - trivial - just use a raid4 layout.
5608	 *  raid6 - Providing it is a *_6 layout
5609	 */
5610	if (mddev->level == 0)
5611		return raid45_takeover_raid0(mddev, 5);
5612	if (mddev->level == 1)
5613		return raid5_takeover_raid1(mddev);
5614	if (mddev->level == 4) {
5615		mddev->new_layout = ALGORITHM_PARITY_N;
5616		mddev->new_level = 5;
5617		return setup_conf(mddev);
5618	}
5619	if (mddev->level == 6)
5620		return raid5_takeover_raid6(mddev);
5621
5622	return ERR_PTR(-EINVAL);
5623}
5624
5625static void *raid4_takeover(mddev_t *mddev)
5626{
5627	/* raid4 can take over:
5628	 *  raid0 - if there is only one strip zone
5629	 *  raid5 - if layout is right
5630	 */
5631	if (mddev->level == 0)
5632		return raid45_takeover_raid0(mddev, 4);
5633	if (mddev->level == 5 &&
5634	    mddev->layout == ALGORITHM_PARITY_N) {
5635		mddev->new_layout = 0;
5636		mddev->new_level = 4;
5637		return setup_conf(mddev);
5638	}
5639	return ERR_PTR(-EINVAL);
5640}
5641
5642static struct mdk_personality raid5_personality;
5643
5644static void *raid6_takeover(mddev_t *mddev)
5645{
5646	/* Currently can only take over a raid5.  We map the
5647	 * personality to an equivalent raid6 personality
5648	 * with the Q block at the end.
5649	 */
5650	int new_layout;
5651
5652	if (mddev->pers != &raid5_personality)
5653		return ERR_PTR(-EINVAL);
5654	if (mddev->degraded > 1)
5655		return ERR_PTR(-EINVAL);
5656	if (mddev->raid_disks > 253)
5657		return ERR_PTR(-EINVAL);
5658	if (mddev->raid_disks < 3)
5659		return ERR_PTR(-EINVAL);
5660
5661	switch (mddev->layout) {
5662	case ALGORITHM_LEFT_ASYMMETRIC:
5663		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5664		break;
5665	case ALGORITHM_RIGHT_ASYMMETRIC:
5666		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5667		break;
5668	case ALGORITHM_LEFT_SYMMETRIC:
5669		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5670		break;
5671	case ALGORITHM_RIGHT_SYMMETRIC:
5672		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5673		break;
5674	case ALGORITHM_PARITY_0:
5675		new_layout = ALGORITHM_PARITY_0_6;
5676		break;
5677	case ALGORITHM_PARITY_N:
5678		new_layout = ALGORITHM_PARITY_N;
5679		break;
5680	default:
5681		return ERR_PTR(-EINVAL);
5682	}
5683	mddev->new_level = 6;
5684	mddev->new_layout = new_layout;
5685	mddev->delta_disks = 1;
5686	mddev->raid_disks += 1;
5687	return setup_conf(mddev);
5688}
5689
 
 
 
 
 
 
 
 
 
 
 
 
 
5690
5691static struct mdk_personality raid6_personality =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5692{
5693	.name		= "raid6",
5694	.level		= 6,
5695	.owner		= THIS_MODULE,
5696	.make_request	= make_request,
5697	.run		= run,
5698	.stop		= stop,
5699	.status		= status,
5700	.error_handler	= error,
 
5701	.hot_add_disk	= raid5_add_disk,
5702	.hot_remove_disk= raid5_remove_disk,
5703	.spare_active	= raid5_spare_active,
5704	.sync_request	= sync_request,
5705	.resize		= raid5_resize,
5706	.size		= raid5_size,
5707	.check_reshape	= raid6_check_reshape,
5708	.start_reshape  = raid5_start_reshape,
5709	.finish_reshape = raid5_finish_reshape,
5710	.quiesce	= raid5_quiesce,
5711	.takeover	= raid6_takeover,
 
 
5712};
5713static struct mdk_personality raid5_personality =
5714{
5715	.name		= "raid5",
5716	.level		= 5,
5717	.owner		= THIS_MODULE,
5718	.make_request	= make_request,
5719	.run		= run,
5720	.stop		= stop,
5721	.status		= status,
5722	.error_handler	= error,
 
5723	.hot_add_disk	= raid5_add_disk,
5724	.hot_remove_disk= raid5_remove_disk,
5725	.spare_active	= raid5_spare_active,
5726	.sync_request	= sync_request,
5727	.resize		= raid5_resize,
5728	.size		= raid5_size,
5729	.check_reshape	= raid5_check_reshape,
5730	.start_reshape  = raid5_start_reshape,
5731	.finish_reshape = raid5_finish_reshape,
5732	.quiesce	= raid5_quiesce,
5733	.takeover	= raid5_takeover,
 
 
5734};
5735
5736static struct mdk_personality raid4_personality =
5737{
5738	.name		= "raid4",
5739	.level		= 4,
5740	.owner		= THIS_MODULE,
5741	.make_request	= make_request,
5742	.run		= run,
5743	.stop		= stop,
5744	.status		= status,
5745	.error_handler	= error,
 
5746	.hot_add_disk	= raid5_add_disk,
5747	.hot_remove_disk= raid5_remove_disk,
5748	.spare_active	= raid5_spare_active,
5749	.sync_request	= sync_request,
5750	.resize		= raid5_resize,
5751	.size		= raid5_size,
5752	.check_reshape	= raid5_check_reshape,
5753	.start_reshape  = raid5_start_reshape,
5754	.finish_reshape = raid5_finish_reshape,
5755	.quiesce	= raid5_quiesce,
5756	.takeover	= raid4_takeover,
 
 
5757};
5758
5759static int __init raid5_init(void)
5760{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5761	register_md_personality(&raid6_personality);
5762	register_md_personality(&raid5_personality);
5763	register_md_personality(&raid4_personality);
5764	return 0;
5765}
5766
5767static void raid5_exit(void)
5768{
5769	unregister_md_personality(&raid6_personality);
5770	unregister_md_personality(&raid5_personality);
5771	unregister_md_personality(&raid4_personality);
 
 
5772}
5773
5774module_init(raid5_init);
5775module_exit(raid5_exit);
5776MODULE_LICENSE("GPL");
5777MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5778MODULE_ALIAS("md-personality-4"); /* RAID5 */
5779MODULE_ALIAS("md-raid5");
5780MODULE_ALIAS("md-raid4");
5781MODULE_ALIAS("md-level-5");
5782MODULE_ALIAS("md-level-4");
5783MODULE_ALIAS("md-personality-8"); /* RAID6 */
5784MODULE_ALIAS("md-raid6");
5785MODULE_ALIAS("md-level-6");
5786
5787/* This used to be two separate modules, they were: */
5788MODULE_ALIAS("raid5");
5789MODULE_ALIAS("raid6");
v4.17
   1/*
   2 * raid5.c : Multiple Devices driver for Linux
   3 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   4 *	   Copyright (C) 1999, 2000 Ingo Molnar
   5 *	   Copyright (C) 2002, 2003 H. Peter Anvin
   6 *
   7 * RAID-4/5/6 management functions.
   8 * Thanks to Penguin Computing for making the RAID-6 development possible
   9 * by donating a test server!
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21/*
  22 * BITMAP UNPLUGGING:
  23 *
  24 * The sequencing for updating the bitmap reliably is a little
  25 * subtle (and I got it wrong the first time) so it deserves some
  26 * explanation.
  27 *
  28 * We group bitmap updates into batches.  Each batch has a number.
  29 * We may write out several batches at once, but that isn't very important.
  30 * conf->seq_write is the number of the last batch successfully written.
  31 * conf->seq_flush is the number of the last batch that was closed to
  32 *    new additions.
  33 * When we discover that we will need to write to any block in a stripe
  34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
  35 * the number of the batch it will be in. This is seq_flush+1.
  36 * When we are ready to do a write, if that batch hasn't been written yet,
  37 *   we plug the array and queue the stripe for later.
  38 * When an unplug happens, we increment bm_flush, thus closing the current
  39 *   batch.
  40 * When we notice that bm_flush > bm_write, we write out all pending updates
  41 * to the bitmap, and advance bm_write to where bm_flush was.
  42 * This may occasionally write a bit out twice, but is sure never to
  43 * miss any bits.
  44 */
  45
  46#include <linux/blkdev.h>
  47#include <linux/kthread.h>
  48#include <linux/raid/pq.h>
  49#include <linux/async_tx.h>
  50#include <linux/module.h>
  51#include <linux/async.h>
  52#include <linux/seq_file.h>
  53#include <linux/cpu.h>
  54#include <linux/slab.h>
  55#include <linux/ratelimit.h>
  56#include <linux/nodemask.h>
  57#include <linux/flex_array.h>
  58
  59#include <trace/events/block.h>
  60#include <linux/list_sort.h>
  61
  62#include "md.h"
  63#include "raid5.h"
  64#include "raid0.h"
  65#include "md-bitmap.h"
  66#include "raid5-log.h"
  67
  68#define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
 
 
  69
  70#define cpu_to_group(cpu) cpu_to_node(cpu)
  71#define ANY_GROUP NUMA_NO_NODE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  72
  73static bool devices_handle_discard_safely = false;
  74module_param(devices_handle_discard_safely, bool, 0644);
  75MODULE_PARM_DESC(devices_handle_discard_safely,
  76		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
  77static struct workqueue_struct *raid5_wq;
  78
  79static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
  80{
  81	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
  82	return &conf->stripe_hashtbl[hash];
  83}
  84
  85static inline int stripe_hash_locks_hash(sector_t sect)
  86{
  87	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
  88}
  89
  90static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
  91{
  92	spin_lock_irq(conf->hash_locks + hash);
  93	spin_lock(&conf->device_lock);
  94}
  95
  96static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
  97{
  98	spin_unlock(&conf->device_lock);
  99	spin_unlock_irq(conf->hash_locks + hash);
 100}
 101
 102static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
 103{
 104	int i;
 105	spin_lock_irq(conf->hash_locks);
 106	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
 107		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
 108	spin_lock(&conf->device_lock);
 109}
 110
 111static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
 112{
 113	int i;
 114	spin_unlock(&conf->device_lock);
 115	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
 116		spin_unlock(conf->hash_locks + i);
 117	spin_unlock_irq(conf->hash_locks);
 118}
 119
 120/* Find first data disk in a raid6 stripe */
 121static inline int raid6_d0(struct stripe_head *sh)
 122{
 123	if (sh->ddf_layout)
 124		/* ddf always start from first device */
 125		return 0;
 126	/* md starts just after Q block */
 127	if (sh->qd_idx == sh->disks - 1)
 128		return 0;
 129	else
 130		return sh->qd_idx + 1;
 131}
 132static inline int raid6_next_disk(int disk, int raid_disks)
 133{
 134	disk++;
 135	return (disk < raid_disks) ? disk : 0;
 136}
 137
 138/* When walking through the disks in a raid5, starting at raid6_d0,
 139 * We need to map each disk to a 'slot', where the data disks are slot
 140 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
 141 * is raid_disks-1.  This help does that mapping.
 142 */
 143static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
 144			     int *count, int syndrome_disks)
 145{
 146	int slot = *count;
 147
 148	if (sh->ddf_layout)
 149		(*count)++;
 150	if (idx == sh->pd_idx)
 151		return syndrome_disks;
 152	if (idx == sh->qd_idx)
 153		return syndrome_disks + 1;
 154	if (!sh->ddf_layout)
 155		(*count)++;
 156	return slot;
 157}
 158
 159static void print_raid5_conf (struct r5conf *conf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 160
 161static int stripe_operations_active(struct stripe_head *sh)
 162{
 163	return sh->check_state || sh->reconstruct_state ||
 164	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
 165	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
 166}
 167
 168static bool stripe_is_lowprio(struct stripe_head *sh)
 169{
 170	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
 171		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
 172	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
 173}
 174
 175static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
 176{
 177	struct r5conf *conf = sh->raid_conf;
 178	struct r5worker_group *group;
 179	int thread_cnt;
 180	int i, cpu = sh->cpu;
 181
 182	if (!cpu_online(cpu)) {
 183		cpu = cpumask_any(cpu_online_mask);
 184		sh->cpu = cpu;
 185	}
 186
 187	if (list_empty(&sh->lru)) {
 188		struct r5worker_group *group;
 189		group = conf->worker_groups + cpu_to_group(cpu);
 190		if (stripe_is_lowprio(sh))
 191			list_add_tail(&sh->lru, &group->loprio_list);
 192		else
 193			list_add_tail(&sh->lru, &group->handle_list);
 194		group->stripes_cnt++;
 195		sh->group = group;
 196	}
 197
 198	if (conf->worker_cnt_per_group == 0) {
 199		md_wakeup_thread(conf->mddev->thread);
 200		return;
 201	}
 202
 203	group = conf->worker_groups + cpu_to_group(sh->cpu);
 204
 205	group->workers[0].working = true;
 206	/* at least one worker should run to avoid race */
 207	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
 208
 209	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
 210	/* wakeup more workers */
 211	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
 212		if (group->workers[i].working == false) {
 213			group->workers[i].working = true;
 214			queue_work_on(sh->cpu, raid5_wq,
 215				      &group->workers[i].work);
 216			thread_cnt--;
 217		}
 218	}
 219}
 220
 221static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
 222			      struct list_head *temp_inactive_list)
 223{
 224	int i;
 225	int injournal = 0;	/* number of date pages with R5_InJournal */
 226
 227	BUG_ON(!list_empty(&sh->lru));
 228	BUG_ON(atomic_read(&conf->active_stripes)==0);
 229
 230	if (r5c_is_writeback(conf->log))
 231		for (i = sh->disks; i--; )
 232			if (test_bit(R5_InJournal, &sh->dev[i].flags))
 233				injournal++;
 234	/*
 235	 * In the following cases, the stripe cannot be released to cached
 236	 * lists. Therefore, we make the stripe write out and set
 237	 * STRIPE_HANDLE:
 238	 *   1. when quiesce in r5c write back;
 239	 *   2. when resync is requested fot the stripe.
 240	 */
 241	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
 242	    (conf->quiesce && r5c_is_writeback(conf->log) &&
 243	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
 244		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
 245			r5c_make_stripe_write_out(sh);
 246		set_bit(STRIPE_HANDLE, &sh->state);
 247	}
 248
 249	if (test_bit(STRIPE_HANDLE, &sh->state)) {
 250		if (test_bit(STRIPE_DELAYED, &sh->state) &&
 251		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 252			list_add_tail(&sh->lru, &conf->delayed_list);
 253		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
 254			   sh->bm_seq - conf->seq_write > 0)
 255			list_add_tail(&sh->lru, &conf->bitmap_list);
 256		else {
 257			clear_bit(STRIPE_DELAYED, &sh->state);
 258			clear_bit(STRIPE_BIT_DELAY, &sh->state);
 259			if (conf->worker_cnt_per_group == 0) {
 260				if (stripe_is_lowprio(sh))
 261					list_add_tail(&sh->lru,
 262							&conf->loprio_list);
 263				else
 264					list_add_tail(&sh->lru,
 265							&conf->handle_list);
 266			} else {
 267				raid5_wakeup_stripe_thread(sh);
 268				return;
 269			}
 270		}
 271		md_wakeup_thread(conf->mddev->thread);
 272	} else {
 273		BUG_ON(stripe_operations_active(sh));
 274		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 275			if (atomic_dec_return(&conf->preread_active_stripes)
 276			    < IO_THRESHOLD)
 277				md_wakeup_thread(conf->mddev->thread);
 278		atomic_dec(&conf->active_stripes);
 279		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
 280			if (!r5c_is_writeback(conf->log))
 281				list_add_tail(&sh->lru, temp_inactive_list);
 282			else {
 283				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
 284				if (injournal == 0)
 285					list_add_tail(&sh->lru, temp_inactive_list);
 286				else if (injournal == conf->raid_disks - conf->max_degraded) {
 287					/* full stripe */
 288					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
 289						atomic_inc(&conf->r5c_cached_full_stripes);
 290					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
 291						atomic_dec(&conf->r5c_cached_partial_stripes);
 292					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
 293					r5c_check_cached_full_stripe(conf);
 294				} else
 295					/*
 296					 * STRIPE_R5C_PARTIAL_STRIPE is set in
 297					 * r5c_try_caching_write(). No need to
 298					 * set it again.
 299					 */
 300					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
 301			}
 302		}
 303	}
 304}
 305
 306static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
 307			     struct list_head *temp_inactive_list)
 308{
 309	if (atomic_dec_and_test(&sh->count))
 310		do_release_stripe(conf, sh, temp_inactive_list);
 311}
 312
 313/*
 314 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
 315 *
 316 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
 317 * given time. Adding stripes only takes device lock, while deleting stripes
 318 * only takes hash lock.
 319 */
 320static void release_inactive_stripe_list(struct r5conf *conf,
 321					 struct list_head *temp_inactive_list,
 322					 int hash)
 323{
 324	int size;
 325	bool do_wakeup = false;
 326	unsigned long flags;
 327
 328	if (hash == NR_STRIPE_HASH_LOCKS) {
 329		size = NR_STRIPE_HASH_LOCKS;
 330		hash = NR_STRIPE_HASH_LOCKS - 1;
 331	} else
 332		size = 1;
 333	while (size) {
 334		struct list_head *list = &temp_inactive_list[size - 1];
 335
 336		/*
 337		 * We don't hold any lock here yet, raid5_get_active_stripe() might
 338		 * remove stripes from the list
 339		 */
 340		if (!list_empty_careful(list)) {
 341			spin_lock_irqsave(conf->hash_locks + hash, flags);
 342			if (list_empty(conf->inactive_list + hash) &&
 343			    !list_empty(list))
 344				atomic_dec(&conf->empty_inactive_list_nr);
 345			list_splice_tail_init(list, conf->inactive_list + hash);
 346			do_wakeup = true;
 347			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
 348		}
 349		size--;
 350		hash--;
 351	}
 352
 353	if (do_wakeup) {
 354		wake_up(&conf->wait_for_stripe);
 355		if (atomic_read(&conf->active_stripes) == 0)
 356			wake_up(&conf->wait_for_quiescent);
 357		if (conf->retry_read_aligned)
 358			md_wakeup_thread(conf->mddev->thread);
 359	}
 360}
 361
 362/* should hold conf->device_lock already */
 363static int release_stripe_list(struct r5conf *conf,
 364			       struct list_head *temp_inactive_list)
 365{
 366	struct stripe_head *sh, *t;
 367	int count = 0;
 368	struct llist_node *head;
 369
 370	head = llist_del_all(&conf->released_stripes);
 371	head = llist_reverse_order(head);
 372	llist_for_each_entry_safe(sh, t, head, release_list) {
 373		int hash;
 374
 375		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
 376		smp_mb();
 377		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
 378		/*
 379		 * Don't worry the bit is set here, because if the bit is set
 380		 * again, the count is always > 1. This is true for
 381		 * STRIPE_ON_UNPLUG_LIST bit too.
 382		 */
 383		hash = sh->hash_lock_index;
 384		__release_stripe(conf, sh, &temp_inactive_list[hash]);
 385		count++;
 386	}
 387
 388	return count;
 389}
 390
 391void raid5_release_stripe(struct stripe_head *sh)
 392{
 393	struct r5conf *conf = sh->raid_conf;
 394	unsigned long flags;
 395	struct list_head list;
 396	int hash;
 397	bool wakeup;
 398
 399	/* Avoid release_list until the last reference.
 400	 */
 401	if (atomic_add_unless(&sh->count, -1, 1))
 402		return;
 403
 404	if (unlikely(!conf->mddev->thread) ||
 405		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
 406		goto slow_path;
 407	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
 408	if (wakeup)
 409		md_wakeup_thread(conf->mddev->thread);
 410	return;
 411slow_path:
 412	local_irq_save(flags);
 413	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
 414	if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
 415		INIT_LIST_HEAD(&list);
 416		hash = sh->hash_lock_index;
 417		do_release_stripe(conf, sh, &list);
 418		spin_unlock(&conf->device_lock);
 419		release_inactive_stripe_list(conf, &list, hash);
 420	}
 421	local_irq_restore(flags);
 422}
 423
 424static inline void remove_hash(struct stripe_head *sh)
 425{
 426	pr_debug("remove_hash(), stripe %llu\n",
 427		(unsigned long long)sh->sector);
 428
 429	hlist_del_init(&sh->hash);
 430}
 431
 432static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
 433{
 434	struct hlist_head *hp = stripe_hash(conf, sh->sector);
 435
 436	pr_debug("insert_hash(), stripe %llu\n",
 437		(unsigned long long)sh->sector);
 438
 
 439	hlist_add_head(&sh->hash, hp);
 440}
 441
 
 442/* find an idle stripe, make sure it is unhashed, and return it. */
 443static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
 444{
 445	struct stripe_head *sh = NULL;
 446	struct list_head *first;
 447
 448	if (list_empty(conf->inactive_list + hash))
 
 449		goto out;
 450	first = (conf->inactive_list + hash)->next;
 451	sh = list_entry(first, struct stripe_head, lru);
 452	list_del_init(first);
 453	remove_hash(sh);
 454	atomic_inc(&conf->active_stripes);
 455	BUG_ON(hash != sh->hash_lock_index);
 456	if (list_empty(conf->inactive_list + hash))
 457		atomic_inc(&conf->empty_inactive_list_nr);
 458out:
 459	return sh;
 460}
 461
 462static void shrink_buffers(struct stripe_head *sh)
 463{
 464	struct page *p;
 465	int i;
 466	int num = sh->raid_conf->pool_size;
 467
 468	for (i = 0; i < num ; i++) {
 469		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
 470		p = sh->dev[i].page;
 471		if (!p)
 472			continue;
 473		sh->dev[i].page = NULL;
 474		put_page(p);
 475	}
 476}
 477
 478static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
 479{
 480	int i;
 481	int num = sh->raid_conf->pool_size;
 482
 483	for (i = 0; i < num; i++) {
 484		struct page *page;
 485
 486		if (!(page = alloc_page(gfp))) {
 487			return 1;
 488		}
 489		sh->dev[i].page = page;
 490		sh->dev[i].orig_page = page;
 491	}
 492
 493	return 0;
 494}
 495
 496static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
 
 497			    struct stripe_head *sh);
 498
 499static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
 500{
 501	struct r5conf *conf = sh->raid_conf;
 502	int i, seq;
 503
 504	BUG_ON(atomic_read(&sh->count) != 0);
 505	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
 506	BUG_ON(stripe_operations_active(sh));
 507	BUG_ON(sh->batch_head);
 508
 
 509	pr_debug("init_stripe called, stripe %llu\n",
 510		(unsigned long long)sector);
 511retry:
 512	seq = read_seqcount_begin(&conf->gen_lock);
 
 513	sh->generation = conf->generation - previous;
 514	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
 515	sh->sector = sector;
 516	stripe_set_idx(sector, conf, previous, sh);
 517	sh->state = 0;
 518
 
 519	for (i = sh->disks; i--; ) {
 520		struct r5dev *dev = &sh->dev[i];
 521
 522		if (dev->toread || dev->read || dev->towrite || dev->written ||
 523		    test_bit(R5_LOCKED, &dev->flags)) {
 524			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
 525			       (unsigned long long)sh->sector, i, dev->toread,
 526			       dev->read, dev->towrite, dev->written,
 527			       test_bit(R5_LOCKED, &dev->flags));
 528			WARN_ON(1);
 529		}
 530		dev->flags = 0;
 531		dev->sector = raid5_compute_blocknr(sh, i, previous);
 532	}
 533	if (read_seqcount_retry(&conf->gen_lock, seq))
 534		goto retry;
 535	sh->overwrite_disks = 0;
 536	insert_hash(conf, sh);
 537	sh->cpu = smp_processor_id();
 538	set_bit(STRIPE_BATCH_READY, &sh->state);
 539}
 540
 541static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
 542					 short generation)
 543{
 544	struct stripe_head *sh;
 
 545
 
 546	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
 547	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
 548		if (sh->sector == sector && sh->generation == generation)
 549			return sh;
 550	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
 551	return NULL;
 552}
 553
 554/*
 555 * Need to check if array has failed when deciding whether to:
 556 *  - start an array
 557 *  - remove non-faulty devices
 558 *  - add a spare
 559 *  - allow a reshape
 560 * This determination is simple when no reshape is happening.
 561 * However if there is a reshape, we need to carefully check
 562 * both the before and after sections.
 563 * This is because some failed devices may only affect one
 564 * of the two sections, and some non-in_sync devices may
 565 * be insync in the section most affected by failed devices.
 566 */
 567int raid5_calc_degraded(struct r5conf *conf)
 568{
 569	int degraded, degraded2;
 570	int i;
 
 
 571
 572	rcu_read_lock();
 573	degraded = 0;
 574	for (i = 0; i < conf->previous_raid_disks; i++) {
 575		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
 576		if (rdev && test_bit(Faulty, &rdev->flags))
 577			rdev = rcu_dereference(conf->disks[i].replacement);
 578		if (!rdev || test_bit(Faulty, &rdev->flags))
 579			degraded++;
 580		else if (test_bit(In_sync, &rdev->flags))
 581			;
 582		else
 583			/* not in-sync or faulty.
 584			 * If the reshape increases the number of devices,
 585			 * this is being recovered by the reshape, so
 586			 * this 'previous' section is not in_sync.
 587			 * If the number of devices is being reduced however,
 588			 * the device can only be part of the array if
 589			 * we are reverting a reshape, so this section will
 590			 * be in-sync.
 591			 */
 592			if (conf->raid_disks >= conf->previous_raid_disks)
 593				degraded++;
 594	}
 595	rcu_read_unlock();
 596	if (conf->raid_disks == conf->previous_raid_disks)
 597		return degraded;
 598	rcu_read_lock();
 599	degraded2 = 0;
 600	for (i = 0; i < conf->raid_disks; i++) {
 601		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
 602		if (rdev && test_bit(Faulty, &rdev->flags))
 603			rdev = rcu_dereference(conf->disks[i].replacement);
 604		if (!rdev || test_bit(Faulty, &rdev->flags))
 605			degraded2++;
 606		else if (test_bit(In_sync, &rdev->flags))
 607			;
 608		else
 609			/* not in-sync or faulty.
 610			 * If reshape increases the number of devices, this
 611			 * section has already been recovered, else it
 612			 * almost certainly hasn't.
 613			 */
 614			if (conf->raid_disks <= conf->previous_raid_disks)
 615				degraded2++;
 616	}
 617	rcu_read_unlock();
 618	if (degraded2 > degraded)
 619		return degraded2;
 620	return degraded;
 621}
 622
 623static int has_failed(struct r5conf *conf)
 624{
 625	int degraded;
 626
 627	if (conf->mddev->reshape_position == MaxSector)
 628		return conf->mddev->degraded > conf->max_degraded;
 629
 630	degraded = raid5_calc_degraded(conf);
 631	if (degraded > conf->max_degraded)
 632		return 1;
 633	return 0;
 634}
 635
 636struct stripe_head *
 637raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
 638			int previous, int noblock, int noquiesce)
 639{
 640	struct stripe_head *sh;
 641	int hash = stripe_hash_locks_hash(sector);
 642	int inc_empty_inactive_list_flag;
 643
 644	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
 645
 646	spin_lock_irq(conf->hash_locks + hash);
 647
 648	do {
 649		wait_event_lock_irq(conf->wait_for_quiescent,
 650				    conf->quiesce == 0 || noquiesce,
 651				    *(conf->hash_locks + hash));
 652		sh = __find_stripe(conf, sector, conf->generation - previous);
 653		if (!sh) {
 654			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
 655				sh = get_free_stripe(conf, hash);
 656				if (!sh && !test_bit(R5_DID_ALLOC,
 657						     &conf->cache_state))
 658					set_bit(R5_ALLOC_MORE,
 659						&conf->cache_state);
 660			}
 661			if (noblock && sh == NULL)
 662				break;
 663
 664			r5c_check_stripe_cache_usage(conf);
 665			if (!sh) {
 666				set_bit(R5_INACTIVE_BLOCKED,
 667					&conf->cache_state);
 668				r5l_wake_reclaim(conf->log, 0);
 669				wait_event_lock_irq(
 670					conf->wait_for_stripe,
 671					!list_empty(conf->inactive_list + hash) &&
 672					(atomic_read(&conf->active_stripes)
 673					 < (conf->max_nr_stripes * 3 / 4)
 674					 || !test_bit(R5_INACTIVE_BLOCKED,
 675						      &conf->cache_state)),
 676					*(conf->hash_locks + hash));
 677				clear_bit(R5_INACTIVE_BLOCKED,
 678					  &conf->cache_state);
 
 
 679			} else {
 680				init_stripe(sh, sector, previous);
 681				atomic_inc(&sh->count);
 682			}
 683		} else if (!atomic_inc_not_zero(&sh->count)) {
 684			spin_lock(&conf->device_lock);
 685			if (!atomic_read(&sh->count)) {
 686				if (!test_bit(STRIPE_HANDLE, &sh->state))
 687					atomic_inc(&conf->active_stripes);
 688				BUG_ON(list_empty(&sh->lru) &&
 689				       !test_bit(STRIPE_EXPANDING, &sh->state));
 690				inc_empty_inactive_list_flag = 0;
 691				if (!list_empty(conf->inactive_list + hash))
 692					inc_empty_inactive_list_flag = 1;
 693				list_del_init(&sh->lru);
 694				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
 695					atomic_inc(&conf->empty_inactive_list_nr);
 696				if (sh->group) {
 697					sh->group->stripes_cnt--;
 698					sh->group = NULL;
 699				}
 700			}
 701			atomic_inc(&sh->count);
 702			spin_unlock(&conf->device_lock);
 703		}
 704	} while (sh == NULL);
 705
 706	spin_unlock_irq(conf->hash_locks + hash);
 
 
 
 707	return sh;
 708}
 709
 710static bool is_full_stripe_write(struct stripe_head *sh)
 711{
 712	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
 713	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
 714}
 715
 716static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
 717{
 718	if (sh1 > sh2) {
 719		spin_lock_irq(&sh2->stripe_lock);
 720		spin_lock_nested(&sh1->stripe_lock, 1);
 721	} else {
 722		spin_lock_irq(&sh1->stripe_lock);
 723		spin_lock_nested(&sh2->stripe_lock, 1);
 724	}
 725}
 726
 727static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
 728{
 729	spin_unlock(&sh1->stripe_lock);
 730	spin_unlock_irq(&sh2->stripe_lock);
 731}
 732
 733/* Only freshly new full stripe normal write stripe can be added to a batch list */
 734static bool stripe_can_batch(struct stripe_head *sh)
 735{
 736	struct r5conf *conf = sh->raid_conf;
 737
 738	if (conf->log || raid5_has_ppl(conf))
 739		return false;
 740	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
 741		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
 742		is_full_stripe_write(sh);
 743}
 744
 745/* we only do back search */
 746static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
 747{
 748	struct stripe_head *head;
 749	sector_t head_sector, tmp_sec;
 750	int hash;
 751	int dd_idx;
 752	int inc_empty_inactive_list_flag;
 753
 754	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
 755	tmp_sec = sh->sector;
 756	if (!sector_div(tmp_sec, conf->chunk_sectors))
 757		return;
 758	head_sector = sh->sector - STRIPE_SECTORS;
 759
 760	hash = stripe_hash_locks_hash(head_sector);
 761	spin_lock_irq(conf->hash_locks + hash);
 762	head = __find_stripe(conf, head_sector, conf->generation);
 763	if (head && !atomic_inc_not_zero(&head->count)) {
 764		spin_lock(&conf->device_lock);
 765		if (!atomic_read(&head->count)) {
 766			if (!test_bit(STRIPE_HANDLE, &head->state))
 767				atomic_inc(&conf->active_stripes);
 768			BUG_ON(list_empty(&head->lru) &&
 769			       !test_bit(STRIPE_EXPANDING, &head->state));
 770			inc_empty_inactive_list_flag = 0;
 771			if (!list_empty(conf->inactive_list + hash))
 772				inc_empty_inactive_list_flag = 1;
 773			list_del_init(&head->lru);
 774			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
 775				atomic_inc(&conf->empty_inactive_list_nr);
 776			if (head->group) {
 777				head->group->stripes_cnt--;
 778				head->group = NULL;
 779			}
 780		}
 781		atomic_inc(&head->count);
 782		spin_unlock(&conf->device_lock);
 783	}
 784	spin_unlock_irq(conf->hash_locks + hash);
 785
 786	if (!head)
 787		return;
 788	if (!stripe_can_batch(head))
 789		goto out;
 790
 791	lock_two_stripes(head, sh);
 792	/* clear_batch_ready clear the flag */
 793	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
 794		goto unlock_out;
 795
 796	if (sh->batch_head)
 797		goto unlock_out;
 798
 799	dd_idx = 0;
 800	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
 801		dd_idx++;
 802	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
 803	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
 804		goto unlock_out;
 805
 806	if (head->batch_head) {
 807		spin_lock(&head->batch_head->batch_lock);
 808		/* This batch list is already running */
 809		if (!stripe_can_batch(head)) {
 810			spin_unlock(&head->batch_head->batch_lock);
 811			goto unlock_out;
 812		}
 813		/*
 814		 * We must assign batch_head of this stripe within the
 815		 * batch_lock, otherwise clear_batch_ready of batch head
 816		 * stripe could clear BATCH_READY bit of this stripe and
 817		 * this stripe->batch_head doesn't get assigned, which
 818		 * could confuse clear_batch_ready for this stripe
 819		 */
 820		sh->batch_head = head->batch_head;
 821
 822		/*
 823		 * at this point, head's BATCH_READY could be cleared, but we
 824		 * can still add the stripe to batch list
 825		 */
 826		list_add(&sh->batch_list, &head->batch_list);
 827		spin_unlock(&head->batch_head->batch_lock);
 828	} else {
 829		head->batch_head = head;
 830		sh->batch_head = head->batch_head;
 831		spin_lock(&head->batch_lock);
 832		list_add_tail(&sh->batch_list, &head->batch_list);
 833		spin_unlock(&head->batch_lock);
 834	}
 835
 836	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 837		if (atomic_dec_return(&conf->preread_active_stripes)
 838		    < IO_THRESHOLD)
 839			md_wakeup_thread(conf->mddev->thread);
 840
 841	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
 842		int seq = sh->bm_seq;
 843		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
 844		    sh->batch_head->bm_seq > seq)
 845			seq = sh->batch_head->bm_seq;
 846		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
 847		sh->batch_head->bm_seq = seq;
 848	}
 849
 850	atomic_inc(&sh->count);
 851unlock_out:
 852	unlock_two_stripes(head, sh);
 853out:
 854	raid5_release_stripe(head);
 855}
 856
 857/* Determine if 'data_offset' or 'new_data_offset' should be used
 858 * in this stripe_head.
 859 */
 860static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
 861{
 862	sector_t progress = conf->reshape_progress;
 863	/* Need a memory barrier to make sure we see the value
 864	 * of conf->generation, or ->data_offset that was set before
 865	 * reshape_progress was updated.
 866	 */
 867	smp_rmb();
 868	if (progress == MaxSector)
 869		return 0;
 870	if (sh->generation == conf->generation - 1)
 871		return 0;
 872	/* We are in a reshape, and this is a new-generation stripe,
 873	 * so use new_data_offset.
 874	 */
 875	return 1;
 876}
 877
 878static void dispatch_bio_list(struct bio_list *tmp)
 879{
 880	struct bio *bio;
 881
 882	while ((bio = bio_list_pop(tmp)))
 883		generic_make_request(bio);
 884}
 885
 886static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
 887{
 888	const struct r5pending_data *da = list_entry(a,
 889				struct r5pending_data, sibling);
 890	const struct r5pending_data *db = list_entry(b,
 891				struct r5pending_data, sibling);
 892	if (da->sector > db->sector)
 893		return 1;
 894	if (da->sector < db->sector)
 895		return -1;
 896	return 0;
 897}
 898
 899static void dispatch_defer_bios(struct r5conf *conf, int target,
 900				struct bio_list *list)
 901{
 902	struct r5pending_data *data;
 903	struct list_head *first, *next = NULL;
 904	int cnt = 0;
 905
 906	if (conf->pending_data_cnt == 0)
 907		return;
 908
 909	list_sort(NULL, &conf->pending_list, cmp_stripe);
 910
 911	first = conf->pending_list.next;
 912
 913	/* temporarily move the head */
 914	if (conf->next_pending_data)
 915		list_move_tail(&conf->pending_list,
 916				&conf->next_pending_data->sibling);
 917
 918	while (!list_empty(&conf->pending_list)) {
 919		data = list_first_entry(&conf->pending_list,
 920			struct r5pending_data, sibling);
 921		if (&data->sibling == first)
 922			first = data->sibling.next;
 923		next = data->sibling.next;
 924
 925		bio_list_merge(list, &data->bios);
 926		list_move(&data->sibling, &conf->free_list);
 927		cnt++;
 928		if (cnt >= target)
 929			break;
 930	}
 931	conf->pending_data_cnt -= cnt;
 932	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
 933
 934	if (next != &conf->pending_list)
 935		conf->next_pending_data = list_entry(next,
 936				struct r5pending_data, sibling);
 937	else
 938		conf->next_pending_data = NULL;
 939	/* list isn't empty */
 940	if (first != &conf->pending_list)
 941		list_move_tail(&conf->pending_list, first);
 942}
 943
 944static void flush_deferred_bios(struct r5conf *conf)
 945{
 946	struct bio_list tmp = BIO_EMPTY_LIST;
 947
 948	if (conf->pending_data_cnt == 0)
 949		return;
 950
 951	spin_lock(&conf->pending_bios_lock);
 952	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
 953	BUG_ON(conf->pending_data_cnt != 0);
 954	spin_unlock(&conf->pending_bios_lock);
 955
 956	dispatch_bio_list(&tmp);
 957}
 958
 959static void defer_issue_bios(struct r5conf *conf, sector_t sector,
 960				struct bio_list *bios)
 961{
 962	struct bio_list tmp = BIO_EMPTY_LIST;
 963	struct r5pending_data *ent;
 964
 965	spin_lock(&conf->pending_bios_lock);
 966	ent = list_first_entry(&conf->free_list, struct r5pending_data,
 967							sibling);
 968	list_move_tail(&ent->sibling, &conf->pending_list);
 969	ent->sector = sector;
 970	bio_list_init(&ent->bios);
 971	bio_list_merge(&ent->bios, bios);
 972	conf->pending_data_cnt++;
 973	if (conf->pending_data_cnt >= PENDING_IO_MAX)
 974		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
 975
 976	spin_unlock(&conf->pending_bios_lock);
 977
 978	dispatch_bio_list(&tmp);
 979}
 980
 981static void
 982raid5_end_read_request(struct bio *bi);
 983static void
 984raid5_end_write_request(struct bio *bi);
 985
 986static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
 987{
 988	struct r5conf *conf = sh->raid_conf;
 989	int i, disks = sh->disks;
 990	struct stripe_head *head_sh = sh;
 991	struct bio_list pending_bios = BIO_EMPTY_LIST;
 992	bool should_defer;
 993
 994	might_sleep();
 995
 996	if (log_stripe(sh, s) == 0)
 997		return;
 998
 999	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1000
1001	for (i = disks; i--; ) {
1002		int op, op_flags = 0;
1003		int replace_only = 0;
1004		struct bio *bi, *rbi;
1005		struct md_rdev *rdev, *rrdev = NULL;
1006
1007		sh = head_sh;
1008		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1009			op = REQ_OP_WRITE;
1010			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1011				op_flags = REQ_FUA;
1012			if (test_bit(R5_Discard, &sh->dev[i].flags))
1013				op = REQ_OP_DISCARD;
1014		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1015			op = REQ_OP_READ;
1016		else if (test_and_clear_bit(R5_WantReplace,
1017					    &sh->dev[i].flags)) {
1018			op = REQ_OP_WRITE;
1019			replace_only = 1;
1020		} else
1021			continue;
1022		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1023			op_flags |= REQ_SYNC;
1024
1025again:
1026		bi = &sh->dev[i].req;
1027		rbi = &sh->dev[i].rreq; /* For writing to replacement */
 
 
 
 
 
1028
1029		rcu_read_lock();
1030		rrdev = rcu_dereference(conf->disks[i].replacement);
1031		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1032		rdev = rcu_dereference(conf->disks[i].rdev);
1033		if (!rdev) {
1034			rdev = rrdev;
1035			rrdev = NULL;
1036		}
1037		if (op_is_write(op)) {
1038			if (replace_only)
1039				rdev = NULL;
1040			if (rdev == rrdev)
1041				/* We raced and saw duplicates */
1042				rrdev = NULL;
1043		} else {
1044			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1045				rdev = rrdev;
1046			rrdev = NULL;
1047		}
1048
1049		if (rdev && test_bit(Faulty, &rdev->flags))
1050			rdev = NULL;
1051		if (rdev)
1052			atomic_inc(&rdev->nr_pending);
1053		if (rrdev && test_bit(Faulty, &rrdev->flags))
1054			rrdev = NULL;
1055		if (rrdev)
1056			atomic_inc(&rrdev->nr_pending);
1057		rcu_read_unlock();
1058
1059		/* We have already checked bad blocks for reads.  Now
1060		 * need to check for writes.  We never accept write errors
1061		 * on the replacement, so we don't to check rrdev.
1062		 */
1063		while (op_is_write(op) && rdev &&
1064		       test_bit(WriteErrorSeen, &rdev->flags)) {
1065			sector_t first_bad;
1066			int bad_sectors;
1067			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1068					      &first_bad, &bad_sectors);
1069			if (!bad)
1070				break;
1071
1072			if (bad < 0) {
1073				set_bit(BlockedBadBlocks, &rdev->flags);
1074				if (!conf->mddev->external &&
1075				    conf->mddev->sb_flags) {
1076					/* It is very unlikely, but we might
1077					 * still need to write out the
1078					 * bad block log - better give it
1079					 * a chance*/
1080					md_check_recovery(conf->mddev);
1081				}
1082				/*
1083				 * Because md_wait_for_blocked_rdev
1084				 * will dec nr_pending, we must
1085				 * increment it first.
1086				 */
1087				atomic_inc(&rdev->nr_pending);
1088				md_wait_for_blocked_rdev(rdev, conf->mddev);
1089			} else {
1090				/* Acknowledged bad block - skip the write */
1091				rdev_dec_pending(rdev, conf->mddev);
1092				rdev = NULL;
1093			}
1094		}
1095
1096		if (rdev) {
1097			if (s->syncing || s->expanding || s->expanded
1098			    || s->replacing)
1099				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1100
1101			set_bit(STRIPE_IO_STARTED, &sh->state);
1102
1103			bio_set_dev(bi, rdev->bdev);
1104			bio_set_op_attrs(bi, op, op_flags);
1105			bi->bi_end_io = op_is_write(op)
1106				? raid5_end_write_request
1107				: raid5_end_read_request;
1108			bi->bi_private = sh;
1109
1110			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1111				__func__, (unsigned long long)sh->sector,
1112				bi->bi_opf, i);
1113			atomic_inc(&sh->count);
1114			if (sh != head_sh)
1115				atomic_inc(&head_sh->count);
1116			if (use_new_offset(conf, sh))
1117				bi->bi_iter.bi_sector = (sh->sector
1118						 + rdev->new_data_offset);
1119			else
1120				bi->bi_iter.bi_sector = (sh->sector
1121						 + rdev->data_offset);
1122			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1123				bi->bi_opf |= REQ_NOMERGE;
1124
1125			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1126				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1127
1128			if (!op_is_write(op) &&
1129			    test_bit(R5_InJournal, &sh->dev[i].flags))
1130				/*
1131				 * issuing read for a page in journal, this
1132				 * must be preparing for prexor in rmw; read
1133				 * the data into orig_page
1134				 */
1135				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1136			else
1137				sh->dev[i].vec.bv_page = sh->dev[i].page;
1138			bi->bi_vcnt = 1;
 
 
 
1139			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1140			bi->bi_io_vec[0].bv_offset = 0;
1141			bi->bi_iter.bi_size = STRIPE_SIZE;
1142			/*
1143			 * If this is discard request, set bi_vcnt 0. We don't
1144			 * want to confuse SCSI because SCSI will replace payload
1145			 */
1146			if (op == REQ_OP_DISCARD)
1147				bi->bi_vcnt = 0;
1148			if (rrdev)
1149				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1150
1151			if (conf->mddev->gendisk)
1152				trace_block_bio_remap(bi->bi_disk->queue,
1153						      bi, disk_devt(conf->mddev->gendisk),
1154						      sh->dev[i].sector);
1155			if (should_defer && op_is_write(op))
1156				bio_list_add(&pending_bios, bi);
1157			else
1158				generic_make_request(bi);
1159		}
1160		if (rrdev) {
1161			if (s->syncing || s->expanding || s->expanded
1162			    || s->replacing)
1163				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1164
1165			set_bit(STRIPE_IO_STARTED, &sh->state);
1166
1167			bio_set_dev(rbi, rrdev->bdev);
1168			bio_set_op_attrs(rbi, op, op_flags);
1169			BUG_ON(!op_is_write(op));
1170			rbi->bi_end_io = raid5_end_write_request;
1171			rbi->bi_private = sh;
1172
1173			pr_debug("%s: for %llu schedule op %d on "
1174				 "replacement disc %d\n",
1175				__func__, (unsigned long long)sh->sector,
1176				rbi->bi_opf, i);
1177			atomic_inc(&sh->count);
1178			if (sh != head_sh)
1179				atomic_inc(&head_sh->count);
1180			if (use_new_offset(conf, sh))
1181				rbi->bi_iter.bi_sector = (sh->sector
1182						  + rrdev->new_data_offset);
1183			else
1184				rbi->bi_iter.bi_sector = (sh->sector
1185						  + rrdev->data_offset);
1186			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1187				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1188			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1189			rbi->bi_vcnt = 1;
1190			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1191			rbi->bi_io_vec[0].bv_offset = 0;
1192			rbi->bi_iter.bi_size = STRIPE_SIZE;
1193			/*
1194			 * If this is discard request, set bi_vcnt 0. We don't
1195			 * want to confuse SCSI because SCSI will replace payload
1196			 */
1197			if (op == REQ_OP_DISCARD)
1198				rbi->bi_vcnt = 0;
1199			if (conf->mddev->gendisk)
1200				trace_block_bio_remap(rbi->bi_disk->queue,
1201						      rbi, disk_devt(conf->mddev->gendisk),
1202						      sh->dev[i].sector);
1203			if (should_defer && op_is_write(op))
1204				bio_list_add(&pending_bios, rbi);
1205			else
1206				generic_make_request(rbi);
1207		}
1208		if (!rdev && !rrdev) {
1209			if (op_is_write(op))
1210				set_bit(STRIPE_DEGRADED, &sh->state);
1211			pr_debug("skip op %d on disc %d for sector %llu\n",
1212				bi->bi_opf, i, (unsigned long long)sh->sector);
1213			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1214			set_bit(STRIPE_HANDLE, &sh->state);
1215		}
1216
1217		if (!head_sh->batch_head)
1218			continue;
1219		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1220				      batch_list);
1221		if (sh != head_sh)
1222			goto again;
1223	}
1224
1225	if (should_defer && !bio_list_empty(&pending_bios))
1226		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1227}
1228
1229static struct dma_async_tx_descriptor *
1230async_copy_data(int frombio, struct bio *bio, struct page **page,
1231	sector_t sector, struct dma_async_tx_descriptor *tx,
1232	struct stripe_head *sh, int no_skipcopy)
1233{
1234	struct bio_vec bvl;
1235	struct bvec_iter iter;
1236	struct page *bio_page;
 
1237	int page_offset;
1238	struct async_submit_ctl submit;
1239	enum async_tx_flags flags = 0;
1240
1241	if (bio->bi_iter.bi_sector >= sector)
1242		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1243	else
1244		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1245
1246	if (frombio)
1247		flags |= ASYNC_TX_FENCE;
1248	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1249
1250	bio_for_each_segment(bvl, bio, iter) {
1251		int len = bvl.bv_len;
1252		int clen;
1253		int b_offset = 0;
1254
1255		if (page_offset < 0) {
1256			b_offset = -page_offset;
1257			page_offset += b_offset;
1258			len -= b_offset;
1259		}
1260
1261		if (len > 0 && page_offset + len > STRIPE_SIZE)
1262			clen = STRIPE_SIZE - page_offset;
1263		else
1264			clen = len;
1265
1266		if (clen > 0) {
1267			b_offset += bvl.bv_offset;
1268			bio_page = bvl.bv_page;
1269			if (frombio) {
1270				if (sh->raid_conf->skip_copy &&
1271				    b_offset == 0 && page_offset == 0 &&
1272				    clen == STRIPE_SIZE &&
1273				    !no_skipcopy)
1274					*page = bio_page;
1275				else
1276					tx = async_memcpy(*page, bio_page, page_offset,
1277						  b_offset, clen, &submit);
1278			} else
1279				tx = async_memcpy(bio_page, *page, b_offset,
1280						  page_offset, clen, &submit);
1281		}
1282		/* chain the operations */
1283		submit.depend_tx = tx;
1284
1285		if (clen < len) /* hit end of page */
1286			break;
1287		page_offset +=  len;
1288	}
1289
1290	return tx;
1291}
1292
1293static void ops_complete_biofill(void *stripe_head_ref)
1294{
1295	struct stripe_head *sh = stripe_head_ref;
 
 
1296	int i;
1297
1298	pr_debug("%s: stripe %llu\n", __func__,
1299		(unsigned long long)sh->sector);
1300
1301	/* clear completed biofills */
 
1302	for (i = sh->disks; i--; ) {
1303		struct r5dev *dev = &sh->dev[i];
1304
1305		/* acknowledge completion of a biofill operation */
1306		/* and check if we need to reply to a read request,
1307		 * new R5_Wantfill requests are held off until
1308		 * !STRIPE_BIOFILL_RUN
1309		 */
1310		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1311			struct bio *rbi, *rbi2;
1312
1313			BUG_ON(!dev->read);
1314			rbi = dev->read;
1315			dev->read = NULL;
1316			while (rbi && rbi->bi_iter.bi_sector <
1317				dev->sector + STRIPE_SECTORS) {
1318				rbi2 = r5_next_bio(rbi, dev->sector);
1319				bio_endio(rbi);
 
 
 
1320				rbi = rbi2;
1321			}
1322		}
1323	}
 
1324	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1325
 
 
1326	set_bit(STRIPE_HANDLE, &sh->state);
1327	raid5_release_stripe(sh);
1328}
1329
1330static void ops_run_biofill(struct stripe_head *sh)
1331{
1332	struct dma_async_tx_descriptor *tx = NULL;
 
1333	struct async_submit_ctl submit;
1334	int i;
1335
1336	BUG_ON(sh->batch_head);
1337	pr_debug("%s: stripe %llu\n", __func__,
1338		(unsigned long long)sh->sector);
1339
1340	for (i = sh->disks; i--; ) {
1341		struct r5dev *dev = &sh->dev[i];
1342		if (test_bit(R5_Wantfill, &dev->flags)) {
1343			struct bio *rbi;
1344			spin_lock_irq(&sh->stripe_lock);
1345			dev->read = rbi = dev->toread;
1346			dev->toread = NULL;
1347			spin_unlock_irq(&sh->stripe_lock);
1348			while (rbi && rbi->bi_iter.bi_sector <
1349				dev->sector + STRIPE_SECTORS) {
1350				tx = async_copy_data(0, rbi, &dev->page,
1351						     dev->sector, tx, sh, 0);
1352				rbi = r5_next_bio(rbi, dev->sector);
1353			}
1354		}
1355	}
1356
1357	atomic_inc(&sh->count);
1358	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1359	async_trigger_callback(&submit);
1360}
1361
1362static void mark_target_uptodate(struct stripe_head *sh, int target)
1363{
1364	struct r5dev *tgt;
1365
1366	if (target < 0)
1367		return;
1368
1369	tgt = &sh->dev[target];
1370	set_bit(R5_UPTODATE, &tgt->flags);
1371	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1372	clear_bit(R5_Wantcompute, &tgt->flags);
1373}
1374
1375static void ops_complete_compute(void *stripe_head_ref)
1376{
1377	struct stripe_head *sh = stripe_head_ref;
1378
1379	pr_debug("%s: stripe %llu\n", __func__,
1380		(unsigned long long)sh->sector);
1381
1382	/* mark the computed target(s) as uptodate */
1383	mark_target_uptodate(sh, sh->ops.target);
1384	mark_target_uptodate(sh, sh->ops.target2);
1385
1386	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1387	if (sh->check_state == check_state_compute_run)
1388		sh->check_state = check_state_compute_result;
1389	set_bit(STRIPE_HANDLE, &sh->state);
1390	raid5_release_stripe(sh);
1391}
1392
1393/* return a pointer to the address conversion region of the scribble buffer */
1394static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1395				 struct raid5_percpu *percpu, int i)
1396{
1397	void *addr;
1398
1399	addr = flex_array_get(percpu->scribble, i);
1400	return addr + sizeof(struct page *) * (sh->disks + 2);
1401}
1402
1403/* return a pointer to the address conversion region of the scribble buffer */
1404static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1405{
1406	void *addr;
1407
1408	addr = flex_array_get(percpu->scribble, i);
1409	return addr;
1410}
1411
1412static struct dma_async_tx_descriptor *
1413ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1414{
1415	int disks = sh->disks;
1416	struct page **xor_srcs = to_addr_page(percpu, 0);
1417	int target = sh->ops.target;
1418	struct r5dev *tgt = &sh->dev[target];
1419	struct page *xor_dest = tgt->page;
1420	int count = 0;
1421	struct dma_async_tx_descriptor *tx;
1422	struct async_submit_ctl submit;
1423	int i;
1424
1425	BUG_ON(sh->batch_head);
1426
1427	pr_debug("%s: stripe %llu block: %d\n",
1428		__func__, (unsigned long long)sh->sector, target);
1429	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1430
1431	for (i = disks; i--; )
1432		if (i != target)
1433			xor_srcs[count++] = sh->dev[i].page;
1434
1435	atomic_inc(&sh->count);
1436
1437	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1438			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1439	if (unlikely(count == 1))
1440		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1441	else
1442		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1443
1444	return tx;
1445}
1446
1447/* set_syndrome_sources - populate source buffers for gen_syndrome
1448 * @srcs - (struct page *) array of size sh->disks
1449 * @sh - stripe_head to parse
1450 *
1451 * Populates srcs in proper layout order for the stripe and returns the
1452 * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1453 * destination buffer is recorded in srcs[count] and the Q destination
1454 * is recorded in srcs[count+1]].
1455 */
1456static int set_syndrome_sources(struct page **srcs,
1457				struct stripe_head *sh,
1458				int srctype)
1459{
1460	int disks = sh->disks;
1461	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1462	int d0_idx = raid6_d0(sh);
1463	int count;
1464	int i;
1465
1466	for (i = 0; i < disks; i++)
1467		srcs[i] = NULL;
1468
1469	count = 0;
1470	i = d0_idx;
1471	do {
1472		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1473		struct r5dev *dev = &sh->dev[i];
1474
1475		if (i == sh->qd_idx || i == sh->pd_idx ||
1476		    (srctype == SYNDROME_SRC_ALL) ||
1477		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1478		     (test_bit(R5_Wantdrain, &dev->flags) ||
1479		      test_bit(R5_InJournal, &dev->flags))) ||
1480		    (srctype == SYNDROME_SRC_WRITTEN &&
1481		     (dev->written ||
1482		      test_bit(R5_InJournal, &dev->flags)))) {
1483			if (test_bit(R5_InJournal, &dev->flags))
1484				srcs[slot] = sh->dev[i].orig_page;
1485			else
1486				srcs[slot] = sh->dev[i].page;
1487		}
1488		i = raid6_next_disk(i, disks);
1489	} while (i != d0_idx);
1490
1491	return syndrome_disks;
1492}
1493
1494static struct dma_async_tx_descriptor *
1495ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1496{
1497	int disks = sh->disks;
1498	struct page **blocks = to_addr_page(percpu, 0);
1499	int target;
1500	int qd_idx = sh->qd_idx;
1501	struct dma_async_tx_descriptor *tx;
1502	struct async_submit_ctl submit;
1503	struct r5dev *tgt;
1504	struct page *dest;
1505	int i;
1506	int count;
1507
1508	BUG_ON(sh->batch_head);
1509	if (sh->ops.target < 0)
1510		target = sh->ops.target2;
1511	else if (sh->ops.target2 < 0)
1512		target = sh->ops.target;
1513	else
1514		/* we should only have one valid target */
1515		BUG();
1516	BUG_ON(target < 0);
1517	pr_debug("%s: stripe %llu block: %d\n",
1518		__func__, (unsigned long long)sh->sector, target);
1519
1520	tgt = &sh->dev[target];
1521	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1522	dest = tgt->page;
1523
1524	atomic_inc(&sh->count);
1525
1526	if (target == qd_idx) {
1527		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1528		blocks[count] = NULL; /* regenerating p is not necessary */
1529		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1530		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1531				  ops_complete_compute, sh,
1532				  to_addr_conv(sh, percpu, 0));
1533		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1534	} else {
1535		/* Compute any data- or p-drive using XOR */
1536		count = 0;
1537		for (i = disks; i-- ; ) {
1538			if (i == target || i == qd_idx)
1539				continue;
1540			blocks[count++] = sh->dev[i].page;
1541		}
1542
1543		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1544				  NULL, ops_complete_compute, sh,
1545				  to_addr_conv(sh, percpu, 0));
1546		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1547	}
1548
1549	return tx;
1550}
1551
1552static struct dma_async_tx_descriptor *
1553ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1554{
1555	int i, count, disks = sh->disks;
1556	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1557	int d0_idx = raid6_d0(sh);
1558	int faila = -1, failb = -1;
1559	int target = sh->ops.target;
1560	int target2 = sh->ops.target2;
1561	struct r5dev *tgt = &sh->dev[target];
1562	struct r5dev *tgt2 = &sh->dev[target2];
1563	struct dma_async_tx_descriptor *tx;
1564	struct page **blocks = to_addr_page(percpu, 0);
1565	struct async_submit_ctl submit;
1566
1567	BUG_ON(sh->batch_head);
1568	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1569		 __func__, (unsigned long long)sh->sector, target, target2);
1570	BUG_ON(target < 0 || target2 < 0);
1571	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1572	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1573
1574	/* we need to open-code set_syndrome_sources to handle the
1575	 * slot number conversion for 'faila' and 'failb'
1576	 */
1577	for (i = 0; i < disks ; i++)
1578		blocks[i] = NULL;
1579	count = 0;
1580	i = d0_idx;
1581	do {
1582		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1583
1584		blocks[slot] = sh->dev[i].page;
1585
1586		if (i == target)
1587			faila = slot;
1588		if (i == target2)
1589			failb = slot;
1590		i = raid6_next_disk(i, disks);
1591	} while (i != d0_idx);
1592
1593	BUG_ON(faila == failb);
1594	if (failb < faila)
1595		swap(faila, failb);
1596	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1597		 __func__, (unsigned long long)sh->sector, faila, failb);
1598
1599	atomic_inc(&sh->count);
1600
1601	if (failb == syndrome_disks+1) {
1602		/* Q disk is one of the missing disks */
1603		if (faila == syndrome_disks) {
1604			/* Missing P+Q, just recompute */
1605			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1606					  ops_complete_compute, sh,
1607					  to_addr_conv(sh, percpu, 0));
1608			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1609						  STRIPE_SIZE, &submit);
1610		} else {
1611			struct page *dest;
1612			int data_target;
1613			int qd_idx = sh->qd_idx;
1614
1615			/* Missing D+Q: recompute D from P, then recompute Q */
1616			if (target == qd_idx)
1617				data_target = target2;
1618			else
1619				data_target = target;
1620
1621			count = 0;
1622			for (i = disks; i-- ; ) {
1623				if (i == data_target || i == qd_idx)
1624					continue;
1625				blocks[count++] = sh->dev[i].page;
1626			}
1627			dest = sh->dev[data_target].page;
1628			init_async_submit(&submit,
1629					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1630					  NULL, NULL, NULL,
1631					  to_addr_conv(sh, percpu, 0));
1632			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1633				       &submit);
1634
1635			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1636			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1637					  ops_complete_compute, sh,
1638					  to_addr_conv(sh, percpu, 0));
1639			return async_gen_syndrome(blocks, 0, count+2,
1640						  STRIPE_SIZE, &submit);
1641		}
1642	} else {
1643		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1644				  ops_complete_compute, sh,
1645				  to_addr_conv(sh, percpu, 0));
1646		if (failb == syndrome_disks) {
1647			/* We're missing D+P. */
1648			return async_raid6_datap_recov(syndrome_disks+2,
1649						       STRIPE_SIZE, faila,
1650						       blocks, &submit);
1651		} else {
1652			/* We're missing D+D. */
1653			return async_raid6_2data_recov(syndrome_disks+2,
1654						       STRIPE_SIZE, faila, failb,
1655						       blocks, &submit);
1656		}
1657	}
1658}
1659
 
1660static void ops_complete_prexor(void *stripe_head_ref)
1661{
1662	struct stripe_head *sh = stripe_head_ref;
1663
1664	pr_debug("%s: stripe %llu\n", __func__,
1665		(unsigned long long)sh->sector);
1666
1667	if (r5c_is_writeback(sh->raid_conf->log))
1668		/*
1669		 * raid5-cache write back uses orig_page during prexor.
1670		 * After prexor, it is time to free orig_page
1671		 */
1672		r5c_release_extra_page(sh);
1673}
1674
1675static struct dma_async_tx_descriptor *
1676ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1677		struct dma_async_tx_descriptor *tx)
1678{
1679	int disks = sh->disks;
1680	struct page **xor_srcs = to_addr_page(percpu, 0);
1681	int count = 0, pd_idx = sh->pd_idx, i;
1682	struct async_submit_ctl submit;
1683
1684	/* existing parity data subtracted */
1685	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1686
1687	BUG_ON(sh->batch_head);
1688	pr_debug("%s: stripe %llu\n", __func__,
1689		(unsigned long long)sh->sector);
1690
1691	for (i = disks; i--; ) {
1692		struct r5dev *dev = &sh->dev[i];
1693		/* Only process blocks that are known to be uptodate */
1694		if (test_bit(R5_InJournal, &dev->flags))
1695			xor_srcs[count++] = dev->orig_page;
1696		else if (test_bit(R5_Wantdrain, &dev->flags))
1697			xor_srcs[count++] = dev->page;
1698	}
1699
1700	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1701			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1702	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1703
1704	return tx;
1705}
1706
1707static struct dma_async_tx_descriptor *
1708ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1709		struct dma_async_tx_descriptor *tx)
1710{
1711	struct page **blocks = to_addr_page(percpu, 0);
1712	int count;
1713	struct async_submit_ctl submit;
1714
1715	pr_debug("%s: stripe %llu\n", __func__,
1716		(unsigned long long)sh->sector);
1717
1718	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1719
1720	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1721			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1722	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1723
1724	return tx;
1725}
1726
1727static struct dma_async_tx_descriptor *
1728ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1729{
1730	struct r5conf *conf = sh->raid_conf;
1731	int disks = sh->disks;
1732	int i;
1733	struct stripe_head *head_sh = sh;
1734
1735	pr_debug("%s: stripe %llu\n", __func__,
1736		(unsigned long long)sh->sector);
1737
1738	for (i = disks; i--; ) {
1739		struct r5dev *dev;
1740		struct bio *chosen;
1741
1742		sh = head_sh;
1743		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1744			struct bio *wbi;
1745
1746again:
1747			dev = &sh->dev[i];
1748			/*
1749			 * clear R5_InJournal, so when rewriting a page in
1750			 * journal, it is not skipped by r5l_log_stripe()
1751			 */
1752			clear_bit(R5_InJournal, &dev->flags);
1753			spin_lock_irq(&sh->stripe_lock);
1754			chosen = dev->towrite;
1755			dev->towrite = NULL;
1756			sh->overwrite_disks = 0;
1757			BUG_ON(dev->written);
1758			wbi = dev->written = chosen;
1759			spin_unlock_irq(&sh->stripe_lock);
1760			WARN_ON(dev->page != dev->orig_page);
1761
1762			while (wbi && wbi->bi_iter.bi_sector <
1763				dev->sector + STRIPE_SECTORS) {
1764				if (wbi->bi_opf & REQ_FUA)
1765					set_bit(R5_WantFUA, &dev->flags);
1766				if (wbi->bi_opf & REQ_SYNC)
1767					set_bit(R5_SyncIO, &dev->flags);
1768				if (bio_op(wbi) == REQ_OP_DISCARD)
1769					set_bit(R5_Discard, &dev->flags);
1770				else {
1771					tx = async_copy_data(1, wbi, &dev->page,
1772							     dev->sector, tx, sh,
1773							     r5c_is_writeback(conf->log));
1774					if (dev->page != dev->orig_page &&
1775					    !r5c_is_writeback(conf->log)) {
1776						set_bit(R5_SkipCopy, &dev->flags);
1777						clear_bit(R5_UPTODATE, &dev->flags);
1778						clear_bit(R5_OVERWRITE, &dev->flags);
1779					}
1780				}
1781				wbi = r5_next_bio(wbi, dev->sector);
1782			}
1783
1784			if (head_sh->batch_head) {
1785				sh = list_first_entry(&sh->batch_list,
1786						      struct stripe_head,
1787						      batch_list);
1788				if (sh == head_sh)
1789					continue;
1790				goto again;
1791			}
1792		}
1793	}
1794
1795	return tx;
1796}
1797
1798static void ops_complete_reconstruct(void *stripe_head_ref)
1799{
1800	struct stripe_head *sh = stripe_head_ref;
1801	int disks = sh->disks;
1802	int pd_idx = sh->pd_idx;
1803	int qd_idx = sh->qd_idx;
1804	int i;
1805	bool fua = false, sync = false, discard = false;
1806
1807	pr_debug("%s: stripe %llu\n", __func__,
1808		(unsigned long long)sh->sector);
1809
1810	for (i = disks; i--; ) {
1811		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1812		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1813		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1814	}
1815
1816	for (i = disks; i--; ) {
1817		struct r5dev *dev = &sh->dev[i];
1818
1819		if (dev->written || i == pd_idx || i == qd_idx) {
1820			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1821				set_bit(R5_UPTODATE, &dev->flags);
1822				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1823					set_bit(R5_Expanded, &dev->flags);
1824			}
1825			if (fua)
1826				set_bit(R5_WantFUA, &dev->flags);
1827			if (sync)
1828				set_bit(R5_SyncIO, &dev->flags);
1829		}
1830	}
1831
1832	if (sh->reconstruct_state == reconstruct_state_drain_run)
1833		sh->reconstruct_state = reconstruct_state_drain_result;
1834	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1835		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1836	else {
1837		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1838		sh->reconstruct_state = reconstruct_state_result;
1839	}
1840
1841	set_bit(STRIPE_HANDLE, &sh->state);
1842	raid5_release_stripe(sh);
1843}
1844
1845static void
1846ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1847		     struct dma_async_tx_descriptor *tx)
1848{
1849	int disks = sh->disks;
1850	struct page **xor_srcs;
1851	struct async_submit_ctl submit;
1852	int count, pd_idx = sh->pd_idx, i;
1853	struct page *xor_dest;
1854	int prexor = 0;
1855	unsigned long flags;
1856	int j = 0;
1857	struct stripe_head *head_sh = sh;
1858	int last_stripe;
1859
1860	pr_debug("%s: stripe %llu\n", __func__,
1861		(unsigned long long)sh->sector);
1862
1863	for (i = 0; i < sh->disks; i++) {
1864		if (pd_idx == i)
1865			continue;
1866		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1867			break;
1868	}
1869	if (i >= sh->disks) {
1870		atomic_inc(&sh->count);
1871		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1872		ops_complete_reconstruct(sh);
1873		return;
1874	}
1875again:
1876	count = 0;
1877	xor_srcs = to_addr_page(percpu, j);
1878	/* check if prexor is active which means only process blocks
1879	 * that are part of a read-modify-write (written)
1880	 */
1881	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1882		prexor = 1;
1883		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1884		for (i = disks; i--; ) {
1885			struct r5dev *dev = &sh->dev[i];
1886			if (head_sh->dev[i].written ||
1887			    test_bit(R5_InJournal, &head_sh->dev[i].flags))
1888				xor_srcs[count++] = dev->page;
1889		}
1890	} else {
1891		xor_dest = sh->dev[pd_idx].page;
1892		for (i = disks; i--; ) {
1893			struct r5dev *dev = &sh->dev[i];
1894			if (i != pd_idx)
1895				xor_srcs[count++] = dev->page;
1896		}
1897	}
1898
1899	/* 1/ if we prexor'd then the dest is reused as a source
1900	 * 2/ if we did not prexor then we are redoing the parity
1901	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1902	 * for the synchronous xor case
1903	 */
1904	last_stripe = !head_sh->batch_head ||
1905		list_first_entry(&sh->batch_list,
1906				 struct stripe_head, batch_list) == head_sh;
1907	if (last_stripe) {
1908		flags = ASYNC_TX_ACK |
1909			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1910
1911		atomic_inc(&head_sh->count);
1912		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1913				  to_addr_conv(sh, percpu, j));
1914	} else {
1915		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1916		init_async_submit(&submit, flags, tx, NULL, NULL,
1917				  to_addr_conv(sh, percpu, j));
1918	}
1919
 
 
1920	if (unlikely(count == 1))
1921		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1922	else
1923		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1924	if (!last_stripe) {
1925		j++;
1926		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1927				      batch_list);
1928		goto again;
1929	}
1930}
1931
1932static void
1933ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1934		     struct dma_async_tx_descriptor *tx)
1935{
1936	struct async_submit_ctl submit;
1937	struct page **blocks;
1938	int count, i, j = 0;
1939	struct stripe_head *head_sh = sh;
1940	int last_stripe;
1941	int synflags;
1942	unsigned long txflags;
1943
1944	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1945
1946	for (i = 0; i < sh->disks; i++) {
1947		if (sh->pd_idx == i || sh->qd_idx == i)
1948			continue;
1949		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1950			break;
1951	}
1952	if (i >= sh->disks) {
1953		atomic_inc(&sh->count);
1954		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1955		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1956		ops_complete_reconstruct(sh);
1957		return;
1958	}
1959
1960again:
1961	blocks = to_addr_page(percpu, j);
1962
1963	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1964		synflags = SYNDROME_SRC_WRITTEN;
1965		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1966	} else {
1967		synflags = SYNDROME_SRC_ALL;
1968		txflags = ASYNC_TX_ACK;
1969	}
1970
1971	count = set_syndrome_sources(blocks, sh, synflags);
1972	last_stripe = !head_sh->batch_head ||
1973		list_first_entry(&sh->batch_list,
1974				 struct stripe_head, batch_list) == head_sh;
1975
1976	if (last_stripe) {
1977		atomic_inc(&head_sh->count);
1978		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1979				  head_sh, to_addr_conv(sh, percpu, j));
1980	} else
1981		init_async_submit(&submit, 0, tx, NULL, NULL,
1982				  to_addr_conv(sh, percpu, j));
1983	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1984	if (!last_stripe) {
1985		j++;
1986		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1987				      batch_list);
1988		goto again;
1989	}
1990}
1991
1992static void ops_complete_check(void *stripe_head_ref)
1993{
1994	struct stripe_head *sh = stripe_head_ref;
1995
1996	pr_debug("%s: stripe %llu\n", __func__,
1997		(unsigned long long)sh->sector);
1998
1999	sh->check_state = check_state_check_result;
2000	set_bit(STRIPE_HANDLE, &sh->state);
2001	raid5_release_stripe(sh);
2002}
2003
2004static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2005{
2006	int disks = sh->disks;
2007	int pd_idx = sh->pd_idx;
2008	int qd_idx = sh->qd_idx;
2009	struct page *xor_dest;
2010	struct page **xor_srcs = to_addr_page(percpu, 0);
2011	struct dma_async_tx_descriptor *tx;
2012	struct async_submit_ctl submit;
2013	int count;
2014	int i;
2015
2016	pr_debug("%s: stripe %llu\n", __func__,
2017		(unsigned long long)sh->sector);
2018
2019	BUG_ON(sh->batch_head);
2020	count = 0;
2021	xor_dest = sh->dev[pd_idx].page;
2022	xor_srcs[count++] = xor_dest;
2023	for (i = disks; i--; ) {
2024		if (i == pd_idx || i == qd_idx)
2025			continue;
2026		xor_srcs[count++] = sh->dev[i].page;
2027	}
2028
2029	init_async_submit(&submit, 0, NULL, NULL, NULL,
2030			  to_addr_conv(sh, percpu, 0));
2031	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2032			   &sh->ops.zero_sum_result, &submit);
2033
2034	atomic_inc(&sh->count);
2035	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2036	tx = async_trigger_callback(&submit);
2037}
2038
2039static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2040{
2041	struct page **srcs = to_addr_page(percpu, 0);
2042	struct async_submit_ctl submit;
2043	int count;
2044
2045	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2046		(unsigned long long)sh->sector, checkp);
2047
2048	BUG_ON(sh->batch_head);
2049	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2050	if (!checkp)
2051		srcs[count] = NULL;
2052
2053	atomic_inc(&sh->count);
2054	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2055			  sh, to_addr_conv(sh, percpu, 0));
2056	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2057			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2058}
2059
2060static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2061{
2062	int overlap_clear = 0, i, disks = sh->disks;
2063	struct dma_async_tx_descriptor *tx = NULL;
2064	struct r5conf *conf = sh->raid_conf;
2065	int level = conf->level;
2066	struct raid5_percpu *percpu;
2067	unsigned long cpu;
2068
2069	cpu = get_cpu();
2070	percpu = per_cpu_ptr(conf->percpu, cpu);
2071	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2072		ops_run_biofill(sh);
2073		overlap_clear++;
2074	}
2075
2076	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2077		if (level < 6)
2078			tx = ops_run_compute5(sh, percpu);
2079		else {
2080			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2081				tx = ops_run_compute6_1(sh, percpu);
2082			else
2083				tx = ops_run_compute6_2(sh, percpu);
2084		}
2085		/* terminate the chain if reconstruct is not set to be run */
2086		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2087			async_tx_ack(tx);
2088	}
2089
2090	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2091		if (level < 6)
2092			tx = ops_run_prexor5(sh, percpu, tx);
2093		else
2094			tx = ops_run_prexor6(sh, percpu, tx);
2095	}
2096
2097	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2098		tx = ops_run_partial_parity(sh, percpu, tx);
2099
2100	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2101		tx = ops_run_biodrain(sh, tx);
2102		overlap_clear++;
2103	}
2104
2105	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2106		if (level < 6)
2107			ops_run_reconstruct5(sh, percpu, tx);
2108		else
2109			ops_run_reconstruct6(sh, percpu, tx);
2110	}
2111
2112	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2113		if (sh->check_state == check_state_run)
2114			ops_run_check_p(sh, percpu);
2115		else if (sh->check_state == check_state_run_q)
2116			ops_run_check_pq(sh, percpu, 0);
2117		else if (sh->check_state == check_state_run_pq)
2118			ops_run_check_pq(sh, percpu, 1);
2119		else
2120			BUG();
2121	}
2122
2123	if (overlap_clear && !sh->batch_head)
2124		for (i = disks; i--; ) {
2125			struct r5dev *dev = &sh->dev[i];
2126			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2127				wake_up(&sh->raid_conf->wait_for_overlap);
2128		}
2129	put_cpu();
2130}
2131
2132static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
 
2133{
2134	if (sh->ppl_page)
2135		__free_page(sh->ppl_page);
2136	kmem_cache_free(sc, sh);
 
 
 
 
 
2137}
2138
2139static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2140	int disks, struct r5conf *conf)
2141{
2142	struct stripe_head *sh;
2143	int i;
 
 
 
 
 
2144
2145	sh = kmem_cache_zalloc(sc, gfp);
2146	if (sh) {
2147		spin_lock_init(&sh->stripe_lock);
2148		spin_lock_init(&sh->batch_lock);
2149		INIT_LIST_HEAD(&sh->batch_list);
2150		INIT_LIST_HEAD(&sh->lru);
2151		INIT_LIST_HEAD(&sh->r5c);
2152		INIT_LIST_HEAD(&sh->log_list);
2153		atomic_set(&sh->count, 1);
2154		sh->raid_conf = conf;
2155		sh->log_start = MaxSector;
2156		for (i = 0; i < disks; i++) {
2157			struct r5dev *dev = &sh->dev[i];
2158
2159			bio_init(&dev->req, &dev->vec, 1);
2160			bio_init(&dev->rreq, &dev->rvec, 1);
2161		}
2162
2163		if (raid5_has_ppl(conf)) {
2164			sh->ppl_page = alloc_page(gfp);
2165			if (!sh->ppl_page) {
2166				free_stripe(sc, sh);
2167				sh = NULL;
2168			}
2169		}
2170	}
2171	return sh;
2172}
2173static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2174{
2175	struct stripe_head *sh;
2176
2177	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2178	if (!sh)
2179		return 0;
2180
2181	if (grow_buffers(sh, gfp)) {
 
 
 
 
 
2182		shrink_buffers(sh);
2183		free_stripe(conf->slab_cache, sh);
2184		return 0;
2185	}
2186	sh->hash_lock_index =
2187		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2188	/* we just created an active stripe so... */
 
2189	atomic_inc(&conf->active_stripes);
2190
2191	raid5_release_stripe(sh);
2192	conf->max_nr_stripes++;
2193	return 1;
2194}
2195
2196static int grow_stripes(struct r5conf *conf, int num)
2197{
2198	struct kmem_cache *sc;
2199	size_t namelen = sizeof(conf->cache_name[0]);
2200	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2201
2202	if (conf->mddev->gendisk)
2203		snprintf(conf->cache_name[0], namelen,
2204			"raid%d-%s", conf->level, mdname(conf->mddev));
2205	else
2206		snprintf(conf->cache_name[0], namelen,
2207			"raid%d-%p", conf->level, conf->mddev);
2208	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2209
2210	conf->active_name = 0;
2211	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2212			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2213			       0, 0, NULL);
2214	if (!sc)
2215		return 1;
2216	conf->slab_cache = sc;
2217	conf->pool_size = devs;
2218	while (num--)
2219		if (!grow_one_stripe(conf, GFP_KERNEL))
2220			return 1;
2221
2222	return 0;
2223}
2224
2225/**
2226 * scribble_len - return the required size of the scribble region
2227 * @num - total number of disks in the array
2228 *
2229 * The size must be enough to contain:
2230 * 1/ a struct page pointer for each device in the array +2
2231 * 2/ room to convert each entry in (1) to its corresponding dma
2232 *    (dma_map_page()) or page (page_address()) address.
2233 *
2234 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2235 * calculate over all devices (not just the data blocks), using zeros in place
2236 * of the P and Q blocks.
2237 */
2238static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2239{
2240	struct flex_array *ret;
2241	size_t len;
2242
2243	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2244	ret = flex_array_alloc(len, cnt, flags);
2245	if (!ret)
2246		return NULL;
2247	/* always prealloc all elements, so no locking is required */
2248	if (flex_array_prealloc(ret, 0, cnt, flags)) {
2249		flex_array_free(ret);
2250		return NULL;
2251	}
2252	return ret;
2253}
2254
2255static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2256{
2257	unsigned long cpu;
2258	int err = 0;
2259
2260	/*
2261	 * Never shrink. And mddev_suspend() could deadlock if this is called
2262	 * from raid5d. In that case, scribble_disks and scribble_sectors
2263	 * should equal to new_disks and new_sectors
2264	 */
2265	if (conf->scribble_disks >= new_disks &&
2266	    conf->scribble_sectors >= new_sectors)
2267		return 0;
2268	mddev_suspend(conf->mddev);
2269	get_online_cpus();
2270	for_each_present_cpu(cpu) {
2271		struct raid5_percpu *percpu;
2272		struct flex_array *scribble;
2273
2274		percpu = per_cpu_ptr(conf->percpu, cpu);
2275		scribble = scribble_alloc(new_disks,
2276					  new_sectors / STRIPE_SECTORS,
2277					  GFP_NOIO);
2278
2279		if (scribble) {
2280			flex_array_free(percpu->scribble);
2281			percpu->scribble = scribble;
2282		} else {
2283			err = -ENOMEM;
2284			break;
2285		}
2286	}
2287	put_online_cpus();
2288	mddev_resume(conf->mddev);
2289	if (!err) {
2290		conf->scribble_disks = new_disks;
2291		conf->scribble_sectors = new_sectors;
2292	}
2293	return err;
2294}
2295
2296static int resize_stripes(struct r5conf *conf, int newsize)
2297{
2298	/* Make all the stripes able to hold 'newsize' devices.
2299	 * New slots in each stripe get 'page' set to a new page.
2300	 *
2301	 * This happens in stages:
2302	 * 1/ create a new kmem_cache and allocate the required number of
2303	 *    stripe_heads.
2304	 * 2/ gather all the old stripe_heads and transfer the pages across
2305	 *    to the new stripe_heads.  This will have the side effect of
2306	 *    freezing the array as once all stripe_heads have been collected,
2307	 *    no IO will be possible.  Old stripe heads are freed once their
2308	 *    pages have been transferred over, and the old kmem_cache is
2309	 *    freed when all stripes are done.
2310	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2311	 *    we simple return a failure status - no need to clean anything up.
2312	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2313	 *    If this fails, we don't bother trying the shrink the
2314	 *    stripe_heads down again, we just leave them as they are.
2315	 *    As each stripe_head is processed the new one is released into
2316	 *    active service.
2317	 *
2318	 * Once step2 is started, we cannot afford to wait for a write,
2319	 * so we use GFP_NOIO allocations.
2320	 */
2321	struct stripe_head *osh, *nsh;
2322	LIST_HEAD(newstripes);
2323	struct disk_info *ndisks;
2324	int err = 0;
 
2325	struct kmem_cache *sc;
2326	int i;
2327	int hash, cnt;
2328
2329	md_allow_write(conf->mddev);
 
 
 
 
 
2330
2331	/* Step 1 */
2332	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2333			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2334			       0, 0, NULL);
2335	if (!sc)
2336		return -ENOMEM;
2337
2338	/* Need to ensure auto-resizing doesn't interfere */
2339	mutex_lock(&conf->cache_size_mutex);
2340
2341	for (i = conf->max_nr_stripes; i; i--) {
2342		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2343		if (!nsh)
2344			break;
2345
 
 
 
 
 
2346		list_add(&nsh->lru, &newstripes);
2347	}
2348	if (i) {
2349		/* didn't get enough, give up */
2350		while (!list_empty(&newstripes)) {
2351			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2352			list_del(&nsh->lru);
2353			free_stripe(sc, nsh);
2354		}
2355		kmem_cache_destroy(sc);
2356		mutex_unlock(&conf->cache_size_mutex);
2357		return -ENOMEM;
2358	}
2359	/* Step 2 - Must use GFP_NOIO now.
2360	 * OK, we have enough stripes, start collecting inactive
2361	 * stripes and copying them over
2362	 */
2363	hash = 0;
2364	cnt = 0;
2365	list_for_each_entry(nsh, &newstripes, lru) {
2366		lock_device_hash_lock(conf, hash);
2367		wait_event_cmd(conf->wait_for_stripe,
2368				    !list_empty(conf->inactive_list + hash),
2369				    unlock_device_hash_lock(conf, hash),
2370				    lock_device_hash_lock(conf, hash));
2371		osh = get_free_stripe(conf, hash);
2372		unlock_device_hash_lock(conf, hash);
2373
2374		for(i=0; i<conf->pool_size; i++) {
2375			nsh->dev[i].page = osh->dev[i].page;
2376			nsh->dev[i].orig_page = osh->dev[i].page;
2377		}
2378		nsh->hash_lock_index = hash;
2379		free_stripe(conf->slab_cache, osh);
2380		cnt++;
2381		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2382		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2383			hash++;
2384			cnt = 0;
2385		}
2386	}
2387	kmem_cache_destroy(conf->slab_cache);
2388
2389	/* Step 3.
2390	 * At this point, we are holding all the stripes so the array
2391	 * is completely stalled, so now is a good time to resize
2392	 * conf->disks and the scribble region
2393	 */
2394	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2395	if (ndisks) {
2396		for (i = 0; i < conf->pool_size; i++)
2397			ndisks[i] = conf->disks[i];
 
 
 
 
2398
2399		for (i = conf->pool_size; i < newsize; i++) {
2400			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2401			if (!ndisks[i].extra_page)
2402				err = -ENOMEM;
2403		}
 
 
 
2404
2405		if (err) {
2406			for (i = conf->pool_size; i < newsize; i++)
2407				if (ndisks[i].extra_page)
2408					put_page(ndisks[i].extra_page);
2409			kfree(ndisks);
2410		} else {
2411			kfree(conf->disks);
2412			conf->disks = ndisks;
2413		}
2414	} else
2415		err = -ENOMEM;
2416
2417	mutex_unlock(&conf->cache_size_mutex);
2418
2419	conf->slab_cache = sc;
2420	conf->active_name = 1-conf->active_name;
2421
2422	/* Step 4, return new stripes to service */
2423	while(!list_empty(&newstripes)) {
2424		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2425		list_del_init(&nsh->lru);
2426
2427		for (i=conf->raid_disks; i < newsize; i++)
2428			if (nsh->dev[i].page == NULL) {
2429				struct page *p = alloc_page(GFP_NOIO);
2430				nsh->dev[i].page = p;
2431				nsh->dev[i].orig_page = p;
2432				if (!p)
2433					err = -ENOMEM;
2434			}
2435		raid5_release_stripe(nsh);
2436	}
2437	/* critical section pass, GFP_NOIO no longer needed */
2438
2439	if (!err)
2440		conf->pool_size = newsize;
 
2441	return err;
2442}
2443
2444static int drop_one_stripe(struct r5conf *conf)
2445{
2446	struct stripe_head *sh;
2447	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2448
2449	spin_lock_irq(conf->hash_locks + hash);
2450	sh = get_free_stripe(conf, hash);
2451	spin_unlock_irq(conf->hash_locks + hash);
2452	if (!sh)
2453		return 0;
2454	BUG_ON(atomic_read(&sh->count));
2455	shrink_buffers(sh);
2456	free_stripe(conf->slab_cache, sh);
2457	atomic_dec(&conf->active_stripes);
2458	conf->max_nr_stripes--;
2459	return 1;
2460}
2461
2462static void shrink_stripes(struct r5conf *conf)
2463{
2464	while (conf->max_nr_stripes &&
2465	       drop_one_stripe(conf))
2466		;
2467
2468	kmem_cache_destroy(conf->slab_cache);
 
2469	conf->slab_cache = NULL;
2470}
2471
2472static void raid5_end_read_request(struct bio * bi)
2473{
2474	struct stripe_head *sh = bi->bi_private;
2475	struct r5conf *conf = sh->raid_conf;
2476	int disks = sh->disks, i;
 
2477	char b[BDEVNAME_SIZE];
2478	struct md_rdev *rdev = NULL;
2479	sector_t s;
2480
2481	for (i=0 ; i<disks; i++)
2482		if (bi == &sh->dev[i].req)
2483			break;
2484
2485	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2486		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2487		bi->bi_status);
2488	if (i == disks) {
2489		bio_reset(bi);
2490		BUG();
2491		return;
2492	}
2493	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2494		/* If replacement finished while this request was outstanding,
2495		 * 'replacement' might be NULL already.
2496		 * In that case it moved down to 'rdev'.
2497		 * rdev is not removed until all requests are finished.
2498		 */
2499		rdev = conf->disks[i].replacement;
2500	if (!rdev)
2501		rdev = conf->disks[i].rdev;
2502
2503	if (use_new_offset(conf, sh))
2504		s = sh->sector + rdev->new_data_offset;
2505	else
2506		s = sh->sector + rdev->data_offset;
2507	if (!bi->bi_status) {
2508		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2509		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2510			/* Note that this cannot happen on a
2511			 * replacement device.  We just fail those on
2512			 * any error
2513			 */
2514			pr_info_ratelimited(
2515				"md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2516				mdname(conf->mddev), STRIPE_SECTORS,
2517				(unsigned long long)s,
 
2518				bdevname(rdev->bdev, b));
2519			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2520			clear_bit(R5_ReadError, &sh->dev[i].flags);
2521			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2522		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2523			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2524
2525		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2526			/*
2527			 * end read for a page in journal, this
2528			 * must be preparing for prexor in rmw
2529			 */
2530			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2531
2532		if (atomic_read(&rdev->read_errors))
2533			atomic_set(&rdev->read_errors, 0);
2534	} else {
2535		const char *bdn = bdevname(rdev->bdev, b);
2536		int retry = 0;
2537		int set_bad = 0;
2538
2539		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2540		atomic_inc(&rdev->read_errors);
2541		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2542			pr_warn_ratelimited(
2543				"md/raid:%s: read error on replacement device (sector %llu on %s).\n",
 
 
2544				mdname(conf->mddev),
2545				(unsigned long long)s,
 
2546				bdn);
2547		else if (conf->mddev->degraded >= conf->max_degraded) {
2548			set_bad = 1;
2549			pr_warn_ratelimited(
2550				"md/raid:%s: read error not correctable (sector %llu on %s).\n",
2551				mdname(conf->mddev),
2552				(unsigned long long)s,
2553				bdn);
2554		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2555			/* Oh, no!!! */
2556			set_bad = 1;
2557			pr_warn_ratelimited(
2558				"md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
 
2559				mdname(conf->mddev),
2560				(unsigned long long)s,
 
2561				bdn);
2562		} else if (atomic_read(&rdev->read_errors)
2563			 > conf->max_nr_stripes)
2564			pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
 
2565			       mdname(conf->mddev), bdn);
2566		else
2567			retry = 1;
2568		if (set_bad && test_bit(In_sync, &rdev->flags)
2569		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2570			retry = 1;
2571		if (retry)
2572			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2573				set_bit(R5_ReadError, &sh->dev[i].flags);
2574				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2575			} else
2576				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2577		else {
2578			clear_bit(R5_ReadError, &sh->dev[i].flags);
2579			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2580			if (!(set_bad
2581			      && test_bit(In_sync, &rdev->flags)
2582			      && rdev_set_badblocks(
2583				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2584				md_error(conf->mddev, rdev);
2585		}
2586	}
2587	rdev_dec_pending(rdev, conf->mddev);
2588	bio_reset(bi);
2589	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2590	set_bit(STRIPE_HANDLE, &sh->state);
2591	raid5_release_stripe(sh);
2592}
2593
2594static void raid5_end_write_request(struct bio *bi)
2595{
2596	struct stripe_head *sh = bi->bi_private;
2597	struct r5conf *conf = sh->raid_conf;
2598	int disks = sh->disks, i;
2599	struct md_rdev *uninitialized_var(rdev);
2600	sector_t first_bad;
2601	int bad_sectors;
2602	int replacement = 0;
2603
2604	for (i = 0 ; i < disks; i++) {
2605		if (bi == &sh->dev[i].req) {
2606			rdev = conf->disks[i].rdev;
2607			break;
2608		}
2609		if (bi == &sh->dev[i].rreq) {
2610			rdev = conf->disks[i].replacement;
2611			if (rdev)
2612				replacement = 1;
2613			else
2614				/* rdev was removed and 'replacement'
2615				 * replaced it.  rdev is not removed
2616				 * until all requests are finished.
2617				 */
2618				rdev = conf->disks[i].rdev;
2619			break;
2620		}
2621	}
2622	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2623		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2624		bi->bi_status);
2625	if (i == disks) {
2626		bio_reset(bi);
2627		BUG();
2628		return;
2629	}
2630
2631	if (replacement) {
2632		if (bi->bi_status)
2633			md_error(conf->mddev, rdev);
2634		else if (is_badblock(rdev, sh->sector,
2635				     STRIPE_SECTORS,
2636				     &first_bad, &bad_sectors))
2637			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2638	} else {
2639		if (bi->bi_status) {
2640			set_bit(STRIPE_DEGRADED, &sh->state);
2641			set_bit(WriteErrorSeen, &rdev->flags);
2642			set_bit(R5_WriteError, &sh->dev[i].flags);
2643			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2644				set_bit(MD_RECOVERY_NEEDED,
2645					&rdev->mddev->recovery);
2646		} else if (is_badblock(rdev, sh->sector,
2647				       STRIPE_SECTORS,
2648				       &first_bad, &bad_sectors)) {
2649			set_bit(R5_MadeGood, &sh->dev[i].flags);
2650			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2651				/* That was a successful write so make
2652				 * sure it looks like we already did
2653				 * a re-write.
2654				 */
2655				set_bit(R5_ReWrite, &sh->dev[i].flags);
2656		}
2657	}
2658	rdev_dec_pending(rdev, conf->mddev);
2659
2660	if (sh->batch_head && bi->bi_status && !replacement)
2661		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
 
 
 
 
 
2662
2663	bio_reset(bi);
2664	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2665		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2666	set_bit(STRIPE_HANDLE, &sh->state);
2667	raid5_release_stripe(sh);
2668
2669	if (sh->batch_head && sh != sh->batch_head)
2670		raid5_release_stripe(sh->batch_head);
2671}
2672
2673static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2674{
2675	char b[BDEVNAME_SIZE];
2676	struct r5conf *conf = mddev->private;
2677	unsigned long flags;
2678	pr_debug("raid456: error called\n");
2679
2680	spin_lock_irqsave(&conf->device_lock, flags);
 
 
 
 
 
 
 
 
 
 
2681	set_bit(Faulty, &rdev->flags);
2682	clear_bit(In_sync, &rdev->flags);
2683	mddev->degraded = raid5_calc_degraded(conf);
2684	spin_unlock_irqrestore(&conf->device_lock, flags);
2685	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2686
2687	set_bit(Blocked, &rdev->flags);
2688	set_mask_bits(&mddev->sb_flags, 0,
2689		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2690	pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2691		"md/raid:%s: Operation continuing on %d devices.\n",
2692		mdname(mddev),
2693		bdevname(rdev->bdev, b),
2694		mdname(mddev),
2695		conf->raid_disks - mddev->degraded);
2696	r5c_update_on_rdev_error(mddev, rdev);
2697}
2698
2699/*
2700 * Input: a 'big' sector number,
2701 * Output: index of the data and parity disk, and the sector # in them.
2702 */
2703sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2704			      int previous, int *dd_idx,
2705			      struct stripe_head *sh)
2706{
2707	sector_t stripe, stripe2;
2708	sector_t chunk_number;
2709	unsigned int chunk_offset;
2710	int pd_idx, qd_idx;
2711	int ddf_layout = 0;
2712	sector_t new_sector;
2713	int algorithm = previous ? conf->prev_algo
2714				 : conf->algorithm;
2715	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2716					 : conf->chunk_sectors;
2717	int raid_disks = previous ? conf->previous_raid_disks
2718				  : conf->raid_disks;
2719	int data_disks = raid_disks - conf->max_degraded;
2720
2721	/* First compute the information on this sector */
2722
2723	/*
2724	 * Compute the chunk number and the sector offset inside the chunk
2725	 */
2726	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2727	chunk_number = r_sector;
2728
2729	/*
2730	 * Compute the stripe number
2731	 */
2732	stripe = chunk_number;
2733	*dd_idx = sector_div(stripe, data_disks);
2734	stripe2 = stripe;
2735	/*
2736	 * Select the parity disk based on the user selected algorithm.
2737	 */
2738	pd_idx = qd_idx = -1;
2739	switch(conf->level) {
2740	case 4:
2741		pd_idx = data_disks;
2742		break;
2743	case 5:
2744		switch (algorithm) {
2745		case ALGORITHM_LEFT_ASYMMETRIC:
2746			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2747			if (*dd_idx >= pd_idx)
2748				(*dd_idx)++;
2749			break;
2750		case ALGORITHM_RIGHT_ASYMMETRIC:
2751			pd_idx = sector_div(stripe2, raid_disks);
2752			if (*dd_idx >= pd_idx)
2753				(*dd_idx)++;
2754			break;
2755		case ALGORITHM_LEFT_SYMMETRIC:
2756			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2757			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2758			break;
2759		case ALGORITHM_RIGHT_SYMMETRIC:
2760			pd_idx = sector_div(stripe2, raid_disks);
2761			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2762			break;
2763		case ALGORITHM_PARITY_0:
2764			pd_idx = 0;
2765			(*dd_idx)++;
2766			break;
2767		case ALGORITHM_PARITY_N:
2768			pd_idx = data_disks;
2769			break;
2770		default:
2771			BUG();
2772		}
2773		break;
2774	case 6:
2775
2776		switch (algorithm) {
2777		case ALGORITHM_LEFT_ASYMMETRIC:
2778			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2779			qd_idx = pd_idx + 1;
2780			if (pd_idx == raid_disks-1) {
2781				(*dd_idx)++;	/* Q D D D P */
2782				qd_idx = 0;
2783			} else if (*dd_idx >= pd_idx)
2784				(*dd_idx) += 2; /* D D P Q D */
2785			break;
2786		case ALGORITHM_RIGHT_ASYMMETRIC:
2787			pd_idx = sector_div(stripe2, raid_disks);
2788			qd_idx = pd_idx + 1;
2789			if (pd_idx == raid_disks-1) {
2790				(*dd_idx)++;	/* Q D D D P */
2791				qd_idx = 0;
2792			} else if (*dd_idx >= pd_idx)
2793				(*dd_idx) += 2; /* D D P Q D */
2794			break;
2795		case ALGORITHM_LEFT_SYMMETRIC:
2796			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2797			qd_idx = (pd_idx + 1) % raid_disks;
2798			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2799			break;
2800		case ALGORITHM_RIGHT_SYMMETRIC:
2801			pd_idx = sector_div(stripe2, raid_disks);
2802			qd_idx = (pd_idx + 1) % raid_disks;
2803			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2804			break;
2805
2806		case ALGORITHM_PARITY_0:
2807			pd_idx = 0;
2808			qd_idx = 1;
2809			(*dd_idx) += 2;
2810			break;
2811		case ALGORITHM_PARITY_N:
2812			pd_idx = data_disks;
2813			qd_idx = data_disks + 1;
2814			break;
2815
2816		case ALGORITHM_ROTATING_ZERO_RESTART:
2817			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2818			 * of blocks for computing Q is different.
2819			 */
2820			pd_idx = sector_div(stripe2, raid_disks);
2821			qd_idx = pd_idx + 1;
2822			if (pd_idx == raid_disks-1) {
2823				(*dd_idx)++;	/* Q D D D P */
2824				qd_idx = 0;
2825			} else if (*dd_idx >= pd_idx)
2826				(*dd_idx) += 2; /* D D P Q D */
2827			ddf_layout = 1;
2828			break;
2829
2830		case ALGORITHM_ROTATING_N_RESTART:
2831			/* Same a left_asymmetric, by first stripe is
2832			 * D D D P Q  rather than
2833			 * Q D D D P
2834			 */
2835			stripe2 += 1;
2836			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2837			qd_idx = pd_idx + 1;
2838			if (pd_idx == raid_disks-1) {
2839				(*dd_idx)++;	/* Q D D D P */
2840				qd_idx = 0;
2841			} else if (*dd_idx >= pd_idx)
2842				(*dd_idx) += 2; /* D D P Q D */
2843			ddf_layout = 1;
2844			break;
2845
2846		case ALGORITHM_ROTATING_N_CONTINUE:
2847			/* Same as left_symmetric but Q is before P */
2848			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2849			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2850			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2851			ddf_layout = 1;
2852			break;
2853
2854		case ALGORITHM_LEFT_ASYMMETRIC_6:
2855			/* RAID5 left_asymmetric, with Q on last device */
2856			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2857			if (*dd_idx >= pd_idx)
2858				(*dd_idx)++;
2859			qd_idx = raid_disks - 1;
2860			break;
2861
2862		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2863			pd_idx = sector_div(stripe2, raid_disks-1);
2864			if (*dd_idx >= pd_idx)
2865				(*dd_idx)++;
2866			qd_idx = raid_disks - 1;
2867			break;
2868
2869		case ALGORITHM_LEFT_SYMMETRIC_6:
2870			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2871			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2872			qd_idx = raid_disks - 1;
2873			break;
2874
2875		case ALGORITHM_RIGHT_SYMMETRIC_6:
2876			pd_idx = sector_div(stripe2, raid_disks-1);
2877			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2878			qd_idx = raid_disks - 1;
2879			break;
2880
2881		case ALGORITHM_PARITY_0_6:
2882			pd_idx = 0;
2883			(*dd_idx)++;
2884			qd_idx = raid_disks - 1;
2885			break;
2886
2887		default:
2888			BUG();
2889		}
2890		break;
2891	}
2892
2893	if (sh) {
2894		sh->pd_idx = pd_idx;
2895		sh->qd_idx = qd_idx;
2896		sh->ddf_layout = ddf_layout;
2897	}
2898	/*
2899	 * Finally, compute the new sector number
2900	 */
2901	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2902	return new_sector;
2903}
2904
2905sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
 
2906{
2907	struct r5conf *conf = sh->raid_conf;
2908	int raid_disks = sh->disks;
2909	int data_disks = raid_disks - conf->max_degraded;
2910	sector_t new_sector = sh->sector, check;
2911	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2912					 : conf->chunk_sectors;
2913	int algorithm = previous ? conf->prev_algo
2914				 : conf->algorithm;
2915	sector_t stripe;
2916	int chunk_offset;
2917	sector_t chunk_number;
2918	int dummy1, dd_idx = i;
2919	sector_t r_sector;
2920	struct stripe_head sh2;
2921
 
2922	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2923	stripe = new_sector;
2924
2925	if (i == sh->pd_idx)
2926		return 0;
2927	switch(conf->level) {
2928	case 4: break;
2929	case 5:
2930		switch (algorithm) {
2931		case ALGORITHM_LEFT_ASYMMETRIC:
2932		case ALGORITHM_RIGHT_ASYMMETRIC:
2933			if (i > sh->pd_idx)
2934				i--;
2935			break;
2936		case ALGORITHM_LEFT_SYMMETRIC:
2937		case ALGORITHM_RIGHT_SYMMETRIC:
2938			if (i < sh->pd_idx)
2939				i += raid_disks;
2940			i -= (sh->pd_idx + 1);
2941			break;
2942		case ALGORITHM_PARITY_0:
2943			i -= 1;
2944			break;
2945		case ALGORITHM_PARITY_N:
2946			break;
2947		default:
2948			BUG();
2949		}
2950		break;
2951	case 6:
2952		if (i == sh->qd_idx)
2953			return 0; /* It is the Q disk */
2954		switch (algorithm) {
2955		case ALGORITHM_LEFT_ASYMMETRIC:
2956		case ALGORITHM_RIGHT_ASYMMETRIC:
2957		case ALGORITHM_ROTATING_ZERO_RESTART:
2958		case ALGORITHM_ROTATING_N_RESTART:
2959			if (sh->pd_idx == raid_disks-1)
2960				i--;	/* Q D D D P */
2961			else if (i > sh->pd_idx)
2962				i -= 2; /* D D P Q D */
2963			break;
2964		case ALGORITHM_LEFT_SYMMETRIC:
2965		case ALGORITHM_RIGHT_SYMMETRIC:
2966			if (sh->pd_idx == raid_disks-1)
2967				i--; /* Q D D D P */
2968			else {
2969				/* D D P Q D */
2970				if (i < sh->pd_idx)
2971					i += raid_disks;
2972				i -= (sh->pd_idx + 2);
2973			}
2974			break;
2975		case ALGORITHM_PARITY_0:
2976			i -= 2;
2977			break;
2978		case ALGORITHM_PARITY_N:
2979			break;
2980		case ALGORITHM_ROTATING_N_CONTINUE:
2981			/* Like left_symmetric, but P is before Q */
2982			if (sh->pd_idx == 0)
2983				i--;	/* P D D D Q */
2984			else {
2985				/* D D Q P D */
2986				if (i < sh->pd_idx)
2987					i += raid_disks;
2988				i -= (sh->pd_idx + 1);
2989			}
2990			break;
2991		case ALGORITHM_LEFT_ASYMMETRIC_6:
2992		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2993			if (i > sh->pd_idx)
2994				i--;
2995			break;
2996		case ALGORITHM_LEFT_SYMMETRIC_6:
2997		case ALGORITHM_RIGHT_SYMMETRIC_6:
2998			if (i < sh->pd_idx)
2999				i += data_disks + 1;
3000			i -= (sh->pd_idx + 1);
3001			break;
3002		case ALGORITHM_PARITY_0_6:
3003			i -= 1;
3004			break;
3005		default:
3006			BUG();
3007		}
3008		break;
3009	}
3010
3011	chunk_number = stripe * data_disks + i;
3012	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3013
3014	check = raid5_compute_sector(conf, r_sector,
3015				     previous, &dummy1, &sh2);
3016	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3017		|| sh2.qd_idx != sh->qd_idx) {
3018		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3019			mdname(conf->mddev));
3020		return 0;
3021	}
3022	return r_sector;
3023}
3024
3025/*
3026 * There are cases where we want handle_stripe_dirtying() and
3027 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3028 *
3029 * This function checks whether we want to delay the towrite. Specifically,
3030 * we delay the towrite when:
3031 *
3032 *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3033 *      stripe has data in journal (for other devices).
3034 *
3035 *      In this case, when reading data for the non-overwrite dev, it is
3036 *      necessary to handle complex rmw of write back cache (prexor with
3037 *      orig_page, and xor with page). To keep read path simple, we would
3038 *      like to flush data in journal to RAID disks first, so complex rmw
3039 *      is handled in the write patch (handle_stripe_dirtying).
3040 *
3041 *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3042 *
3043 *      It is important to be able to flush all stripes in raid5-cache.
3044 *      Therefore, we need reserve some space on the journal device for
3045 *      these flushes. If flush operation includes pending writes to the
3046 *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3047 *      for the flush out. If we exclude these pending writes from flush
3048 *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3049 *      Therefore, excluding pending writes in these cases enables more
3050 *      efficient use of the journal device.
3051 *
3052 *      Note: To make sure the stripe makes progress, we only delay
3053 *      towrite for stripes with data already in journal (injournal > 0).
3054 *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3055 *      no_space_stripes list.
3056 *
3057 *   3. during journal failure
3058 *      In journal failure, we try to flush all cached data to raid disks
3059 *      based on data in stripe cache. The array is read-only to upper
3060 *      layers, so we would skip all pending writes.
3061 *
3062 */
3063static inline bool delay_towrite(struct r5conf *conf,
3064				 struct r5dev *dev,
3065				 struct stripe_head_state *s)
3066{
3067	/* case 1 above */
3068	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3069	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3070		return true;
3071	/* case 2 above */
3072	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3073	    s->injournal > 0)
3074		return true;
3075	/* case 3 above */
3076	if (s->log_failed && s->injournal)
3077		return true;
3078	return false;
3079}
3080
3081static void
3082schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3083			 int rcw, int expand)
3084{
3085	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3086	struct r5conf *conf = sh->raid_conf;
3087	int level = conf->level;
3088
3089	if (rcw) {
3090		/*
3091		 * In some cases, handle_stripe_dirtying initially decided to
3092		 * run rmw and allocates extra page for prexor. However, rcw is
3093		 * cheaper later on. We need to free the extra page now,
3094		 * because we won't be able to do that in ops_complete_prexor().
3095		 */
3096		r5c_release_extra_page(sh);
 
 
 
 
 
 
3097
3098		for (i = disks; i--; ) {
3099			struct r5dev *dev = &sh->dev[i];
3100
3101			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3102				set_bit(R5_LOCKED, &dev->flags);
3103				set_bit(R5_Wantdrain, &dev->flags);
3104				if (!expand)
3105					clear_bit(R5_UPTODATE, &dev->flags);
3106				s->locked++;
3107			} else if (test_bit(R5_InJournal, &dev->flags)) {
3108				set_bit(R5_LOCKED, &dev->flags);
3109				s->locked++;
3110			}
3111		}
3112		/* if we are not expanding this is a proper write request, and
3113		 * there will be bios with new data to be drained into the
3114		 * stripe cache
3115		 */
3116		if (!expand) {
3117			if (!s->locked)
3118				/* False alarm, nothing to do */
3119				return;
3120			sh->reconstruct_state = reconstruct_state_drain_run;
3121			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3122		} else
3123			sh->reconstruct_state = reconstruct_state_run;
3124
3125		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3126
3127		if (s->locked + conf->max_degraded == disks)
3128			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3129				atomic_inc(&conf->pending_full_writes);
3130	} else {
 
3131		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3132			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3133		BUG_ON(level == 6 &&
3134			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3135			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
 
 
3136
3137		for (i = disks; i--; ) {
3138			struct r5dev *dev = &sh->dev[i];
3139			if (i == pd_idx || i == qd_idx)
3140				continue;
3141
3142			if (dev->towrite &&
3143			    (test_bit(R5_UPTODATE, &dev->flags) ||
3144			     test_bit(R5_Wantcompute, &dev->flags))) {
3145				set_bit(R5_Wantdrain, &dev->flags);
3146				set_bit(R5_LOCKED, &dev->flags);
3147				clear_bit(R5_UPTODATE, &dev->flags);
3148				s->locked++;
3149			} else if (test_bit(R5_InJournal, &dev->flags)) {
3150				set_bit(R5_LOCKED, &dev->flags);
3151				s->locked++;
3152			}
3153		}
3154		if (!s->locked)
3155			/* False alarm - nothing to do */
3156			return;
3157		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3158		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3159		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3160		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3161	}
3162
3163	/* keep the parity disk(s) locked while asynchronous operations
3164	 * are in flight
3165	 */
3166	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3167	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3168	s->locked++;
3169
3170	if (level == 6) {
3171		int qd_idx = sh->qd_idx;
3172		struct r5dev *dev = &sh->dev[qd_idx];
3173
3174		set_bit(R5_LOCKED, &dev->flags);
3175		clear_bit(R5_UPTODATE, &dev->flags);
3176		s->locked++;
3177	}
3178
3179	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3180	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3181	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3182	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3183		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3184
3185	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3186		__func__, (unsigned long long)sh->sector,
3187		s->locked, s->ops_request);
3188}
3189
3190/*
3191 * Each stripe/dev can have one or more bion attached.
3192 * toread/towrite point to the first in a chain.
3193 * The bi_next chain must be in order.
3194 */
3195static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3196			  int forwrite, int previous)
3197{
3198	struct bio **bip;
3199	struct r5conf *conf = sh->raid_conf;
3200	int firstwrite=0;
3201
3202	pr_debug("adding bi b#%llu to stripe s#%llu\n",
3203		(unsigned long long)bi->bi_iter.bi_sector,
3204		(unsigned long long)sh->sector);
3205
3206	spin_lock_irq(&sh->stripe_lock);
3207	/* Don't allow new IO added to stripes in batch list */
3208	if (sh->batch_head)
3209		goto overlap;
3210	if (forwrite) {
3211		bip = &sh->dev[dd_idx].towrite;
3212		if (*bip == NULL)
3213			firstwrite = 1;
3214	} else
3215		bip = &sh->dev[dd_idx].toread;
3216	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3217		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3218			goto overlap;
3219		bip = & (*bip)->bi_next;
3220	}
3221	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3222		goto overlap;
3223
3224	if (forwrite && raid5_has_ppl(conf)) {
3225		/*
3226		 * With PPL only writes to consecutive data chunks within a
3227		 * stripe are allowed because for a single stripe_head we can
3228		 * only have one PPL entry at a time, which describes one data
3229		 * range. Not really an overlap, but wait_for_overlap can be
3230		 * used to handle this.
3231		 */
3232		sector_t sector;
3233		sector_t first = 0;
3234		sector_t last = 0;
3235		int count = 0;
3236		int i;
3237
3238		for (i = 0; i < sh->disks; i++) {
3239			if (i != sh->pd_idx &&
3240			    (i == dd_idx || sh->dev[i].towrite)) {
3241				sector = sh->dev[i].sector;
3242				if (count == 0 || sector < first)
3243					first = sector;
3244				if (sector > last)
3245					last = sector;
3246				count++;
3247			}
3248		}
3249
3250		if (first + conf->chunk_sectors * (count - 1) != last)
3251			goto overlap;
3252	}
3253
3254	if (!forwrite || previous)
3255		clear_bit(STRIPE_BATCH_READY, &sh->state);
3256
3257	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3258	if (*bip)
3259		bi->bi_next = *bip;
3260	*bip = bi;
3261	bio_inc_remaining(bi);
3262	md_write_inc(conf->mddev, bi);
3263
3264	if (forwrite) {
3265		/* check if page is covered */
3266		sector_t sector = sh->dev[dd_idx].sector;
3267		for (bi=sh->dev[dd_idx].towrite;
3268		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3269			     bi && bi->bi_iter.bi_sector <= sector;
3270		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3271			if (bio_end_sector(bi) >= sector)
3272				sector = bio_end_sector(bi);
3273		}
3274		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3275			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3276				sh->overwrite_disks++;
3277	}
 
3278
3279	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3280		(unsigned long long)(*bip)->bi_iter.bi_sector,
3281		(unsigned long long)sh->sector, dd_idx);
3282
3283	if (conf->mddev->bitmap && firstwrite) {
3284		/* Cannot hold spinlock over bitmap_startwrite,
3285		 * but must ensure this isn't added to a batch until
3286		 * we have added to the bitmap and set bm_seq.
3287		 * So set STRIPE_BITMAP_PENDING to prevent
3288		 * batching.
3289		 * If multiple add_stripe_bio() calls race here they
3290		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3291		 * to complete "bitmap_startwrite" gets to set
3292		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3293		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3294		 * any more.
3295		 */
3296		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3297		spin_unlock_irq(&sh->stripe_lock);
3298		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3299				  STRIPE_SECTORS, 0);
3300		spin_lock_irq(&sh->stripe_lock);
3301		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3302		if (!sh->batch_head) {
3303			sh->bm_seq = conf->seq_flush+1;
3304			set_bit(STRIPE_BIT_DELAY, &sh->state);
3305		}
3306	}
3307	spin_unlock_irq(&sh->stripe_lock);
3308
3309	if (stripe_can_batch(sh))
3310		stripe_add_to_batch_list(conf, sh);
3311	return 1;
3312
3313 overlap:
3314	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3315	spin_unlock_irq(&sh->stripe_lock);
3316	return 0;
3317}
3318
3319static void end_reshape(struct r5conf *conf);
3320
3321static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3322			    struct stripe_head *sh)
3323{
3324	int sectors_per_chunk =
3325		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3326	int dd_idx;
3327	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3328	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3329
3330	raid5_compute_sector(conf,
3331			     stripe * (disks - conf->max_degraded)
3332			     *sectors_per_chunk + chunk_offset,
3333			     previous,
3334			     &dd_idx, sh);
3335}
3336
3337static void
3338handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3339		     struct stripe_head_state *s, int disks)
 
3340{
3341	int i;
3342	BUG_ON(sh->batch_head);
3343	for (i = disks; i--; ) {
3344		struct bio *bi;
3345		int bitmap_end = 0;
3346
3347		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3348			struct md_rdev *rdev;
3349			rcu_read_lock();
3350			rdev = rcu_dereference(conf->disks[i].rdev);
3351			if (rdev && test_bit(In_sync, &rdev->flags) &&
3352			    !test_bit(Faulty, &rdev->flags))
3353				atomic_inc(&rdev->nr_pending);
3354			else
3355				rdev = NULL;
3356			rcu_read_unlock();
3357			if (rdev) {
3358				if (!rdev_set_badblocks(
3359					    rdev,
3360					    sh->sector,
3361					    STRIPE_SECTORS, 0))
3362					md_error(conf->mddev, rdev);
3363				rdev_dec_pending(rdev, conf->mddev);
3364			}
3365		}
3366		spin_lock_irq(&sh->stripe_lock);
3367		/* fail all writes first */
3368		bi = sh->dev[i].towrite;
3369		sh->dev[i].towrite = NULL;
3370		sh->overwrite_disks = 0;
3371		spin_unlock_irq(&sh->stripe_lock);
3372		if (bi)
3373			bitmap_end = 1;
3374
3375		log_stripe_write_finished(sh);
3376
3377		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3378			wake_up(&conf->wait_for_overlap);
3379
3380		while (bi && bi->bi_iter.bi_sector <
3381			sh->dev[i].sector + STRIPE_SECTORS) {
3382			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3383
3384			md_write_end(conf->mddev);
3385			bio_io_error(bi);
 
 
 
3386			bi = nextbi;
3387		}
3388		if (bitmap_end)
3389			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3390				STRIPE_SECTORS, 0, 0);
3391		bitmap_end = 0;
3392		/* and fail all 'written' */
3393		bi = sh->dev[i].written;
3394		sh->dev[i].written = NULL;
3395		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3396			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3397			sh->dev[i].page = sh->dev[i].orig_page;
3398		}
3399
3400		if (bi) bitmap_end = 1;
3401		while (bi && bi->bi_iter.bi_sector <
3402		       sh->dev[i].sector + STRIPE_SECTORS) {
3403			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3404
3405			md_write_end(conf->mddev);
3406			bio_io_error(bi);
 
 
 
3407			bi = bi2;
3408		}
3409
3410		/* fail any reads if this device is non-operational and
3411		 * the data has not reached the cache yet.
3412		 */
3413		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3414		    s->failed > conf->max_degraded &&
3415		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3416		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3417			spin_lock_irq(&sh->stripe_lock);
3418			bi = sh->dev[i].toread;
3419			sh->dev[i].toread = NULL;
3420			spin_unlock_irq(&sh->stripe_lock);
3421			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3422				wake_up(&conf->wait_for_overlap);
3423			if (bi)
3424				s->to_read--;
3425			while (bi && bi->bi_iter.bi_sector <
3426			       sh->dev[i].sector + STRIPE_SECTORS) {
3427				struct bio *nextbi =
3428					r5_next_bio(bi, sh->dev[i].sector);
3429
3430				bio_io_error(bi);
 
 
 
3431				bi = nextbi;
3432			}
3433		}
 
3434		if (bitmap_end)
3435			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3436					STRIPE_SECTORS, 0, 0);
3437		/* If we were in the middle of a write the parity block might
3438		 * still be locked - so just clear all R5_LOCKED flags
3439		 */
3440		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3441	}
3442	s->to_write = 0;
3443	s->written = 0;
3444
3445	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3446		if (atomic_dec_and_test(&conf->pending_full_writes))
3447			md_wakeup_thread(conf->mddev->thread);
3448}
3449
3450static void
3451handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3452		   struct stripe_head_state *s)
3453{
3454	int abort = 0;
3455	int i;
3456
3457	BUG_ON(sh->batch_head);
3458	clear_bit(STRIPE_SYNCING, &sh->state);
3459	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3460		wake_up(&conf->wait_for_overlap);
3461	s->syncing = 0;
3462	s->replacing = 0;
3463	/* There is nothing more to do for sync/check/repair.
3464	 * Don't even need to abort as that is handled elsewhere
3465	 * if needed, and not always wanted e.g. if there is a known
3466	 * bad block here.
3467	 * For recover/replace we need to record a bad block on all
3468	 * non-sync devices, or abort the recovery
3469	 */
3470	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3471		/* During recovery devices cannot be removed, so
3472		 * locking and refcounting of rdevs is not needed
3473		 */
3474		rcu_read_lock();
3475		for (i = 0; i < conf->raid_disks; i++) {
3476			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3477			if (rdev
3478			    && !test_bit(Faulty, &rdev->flags)
3479			    && !test_bit(In_sync, &rdev->flags)
3480			    && !rdev_set_badblocks(rdev, sh->sector,
3481						   STRIPE_SECTORS, 0))
3482				abort = 1;
3483			rdev = rcu_dereference(conf->disks[i].replacement);
3484			if (rdev
3485			    && !test_bit(Faulty, &rdev->flags)
3486			    && !test_bit(In_sync, &rdev->flags)
3487			    && !rdev_set_badblocks(rdev, sh->sector,
3488						   STRIPE_SECTORS, 0))
3489				abort = 1;
3490		}
3491		rcu_read_unlock();
3492		if (abort)
3493			conf->recovery_disabled =
3494				conf->mddev->recovery_disabled;
3495	}
3496	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3497}
3498
3499static int want_replace(struct stripe_head *sh, int disk_idx)
3500{
3501	struct md_rdev *rdev;
3502	int rv = 0;
3503
3504	rcu_read_lock();
3505	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3506	if (rdev
3507	    && !test_bit(Faulty, &rdev->flags)
3508	    && !test_bit(In_sync, &rdev->flags)
3509	    && (rdev->recovery_offset <= sh->sector
3510		|| rdev->mddev->recovery_cp <= sh->sector))
3511		rv = 1;
3512	rcu_read_unlock();
3513	return rv;
3514}
3515
3516static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3517			   int disk_idx, int disks)
3518{
3519	struct r5dev *dev = &sh->dev[disk_idx];
3520	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3521				  &sh->dev[s->failed_num[1]] };
3522	int i;
3523
3524
3525	if (test_bit(R5_LOCKED, &dev->flags) ||
3526	    test_bit(R5_UPTODATE, &dev->flags))
3527		/* No point reading this as we already have it or have
3528		 * decided to get it.
3529		 */
3530		return 0;
3531
3532	if (dev->toread ||
3533	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3534		/* We need this block to directly satisfy a request */
3535		return 1;
3536
3537	if (s->syncing || s->expanding ||
3538	    (s->replacing && want_replace(sh, disk_idx)))
3539		/* When syncing, or expanding we read everything.
3540		 * When replacing, we need the replaced block.
3541		 */
3542		return 1;
3543
3544	if ((s->failed >= 1 && fdev[0]->toread) ||
3545	    (s->failed >= 2 && fdev[1]->toread))
3546		/* If we want to read from a failed device, then
3547		 * we need to actually read every other device.
3548		 */
3549		return 1;
3550
3551	/* Sometimes neither read-modify-write nor reconstruct-write
3552	 * cycles can work.  In those cases we read every block we
3553	 * can.  Then the parity-update is certain to have enough to
3554	 * work with.
3555	 * This can only be a problem when we need to write something,
3556	 * and some device has failed.  If either of those tests
3557	 * fail we need look no further.
3558	 */
3559	if (!s->failed || !s->to_write)
3560		return 0;
3561
3562	if (test_bit(R5_Insync, &dev->flags) &&
3563	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3564		/* Pre-reads at not permitted until after short delay
3565		 * to gather multiple requests.  However if this
3566		 * device is no Insync, the block could only be computed
3567		 * and there is no need to delay that.
3568		 */
3569		return 0;
3570
3571	for (i = 0; i < s->failed && i < 2; i++) {
3572		if (fdev[i]->towrite &&
3573		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3574		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3575			/* If we have a partial write to a failed
3576			 * device, then we will need to reconstruct
3577			 * the content of that device, so all other
3578			 * devices must be read.
3579			 */
3580			return 1;
3581	}
3582
3583	/* If we are forced to do a reconstruct-write, either because
3584	 * the current RAID6 implementation only supports that, or
3585	 * because parity cannot be trusted and we are currently
3586	 * recovering it, there is extra need to be careful.
3587	 * If one of the devices that we would need to read, because
3588	 * it is not being overwritten (and maybe not written at all)
3589	 * is missing/faulty, then we need to read everything we can.
3590	 */
3591	if (sh->raid_conf->level != 6 &&
3592	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3593		/* reconstruct-write isn't being forced */
3594		return 0;
3595	for (i = 0; i < s->failed && i < 2; i++) {
3596		if (s->failed_num[i] != sh->pd_idx &&
3597		    s->failed_num[i] != sh->qd_idx &&
3598		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3599		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3600			return 1;
3601	}
3602
3603	return 0;
3604}
3605
3606/* fetch_block - checks the given member device to see if its data needs
3607 * to be read or computed to satisfy a request.
3608 *
3609 * Returns 1 when no more member devices need to be checked, otherwise returns
3610 * 0 to tell the loop in handle_stripe_fill to continue
3611 */
3612static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3613		       int disk_idx, int disks)
3614{
3615	struct r5dev *dev = &sh->dev[disk_idx];
 
 
3616
3617	/* is the data in this block needed, and can we get it? */
3618	if (need_this_block(sh, s, disk_idx, disks)) {
 
 
 
 
 
 
 
 
 
3619		/* we would like to get this block, possibly by computing it,
3620		 * otherwise read it if the backing disk is insync
3621		 */
3622		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3623		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3624		BUG_ON(sh->batch_head);
3625
3626		/*
3627		 * In the raid6 case if the only non-uptodate disk is P
3628		 * then we already trusted P to compute the other failed
3629		 * drives. It is safe to compute rather than re-read P.
3630		 * In other cases we only compute blocks from failed
3631		 * devices, otherwise check/repair might fail to detect
3632		 * a real inconsistency.
3633		 */
3634
3635		if ((s->uptodate == disks - 1) &&
3636		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3637		    (s->failed && (disk_idx == s->failed_num[0] ||
3638				   disk_idx == s->failed_num[1])))) {
3639			/* have disk failed, and we're requested to fetch it;
3640			 * do compute it
3641			 */
3642			pr_debug("Computing stripe %llu block %d\n",
3643			       (unsigned long long)sh->sector, disk_idx);
3644			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3645			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3646			set_bit(R5_Wantcompute, &dev->flags);
3647			sh->ops.target = disk_idx;
3648			sh->ops.target2 = -1; /* no 2nd target */
3649			s->req_compute = 1;
3650			/* Careful: from this point on 'uptodate' is in the eye
3651			 * of raid_run_ops which services 'compute' operations
3652			 * before writes. R5_Wantcompute flags a block that will
3653			 * be R5_UPTODATE by the time it is needed for a
3654			 * subsequent operation.
3655			 */
3656			s->uptodate++;
3657			return 1;
3658		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3659			/* Computing 2-failure is *very* expensive; only
3660			 * do it if failed >= 2
3661			 */
3662			int other;
3663			for (other = disks; other--; ) {
3664				if (other == disk_idx)
3665					continue;
3666				if (!test_bit(R5_UPTODATE,
3667				      &sh->dev[other].flags))
3668					break;
3669			}
3670			BUG_ON(other < 0);
3671			pr_debug("Computing stripe %llu blocks %d,%d\n",
3672			       (unsigned long long)sh->sector,
3673			       disk_idx, other);
3674			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3675			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3676			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3677			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3678			sh->ops.target = disk_idx;
3679			sh->ops.target2 = other;
3680			s->uptodate += 2;
3681			s->req_compute = 1;
3682			return 1;
3683		} else if (test_bit(R5_Insync, &dev->flags)) {
3684			set_bit(R5_LOCKED, &dev->flags);
3685			set_bit(R5_Wantread, &dev->flags);
3686			s->locked++;
3687			pr_debug("Reading block %d (sync=%d)\n",
3688				disk_idx, s->syncing);
3689		}
3690	}
3691
3692	return 0;
3693}
3694
3695/**
3696 * handle_stripe_fill - read or compute data to satisfy pending requests.
3697 */
3698static void handle_stripe_fill(struct stripe_head *sh,
3699			       struct stripe_head_state *s,
3700			       int disks)
3701{
3702	int i;
3703
3704	/* look for blocks to read/compute, skip this if a compute
3705	 * is already in flight, or if the stripe contents are in the
3706	 * midst of changing due to a write
3707	 */
3708	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3709	    !sh->reconstruct_state) {
3710
3711		/*
3712		 * For degraded stripe with data in journal, do not handle
3713		 * read requests yet, instead, flush the stripe to raid
3714		 * disks first, this avoids handling complex rmw of write
3715		 * back cache (prexor with orig_page, and then xor with
3716		 * page) in the read path
3717		 */
3718		if (s->injournal && s->failed) {
3719			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3720				r5c_make_stripe_write_out(sh);
3721			goto out;
3722		}
3723
3724		for (i = disks; i--; )
3725			if (fetch_block(sh, s, i, disks))
3726				break;
3727	}
3728out:
3729	set_bit(STRIPE_HANDLE, &sh->state);
3730}
3731
3732static void break_stripe_batch_list(struct stripe_head *head_sh,
3733				    unsigned long handle_flags);
3734/* handle_stripe_clean_event
3735 * any written block on an uptodate or failed drive can be returned.
3736 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3737 * never LOCKED, so we don't need to test 'failed' directly.
3738 */
3739static void handle_stripe_clean_event(struct r5conf *conf,
3740	struct stripe_head *sh, int disks)
3741{
3742	int i;
3743	struct r5dev *dev;
3744	int discard_pending = 0;
3745	struct stripe_head *head_sh = sh;
3746	bool do_endio = false;
3747
3748	for (i = disks; i--; )
3749		if (sh->dev[i].written) {
3750			dev = &sh->dev[i];
3751			if (!test_bit(R5_LOCKED, &dev->flags) &&
3752			    (test_bit(R5_UPTODATE, &dev->flags) ||
3753			     test_bit(R5_Discard, &dev->flags) ||
3754			     test_bit(R5_SkipCopy, &dev->flags))) {
3755				/* We can return any write requests */
3756				struct bio *wbi, *wbi2;
 
3757				pr_debug("Return write for disc %d\n", i);
3758				if (test_and_clear_bit(R5_Discard, &dev->flags))
3759					clear_bit(R5_UPTODATE, &dev->flags);
3760				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3761					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3762				}
3763				do_endio = true;
3764
3765returnbi:
3766				dev->page = dev->orig_page;
3767				wbi = dev->written;
3768				dev->written = NULL;
3769				while (wbi && wbi->bi_iter.bi_sector <
3770					dev->sector + STRIPE_SECTORS) {
3771					wbi2 = r5_next_bio(wbi, dev->sector);
3772					md_write_end(conf->mddev);
3773					bio_endio(wbi);
 
 
 
3774					wbi = wbi2;
3775				}
3776				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3777						STRIPE_SECTORS,
 
 
 
 
 
3778					 !test_bit(STRIPE_DEGRADED, &sh->state),
3779						0);
3780				if (head_sh->batch_head) {
3781					sh = list_first_entry(&sh->batch_list,
3782							      struct stripe_head,
3783							      batch_list);
3784					if (sh != head_sh) {
3785						dev = &sh->dev[i];
3786						goto returnbi;
3787					}
3788				}
3789				sh = head_sh;
3790				dev = &sh->dev[i];
3791			} else if (test_bit(R5_Discard, &dev->flags))
3792				discard_pending = 1;
3793		}
3794
3795	log_stripe_write_finished(sh);
3796
3797	if (!discard_pending &&
3798	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3799		int hash;
3800		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3801		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3802		if (sh->qd_idx >= 0) {
3803			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3804			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3805		}
3806		/* now that discard is done we can proceed with any sync */
3807		clear_bit(STRIPE_DISCARD, &sh->state);
3808		/*
3809		 * SCSI discard will change some bio fields and the stripe has
3810		 * no updated data, so remove it from hash list and the stripe
3811		 * will be reinitialized
3812		 */
3813unhash:
3814		hash = sh->hash_lock_index;
3815		spin_lock_irq(conf->hash_locks + hash);
3816		remove_hash(sh);
3817		spin_unlock_irq(conf->hash_locks + hash);
3818		if (head_sh->batch_head) {
3819			sh = list_first_entry(&sh->batch_list,
3820					      struct stripe_head, batch_list);
3821			if (sh != head_sh)
3822					goto unhash;
3823		}
3824		sh = head_sh;
3825
3826		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3827			set_bit(STRIPE_HANDLE, &sh->state);
3828
3829	}
3830
3831	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3832		if (atomic_dec_and_test(&conf->pending_full_writes))
3833			md_wakeup_thread(conf->mddev->thread);
3834
3835	if (head_sh->batch_head && do_endio)
3836		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3837}
3838
3839/*
3840 * For RMW in write back cache, we need extra page in prexor to store the
3841 * old data. This page is stored in dev->orig_page.
3842 *
3843 * This function checks whether we have data for prexor. The exact logic
3844 * is:
3845 *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3846 */
3847static inline bool uptodate_for_rmw(struct r5dev *dev)
3848{
3849	return (test_bit(R5_UPTODATE, &dev->flags)) &&
3850		(!test_bit(R5_InJournal, &dev->flags) ||
3851		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3852}
3853
3854static int handle_stripe_dirtying(struct r5conf *conf,
3855				  struct stripe_head *sh,
3856				  struct stripe_head_state *s,
3857				  int disks)
3858{
3859	int rmw = 0, rcw = 0, i;
3860	sector_t recovery_cp = conf->mddev->recovery_cp;
3861
3862	/* Check whether resync is now happening or should start.
3863	 * If yes, then the array is dirty (after unclean shutdown or
3864	 * initial creation), so parity in some stripes might be inconsistent.
3865	 * In this case, we need to always do reconstruct-write, to ensure
3866	 * that in case of drive failure or read-error correction, we
3867	 * generate correct data from the parity.
3868	 */
3869	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3870	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3871	     s->failed == 0)) {
3872		/* Calculate the real rcw later - for now make it
3873		 * look like rcw is cheaper
3874		 */
3875		rcw = 1; rmw = 2;
3876		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3877			 conf->rmw_level, (unsigned long long)recovery_cp,
3878			 (unsigned long long)sh->sector);
3879	} else for (i = disks; i--; ) {
3880		/* would I have to read this buffer for read_modify_write */
3881		struct r5dev *dev = &sh->dev[i];
3882		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3883		     i == sh->pd_idx || i == sh->qd_idx ||
3884		     test_bit(R5_InJournal, &dev->flags)) &&
3885		    !test_bit(R5_LOCKED, &dev->flags) &&
3886		    !(uptodate_for_rmw(dev) ||
3887		      test_bit(R5_Wantcompute, &dev->flags))) {
3888			if (test_bit(R5_Insync, &dev->flags))
3889				rmw++;
3890			else
3891				rmw += 2*disks;  /* cannot read it */
3892		}
3893		/* Would I have to read this buffer for reconstruct_write */
3894		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3895		    i != sh->pd_idx && i != sh->qd_idx &&
3896		    !test_bit(R5_LOCKED, &dev->flags) &&
3897		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3898		      test_bit(R5_Wantcompute, &dev->flags))) {
3899			if (test_bit(R5_Insync, &dev->flags))
3900				rcw++;
3901			else
3902				rcw += 2*disks;
3903		}
3904	}
3905
3906	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3907		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3908	set_bit(STRIPE_HANDLE, &sh->state);
3909	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3910		/* prefer read-modify-write, but need to get some data */
3911		if (conf->mddev->queue)
3912			blk_add_trace_msg(conf->mddev->queue,
3913					  "raid5 rmw %llu %d",
3914					  (unsigned long long)sh->sector, rmw);
3915		for (i = disks; i--; ) {
3916			struct r5dev *dev = &sh->dev[i];
3917			if (test_bit(R5_InJournal, &dev->flags) &&
3918			    dev->page == dev->orig_page &&
3919			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3920				/* alloc page for prexor */
3921				struct page *p = alloc_page(GFP_NOIO);
3922
3923				if (p) {
3924					dev->orig_page = p;
3925					continue;
3926				}
3927
3928				/*
3929				 * alloc_page() failed, try use
3930				 * disk_info->extra_page
3931				 */
3932				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3933						      &conf->cache_state)) {
3934					r5c_use_extra_page(sh);
3935					break;
3936				}
3937
3938				/* extra_page in use, add to delayed_list */
3939				set_bit(STRIPE_DELAYED, &sh->state);
3940				s->waiting_extra_page = 1;
3941				return -EAGAIN;
3942			}
3943		}
3944
3945		for (i = disks; i--; ) {
3946			struct r5dev *dev = &sh->dev[i];
3947			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3948			     i == sh->pd_idx || i == sh->qd_idx ||
3949			     test_bit(R5_InJournal, &dev->flags)) &&
3950			    !test_bit(R5_LOCKED, &dev->flags) &&
3951			    !(uptodate_for_rmw(dev) ||
3952			      test_bit(R5_Wantcompute, &dev->flags)) &&
3953			    test_bit(R5_Insync, &dev->flags)) {
3954				if (test_bit(STRIPE_PREREAD_ACTIVE,
3955					     &sh->state)) {
3956					pr_debug("Read_old block %d for r-m-w\n",
3957						 i);
3958					set_bit(R5_LOCKED, &dev->flags);
3959					set_bit(R5_Wantread, &dev->flags);
3960					s->locked++;
3961				} else {
3962					set_bit(STRIPE_DELAYED, &sh->state);
3963					set_bit(STRIPE_HANDLE, &sh->state);
3964				}
3965			}
3966		}
3967	}
3968	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3969		/* want reconstruct write, but need to get some data */
3970		int qread =0;
3971		rcw = 0;
3972		for (i = disks; i--; ) {
3973			struct r5dev *dev = &sh->dev[i];
3974			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3975			    i != sh->pd_idx && i != sh->qd_idx &&
3976			    !test_bit(R5_LOCKED, &dev->flags) &&
3977			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3978			      test_bit(R5_Wantcompute, &dev->flags))) {
3979				rcw++;
3980				if (test_bit(R5_Insync, &dev->flags) &&
3981				    test_bit(STRIPE_PREREAD_ACTIVE,
3982					     &sh->state)) {
 
3983					pr_debug("Read_old block "
3984						"%d for Reconstruct\n", i);
3985					set_bit(R5_LOCKED, &dev->flags);
3986					set_bit(R5_Wantread, &dev->flags);
3987					s->locked++;
3988					qread++;
3989				} else {
3990					set_bit(STRIPE_DELAYED, &sh->state);
3991					set_bit(STRIPE_HANDLE, &sh->state);
3992				}
3993			}
3994		}
3995		if (rcw && conf->mddev->queue)
3996			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3997					  (unsigned long long)sh->sector,
3998					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3999	}
4000
4001	if (rcw > disks && rmw > disks &&
4002	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4003		set_bit(STRIPE_DELAYED, &sh->state);
4004
4005	/* now if nothing is locked, and if we have enough data,
4006	 * we can start a write request
4007	 */
4008	/* since handle_stripe can be called at any time we need to handle the
4009	 * case where a compute block operation has been submitted and then a
4010	 * subsequent call wants to start a write request.  raid_run_ops only
4011	 * handles the case where compute block and reconstruct are requested
4012	 * simultaneously.  If this is not the case then new writes need to be
4013	 * held off until the compute completes.
4014	 */
4015	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4016	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4017	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4018		schedule_reconstruction(sh, s, rcw == 0, 0);
4019	return 0;
4020}
4021
4022static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4023				struct stripe_head_state *s, int disks)
4024{
4025	struct r5dev *dev = NULL;
4026
4027	BUG_ON(sh->batch_head);
4028	set_bit(STRIPE_HANDLE, &sh->state);
4029
4030	switch (sh->check_state) {
4031	case check_state_idle:
4032		/* start a new check operation if there are no failures */
4033		if (s->failed == 0) {
4034			BUG_ON(s->uptodate != disks);
4035			sh->check_state = check_state_run;
4036			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4037			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4038			s->uptodate--;
4039			break;
4040		}
4041		dev = &sh->dev[s->failed_num[0]];
4042		/* fall through */
4043	case check_state_compute_result:
4044		sh->check_state = check_state_idle;
4045		if (!dev)
4046			dev = &sh->dev[sh->pd_idx];
4047
4048		/* check that a write has not made the stripe insync */
4049		if (test_bit(STRIPE_INSYNC, &sh->state))
4050			break;
4051
4052		/* either failed parity check, or recovery is happening */
4053		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4054		BUG_ON(s->uptodate != disks);
4055
4056		set_bit(R5_LOCKED, &dev->flags);
4057		s->locked++;
4058		set_bit(R5_Wantwrite, &dev->flags);
4059
4060		clear_bit(STRIPE_DEGRADED, &sh->state);
4061		set_bit(STRIPE_INSYNC, &sh->state);
4062		break;
4063	case check_state_run:
4064		break; /* we will be called again upon completion */
4065	case check_state_check_result:
4066		sh->check_state = check_state_idle;
4067
4068		/* if a failure occurred during the check operation, leave
4069		 * STRIPE_INSYNC not set and let the stripe be handled again
4070		 */
4071		if (s->failed)
4072			break;
4073
4074		/* handle a successful check operation, if parity is correct
4075		 * we are done.  Otherwise update the mismatch count and repair
4076		 * parity if !MD_RECOVERY_CHECK
4077		 */
4078		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4079			/* parity is correct (on disc,
4080			 * not in buffer any more)
4081			 */
4082			set_bit(STRIPE_INSYNC, &sh->state);
4083		else {
4084			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4085			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4086				/* don't try to repair!! */
4087				set_bit(STRIPE_INSYNC, &sh->state);
4088				pr_warn_ratelimited("%s: mismatch sector in range "
4089						    "%llu-%llu\n", mdname(conf->mddev),
4090						    (unsigned long long) sh->sector,
4091						    (unsigned long long) sh->sector +
4092						    STRIPE_SECTORS);
4093			} else {
4094				sh->check_state = check_state_compute_run;
4095				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4096				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4097				set_bit(R5_Wantcompute,
4098					&sh->dev[sh->pd_idx].flags);
4099				sh->ops.target = sh->pd_idx;
4100				sh->ops.target2 = -1;
4101				s->uptodate++;
4102			}
4103		}
4104		break;
4105	case check_state_compute_run:
4106		break;
4107	default:
4108		pr_err("%s: unknown check_state: %d sector: %llu\n",
4109		       __func__, sh->check_state,
4110		       (unsigned long long) sh->sector);
4111		BUG();
4112	}
4113}
4114
4115static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
 
4116				  struct stripe_head_state *s,
4117				  int disks)
4118{
4119	int pd_idx = sh->pd_idx;
4120	int qd_idx = sh->qd_idx;
4121	struct r5dev *dev;
4122
4123	BUG_ON(sh->batch_head);
4124	set_bit(STRIPE_HANDLE, &sh->state);
4125
4126	BUG_ON(s->failed > 2);
4127
4128	/* Want to check and possibly repair P and Q.
4129	 * However there could be one 'failed' device, in which
4130	 * case we can only check one of them, possibly using the
4131	 * other to generate missing data
4132	 */
4133
4134	switch (sh->check_state) {
4135	case check_state_idle:
4136		/* start a new check operation if there are < 2 failures */
4137		if (s->failed == s->q_failed) {
4138			/* The only possible failed device holds Q, so it
4139			 * makes sense to check P (If anything else were failed,
4140			 * we would have used P to recreate it).
4141			 */
4142			sh->check_state = check_state_run;
4143		}
4144		if (!s->q_failed && s->failed < 2) {
4145			/* Q is not failed, and we didn't use it to generate
4146			 * anything, so it makes sense to check it
4147			 */
4148			if (sh->check_state == check_state_run)
4149				sh->check_state = check_state_run_pq;
4150			else
4151				sh->check_state = check_state_run_q;
4152		}
4153
4154		/* discard potentially stale zero_sum_result */
4155		sh->ops.zero_sum_result = 0;
4156
4157		if (sh->check_state == check_state_run) {
4158			/* async_xor_zero_sum destroys the contents of P */
4159			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4160			s->uptodate--;
4161		}
4162		if (sh->check_state >= check_state_run &&
4163		    sh->check_state <= check_state_run_pq) {
4164			/* async_syndrome_zero_sum preserves P and Q, so
4165			 * no need to mark them !uptodate here
4166			 */
4167			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4168			break;
4169		}
4170
4171		/* we have 2-disk failure */
4172		BUG_ON(s->failed != 2);
4173		/* fall through */
4174	case check_state_compute_result:
4175		sh->check_state = check_state_idle;
4176
4177		/* check that a write has not made the stripe insync */
4178		if (test_bit(STRIPE_INSYNC, &sh->state))
4179			break;
4180
4181		/* now write out any block on a failed drive,
4182		 * or P or Q if they were recomputed
4183		 */
4184		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
4185		if (s->failed == 2) {
4186			dev = &sh->dev[s->failed_num[1]];
4187			s->locked++;
4188			set_bit(R5_LOCKED, &dev->flags);
4189			set_bit(R5_Wantwrite, &dev->flags);
4190		}
4191		if (s->failed >= 1) {
4192			dev = &sh->dev[s->failed_num[0]];
4193			s->locked++;
4194			set_bit(R5_LOCKED, &dev->flags);
4195			set_bit(R5_Wantwrite, &dev->flags);
4196		}
4197		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4198			dev = &sh->dev[pd_idx];
4199			s->locked++;
4200			set_bit(R5_LOCKED, &dev->flags);
4201			set_bit(R5_Wantwrite, &dev->flags);
4202		}
4203		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4204			dev = &sh->dev[qd_idx];
4205			s->locked++;
4206			set_bit(R5_LOCKED, &dev->flags);
4207			set_bit(R5_Wantwrite, &dev->flags);
4208		}
4209		clear_bit(STRIPE_DEGRADED, &sh->state);
4210
4211		set_bit(STRIPE_INSYNC, &sh->state);
4212		break;
4213	case check_state_run:
4214	case check_state_run_q:
4215	case check_state_run_pq:
4216		break; /* we will be called again upon completion */
4217	case check_state_check_result:
4218		sh->check_state = check_state_idle;
4219
4220		/* handle a successful check operation, if parity is correct
4221		 * we are done.  Otherwise update the mismatch count and repair
4222		 * parity if !MD_RECOVERY_CHECK
4223		 */
4224		if (sh->ops.zero_sum_result == 0) {
4225			/* both parities are correct */
4226			if (!s->failed)
4227				set_bit(STRIPE_INSYNC, &sh->state);
4228			else {
4229				/* in contrast to the raid5 case we can validate
4230				 * parity, but still have a failure to write
4231				 * back
4232				 */
4233				sh->check_state = check_state_compute_result;
4234				/* Returning at this point means that we may go
4235				 * off and bring p and/or q uptodate again so
4236				 * we make sure to check zero_sum_result again
4237				 * to verify if p or q need writeback
4238				 */
4239			}
4240		} else {
4241			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4242			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4243				/* don't try to repair!! */
4244				set_bit(STRIPE_INSYNC, &sh->state);
4245				pr_warn_ratelimited("%s: mismatch sector in range "
4246						    "%llu-%llu\n", mdname(conf->mddev),
4247						    (unsigned long long) sh->sector,
4248						    (unsigned long long) sh->sector +
4249						    STRIPE_SECTORS);
4250			} else {
4251				int *target = &sh->ops.target;
4252
4253				sh->ops.target = -1;
4254				sh->ops.target2 = -1;
4255				sh->check_state = check_state_compute_run;
4256				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4257				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4258				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4259					set_bit(R5_Wantcompute,
4260						&sh->dev[pd_idx].flags);
4261					*target = pd_idx;
4262					target = &sh->ops.target2;
4263					s->uptodate++;
4264				}
4265				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4266					set_bit(R5_Wantcompute,
4267						&sh->dev[qd_idx].flags);
4268					*target = qd_idx;
4269					s->uptodate++;
4270				}
4271			}
4272		}
4273		break;
4274	case check_state_compute_run:
4275		break;
4276	default:
4277		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4278			__func__, sh->check_state,
4279			(unsigned long long) sh->sector);
4280		BUG();
4281	}
4282}
4283
4284static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4285{
4286	int i;
4287
4288	/* We have read all the blocks in this stripe and now we need to
4289	 * copy some of them into a target stripe for expand.
4290	 */
4291	struct dma_async_tx_descriptor *tx = NULL;
4292	BUG_ON(sh->batch_head);
4293	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4294	for (i = 0; i < sh->disks; i++)
4295		if (i != sh->pd_idx && i != sh->qd_idx) {
4296			int dd_idx, j;
4297			struct stripe_head *sh2;
4298			struct async_submit_ctl submit;
4299
4300			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4301			sector_t s = raid5_compute_sector(conf, bn, 0,
4302							  &dd_idx, NULL);
4303			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4304			if (sh2 == NULL)
4305				/* so far only the early blocks of this stripe
4306				 * have been requested.  When later blocks
4307				 * get requested, we will try again
4308				 */
4309				continue;
4310			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4311			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4312				/* must have already done this block */
4313				raid5_release_stripe(sh2);
4314				continue;
4315			}
4316
4317			/* place all the copies on one channel */
4318			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4319			tx = async_memcpy(sh2->dev[dd_idx].page,
4320					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
4321					  &submit);
4322
4323			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4324			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4325			for (j = 0; j < conf->raid_disks; j++)
4326				if (j != sh2->pd_idx &&
4327				    j != sh2->qd_idx &&
4328				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4329					break;
4330			if (j == conf->raid_disks) {
4331				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4332				set_bit(STRIPE_HANDLE, &sh2->state);
4333			}
4334			raid5_release_stripe(sh2);
4335
4336		}
4337	/* done submitting copies, wait for them to complete */
4338	async_tx_quiesce(&tx);
 
 
 
4339}
4340
 
4341/*
4342 * handle_stripe - do things to a stripe.
4343 *
4344 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4345 * state of various bits to see what needs to be done.
4346 * Possible results:
4347 *    return some read requests which now have data
4348 *    return some write requests which are safely on storage
4349 *    schedule a read on some buffers
4350 *    schedule a write of some buffers
4351 *    return confirmation of parity correctness
4352 *
 
 
 
4353 */
4354
4355static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4356{
4357	struct r5conf *conf = sh->raid_conf;
4358	int disks = sh->disks;
4359	struct r5dev *dev;
4360	int i;
4361	int do_recovery = 0;
4362
4363	memset(s, 0, sizeof(*s));
4364
4365	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4366	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
 
4367	s->failed_num[0] = -1;
4368	s->failed_num[1] = -1;
4369	s->log_failed = r5l_log_disk_error(conf);
4370
4371	/* Now to look around and see what can be done */
4372	rcu_read_lock();
 
4373	for (i=disks; i--; ) {
4374		struct md_rdev *rdev;
4375		sector_t first_bad;
4376		int bad_sectors;
4377		int is_bad = 0;
4378
4379		dev = &sh->dev[i];
4380
4381		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4382			 i, dev->flags,
4383			 dev->toread, dev->towrite, dev->written);
4384		/* maybe we can reply to a read
4385		 *
4386		 * new wantfill requests are only permitted while
4387		 * ops_complete_biofill is guaranteed to be inactive
4388		 */
4389		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4390		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4391			set_bit(R5_Wantfill, &dev->flags);
4392
4393		/* now count some things */
4394		if (test_bit(R5_LOCKED, &dev->flags))
4395			s->locked++;
4396		if (test_bit(R5_UPTODATE, &dev->flags))
4397			s->uptodate++;
4398		if (test_bit(R5_Wantcompute, &dev->flags)) {
4399			s->compute++;
4400			BUG_ON(s->compute > 2);
4401		}
4402
4403		if (test_bit(R5_Wantfill, &dev->flags))
4404			s->to_fill++;
4405		else if (dev->toread)
4406			s->to_read++;
4407		if (dev->towrite) {
4408			s->to_write++;
4409			if (!test_bit(R5_OVERWRITE, &dev->flags))
4410				s->non_overwrite++;
4411		}
4412		if (dev->written)
4413			s->written++;
4414		/* Prefer to use the replacement for reads, but only
4415		 * if it is recovered enough and has no bad blocks.
4416		 */
4417		rdev = rcu_dereference(conf->disks[i].replacement);
4418		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4419		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4420		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4421				 &first_bad, &bad_sectors))
4422			set_bit(R5_ReadRepl, &dev->flags);
4423		else {
4424			if (rdev && !test_bit(Faulty, &rdev->flags))
4425				set_bit(R5_NeedReplace, &dev->flags);
4426			else
4427				clear_bit(R5_NeedReplace, &dev->flags);
4428			rdev = rcu_dereference(conf->disks[i].rdev);
4429			clear_bit(R5_ReadRepl, &dev->flags);
4430		}
4431		if (rdev && test_bit(Faulty, &rdev->flags))
4432			rdev = NULL;
4433		if (rdev) {
4434			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4435					     &first_bad, &bad_sectors);
4436			if (s->blocked_rdev == NULL
4437			    && (test_bit(Blocked, &rdev->flags)
4438				|| is_bad < 0)) {
4439				if (is_bad < 0)
4440					set_bit(BlockedBadBlocks,
4441						&rdev->flags);
4442				s->blocked_rdev = rdev;
4443				atomic_inc(&rdev->nr_pending);
4444			}
4445		}
4446		clear_bit(R5_Insync, &dev->flags);
4447		if (!rdev)
4448			/* Not in-sync */;
4449		else if (is_bad) {
4450			/* also not in-sync */
4451			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4452			    test_bit(R5_UPTODATE, &dev->flags)) {
4453				/* treat as in-sync, but with a read error
4454				 * which we can now try to correct
4455				 */
4456				set_bit(R5_Insync, &dev->flags);
4457				set_bit(R5_ReadError, &dev->flags);
4458			}
4459		} else if (test_bit(In_sync, &rdev->flags))
4460			set_bit(R5_Insync, &dev->flags);
4461		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4462			/* in sync if before recovery_offset */
4463			set_bit(R5_Insync, &dev->flags);
4464		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4465			 test_bit(R5_Expanded, &dev->flags))
4466			/* If we've reshaped into here, we assume it is Insync.
4467			 * We will shortly update recovery_offset to make
4468			 * it official.
4469			 */
4470			set_bit(R5_Insync, &dev->flags);
4471
4472		if (test_bit(R5_WriteError, &dev->flags)) {
4473			/* This flag does not apply to '.replacement'
4474			 * only to .rdev, so make sure to check that*/
4475			struct md_rdev *rdev2 = rcu_dereference(
4476				conf->disks[i].rdev);
4477			if (rdev2 == rdev)
4478				clear_bit(R5_Insync, &dev->flags);
4479			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4480				s->handle_bad_blocks = 1;
4481				atomic_inc(&rdev2->nr_pending);
4482			} else
4483				clear_bit(R5_WriteError, &dev->flags);
4484		}
4485		if (test_bit(R5_MadeGood, &dev->flags)) {
4486			/* This flag does not apply to '.replacement'
4487			 * only to .rdev, so make sure to check that*/
4488			struct md_rdev *rdev2 = rcu_dereference(
4489				conf->disks[i].rdev);
4490			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4491				s->handle_bad_blocks = 1;
4492				atomic_inc(&rdev2->nr_pending);
4493			} else
4494				clear_bit(R5_MadeGood, &dev->flags);
4495		}
4496		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4497			struct md_rdev *rdev2 = rcu_dereference(
4498				conf->disks[i].replacement);
4499			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4500				s->handle_bad_blocks = 1;
4501				atomic_inc(&rdev2->nr_pending);
4502			} else
4503				clear_bit(R5_MadeGoodRepl, &dev->flags);
4504		}
4505		if (!test_bit(R5_Insync, &dev->flags)) {
4506			/* The ReadError flag will just be confusing now */
4507			clear_bit(R5_ReadError, &dev->flags);
4508			clear_bit(R5_ReWrite, &dev->flags);
4509		}
4510		if (test_bit(R5_ReadError, &dev->flags))
4511			clear_bit(R5_Insync, &dev->flags);
4512		if (!test_bit(R5_Insync, &dev->flags)) {
4513			if (s->failed < 2)
4514				s->failed_num[s->failed] = i;
4515			s->failed++;
4516			if (rdev && !test_bit(Faulty, &rdev->flags))
4517				do_recovery = 1;
4518		}
4519
4520		if (test_bit(R5_InJournal, &dev->flags))
4521			s->injournal++;
4522		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4523			s->just_cached++;
4524	}
4525	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4526		/* If there is a failed device being replaced,
4527		 *     we must be recovering.
4528		 * else if we are after recovery_cp, we must be syncing
4529		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4530		 * else we can only be replacing
4531		 * sync and recovery both need to read all devices, and so
4532		 * use the same flag.
4533		 */
4534		if (do_recovery ||
4535		    sh->sector >= conf->mddev->recovery_cp ||
4536		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4537			s->syncing = 1;
4538		else
4539			s->replacing = 1;
4540	}
 
4541	rcu_read_unlock();
4542}
4543
4544static int clear_batch_ready(struct stripe_head *sh)
4545{
4546	/* Return '1' if this is a member of batch, or
4547	 * '0' if it is a lone stripe or a head which can now be
4548	 * handled.
4549	 */
4550	struct stripe_head *tmp;
4551	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4552		return (sh->batch_head && sh->batch_head != sh);
4553	spin_lock(&sh->stripe_lock);
4554	if (!sh->batch_head) {
4555		spin_unlock(&sh->stripe_lock);
4556		return 0;
4557	}
4558
4559	/*
4560	 * this stripe could be added to a batch list before we check
4561	 * BATCH_READY, skips it
4562	 */
4563	if (sh->batch_head != sh) {
4564		spin_unlock(&sh->stripe_lock);
4565		return 1;
4566	}
4567	spin_lock(&sh->batch_lock);
4568	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4569		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4570	spin_unlock(&sh->batch_lock);
4571	spin_unlock(&sh->stripe_lock);
4572
4573	/*
4574	 * BATCH_READY is cleared, no new stripes can be added.
4575	 * batch_list can be accessed without lock
4576	 */
4577	return 0;
4578}
4579
4580static void break_stripe_batch_list(struct stripe_head *head_sh,
4581				    unsigned long handle_flags)
4582{
4583	struct stripe_head *sh, *next;
4584	int i;
4585	int do_wakeup = 0;
4586
4587	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4588
4589		list_del_init(&sh->batch_list);
4590
4591		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4592					  (1 << STRIPE_SYNCING) |
4593					  (1 << STRIPE_REPLACED) |
4594					  (1 << STRIPE_DELAYED) |
4595					  (1 << STRIPE_BIT_DELAY) |
4596					  (1 << STRIPE_FULL_WRITE) |
4597					  (1 << STRIPE_BIOFILL_RUN) |
4598					  (1 << STRIPE_COMPUTE_RUN)  |
4599					  (1 << STRIPE_OPS_REQ_PENDING) |
4600					  (1 << STRIPE_DISCARD) |
4601					  (1 << STRIPE_BATCH_READY) |
4602					  (1 << STRIPE_BATCH_ERR) |
4603					  (1 << STRIPE_BITMAP_PENDING)),
4604			"stripe state: %lx\n", sh->state);
4605		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4606					      (1 << STRIPE_REPLACED)),
4607			"head stripe state: %lx\n", head_sh->state);
4608
4609		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4610					    (1 << STRIPE_PREREAD_ACTIVE) |
4611					    (1 << STRIPE_DEGRADED) |
4612					    (1 << STRIPE_ON_UNPLUG_LIST)),
4613			      head_sh->state & (1 << STRIPE_INSYNC));
4614
4615		sh->check_state = head_sh->check_state;
4616		sh->reconstruct_state = head_sh->reconstruct_state;
4617		for (i = 0; i < sh->disks; i++) {
4618			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4619				do_wakeup = 1;
4620			sh->dev[i].flags = head_sh->dev[i].flags &
4621				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4622		}
4623		spin_lock_irq(&sh->stripe_lock);
4624		sh->batch_head = NULL;
4625		spin_unlock_irq(&sh->stripe_lock);
4626		if (handle_flags == 0 ||
4627		    sh->state & handle_flags)
4628			set_bit(STRIPE_HANDLE, &sh->state);
4629		raid5_release_stripe(sh);
4630	}
4631	spin_lock_irq(&head_sh->stripe_lock);
4632	head_sh->batch_head = NULL;
4633	spin_unlock_irq(&head_sh->stripe_lock);
4634	for (i = 0; i < head_sh->disks; i++)
4635		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4636			do_wakeup = 1;
4637	if (head_sh->state & handle_flags)
4638		set_bit(STRIPE_HANDLE, &head_sh->state);
4639
4640	if (do_wakeup)
4641		wake_up(&head_sh->raid_conf->wait_for_overlap);
4642}
4643
4644static void handle_stripe(struct stripe_head *sh)
4645{
4646	struct stripe_head_state s;
4647	struct r5conf *conf = sh->raid_conf;
4648	int i;
4649	int prexor;
4650	int disks = sh->disks;
4651	struct r5dev *pdev, *qdev;
4652
4653	clear_bit(STRIPE_HANDLE, &sh->state);
4654	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4655		/* already being handled, ensure it gets handled
4656		 * again when current action finishes */
4657		set_bit(STRIPE_HANDLE, &sh->state);
4658		return;
4659	}
4660
4661	if (clear_batch_ready(sh) ) {
4662		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4663		return;
4664	}
4665
4666	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4667		break_stripe_batch_list(sh, 0);
4668
4669	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4670		spin_lock(&sh->stripe_lock);
4671		/*
4672		 * Cannot process 'sync' concurrently with 'discard'.
4673		 * Flush data in r5cache before 'sync'.
4674		 */
4675		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4676		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4677		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4678		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4679			set_bit(STRIPE_SYNCING, &sh->state);
4680			clear_bit(STRIPE_INSYNC, &sh->state);
4681			clear_bit(STRIPE_REPLACED, &sh->state);
4682		}
4683		spin_unlock(&sh->stripe_lock);
4684	}
4685	clear_bit(STRIPE_DELAYED, &sh->state);
4686
4687	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4688		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4689	       (unsigned long long)sh->sector, sh->state,
4690	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4691	       sh->check_state, sh->reconstruct_state);
4692
4693	analyse_stripe(sh, &s);
4694
4695	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4696		goto finish;
4697
4698	if (s.handle_bad_blocks ||
4699	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4700		set_bit(STRIPE_HANDLE, &sh->state);
4701		goto finish;
4702	}
4703
4704	if (unlikely(s.blocked_rdev)) {
4705		if (s.syncing || s.expanding || s.expanded ||
4706		    s.replacing || s.to_write || s.written) {
4707			set_bit(STRIPE_HANDLE, &sh->state);
4708			goto finish;
4709		}
4710		/* There is nothing for the blocked_rdev to block */
4711		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4712		s.blocked_rdev = NULL;
4713	}
4714
4715	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4716		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4717		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4718	}
4719
4720	pr_debug("locked=%d uptodate=%d to_read=%d"
4721	       " to_write=%d failed=%d failed_num=%d,%d\n",
4722	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4723	       s.failed_num[0], s.failed_num[1]);
 
 
 
 
 
 
 
 
4724	/*
4725	 * check if the array has lost more than max_degraded devices and,
4726	 * if so, some requests might need to be failed.
4727	 *
4728	 * When journal device failed (log_failed), we will only process
4729	 * the stripe if there is data need write to raid disks
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4730	 */
4731	if (s.failed > conf->max_degraded ||
4732	    (s.log_failed && s.injournal == 0)) {
4733		sh->check_state = 0;
4734		sh->reconstruct_state = 0;
4735		break_stripe_batch_list(sh, 0);
4736		if (s.to_read+s.to_write+s.written)
4737			handle_failed_stripe(conf, sh, &s, disks);
4738		if (s.syncing + s.replacing)
4739			handle_failed_sync(conf, sh, &s);
4740	}
4741
4742	/* Now we check to see if any write operations have recently
4743	 * completed
4744	 */
4745	prexor = 0;
4746	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4747		prexor = 1;
4748	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4749	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4750		sh->reconstruct_state = reconstruct_state_idle;
4751
4752		/* All the 'written' buffers and the parity block are ready to
4753		 * be written back to disk
4754		 */
4755		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4756		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4757		BUG_ON(sh->qd_idx >= 0 &&
4758		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4759		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4760		for (i = disks; i--; ) {
4761			struct r5dev *dev = &sh->dev[i];
4762			if (test_bit(R5_LOCKED, &dev->flags) &&
4763				(i == sh->pd_idx || i == sh->qd_idx ||
4764				 dev->written || test_bit(R5_InJournal,
4765							  &dev->flags))) {
4766				pr_debug("Writing block %d\n", i);
4767				set_bit(R5_Wantwrite, &dev->flags);
4768				if (prexor)
4769					continue;
4770				if (s.failed > 1)
4771					continue;
4772				if (!test_bit(R5_Insync, &dev->flags) ||
4773				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4774				     s.failed == 0))
4775					set_bit(STRIPE_INSYNC, &sh->state);
4776			}
4777		}
4778		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4779			s.dec_preread_active = 1;
4780	}
4781
4782	/*
4783	 * might be able to return some write requests if the parity blocks
4784	 * are safe, or on a failed drive
4785	 */
4786	pdev = &sh->dev[sh->pd_idx];
4787	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4788		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4789	qdev = &sh->dev[sh->qd_idx];
4790	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4791		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4792		|| conf->level < 6;
4793
4794	if (s.written &&
4795	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4796			     && !test_bit(R5_LOCKED, &pdev->flags)
4797			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4798				 test_bit(R5_Discard, &pdev->flags))))) &&
4799	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4800			     && !test_bit(R5_LOCKED, &qdev->flags)
4801			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4802				 test_bit(R5_Discard, &qdev->flags))))))
4803		handle_stripe_clean_event(conf, sh, disks);
4804
4805	if (s.just_cached)
4806		r5c_handle_cached_data_endio(conf, sh, disks);
4807	log_stripe_write_finished(sh);
4808
4809	/* Now we might consider reading some blocks, either to check/generate
4810	 * parity, or to satisfy requests
4811	 * or to load a block that is being partially written.
4812	 */
4813	if (s.to_read || s.non_overwrite
4814	    || (conf->level == 6 && s.to_write && s.failed)
4815	    || (s.syncing && (s.uptodate + s.compute < disks))
4816	    || s.replacing
4817	    || s.expanding)
4818		handle_stripe_fill(sh, &s, disks);
4819
4820	/*
4821	 * When the stripe finishes full journal write cycle (write to journal
4822	 * and raid disk), this is the clean up procedure so it is ready for
4823	 * next operation.
4824	 */
4825	r5c_finish_stripe_write_out(conf, sh, &s);
4826
4827	/*
4828	 * Now to consider new write requests, cache write back and what else,
4829	 * if anything should be read.  We do not handle new writes when:
4830	 * 1/ A 'write' operation (copy+xor) is already in flight.
4831	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4832	 *    block.
4833	 * 3/ A r5c cache log write is in flight.
4834	 */
4835
4836	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4837		if (!r5c_is_writeback(conf->log)) {
4838			if (s.to_write)
4839				handle_stripe_dirtying(conf, sh, &s, disks);
4840		} else { /* write back cache */
4841			int ret = 0;
4842
4843			/* First, try handle writes in caching phase */
4844			if (s.to_write)
4845				ret = r5c_try_caching_write(conf, sh, &s,
4846							    disks);
4847			/*
4848			 * If caching phase failed: ret == -EAGAIN
4849			 *    OR
4850			 * stripe under reclaim: !caching && injournal
4851			 *
4852			 * fall back to handle_stripe_dirtying()
4853			 */
4854			if (ret == -EAGAIN ||
4855			    /* stripe under reclaim: !caching && injournal */
4856			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4857			     s.injournal > 0)) {
4858				ret = handle_stripe_dirtying(conf, sh, &s,
4859							     disks);
4860				if (ret == -EAGAIN)
4861					goto finish;
4862			}
4863		}
4864	}
4865
4866	/* maybe we need to check and possibly fix the parity for this stripe
4867	 * Any reads will already have been scheduled, so we just see if enough
4868	 * data is available.  The parity check is held off while parity
4869	 * dependent operations are in flight.
4870	 */
4871	if (sh->check_state ||
4872	    (s.syncing && s.locked == 0 &&
4873	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4874	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4875		if (conf->level == 6)
4876			handle_parity_checks6(conf, sh, &s, disks);
4877		else
4878			handle_parity_checks5(conf, sh, &s, disks);
4879	}
4880
4881	if ((s.replacing || s.syncing) && s.locked == 0
4882	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4883	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4884		/* Write out to replacement devices where possible */
4885		for (i = 0; i < conf->raid_disks; i++)
4886			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4887				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4888				set_bit(R5_WantReplace, &sh->dev[i].flags);
4889				set_bit(R5_LOCKED, &sh->dev[i].flags);
4890				s.locked++;
4891			}
4892		if (s.replacing)
4893			set_bit(STRIPE_INSYNC, &sh->state);
4894		set_bit(STRIPE_REPLACED, &sh->state);
4895	}
4896	if ((s.syncing || s.replacing) && s.locked == 0 &&
4897	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4898	    test_bit(STRIPE_INSYNC, &sh->state)) {
4899		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4900		clear_bit(STRIPE_SYNCING, &sh->state);
4901		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4902			wake_up(&conf->wait_for_overlap);
4903	}
4904
4905	/* If the failed drives are just a ReadError, then we might need
4906	 * to progress the repair/check process
4907	 */
4908	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4909		for (i = 0; i < s.failed; i++) {
4910			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4911			if (test_bit(R5_ReadError, &dev->flags)
4912			    && !test_bit(R5_LOCKED, &dev->flags)
4913			    && test_bit(R5_UPTODATE, &dev->flags)
4914				) {
4915				if (!test_bit(R5_ReWrite, &dev->flags)) {
4916					set_bit(R5_Wantwrite, &dev->flags);
4917					set_bit(R5_ReWrite, &dev->flags);
4918					set_bit(R5_LOCKED, &dev->flags);
4919					s.locked++;
4920				} else {
4921					/* let's read it back */
4922					set_bit(R5_Wantread, &dev->flags);
4923					set_bit(R5_LOCKED, &dev->flags);
4924					s.locked++;
4925				}
4926			}
4927		}
4928
 
4929	/* Finish reconstruct operations initiated by the expansion process */
4930	if (sh->reconstruct_state == reconstruct_state_result) {
4931		struct stripe_head *sh_src
4932			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4933		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4934			/* sh cannot be written until sh_src has been read.
4935			 * so arrange for sh to be delayed a little
4936			 */
4937			set_bit(STRIPE_DELAYED, &sh->state);
4938			set_bit(STRIPE_HANDLE, &sh->state);
4939			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4940					      &sh_src->state))
4941				atomic_inc(&conf->preread_active_stripes);
4942			raid5_release_stripe(sh_src);
4943			goto finish;
4944		}
4945		if (sh_src)
4946			raid5_release_stripe(sh_src);
4947
4948		sh->reconstruct_state = reconstruct_state_idle;
4949		clear_bit(STRIPE_EXPANDING, &sh->state);
4950		for (i = conf->raid_disks; i--; ) {
4951			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4952			set_bit(R5_LOCKED, &sh->dev[i].flags);
4953			s.locked++;
4954		}
4955	}
4956
4957	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4958	    !sh->reconstruct_state) {
4959		/* Need to write out all blocks after computing parity */
4960		sh->disks = conf->raid_disks;
4961		stripe_set_idx(sh->sector, conf, 0, sh);
4962		schedule_reconstruction(sh, &s, 1, 1);
4963	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4964		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4965		atomic_dec(&conf->reshape_stripes);
4966		wake_up(&conf->wait_for_overlap);
4967		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4968	}
4969
4970	if (s.expanding && s.locked == 0 &&
4971	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4972		handle_stripe_expansion(conf, sh);
4973
4974finish:
4975	/* wait for this device to become unblocked */
4976	if (unlikely(s.blocked_rdev)) {
4977		if (conf->mddev->external)
4978			md_wait_for_blocked_rdev(s.blocked_rdev,
4979						 conf->mddev);
4980		else
4981			/* Internal metadata will immediately
4982			 * be written by raid5d, so we don't
4983			 * need to wait here.
4984			 */
4985			rdev_dec_pending(s.blocked_rdev,
4986					 conf->mddev);
4987	}
4988
4989	if (s.handle_bad_blocks)
4990		for (i = disks; i--; ) {
4991			struct md_rdev *rdev;
4992			struct r5dev *dev = &sh->dev[i];
4993			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4994				/* We own a safe reference to the rdev */
4995				rdev = conf->disks[i].rdev;
4996				if (!rdev_set_badblocks(rdev, sh->sector,
4997							STRIPE_SECTORS, 0))
4998					md_error(conf->mddev, rdev);
4999				rdev_dec_pending(rdev, conf->mddev);
5000			}
5001			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5002				rdev = conf->disks[i].rdev;
5003				rdev_clear_badblocks(rdev, sh->sector,
5004						     STRIPE_SECTORS, 0);
5005				rdev_dec_pending(rdev, conf->mddev);
5006			}
5007			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5008				rdev = conf->disks[i].replacement;
5009				if (!rdev)
5010					/* rdev have been moved down */
5011					rdev = conf->disks[i].rdev;
5012				rdev_clear_badblocks(rdev, sh->sector,
5013						     STRIPE_SECTORS, 0);
5014				rdev_dec_pending(rdev, conf->mddev);
5015			}
5016		}
5017
5018	if (s.ops_request)
5019		raid_run_ops(sh, s.ops_request);
5020
5021	ops_run_io(sh, &s);
5022
5023	if (s.dec_preread_active) {
5024		/* We delay this until after ops_run_io so that if make_request
5025		 * is waiting on a flush, it won't continue until the writes
5026		 * have actually been submitted.
5027		 */
5028		atomic_dec(&conf->preread_active_stripes);
5029		if (atomic_read(&conf->preread_active_stripes) <
5030		    IO_THRESHOLD)
5031			md_wakeup_thread(conf->mddev->thread);
5032	}
5033
5034	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
 
 
5035}
5036
5037static void raid5_activate_delayed(struct r5conf *conf)
5038{
5039	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5040		while (!list_empty(&conf->delayed_list)) {
5041			struct list_head *l = conf->delayed_list.next;
5042			struct stripe_head *sh;
5043			sh = list_entry(l, struct stripe_head, lru);
5044			list_del_init(l);
5045			clear_bit(STRIPE_DELAYED, &sh->state);
5046			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5047				atomic_inc(&conf->preread_active_stripes);
5048			list_add_tail(&sh->lru, &conf->hold_list);
5049			raid5_wakeup_stripe_thread(sh);
5050		}
5051	}
5052}
5053
5054static void activate_bit_delay(struct r5conf *conf,
5055	struct list_head *temp_inactive_list)
5056{
5057	/* device_lock is held */
5058	struct list_head head;
5059	list_add(&head, &conf->bitmap_list);
5060	list_del_init(&conf->bitmap_list);
5061	while (!list_empty(&head)) {
5062		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5063		int hash;
5064		list_del_init(&sh->lru);
5065		atomic_inc(&sh->count);
5066		hash = sh->hash_lock_index;
5067		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5068	}
5069}
5070
5071static int raid5_congested(struct mddev *mddev, int bits)
5072{
5073	struct r5conf *conf = mddev->private;
5074
5075	/* No difference between reads and writes.  Just check
5076	 * how busy the stripe_cache is
5077	 */
5078
5079	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5080		return 1;
5081
5082	/* Also checks whether there is pressure on r5cache log space */
5083	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5084		return 1;
5085	if (conf->quiesce)
5086		return 1;
5087	if (atomic_read(&conf->empty_inactive_list_nr))
5088		return 1;
5089
5090	return 0;
5091}
 
5092
5093static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5094{
5095	struct r5conf *conf = mddev->private;
5096	sector_t sector = bio->bi_iter.bi_sector;
5097	unsigned int chunk_sectors;
5098	unsigned int bio_sectors = bio_sectors(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5099
5100	WARN_ON_ONCE(bio->bi_partno);
 
 
 
 
5101
5102	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
 
5103	return  chunk_sectors >=
5104		((sector & (chunk_sectors - 1)) + bio_sectors);
5105}
5106
5107/*
5108 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5109 *  later sampled by raid5d.
5110 */
5111static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5112{
5113	unsigned long flags;
5114
5115	spin_lock_irqsave(&conf->device_lock, flags);
5116
5117	bi->bi_next = conf->retry_read_aligned_list;
5118	conf->retry_read_aligned_list = bi;
5119
5120	spin_unlock_irqrestore(&conf->device_lock, flags);
5121	md_wakeup_thread(conf->mddev->thread);
5122}
5123
5124static struct bio *remove_bio_from_retry(struct r5conf *conf,
5125					 unsigned int *offset)
5126{
5127	struct bio *bi;
5128
5129	bi = conf->retry_read_aligned;
5130	if (bi) {
5131		*offset = conf->retry_read_offset;
5132		conf->retry_read_aligned = NULL;
5133		return bi;
5134	}
5135	bi = conf->retry_read_aligned_list;
5136	if(bi) {
5137		conf->retry_read_aligned_list = bi->bi_next;
5138		bi->bi_next = NULL;
5139		*offset = 0;
 
 
 
 
5140	}
5141
5142	return bi;
5143}
5144
 
5145/*
5146 *  The "raid5_align_endio" should check if the read succeeded and if it
5147 *  did, call bio_endio on the original bio (having bio_put the new bio
5148 *  first).
5149 *  If the read failed..
5150 */
5151static void raid5_align_endio(struct bio *bi)
5152{
5153	struct bio* raid_bi  = bi->bi_private;
5154	struct mddev *mddev;
5155	struct r5conf *conf;
5156	struct md_rdev *rdev;
5157	blk_status_t error = bi->bi_status;
5158
5159	bio_put(bi);
5160
5161	rdev = (void*)raid_bi->bi_next;
5162	raid_bi->bi_next = NULL;
5163	mddev = rdev->mddev;
5164	conf = mddev->private;
5165
5166	rdev_dec_pending(rdev, conf->mddev);
5167
5168	if (!error) {
5169		bio_endio(raid_bi);
5170		if (atomic_dec_and_test(&conf->active_aligned_reads))
5171			wake_up(&conf->wait_for_quiescent);
5172		return;
5173	}
5174
 
5175	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5176
5177	add_bio_to_retry(raid_bi, conf);
5178}
5179
5180static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5181{
5182	struct r5conf *conf = mddev->private;
5183	int dd_idx;
5184	struct bio* align_bi;
5185	struct md_rdev *rdev;
5186	sector_t end_sector;
5187
5188	if (!in_chunk_boundary(mddev, raid_bio)) {
5189		pr_debug("%s: non aligned\n", __func__);
5190		return 0;
5191	}
5192	/*
5193	 * use bio_clone_fast to make a copy of the bio
5194	 */
5195	align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
5196	if (!align_bi)
5197		return 0;
5198	/*
5199	 *   set bi_end_io to a new function, and set bi_private to the
5200	 *     original bio.
5201	 */
5202	align_bi->bi_end_io  = raid5_align_endio;
5203	align_bi->bi_private = raid_bio;
5204	/*
5205	 *	compute position
5206	 */
5207	align_bi->bi_iter.bi_sector =
5208		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5209				     0, &dd_idx, NULL);
5210
5211	end_sector = bio_end_sector(align_bi);
5212	rcu_read_lock();
5213	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5214	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5215	    rdev->recovery_offset < end_sector) {
5216		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5217		if (rdev &&
5218		    (test_bit(Faulty, &rdev->flags) ||
5219		    !(test_bit(In_sync, &rdev->flags) ||
5220		      rdev->recovery_offset >= end_sector)))
5221			rdev = NULL;
5222	}
5223
5224	if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5225		rcu_read_unlock();
5226		bio_put(align_bi);
5227		return 0;
5228	}
5229
5230	if (rdev) {
5231		sector_t first_bad;
5232		int bad_sectors;
5233
5234		atomic_inc(&rdev->nr_pending);
5235		rcu_read_unlock();
5236		raid_bio->bi_next = (void*)rdev;
5237		bio_set_dev(align_bi, rdev->bdev);
5238		bio_clear_flag(align_bi, BIO_SEG_VALID);
 
5239
5240		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5241				bio_sectors(align_bi),
5242				&first_bad, &bad_sectors)) {
 
5243			bio_put(align_bi);
5244			rdev_dec_pending(rdev, mddev);
5245			return 0;
5246		}
5247
5248		/* No reshape active, so we can trust rdev->data_offset */
5249		align_bi->bi_iter.bi_sector += rdev->data_offset;
5250
5251		spin_lock_irq(&conf->device_lock);
5252		wait_event_lock_irq(conf->wait_for_quiescent,
5253				    conf->quiesce == 0,
5254				    conf->device_lock);
5255		atomic_inc(&conf->active_aligned_reads);
5256		spin_unlock_irq(&conf->device_lock);
5257
5258		if (mddev->gendisk)
5259			trace_block_bio_remap(align_bi->bi_disk->queue,
5260					      align_bi, disk_devt(mddev->gendisk),
5261					      raid_bio->bi_iter.bi_sector);
5262		generic_make_request(align_bi);
5263		return 1;
5264	} else {
5265		rcu_read_unlock();
5266		bio_put(align_bi);
5267		return 0;
5268	}
5269}
5270
5271static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5272{
5273	struct bio *split;
5274	sector_t sector = raid_bio->bi_iter.bi_sector;
5275	unsigned chunk_sects = mddev->chunk_sectors;
5276	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5277
5278	if (sectors < bio_sectors(raid_bio)) {
5279		struct r5conf *conf = mddev->private;
5280		split = bio_split(raid_bio, sectors, GFP_NOIO, conf->bio_split);
5281		bio_chain(split, raid_bio);
5282		generic_make_request(raid_bio);
5283		raid_bio = split;
5284	}
5285
5286	if (!raid5_read_one_chunk(mddev, raid_bio))
5287		return raid_bio;
5288
5289	return NULL;
5290}
5291
5292/* __get_priority_stripe - get the next stripe to process
5293 *
5294 * Full stripe writes are allowed to pass preread active stripes up until
5295 * the bypass_threshold is exceeded.  In general the bypass_count
5296 * increments when the handle_list is handled before the hold_list; however, it
5297 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5298 * stripe with in flight i/o.  The bypass_count will be reset when the
5299 * head of the hold_list has changed, i.e. the head was promoted to the
5300 * handle_list.
5301 */
5302static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5303{
5304	struct stripe_head *sh, *tmp;
5305	struct list_head *handle_list = NULL;
5306	struct r5worker_group *wg;
5307	bool second_try = !r5c_is_writeback(conf->log) &&
5308		!r5l_log_disk_error(conf);
5309	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5310		r5l_log_disk_error(conf);
5311
5312again:
5313	wg = NULL;
5314	sh = NULL;
5315	if (conf->worker_cnt_per_group == 0) {
5316		handle_list = try_loprio ? &conf->loprio_list :
5317					&conf->handle_list;
5318	} else if (group != ANY_GROUP) {
5319		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5320				&conf->worker_groups[group].handle_list;
5321		wg = &conf->worker_groups[group];
5322	} else {
5323		int i;
5324		for (i = 0; i < conf->group_cnt; i++) {
5325			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5326				&conf->worker_groups[i].handle_list;
5327			wg = &conf->worker_groups[i];
5328			if (!list_empty(handle_list))
5329				break;
5330		}
5331	}
5332
5333	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5334		  __func__,
5335		  list_empty(handle_list) ? "empty" : "busy",
5336		  list_empty(&conf->hold_list) ? "empty" : "busy",
5337		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5338
5339	if (!list_empty(handle_list)) {
5340		sh = list_entry(handle_list->next, typeof(*sh), lru);
5341
5342		if (list_empty(&conf->hold_list))
5343			conf->bypass_count = 0;
5344		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5345			if (conf->hold_list.next == conf->last_hold)
5346				conf->bypass_count++;
5347			else {
5348				conf->last_hold = conf->hold_list.next;
5349				conf->bypass_count -= conf->bypass_threshold;
5350				if (conf->bypass_count < 0)
5351					conf->bypass_count = 0;
5352			}
5353		}
5354	} else if (!list_empty(&conf->hold_list) &&
5355		   ((conf->bypass_threshold &&
5356		     conf->bypass_count > conf->bypass_threshold) ||
5357		    atomic_read(&conf->pending_full_writes) == 0)) {
 
 
 
 
 
 
 
5358
5359		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5360			if (conf->worker_cnt_per_group == 0 ||
5361			    group == ANY_GROUP ||
5362			    !cpu_online(tmp->cpu) ||
5363			    cpu_to_group(tmp->cpu) == group) {
5364				sh = tmp;
5365				break;
5366			}
5367		}
5368
5369		if (sh) {
5370			conf->bypass_count -= conf->bypass_threshold;
5371			if (conf->bypass_count < 0)
5372				conf->bypass_count = 0;
5373		}
5374		wg = NULL;
5375	}
5376
5377	if (!sh) {
5378		if (second_try)
5379			return NULL;
5380		second_try = true;
5381		try_loprio = !try_loprio;
5382		goto again;
5383	}
5384
5385	if (wg) {
5386		wg->stripes_cnt--;
5387		sh->group = NULL;
5388	}
5389	list_del_init(&sh->lru);
5390	BUG_ON(atomic_inc_return(&sh->count) != 1);
 
5391	return sh;
5392}
5393
5394struct raid5_plug_cb {
5395	struct blk_plug_cb	cb;
5396	struct list_head	list;
5397	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5398};
5399
5400static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5401{
5402	struct raid5_plug_cb *cb = container_of(
5403		blk_cb, struct raid5_plug_cb, cb);
5404	struct stripe_head *sh;
5405	struct mddev *mddev = cb->cb.data;
5406	struct r5conf *conf = mddev->private;
5407	int cnt = 0;
5408	int hash;
5409
5410	if (cb->list.next && !list_empty(&cb->list)) {
5411		spin_lock_irq(&conf->device_lock);
5412		while (!list_empty(&cb->list)) {
5413			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5414			list_del_init(&sh->lru);
5415			/*
5416			 * avoid race release_stripe_plug() sees
5417			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5418			 * is still in our list
5419			 */
5420			smp_mb__before_atomic();
5421			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5422			/*
5423			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5424			 * case, the count is always > 1 here
5425			 */
5426			hash = sh->hash_lock_index;
5427			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5428			cnt++;
5429		}
5430		spin_unlock_irq(&conf->device_lock);
5431	}
5432	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5433				     NR_STRIPE_HASH_LOCKS);
5434	if (mddev->queue)
5435		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5436	kfree(cb);
5437}
5438
5439static void release_stripe_plug(struct mddev *mddev,
5440				struct stripe_head *sh)
5441{
5442	struct blk_plug_cb *blk_cb = blk_check_plugged(
5443		raid5_unplug, mddev,
5444		sizeof(struct raid5_plug_cb));
5445	struct raid5_plug_cb *cb;
5446
5447	if (!blk_cb) {
5448		raid5_release_stripe(sh);
5449		return;
5450	}
5451
5452	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5453
5454	if (cb->list.next == NULL) {
5455		int i;
5456		INIT_LIST_HEAD(&cb->list);
5457		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5458			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5459	}
5460
5461	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5462		list_add_tail(&sh->lru, &cb->list);
5463	else
5464		raid5_release_stripe(sh);
5465}
5466
5467static void make_discard_request(struct mddev *mddev, struct bio *bi)
5468{
5469	struct r5conf *conf = mddev->private;
5470	sector_t logical_sector, last_sector;
5471	struct stripe_head *sh;
5472	int stripe_sectors;
5473
5474	if (mddev->reshape_position != MaxSector)
5475		/* Skip discard while reshape is happening */
5476		return;
5477
5478	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5479	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5480
5481	bi->bi_next = NULL;
5482
5483	stripe_sectors = conf->chunk_sectors *
5484		(conf->raid_disks - conf->max_degraded);
5485	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5486					       stripe_sectors);
5487	sector_div(last_sector, stripe_sectors);
5488
5489	logical_sector *= conf->chunk_sectors;
5490	last_sector *= conf->chunk_sectors;
5491
5492	for (; logical_sector < last_sector;
5493	     logical_sector += STRIPE_SECTORS) {
5494		DEFINE_WAIT(w);
5495		int d;
5496	again:
5497		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5498		prepare_to_wait(&conf->wait_for_overlap, &w,
5499				TASK_UNINTERRUPTIBLE);
5500		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5501		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5502			raid5_release_stripe(sh);
5503			schedule();
5504			goto again;
5505		}
5506		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5507		spin_lock_irq(&sh->stripe_lock);
5508		for (d = 0; d < conf->raid_disks; d++) {
5509			if (d == sh->pd_idx || d == sh->qd_idx)
5510				continue;
5511			if (sh->dev[d].towrite || sh->dev[d].toread) {
5512				set_bit(R5_Overlap, &sh->dev[d].flags);
5513				spin_unlock_irq(&sh->stripe_lock);
5514				raid5_release_stripe(sh);
5515				schedule();
5516				goto again;
5517			}
5518		}
5519		set_bit(STRIPE_DISCARD, &sh->state);
5520		finish_wait(&conf->wait_for_overlap, &w);
5521		sh->overwrite_disks = 0;
5522		for (d = 0; d < conf->raid_disks; d++) {
5523			if (d == sh->pd_idx || d == sh->qd_idx)
5524				continue;
5525			sh->dev[d].towrite = bi;
5526			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5527			bio_inc_remaining(bi);
5528			md_write_inc(mddev, bi);
5529			sh->overwrite_disks++;
5530		}
5531		spin_unlock_irq(&sh->stripe_lock);
5532		if (conf->mddev->bitmap) {
5533			for (d = 0;
5534			     d < conf->raid_disks - conf->max_degraded;
5535			     d++)
5536				bitmap_startwrite(mddev->bitmap,
5537						  sh->sector,
5538						  STRIPE_SECTORS,
5539						  0);
5540			sh->bm_seq = conf->seq_flush + 1;
5541			set_bit(STRIPE_BIT_DELAY, &sh->state);
5542		}
5543
5544		set_bit(STRIPE_HANDLE, &sh->state);
5545		clear_bit(STRIPE_DELAYED, &sh->state);
5546		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5547			atomic_inc(&conf->preread_active_stripes);
5548		release_stripe_plug(mddev, sh);
5549	}
5550
5551	bio_endio(bi);
5552}
5553
5554static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5555{
5556	struct r5conf *conf = mddev->private;
5557	int dd_idx;
5558	sector_t new_sector;
5559	sector_t logical_sector, last_sector;
5560	struct stripe_head *sh;
5561	const int rw = bio_data_dir(bi);
5562	DEFINE_WAIT(w);
5563	bool do_prepare;
5564	bool do_flush = false;
5565
5566	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5567		int ret = log_handle_flush_request(conf, bi);
5568
5569		if (ret == 0)
5570			return true;
5571		if (ret == -ENODEV) {
5572			md_flush_request(mddev, bi);
5573			return true;
5574		}
5575		/* ret == -EAGAIN, fallback */
5576		/*
5577		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5578		 * we need to flush journal device
5579		 */
5580		do_flush = bi->bi_opf & REQ_PREFLUSH;
5581	}
5582
5583	if (!md_write_start(mddev, bi))
5584		return false;
5585	/*
5586	 * If array is degraded, better not do chunk aligned read because
5587	 * later we might have to read it again in order to reconstruct
5588	 * data on failed drives.
5589	 */
5590	if (rw == READ && mddev->degraded == 0 &&
5591	    mddev->reshape_position == MaxSector) {
5592		bi = chunk_aligned_read(mddev, bi);
5593		if (!bi)
5594			return true;
5595	}
5596
5597	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5598		make_discard_request(mddev, bi);
5599		md_write_end(mddev);
5600		return true;
5601	}
5602
5603	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5604	last_sector = bio_end_sector(bi);
5605	bi->bi_next = NULL;
 
5606
5607	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5608	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
 
 
5609		int previous;
5610		int seq;
5611
5612		do_prepare = false;
5613	retry:
5614		seq = read_seqcount_begin(&conf->gen_lock);
5615		previous = 0;
5616		if (do_prepare)
5617			prepare_to_wait(&conf->wait_for_overlap, &w,
5618				TASK_UNINTERRUPTIBLE);
5619		if (unlikely(conf->reshape_progress != MaxSector)) {
5620			/* spinlock is needed as reshape_progress may be
5621			 * 64bit on a 32bit platform, and so it might be
5622			 * possible to see a half-updated value
5623			 * Of course reshape_progress could change after
5624			 * the lock is dropped, so once we get a reference
5625			 * to the stripe that we think it is, we will have
5626			 * to check again.
5627			 */
5628			spin_lock_irq(&conf->device_lock);
5629			if (mddev->reshape_backwards
5630			    ? logical_sector < conf->reshape_progress
5631			    : logical_sector >= conf->reshape_progress) {
 
5632				previous = 1;
5633			} else {
5634				if (mddev->reshape_backwards
5635				    ? logical_sector < conf->reshape_safe
5636				    : logical_sector >= conf->reshape_safe) {
5637					spin_unlock_irq(&conf->device_lock);
5638					schedule();
5639					do_prepare = true;
5640					goto retry;
5641				}
5642			}
5643			spin_unlock_irq(&conf->device_lock);
5644		}
 
5645
5646		new_sector = raid5_compute_sector(conf, logical_sector,
5647						  previous,
5648						  &dd_idx, NULL);
5649		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5650			(unsigned long long)new_sector,
5651			(unsigned long long)logical_sector);
5652
5653		sh = raid5_get_active_stripe(conf, new_sector, previous,
5654				       (bi->bi_opf & REQ_RAHEAD), 0);
5655		if (sh) {
5656			if (unlikely(previous)) {
5657				/* expansion might have moved on while waiting for a
5658				 * stripe, so we must do the range check again.
5659				 * Expansion could still move past after this
5660				 * test, but as we are holding a reference to
5661				 * 'sh', we know that if that happens,
5662				 *  STRIPE_EXPANDING will get set and the expansion
5663				 * won't proceed until we finish with the stripe.
5664				 */
5665				int must_retry = 0;
5666				spin_lock_irq(&conf->device_lock);
5667				if (mddev->reshape_backwards
5668				    ? logical_sector >= conf->reshape_progress
5669				    : logical_sector < conf->reshape_progress)
5670					/* mismatch, need to try again */
5671					must_retry = 1;
5672				spin_unlock_irq(&conf->device_lock);
5673				if (must_retry) {
5674					raid5_release_stripe(sh);
5675					schedule();
5676					do_prepare = true;
5677					goto retry;
5678				}
5679			}
5680			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5681				/* Might have got the wrong stripe_head
5682				 * by accident
 
 
 
 
 
5683				 */
5684				raid5_release_stripe(sh);
 
 
 
 
 
5685				goto retry;
5686			}
5687
5688			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5689			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5690				/* Stripe is busy expanding or
5691				 * add failed due to overlap.  Flush everything
5692				 * and wait a while
5693				 */
5694				md_wakeup_thread(mddev->thread);
5695				raid5_release_stripe(sh);
5696				schedule();
5697				do_prepare = true;
5698				goto retry;
5699			}
5700			if (do_flush) {
5701				set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5702				/* we only need flush for one stripe */
5703				do_flush = false;
5704			}
5705
5706			set_bit(STRIPE_HANDLE, &sh->state);
5707			clear_bit(STRIPE_DELAYED, &sh->state);
5708			if ((!sh->batch_head || sh == sh->batch_head) &&
5709			    (bi->bi_opf & REQ_SYNC) &&
5710			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5711				atomic_inc(&conf->preread_active_stripes);
5712			release_stripe_plug(mddev, sh);
5713		} else {
5714			/* cannot get stripe for read-ahead, just give-up */
5715			bi->bi_status = BLK_STS_IOERR;
 
5716			break;
5717		}
 
5718	}
5719	finish_wait(&conf->wait_for_overlap, &w);
 
5720
5721	if (rw == WRITE)
5722		md_write_end(mddev);
5723	bio_endio(bi);
5724	return true;
 
 
 
 
 
 
 
 
5725}
5726
5727static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5728
5729static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5730{
5731	/* reshaping is quite different to recovery/resync so it is
5732	 * handled quite separately ... here.
5733	 *
5734	 * On each call to sync_request, we gather one chunk worth of
5735	 * destination stripes and flag them as expanding.
5736	 * Then we find all the source stripes and request reads.
5737	 * As the reads complete, handle_stripe will copy the data
5738	 * into the destination stripe and release that stripe.
5739	 */
5740	struct r5conf *conf = mddev->private;
5741	struct stripe_head *sh;
5742	struct md_rdev *rdev;
5743	sector_t first_sector, last_sector;
5744	int raid_disks = conf->previous_raid_disks;
5745	int data_disks = raid_disks - conf->max_degraded;
5746	int new_data_disks = conf->raid_disks - conf->max_degraded;
5747	int i;
5748	int dd_idx;
5749	sector_t writepos, readpos, safepos;
5750	sector_t stripe_addr;
5751	int reshape_sectors;
5752	struct list_head stripes;
5753	sector_t retn;
5754
5755	if (sector_nr == 0) {
5756		/* If restarting in the middle, skip the initial sectors */
5757		if (mddev->reshape_backwards &&
5758		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5759			sector_nr = raid5_size(mddev, 0, 0)
5760				- conf->reshape_progress;
5761		} else if (mddev->reshape_backwards &&
5762			   conf->reshape_progress == MaxSector) {
5763			/* shouldn't happen, but just in case, finish up.*/
5764			sector_nr = MaxSector;
5765		} else if (!mddev->reshape_backwards &&
5766			   conf->reshape_progress > 0)
5767			sector_nr = conf->reshape_progress;
5768		sector_div(sector_nr, new_data_disks);
5769		if (sector_nr) {
5770			mddev->curr_resync_completed = sector_nr;
5771			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5772			*skipped = 1;
5773			retn = sector_nr;
5774			goto finish;
5775		}
5776	}
5777
5778	/* We need to process a full chunk at a time.
5779	 * If old and new chunk sizes differ, we need to process the
5780	 * largest of these
5781	 */
 
 
 
 
5782
5783	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5784
5785	/* We update the metadata at least every 10 seconds, or when
5786	 * the data about to be copied would over-write the source of
5787	 * the data at the front of the range.  i.e. one new_stripe
5788	 * along from reshape_progress new_maps to after where
5789	 * reshape_safe old_maps to
5790	 */
5791	writepos = conf->reshape_progress;
5792	sector_div(writepos, new_data_disks);
5793	readpos = conf->reshape_progress;
5794	sector_div(readpos, data_disks);
5795	safepos = conf->reshape_safe;
5796	sector_div(safepos, data_disks);
5797	if (mddev->reshape_backwards) {
5798		BUG_ON(writepos < reshape_sectors);
5799		writepos -= reshape_sectors;
5800		readpos += reshape_sectors;
5801		safepos += reshape_sectors;
5802	} else {
5803		writepos += reshape_sectors;
5804		/* readpos and safepos are worst-case calculations.
5805		 * A negative number is overly pessimistic, and causes
5806		 * obvious problems for unsigned storage.  So clip to 0.
5807		 */
5808		readpos -= min_t(sector_t, reshape_sectors, readpos);
5809		safepos -= min_t(sector_t, reshape_sectors, safepos);
5810	}
5811
5812	/* Having calculated the 'writepos' possibly use it
5813	 * to set 'stripe_addr' which is where we will write to.
5814	 */
5815	if (mddev->reshape_backwards) {
5816		BUG_ON(conf->reshape_progress == 0);
5817		stripe_addr = writepos;
5818		BUG_ON((mddev->dev_sectors &
5819			~((sector_t)reshape_sectors - 1))
5820		       - reshape_sectors - stripe_addr
5821		       != sector_nr);
5822	} else {
5823		BUG_ON(writepos != sector_nr + reshape_sectors);
5824		stripe_addr = sector_nr;
5825	}
5826
5827	/* 'writepos' is the most advanced device address we might write.
5828	 * 'readpos' is the least advanced device address we might read.
5829	 * 'safepos' is the least address recorded in the metadata as having
5830	 *     been reshaped.
5831	 * If there is a min_offset_diff, these are adjusted either by
5832	 * increasing the safepos/readpos if diff is negative, or
5833	 * increasing writepos if diff is positive.
5834	 * If 'readpos' is then behind 'writepos', there is no way that we can
5835	 * ensure safety in the face of a crash - that must be done by userspace
5836	 * making a backup of the data.  So in that case there is no particular
5837	 * rush to update metadata.
5838	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5839	 * update the metadata to advance 'safepos' to match 'readpos' so that
5840	 * we can be safe in the event of a crash.
5841	 * So we insist on updating metadata if safepos is behind writepos and
5842	 * readpos is beyond writepos.
5843	 * In any case, update the metadata every 10 seconds.
5844	 * Maybe that number should be configurable, but I'm not sure it is
5845	 * worth it.... maybe it could be a multiple of safemode_delay???
5846	 */
5847	if (conf->min_offset_diff < 0) {
5848		safepos += -conf->min_offset_diff;
5849		readpos += -conf->min_offset_diff;
5850	} else
5851		writepos += conf->min_offset_diff;
5852
5853	if ((mddev->reshape_backwards
5854	     ? (safepos > writepos && readpos < writepos)
5855	     : (safepos < writepos && readpos > writepos)) ||
5856	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5857		/* Cannot proceed until we've updated the superblock... */
5858		wait_event(conf->wait_for_overlap,
5859			   atomic_read(&conf->reshape_stripes)==0
5860			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5861		if (atomic_read(&conf->reshape_stripes) != 0)
5862			return 0;
5863		mddev->reshape_position = conf->reshape_progress;
5864		mddev->curr_resync_completed = sector_nr;
5865		if (!mddev->reshape_backwards)
5866			/* Can update recovery_offset */
5867			rdev_for_each(rdev, mddev)
5868				if (rdev->raid_disk >= 0 &&
5869				    !test_bit(Journal, &rdev->flags) &&
5870				    !test_bit(In_sync, &rdev->flags) &&
5871				    rdev->recovery_offset < sector_nr)
5872					rdev->recovery_offset = sector_nr;
5873
5874		conf->reshape_checkpoint = jiffies;
5875		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5876		md_wakeup_thread(mddev->thread);
5877		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5878			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5879		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5880			return 0;
5881		spin_lock_irq(&conf->device_lock);
5882		conf->reshape_safe = mddev->reshape_position;
5883		spin_unlock_irq(&conf->device_lock);
5884		wake_up(&conf->wait_for_overlap);
5885		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5886	}
5887
 
 
 
 
 
 
 
 
 
 
 
5888	INIT_LIST_HEAD(&stripes);
5889	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5890		int j;
5891		int skipped_disk = 0;
5892		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5893		set_bit(STRIPE_EXPANDING, &sh->state);
5894		atomic_inc(&conf->reshape_stripes);
5895		/* If any of this stripe is beyond the end of the old
5896		 * array, then we need to zero those blocks
5897		 */
5898		for (j=sh->disks; j--;) {
5899			sector_t s;
5900			if (j == sh->pd_idx)
5901				continue;
5902			if (conf->level == 6 &&
5903			    j == sh->qd_idx)
5904				continue;
5905			s = raid5_compute_blocknr(sh, j, 0);
5906			if (s < raid5_size(mddev, 0, 0)) {
5907				skipped_disk = 1;
5908				continue;
5909			}
5910			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5911			set_bit(R5_Expanded, &sh->dev[j].flags);
5912			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5913		}
5914		if (!skipped_disk) {
5915			set_bit(STRIPE_EXPAND_READY, &sh->state);
5916			set_bit(STRIPE_HANDLE, &sh->state);
5917		}
5918		list_add(&sh->lru, &stripes);
5919	}
5920	spin_lock_irq(&conf->device_lock);
5921	if (mddev->reshape_backwards)
5922		conf->reshape_progress -= reshape_sectors * new_data_disks;
5923	else
5924		conf->reshape_progress += reshape_sectors * new_data_disks;
5925	spin_unlock_irq(&conf->device_lock);
5926	/* Ok, those stripe are ready. We can start scheduling
5927	 * reads on the source stripes.
5928	 * The source stripes are determined by mapping the first and last
5929	 * block on the destination stripes.
5930	 */
5931	first_sector =
5932		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5933				     1, &dd_idx, NULL);
5934	last_sector =
5935		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5936					    * new_data_disks - 1),
5937				     1, &dd_idx, NULL);
5938	if (last_sector >= mddev->dev_sectors)
5939		last_sector = mddev->dev_sectors - 1;
5940	while (first_sector <= last_sector) {
5941		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5942		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5943		set_bit(STRIPE_HANDLE, &sh->state);
5944		raid5_release_stripe(sh);
5945		first_sector += STRIPE_SECTORS;
5946	}
5947	/* Now that the sources are clearly marked, we can release
5948	 * the destination stripes
5949	 */
5950	while (!list_empty(&stripes)) {
5951		sh = list_entry(stripes.next, struct stripe_head, lru);
5952		list_del_init(&sh->lru);
5953		raid5_release_stripe(sh);
5954	}
5955	/* If this takes us to the resync_max point where we have to pause,
5956	 * then we need to write out the superblock.
5957	 */
5958	sector_nr += reshape_sectors;
5959	retn = reshape_sectors;
5960finish:
5961	if (mddev->curr_resync_completed > mddev->resync_max ||
5962	    (sector_nr - mddev->curr_resync_completed) * 2
5963	    >= mddev->resync_max - mddev->curr_resync_completed) {
5964		/* Cannot proceed until we've updated the superblock... */
5965		wait_event(conf->wait_for_overlap,
5966			   atomic_read(&conf->reshape_stripes) == 0
5967			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5968		if (atomic_read(&conf->reshape_stripes) != 0)
5969			goto ret;
5970		mddev->reshape_position = conf->reshape_progress;
5971		mddev->curr_resync_completed = sector_nr;
5972		if (!mddev->reshape_backwards)
5973			/* Can update recovery_offset */
5974			rdev_for_each(rdev, mddev)
5975				if (rdev->raid_disk >= 0 &&
5976				    !test_bit(Journal, &rdev->flags) &&
5977				    !test_bit(In_sync, &rdev->flags) &&
5978				    rdev->recovery_offset < sector_nr)
5979					rdev->recovery_offset = sector_nr;
5980		conf->reshape_checkpoint = jiffies;
5981		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5982		md_wakeup_thread(mddev->thread);
5983		wait_event(mddev->sb_wait,
5984			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
5985			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5986		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5987			goto ret;
5988		spin_lock_irq(&conf->device_lock);
5989		conf->reshape_safe = mddev->reshape_position;
5990		spin_unlock_irq(&conf->device_lock);
5991		wake_up(&conf->wait_for_overlap);
5992		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5993	}
5994ret:
5995	return retn;
5996}
5997
5998static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5999					  int *skipped)
6000{
6001	struct r5conf *conf = mddev->private;
6002	struct stripe_head *sh;
6003	sector_t max_sector = mddev->dev_sectors;
6004	sector_t sync_blocks;
6005	int still_degraded = 0;
6006	int i;
6007
6008	if (sector_nr >= max_sector) {
6009		/* just being told to finish up .. nothing much to do */
6010
6011		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6012			end_reshape(conf);
6013			return 0;
6014		}
6015
6016		if (mddev->curr_resync < max_sector) /* aborted */
6017			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6018					&sync_blocks, 1);
6019		else /* completed sync */
6020			conf->fullsync = 0;
6021		bitmap_close_sync(mddev->bitmap);
6022
6023		return 0;
6024	}
6025
6026	/* Allow raid5_quiesce to complete */
6027	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6028
6029	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6030		return reshape_request(mddev, sector_nr, skipped);
6031
6032	/* No need to check resync_max as we never do more than one
6033	 * stripe, and as resync_max will always be on a chunk boundary,
6034	 * if the check in md_do_sync didn't fire, there is no chance
6035	 * of overstepping resync_max here
6036	 */
6037
6038	/* if there is too many failed drives and we are trying
6039	 * to resync, then assert that we are finished, because there is
6040	 * nothing we can do.
6041	 */
6042	if (mddev->degraded >= conf->max_degraded &&
6043	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6044		sector_t rv = mddev->dev_sectors - sector_nr;
6045		*skipped = 1;
6046		return rv;
6047	}
6048	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6049	    !conf->fullsync &&
6050	    !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6051	    sync_blocks >= STRIPE_SECTORS) {
6052		/* we can skip this block, and probably more */
6053		sync_blocks /= STRIPE_SECTORS;
6054		*skipped = 1;
6055		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6056	}
6057
6058	bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6059
6060	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
 
 
6061	if (sh == NULL) {
6062		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6063		/* make sure we don't swamp the stripe cache if someone else
6064		 * is trying to get access
6065		 */
6066		schedule_timeout_uninterruptible(1);
6067	}
6068	/* Need to check if array will still be degraded after recovery/resync
6069	 * Note in case of > 1 drive failures it's possible we're rebuilding
6070	 * one drive while leaving another faulty drive in array.
6071	 */
6072	rcu_read_lock();
6073	for (i = 0; i < conf->raid_disks; i++) {
6074		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6075
6076		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6077			still_degraded = 1;
6078	}
6079	rcu_read_unlock();
6080
6081	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6082
6083	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6084	set_bit(STRIPE_HANDLE, &sh->state);
6085
6086	raid5_release_stripe(sh);
 
6087
6088	return STRIPE_SECTORS;
6089}
6090
6091static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6092			       unsigned int offset)
6093{
6094	/* We may not be able to submit a whole bio at once as there
6095	 * may not be enough stripe_heads available.
6096	 * We cannot pre-allocate enough stripe_heads as we may need
6097	 * more than exist in the cache (if we allow ever large chunks).
6098	 * So we do one stripe head at a time and record in
6099	 * ->bi_hw_segments how many have been done.
6100	 *
6101	 * We *know* that this entire raid_bio is in one chunk, so
6102	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6103	 */
6104	struct stripe_head *sh;
6105	int dd_idx;
6106	sector_t sector, logical_sector, last_sector;
6107	int scnt = 0;
 
6108	int handled = 0;
6109
6110	logical_sector = raid_bio->bi_iter.bi_sector &
6111		~((sector_t)STRIPE_SECTORS-1);
6112	sector = raid5_compute_sector(conf, logical_sector,
6113				      0, &dd_idx, NULL);
6114	last_sector = bio_end_sector(raid_bio);
6115
6116	for (; logical_sector < last_sector;
6117	     logical_sector += STRIPE_SECTORS,
6118		     sector += STRIPE_SECTORS,
6119		     scnt++) {
6120
6121		if (scnt < offset)
6122			/* already done this stripe */
6123			continue;
6124
6125		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6126
6127		if (!sh) {
6128			/* failed to get a stripe - must wait */
 
6129			conf->retry_read_aligned = raid_bio;
6130			conf->retry_read_offset = scnt;
6131			return handled;
6132		}
6133
6134		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6135			raid5_release_stripe(sh);
 
 
6136			conf->retry_read_aligned = raid_bio;
6137			conf->retry_read_offset = scnt;
6138			return handled;
6139		}
6140
6141		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6142		handle_stripe(sh);
6143		raid5_release_stripe(sh);
6144		handled++;
6145	}
6146
6147	bio_endio(raid_bio);
6148
 
 
6149	if (atomic_dec_and_test(&conf->active_aligned_reads))
6150		wake_up(&conf->wait_for_quiescent);
6151	return handled;
6152}
6153
6154static int handle_active_stripes(struct r5conf *conf, int group,
6155				 struct r5worker *worker,
6156				 struct list_head *temp_inactive_list)
6157{
6158	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6159	int i, batch_size = 0, hash;
6160	bool release_inactive = false;
6161
6162	while (batch_size < MAX_STRIPE_BATCH &&
6163			(sh = __get_priority_stripe(conf, group)) != NULL)
6164		batch[batch_size++] = sh;
6165
6166	if (batch_size == 0) {
6167		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6168			if (!list_empty(temp_inactive_list + i))
6169				break;
6170		if (i == NR_STRIPE_HASH_LOCKS) {
6171			spin_unlock_irq(&conf->device_lock);
6172			log_flush_stripe_to_raid(conf);
6173			spin_lock_irq(&conf->device_lock);
6174			return batch_size;
6175		}
6176		release_inactive = true;
6177	}
6178	spin_unlock_irq(&conf->device_lock);
6179
6180	release_inactive_stripe_list(conf, temp_inactive_list,
6181				     NR_STRIPE_HASH_LOCKS);
6182
6183	r5l_flush_stripe_to_raid(conf->log);
6184	if (release_inactive) {
6185		spin_lock_irq(&conf->device_lock);
6186		return 0;
6187	}
6188
6189	for (i = 0; i < batch_size; i++)
6190		handle_stripe(batch[i]);
6191	log_write_stripe_run(conf);
6192
6193	cond_resched();
6194
6195	spin_lock_irq(&conf->device_lock);
6196	for (i = 0; i < batch_size; i++) {
6197		hash = batch[i]->hash_lock_index;
6198		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6199	}
6200	return batch_size;
6201}
6202
6203static void raid5_do_work(struct work_struct *work)
6204{
6205	struct r5worker *worker = container_of(work, struct r5worker, work);
6206	struct r5worker_group *group = worker->group;
6207	struct r5conf *conf = group->conf;
6208	struct mddev *mddev = conf->mddev;
6209	int group_id = group - conf->worker_groups;
6210	int handled;
6211	struct blk_plug plug;
6212
6213	pr_debug("+++ raid5worker active\n");
6214
6215	blk_start_plug(&plug);
6216	handled = 0;
6217	spin_lock_irq(&conf->device_lock);
6218	while (1) {
6219		int batch_size, released;
6220
6221		released = release_stripe_list(conf, worker->temp_inactive_list);
6222
6223		batch_size = handle_active_stripes(conf, group_id, worker,
6224						   worker->temp_inactive_list);
6225		worker->working = false;
6226		if (!batch_size && !released)
6227			break;
6228		handled += batch_size;
6229		wait_event_lock_irq(mddev->sb_wait,
6230			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6231			conf->device_lock);
6232	}
6233	pr_debug("%d stripes handled\n", handled);
6234
6235	spin_unlock_irq(&conf->device_lock);
6236
6237	flush_deferred_bios(conf);
6238
6239	r5l_flush_stripe_to_raid(conf->log);
6240
6241	async_tx_issue_pending_all();
6242	blk_finish_plug(&plug);
6243
6244	pr_debug("--- raid5worker inactive\n");
6245}
6246
6247/*
6248 * This is our raid5 kernel thread.
6249 *
6250 * We scan the hash table for stripes which can be handled now.
6251 * During the scan, completed stripes are saved for us by the interrupt
6252 * handler, so that they will not have to wait for our next wakeup.
6253 */
6254static void raid5d(struct md_thread *thread)
6255{
6256	struct mddev *mddev = thread->mddev;
6257	struct r5conf *conf = mddev->private;
6258	int handled;
6259	struct blk_plug plug;
6260
6261	pr_debug("+++ raid5d active\n");
6262
6263	md_check_recovery(mddev);
6264
6265	blk_start_plug(&plug);
6266	handled = 0;
6267	spin_lock_irq(&conf->device_lock);
6268	while (1) {
6269		struct bio *bio;
6270		int batch_size, released;
6271		unsigned int offset;
6272
6273		released = release_stripe_list(conf, conf->temp_inactive_list);
6274		if (released)
6275			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6276
6277		if (
6278		    !list_empty(&conf->bitmap_list)) {
6279			/* Now is a good time to flush some bitmap updates */
6280			conf->seq_flush++;
6281			spin_unlock_irq(&conf->device_lock);
6282			bitmap_unplug(mddev->bitmap);
6283			spin_lock_irq(&conf->device_lock);
6284			conf->seq_write = conf->seq_flush;
6285			activate_bit_delay(conf, conf->temp_inactive_list);
6286		}
6287		raid5_activate_delayed(conf);
 
6288
6289		while ((bio = remove_bio_from_retry(conf, &offset))) {
6290			int ok;
6291			spin_unlock_irq(&conf->device_lock);
6292			ok = retry_aligned_read(conf, bio, offset);
6293			spin_lock_irq(&conf->device_lock);
6294			if (!ok)
6295				break;
6296			handled++;
6297		}
6298
6299		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6300						   conf->temp_inactive_list);
6301		if (!batch_size && !released)
6302			break;
6303		handled += batch_size;
 
 
 
 
 
6304
6305		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6306			spin_unlock_irq(&conf->device_lock);
6307			md_check_recovery(mddev);
6308			spin_lock_irq(&conf->device_lock);
6309		}
6310	}
6311	pr_debug("%d stripes handled\n", handled);
6312
6313	spin_unlock_irq(&conf->device_lock);
6314	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6315	    mutex_trylock(&conf->cache_size_mutex)) {
6316		grow_one_stripe(conf, __GFP_NOWARN);
6317		/* Set flag even if allocation failed.  This helps
6318		 * slow down allocation requests when mem is short
6319		 */
6320		set_bit(R5_DID_ALLOC, &conf->cache_state);
6321		mutex_unlock(&conf->cache_size_mutex);
6322	}
6323
6324	flush_deferred_bios(conf);
6325
6326	r5l_flush_stripe_to_raid(conf->log);
6327
6328	async_tx_issue_pending_all();
6329	blk_finish_plug(&plug);
6330
6331	pr_debug("--- raid5d inactive\n");
6332}
6333
6334static ssize_t
6335raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6336{
6337	struct r5conf *conf;
6338	int ret = 0;
6339	spin_lock(&mddev->lock);
6340	conf = mddev->private;
6341	if (conf)
6342		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6343	spin_unlock(&mddev->lock);
6344	return ret;
6345}
6346
6347int
6348raid5_set_cache_size(struct mddev *mddev, int size)
6349{
6350	struct r5conf *conf = mddev->private;
 
6351
6352	if (size <= 16 || size > 32768)
6353		return -EINVAL;
6354
6355	conf->min_nr_stripes = size;
6356	mutex_lock(&conf->cache_size_mutex);
6357	while (size < conf->max_nr_stripes &&
6358	       drop_one_stripe(conf))
6359		;
6360	mutex_unlock(&conf->cache_size_mutex);
6361
6362	md_allow_write(mddev);
6363
6364	mutex_lock(&conf->cache_size_mutex);
6365	while (size > conf->max_nr_stripes)
6366		if (!grow_one_stripe(conf, GFP_KERNEL))
6367			break;
6368	mutex_unlock(&conf->cache_size_mutex);
6369
 
 
 
 
 
 
 
6370	return 0;
6371}
6372EXPORT_SYMBOL(raid5_set_cache_size);
6373
6374static ssize_t
6375raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6376{
6377	struct r5conf *conf;
6378	unsigned long new;
6379	int err;
6380
6381	if (len >= PAGE_SIZE)
6382		return -EINVAL;
6383	if (kstrtoul(page, 10, &new))
 
 
 
6384		return -EINVAL;
6385	err = mddev_lock(mddev);
6386	if (err)
6387		return err;
6388	conf = mddev->private;
6389	if (!conf)
6390		err = -ENODEV;
6391	else
6392		err = raid5_set_cache_size(mddev, new);
6393	mddev_unlock(mddev);
6394
6395	return err ?: len;
6396}
6397
6398static struct md_sysfs_entry
6399raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6400				raid5_show_stripe_cache_size,
6401				raid5_store_stripe_cache_size);
6402
6403static ssize_t
6404raid5_show_rmw_level(struct mddev  *mddev, char *page)
6405{
6406	struct r5conf *conf = mddev->private;
6407	if (conf)
6408		return sprintf(page, "%d\n", conf->rmw_level);
6409	else
6410		return 0;
6411}
6412
6413static ssize_t
6414raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6415{
6416	struct r5conf *conf = mddev->private;
6417	unsigned long new;
6418
 
6419	if (!conf)
6420		return -ENODEV;
6421
6422	if (len >= PAGE_SIZE)
6423		return -EINVAL;
6424
6425	if (kstrtoul(page, 10, &new))
6426		return -EINVAL;
6427
6428	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6429		return -EINVAL;
6430
6431	if (new != PARITY_DISABLE_RMW &&
6432	    new != PARITY_ENABLE_RMW &&
6433	    new != PARITY_PREFER_RMW)
6434		return -EINVAL;
6435
6436	conf->rmw_level = new;
6437	return len;
6438}
6439
6440static struct md_sysfs_entry
6441raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6442			 raid5_show_rmw_level,
6443			 raid5_store_rmw_level);
6444
6445
6446static ssize_t
6447raid5_show_preread_threshold(struct mddev *mddev, char *page)
6448{
6449	struct r5conf *conf;
6450	int ret = 0;
6451	spin_lock(&mddev->lock);
6452	conf = mddev->private;
6453	if (conf)
6454		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6455	spin_unlock(&mddev->lock);
6456	return ret;
6457}
6458
6459static ssize_t
6460raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6461{
6462	struct r5conf *conf;
6463	unsigned long new;
6464	int err;
6465
6466	if (len >= PAGE_SIZE)
6467		return -EINVAL;
6468	if (kstrtoul(page, 10, &new))
6469		return -EINVAL;
6470
6471	err = mddev_lock(mddev);
6472	if (err)
6473		return err;
6474	conf = mddev->private;
6475	if (!conf)
6476		err = -ENODEV;
6477	else if (new > conf->min_nr_stripes)
6478		err = -EINVAL;
6479	else
6480		conf->bypass_threshold = new;
6481	mddev_unlock(mddev);
6482	return err ?: len;
6483}
6484
6485static struct md_sysfs_entry
6486raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6487					S_IRUGO | S_IWUSR,
6488					raid5_show_preread_threshold,
6489					raid5_store_preread_threshold);
6490
6491static ssize_t
6492raid5_show_skip_copy(struct mddev *mddev, char *page)
6493{
6494	struct r5conf *conf;
6495	int ret = 0;
6496	spin_lock(&mddev->lock);
6497	conf = mddev->private;
6498	if (conf)
6499		ret = sprintf(page, "%d\n", conf->skip_copy);
6500	spin_unlock(&mddev->lock);
6501	return ret;
6502}
6503
6504static ssize_t
6505raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6506{
6507	struct r5conf *conf;
6508	unsigned long new;
6509	int err;
6510
6511	if (len >= PAGE_SIZE)
6512		return -EINVAL;
6513	if (kstrtoul(page, 10, &new))
6514		return -EINVAL;
6515	new = !!new;
6516
6517	err = mddev_lock(mddev);
6518	if (err)
6519		return err;
6520	conf = mddev->private;
6521	if (!conf)
6522		err = -ENODEV;
6523	else if (new != conf->skip_copy) {
6524		mddev_suspend(mddev);
6525		conf->skip_copy = new;
6526		if (new)
6527			mddev->queue->backing_dev_info->capabilities |=
6528				BDI_CAP_STABLE_WRITES;
6529		else
6530			mddev->queue->backing_dev_info->capabilities &=
6531				~BDI_CAP_STABLE_WRITES;
6532		mddev_resume(mddev);
6533	}
6534	mddev_unlock(mddev);
6535	return err ?: len;
6536}
6537
6538static struct md_sysfs_entry
6539raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6540					raid5_show_skip_copy,
6541					raid5_store_skip_copy);
6542
6543static ssize_t
6544stripe_cache_active_show(struct mddev *mddev, char *page)
6545{
6546	struct r5conf *conf = mddev->private;
6547	if (conf)
6548		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6549	else
6550		return 0;
6551}
6552
6553static struct md_sysfs_entry
6554raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6555
6556static ssize_t
6557raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6558{
6559	struct r5conf *conf;
6560	int ret = 0;
6561	spin_lock(&mddev->lock);
6562	conf = mddev->private;
6563	if (conf)
6564		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6565	spin_unlock(&mddev->lock);
6566	return ret;
6567}
6568
6569static int alloc_thread_groups(struct r5conf *conf, int cnt,
6570			       int *group_cnt,
6571			       int *worker_cnt_per_group,
6572			       struct r5worker_group **worker_groups);
6573static ssize_t
6574raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6575{
6576	struct r5conf *conf;
6577	unsigned int new;
6578	int err;
6579	struct r5worker_group *new_groups, *old_groups;
6580	int group_cnt, worker_cnt_per_group;
6581
6582	if (len >= PAGE_SIZE)
6583		return -EINVAL;
6584	if (kstrtouint(page, 10, &new))
6585		return -EINVAL;
6586	/* 8192 should be big enough */
6587	if (new > 8192)
6588		return -EINVAL;
6589
6590	err = mddev_lock(mddev);
6591	if (err)
6592		return err;
6593	conf = mddev->private;
6594	if (!conf)
6595		err = -ENODEV;
6596	else if (new != conf->worker_cnt_per_group) {
6597		mddev_suspend(mddev);
6598
6599		old_groups = conf->worker_groups;
6600		if (old_groups)
6601			flush_workqueue(raid5_wq);
6602
6603		err = alloc_thread_groups(conf, new,
6604					  &group_cnt, &worker_cnt_per_group,
6605					  &new_groups);
6606		if (!err) {
6607			spin_lock_irq(&conf->device_lock);
6608			conf->group_cnt = group_cnt;
6609			conf->worker_cnt_per_group = worker_cnt_per_group;
6610			conf->worker_groups = new_groups;
6611			spin_unlock_irq(&conf->device_lock);
6612
6613			if (old_groups)
6614				kfree(old_groups[0].workers);
6615			kfree(old_groups);
6616		}
6617		mddev_resume(mddev);
6618	}
6619	mddev_unlock(mddev);
6620
6621	return err ?: len;
6622}
6623
6624static struct md_sysfs_entry
6625raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6626				raid5_show_group_thread_cnt,
6627				raid5_store_group_thread_cnt);
6628
6629static struct attribute *raid5_attrs[] =  {
6630	&raid5_stripecache_size.attr,
6631	&raid5_stripecache_active.attr,
6632	&raid5_preread_bypass_threshold.attr,
6633	&raid5_group_thread_cnt.attr,
6634	&raid5_skip_copy.attr,
6635	&raid5_rmw_level.attr,
6636	&r5c_journal_mode.attr,
6637	NULL,
6638};
6639static struct attribute_group raid5_attrs_group = {
6640	.name = NULL,
6641	.attrs = raid5_attrs,
6642};
6643
6644static int alloc_thread_groups(struct r5conf *conf, int cnt,
6645			       int *group_cnt,
6646			       int *worker_cnt_per_group,
6647			       struct r5worker_group **worker_groups)
6648{
6649	int i, j, k;
6650	ssize_t size;
6651	struct r5worker *workers;
6652
6653	*worker_cnt_per_group = cnt;
6654	if (cnt == 0) {
6655		*group_cnt = 0;
6656		*worker_groups = NULL;
6657		return 0;
6658	}
6659	*group_cnt = num_possible_nodes();
6660	size = sizeof(struct r5worker) * cnt;
6661	workers = kzalloc(size * *group_cnt, GFP_NOIO);
6662	*worker_groups = kzalloc(sizeof(struct r5worker_group) *
6663				*group_cnt, GFP_NOIO);
6664	if (!*worker_groups || !workers) {
6665		kfree(workers);
6666		kfree(*worker_groups);
6667		return -ENOMEM;
6668	}
6669
6670	for (i = 0; i < *group_cnt; i++) {
6671		struct r5worker_group *group;
6672
6673		group = &(*worker_groups)[i];
6674		INIT_LIST_HEAD(&group->handle_list);
6675		INIT_LIST_HEAD(&group->loprio_list);
6676		group->conf = conf;
6677		group->workers = workers + i * cnt;
6678
6679		for (j = 0; j < cnt; j++) {
6680			struct r5worker *worker = group->workers + j;
6681			worker->group = group;
6682			INIT_WORK(&worker->work, raid5_do_work);
6683
6684			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6685				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6686		}
6687	}
6688
6689	return 0;
6690}
6691
6692static void free_thread_groups(struct r5conf *conf)
6693{
6694	if (conf->worker_groups)
6695		kfree(conf->worker_groups[0].workers);
6696	kfree(conf->worker_groups);
6697	conf->worker_groups = NULL;
6698}
6699
6700static sector_t
6701raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6702{
6703	struct r5conf *conf = mddev->private;
6704
6705	if (!sectors)
6706		sectors = mddev->dev_sectors;
6707	if (!raid_disks)
6708		/* size is defined by the smallest of previous and new size */
6709		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6710
6711	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6712	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6713	return sectors * (raid_disks - conf->max_degraded);
6714}
6715
6716static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6717{
6718	safe_put_page(percpu->spare_page);
6719	if (percpu->scribble)
6720		flex_array_free(percpu->scribble);
6721	percpu->spare_page = NULL;
6722	percpu->scribble = NULL;
6723}
6724
6725static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6726{
6727	if (conf->level == 6 && !percpu->spare_page)
6728		percpu->spare_page = alloc_page(GFP_KERNEL);
6729	if (!percpu->scribble)
6730		percpu->scribble = scribble_alloc(max(conf->raid_disks,
6731						      conf->previous_raid_disks),
6732						  max(conf->chunk_sectors,
6733						      conf->prev_chunk_sectors)
6734						   / STRIPE_SECTORS,
6735						  GFP_KERNEL);
6736
6737	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6738		free_scratch_buffer(conf, percpu);
6739		return -ENOMEM;
6740	}
6741
6742	return 0;
6743}
6744
6745static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6746{
6747	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6748
6749	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6750	return 0;
6751}
6752
6753static void raid5_free_percpu(struct r5conf *conf)
6754{
6755	if (!conf->percpu)
6756		return;
6757
6758	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
 
 
 
 
 
 
 
 
 
 
6759	free_percpu(conf->percpu);
6760}
6761
6762static void free_conf(struct r5conf *conf)
6763{
6764	int i;
6765
6766	log_exit(conf);
6767
6768	unregister_shrinker(&conf->shrinker);
6769	free_thread_groups(conf);
6770	shrink_stripes(conf);
6771	raid5_free_percpu(conf);
6772	for (i = 0; i < conf->pool_size; i++)
6773		if (conf->disks[i].extra_page)
6774			put_page(conf->disks[i].extra_page);
6775	kfree(conf->disks);
6776	if (conf->bio_split)
6777		bioset_free(conf->bio_split);
6778	kfree(conf->stripe_hashtbl);
6779	kfree(conf->pending_data);
6780	kfree(conf);
6781}
6782
6783static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
 
 
6784{
6785	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
 
6786	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6787
6788	if (alloc_scratch_buffer(conf, percpu)) {
6789		pr_warn("%s: failed memory allocation for cpu%u\n",
6790			__func__, cpu);
6791		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6792	}
6793	return 0;
6794}
 
6795
6796static int raid5_alloc_percpu(struct r5conf *conf)
6797{
6798	int err = 0;
 
 
 
 
6799
6800	conf->percpu = alloc_percpu(struct raid5_percpu);
6801	if (!conf->percpu)
6802		return -ENOMEM;
 
6803
6804	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6805	if (!err) {
6806		conf->scribble_disks = max(conf->raid_disks,
6807			conf->previous_raid_disks);
6808		conf->scribble_sectors = max(conf->chunk_sectors,
6809			conf->prev_chunk_sectors);
6810	}
6811	return err;
6812}
6813
6814static unsigned long raid5_cache_scan(struct shrinker *shrink,
6815				      struct shrink_control *sc)
6816{
6817	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6818	unsigned long ret = SHRINK_STOP;
6819
6820	if (mutex_trylock(&conf->cache_size_mutex)) {
6821		ret= 0;
6822		while (ret < sc->nr_to_scan &&
6823		       conf->max_nr_stripes > conf->min_nr_stripes) {
6824			if (drop_one_stripe(conf) == 0) {
6825				ret = SHRINK_STOP;
6826				break;
6827			}
6828			ret++;
6829		}
6830		mutex_unlock(&conf->cache_size_mutex);
 
 
 
 
 
6831	}
6832	return ret;
6833}
 
 
 
 
 
6834
6835static unsigned long raid5_cache_count(struct shrinker *shrink,
6836				       struct shrink_control *sc)
6837{
6838	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6839
6840	if (conf->max_nr_stripes < conf->min_nr_stripes)
6841		/* unlikely, but not impossible */
6842		return 0;
6843	return conf->max_nr_stripes - conf->min_nr_stripes;
6844}
6845
6846static struct r5conf *setup_conf(struct mddev *mddev)
6847{
6848	struct r5conf *conf;
6849	int raid_disk, memory, max_disks;
6850	struct md_rdev *rdev;
6851	struct disk_info *disk;
6852	char pers_name[6];
6853	int i;
6854	int group_cnt, worker_cnt_per_group;
6855	struct r5worker_group *new_group;
6856
6857	if (mddev->new_level != 5
6858	    && mddev->new_level != 4
6859	    && mddev->new_level != 6) {
6860		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6861			mdname(mddev), mddev->new_level);
6862		return ERR_PTR(-EIO);
6863	}
6864	if ((mddev->new_level == 5
6865	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6866	    (mddev->new_level == 6
6867	     && !algorithm_valid_raid6(mddev->new_layout))) {
6868		pr_warn("md/raid:%s: layout %d not supported\n",
6869			mdname(mddev), mddev->new_layout);
6870		return ERR_PTR(-EIO);
6871	}
6872	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6873		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6874			mdname(mddev), mddev->raid_disks);
6875		return ERR_PTR(-EINVAL);
6876	}
6877
6878	if (!mddev->new_chunk_sectors ||
6879	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6880	    !is_power_of_2(mddev->new_chunk_sectors)) {
6881		pr_warn("md/raid:%s: invalid chunk size %d\n",
6882			mdname(mddev), mddev->new_chunk_sectors << 9);
6883		return ERR_PTR(-EINVAL);
6884	}
6885
6886	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6887	if (conf == NULL)
6888		goto abort;
6889	INIT_LIST_HEAD(&conf->free_list);
6890	INIT_LIST_HEAD(&conf->pending_list);
6891	conf->pending_data = kzalloc(sizeof(struct r5pending_data) *
6892		PENDING_IO_MAX, GFP_KERNEL);
6893	if (!conf->pending_data)
6894		goto abort;
6895	for (i = 0; i < PENDING_IO_MAX; i++)
6896		list_add(&conf->pending_data[i].sibling, &conf->free_list);
6897	/* Don't enable multi-threading by default*/
6898	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6899				 &new_group)) {
6900		conf->group_cnt = group_cnt;
6901		conf->worker_cnt_per_group = worker_cnt_per_group;
6902		conf->worker_groups = new_group;
6903	} else
6904		goto abort;
6905	spin_lock_init(&conf->device_lock);
6906	seqcount_init(&conf->gen_lock);
6907	mutex_init(&conf->cache_size_mutex);
6908	init_waitqueue_head(&conf->wait_for_quiescent);
6909	init_waitqueue_head(&conf->wait_for_stripe);
6910	init_waitqueue_head(&conf->wait_for_overlap);
6911	INIT_LIST_HEAD(&conf->handle_list);
6912	INIT_LIST_HEAD(&conf->loprio_list);
6913	INIT_LIST_HEAD(&conf->hold_list);
6914	INIT_LIST_HEAD(&conf->delayed_list);
6915	INIT_LIST_HEAD(&conf->bitmap_list);
6916	init_llist_head(&conf->released_stripes);
6917	atomic_set(&conf->active_stripes, 0);
6918	atomic_set(&conf->preread_active_stripes, 0);
6919	atomic_set(&conf->active_aligned_reads, 0);
6920	spin_lock_init(&conf->pending_bios_lock);
6921	conf->batch_bio_dispatch = true;
6922	rdev_for_each(rdev, mddev) {
6923		if (test_bit(Journal, &rdev->flags))
6924			continue;
6925		if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6926			conf->batch_bio_dispatch = false;
6927			break;
6928		}
6929	}
6930
6931	conf->bypass_threshold = BYPASS_THRESHOLD;
6932	conf->recovery_disabled = mddev->recovery_disabled - 1;
6933
6934	conf->raid_disks = mddev->raid_disks;
6935	if (mddev->reshape_position == MaxSector)
6936		conf->previous_raid_disks = mddev->raid_disks;
6937	else
6938		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6939	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
 
6940
6941	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6942			      GFP_KERNEL);
6943
6944	if (!conf->disks)
6945		goto abort;
6946
6947	for (i = 0; i < max_disks; i++) {
6948		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6949		if (!conf->disks[i].extra_page)
6950			goto abort;
6951	}
6952
6953	conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
6954	if (!conf->bio_split)
6955		goto abort;
6956	conf->mddev = mddev;
6957
6958	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6959		goto abort;
6960
6961	/* We init hash_locks[0] separately to that it can be used
6962	 * as the reference lock in the spin_lock_nest_lock() call
6963	 * in lock_all_device_hash_locks_irq in order to convince
6964	 * lockdep that we know what we are doing.
6965	 */
6966	spin_lock_init(conf->hash_locks);
6967	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6968		spin_lock_init(conf->hash_locks + i);
6969
6970	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6971		INIT_LIST_HEAD(conf->inactive_list + i);
6972
6973	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6974		INIT_LIST_HEAD(conf->temp_inactive_list + i);
6975
6976	atomic_set(&conf->r5c_cached_full_stripes, 0);
6977	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
6978	atomic_set(&conf->r5c_cached_partial_stripes, 0);
6979	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
6980	atomic_set(&conf->r5c_flushing_full_stripes, 0);
6981	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
6982
6983	conf->level = mddev->new_level;
6984	conf->chunk_sectors = mddev->new_chunk_sectors;
6985	if (raid5_alloc_percpu(conf) != 0)
6986		goto abort;
6987
6988	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6989
6990	rdev_for_each(rdev, mddev) {
6991		raid_disk = rdev->raid_disk;
6992		if (raid_disk >= max_disks
6993		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6994			continue;
6995		disk = conf->disks + raid_disk;
6996
6997		if (test_bit(Replacement, &rdev->flags)) {
6998			if (disk->replacement)
6999				goto abort;
7000			disk->replacement = rdev;
7001		} else {
7002			if (disk->rdev)
7003				goto abort;
7004			disk->rdev = rdev;
7005		}
7006
7007		if (test_bit(In_sync, &rdev->flags)) {
7008			char b[BDEVNAME_SIZE];
7009			pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7010				mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
 
7011		} else if (rdev->saved_raid_disk != raid_disk)
7012			/* Cannot rely on bitmap to complete recovery */
7013			conf->fullsync = 1;
7014	}
7015
 
7016	conf->level = mddev->new_level;
7017	if (conf->level == 6) {
7018		conf->max_degraded = 2;
7019		if (raid6_call.xor_syndrome)
7020			conf->rmw_level = PARITY_ENABLE_RMW;
7021		else
7022			conf->rmw_level = PARITY_DISABLE_RMW;
7023	} else {
7024		conf->max_degraded = 1;
7025		conf->rmw_level = PARITY_ENABLE_RMW;
7026	}
7027	conf->algorithm = mddev->new_layout;
 
7028	conf->reshape_progress = mddev->reshape_position;
7029	if (conf->reshape_progress != MaxSector) {
7030		conf->prev_chunk_sectors = mddev->chunk_sectors;
7031		conf->prev_algo = mddev->layout;
7032	} else {
7033		conf->prev_chunk_sectors = conf->chunk_sectors;
7034		conf->prev_algo = conf->algorithm;
7035	}
7036
7037	conf->min_nr_stripes = NR_STRIPES;
7038	if (mddev->reshape_position != MaxSector) {
7039		int stripes = max_t(int,
7040			((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7041			((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7042		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7043		if (conf->min_nr_stripes != NR_STRIPES)
7044			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7045				mdname(mddev), conf->min_nr_stripes);
7046	}
7047	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7048		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7049	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7050	if (grow_stripes(conf, conf->min_nr_stripes)) {
7051		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7052			mdname(mddev), memory);
7053		goto abort;
7054	} else
7055		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7056	/*
7057	 * Losing a stripe head costs more than the time to refill it,
7058	 * it reduces the queue depth and so can hurt throughput.
7059	 * So set it rather large, scaled by number of devices.
7060	 */
7061	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7062	conf->shrinker.scan_objects = raid5_cache_scan;
7063	conf->shrinker.count_objects = raid5_cache_count;
7064	conf->shrinker.batch = 128;
7065	conf->shrinker.flags = 0;
7066	if (register_shrinker(&conf->shrinker)) {
7067		pr_warn("md/raid:%s: couldn't register shrinker.\n",
7068			mdname(mddev));
7069		goto abort;
7070	}
7071
7072	sprintf(pers_name, "raid%d", mddev->new_level);
7073	conf->thread = md_register_thread(raid5d, mddev, pers_name);
7074	if (!conf->thread) {
7075		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7076			mdname(mddev));
 
7077		goto abort;
7078	}
7079
7080	return conf;
7081
7082 abort:
7083	if (conf) {
7084		free_conf(conf);
7085		return ERR_PTR(-EIO);
7086	} else
7087		return ERR_PTR(-ENOMEM);
7088}
7089
 
7090static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7091{
7092	switch (algo) {
7093	case ALGORITHM_PARITY_0:
7094		if (raid_disk < max_degraded)
7095			return 1;
7096		break;
7097	case ALGORITHM_PARITY_N:
7098		if (raid_disk >= raid_disks - max_degraded)
7099			return 1;
7100		break;
7101	case ALGORITHM_PARITY_0_6:
7102		if (raid_disk == 0 ||
7103		    raid_disk == raid_disks - 1)
7104			return 1;
7105		break;
7106	case ALGORITHM_LEFT_ASYMMETRIC_6:
7107	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7108	case ALGORITHM_LEFT_SYMMETRIC_6:
7109	case ALGORITHM_RIGHT_SYMMETRIC_6:
7110		if (raid_disk == raid_disks - 1)
7111			return 1;
7112	}
7113	return 0;
7114}
7115
7116static int raid5_run(struct mddev *mddev)
7117{
7118	struct r5conf *conf;
7119	int working_disks = 0;
7120	int dirty_parity_disks = 0;
7121	struct md_rdev *rdev;
7122	struct md_rdev *journal_dev = NULL;
7123	sector_t reshape_offset = 0;
7124	int i;
7125	long long min_offset_diff = 0;
7126	int first = 1;
7127
7128	if (mddev_init_writes_pending(mddev) < 0)
7129		return -ENOMEM;
7130
7131	if (mddev->recovery_cp != MaxSector)
7132		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7133			  mdname(mddev));
7134
7135	rdev_for_each(rdev, mddev) {
7136		long long diff;
7137
7138		if (test_bit(Journal, &rdev->flags)) {
7139			journal_dev = rdev;
7140			continue;
7141		}
7142		if (rdev->raid_disk < 0)
7143			continue;
7144		diff = (rdev->new_data_offset - rdev->data_offset);
7145		if (first) {
7146			min_offset_diff = diff;
7147			first = 0;
7148		} else if (mddev->reshape_backwards &&
7149			 diff < min_offset_diff)
7150			min_offset_diff = diff;
7151		else if (!mddev->reshape_backwards &&
7152			 diff > min_offset_diff)
7153			min_offset_diff = diff;
7154	}
7155
7156	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7157	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7158		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7159			  mdname(mddev));
7160		return -EINVAL;
7161	}
7162
7163	if (mddev->reshape_position != MaxSector) {
7164		/* Check that we can continue the reshape.
7165		 * Difficulties arise if the stripe we would write to
7166		 * next is at or after the stripe we would read from next.
7167		 * For a reshape that changes the number of devices, this
7168		 * is only possible for a very short time, and mdadm makes
7169		 * sure that time appears to have past before assembling
7170		 * the array.  So we fail if that time hasn't passed.
7171		 * For a reshape that keeps the number of devices the same
7172		 * mdadm must be monitoring the reshape can keeping the
7173		 * critical areas read-only and backed up.  It will start
7174		 * the array in read-only mode, so we check for that.
7175		 */
7176		sector_t here_new, here_old;
7177		int old_disks;
7178		int max_degraded = (mddev->level == 6 ? 2 : 1);
7179		int chunk_sectors;
7180		int new_data_disks;
7181
7182		if (journal_dev) {
7183			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7184				mdname(mddev));
7185			return -EINVAL;
7186		}
7187
7188		if (mddev->new_level != mddev->level) {
7189			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7190				mdname(mddev));
 
7191			return -EINVAL;
7192		}
7193		old_disks = mddev->raid_disks - mddev->delta_disks;
7194		/* reshape_position must be on a new-stripe boundary, and one
7195		 * further up in new geometry must map after here in old
7196		 * geometry.
7197		 * If the chunk sizes are different, then as we perform reshape
7198		 * in units of the largest of the two, reshape_position needs
7199		 * be a multiple of the largest chunk size times new data disks.
7200		 */
7201		here_new = mddev->reshape_position;
7202		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7203		new_data_disks = mddev->raid_disks - max_degraded;
7204		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7205			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7206				mdname(mddev));
7207			return -EINVAL;
7208		}
7209		reshape_offset = here_new * chunk_sectors;
7210		/* here_new is the stripe we will write to */
7211		here_old = mddev->reshape_position;
7212		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
 
7213		/* here_old is the first stripe that we might need to read
7214		 * from */
7215		if (mddev->delta_disks == 0) {
7216			/* We cannot be sure it is safe to start an in-place
7217			 * reshape.  It is only safe if user-space is monitoring
7218			 * and taking constant backups.
7219			 * mdadm always starts a situation like this in
7220			 * readonly mode so it can take control before
7221			 * allowing any writes.  So just check for that.
7222			 */
7223			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7224			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7225				/* not really in-place - so OK */;
7226			else if (mddev->ro == 0) {
7227				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7228					mdname(mddev));
7229				return -EINVAL;
7230			}
7231		} else if (mddev->reshape_backwards
7232		    ? (here_new * chunk_sectors + min_offset_diff <=
7233		       here_old * chunk_sectors)
7234		    : (here_new * chunk_sectors >=
7235		       here_old * chunk_sectors + (-min_offset_diff))) {
7236			/* Reading from the same stripe as writing to - bad */
7237			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7238				mdname(mddev));
 
7239			return -EINVAL;
7240		}
7241		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
 
7242		/* OK, we should be able to continue; */
7243	} else {
7244		BUG_ON(mddev->level != mddev->new_level);
7245		BUG_ON(mddev->layout != mddev->new_layout);
7246		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7247		BUG_ON(mddev->delta_disks != 0);
7248	}
7249
7250	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7251	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7252		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7253			mdname(mddev));
7254		clear_bit(MD_HAS_PPL, &mddev->flags);
7255		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7256	}
7257
7258	if (mddev->private == NULL)
7259		conf = setup_conf(mddev);
7260	else
7261		conf = mddev->private;
7262
7263	if (IS_ERR(conf))
7264		return PTR_ERR(conf);
7265
7266	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7267		if (!journal_dev) {
7268			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7269				mdname(mddev));
7270			mddev->ro = 1;
7271			set_disk_ro(mddev->gendisk, 1);
7272		} else if (mddev->recovery_cp == MaxSector)
7273			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7274	}
7275
7276	conf->min_offset_diff = min_offset_diff;
7277	mddev->thread = conf->thread;
7278	conf->thread = NULL;
7279	mddev->private = conf;
7280
7281	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7282	     i++) {
7283		rdev = conf->disks[i].rdev;
7284		if (!rdev && conf->disks[i].replacement) {
7285			/* The replacement is all we have yet */
7286			rdev = conf->disks[i].replacement;
7287			conf->disks[i].replacement = NULL;
7288			clear_bit(Replacement, &rdev->flags);
7289			conf->disks[i].rdev = rdev;
7290		}
7291		if (!rdev)
7292			continue;
7293		if (conf->disks[i].replacement &&
7294		    conf->reshape_progress != MaxSector) {
7295			/* replacements and reshape simply do not mix. */
7296			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7297			goto abort;
7298		}
7299		if (test_bit(In_sync, &rdev->flags)) {
7300			working_disks++;
7301			continue;
7302		}
7303		/* This disc is not fully in-sync.  However if it
7304		 * just stored parity (beyond the recovery_offset),
7305		 * when we don't need to be concerned about the
7306		 * array being dirty.
7307		 * When reshape goes 'backwards', we never have
7308		 * partially completed devices, so we only need
7309		 * to worry about reshape going forwards.
7310		 */
7311		/* Hack because v0.91 doesn't store recovery_offset properly. */
7312		if (mddev->major_version == 0 &&
7313		    mddev->minor_version > 90)
7314			rdev->recovery_offset = reshape_offset;
7315
7316		if (rdev->recovery_offset < reshape_offset) {
7317			/* We need to check old and new layout */
7318			if (!only_parity(rdev->raid_disk,
7319					 conf->algorithm,
7320					 conf->raid_disks,
7321					 conf->max_degraded))
7322				continue;
7323		}
7324		if (!only_parity(rdev->raid_disk,
7325				 conf->prev_algo,
7326				 conf->previous_raid_disks,
7327				 conf->max_degraded))
7328			continue;
7329		dirty_parity_disks++;
7330	}
7331
7332	/*
7333	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7334	 */
7335	mddev->degraded = raid5_calc_degraded(conf);
7336
7337	if (has_failed(conf)) {
7338		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
 
7339			mdname(mddev), mddev->degraded, conf->raid_disks);
7340		goto abort;
7341	}
7342
7343	/* device size must be a multiple of chunk size */
7344	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7345	mddev->resync_max_sectors = mddev->dev_sectors;
7346
7347	if (mddev->degraded > dirty_parity_disks &&
7348	    mddev->recovery_cp != MaxSector) {
7349		if (test_bit(MD_HAS_PPL, &mddev->flags))
7350			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7351				mdname(mddev));
7352		else if (mddev->ok_start_degraded)
7353			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7354				mdname(mddev));
7355		else {
7356			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7357				mdname(mddev));
 
7358			goto abort;
7359		}
7360	}
7361
7362	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7363		mdname(mddev), conf->level,
7364		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7365		mddev->new_layout);
 
 
 
 
 
 
 
7366
7367	print_raid5_conf(conf);
7368
7369	if (conf->reshape_progress != MaxSector) {
7370		conf->reshape_safe = conf->reshape_progress;
7371		atomic_set(&conf->reshape_stripes, 0);
7372		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7373		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7374		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7375		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7376		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7377							"reshape");
7378	}
7379
 
7380	/* Ok, everything is just fine now */
7381	if (mddev->to_remove == &raid5_attrs_group)
7382		mddev->to_remove = NULL;
7383	else if (mddev->kobj.sd &&
7384	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7385		pr_warn("raid5: failed to create sysfs attributes for %s\n",
7386			mdname(mddev));
 
7387	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7388
7389	if (mddev->queue) {
7390		int chunk_size;
7391		/* read-ahead size must cover two whole stripes, which
7392		 * is 2 * (datadisks) * chunksize where 'n' is the
7393		 * number of raid devices
7394		 */
7395		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7396		int stripe = data_disks *
7397			((mddev->chunk_sectors << 9) / PAGE_SIZE);
7398		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7399			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
 
 
 
 
 
7400
7401		chunk_size = mddev->chunk_sectors << 9;
7402		blk_queue_io_min(mddev->queue, chunk_size);
7403		blk_queue_io_opt(mddev->queue, chunk_size *
7404				 (conf->raid_disks - conf->max_degraded));
7405		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7406		/*
7407		 * We can only discard a whole stripe. It doesn't make sense to
7408		 * discard data disk but write parity disk
7409		 */
7410		stripe = stripe * PAGE_SIZE;
7411		/* Round up to power of 2, as discard handling
7412		 * currently assumes that */
7413		while ((stripe-1) & stripe)
7414			stripe = (stripe | (stripe-1)) + 1;
7415		mddev->queue->limits.discard_alignment = stripe;
7416		mddev->queue->limits.discard_granularity = stripe;
7417
7418		blk_queue_max_write_same_sectors(mddev->queue, 0);
7419		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7420
7421		rdev_for_each(rdev, mddev) {
7422			disk_stack_limits(mddev->gendisk, rdev->bdev,
7423					  rdev->data_offset << 9);
7424			disk_stack_limits(mddev->gendisk, rdev->bdev,
7425					  rdev->new_data_offset << 9);
7426		}
7427
7428		/*
7429		 * zeroing is required, otherwise data
7430		 * could be lost. Consider a scenario: discard a stripe
7431		 * (the stripe could be inconsistent if
7432		 * discard_zeroes_data is 0); write one disk of the
7433		 * stripe (the stripe could be inconsistent again
7434		 * depending on which disks are used to calculate
7435		 * parity); the disk is broken; The stripe data of this
7436		 * disk is lost.
7437		 *
7438		 * We only allow DISCARD if the sysadmin has confirmed that
7439		 * only safe devices are in use by setting a module parameter.
7440		 * A better idea might be to turn DISCARD into WRITE_ZEROES
7441		 * requests, as that is required to be safe.
7442		 */
7443		if (devices_handle_discard_safely &&
7444		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7445		    mddev->queue->limits.discard_granularity >= stripe)
7446			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7447						mddev->queue);
7448		else
7449			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7450						mddev->queue);
7451
7452		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7453	}
7454
7455	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7456		goto abort;
7457
7458	return 0;
7459abort:
7460	md_unregister_thread(&mddev->thread);
7461	print_raid5_conf(conf);
7462	free_conf(conf);
 
 
7463	mddev->private = NULL;
7464	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7465	return -EIO;
7466}
7467
7468static void raid5_free(struct mddev *mddev, void *priv)
7469{
7470	struct r5conf *conf = priv;
7471
 
 
 
7472	free_conf(conf);
 
7473	mddev->to_remove = &raid5_attrs_group;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7474}
7475
7476static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7477{
7478	struct r5conf *conf = mddev->private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7479	int i;
7480
7481	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7482		conf->chunk_sectors / 2, mddev->layout);
7483	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7484	rcu_read_lock();
7485	for (i = 0; i < conf->raid_disks; i++) {
7486		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7487		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7488	}
7489	rcu_read_unlock();
7490	seq_printf (seq, "]");
 
 
 
 
7491}
7492
7493static void print_raid5_conf (struct r5conf *conf)
7494{
7495	int i;
7496	struct disk_info *tmp;
7497
7498	pr_debug("RAID conf printout:\n");
7499	if (!conf) {
7500		pr_debug("(conf==NULL)\n");
7501		return;
7502	}
7503	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7504	       conf->raid_disks,
7505	       conf->raid_disks - conf->mddev->degraded);
7506
7507	for (i = 0; i < conf->raid_disks; i++) {
7508		char b[BDEVNAME_SIZE];
7509		tmp = conf->disks + i;
7510		if (tmp->rdev)
7511			pr_debug(" disk %d, o:%d, dev:%s\n",
7512			       i, !test_bit(Faulty, &tmp->rdev->flags),
7513			       bdevname(tmp->rdev->bdev, b));
7514	}
7515}
7516
7517static int raid5_spare_active(struct mddev *mddev)
7518{
7519	int i;
7520	struct r5conf *conf = mddev->private;
7521	struct disk_info *tmp;
7522	int count = 0;
7523	unsigned long flags;
7524
7525	for (i = 0; i < conf->raid_disks; i++) {
7526		tmp = conf->disks + i;
7527		if (tmp->replacement
7528		    && tmp->replacement->recovery_offset == MaxSector
7529		    && !test_bit(Faulty, &tmp->replacement->flags)
7530		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7531			/* Replacement has just become active. */
7532			if (!tmp->rdev
7533			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7534				count++;
7535			if (tmp->rdev) {
7536				/* Replaced device not technically faulty,
7537				 * but we need to be sure it gets removed
7538				 * and never re-added.
7539				 */
7540				set_bit(Faulty, &tmp->rdev->flags);
7541				sysfs_notify_dirent_safe(
7542					tmp->rdev->sysfs_state);
7543			}
7544			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7545		} else if (tmp->rdev
7546		    && tmp->rdev->recovery_offset == MaxSector
7547		    && !test_bit(Faulty, &tmp->rdev->flags)
7548		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7549			count++;
7550			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7551		}
7552	}
7553	spin_lock_irqsave(&conf->device_lock, flags);
7554	mddev->degraded = raid5_calc_degraded(conf);
7555	spin_unlock_irqrestore(&conf->device_lock, flags);
7556	print_raid5_conf(conf);
7557	return count;
7558}
7559
7560static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7561{
7562	struct r5conf *conf = mddev->private;
7563	int err = 0;
7564	int number = rdev->raid_disk;
7565	struct md_rdev **rdevp;
7566	struct disk_info *p = conf->disks + number;
7567
7568	print_raid5_conf(conf);
7569	if (test_bit(Journal, &rdev->flags) && conf->log) {
7570		/*
7571		 * we can't wait pending write here, as this is called in
7572		 * raid5d, wait will deadlock.
7573		 * neilb: there is no locking about new writes here,
7574		 * so this cannot be safe.
 
 
 
 
 
 
 
7575		 */
7576		if (atomic_read(&conf->active_stripes) ||
7577		    atomic_read(&conf->r5c_cached_full_stripes) ||
7578		    atomic_read(&conf->r5c_cached_partial_stripes)) {
7579			return -EBUSY;
 
 
7580		}
7581		log_exit(conf);
7582		return 0;
7583	}
7584	if (rdev == p->rdev)
7585		rdevp = &p->rdev;
7586	else if (rdev == p->replacement)
7587		rdevp = &p->replacement;
7588	else
7589		return 0;
7590
7591	if (number >= conf->raid_disks &&
7592	    conf->reshape_progress == MaxSector)
7593		clear_bit(In_sync, &rdev->flags);
7594
7595	if (test_bit(In_sync, &rdev->flags) ||
7596	    atomic_read(&rdev->nr_pending)) {
7597		err = -EBUSY;
7598		goto abort;
7599	}
7600	/* Only remove non-faulty devices if recovery
7601	 * isn't possible.
7602	 */
7603	if (!test_bit(Faulty, &rdev->flags) &&
7604	    mddev->recovery_disabled != conf->recovery_disabled &&
7605	    !has_failed(conf) &&
7606	    (!p->replacement || p->replacement == rdev) &&
7607	    number < conf->raid_disks) {
7608		err = -EBUSY;
7609		goto abort;
7610	}
7611	*rdevp = NULL;
7612	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7613		synchronize_rcu();
7614		if (atomic_read(&rdev->nr_pending)) {
7615			/* lost the race, try later */
7616			err = -EBUSY;
7617			*rdevp = rdev;
7618		}
7619	}
7620	if (!err) {
7621		err = log_modify(conf, rdev, false);
7622		if (err)
7623			goto abort;
7624	}
7625	if (p->replacement) {
7626		/* We must have just cleared 'rdev' */
7627		p->rdev = p->replacement;
7628		clear_bit(Replacement, &p->replacement->flags);
7629		smp_mb(); /* Make sure other CPUs may see both as identical
7630			   * but will never see neither - if they are careful
7631			   */
7632		p->replacement = NULL;
7633
7634		if (!err)
7635			err = log_modify(conf, p->rdev, true);
7636	}
7637
7638	clear_bit(WantReplacement, &rdev->flags);
7639abort:
7640
7641	print_raid5_conf(conf);
7642	return err;
7643}
7644
7645static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7646{
7647	struct r5conf *conf = mddev->private;
7648	int err = -EEXIST;
7649	int disk;
7650	struct disk_info *p;
7651	int first = 0;
7652	int last = conf->raid_disks - 1;
7653
7654	if (test_bit(Journal, &rdev->flags)) {
7655		if (conf->log)
7656			return -EBUSY;
7657
7658		rdev->raid_disk = 0;
7659		/*
7660		 * The array is in readonly mode if journal is missing, so no
7661		 * write requests running. We should be safe
7662		 */
7663		log_init(conf, rdev, false);
7664		return 0;
7665	}
7666	if (mddev->recovery_disabled == conf->recovery_disabled)
7667		return -EBUSY;
7668
7669	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7670		/* no point adding a device */
7671		return -EINVAL;
7672
7673	if (rdev->raid_disk >= 0)
7674		first = last = rdev->raid_disk;
7675
7676	/*
7677	 * find the disk ... but prefer rdev->saved_raid_disk
7678	 * if possible.
7679	 */
7680	if (rdev->saved_raid_disk >= 0 &&
7681	    rdev->saved_raid_disk >= first &&
7682	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7683		first = rdev->saved_raid_disk;
7684
7685	for (disk = first; disk <= last; disk++) {
7686		p = conf->disks + disk;
7687		if (p->rdev == NULL) {
7688			clear_bit(In_sync, &rdev->flags);
7689			rdev->raid_disk = disk;
 
7690			if (rdev->saved_raid_disk != disk)
7691				conf->fullsync = 1;
7692			rcu_assign_pointer(p->rdev, rdev);
7693
7694			err = log_modify(conf, rdev, true);
7695
7696			goto out;
7697		}
7698	}
7699	for (disk = first; disk <= last; disk++) {
7700		p = conf->disks + disk;
7701		if (test_bit(WantReplacement, &p->rdev->flags) &&
7702		    p->replacement == NULL) {
7703			clear_bit(In_sync, &rdev->flags);
7704			set_bit(Replacement, &rdev->flags);
7705			rdev->raid_disk = disk;
7706			err = 0;
7707			conf->fullsync = 1;
7708			rcu_assign_pointer(p->replacement, rdev);
7709			break;
7710		}
7711	}
7712out:
7713	print_raid5_conf(conf);
7714	return err;
7715}
7716
7717static int raid5_resize(struct mddev *mddev, sector_t sectors)
7718{
7719	/* no resync is happening, and there is enough space
7720	 * on all devices, so we can resize.
7721	 * We need to make sure resync covers any new space.
7722	 * If the array is shrinking we should possibly wait until
7723	 * any io in the removed space completes, but it hardly seems
7724	 * worth it.
7725	 */
7726	sector_t newsize;
7727	struct r5conf *conf = mddev->private;
7728
7729	if (conf->log || raid5_has_ppl(conf))
7730		return -EINVAL;
7731	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7732	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7733	if (mddev->external_size &&
7734	    mddev->array_sectors > newsize)
7735		return -EINVAL;
7736	if (mddev->bitmap) {
7737		int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7738		if (ret)
7739			return ret;
7740	}
7741	md_set_array_sectors(mddev, newsize);
7742	if (sectors > mddev->dev_sectors &&
7743	    mddev->recovery_cp > mddev->dev_sectors) {
7744		mddev->recovery_cp = mddev->dev_sectors;
7745		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7746	}
7747	mddev->dev_sectors = sectors;
7748	mddev->resync_max_sectors = sectors;
7749	return 0;
7750}
7751
7752static int check_stripe_cache(struct mddev *mddev)
7753{
7754	/* Can only proceed if there are plenty of stripe_heads.
7755	 * We need a minimum of one full stripe,, and for sensible progress
7756	 * it is best to have about 4 times that.
7757	 * If we require 4 times, then the default 256 4K stripe_heads will
7758	 * allow for chunk sizes up to 256K, which is probably OK.
7759	 * If the chunk size is greater, user-space should request more
7760	 * stripe_heads first.
7761	 */
7762	struct r5conf *conf = mddev->private;
7763	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7764	    > conf->min_nr_stripes ||
7765	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7766	    > conf->min_nr_stripes) {
7767		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7768			mdname(mddev),
7769			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7770			 / STRIPE_SIZE)*4);
7771		return 0;
7772	}
7773	return 1;
7774}
7775
7776static int check_reshape(struct mddev *mddev)
7777{
7778	struct r5conf *conf = mddev->private;
7779
7780	if (conf->log || raid5_has_ppl(conf))
7781		return -EINVAL;
7782	if (mddev->delta_disks == 0 &&
7783	    mddev->new_layout == mddev->layout &&
7784	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7785		return 0; /* nothing to do */
 
 
 
7786	if (has_failed(conf))
7787		return -EINVAL;
7788	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7789		/* We might be able to shrink, but the devices must
7790		 * be made bigger first.
7791		 * For raid6, 4 is the minimum size.
7792		 * Otherwise 2 is the minimum
7793		 */
7794		int min = 2;
7795		if (mddev->level == 6)
7796			min = 4;
7797		if (mddev->raid_disks + mddev->delta_disks < min)
7798			return -EINVAL;
7799	}
7800
7801	if (!check_stripe_cache(mddev))
7802		return -ENOSPC;
7803
7804	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7805	    mddev->delta_disks > 0)
7806		if (resize_chunks(conf,
7807				  conf->previous_raid_disks
7808				  + max(0, mddev->delta_disks),
7809				  max(mddev->new_chunk_sectors,
7810				      mddev->chunk_sectors)
7811			    ) < 0)
7812			return -ENOMEM;
7813
7814	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7815		return 0; /* never bother to shrink */
7816	return resize_stripes(conf, (conf->previous_raid_disks
7817				     + mddev->delta_disks));
7818}
7819
7820static int raid5_start_reshape(struct mddev *mddev)
7821{
7822	struct r5conf *conf = mddev->private;
7823	struct md_rdev *rdev;
7824	int spares = 0;
7825	unsigned long flags;
7826
7827	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7828		return -EBUSY;
7829
7830	if (!check_stripe_cache(mddev))
7831		return -ENOSPC;
7832
7833	if (has_failed(conf))
7834		return -EINVAL;
7835
7836	rdev_for_each(rdev, mddev) {
7837		if (!test_bit(In_sync, &rdev->flags)
7838		    && !test_bit(Faulty, &rdev->flags))
7839			spares++;
7840	}
7841
7842	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7843		/* Not enough devices even to make a degraded array
7844		 * of that size
7845		 */
7846		return -EINVAL;
7847
7848	/* Refuse to reduce size of the array.  Any reductions in
7849	 * array size must be through explicit setting of array_size
7850	 * attribute.
7851	 */
7852	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7853	    < mddev->array_sectors) {
7854		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7855			mdname(mddev));
7856		return -EINVAL;
7857	}
7858
7859	atomic_set(&conf->reshape_stripes, 0);
7860	spin_lock_irq(&conf->device_lock);
7861	write_seqcount_begin(&conf->gen_lock);
7862	conf->previous_raid_disks = conf->raid_disks;
7863	conf->raid_disks += mddev->delta_disks;
7864	conf->prev_chunk_sectors = conf->chunk_sectors;
7865	conf->chunk_sectors = mddev->new_chunk_sectors;
7866	conf->prev_algo = conf->algorithm;
7867	conf->algorithm = mddev->new_layout;
7868	conf->generation++;
7869	/* Code that selects data_offset needs to see the generation update
7870	 * if reshape_progress has been set - so a memory barrier needed.
7871	 */
7872	smp_mb();
7873	if (mddev->reshape_backwards)
7874		conf->reshape_progress = raid5_size(mddev, 0, 0);
7875	else
7876		conf->reshape_progress = 0;
7877	conf->reshape_safe = conf->reshape_progress;
7878	write_seqcount_end(&conf->gen_lock);
7879	spin_unlock_irq(&conf->device_lock);
7880
7881	/* Now make sure any requests that proceeded on the assumption
7882	 * the reshape wasn't running - like Discard or Read - have
7883	 * completed.
7884	 */
7885	mddev_suspend(mddev);
7886	mddev_resume(mddev);
7887
7888	/* Add some new drives, as many as will fit.
7889	 * We know there are enough to make the newly sized array work.
7890	 * Don't add devices if we are reducing the number of
7891	 * devices in the array.  This is because it is not possible
7892	 * to correctly record the "partially reconstructed" state of
7893	 * such devices during the reshape and confusion could result.
7894	 */
7895	if (mddev->delta_disks >= 0) {
7896		rdev_for_each(rdev, mddev)
 
7897			if (rdev->raid_disk < 0 &&
7898			    !test_bit(Faulty, &rdev->flags)) {
7899				if (raid5_add_disk(mddev, rdev) == 0) {
7900					if (rdev->raid_disk
7901					    >= conf->previous_raid_disks)
7902						set_bit(In_sync, &rdev->flags);
7903					else
 
7904						rdev->recovery_offset = 0;
7905
7906					if (sysfs_link_rdev(mddev, rdev))
7907						/* Failure here is OK */;
7908				}
7909			} else if (rdev->raid_disk >= conf->previous_raid_disks
7910				   && !test_bit(Faulty, &rdev->flags)) {
7911				/* This is a spare that was manually added */
7912				set_bit(In_sync, &rdev->flags);
 
7913			}
7914
7915		/* When a reshape changes the number of devices,
7916		 * ->degraded is measured against the larger of the
7917		 * pre and post number of devices.
7918		 */
7919		spin_lock_irqsave(&conf->device_lock, flags);
7920		mddev->degraded = raid5_calc_degraded(conf);
 
7921		spin_unlock_irqrestore(&conf->device_lock, flags);
7922	}
7923	mddev->raid_disks = conf->raid_disks;
7924	mddev->reshape_position = conf->reshape_progress;
7925	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7926
7927	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7928	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7929	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7930	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7931	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7932	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7933						"reshape");
7934	if (!mddev->sync_thread) {
7935		mddev->recovery = 0;
7936		spin_lock_irq(&conf->device_lock);
7937		write_seqcount_begin(&conf->gen_lock);
7938		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7939		mddev->new_chunk_sectors =
7940			conf->chunk_sectors = conf->prev_chunk_sectors;
7941		mddev->new_layout = conf->algorithm = conf->prev_algo;
7942		rdev_for_each(rdev, mddev)
7943			rdev->new_data_offset = rdev->data_offset;
7944		smp_wmb();
7945		conf->generation --;
7946		conf->reshape_progress = MaxSector;
7947		mddev->reshape_position = MaxSector;
7948		write_seqcount_end(&conf->gen_lock);
7949		spin_unlock_irq(&conf->device_lock);
7950		return -EAGAIN;
7951	}
7952	conf->reshape_checkpoint = jiffies;
7953	md_wakeup_thread(mddev->sync_thread);
7954	md_new_event(mddev);
7955	return 0;
7956}
7957
7958/* This is called from the reshape thread and should make any
7959 * changes needed in 'conf'
7960 */
7961static void end_reshape(struct r5conf *conf)
7962{
7963
7964	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7965		struct md_rdev *rdev;
7966
7967		spin_lock_irq(&conf->device_lock);
7968		conf->previous_raid_disks = conf->raid_disks;
7969		md_finish_reshape(conf->mddev);
7970		smp_wmb();
7971		conf->reshape_progress = MaxSector;
7972		conf->mddev->reshape_position = MaxSector;
7973		rdev_for_each(rdev, conf->mddev)
7974			if (rdev->raid_disk >= 0 &&
7975			    !test_bit(Journal, &rdev->flags) &&
7976			    !test_bit(In_sync, &rdev->flags))
7977				rdev->recovery_offset = MaxSector;
7978		spin_unlock_irq(&conf->device_lock);
7979		wake_up(&conf->wait_for_overlap);
7980
7981		/* read-ahead size must cover two whole stripes, which is
7982		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7983		 */
7984		if (conf->mddev->queue) {
7985			int data_disks = conf->raid_disks - conf->max_degraded;
7986			int stripe = data_disks * ((conf->chunk_sectors << 9)
7987						   / PAGE_SIZE);
7988			if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7989				conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7990		}
7991	}
7992}
7993
7994/* This is called from the raid5d thread with mddev_lock held.
7995 * It makes config changes to the device.
7996 */
7997static void raid5_finish_reshape(struct mddev *mddev)
7998{
7999	struct r5conf *conf = mddev->private;
8000
8001	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8002
8003		if (mddev->delta_disks <= 0) {
 
 
 
 
8004			int d;
8005			spin_lock_irq(&conf->device_lock);
8006			mddev->degraded = raid5_calc_degraded(conf);
8007			spin_unlock_irq(&conf->device_lock);
 
 
 
8008			for (d = conf->raid_disks ;
8009			     d < conf->raid_disks - mddev->delta_disks;
8010			     d++) {
8011				struct md_rdev *rdev = conf->disks[d].rdev;
8012				if (rdev)
8013					clear_bit(In_sync, &rdev->flags);
8014				rdev = conf->disks[d].replacement;
8015				if (rdev)
8016					clear_bit(In_sync, &rdev->flags);
8017			}
8018		}
8019		mddev->layout = conf->algorithm;
8020		mddev->chunk_sectors = conf->chunk_sectors;
8021		mddev->reshape_position = MaxSector;
8022		mddev->delta_disks = 0;
8023		mddev->reshape_backwards = 0;
8024	}
8025}
8026
8027static void raid5_quiesce(struct mddev *mddev, int quiesce)
8028{
8029	struct r5conf *conf = mddev->private;
8030
8031	if (quiesce) {
8032		/* stop all writes */
8033		lock_all_device_hash_locks_irq(conf);
 
 
 
 
8034		/* '2' tells resync/reshape to pause so that all
8035		 * active stripes can drain
8036		 */
8037		r5c_flush_cache(conf, INT_MAX);
8038		conf->quiesce = 2;
8039		wait_event_cmd(conf->wait_for_quiescent,
8040				    atomic_read(&conf->active_stripes) == 0 &&
8041				    atomic_read(&conf->active_aligned_reads) == 0,
8042				    unlock_all_device_hash_locks_irq(conf),
8043				    lock_all_device_hash_locks_irq(conf));
8044		conf->quiesce = 1;
8045		unlock_all_device_hash_locks_irq(conf);
8046		/* allow reshape to continue */
8047		wake_up(&conf->wait_for_overlap);
8048	} else {
8049		/* re-enable writes */
8050		lock_all_device_hash_locks_irq(conf);
 
8051		conf->quiesce = 0;
8052		wake_up(&conf->wait_for_quiescent);
8053		wake_up(&conf->wait_for_overlap);
8054		unlock_all_device_hash_locks_irq(conf);
 
8055	}
8056	log_quiesce(conf, quiesce);
8057}
8058
8059static void *raid45_takeover_raid0(struct mddev *mddev, int level)
 
8060{
8061	struct r0conf *raid0_conf = mddev->private;
8062	sector_t sectors;
8063
8064	/* for raid0 takeover only one zone is supported */
8065	if (raid0_conf->nr_strip_zones > 1) {
8066		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8067			mdname(mddev));
8068		return ERR_PTR(-EINVAL);
8069	}
8070
8071	sectors = raid0_conf->strip_zone[0].zone_end;
8072	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8073	mddev->dev_sectors = sectors;
8074	mddev->new_level = level;
8075	mddev->new_layout = ALGORITHM_PARITY_N;
8076	mddev->new_chunk_sectors = mddev->chunk_sectors;
8077	mddev->raid_disks += 1;
8078	mddev->delta_disks = 1;
8079	/* make sure it will be not marked as dirty */
8080	mddev->recovery_cp = MaxSector;
8081
8082	return setup_conf(mddev);
8083}
8084
8085static void *raid5_takeover_raid1(struct mddev *mddev)
 
8086{
8087	int chunksect;
8088	void *ret;
8089
8090	if (mddev->raid_disks != 2 ||
8091	    mddev->degraded > 1)
8092		return ERR_PTR(-EINVAL);
8093
8094	/* Should check if there are write-behind devices? */
8095
8096	chunksect = 64*2; /* 64K by default */
8097
8098	/* The array must be an exact multiple of chunksize */
8099	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8100		chunksect >>= 1;
8101
8102	if ((chunksect<<9) < STRIPE_SIZE)
8103		/* array size does not allow a suitable chunk size */
8104		return ERR_PTR(-EINVAL);
8105
8106	mddev->new_level = 5;
8107	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8108	mddev->new_chunk_sectors = chunksect;
8109
8110	ret = setup_conf(mddev);
8111	if (!IS_ERR(ret))
8112		mddev_clear_unsupported_flags(mddev,
8113			UNSUPPORTED_MDDEV_FLAGS);
8114	return ret;
8115}
8116
8117static void *raid5_takeover_raid6(struct mddev *mddev)
8118{
8119	int new_layout;
8120
8121	switch (mddev->layout) {
8122	case ALGORITHM_LEFT_ASYMMETRIC_6:
8123		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8124		break;
8125	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8126		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8127		break;
8128	case ALGORITHM_LEFT_SYMMETRIC_6:
8129		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8130		break;
8131	case ALGORITHM_RIGHT_SYMMETRIC_6:
8132		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8133		break;
8134	case ALGORITHM_PARITY_0_6:
8135		new_layout = ALGORITHM_PARITY_0;
8136		break;
8137	case ALGORITHM_PARITY_N:
8138		new_layout = ALGORITHM_PARITY_N;
8139		break;
8140	default:
8141		return ERR_PTR(-EINVAL);
8142	}
8143	mddev->new_level = 5;
8144	mddev->new_layout = new_layout;
8145	mddev->delta_disks = -1;
8146	mddev->raid_disks -= 1;
8147	return setup_conf(mddev);
8148}
8149
8150static int raid5_check_reshape(struct mddev *mddev)
 
8151{
8152	/* For a 2-drive array, the layout and chunk size can be changed
8153	 * immediately as not restriping is needed.
8154	 * For larger arrays we record the new value - after validation
8155	 * to be used by a reshape pass.
8156	 */
8157	struct r5conf *conf = mddev->private;
8158	int new_chunk = mddev->new_chunk_sectors;
8159
8160	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8161		return -EINVAL;
8162	if (new_chunk > 0) {
8163		if (!is_power_of_2(new_chunk))
8164			return -EINVAL;
8165		if (new_chunk < (PAGE_SIZE>>9))
8166			return -EINVAL;
8167		if (mddev->array_sectors & (new_chunk-1))
8168			/* not factor of array size */
8169			return -EINVAL;
8170	}
8171
8172	/* They look valid */
8173
8174	if (mddev->raid_disks == 2) {
8175		/* can make the change immediately */
8176		if (mddev->new_layout >= 0) {
8177			conf->algorithm = mddev->new_layout;
8178			mddev->layout = mddev->new_layout;
8179		}
8180		if (new_chunk > 0) {
8181			conf->chunk_sectors = new_chunk ;
8182			mddev->chunk_sectors = new_chunk;
8183		}
8184		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8185		md_wakeup_thread(mddev->thread);
8186	}
8187	return check_reshape(mddev);
8188}
8189
8190static int raid6_check_reshape(struct mddev *mddev)
8191{
8192	int new_chunk = mddev->new_chunk_sectors;
8193
8194	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8195		return -EINVAL;
8196	if (new_chunk > 0) {
8197		if (!is_power_of_2(new_chunk))
8198			return -EINVAL;
8199		if (new_chunk < (PAGE_SIZE >> 9))
8200			return -EINVAL;
8201		if (mddev->array_sectors & (new_chunk-1))
8202			/* not factor of array size */
8203			return -EINVAL;
8204	}
8205
8206	/* They look valid */
8207	return check_reshape(mddev);
8208}
8209
8210static void *raid5_takeover(struct mddev *mddev)
8211{
8212	/* raid5 can take over:
8213	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8214	 *  raid1 - if there are two drives.  We need to know the chunk size
8215	 *  raid4 - trivial - just use a raid4 layout.
8216	 *  raid6 - Providing it is a *_6 layout
8217	 */
8218	if (mddev->level == 0)
8219		return raid45_takeover_raid0(mddev, 5);
8220	if (mddev->level == 1)
8221		return raid5_takeover_raid1(mddev);
8222	if (mddev->level == 4) {
8223		mddev->new_layout = ALGORITHM_PARITY_N;
8224		mddev->new_level = 5;
8225		return setup_conf(mddev);
8226	}
8227	if (mddev->level == 6)
8228		return raid5_takeover_raid6(mddev);
8229
8230	return ERR_PTR(-EINVAL);
8231}
8232
8233static void *raid4_takeover(struct mddev *mddev)
8234{
8235	/* raid4 can take over:
8236	 *  raid0 - if there is only one strip zone
8237	 *  raid5 - if layout is right
8238	 */
8239	if (mddev->level == 0)
8240		return raid45_takeover_raid0(mddev, 4);
8241	if (mddev->level == 5 &&
8242	    mddev->layout == ALGORITHM_PARITY_N) {
8243		mddev->new_layout = 0;
8244		mddev->new_level = 4;
8245		return setup_conf(mddev);
8246	}
8247	return ERR_PTR(-EINVAL);
8248}
8249
8250static struct md_personality raid5_personality;
8251
8252static void *raid6_takeover(struct mddev *mddev)
8253{
8254	/* Currently can only take over a raid5.  We map the
8255	 * personality to an equivalent raid6 personality
8256	 * with the Q block at the end.
8257	 */
8258	int new_layout;
8259
8260	if (mddev->pers != &raid5_personality)
8261		return ERR_PTR(-EINVAL);
8262	if (mddev->degraded > 1)
8263		return ERR_PTR(-EINVAL);
8264	if (mddev->raid_disks > 253)
8265		return ERR_PTR(-EINVAL);
8266	if (mddev->raid_disks < 3)
8267		return ERR_PTR(-EINVAL);
8268
8269	switch (mddev->layout) {
8270	case ALGORITHM_LEFT_ASYMMETRIC:
8271		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8272		break;
8273	case ALGORITHM_RIGHT_ASYMMETRIC:
8274		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8275		break;
8276	case ALGORITHM_LEFT_SYMMETRIC:
8277		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8278		break;
8279	case ALGORITHM_RIGHT_SYMMETRIC:
8280		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8281		break;
8282	case ALGORITHM_PARITY_0:
8283		new_layout = ALGORITHM_PARITY_0_6;
8284		break;
8285	case ALGORITHM_PARITY_N:
8286		new_layout = ALGORITHM_PARITY_N;
8287		break;
8288	default:
8289		return ERR_PTR(-EINVAL);
8290	}
8291	mddev->new_level = 6;
8292	mddev->new_layout = new_layout;
8293	mddev->delta_disks = 1;
8294	mddev->raid_disks += 1;
8295	return setup_conf(mddev);
8296}
8297
8298static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8299{
8300	struct r5conf *conf;
8301	int err;
8302
8303	err = mddev_lock(mddev);
8304	if (err)
8305		return err;
8306	conf = mddev->private;
8307	if (!conf) {
8308		mddev_unlock(mddev);
8309		return -ENODEV;
8310	}
8311
8312	if (strncmp(buf, "ppl", 3) == 0) {
8313		/* ppl only works with RAID 5 */
8314		if (!raid5_has_ppl(conf) && conf->level == 5) {
8315			err = log_init(conf, NULL, true);
8316			if (!err) {
8317				err = resize_stripes(conf, conf->pool_size);
8318				if (err)
8319					log_exit(conf);
8320			}
8321		} else
8322			err = -EINVAL;
8323	} else if (strncmp(buf, "resync", 6) == 0) {
8324		if (raid5_has_ppl(conf)) {
8325			mddev_suspend(mddev);
8326			log_exit(conf);
8327			mddev_resume(mddev);
8328			err = resize_stripes(conf, conf->pool_size);
8329		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8330			   r5l_log_disk_error(conf)) {
8331			bool journal_dev_exists = false;
8332			struct md_rdev *rdev;
8333
8334			rdev_for_each(rdev, mddev)
8335				if (test_bit(Journal, &rdev->flags)) {
8336					journal_dev_exists = true;
8337					break;
8338				}
8339
8340			if (!journal_dev_exists) {
8341				mddev_suspend(mddev);
8342				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8343				mddev_resume(mddev);
8344			} else  /* need remove journal device first */
8345				err = -EBUSY;
8346		} else
8347			err = -EINVAL;
8348	} else {
8349		err = -EINVAL;
8350	}
8351
8352	if (!err)
8353		md_update_sb(mddev, 1);
8354
8355	mddev_unlock(mddev);
8356
8357	return err;
8358}
8359
8360static int raid5_start(struct mddev *mddev)
8361{
8362	struct r5conf *conf = mddev->private;
8363
8364	return r5l_start(conf->log);
8365}
8366
8367static struct md_personality raid6_personality =
8368{
8369	.name		= "raid6",
8370	.level		= 6,
8371	.owner		= THIS_MODULE,
8372	.make_request	= raid5_make_request,
8373	.run		= raid5_run,
8374	.start		= raid5_start,
8375	.free		= raid5_free,
8376	.status		= raid5_status,
8377	.error_handler	= raid5_error,
8378	.hot_add_disk	= raid5_add_disk,
8379	.hot_remove_disk= raid5_remove_disk,
8380	.spare_active	= raid5_spare_active,
8381	.sync_request	= raid5_sync_request,
8382	.resize		= raid5_resize,
8383	.size		= raid5_size,
8384	.check_reshape	= raid6_check_reshape,
8385	.start_reshape  = raid5_start_reshape,
8386	.finish_reshape = raid5_finish_reshape,
8387	.quiesce	= raid5_quiesce,
8388	.takeover	= raid6_takeover,
8389	.congested	= raid5_congested,
8390	.change_consistency_policy = raid5_change_consistency_policy,
8391};
8392static struct md_personality raid5_personality =
8393{
8394	.name		= "raid5",
8395	.level		= 5,
8396	.owner		= THIS_MODULE,
8397	.make_request	= raid5_make_request,
8398	.run		= raid5_run,
8399	.start		= raid5_start,
8400	.free		= raid5_free,
8401	.status		= raid5_status,
8402	.error_handler	= raid5_error,
8403	.hot_add_disk	= raid5_add_disk,
8404	.hot_remove_disk= raid5_remove_disk,
8405	.spare_active	= raid5_spare_active,
8406	.sync_request	= raid5_sync_request,
8407	.resize		= raid5_resize,
8408	.size		= raid5_size,
8409	.check_reshape	= raid5_check_reshape,
8410	.start_reshape  = raid5_start_reshape,
8411	.finish_reshape = raid5_finish_reshape,
8412	.quiesce	= raid5_quiesce,
8413	.takeover	= raid5_takeover,
8414	.congested	= raid5_congested,
8415	.change_consistency_policy = raid5_change_consistency_policy,
8416};
8417
8418static struct md_personality raid4_personality =
8419{
8420	.name		= "raid4",
8421	.level		= 4,
8422	.owner		= THIS_MODULE,
8423	.make_request	= raid5_make_request,
8424	.run		= raid5_run,
8425	.start		= raid5_start,
8426	.free		= raid5_free,
8427	.status		= raid5_status,
8428	.error_handler	= raid5_error,
8429	.hot_add_disk	= raid5_add_disk,
8430	.hot_remove_disk= raid5_remove_disk,
8431	.spare_active	= raid5_spare_active,
8432	.sync_request	= raid5_sync_request,
8433	.resize		= raid5_resize,
8434	.size		= raid5_size,
8435	.check_reshape	= raid5_check_reshape,
8436	.start_reshape  = raid5_start_reshape,
8437	.finish_reshape = raid5_finish_reshape,
8438	.quiesce	= raid5_quiesce,
8439	.takeover	= raid4_takeover,
8440	.congested	= raid5_congested,
8441	.change_consistency_policy = raid5_change_consistency_policy,
8442};
8443
8444static int __init raid5_init(void)
8445{
8446	int ret;
8447
8448	raid5_wq = alloc_workqueue("raid5wq",
8449		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8450	if (!raid5_wq)
8451		return -ENOMEM;
8452
8453	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8454				      "md/raid5:prepare",
8455				      raid456_cpu_up_prepare,
8456				      raid456_cpu_dead);
8457	if (ret) {
8458		destroy_workqueue(raid5_wq);
8459		return ret;
8460	}
8461	register_md_personality(&raid6_personality);
8462	register_md_personality(&raid5_personality);
8463	register_md_personality(&raid4_personality);
8464	return 0;
8465}
8466
8467static void raid5_exit(void)
8468{
8469	unregister_md_personality(&raid6_personality);
8470	unregister_md_personality(&raid5_personality);
8471	unregister_md_personality(&raid4_personality);
8472	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8473	destroy_workqueue(raid5_wq);
8474}
8475
8476module_init(raid5_init);
8477module_exit(raid5_exit);
8478MODULE_LICENSE("GPL");
8479MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8480MODULE_ALIAS("md-personality-4"); /* RAID5 */
8481MODULE_ALIAS("md-raid5");
8482MODULE_ALIAS("md-raid4");
8483MODULE_ALIAS("md-level-5");
8484MODULE_ALIAS("md-level-4");
8485MODULE_ALIAS("md-personality-8"); /* RAID6 */
8486MODULE_ALIAS("md-raid6");
8487MODULE_ALIAS("md-level-6");
8488
8489/* This used to be two separate modules, they were: */
8490MODULE_ALIAS("raid5");
8491MODULE_ALIAS("raid6");