Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
   4 *
   5 * (C) Copyright 2014, 2015 Linaro Ltd.
   6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
   7 *
   8 * CPPC describes a few methods for controlling CPU performance using
   9 * information from a per CPU table called CPC. This table is described in
  10 * the ACPI v5.0+ specification. The table consists of a list of
  11 * registers which may be memory mapped or hardware registers and also may
  12 * include some static integer values.
  13 *
  14 * CPU performance is on an abstract continuous scale as against a discretized
  15 * P-state scale which is tied to CPU frequency only. In brief, the basic
  16 * operation involves:
  17 *
  18 * - OS makes a CPU performance request. (Can provide min and max bounds)
  19 *
  20 * - Platform (such as BMC) is free to optimize request within requested bounds
  21 *   depending on power/thermal budgets etc.
  22 *
  23 * - Platform conveys its decision back to OS
  24 *
  25 * The communication between OS and platform occurs through another medium
  26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
  27 * mechanism which includes doorbell semantics to indicate register updates.
  28 * See drivers/mailbox/pcc.c for details on PCC.
  29 *
  30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
  31 * above specifications.
  32 */
  33
  34#define pr_fmt(fmt)	"ACPI CPPC: " fmt
  35
  36#include <linux/delay.h>
  37#include <linux/iopoll.h>
  38#include <linux/ktime.h>
  39#include <linux/rwsem.h>
  40#include <linux/wait.h>
  41#include <linux/topology.h>
  42
  43#include <acpi/cppc_acpi.h>
  44
  45struct cppc_pcc_data {
  46	struct mbox_chan *pcc_channel;
  47	void __iomem *pcc_comm_addr;
  48	bool pcc_channel_acquired;
  49	unsigned int deadline_us;
  50	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
  51
  52	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
  53	bool platform_owns_pcc;		/* Ownership of PCC subspace */
  54	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
  55
  56	/*
  57	 * Lock to provide controlled access to the PCC channel.
  58	 *
  59	 * For performance critical usecases(currently cppc_set_perf)
  60	 *	We need to take read_lock and check if channel belongs to OSPM
  61	 * before reading or writing to PCC subspace
  62	 *	We need to take write_lock before transferring the channel
  63	 * ownership to the platform via a Doorbell
  64	 *	This allows us to batch a number of CPPC requests if they happen
  65	 * to originate in about the same time
  66	 *
  67	 * For non-performance critical usecases(init)
  68	 *	Take write_lock for all purposes which gives exclusive access
  69	 */
  70	struct rw_semaphore pcc_lock;
  71
  72	/* Wait queue for CPUs whose requests were batched */
  73	wait_queue_head_t pcc_write_wait_q;
  74	ktime_t last_cmd_cmpl_time;
  75	ktime_t last_mpar_reset;
  76	int mpar_count;
  77	int refcount;
  78};
  79
  80/* Array to represent the PCC channel per subspace ID */
  81static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
  82/* The cpu_pcc_subspace_idx contains per CPU subspace ID */
  83static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
  84
  85/*
  86 * The cpc_desc structure contains the ACPI register details
  87 * as described in the per CPU _CPC tables. The details
  88 * include the type of register (e.g. PCC, System IO, FFH etc.)
  89 * and destination addresses which lets us READ/WRITE CPU performance
  90 * information using the appropriate I/O methods.
  91 */
  92static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
  93
  94/* pcc mapped address + header size + offset within PCC subspace */
  95#define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
  96						0x8 + (offs))
  97
  98/* Check if a CPC register is in PCC */
  99#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
 100				(cpc)->cpc_entry.reg.space_id ==	\
 101				ACPI_ADR_SPACE_PLATFORM_COMM)
 102
 103/* Evaluates to True if reg is a NULL register descriptor */
 104#define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
 105				(reg)->address == 0 &&			\
 106				(reg)->bit_width == 0 &&		\
 107				(reg)->bit_offset == 0 &&		\
 108				(reg)->access_width == 0)
 109
 110/* Evaluates to True if an optional cpc field is supported */
 111#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
 112				!!(cpc)->cpc_entry.int_value :		\
 113				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
 114/*
 115 * Arbitrary Retries in case the remote processor is slow to respond
 116 * to PCC commands. Keeping it high enough to cover emulators where
 117 * the processors run painfully slow.
 118 */
 119#define NUM_RETRIES 500ULL
 120
 121#define define_one_cppc_ro(_name)		\
 122static struct kobj_attribute _name =		\
 123__ATTR(_name, 0444, show_##_name, NULL)
 124
 125#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
 126
 127#define show_cppc_data(access_fn, struct_name, member_name)		\
 128	static ssize_t show_##member_name(struct kobject *kobj,		\
 129				struct kobj_attribute *attr, char *buf)	\
 130	{								\
 131		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
 132		struct struct_name st_name = {0};			\
 133		int ret;						\
 134									\
 135		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
 136		if (ret)						\
 137			return ret;					\
 138									\
 139		return scnprintf(buf, PAGE_SIZE, "%llu\n",		\
 140				(u64)st_name.member_name);		\
 141	}								\
 142	define_one_cppc_ro(member_name)
 143
 144show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
 145show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
 146show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
 147show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
 148show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
 149show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
 150
 151show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
 152show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
 153
 154static ssize_t show_feedback_ctrs(struct kobject *kobj,
 155		struct kobj_attribute *attr, char *buf)
 156{
 157	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
 158	struct cppc_perf_fb_ctrs fb_ctrs = {0};
 159	int ret;
 160
 161	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
 162	if (ret)
 163		return ret;
 164
 165	return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
 166			fb_ctrs.reference, fb_ctrs.delivered);
 167}
 168define_one_cppc_ro(feedback_ctrs);
 169
 170static struct attribute *cppc_attrs[] = {
 171	&feedback_ctrs.attr,
 172	&reference_perf.attr,
 173	&wraparound_time.attr,
 174	&highest_perf.attr,
 175	&lowest_perf.attr,
 176	&lowest_nonlinear_perf.attr,
 177	&nominal_perf.attr,
 178	&nominal_freq.attr,
 179	&lowest_freq.attr,
 180	NULL
 181};
 182
 183static struct kobj_type cppc_ktype = {
 184	.sysfs_ops = &kobj_sysfs_ops,
 185	.default_attrs = cppc_attrs,
 186};
 187
 188static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
 189{
 190	int ret, status;
 191	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
 192	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
 193		pcc_ss_data->pcc_comm_addr;
 194
 195	if (!pcc_ss_data->platform_owns_pcc)
 196		return 0;
 197
 198	/*
 199	 * Poll PCC status register every 3us(delay_us) for maximum of
 200	 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
 201	 */
 202	ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
 203					status & PCC_CMD_COMPLETE_MASK, 3,
 204					pcc_ss_data->deadline_us);
 205
 206	if (likely(!ret)) {
 207		pcc_ss_data->platform_owns_pcc = false;
 208		if (chk_err_bit && (status & PCC_ERROR_MASK))
 209			ret = -EIO;
 210	}
 211
 212	if (unlikely(ret))
 213		pr_err("PCC check channel failed for ss: %d. ret=%d\n",
 214		       pcc_ss_id, ret);
 215
 216	return ret;
 217}
 218
 219/*
 220 * This function transfers the ownership of the PCC to the platform
 221 * So it must be called while holding write_lock(pcc_lock)
 222 */
 223static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
 224{
 225	int ret = -EIO, i;
 226	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
 227	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
 228		pcc_ss_data->pcc_comm_addr;
 229	unsigned int time_delta;
 230
 231	/*
 232	 * For CMD_WRITE we know for a fact the caller should have checked
 233	 * the channel before writing to PCC space
 234	 */
 235	if (cmd == CMD_READ) {
 236		/*
 237		 * If there are pending cpc_writes, then we stole the channel
 238		 * before write completion, so first send a WRITE command to
 239		 * platform
 240		 */
 241		if (pcc_ss_data->pending_pcc_write_cmd)
 242			send_pcc_cmd(pcc_ss_id, CMD_WRITE);
 243
 244		ret = check_pcc_chan(pcc_ss_id, false);
 245		if (ret)
 246			goto end;
 247	} else /* CMD_WRITE */
 248		pcc_ss_data->pending_pcc_write_cmd = FALSE;
 249
 250	/*
 251	 * Handle the Minimum Request Turnaround Time(MRTT)
 252	 * "The minimum amount of time that OSPM must wait after the completion
 253	 * of a command before issuing the next command, in microseconds"
 254	 */
 255	if (pcc_ss_data->pcc_mrtt) {
 256		time_delta = ktime_us_delta(ktime_get(),
 257					    pcc_ss_data->last_cmd_cmpl_time);
 258		if (pcc_ss_data->pcc_mrtt > time_delta)
 259			udelay(pcc_ss_data->pcc_mrtt - time_delta);
 260	}
 261
 262	/*
 263	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
 264	 * "The maximum number of periodic requests that the subspace channel can
 265	 * support, reported in commands per minute. 0 indicates no limitation."
 266	 *
 267	 * This parameter should be ideally zero or large enough so that it can
 268	 * handle maximum number of requests that all the cores in the system can
 269	 * collectively generate. If it is not, we will follow the spec and just
 270	 * not send the request to the platform after hitting the MPAR limit in
 271	 * any 60s window
 272	 */
 273	if (pcc_ss_data->pcc_mpar) {
 274		if (pcc_ss_data->mpar_count == 0) {
 275			time_delta = ktime_ms_delta(ktime_get(),
 276						    pcc_ss_data->last_mpar_reset);
 277			if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
 278				pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
 279					 pcc_ss_id);
 280				ret = -EIO;
 281				goto end;
 282			}
 283			pcc_ss_data->last_mpar_reset = ktime_get();
 284			pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
 285		}
 286		pcc_ss_data->mpar_count--;
 287	}
 288
 289	/* Write to the shared comm region. */
 290	writew_relaxed(cmd, &generic_comm_base->command);
 291
 292	/* Flip CMD COMPLETE bit */
 293	writew_relaxed(0, &generic_comm_base->status);
 294
 295	pcc_ss_data->platform_owns_pcc = true;
 296
 297	/* Ring doorbell */
 298	ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
 299	if (ret < 0) {
 300		pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
 301		       pcc_ss_id, cmd, ret);
 302		goto end;
 303	}
 304
 305	/* wait for completion and check for PCC errro bit */
 306	ret = check_pcc_chan(pcc_ss_id, true);
 307
 308	if (pcc_ss_data->pcc_mrtt)
 309		pcc_ss_data->last_cmd_cmpl_time = ktime_get();
 310
 311	if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
 312		mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
 313	else
 314		mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
 315
 316end:
 317	if (cmd == CMD_WRITE) {
 318		if (unlikely(ret)) {
 319			for_each_possible_cpu(i) {
 320				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
 321
 322				if (!desc)
 323					continue;
 324
 325				if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
 326					desc->write_cmd_status = ret;
 327			}
 328		}
 329		pcc_ss_data->pcc_write_cnt++;
 330		wake_up_all(&pcc_ss_data->pcc_write_wait_q);
 331	}
 332
 333	return ret;
 334}
 335
 336static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
 337{
 338	if (ret < 0)
 339		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
 340				*(u16 *)msg, ret);
 341	else
 342		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
 343				*(u16 *)msg, ret);
 344}
 345
 346static struct mbox_client cppc_mbox_cl = {
 347	.tx_done = cppc_chan_tx_done,
 348	.knows_txdone = true,
 349};
 350
 351static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
 352{
 353	int result = -EFAULT;
 354	acpi_status status = AE_OK;
 355	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
 356	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
 357	struct acpi_buffer state = {0, NULL};
 358	union acpi_object  *psd = NULL;
 359	struct acpi_psd_package *pdomain;
 360
 361	status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
 362					    &buffer, ACPI_TYPE_PACKAGE);
 363	if (status == AE_NOT_FOUND)	/* _PSD is optional */
 364		return 0;
 365	if (ACPI_FAILURE(status))
 366		return -ENODEV;
 367
 368	psd = buffer.pointer;
 369	if (!psd || psd->package.count != 1) {
 370		pr_debug("Invalid _PSD data\n");
 371		goto end;
 372	}
 373
 374	pdomain = &(cpc_ptr->domain_info);
 375
 376	state.length = sizeof(struct acpi_psd_package);
 377	state.pointer = pdomain;
 378
 379	status = acpi_extract_package(&(psd->package.elements[0]),
 380		&format, &state);
 381	if (ACPI_FAILURE(status)) {
 382		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
 383		goto end;
 384	}
 385
 386	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
 387		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
 388		goto end;
 389	}
 390
 391	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
 392		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
 393		goto end;
 394	}
 395
 396	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
 397	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
 398	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
 399		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
 400		goto end;
 401	}
 402
 403	result = 0;
 404end:
 405	kfree(buffer.pointer);
 406	return result;
 407}
 408
 409bool acpi_cpc_valid(void)
 410{
 411	struct cpc_desc *cpc_ptr;
 412	int cpu;
 413
 414	for_each_possible_cpu(cpu) {
 415		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
 416		if (!cpc_ptr)
 417			return false;
 418	}
 419
 420	return true;
 421}
 422EXPORT_SYMBOL_GPL(acpi_cpc_valid);
 423
 424/**
 425 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
 426 * @cpu: Find all CPUs that share a domain with cpu.
 427 * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
 428 *
 429 *	Return: 0 for success or negative value for err.
 430 */
 431int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
 432{
 433	struct cpc_desc *cpc_ptr, *match_cpc_ptr;
 434	struct acpi_psd_package *match_pdomain;
 435	struct acpi_psd_package *pdomain;
 436	int count_target, i;
 437
 438	/*
 439	 * Now that we have _PSD data from all CPUs, let's setup P-state
 440	 * domain info.
 441	 */
 442	cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
 443	if (!cpc_ptr)
 444		return -EFAULT;
 445
 446	pdomain = &(cpc_ptr->domain_info);
 447	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
 448	if (pdomain->num_processors <= 1)
 449		return 0;
 450
 451	/* Validate the Domain info */
 452	count_target = pdomain->num_processors;
 453	if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
 454		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
 455	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
 456		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
 457	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
 458		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
 459
 460	for_each_possible_cpu(i) {
 461		if (i == cpu)
 462			continue;
 463
 464		match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
 465		if (!match_cpc_ptr)
 466			goto err_fault;
 467
 468		match_pdomain = &(match_cpc_ptr->domain_info);
 469		if (match_pdomain->domain != pdomain->domain)
 470			continue;
 471
 472		/* Here i and cpu are in the same domain */
 473		if (match_pdomain->num_processors != count_target)
 474			goto err_fault;
 475
 476		if (pdomain->coord_type != match_pdomain->coord_type)
 477			goto err_fault;
 478
 479		cpumask_set_cpu(i, cpu_data->shared_cpu_map);
 480	}
 481
 482	return 0;
 483
 484err_fault:
 485	/* Assume no coordination on any error parsing domain info */
 486	cpumask_clear(cpu_data->shared_cpu_map);
 487	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
 488	cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
 489
 490	return -EFAULT;
 491}
 492EXPORT_SYMBOL_GPL(acpi_get_psd_map);
 493
 494static int register_pcc_channel(int pcc_ss_idx)
 495{
 496	struct acpi_pcct_hw_reduced *cppc_ss;
 497	u64 usecs_lat;
 498
 499	if (pcc_ss_idx >= 0) {
 500		pcc_data[pcc_ss_idx]->pcc_channel =
 501			pcc_mbox_request_channel(&cppc_mbox_cl,	pcc_ss_idx);
 502
 503		if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
 504			pr_err("Failed to find PCC channel for subspace %d\n",
 505			       pcc_ss_idx);
 506			return -ENODEV;
 507		}
 508
 509		/*
 510		 * The PCC mailbox controller driver should
 511		 * have parsed the PCCT (global table of all
 512		 * PCC channels) and stored pointers to the
 513		 * subspace communication region in con_priv.
 514		 */
 515		cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
 516
 517		if (!cppc_ss) {
 518			pr_err("No PCC subspace found for %d CPPC\n",
 519			       pcc_ss_idx);
 520			return -ENODEV;
 521		}
 522
 523		/*
 524		 * cppc_ss->latency is just a Nominal value. In reality
 525		 * the remote processor could be much slower to reply.
 526		 * So add an arbitrary amount of wait on top of Nominal.
 527		 */
 528		usecs_lat = NUM_RETRIES * cppc_ss->latency;
 529		pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
 530		pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
 531		pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
 532		pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
 533
 534		pcc_data[pcc_ss_idx]->pcc_comm_addr =
 535			acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
 536		if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
 537			pr_err("Failed to ioremap PCC comm region mem for %d\n",
 538			       pcc_ss_idx);
 539			return -ENOMEM;
 540		}
 541
 542		/* Set flag so that we don't come here for each CPU. */
 543		pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
 544	}
 545
 546	return 0;
 547}
 548
 549/**
 550 * cpc_ffh_supported() - check if FFH reading supported
 551 *
 552 * Check if the architecture has support for functional fixed hardware
 553 * read/write capability.
 554 *
 555 * Return: true for supported, false for not supported
 556 */
 557bool __weak cpc_ffh_supported(void)
 558{
 559	return false;
 560}
 561
 562/**
 563 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
 564 *
 565 * Check and allocate the cppc_pcc_data memory.
 566 * In some processor configurations it is possible that same subspace
 567 * is shared between multiple CPUs. This is seen especially in CPUs
 568 * with hardware multi-threading support.
 569 *
 570 * Return: 0 for success, errno for failure
 571 */
 572static int pcc_data_alloc(int pcc_ss_id)
 573{
 574	if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
 575		return -EINVAL;
 576
 577	if (pcc_data[pcc_ss_id]) {
 578		pcc_data[pcc_ss_id]->refcount++;
 579	} else {
 580		pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
 581					      GFP_KERNEL);
 582		if (!pcc_data[pcc_ss_id])
 583			return -ENOMEM;
 584		pcc_data[pcc_ss_id]->refcount++;
 585	}
 586
 587	return 0;
 588}
 589
 590/* Check if CPPC revision + num_ent combination is supported */
 591static bool is_cppc_supported(int revision, int num_ent)
 592{
 593	int expected_num_ent;
 594
 595	switch (revision) {
 596	case CPPC_V2_REV:
 597		expected_num_ent = CPPC_V2_NUM_ENT;
 598		break;
 599	case CPPC_V3_REV:
 600		expected_num_ent = CPPC_V3_NUM_ENT;
 601		break;
 602	default:
 603		pr_debug("Firmware exports unsupported CPPC revision: %d\n",
 604			revision);
 605		return false;
 606	}
 607
 608	if (expected_num_ent != num_ent) {
 609		pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
 610			num_ent, expected_num_ent, revision);
 611		return false;
 612	}
 613
 614	return true;
 615}
 616
 617/*
 618 * An example CPC table looks like the following.
 619 *
 620 *	Name(_CPC, Package()
 621 *			{
 622 *			17,
 623 *			NumEntries
 624 *			1,
 625 *			// Revision
 626 *			ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
 627 *			// Highest Performance
 628 *			ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
 629 *			// Nominal Performance
 630 *			ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
 631 *			// Lowest Nonlinear Performance
 632 *			ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
 633 *			// Lowest Performance
 634 *			ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
 635 *			// Guaranteed Performance Register
 636 *			ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
 637 *			// Desired Performance Register
 638 *			ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
 639 *			..
 640 *			..
 641 *			..
 642 *
 643 *		}
 644 * Each Register() encodes how to access that specific register.
 645 * e.g. a sample PCC entry has the following encoding:
 646 *
 647 *	Register (
 648 *		PCC,
 649 *		AddressSpaceKeyword
 650 *		8,
 651 *		//RegisterBitWidth
 652 *		8,
 653 *		//RegisterBitOffset
 654 *		0x30,
 655 *		//RegisterAddress
 656 *		9
 657 *		//AccessSize (subspace ID)
 658 *		0
 659 *		)
 660 *	}
 661 */
 662
 663#ifndef init_freq_invariance_cppc
 664static inline void init_freq_invariance_cppc(void) { }
 665#endif
 666
 667/**
 668 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
 669 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
 670 *
 671 *	Return: 0 for success or negative value for err.
 672 */
 673int acpi_cppc_processor_probe(struct acpi_processor *pr)
 674{
 675	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
 676	union acpi_object *out_obj, *cpc_obj;
 677	struct cpc_desc *cpc_ptr;
 678	struct cpc_reg *gas_t;
 679	struct device *cpu_dev;
 680	acpi_handle handle = pr->handle;
 681	unsigned int num_ent, i, cpc_rev;
 682	int pcc_subspace_id = -1;
 683	acpi_status status;
 684	int ret = -EFAULT;
 685
 686	/* Parse the ACPI _CPC table for this CPU. */
 687	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
 688			ACPI_TYPE_PACKAGE);
 689	if (ACPI_FAILURE(status)) {
 690		ret = -ENODEV;
 691		goto out_buf_free;
 692	}
 693
 694	out_obj = (union acpi_object *) output.pointer;
 695
 696	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
 697	if (!cpc_ptr) {
 698		ret = -ENOMEM;
 699		goto out_buf_free;
 700	}
 701
 702	/* First entry is NumEntries. */
 703	cpc_obj = &out_obj->package.elements[0];
 704	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
 705		num_ent = cpc_obj->integer.value;
 706	} else {
 707		pr_debug("Unexpected entry type(%d) for NumEntries\n",
 708				cpc_obj->type);
 709		goto out_free;
 710	}
 711	cpc_ptr->num_entries = num_ent;
 712
 713	/* Second entry should be revision. */
 714	cpc_obj = &out_obj->package.elements[1];
 715	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
 716		cpc_rev = cpc_obj->integer.value;
 717	} else {
 718		pr_debug("Unexpected entry type(%d) for Revision\n",
 719				cpc_obj->type);
 720		goto out_free;
 721	}
 722	cpc_ptr->version = cpc_rev;
 723
 724	if (!is_cppc_supported(cpc_rev, num_ent))
 725		goto out_free;
 726
 727	/* Iterate through remaining entries in _CPC */
 728	for (i = 2; i < num_ent; i++) {
 729		cpc_obj = &out_obj->package.elements[i];
 730
 731		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
 732			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
 733			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
 734		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
 735			gas_t = (struct cpc_reg *)
 736				cpc_obj->buffer.pointer;
 737
 738			/*
 739			 * The PCC Subspace index is encoded inside
 740			 * the CPC table entries. The same PCC index
 741			 * will be used for all the PCC entries,
 742			 * so extract it only once.
 743			 */
 744			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
 745				if (pcc_subspace_id < 0) {
 746					pcc_subspace_id = gas_t->access_width;
 747					if (pcc_data_alloc(pcc_subspace_id))
 748						goto out_free;
 749				} else if (pcc_subspace_id != gas_t->access_width) {
 750					pr_debug("Mismatched PCC ids.\n");
 751					goto out_free;
 752				}
 753			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
 754				if (gas_t->address) {
 755					void __iomem *addr;
 756
 757					addr = ioremap(gas_t->address, gas_t->bit_width/8);
 758					if (!addr)
 759						goto out_free;
 760					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
 761				}
 762			} else {
 763				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
 764					/* Support only PCC ,SYS MEM and FFH type regs */
 765					pr_debug("Unsupported register type: %d\n", gas_t->space_id);
 766					goto out_free;
 767				}
 768			}
 769
 770			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
 771			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
 772		} else {
 773			pr_debug("Err in entry:%d in CPC table of CPU:%d\n", i, pr->id);
 774			goto out_free;
 775		}
 776	}
 777	per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
 778
 779	/*
 780	 * Initialize the remaining cpc_regs as unsupported.
 781	 * Example: In case FW exposes CPPC v2, the below loop will initialize
 782	 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
 783	 */
 784	for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
 785		cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
 786		cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
 787	}
 788
 789
 790	/* Store CPU Logical ID */
 791	cpc_ptr->cpu_id = pr->id;
 792
 793	/* Parse PSD data for this CPU */
 794	ret = acpi_get_psd(cpc_ptr, handle);
 795	if (ret)
 796		goto out_free;
 797
 798	/* Register PCC channel once for all PCC subspace ID. */
 799	if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
 800		ret = register_pcc_channel(pcc_subspace_id);
 801		if (ret)
 802			goto out_free;
 803
 804		init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
 805		init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
 806	}
 807
 808	/* Everything looks okay */
 809	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
 810
 811	/* Add per logical CPU nodes for reading its feedback counters. */
 812	cpu_dev = get_cpu_device(pr->id);
 813	if (!cpu_dev) {
 814		ret = -EINVAL;
 815		goto out_free;
 816	}
 817
 818	/* Plug PSD data into this CPU's CPC descriptor. */
 819	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
 820
 821	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
 822			"acpi_cppc");
 823	if (ret) {
 824		per_cpu(cpc_desc_ptr, pr->id) = NULL;
 825		kobject_put(&cpc_ptr->kobj);
 826		goto out_free;
 827	}
 828
 829	init_freq_invariance_cppc();
 830
 831	kfree(output.pointer);
 832	return 0;
 833
 834out_free:
 835	/* Free all the mapped sys mem areas for this CPU */
 836	for (i = 2; i < cpc_ptr->num_entries; i++) {
 837		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
 838
 839		if (addr)
 840			iounmap(addr);
 841	}
 842	kfree(cpc_ptr);
 843
 844out_buf_free:
 845	kfree(output.pointer);
 846	return ret;
 847}
 848EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
 849
 850/**
 851 * acpi_cppc_processor_exit - Cleanup CPC structs.
 852 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
 853 *
 854 * Return: Void
 855 */
 856void acpi_cppc_processor_exit(struct acpi_processor *pr)
 857{
 858	struct cpc_desc *cpc_ptr;
 859	unsigned int i;
 860	void __iomem *addr;
 861	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
 862
 863	if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
 864		if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
 865			pcc_data[pcc_ss_id]->refcount--;
 866			if (!pcc_data[pcc_ss_id]->refcount) {
 867				pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
 868				kfree(pcc_data[pcc_ss_id]);
 869				pcc_data[pcc_ss_id] = NULL;
 870			}
 871		}
 872	}
 873
 874	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
 875	if (!cpc_ptr)
 876		return;
 877
 878	/* Free all the mapped sys mem areas for this CPU */
 879	for (i = 2; i < cpc_ptr->num_entries; i++) {
 880		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
 881		if (addr)
 882			iounmap(addr);
 883	}
 884
 885	kobject_put(&cpc_ptr->kobj);
 886	kfree(cpc_ptr);
 887}
 888EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
 889
 890/**
 891 * cpc_read_ffh() - Read FFH register
 892 * @cpunum:	CPU number to read
 893 * @reg:	cppc register information
 894 * @val:	place holder for return value
 895 *
 896 * Read bit_width bits from a specified address and bit_offset
 897 *
 898 * Return: 0 for success and error code
 899 */
 900int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
 901{
 902	return -ENOTSUPP;
 903}
 904
 905/**
 906 * cpc_write_ffh() - Write FFH register
 907 * @cpunum:	CPU number to write
 908 * @reg:	cppc register information
 909 * @val:	value to write
 910 *
 911 * Write value of bit_width bits to a specified address and bit_offset
 912 *
 913 * Return: 0 for success and error code
 914 */
 915int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
 916{
 917	return -ENOTSUPP;
 918}
 919
 920/*
 921 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
 922 * as fast as possible. We have already mapped the PCC subspace during init, so
 923 * we can directly write to it.
 924 */
 925
 926static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
 927{
 928	int ret_val = 0;
 929	void __iomem *vaddr = NULL;
 930	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
 931	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
 932
 933	if (reg_res->type == ACPI_TYPE_INTEGER) {
 934		*val = reg_res->cpc_entry.int_value;
 935		return ret_val;
 936	}
 937
 938	*val = 0;
 939	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
 940		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
 941	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 942		vaddr = reg_res->sys_mem_vaddr;
 943	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
 944		return cpc_read_ffh(cpu, reg, val);
 945	else
 946		return acpi_os_read_memory((acpi_physical_address)reg->address,
 947				val, reg->bit_width);
 948
 949	switch (reg->bit_width) {
 950	case 8:
 951		*val = readb_relaxed(vaddr);
 952		break;
 953	case 16:
 954		*val = readw_relaxed(vaddr);
 955		break;
 956	case 32:
 957		*val = readl_relaxed(vaddr);
 958		break;
 959	case 64:
 960		*val = readq_relaxed(vaddr);
 961		break;
 962	default:
 963		pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
 964			 reg->bit_width, pcc_ss_id);
 965		ret_val = -EFAULT;
 966	}
 967
 968	return ret_val;
 969}
 970
 971static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
 972{
 973	int ret_val = 0;
 974	void __iomem *vaddr = NULL;
 975	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
 976	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
 977
 978	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
 979		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
 980	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 981		vaddr = reg_res->sys_mem_vaddr;
 982	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
 983		return cpc_write_ffh(cpu, reg, val);
 984	else
 985		return acpi_os_write_memory((acpi_physical_address)reg->address,
 986				val, reg->bit_width);
 987
 988	switch (reg->bit_width) {
 989	case 8:
 990		writeb_relaxed(val, vaddr);
 991		break;
 992	case 16:
 993		writew_relaxed(val, vaddr);
 994		break;
 995	case 32:
 996		writel_relaxed(val, vaddr);
 997		break;
 998	case 64:
 999		writeq_relaxed(val, vaddr);
1000		break;
1001	default:
1002		pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1003			 reg->bit_width, pcc_ss_id);
1004		ret_val = -EFAULT;
1005		break;
1006	}
1007
1008	return ret_val;
1009}
1010
1011/**
1012 * cppc_get_desired_perf - Get the value of desired performance register.
1013 * @cpunum: CPU from which to get desired performance.
1014 * @desired_perf: address of a variable to store the returned desired performance
1015 *
1016 * Return: 0 for success, -EIO otherwise.
1017 */
1018int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1019{
1020	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1021	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1022	struct cpc_register_resource *desired_reg;
1023	struct cppc_pcc_data *pcc_ss_data = NULL;
1024
1025	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1026
1027	if (CPC_IN_PCC(desired_reg)) {
1028		int ret = 0;
1029
1030		if (pcc_ss_id < 0)
1031			return -EIO;
1032
1033		pcc_ss_data = pcc_data[pcc_ss_id];
1034
1035		down_write(&pcc_ss_data->pcc_lock);
1036
1037		if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1038			cpc_read(cpunum, desired_reg, desired_perf);
1039		else
1040			ret = -EIO;
1041
1042		up_write(&pcc_ss_data->pcc_lock);
1043
1044		return ret;
1045	}
1046
1047	cpc_read(cpunum, desired_reg, desired_perf);
1048
1049	return 0;
1050}
1051EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1052
1053/**
1054 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1055 * @cpunum: CPU from which to get capabilities info.
1056 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1057 *
1058 * Return: 0 for success with perf_caps populated else -ERRNO.
1059 */
1060int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1061{
1062	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1063	struct cpc_register_resource *highest_reg, *lowest_reg,
1064		*lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1065		*low_freq_reg = NULL, *nom_freq_reg = NULL;
1066	u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1067	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1068	struct cppc_pcc_data *pcc_ss_data = NULL;
1069	int ret = 0, regs_in_pcc = 0;
1070
1071	if (!cpc_desc) {
1072		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1073		return -ENODEV;
1074	}
1075
1076	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1077	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1078	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1079	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1080	low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1081	nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1082	guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1083
1084	/* Are any of the regs PCC ?*/
1085	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1086		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1087		CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1088		if (pcc_ss_id < 0) {
1089			pr_debug("Invalid pcc_ss_id\n");
1090			return -ENODEV;
1091		}
1092		pcc_ss_data = pcc_data[pcc_ss_id];
1093		regs_in_pcc = 1;
1094		down_write(&pcc_ss_data->pcc_lock);
1095		/* Ring doorbell once to update PCC subspace */
1096		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1097			ret = -EIO;
1098			goto out_err;
1099		}
1100	}
1101
1102	cpc_read(cpunum, highest_reg, &high);
1103	perf_caps->highest_perf = high;
1104
1105	cpc_read(cpunum, lowest_reg, &low);
1106	perf_caps->lowest_perf = low;
1107
1108	cpc_read(cpunum, nominal_reg, &nom);
1109	perf_caps->nominal_perf = nom;
1110
1111	if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1112	    IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1113		perf_caps->guaranteed_perf = 0;
1114	} else {
1115		cpc_read(cpunum, guaranteed_reg, &guaranteed);
1116		perf_caps->guaranteed_perf = guaranteed;
1117	}
1118
1119	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1120	perf_caps->lowest_nonlinear_perf = min_nonlinear;
1121
1122	if (!high || !low || !nom || !min_nonlinear)
1123		ret = -EFAULT;
1124
1125	/* Read optional lowest and nominal frequencies if present */
1126	if (CPC_SUPPORTED(low_freq_reg))
1127		cpc_read(cpunum, low_freq_reg, &low_f);
1128
1129	if (CPC_SUPPORTED(nom_freq_reg))
1130		cpc_read(cpunum, nom_freq_reg, &nom_f);
1131
1132	perf_caps->lowest_freq = low_f;
1133	perf_caps->nominal_freq = nom_f;
1134
1135
1136out_err:
1137	if (regs_in_pcc)
1138		up_write(&pcc_ss_data->pcc_lock);
1139	return ret;
1140}
1141EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1142
1143/**
1144 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1145 * @cpunum: CPU from which to read counters.
1146 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1147 *
1148 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1149 */
1150int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1151{
1152	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1153	struct cpc_register_resource *delivered_reg, *reference_reg,
1154		*ref_perf_reg, *ctr_wrap_reg;
1155	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1156	struct cppc_pcc_data *pcc_ss_data = NULL;
1157	u64 delivered, reference, ref_perf, ctr_wrap_time;
1158	int ret = 0, regs_in_pcc = 0;
1159
1160	if (!cpc_desc) {
1161		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1162		return -ENODEV;
1163	}
1164
1165	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1166	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1167	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1168	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1169
1170	/*
1171	 * If reference perf register is not supported then we should
1172	 * use the nominal perf value
1173	 */
1174	if (!CPC_SUPPORTED(ref_perf_reg))
1175		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1176
1177	/* Are any of the regs PCC ?*/
1178	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1179		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1180		if (pcc_ss_id < 0) {
1181			pr_debug("Invalid pcc_ss_id\n");
1182			return -ENODEV;
1183		}
1184		pcc_ss_data = pcc_data[pcc_ss_id];
1185		down_write(&pcc_ss_data->pcc_lock);
1186		regs_in_pcc = 1;
1187		/* Ring doorbell once to update PCC subspace */
1188		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1189			ret = -EIO;
1190			goto out_err;
1191		}
1192	}
1193
1194	cpc_read(cpunum, delivered_reg, &delivered);
1195	cpc_read(cpunum, reference_reg, &reference);
1196	cpc_read(cpunum, ref_perf_reg, &ref_perf);
1197
1198	/*
1199	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1200	 * performance counters are assumed to never wrap during the lifetime of
1201	 * platform
1202	 */
1203	ctr_wrap_time = (u64)(~((u64)0));
1204	if (CPC_SUPPORTED(ctr_wrap_reg))
1205		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1206
1207	if (!delivered || !reference ||	!ref_perf) {
1208		ret = -EFAULT;
1209		goto out_err;
1210	}
1211
1212	perf_fb_ctrs->delivered = delivered;
1213	perf_fb_ctrs->reference = reference;
1214	perf_fb_ctrs->reference_perf = ref_perf;
1215	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1216out_err:
1217	if (regs_in_pcc)
1218		up_write(&pcc_ss_data->pcc_lock);
1219	return ret;
1220}
1221EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1222
1223/**
1224 * cppc_set_perf - Set a CPU's performance controls.
1225 * @cpu: CPU for which to set performance controls.
1226 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1227 *
1228 * Return: 0 for success, -ERRNO otherwise.
1229 */
1230int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1231{
1232	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1233	struct cpc_register_resource *desired_reg;
1234	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1235	struct cppc_pcc_data *pcc_ss_data = NULL;
1236	int ret = 0;
1237
1238	if (!cpc_desc) {
1239		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1240		return -ENODEV;
1241	}
1242
1243	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1244
1245	/*
1246	 * This is Phase-I where we want to write to CPC registers
1247	 * -> We want all CPUs to be able to execute this phase in parallel
1248	 *
1249	 * Since read_lock can be acquired by multiple CPUs simultaneously we
1250	 * achieve that goal here
1251	 */
1252	if (CPC_IN_PCC(desired_reg)) {
1253		if (pcc_ss_id < 0) {
1254			pr_debug("Invalid pcc_ss_id\n");
1255			return -ENODEV;
1256		}
1257		pcc_ss_data = pcc_data[pcc_ss_id];
1258		down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1259		if (pcc_ss_data->platform_owns_pcc) {
1260			ret = check_pcc_chan(pcc_ss_id, false);
1261			if (ret) {
1262				up_read(&pcc_ss_data->pcc_lock);
1263				return ret;
1264			}
1265		}
1266		/*
1267		 * Update the pending_write to make sure a PCC CMD_READ will not
1268		 * arrive and steal the channel during the switch to write lock
1269		 */
1270		pcc_ss_data->pending_pcc_write_cmd = true;
1271		cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1272		cpc_desc->write_cmd_status = 0;
1273	}
1274
1275	/*
1276	 * Skip writing MIN/MAX until Linux knows how to come up with
1277	 * useful values.
1278	 */
1279	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1280
1281	if (CPC_IN_PCC(desired_reg))
1282		up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */
1283	/*
1284	 * This is Phase-II where we transfer the ownership of PCC to Platform
1285	 *
1286	 * Short Summary: Basically if we think of a group of cppc_set_perf
1287	 * requests that happened in short overlapping interval. The last CPU to
1288	 * come out of Phase-I will enter Phase-II and ring the doorbell.
1289	 *
1290	 * We have the following requirements for Phase-II:
1291	 *     1. We want to execute Phase-II only when there are no CPUs
1292	 * currently executing in Phase-I
1293	 *     2. Once we start Phase-II we want to avoid all other CPUs from
1294	 * entering Phase-I.
1295	 *     3. We want only one CPU among all those who went through Phase-I
1296	 * to run phase-II
1297	 *
1298	 * If write_trylock fails to get the lock and doesn't transfer the
1299	 * PCC ownership to the platform, then one of the following will be TRUE
1300	 *     1. There is at-least one CPU in Phase-I which will later execute
1301	 * write_trylock, so the CPUs in Phase-I will be responsible for
1302	 * executing the Phase-II.
1303	 *     2. Some other CPU has beaten this CPU to successfully execute the
1304	 * write_trylock and has already acquired the write_lock. We know for a
1305	 * fact it (other CPU acquiring the write_lock) couldn't have happened
1306	 * before this CPU's Phase-I as we held the read_lock.
1307	 *     3. Some other CPU executing pcc CMD_READ has stolen the
1308	 * down_write, in which case, send_pcc_cmd will check for pending
1309	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1310	 * So this CPU can be certain that its request will be delivered
1311	 *    So in all cases, this CPU knows that its request will be delivered
1312	 * by another CPU and can return
1313	 *
1314	 * After getting the down_write we still need to check for
1315	 * pending_pcc_write_cmd to take care of the following scenario
1316	 *    The thread running this code could be scheduled out between
1317	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1318	 * could have delivered the request to Platform by triggering the
1319	 * doorbell and transferred the ownership of PCC to platform. So this
1320	 * avoids triggering an unnecessary doorbell and more importantly before
1321	 * triggering the doorbell it makes sure that the PCC channel ownership
1322	 * is still with OSPM.
1323	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1324	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1325	 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1326	 * case during a CMD_READ and if there are pending writes it delivers
1327	 * the write command before servicing the read command
1328	 */
1329	if (CPC_IN_PCC(desired_reg)) {
1330		if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1331			/* Update only if there are pending write commands */
1332			if (pcc_ss_data->pending_pcc_write_cmd)
1333				send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1334			up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */
1335		} else
1336			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1337			wait_event(pcc_ss_data->pcc_write_wait_q,
1338				   cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1339
1340		/* send_pcc_cmd updates the status in case of failure */
1341		ret = cpc_desc->write_cmd_status;
1342	}
1343	return ret;
1344}
1345EXPORT_SYMBOL_GPL(cppc_set_perf);
1346
1347/**
1348 * cppc_get_transition_latency - returns frequency transition latency in ns
1349 *
1350 * ACPI CPPC does not explicitly specify how a platform can specify the
1351 * transition latency for performance change requests. The closest we have
1352 * is the timing information from the PCCT tables which provides the info
1353 * on the number and frequency of PCC commands the platform can handle.
1354 */
1355unsigned int cppc_get_transition_latency(int cpu_num)
1356{
1357	/*
1358	 * Expected transition latency is based on the PCCT timing values
1359	 * Below are definition from ACPI spec:
1360	 * pcc_nominal- Expected latency to process a command, in microseconds
1361	 * pcc_mpar   - The maximum number of periodic requests that the subspace
1362	 *              channel can support, reported in commands per minute. 0
1363	 *              indicates no limitation.
1364	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1365	 *              completion of a command before issuing the next command,
1366	 *              in microseconds.
1367	 */
1368	unsigned int latency_ns = 0;
1369	struct cpc_desc *cpc_desc;
1370	struct cpc_register_resource *desired_reg;
1371	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1372	struct cppc_pcc_data *pcc_ss_data;
1373
1374	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1375	if (!cpc_desc)
1376		return CPUFREQ_ETERNAL;
1377
1378	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1379	if (!CPC_IN_PCC(desired_reg))
1380		return CPUFREQ_ETERNAL;
1381
1382	if (pcc_ss_id < 0)
1383		return CPUFREQ_ETERNAL;
1384
1385	pcc_ss_data = pcc_data[pcc_ss_id];
1386	if (pcc_ss_data->pcc_mpar)
1387		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1388
1389	latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1390	latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1391
1392	return latency_ns;
1393}
1394EXPORT_SYMBOL_GPL(cppc_get_transition_latency);