Loading...
1/* Driver for SanDisk SDDR-09 SmartMedia reader
2 *
3 * (c) 2000, 2001 Robert Baruch (autophile@starband.net)
4 * (c) 2002 Andries Brouwer (aeb@cwi.nl)
5 * Developed with the assistance of:
6 * (c) 2002 Alan Stern <stern@rowland.org>
7 *
8 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
9 * This chip is a programmable USB controller. In the SDDR-09, it has
10 * been programmed to obey a certain limited set of SCSI commands.
11 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
12 * commands.
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2, or (at your option) any
17 * later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 675 Mass Ave, Cambridge, MA 02139, USA.
27 */
28
29/*
30 * Known vendor commands: 12 bytes, first byte is opcode
31 *
32 * E7: read scatter gather
33 * E8: read
34 * E9: write
35 * EA: erase
36 * EB: reset
37 * EC: read status
38 * ED: read ID
39 * EE: write CIS (?)
40 * EF: compute checksum (?)
41 */
42
43#include <linux/errno.h>
44#include <linux/module.h>
45#include <linux/slab.h>
46
47#include <scsi/scsi.h>
48#include <scsi/scsi_cmnd.h>
49#include <scsi/scsi_device.h>
50
51#include "usb.h"
52#include "transport.h"
53#include "protocol.h"
54#include "debug.h"
55
56MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
57MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
58MODULE_LICENSE("GPL");
59
60static int usb_stor_sddr09_dpcm_init(struct us_data *us);
61static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
62static int usb_stor_sddr09_init(struct us_data *us);
63
64
65/*
66 * The table of devices
67 */
68#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
69 vendorName, productName, useProtocol, useTransport, \
70 initFunction, flags) \
71{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
72 .driver_info = (flags)|(USB_US_TYPE_STOR<<24) }
73
74struct usb_device_id sddr09_usb_ids[] = {
75# include "unusual_sddr09.h"
76 { } /* Terminating entry */
77};
78MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
79
80#undef UNUSUAL_DEV
81
82/*
83 * The flags table
84 */
85#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
86 vendor_name, product_name, use_protocol, use_transport, \
87 init_function, Flags) \
88{ \
89 .vendorName = vendor_name, \
90 .productName = product_name, \
91 .useProtocol = use_protocol, \
92 .useTransport = use_transport, \
93 .initFunction = init_function, \
94}
95
96static struct us_unusual_dev sddr09_unusual_dev_list[] = {
97# include "unusual_sddr09.h"
98 { } /* Terminating entry */
99};
100
101#undef UNUSUAL_DEV
102
103
104#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
105#define LSB_of(s) ((s)&0xFF)
106#define MSB_of(s) ((s)>>8)
107
108/* #define US_DEBUGP printk */
109
110/*
111 * First some stuff that does not belong here:
112 * data on SmartMedia and other cards, completely
113 * unrelated to this driver.
114 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
115 */
116
117struct nand_flash_dev {
118 int model_id;
119 int chipshift; /* 1<<cs bytes total capacity */
120 char pageshift; /* 1<<ps bytes in a page */
121 char blockshift; /* 1<<bs pages in an erase block */
122 char zoneshift; /* 1<<zs blocks in a zone */
123 /* # of logical blocks is 125/128 of this */
124 char pageadrlen; /* length of an address in bytes - 1 */
125};
126
127/*
128 * NAND Flash Manufacturer ID Codes
129 */
130#define NAND_MFR_AMD 0x01
131#define NAND_MFR_NATSEMI 0x8f
132#define NAND_MFR_TOSHIBA 0x98
133#define NAND_MFR_SAMSUNG 0xec
134
135static inline char *nand_flash_manufacturer(int manuf_id) {
136 switch(manuf_id) {
137 case NAND_MFR_AMD:
138 return "AMD";
139 case NAND_MFR_NATSEMI:
140 return "NATSEMI";
141 case NAND_MFR_TOSHIBA:
142 return "Toshiba";
143 case NAND_MFR_SAMSUNG:
144 return "Samsung";
145 default:
146 return "unknown";
147 }
148}
149
150/*
151 * It looks like it is unnecessary to attach manufacturer to the
152 * remaining data: SSFDC prescribes manufacturer-independent id codes.
153 *
154 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
155 */
156
157static struct nand_flash_dev nand_flash_ids[] = {
158 /* NAND flash */
159 { 0x6e, 20, 8, 4, 8, 2}, /* 1 MB */
160 { 0xe8, 20, 8, 4, 8, 2}, /* 1 MB */
161 { 0xec, 20, 8, 4, 8, 2}, /* 1 MB */
162 { 0x64, 21, 8, 4, 9, 2}, /* 2 MB */
163 { 0xea, 21, 8, 4, 9, 2}, /* 2 MB */
164 { 0x6b, 22, 9, 4, 9, 2}, /* 4 MB */
165 { 0xe3, 22, 9, 4, 9, 2}, /* 4 MB */
166 { 0xe5, 22, 9, 4, 9, 2}, /* 4 MB */
167 { 0xe6, 23, 9, 4, 10, 2}, /* 8 MB */
168 { 0x73, 24, 9, 5, 10, 2}, /* 16 MB */
169 { 0x75, 25, 9, 5, 10, 2}, /* 32 MB */
170 { 0x76, 26, 9, 5, 10, 3}, /* 64 MB */
171 { 0x79, 27, 9, 5, 10, 3}, /* 128 MB */
172
173 /* MASK ROM */
174 { 0x5d, 21, 9, 4, 8, 2}, /* 2 MB */
175 { 0xd5, 22, 9, 4, 9, 2}, /* 4 MB */
176 { 0xd6, 23, 9, 4, 10, 2}, /* 8 MB */
177 { 0x57, 24, 9, 4, 11, 2}, /* 16 MB */
178 { 0x58, 25, 9, 4, 12, 2}, /* 32 MB */
179 { 0,}
180};
181
182static struct nand_flash_dev *
183nand_find_id(unsigned char id) {
184 int i;
185
186 for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
187 if (nand_flash_ids[i].model_id == id)
188 return &(nand_flash_ids[i]);
189 return NULL;
190}
191
192/*
193 * ECC computation.
194 */
195static unsigned char parity[256];
196static unsigned char ecc2[256];
197
198static void nand_init_ecc(void) {
199 int i, j, a;
200
201 parity[0] = 0;
202 for (i = 1; i < 256; i++)
203 parity[i] = (parity[i&(i-1)] ^ 1);
204
205 for (i = 0; i < 256; i++) {
206 a = 0;
207 for (j = 0; j < 8; j++) {
208 if (i & (1<<j)) {
209 if ((j & 1) == 0)
210 a ^= 0x04;
211 if ((j & 2) == 0)
212 a ^= 0x10;
213 if ((j & 4) == 0)
214 a ^= 0x40;
215 }
216 }
217 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
218 }
219}
220
221/* compute 3-byte ecc on 256 bytes */
222static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
223 int i, j, a;
224 unsigned char par, bit, bits[8];
225
226 par = 0;
227 for (j = 0; j < 8; j++)
228 bits[j] = 0;
229
230 /* collect 16 checksum bits */
231 for (i = 0; i < 256; i++) {
232 par ^= data[i];
233 bit = parity[data[i]];
234 for (j = 0; j < 8; j++)
235 if ((i & (1<<j)) == 0)
236 bits[j] ^= bit;
237 }
238
239 /* put 4+4+4 = 12 bits in the ecc */
240 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
241 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
242
243 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
244 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
245
246 ecc[2] = ecc2[par];
247}
248
249static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
250 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
251}
252
253static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
254 memcpy(data, ecc, 3);
255}
256
257/*
258 * The actual driver starts here.
259 */
260
261struct sddr09_card_info {
262 unsigned long capacity; /* Size of card in bytes */
263 int pagesize; /* Size of page in bytes */
264 int pageshift; /* log2 of pagesize */
265 int blocksize; /* Size of block in pages */
266 int blockshift; /* log2 of blocksize */
267 int blockmask; /* 2^blockshift - 1 */
268 int *lba_to_pba; /* logical to physical map */
269 int *pba_to_lba; /* physical to logical map */
270 int lbact; /* number of available pages */
271 int flags;
272#define SDDR09_WP 1 /* write protected */
273};
274
275/*
276 * On my 16MB card, control blocks have size 64 (16 real control bytes,
277 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
278 * so the reader makes up the remaining 48. Don't know whether these numbers
279 * depend on the card. For now a constant.
280 */
281#define CONTROL_SHIFT 6
282
283/*
284 * On my Combo CF/SM reader, the SM reader has LUN 1.
285 * (and things fail with LUN 0).
286 * It seems LUN is irrelevant for others.
287 */
288#define LUN 1
289#define LUNBITS (LUN << 5)
290
291/*
292 * LBA and PBA are unsigned ints. Special values.
293 */
294#define UNDEF 0xffffffff
295#define SPARE 0xfffffffe
296#define UNUSABLE 0xfffffffd
297
298static const int erase_bad_lba_entries = 0;
299
300/* send vendor interface command (0x41) */
301/* called for requests 0, 1, 8 */
302static int
303sddr09_send_command(struct us_data *us,
304 unsigned char request,
305 unsigned char direction,
306 unsigned char *xfer_data,
307 unsigned int xfer_len) {
308 unsigned int pipe;
309 unsigned char requesttype = (0x41 | direction);
310 int rc;
311
312 // Get the receive or send control pipe number
313
314 if (direction == USB_DIR_IN)
315 pipe = us->recv_ctrl_pipe;
316 else
317 pipe = us->send_ctrl_pipe;
318
319 rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
320 0, 0, xfer_data, xfer_len);
321 switch (rc) {
322 case USB_STOR_XFER_GOOD: return 0;
323 case USB_STOR_XFER_STALLED: return -EPIPE;
324 default: return -EIO;
325 }
326}
327
328static int
329sddr09_send_scsi_command(struct us_data *us,
330 unsigned char *command,
331 unsigned int command_len) {
332 return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
333}
334
335#if 0
336/*
337 * Test Unit Ready Command: 12 bytes.
338 * byte 0: opcode: 00
339 */
340static int
341sddr09_test_unit_ready(struct us_data *us) {
342 unsigned char *command = us->iobuf;
343 int result;
344
345 memset(command, 0, 6);
346 command[1] = LUNBITS;
347
348 result = sddr09_send_scsi_command(us, command, 6);
349
350 US_DEBUGP("sddr09_test_unit_ready returns %d\n", result);
351
352 return result;
353}
354#endif
355
356/*
357 * Request Sense Command: 12 bytes.
358 * byte 0: opcode: 03
359 * byte 4: data length
360 */
361static int
362sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
363 unsigned char *command = us->iobuf;
364 int result;
365
366 memset(command, 0, 12);
367 command[0] = 0x03;
368 command[1] = LUNBITS;
369 command[4] = buflen;
370
371 result = sddr09_send_scsi_command(us, command, 12);
372 if (result)
373 return result;
374
375 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
376 sensebuf, buflen, NULL);
377 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
378}
379
380/*
381 * Read Command: 12 bytes.
382 * byte 0: opcode: E8
383 * byte 1: last two bits: 00: read data, 01: read blockwise control,
384 * 10: read both, 11: read pagewise control.
385 * It turns out we need values 20, 21, 22, 23 here (LUN 1).
386 * bytes 2-5: address (interpretation depends on byte 1, see below)
387 * bytes 10-11: count (idem)
388 *
389 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
390 * A read data command gets data in 512-byte pages.
391 * A read control command gets control in 64-byte chunks.
392 * A read both command gets data+control in 576-byte chunks.
393 *
394 * Blocks are groups of 32 pages, and read blockwise control jumps to the
395 * next block, while read pagewise control jumps to the next page after
396 * reading a group of 64 control bytes.
397 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
398 *
399 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
400 */
401
402static int
403sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
404 int nr_of_pages, int bulklen, unsigned char *buf,
405 int use_sg) {
406
407 unsigned char *command = us->iobuf;
408 int result;
409
410 command[0] = 0xE8;
411 command[1] = LUNBITS | x;
412 command[2] = MSB_of(fromaddress>>16);
413 command[3] = LSB_of(fromaddress>>16);
414 command[4] = MSB_of(fromaddress & 0xFFFF);
415 command[5] = LSB_of(fromaddress & 0xFFFF);
416 command[6] = 0;
417 command[7] = 0;
418 command[8] = 0;
419 command[9] = 0;
420 command[10] = MSB_of(nr_of_pages);
421 command[11] = LSB_of(nr_of_pages);
422
423 result = sddr09_send_scsi_command(us, command, 12);
424
425 if (result) {
426 US_DEBUGP("Result for send_control in sddr09_read2%d %d\n",
427 x, result);
428 return result;
429 }
430
431 result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
432 buf, bulklen, use_sg, NULL);
433
434 if (result != USB_STOR_XFER_GOOD) {
435 US_DEBUGP("Result for bulk_transfer in sddr09_read2%d %d\n",
436 x, result);
437 return -EIO;
438 }
439 return 0;
440}
441
442/*
443 * Read Data
444 *
445 * fromaddress counts data shorts:
446 * increasing it by 256 shifts the bytestream by 512 bytes;
447 * the last 8 bits are ignored.
448 *
449 * nr_of_pages counts pages of size (1 << pageshift).
450 */
451static int
452sddr09_read20(struct us_data *us, unsigned long fromaddress,
453 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
454 int bulklen = nr_of_pages << pageshift;
455
456 /* The last 8 bits of fromaddress are ignored. */
457 return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
458 buf, use_sg);
459}
460
461/*
462 * Read Blockwise Control
463 *
464 * fromaddress gives the starting position (as in read data;
465 * the last 8 bits are ignored); increasing it by 32*256 shifts
466 * the output stream by 64 bytes.
467 *
468 * count counts control groups of size (1 << controlshift).
469 * For me, controlshift = 6. Is this constant?
470 *
471 * After getting one control group, jump to the next block
472 * (fromaddress += 8192).
473 */
474static int
475sddr09_read21(struct us_data *us, unsigned long fromaddress,
476 int count, int controlshift, unsigned char *buf, int use_sg) {
477
478 int bulklen = (count << controlshift);
479 return sddr09_readX(us, 1, fromaddress, count, bulklen,
480 buf, use_sg);
481}
482
483/*
484 * Read both Data and Control
485 *
486 * fromaddress counts data shorts, ignoring control:
487 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
488 * the last 8 bits are ignored.
489 *
490 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
491 */
492static int
493sddr09_read22(struct us_data *us, unsigned long fromaddress,
494 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
495
496 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
497 US_DEBUGP("sddr09_read22: reading %d pages, %d bytes\n",
498 nr_of_pages, bulklen);
499 return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
500 buf, use_sg);
501}
502
503#if 0
504/*
505 * Read Pagewise Control
506 *
507 * fromaddress gives the starting position (as in read data;
508 * the last 8 bits are ignored); increasing it by 256 shifts
509 * the output stream by 64 bytes.
510 *
511 * count counts control groups of size (1 << controlshift).
512 * For me, controlshift = 6. Is this constant?
513 *
514 * After getting one control group, jump to the next page
515 * (fromaddress += 256).
516 */
517static int
518sddr09_read23(struct us_data *us, unsigned long fromaddress,
519 int count, int controlshift, unsigned char *buf, int use_sg) {
520
521 int bulklen = (count << controlshift);
522 return sddr09_readX(us, 3, fromaddress, count, bulklen,
523 buf, use_sg);
524}
525#endif
526
527/*
528 * Erase Command: 12 bytes.
529 * byte 0: opcode: EA
530 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
531 *
532 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
533 * The byte address being erased is 2*Eaddress.
534 * The CIS cannot be erased.
535 */
536static int
537sddr09_erase(struct us_data *us, unsigned long Eaddress) {
538 unsigned char *command = us->iobuf;
539 int result;
540
541 US_DEBUGP("sddr09_erase: erase address %lu\n", Eaddress);
542
543 memset(command, 0, 12);
544 command[0] = 0xEA;
545 command[1] = LUNBITS;
546 command[6] = MSB_of(Eaddress>>16);
547 command[7] = LSB_of(Eaddress>>16);
548 command[8] = MSB_of(Eaddress & 0xFFFF);
549 command[9] = LSB_of(Eaddress & 0xFFFF);
550
551 result = sddr09_send_scsi_command(us, command, 12);
552
553 if (result)
554 US_DEBUGP("Result for send_control in sddr09_erase %d\n",
555 result);
556
557 return result;
558}
559
560/*
561 * Write CIS Command: 12 bytes.
562 * byte 0: opcode: EE
563 * bytes 2-5: write address in shorts
564 * bytes 10-11: sector count
565 *
566 * This writes at the indicated address. Don't know how it differs
567 * from E9. Maybe it does not erase? However, it will also write to
568 * the CIS.
569 *
570 * When two such commands on the same page follow each other directly,
571 * the second one is not done.
572 */
573
574/*
575 * Write Command: 12 bytes.
576 * byte 0: opcode: E9
577 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
578 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
579 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
580 *
581 * If write address equals erase address, the erase is done first,
582 * otherwise the write is done first. When erase address equals zero
583 * no erase is done?
584 */
585static int
586sddr09_writeX(struct us_data *us,
587 unsigned long Waddress, unsigned long Eaddress,
588 int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
589
590 unsigned char *command = us->iobuf;
591 int result;
592
593 command[0] = 0xE9;
594 command[1] = LUNBITS;
595
596 command[2] = MSB_of(Waddress>>16);
597 command[3] = LSB_of(Waddress>>16);
598 command[4] = MSB_of(Waddress & 0xFFFF);
599 command[5] = LSB_of(Waddress & 0xFFFF);
600
601 command[6] = MSB_of(Eaddress>>16);
602 command[7] = LSB_of(Eaddress>>16);
603 command[8] = MSB_of(Eaddress & 0xFFFF);
604 command[9] = LSB_of(Eaddress & 0xFFFF);
605
606 command[10] = MSB_of(nr_of_pages);
607 command[11] = LSB_of(nr_of_pages);
608
609 result = sddr09_send_scsi_command(us, command, 12);
610
611 if (result) {
612 US_DEBUGP("Result for send_control in sddr09_writeX %d\n",
613 result);
614 return result;
615 }
616
617 result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
618 buf, bulklen, use_sg, NULL);
619
620 if (result != USB_STOR_XFER_GOOD) {
621 US_DEBUGP("Result for bulk_transfer in sddr09_writeX %d\n",
622 result);
623 return -EIO;
624 }
625 return 0;
626}
627
628/* erase address, write same address */
629static int
630sddr09_write_inplace(struct us_data *us, unsigned long address,
631 int nr_of_pages, int pageshift, unsigned char *buf,
632 int use_sg) {
633 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
634 return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
635 buf, use_sg);
636}
637
638#if 0
639/*
640 * Read Scatter Gather Command: 3+4n bytes.
641 * byte 0: opcode E7
642 * byte 2: n
643 * bytes 4i-1,4i,4i+1: page address
644 * byte 4i+2: page count
645 * (i=1..n)
646 *
647 * This reads several pages from the card to a single memory buffer.
648 * The last two bits of byte 1 have the same meaning as for E8.
649 */
650static int
651sddr09_read_sg_test_only(struct us_data *us) {
652 unsigned char *command = us->iobuf;
653 int result, bulklen, nsg, ct;
654 unsigned char *buf;
655 unsigned long address;
656
657 nsg = bulklen = 0;
658 command[0] = 0xE7;
659 command[1] = LUNBITS;
660 command[2] = 0;
661 address = 040000; ct = 1;
662 nsg++;
663 bulklen += (ct << 9);
664 command[4*nsg+2] = ct;
665 command[4*nsg+1] = ((address >> 9) & 0xFF);
666 command[4*nsg+0] = ((address >> 17) & 0xFF);
667 command[4*nsg-1] = ((address >> 25) & 0xFF);
668
669 address = 0340000; ct = 1;
670 nsg++;
671 bulklen += (ct << 9);
672 command[4*nsg+2] = ct;
673 command[4*nsg+1] = ((address >> 9) & 0xFF);
674 command[4*nsg+0] = ((address >> 17) & 0xFF);
675 command[4*nsg-1] = ((address >> 25) & 0xFF);
676
677 address = 01000000; ct = 2;
678 nsg++;
679 bulklen += (ct << 9);
680 command[4*nsg+2] = ct;
681 command[4*nsg+1] = ((address >> 9) & 0xFF);
682 command[4*nsg+0] = ((address >> 17) & 0xFF);
683 command[4*nsg-1] = ((address >> 25) & 0xFF);
684
685 command[2] = nsg;
686
687 result = sddr09_send_scsi_command(us, command, 4*nsg+3);
688
689 if (result) {
690 US_DEBUGP("Result for send_control in sddr09_read_sg %d\n",
691 result);
692 return result;
693 }
694
695 buf = kmalloc(bulklen, GFP_NOIO);
696 if (!buf)
697 return -ENOMEM;
698
699 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
700 buf, bulklen, NULL);
701 kfree(buf);
702 if (result != USB_STOR_XFER_GOOD) {
703 US_DEBUGP("Result for bulk_transfer in sddr09_read_sg %d\n",
704 result);
705 return -EIO;
706 }
707
708 return 0;
709}
710#endif
711
712/*
713 * Read Status Command: 12 bytes.
714 * byte 0: opcode: EC
715 *
716 * Returns 64 bytes, all zero except for the first.
717 * bit 0: 1: Error
718 * bit 5: 1: Suspended
719 * bit 6: 1: Ready
720 * bit 7: 1: Not write-protected
721 */
722
723static int
724sddr09_read_status(struct us_data *us, unsigned char *status) {
725
726 unsigned char *command = us->iobuf;
727 unsigned char *data = us->iobuf;
728 int result;
729
730 US_DEBUGP("Reading status...\n");
731
732 memset(command, 0, 12);
733 command[0] = 0xEC;
734 command[1] = LUNBITS;
735
736 result = sddr09_send_scsi_command(us, command, 12);
737 if (result)
738 return result;
739
740 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
741 data, 64, NULL);
742 *status = data[0];
743 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
744}
745
746static int
747sddr09_read_data(struct us_data *us,
748 unsigned long address,
749 unsigned int sectors) {
750
751 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
752 unsigned char *buffer;
753 unsigned int lba, maxlba, pba;
754 unsigned int page, pages;
755 unsigned int len, offset;
756 struct scatterlist *sg;
757 int result;
758
759 // Figure out the initial LBA and page
760 lba = address >> info->blockshift;
761 page = (address & info->blockmask);
762 maxlba = info->capacity >> (info->pageshift + info->blockshift);
763 if (lba >= maxlba)
764 return -EIO;
765
766 // Since we only read in one block at a time, we have to create
767 // a bounce buffer and move the data a piece at a time between the
768 // bounce buffer and the actual transfer buffer.
769
770 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
771 buffer = kmalloc(len, GFP_NOIO);
772 if (buffer == NULL) {
773 printk(KERN_WARNING "sddr09_read_data: Out of memory\n");
774 return -ENOMEM;
775 }
776
777 // This could be made much more efficient by checking for
778 // contiguous LBA's. Another exercise left to the student.
779
780 result = 0;
781 offset = 0;
782 sg = NULL;
783
784 while (sectors > 0) {
785
786 /* Find number of pages we can read in this block */
787 pages = min(sectors, info->blocksize - page);
788 len = pages << info->pageshift;
789
790 /* Not overflowing capacity? */
791 if (lba >= maxlba) {
792 US_DEBUGP("Error: Requested lba %u exceeds "
793 "maximum %u\n", lba, maxlba);
794 result = -EIO;
795 break;
796 }
797
798 /* Find where this lba lives on disk */
799 pba = info->lba_to_pba[lba];
800
801 if (pba == UNDEF) { /* this lba was never written */
802
803 US_DEBUGP("Read %d zero pages (LBA %d) page %d\n",
804 pages, lba, page);
805
806 /* This is not really an error. It just means
807 that the block has never been written.
808 Instead of returning an error
809 it is better to return all zero data. */
810
811 memset(buffer, 0, len);
812
813 } else {
814 US_DEBUGP("Read %d pages, from PBA %d"
815 " (LBA %d) page %d\n",
816 pages, pba, lba, page);
817
818 address = ((pba << info->blockshift) + page) <<
819 info->pageshift;
820
821 result = sddr09_read20(us, address>>1,
822 pages, info->pageshift, buffer, 0);
823 if (result)
824 break;
825 }
826
827 // Store the data in the transfer buffer
828 usb_stor_access_xfer_buf(buffer, len, us->srb,
829 &sg, &offset, TO_XFER_BUF);
830
831 page = 0;
832 lba++;
833 sectors -= pages;
834 }
835
836 kfree(buffer);
837 return result;
838}
839
840static unsigned int
841sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
842 static unsigned int lastpba = 1;
843 int zonestart, end, i;
844
845 zonestart = (lba/1000) << 10;
846 end = info->capacity >> (info->blockshift + info->pageshift);
847 end -= zonestart;
848 if (end > 1024)
849 end = 1024;
850
851 for (i = lastpba+1; i < end; i++) {
852 if (info->pba_to_lba[zonestart+i] == UNDEF) {
853 lastpba = i;
854 return zonestart+i;
855 }
856 }
857 for (i = 0; i <= lastpba; i++) {
858 if (info->pba_to_lba[zonestart+i] == UNDEF) {
859 lastpba = i;
860 return zonestart+i;
861 }
862 }
863 return 0;
864}
865
866static int
867sddr09_write_lba(struct us_data *us, unsigned int lba,
868 unsigned int page, unsigned int pages,
869 unsigned char *ptr, unsigned char *blockbuffer) {
870
871 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
872 unsigned long address;
873 unsigned int pba, lbap;
874 unsigned int pagelen;
875 unsigned char *bptr, *cptr, *xptr;
876 unsigned char ecc[3];
877 int i, result, isnew;
878
879 lbap = ((lba % 1000) << 1) | 0x1000;
880 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
881 lbap ^= 1;
882 pba = info->lba_to_pba[lba];
883 isnew = 0;
884
885 if (pba == UNDEF) {
886 pba = sddr09_find_unused_pba(info, lba);
887 if (!pba) {
888 printk(KERN_WARNING
889 "sddr09_write_lba: Out of unused blocks\n");
890 return -ENOSPC;
891 }
892 info->pba_to_lba[pba] = lba;
893 info->lba_to_pba[lba] = pba;
894 isnew = 1;
895 }
896
897 if (pba == 1) {
898 /* Maybe it is impossible to write to PBA 1.
899 Fake success, but don't do anything. */
900 printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
901 return 0;
902 }
903
904 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
905
906 /* read old contents */
907 address = (pba << (info->pageshift + info->blockshift));
908 result = sddr09_read22(us, address>>1, info->blocksize,
909 info->pageshift, blockbuffer, 0);
910 if (result)
911 return result;
912
913 /* check old contents and fill lba */
914 for (i = 0; i < info->blocksize; i++) {
915 bptr = blockbuffer + i*pagelen;
916 cptr = bptr + info->pagesize;
917 nand_compute_ecc(bptr, ecc);
918 if (!nand_compare_ecc(cptr+13, ecc)) {
919 US_DEBUGP("Warning: bad ecc in page %d- of pba %d\n",
920 i, pba);
921 nand_store_ecc(cptr+13, ecc);
922 }
923 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
924 if (!nand_compare_ecc(cptr+8, ecc)) {
925 US_DEBUGP("Warning: bad ecc in page %d+ of pba %d\n",
926 i, pba);
927 nand_store_ecc(cptr+8, ecc);
928 }
929 cptr[6] = cptr[11] = MSB_of(lbap);
930 cptr[7] = cptr[12] = LSB_of(lbap);
931 }
932
933 /* copy in new stuff and compute ECC */
934 xptr = ptr;
935 for (i = page; i < page+pages; i++) {
936 bptr = blockbuffer + i*pagelen;
937 cptr = bptr + info->pagesize;
938 memcpy(bptr, xptr, info->pagesize);
939 xptr += info->pagesize;
940 nand_compute_ecc(bptr, ecc);
941 nand_store_ecc(cptr+13, ecc);
942 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
943 nand_store_ecc(cptr+8, ecc);
944 }
945
946 US_DEBUGP("Rewrite PBA %d (LBA %d)\n", pba, lba);
947
948 result = sddr09_write_inplace(us, address>>1, info->blocksize,
949 info->pageshift, blockbuffer, 0);
950
951 US_DEBUGP("sddr09_write_inplace returns %d\n", result);
952
953#if 0
954 {
955 unsigned char status = 0;
956 int result2 = sddr09_read_status(us, &status);
957 if (result2)
958 US_DEBUGP("sddr09_write_inplace: cannot read status\n");
959 else if (status != 0xc0)
960 US_DEBUGP("sddr09_write_inplace: status after write: 0x%x\n",
961 status);
962 }
963#endif
964
965#if 0
966 {
967 int result2 = sddr09_test_unit_ready(us);
968 }
969#endif
970
971 return result;
972}
973
974static int
975sddr09_write_data(struct us_data *us,
976 unsigned long address,
977 unsigned int sectors) {
978
979 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
980 unsigned int lba, maxlba, page, pages;
981 unsigned int pagelen, blocklen;
982 unsigned char *blockbuffer;
983 unsigned char *buffer;
984 unsigned int len, offset;
985 struct scatterlist *sg;
986 int result;
987
988 // Figure out the initial LBA and page
989 lba = address >> info->blockshift;
990 page = (address & info->blockmask);
991 maxlba = info->capacity >> (info->pageshift + info->blockshift);
992 if (lba >= maxlba)
993 return -EIO;
994
995 // blockbuffer is used for reading in the old data, overwriting
996 // with the new data, and performing ECC calculations
997
998 /* TODO: instead of doing kmalloc/kfree for each write,
999 add a bufferpointer to the info structure */
1000
1001 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
1002 blocklen = (pagelen << info->blockshift);
1003 blockbuffer = kmalloc(blocklen, GFP_NOIO);
1004 if (!blockbuffer) {
1005 printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1006 return -ENOMEM;
1007 }
1008
1009 // Since we don't write the user data directly to the device,
1010 // we have to create a bounce buffer and move the data a piece
1011 // at a time between the bounce buffer and the actual transfer buffer.
1012
1013 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1014 buffer = kmalloc(len, GFP_NOIO);
1015 if (buffer == NULL) {
1016 printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1017 kfree(blockbuffer);
1018 return -ENOMEM;
1019 }
1020
1021 result = 0;
1022 offset = 0;
1023 sg = NULL;
1024
1025 while (sectors > 0) {
1026
1027 // Write as many sectors as possible in this block
1028
1029 pages = min(sectors, info->blocksize - page);
1030 len = (pages << info->pageshift);
1031
1032 /* Not overflowing capacity? */
1033 if (lba >= maxlba) {
1034 US_DEBUGP("Error: Requested lba %u exceeds "
1035 "maximum %u\n", lba, maxlba);
1036 result = -EIO;
1037 break;
1038 }
1039
1040 // Get the data from the transfer buffer
1041 usb_stor_access_xfer_buf(buffer, len, us->srb,
1042 &sg, &offset, FROM_XFER_BUF);
1043
1044 result = sddr09_write_lba(us, lba, page, pages,
1045 buffer, blockbuffer);
1046 if (result)
1047 break;
1048
1049 page = 0;
1050 lba++;
1051 sectors -= pages;
1052 }
1053
1054 kfree(buffer);
1055 kfree(blockbuffer);
1056
1057 return result;
1058}
1059
1060static int
1061sddr09_read_control(struct us_data *us,
1062 unsigned long address,
1063 unsigned int blocks,
1064 unsigned char *content,
1065 int use_sg) {
1066
1067 US_DEBUGP("Read control address %lu, blocks %d\n",
1068 address, blocks);
1069
1070 return sddr09_read21(us, address, blocks,
1071 CONTROL_SHIFT, content, use_sg);
1072}
1073
1074/*
1075 * Read Device ID Command: 12 bytes.
1076 * byte 0: opcode: ED
1077 *
1078 * Returns 2 bytes: Manufacturer ID and Device ID.
1079 * On more recent cards 3 bytes: the third byte is an option code A5
1080 * signifying that the secret command to read an 128-bit ID is available.
1081 * On still more recent cards 4 bytes: the fourth byte C0 means that
1082 * a second read ID cmd is available.
1083 */
1084static int
1085sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1086 unsigned char *command = us->iobuf;
1087 unsigned char *content = us->iobuf;
1088 int result, i;
1089
1090 memset(command, 0, 12);
1091 command[0] = 0xED;
1092 command[1] = LUNBITS;
1093
1094 result = sddr09_send_scsi_command(us, command, 12);
1095 if (result)
1096 return result;
1097
1098 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1099 content, 64, NULL);
1100
1101 for (i = 0; i < 4; i++)
1102 deviceID[i] = content[i];
1103
1104 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1105}
1106
1107static int
1108sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1109 int result;
1110 unsigned char status;
1111
1112 result = sddr09_read_status(us, &status);
1113 if (result) {
1114 US_DEBUGP("sddr09_get_wp: read_status fails\n");
1115 return result;
1116 }
1117 US_DEBUGP("sddr09_get_wp: status 0x%02X", status);
1118 if ((status & 0x80) == 0) {
1119 info->flags |= SDDR09_WP; /* write protected */
1120 US_DEBUGP(" WP");
1121 }
1122 if (status & 0x40)
1123 US_DEBUGP(" Ready");
1124 if (status & LUNBITS)
1125 US_DEBUGP(" Suspended");
1126 if (status & 0x1)
1127 US_DEBUGP(" Error");
1128 US_DEBUGP("\n");
1129 return 0;
1130}
1131
1132#if 0
1133/*
1134 * Reset Command: 12 bytes.
1135 * byte 0: opcode: EB
1136 */
1137static int
1138sddr09_reset(struct us_data *us) {
1139
1140 unsigned char *command = us->iobuf;
1141
1142 memset(command, 0, 12);
1143 command[0] = 0xEB;
1144 command[1] = LUNBITS;
1145
1146 return sddr09_send_scsi_command(us, command, 12);
1147}
1148#endif
1149
1150static struct nand_flash_dev *
1151sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1152 struct nand_flash_dev *cardinfo;
1153 unsigned char deviceID[4];
1154 char blurbtxt[256];
1155 int result;
1156
1157 US_DEBUGP("Reading capacity...\n");
1158
1159 result = sddr09_read_deviceID(us, deviceID);
1160
1161 if (result) {
1162 US_DEBUGP("Result of read_deviceID is %d\n", result);
1163 printk(KERN_WARNING "sddr09: could not read card info\n");
1164 return NULL;
1165 }
1166
1167 sprintf(blurbtxt, "sddr09: Found Flash card, ID = %02X %02X %02X %02X",
1168 deviceID[0], deviceID[1], deviceID[2], deviceID[3]);
1169
1170 /* Byte 0 is the manufacturer */
1171 sprintf(blurbtxt + strlen(blurbtxt),
1172 ": Manuf. %s",
1173 nand_flash_manufacturer(deviceID[0]));
1174
1175 /* Byte 1 is the device type */
1176 cardinfo = nand_find_id(deviceID[1]);
1177 if (cardinfo) {
1178 /* MB or MiB? It is neither. A 16 MB card has
1179 17301504 raw bytes, of which 16384000 are
1180 usable for user data. */
1181 sprintf(blurbtxt + strlen(blurbtxt),
1182 ", %d MB", 1<<(cardinfo->chipshift - 20));
1183 } else {
1184 sprintf(blurbtxt + strlen(blurbtxt),
1185 ", type unrecognized");
1186 }
1187
1188 /* Byte 2 is code to signal availability of 128-bit ID */
1189 if (deviceID[2] == 0xa5) {
1190 sprintf(blurbtxt + strlen(blurbtxt),
1191 ", 128-bit ID");
1192 }
1193
1194 /* Byte 3 announces the availability of another read ID command */
1195 if (deviceID[3] == 0xc0) {
1196 sprintf(blurbtxt + strlen(blurbtxt),
1197 ", extra cmd");
1198 }
1199
1200 if (flags & SDDR09_WP)
1201 sprintf(blurbtxt + strlen(blurbtxt),
1202 ", WP");
1203
1204 printk(KERN_WARNING "%s\n", blurbtxt);
1205
1206 return cardinfo;
1207}
1208
1209static int
1210sddr09_read_map(struct us_data *us) {
1211
1212 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1213 int numblocks, alloc_len, alloc_blocks;
1214 int i, j, result;
1215 unsigned char *buffer, *buffer_end, *ptr;
1216 unsigned int lba, lbact;
1217
1218 if (!info->capacity)
1219 return -1;
1220
1221 // size of a block is 1 << (blockshift + pageshift) bytes
1222 // divide into the total capacity to get the number of blocks
1223
1224 numblocks = info->capacity >> (info->blockshift + info->pageshift);
1225
1226 // read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1227 // but only use a 64 KB buffer
1228 // buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1229#define SDDR09_READ_MAP_BUFSZ 65536
1230
1231 alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1232 alloc_len = (alloc_blocks << CONTROL_SHIFT);
1233 buffer = kmalloc(alloc_len, GFP_NOIO);
1234 if (buffer == NULL) {
1235 printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1236 result = -1;
1237 goto done;
1238 }
1239 buffer_end = buffer + alloc_len;
1240
1241#undef SDDR09_READ_MAP_BUFSZ
1242
1243 kfree(info->lba_to_pba);
1244 kfree(info->pba_to_lba);
1245 info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1246 info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1247
1248 if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1249 printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1250 result = -1;
1251 goto done;
1252 }
1253
1254 for (i = 0; i < numblocks; i++)
1255 info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1256
1257 /*
1258 * Define lba-pba translation table
1259 */
1260
1261 ptr = buffer_end;
1262 for (i = 0; i < numblocks; i++) {
1263 ptr += (1 << CONTROL_SHIFT);
1264 if (ptr >= buffer_end) {
1265 unsigned long address;
1266
1267 address = i << (info->pageshift + info->blockshift);
1268 result = sddr09_read_control(
1269 us, address>>1,
1270 min(alloc_blocks, numblocks - i),
1271 buffer, 0);
1272 if (result) {
1273 result = -1;
1274 goto done;
1275 }
1276 ptr = buffer;
1277 }
1278
1279 if (i == 0 || i == 1) {
1280 info->pba_to_lba[i] = UNUSABLE;
1281 continue;
1282 }
1283
1284 /* special PBAs have control field 0^16 */
1285 for (j = 0; j < 16; j++)
1286 if (ptr[j] != 0)
1287 goto nonz;
1288 info->pba_to_lba[i] = UNUSABLE;
1289 printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1290 i);
1291 continue;
1292
1293 nonz:
1294 /* unwritten PBAs have control field FF^16 */
1295 for (j = 0; j < 16; j++)
1296 if (ptr[j] != 0xff)
1297 goto nonff;
1298 continue;
1299
1300 nonff:
1301 /* normal PBAs start with six FFs */
1302 if (j < 6) {
1303 printk(KERN_WARNING
1304 "sddr09: PBA %d has no logical mapping: "
1305 "reserved area = %02X%02X%02X%02X "
1306 "data status %02X block status %02X\n",
1307 i, ptr[0], ptr[1], ptr[2], ptr[3],
1308 ptr[4], ptr[5]);
1309 info->pba_to_lba[i] = UNUSABLE;
1310 continue;
1311 }
1312
1313 if ((ptr[6] >> 4) != 0x01) {
1314 printk(KERN_WARNING
1315 "sddr09: PBA %d has invalid address field "
1316 "%02X%02X/%02X%02X\n",
1317 i, ptr[6], ptr[7], ptr[11], ptr[12]);
1318 info->pba_to_lba[i] = UNUSABLE;
1319 continue;
1320 }
1321
1322 /* check even parity */
1323 if (parity[ptr[6] ^ ptr[7]]) {
1324 printk(KERN_WARNING
1325 "sddr09: Bad parity in LBA for block %d"
1326 " (%02X %02X)\n", i, ptr[6], ptr[7]);
1327 info->pba_to_lba[i] = UNUSABLE;
1328 continue;
1329 }
1330
1331 lba = short_pack(ptr[7], ptr[6]);
1332 lba = (lba & 0x07FF) >> 1;
1333
1334 /*
1335 * Every 1024 physical blocks ("zone"), the LBA numbers
1336 * go back to zero, but are within a higher block of LBA's.
1337 * Also, there is a maximum of 1000 LBA's per zone.
1338 * In other words, in PBA 1024-2047 you will find LBA 0-999
1339 * which are really LBA 1000-1999. This allows for 24 bad
1340 * or special physical blocks per zone.
1341 */
1342
1343 if (lba >= 1000) {
1344 printk(KERN_WARNING
1345 "sddr09: Bad low LBA %d for block %d\n",
1346 lba, i);
1347 goto possibly_erase;
1348 }
1349
1350 lba += 1000*(i/0x400);
1351
1352 if (info->lba_to_pba[lba] != UNDEF) {
1353 printk(KERN_WARNING
1354 "sddr09: LBA %d seen for PBA %d and %d\n",
1355 lba, info->lba_to_pba[lba], i);
1356 goto possibly_erase;
1357 }
1358
1359 info->pba_to_lba[i] = lba;
1360 info->lba_to_pba[lba] = i;
1361 continue;
1362
1363 possibly_erase:
1364 if (erase_bad_lba_entries) {
1365 unsigned long address;
1366
1367 address = (i << (info->pageshift + info->blockshift));
1368 sddr09_erase(us, address>>1);
1369 info->pba_to_lba[i] = UNDEF;
1370 } else
1371 info->pba_to_lba[i] = UNUSABLE;
1372 }
1373
1374 /*
1375 * Approximate capacity. This is not entirely correct yet,
1376 * since a zone with less than 1000 usable pages leads to
1377 * missing LBAs. Especially if it is the last zone, some
1378 * LBAs can be past capacity.
1379 */
1380 lbact = 0;
1381 for (i = 0; i < numblocks; i += 1024) {
1382 int ct = 0;
1383
1384 for (j = 0; j < 1024 && i+j < numblocks; j++) {
1385 if (info->pba_to_lba[i+j] != UNUSABLE) {
1386 if (ct >= 1000)
1387 info->pba_to_lba[i+j] = SPARE;
1388 else
1389 ct++;
1390 }
1391 }
1392 lbact += ct;
1393 }
1394 info->lbact = lbact;
1395 US_DEBUGP("Found %d LBA's\n", lbact);
1396 result = 0;
1397
1398 done:
1399 if (result != 0) {
1400 kfree(info->lba_to_pba);
1401 kfree(info->pba_to_lba);
1402 info->lba_to_pba = NULL;
1403 info->pba_to_lba = NULL;
1404 }
1405 kfree(buffer);
1406 return result;
1407}
1408
1409static void
1410sddr09_card_info_destructor(void *extra) {
1411 struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1412
1413 if (!info)
1414 return;
1415
1416 kfree(info->lba_to_pba);
1417 kfree(info->pba_to_lba);
1418}
1419
1420static int
1421sddr09_common_init(struct us_data *us) {
1422 int result;
1423
1424 /* set the configuration -- STALL is an acceptable response here */
1425 if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1426 US_DEBUGP("active config #%d != 1 ??\n", us->pusb_dev
1427 ->actconfig->desc.bConfigurationValue);
1428 return -EINVAL;
1429 }
1430
1431 result = usb_reset_configuration(us->pusb_dev);
1432 US_DEBUGP("Result of usb_reset_configuration is %d\n", result);
1433 if (result == -EPIPE) {
1434 US_DEBUGP("-- stall on control interface\n");
1435 } else if (result != 0) {
1436 /* it's not a stall, but another error -- time to bail */
1437 US_DEBUGP("-- Unknown error. Rejecting device\n");
1438 return -EINVAL;
1439 }
1440
1441 us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1442 if (!us->extra)
1443 return -ENOMEM;
1444 us->extra_destructor = sddr09_card_info_destructor;
1445
1446 nand_init_ecc();
1447 return 0;
1448}
1449
1450
1451/*
1452 * This is needed at a very early stage. If this is not listed in the
1453 * unusual devices list but called from here then LUN 0 of the combo reader
1454 * is not recognized. But I do not know what precisely these calls do.
1455 */
1456static int
1457usb_stor_sddr09_dpcm_init(struct us_data *us) {
1458 int result;
1459 unsigned char *data = us->iobuf;
1460
1461 result = sddr09_common_init(us);
1462 if (result)
1463 return result;
1464
1465 result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1466 if (result) {
1467 US_DEBUGP("sddr09_init: send_command fails\n");
1468 return result;
1469 }
1470
1471 US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
1472 // get 07 02
1473
1474 result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1475 if (result) {
1476 US_DEBUGP("sddr09_init: 2nd send_command fails\n");
1477 return result;
1478 }
1479
1480 US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
1481 // get 07 00
1482
1483 result = sddr09_request_sense(us, data, 18);
1484 if (result == 0 && data[2] != 0) {
1485 int j;
1486 for (j=0; j<18; j++)
1487 printk(" %02X", data[j]);
1488 printk("\n");
1489 // get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1490 // 70: current command
1491 // sense key 0, sense code 0, extd sense code 0
1492 // additional transfer length * = sizeof(data) - 7
1493 // Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1494 // sense key 06, sense code 28: unit attention,
1495 // not ready to ready transition
1496 }
1497
1498 // test unit ready
1499
1500 return 0; /* not result */
1501}
1502
1503/*
1504 * Transport for the Microtech DPCM-USB
1505 */
1506static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1507{
1508 int ret;
1509
1510 US_DEBUGP("dpcm_transport: LUN=%d\n", srb->device->lun);
1511
1512 switch (srb->device->lun) {
1513 case 0:
1514
1515 /*
1516 * LUN 0 corresponds to the CompactFlash card reader.
1517 */
1518 ret = usb_stor_CB_transport(srb, us);
1519 break;
1520
1521 case 1:
1522
1523 /*
1524 * LUN 1 corresponds to the SmartMedia card reader.
1525 */
1526
1527 /*
1528 * Set the LUN to 0 (just in case).
1529 */
1530 srb->device->lun = 0;
1531 ret = sddr09_transport(srb, us);
1532 srb->device->lun = 1;
1533 break;
1534
1535 default:
1536 US_DEBUGP("dpcm_transport: Invalid LUN %d\n",
1537 srb->device->lun);
1538 ret = USB_STOR_TRANSPORT_ERROR;
1539 break;
1540 }
1541 return ret;
1542}
1543
1544
1545/*
1546 * Transport for the Sandisk SDDR-09
1547 */
1548static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1549{
1550 static unsigned char sensekey = 0, sensecode = 0;
1551 static unsigned char havefakesense = 0;
1552 int result, i;
1553 unsigned char *ptr = us->iobuf;
1554 unsigned long capacity;
1555 unsigned int page, pages;
1556
1557 struct sddr09_card_info *info;
1558
1559 static unsigned char inquiry_response[8] = {
1560 0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1561 };
1562
1563 /* note: no block descriptor support */
1564 static unsigned char mode_page_01[19] = {
1565 0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1566 0x01, 0x0A,
1567 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1568 };
1569
1570 info = (struct sddr09_card_info *)us->extra;
1571
1572 if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1573 /* for a faked command, we have to follow with a faked sense */
1574 memset(ptr, 0, 18);
1575 ptr[0] = 0x70;
1576 ptr[2] = sensekey;
1577 ptr[7] = 11;
1578 ptr[12] = sensecode;
1579 usb_stor_set_xfer_buf(ptr, 18, srb);
1580 sensekey = sensecode = havefakesense = 0;
1581 return USB_STOR_TRANSPORT_GOOD;
1582 }
1583
1584 havefakesense = 1;
1585
1586 /* Dummy up a response for INQUIRY since SDDR09 doesn't
1587 respond to INQUIRY commands */
1588
1589 if (srb->cmnd[0] == INQUIRY) {
1590 memcpy(ptr, inquiry_response, 8);
1591 fill_inquiry_response(us, ptr, 36);
1592 return USB_STOR_TRANSPORT_GOOD;
1593 }
1594
1595 if (srb->cmnd[0] == READ_CAPACITY) {
1596 struct nand_flash_dev *cardinfo;
1597
1598 sddr09_get_wp(us, info); /* read WP bit */
1599
1600 cardinfo = sddr09_get_cardinfo(us, info->flags);
1601 if (!cardinfo) {
1602 /* probably no media */
1603 init_error:
1604 sensekey = 0x02; /* not ready */
1605 sensecode = 0x3a; /* medium not present */
1606 return USB_STOR_TRANSPORT_FAILED;
1607 }
1608
1609 info->capacity = (1 << cardinfo->chipshift);
1610 info->pageshift = cardinfo->pageshift;
1611 info->pagesize = (1 << info->pageshift);
1612 info->blockshift = cardinfo->blockshift;
1613 info->blocksize = (1 << info->blockshift);
1614 info->blockmask = info->blocksize - 1;
1615
1616 // map initialization, must follow get_cardinfo()
1617 if (sddr09_read_map(us)) {
1618 /* probably out of memory */
1619 goto init_error;
1620 }
1621
1622 // Report capacity
1623
1624 capacity = (info->lbact << info->blockshift) - 1;
1625
1626 ((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1627
1628 // Report page size
1629
1630 ((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1631 usb_stor_set_xfer_buf(ptr, 8, srb);
1632
1633 return USB_STOR_TRANSPORT_GOOD;
1634 }
1635
1636 if (srb->cmnd[0] == MODE_SENSE_10) {
1637 int modepage = (srb->cmnd[2] & 0x3F);
1638
1639 /* They ask for the Read/Write error recovery page,
1640 or for all pages. */
1641 /* %% We should check DBD %% */
1642 if (modepage == 0x01 || modepage == 0x3F) {
1643 US_DEBUGP("SDDR09: Dummy up request for "
1644 "mode page 0x%x\n", modepage);
1645
1646 memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1647 ((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1648 ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1649 usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1650 return USB_STOR_TRANSPORT_GOOD;
1651 }
1652
1653 sensekey = 0x05; /* illegal request */
1654 sensecode = 0x24; /* invalid field in CDB */
1655 return USB_STOR_TRANSPORT_FAILED;
1656 }
1657
1658 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1659 return USB_STOR_TRANSPORT_GOOD;
1660
1661 havefakesense = 0;
1662
1663 if (srb->cmnd[0] == READ_10) {
1664
1665 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1666 page <<= 16;
1667 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1668 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1669
1670 US_DEBUGP("READ_10: read page %d pagect %d\n",
1671 page, pages);
1672
1673 result = sddr09_read_data(us, page, pages);
1674 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1675 USB_STOR_TRANSPORT_ERROR);
1676 }
1677
1678 if (srb->cmnd[0] == WRITE_10) {
1679
1680 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1681 page <<= 16;
1682 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1683 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1684
1685 US_DEBUGP("WRITE_10: write page %d pagect %d\n",
1686 page, pages);
1687
1688 result = sddr09_write_data(us, page, pages);
1689 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1690 USB_STOR_TRANSPORT_ERROR);
1691 }
1692
1693 /* catch-all for all other commands, except
1694 * pass TEST_UNIT_READY and REQUEST_SENSE through
1695 */
1696 if (srb->cmnd[0] != TEST_UNIT_READY &&
1697 srb->cmnd[0] != REQUEST_SENSE) {
1698 sensekey = 0x05; /* illegal request */
1699 sensecode = 0x20; /* invalid command */
1700 havefakesense = 1;
1701 return USB_STOR_TRANSPORT_FAILED;
1702 }
1703
1704 for (; srb->cmd_len<12; srb->cmd_len++)
1705 srb->cmnd[srb->cmd_len] = 0;
1706
1707 srb->cmnd[1] = LUNBITS;
1708
1709 ptr[0] = 0;
1710 for (i=0; i<12; i++)
1711 sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1712
1713 US_DEBUGP("SDDR09: Send control for command %s\n", ptr);
1714
1715 result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1716 if (result) {
1717 US_DEBUGP("sddr09_transport: sddr09_send_scsi_command "
1718 "returns %d\n", result);
1719 return USB_STOR_TRANSPORT_ERROR;
1720 }
1721
1722 if (scsi_bufflen(srb) == 0)
1723 return USB_STOR_TRANSPORT_GOOD;
1724
1725 if (srb->sc_data_direction == DMA_TO_DEVICE ||
1726 srb->sc_data_direction == DMA_FROM_DEVICE) {
1727 unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1728 ? us->send_bulk_pipe : us->recv_bulk_pipe;
1729
1730 US_DEBUGP("SDDR09: %s %d bytes\n",
1731 (srb->sc_data_direction == DMA_TO_DEVICE) ?
1732 "sending" : "receiving",
1733 scsi_bufflen(srb));
1734
1735 result = usb_stor_bulk_srb(us, pipe, srb);
1736
1737 return (result == USB_STOR_XFER_GOOD ?
1738 USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1739 }
1740
1741 return USB_STOR_TRANSPORT_GOOD;
1742}
1743
1744/*
1745 * Initialization routine for the sddr09 subdriver
1746 */
1747static int
1748usb_stor_sddr09_init(struct us_data *us) {
1749 return sddr09_common_init(us);
1750}
1751
1752static int sddr09_probe(struct usb_interface *intf,
1753 const struct usb_device_id *id)
1754{
1755 struct us_data *us;
1756 int result;
1757
1758 result = usb_stor_probe1(&us, intf, id,
1759 (id - sddr09_usb_ids) + sddr09_unusual_dev_list);
1760 if (result)
1761 return result;
1762
1763 if (us->protocol == USB_PR_DPCM_USB) {
1764 us->transport_name = "Control/Bulk-EUSB/SDDR09";
1765 us->transport = dpcm_transport;
1766 us->transport_reset = usb_stor_CB_reset;
1767 us->max_lun = 1;
1768 } else {
1769 us->transport_name = "EUSB/SDDR09";
1770 us->transport = sddr09_transport;
1771 us->transport_reset = usb_stor_CB_reset;
1772 us->max_lun = 0;
1773 }
1774
1775 result = usb_stor_probe2(us);
1776 return result;
1777}
1778
1779static struct usb_driver sddr09_driver = {
1780 .name = "ums-sddr09",
1781 .probe = sddr09_probe,
1782 .disconnect = usb_stor_disconnect,
1783 .suspend = usb_stor_suspend,
1784 .resume = usb_stor_resume,
1785 .reset_resume = usb_stor_reset_resume,
1786 .pre_reset = usb_stor_pre_reset,
1787 .post_reset = usb_stor_post_reset,
1788 .id_table = sddr09_usb_ids,
1789 .soft_unbind = 1,
1790};
1791
1792static int __init sddr09_init(void)
1793{
1794 return usb_register(&sddr09_driver);
1795}
1796
1797static void __exit sddr09_exit(void)
1798{
1799 usb_deregister(&sddr09_driver);
1800}
1801
1802module_init(sddr09_init);
1803module_exit(sddr09_exit);
1/* Driver for SanDisk SDDR-09 SmartMedia reader
2 *
3 * (c) 2000, 2001 Robert Baruch (autophile@starband.net)
4 * (c) 2002 Andries Brouwer (aeb@cwi.nl)
5 * Developed with the assistance of:
6 * (c) 2002 Alan Stern <stern@rowland.org>
7 *
8 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
9 * This chip is a programmable USB controller. In the SDDR-09, it has
10 * been programmed to obey a certain limited set of SCSI commands.
11 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
12 * commands.
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2, or (at your option) any
17 * later version.
18 *
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 675 Mass Ave, Cambridge, MA 02139, USA.
27 */
28
29/*
30 * Known vendor commands: 12 bytes, first byte is opcode
31 *
32 * E7: read scatter gather
33 * E8: read
34 * E9: write
35 * EA: erase
36 * EB: reset
37 * EC: read status
38 * ED: read ID
39 * EE: write CIS (?)
40 * EF: compute checksum (?)
41 */
42
43#include <linux/errno.h>
44#include <linux/module.h>
45#include <linux/slab.h>
46
47#include <scsi/scsi.h>
48#include <scsi/scsi_cmnd.h>
49#include <scsi/scsi_device.h>
50
51#include "usb.h"
52#include "transport.h"
53#include "protocol.h"
54#include "debug.h"
55#include "scsiglue.h"
56
57#define DRV_NAME "ums-sddr09"
58
59MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
60MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
61MODULE_LICENSE("GPL");
62
63static int usb_stor_sddr09_dpcm_init(struct us_data *us);
64static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
65static int usb_stor_sddr09_init(struct us_data *us);
66
67
68/*
69 * The table of devices
70 */
71#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
72 vendorName, productName, useProtocol, useTransport, \
73 initFunction, flags) \
74{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
75 .driver_info = (flags) }
76
77static struct usb_device_id sddr09_usb_ids[] = {
78# include "unusual_sddr09.h"
79 { } /* Terminating entry */
80};
81MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
82
83#undef UNUSUAL_DEV
84
85/*
86 * The flags table
87 */
88#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
89 vendor_name, product_name, use_protocol, use_transport, \
90 init_function, Flags) \
91{ \
92 .vendorName = vendor_name, \
93 .productName = product_name, \
94 .useProtocol = use_protocol, \
95 .useTransport = use_transport, \
96 .initFunction = init_function, \
97}
98
99static struct us_unusual_dev sddr09_unusual_dev_list[] = {
100# include "unusual_sddr09.h"
101 { } /* Terminating entry */
102};
103
104#undef UNUSUAL_DEV
105
106
107#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
108#define LSB_of(s) ((s)&0xFF)
109#define MSB_of(s) ((s)>>8)
110
111/*
112 * First some stuff that does not belong here:
113 * data on SmartMedia and other cards, completely
114 * unrelated to this driver.
115 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
116 */
117
118struct nand_flash_dev {
119 int model_id;
120 int chipshift; /* 1<<cs bytes total capacity */
121 char pageshift; /* 1<<ps bytes in a page */
122 char blockshift; /* 1<<bs pages in an erase block */
123 char zoneshift; /* 1<<zs blocks in a zone */
124 /* # of logical blocks is 125/128 of this */
125 char pageadrlen; /* length of an address in bytes - 1 */
126};
127
128/*
129 * NAND Flash Manufacturer ID Codes
130 */
131#define NAND_MFR_AMD 0x01
132#define NAND_MFR_NATSEMI 0x8f
133#define NAND_MFR_TOSHIBA 0x98
134#define NAND_MFR_SAMSUNG 0xec
135
136static inline char *nand_flash_manufacturer(int manuf_id) {
137 switch(manuf_id) {
138 case NAND_MFR_AMD:
139 return "AMD";
140 case NAND_MFR_NATSEMI:
141 return "NATSEMI";
142 case NAND_MFR_TOSHIBA:
143 return "Toshiba";
144 case NAND_MFR_SAMSUNG:
145 return "Samsung";
146 default:
147 return "unknown";
148 }
149}
150
151/*
152 * It looks like it is unnecessary to attach manufacturer to the
153 * remaining data: SSFDC prescribes manufacturer-independent id codes.
154 *
155 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
156 */
157
158static struct nand_flash_dev nand_flash_ids[] = {
159 /* NAND flash */
160 { 0x6e, 20, 8, 4, 8, 2}, /* 1 MB */
161 { 0xe8, 20, 8, 4, 8, 2}, /* 1 MB */
162 { 0xec, 20, 8, 4, 8, 2}, /* 1 MB */
163 { 0x64, 21, 8, 4, 9, 2}, /* 2 MB */
164 { 0xea, 21, 8, 4, 9, 2}, /* 2 MB */
165 { 0x6b, 22, 9, 4, 9, 2}, /* 4 MB */
166 { 0xe3, 22, 9, 4, 9, 2}, /* 4 MB */
167 { 0xe5, 22, 9, 4, 9, 2}, /* 4 MB */
168 { 0xe6, 23, 9, 4, 10, 2}, /* 8 MB */
169 { 0x73, 24, 9, 5, 10, 2}, /* 16 MB */
170 { 0x75, 25, 9, 5, 10, 2}, /* 32 MB */
171 { 0x76, 26, 9, 5, 10, 3}, /* 64 MB */
172 { 0x79, 27, 9, 5, 10, 3}, /* 128 MB */
173
174 /* MASK ROM */
175 { 0x5d, 21, 9, 4, 8, 2}, /* 2 MB */
176 { 0xd5, 22, 9, 4, 9, 2}, /* 4 MB */
177 { 0xd6, 23, 9, 4, 10, 2}, /* 8 MB */
178 { 0x57, 24, 9, 4, 11, 2}, /* 16 MB */
179 { 0x58, 25, 9, 4, 12, 2}, /* 32 MB */
180 { 0,}
181};
182
183static struct nand_flash_dev *
184nand_find_id(unsigned char id) {
185 int i;
186
187 for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
188 if (nand_flash_ids[i].model_id == id)
189 return &(nand_flash_ids[i]);
190 return NULL;
191}
192
193/*
194 * ECC computation.
195 */
196static unsigned char parity[256];
197static unsigned char ecc2[256];
198
199static void nand_init_ecc(void) {
200 int i, j, a;
201
202 parity[0] = 0;
203 for (i = 1; i < 256; i++)
204 parity[i] = (parity[i&(i-1)] ^ 1);
205
206 for (i = 0; i < 256; i++) {
207 a = 0;
208 for (j = 0; j < 8; j++) {
209 if (i & (1<<j)) {
210 if ((j & 1) == 0)
211 a ^= 0x04;
212 if ((j & 2) == 0)
213 a ^= 0x10;
214 if ((j & 4) == 0)
215 a ^= 0x40;
216 }
217 }
218 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
219 }
220}
221
222/* compute 3-byte ecc on 256 bytes */
223static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
224 int i, j, a;
225 unsigned char par = 0, bit, bits[8] = {0};
226
227 /* collect 16 checksum bits */
228 for (i = 0; i < 256; i++) {
229 par ^= data[i];
230 bit = parity[data[i]];
231 for (j = 0; j < 8; j++)
232 if ((i & (1<<j)) == 0)
233 bits[j] ^= bit;
234 }
235
236 /* put 4+4+4 = 12 bits in the ecc */
237 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
238 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
239
240 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
241 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
242
243 ecc[2] = ecc2[par];
244}
245
246static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
247 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
248}
249
250static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
251 memcpy(data, ecc, 3);
252}
253
254/*
255 * The actual driver starts here.
256 */
257
258struct sddr09_card_info {
259 unsigned long capacity; /* Size of card in bytes */
260 int pagesize; /* Size of page in bytes */
261 int pageshift; /* log2 of pagesize */
262 int blocksize; /* Size of block in pages */
263 int blockshift; /* log2 of blocksize */
264 int blockmask; /* 2^blockshift - 1 */
265 int *lba_to_pba; /* logical to physical map */
266 int *pba_to_lba; /* physical to logical map */
267 int lbact; /* number of available pages */
268 int flags;
269#define SDDR09_WP 1 /* write protected */
270};
271
272/*
273 * On my 16MB card, control blocks have size 64 (16 real control bytes,
274 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
275 * so the reader makes up the remaining 48. Don't know whether these numbers
276 * depend on the card. For now a constant.
277 */
278#define CONTROL_SHIFT 6
279
280/*
281 * On my Combo CF/SM reader, the SM reader has LUN 1.
282 * (and things fail with LUN 0).
283 * It seems LUN is irrelevant for others.
284 */
285#define LUN 1
286#define LUNBITS (LUN << 5)
287
288/*
289 * LBA and PBA are unsigned ints. Special values.
290 */
291#define UNDEF 0xffffffff
292#define SPARE 0xfffffffe
293#define UNUSABLE 0xfffffffd
294
295static const int erase_bad_lba_entries = 0;
296
297/* send vendor interface command (0x41) */
298/* called for requests 0, 1, 8 */
299static int
300sddr09_send_command(struct us_data *us,
301 unsigned char request,
302 unsigned char direction,
303 unsigned char *xfer_data,
304 unsigned int xfer_len) {
305 unsigned int pipe;
306 unsigned char requesttype = (0x41 | direction);
307 int rc;
308
309 // Get the receive or send control pipe number
310
311 if (direction == USB_DIR_IN)
312 pipe = us->recv_ctrl_pipe;
313 else
314 pipe = us->send_ctrl_pipe;
315
316 rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
317 0, 0, xfer_data, xfer_len);
318 switch (rc) {
319 case USB_STOR_XFER_GOOD: return 0;
320 case USB_STOR_XFER_STALLED: return -EPIPE;
321 default: return -EIO;
322 }
323}
324
325static int
326sddr09_send_scsi_command(struct us_data *us,
327 unsigned char *command,
328 unsigned int command_len) {
329 return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
330}
331
332#if 0
333/*
334 * Test Unit Ready Command: 12 bytes.
335 * byte 0: opcode: 00
336 */
337static int
338sddr09_test_unit_ready(struct us_data *us) {
339 unsigned char *command = us->iobuf;
340 int result;
341
342 memset(command, 0, 6);
343 command[1] = LUNBITS;
344
345 result = sddr09_send_scsi_command(us, command, 6);
346
347 usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
348
349 return result;
350}
351#endif
352
353/*
354 * Request Sense Command: 12 bytes.
355 * byte 0: opcode: 03
356 * byte 4: data length
357 */
358static int
359sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
360 unsigned char *command = us->iobuf;
361 int result;
362
363 memset(command, 0, 12);
364 command[0] = 0x03;
365 command[1] = LUNBITS;
366 command[4] = buflen;
367
368 result = sddr09_send_scsi_command(us, command, 12);
369 if (result)
370 return result;
371
372 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
373 sensebuf, buflen, NULL);
374 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
375}
376
377/*
378 * Read Command: 12 bytes.
379 * byte 0: opcode: E8
380 * byte 1: last two bits: 00: read data, 01: read blockwise control,
381 * 10: read both, 11: read pagewise control.
382 * It turns out we need values 20, 21, 22, 23 here (LUN 1).
383 * bytes 2-5: address (interpretation depends on byte 1, see below)
384 * bytes 10-11: count (idem)
385 *
386 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
387 * A read data command gets data in 512-byte pages.
388 * A read control command gets control in 64-byte chunks.
389 * A read both command gets data+control in 576-byte chunks.
390 *
391 * Blocks are groups of 32 pages, and read blockwise control jumps to the
392 * next block, while read pagewise control jumps to the next page after
393 * reading a group of 64 control bytes.
394 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
395 *
396 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
397 */
398
399static int
400sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
401 int nr_of_pages, int bulklen, unsigned char *buf,
402 int use_sg) {
403
404 unsigned char *command = us->iobuf;
405 int result;
406
407 command[0] = 0xE8;
408 command[1] = LUNBITS | x;
409 command[2] = MSB_of(fromaddress>>16);
410 command[3] = LSB_of(fromaddress>>16);
411 command[4] = MSB_of(fromaddress & 0xFFFF);
412 command[5] = LSB_of(fromaddress & 0xFFFF);
413 command[6] = 0;
414 command[7] = 0;
415 command[8] = 0;
416 command[9] = 0;
417 command[10] = MSB_of(nr_of_pages);
418 command[11] = LSB_of(nr_of_pages);
419
420 result = sddr09_send_scsi_command(us, command, 12);
421
422 if (result) {
423 usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
424 x, result);
425 return result;
426 }
427
428 result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
429 buf, bulklen, use_sg, NULL);
430
431 if (result != USB_STOR_XFER_GOOD) {
432 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
433 x, result);
434 return -EIO;
435 }
436 return 0;
437}
438
439/*
440 * Read Data
441 *
442 * fromaddress counts data shorts:
443 * increasing it by 256 shifts the bytestream by 512 bytes;
444 * the last 8 bits are ignored.
445 *
446 * nr_of_pages counts pages of size (1 << pageshift).
447 */
448static int
449sddr09_read20(struct us_data *us, unsigned long fromaddress,
450 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
451 int bulklen = nr_of_pages << pageshift;
452
453 /* The last 8 bits of fromaddress are ignored. */
454 return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
455 buf, use_sg);
456}
457
458/*
459 * Read Blockwise Control
460 *
461 * fromaddress gives the starting position (as in read data;
462 * the last 8 bits are ignored); increasing it by 32*256 shifts
463 * the output stream by 64 bytes.
464 *
465 * count counts control groups of size (1 << controlshift).
466 * For me, controlshift = 6. Is this constant?
467 *
468 * After getting one control group, jump to the next block
469 * (fromaddress += 8192).
470 */
471static int
472sddr09_read21(struct us_data *us, unsigned long fromaddress,
473 int count, int controlshift, unsigned char *buf, int use_sg) {
474
475 int bulklen = (count << controlshift);
476 return sddr09_readX(us, 1, fromaddress, count, bulklen,
477 buf, use_sg);
478}
479
480/*
481 * Read both Data and Control
482 *
483 * fromaddress counts data shorts, ignoring control:
484 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
485 * the last 8 bits are ignored.
486 *
487 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
488 */
489static int
490sddr09_read22(struct us_data *us, unsigned long fromaddress,
491 int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
492
493 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
494 usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
495 return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
496 buf, use_sg);
497}
498
499#if 0
500/*
501 * Read Pagewise Control
502 *
503 * fromaddress gives the starting position (as in read data;
504 * the last 8 bits are ignored); increasing it by 256 shifts
505 * the output stream by 64 bytes.
506 *
507 * count counts control groups of size (1 << controlshift).
508 * For me, controlshift = 6. Is this constant?
509 *
510 * After getting one control group, jump to the next page
511 * (fromaddress += 256).
512 */
513static int
514sddr09_read23(struct us_data *us, unsigned long fromaddress,
515 int count, int controlshift, unsigned char *buf, int use_sg) {
516
517 int bulklen = (count << controlshift);
518 return sddr09_readX(us, 3, fromaddress, count, bulklen,
519 buf, use_sg);
520}
521#endif
522
523/*
524 * Erase Command: 12 bytes.
525 * byte 0: opcode: EA
526 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
527 *
528 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
529 * The byte address being erased is 2*Eaddress.
530 * The CIS cannot be erased.
531 */
532static int
533sddr09_erase(struct us_data *us, unsigned long Eaddress) {
534 unsigned char *command = us->iobuf;
535 int result;
536
537 usb_stor_dbg(us, "erase address %lu\n", Eaddress);
538
539 memset(command, 0, 12);
540 command[0] = 0xEA;
541 command[1] = LUNBITS;
542 command[6] = MSB_of(Eaddress>>16);
543 command[7] = LSB_of(Eaddress>>16);
544 command[8] = MSB_of(Eaddress & 0xFFFF);
545 command[9] = LSB_of(Eaddress & 0xFFFF);
546
547 result = sddr09_send_scsi_command(us, command, 12);
548
549 if (result)
550 usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
551 result);
552
553 return result;
554}
555
556/*
557 * Write CIS Command: 12 bytes.
558 * byte 0: opcode: EE
559 * bytes 2-5: write address in shorts
560 * bytes 10-11: sector count
561 *
562 * This writes at the indicated address. Don't know how it differs
563 * from E9. Maybe it does not erase? However, it will also write to
564 * the CIS.
565 *
566 * When two such commands on the same page follow each other directly,
567 * the second one is not done.
568 */
569
570/*
571 * Write Command: 12 bytes.
572 * byte 0: opcode: E9
573 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
574 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
575 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
576 *
577 * If write address equals erase address, the erase is done first,
578 * otherwise the write is done first. When erase address equals zero
579 * no erase is done?
580 */
581static int
582sddr09_writeX(struct us_data *us,
583 unsigned long Waddress, unsigned long Eaddress,
584 int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
585
586 unsigned char *command = us->iobuf;
587 int result;
588
589 command[0] = 0xE9;
590 command[1] = LUNBITS;
591
592 command[2] = MSB_of(Waddress>>16);
593 command[3] = LSB_of(Waddress>>16);
594 command[4] = MSB_of(Waddress & 0xFFFF);
595 command[5] = LSB_of(Waddress & 0xFFFF);
596
597 command[6] = MSB_of(Eaddress>>16);
598 command[7] = LSB_of(Eaddress>>16);
599 command[8] = MSB_of(Eaddress & 0xFFFF);
600 command[9] = LSB_of(Eaddress & 0xFFFF);
601
602 command[10] = MSB_of(nr_of_pages);
603 command[11] = LSB_of(nr_of_pages);
604
605 result = sddr09_send_scsi_command(us, command, 12);
606
607 if (result) {
608 usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
609 result);
610 return result;
611 }
612
613 result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
614 buf, bulklen, use_sg, NULL);
615
616 if (result != USB_STOR_XFER_GOOD) {
617 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
618 result);
619 return -EIO;
620 }
621 return 0;
622}
623
624/* erase address, write same address */
625static int
626sddr09_write_inplace(struct us_data *us, unsigned long address,
627 int nr_of_pages, int pageshift, unsigned char *buf,
628 int use_sg) {
629 int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
630 return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
631 buf, use_sg);
632}
633
634#if 0
635/*
636 * Read Scatter Gather Command: 3+4n bytes.
637 * byte 0: opcode E7
638 * byte 2: n
639 * bytes 4i-1,4i,4i+1: page address
640 * byte 4i+2: page count
641 * (i=1..n)
642 *
643 * This reads several pages from the card to a single memory buffer.
644 * The last two bits of byte 1 have the same meaning as for E8.
645 */
646static int
647sddr09_read_sg_test_only(struct us_data *us) {
648 unsigned char *command = us->iobuf;
649 int result, bulklen, nsg, ct;
650 unsigned char *buf;
651 unsigned long address;
652
653 nsg = bulklen = 0;
654 command[0] = 0xE7;
655 command[1] = LUNBITS;
656 command[2] = 0;
657 address = 040000; ct = 1;
658 nsg++;
659 bulklen += (ct << 9);
660 command[4*nsg+2] = ct;
661 command[4*nsg+1] = ((address >> 9) & 0xFF);
662 command[4*nsg+0] = ((address >> 17) & 0xFF);
663 command[4*nsg-1] = ((address >> 25) & 0xFF);
664
665 address = 0340000; ct = 1;
666 nsg++;
667 bulklen += (ct << 9);
668 command[4*nsg+2] = ct;
669 command[4*nsg+1] = ((address >> 9) & 0xFF);
670 command[4*nsg+0] = ((address >> 17) & 0xFF);
671 command[4*nsg-1] = ((address >> 25) & 0xFF);
672
673 address = 01000000; ct = 2;
674 nsg++;
675 bulklen += (ct << 9);
676 command[4*nsg+2] = ct;
677 command[4*nsg+1] = ((address >> 9) & 0xFF);
678 command[4*nsg+0] = ((address >> 17) & 0xFF);
679 command[4*nsg-1] = ((address >> 25) & 0xFF);
680
681 command[2] = nsg;
682
683 result = sddr09_send_scsi_command(us, command, 4*nsg+3);
684
685 if (result) {
686 usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
687 result);
688 return result;
689 }
690
691 buf = kmalloc(bulklen, GFP_NOIO);
692 if (!buf)
693 return -ENOMEM;
694
695 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
696 buf, bulklen, NULL);
697 kfree(buf);
698 if (result != USB_STOR_XFER_GOOD) {
699 usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
700 result);
701 return -EIO;
702 }
703
704 return 0;
705}
706#endif
707
708/*
709 * Read Status Command: 12 bytes.
710 * byte 0: opcode: EC
711 *
712 * Returns 64 bytes, all zero except for the first.
713 * bit 0: 1: Error
714 * bit 5: 1: Suspended
715 * bit 6: 1: Ready
716 * bit 7: 1: Not write-protected
717 */
718
719static int
720sddr09_read_status(struct us_data *us, unsigned char *status) {
721
722 unsigned char *command = us->iobuf;
723 unsigned char *data = us->iobuf;
724 int result;
725
726 usb_stor_dbg(us, "Reading status...\n");
727
728 memset(command, 0, 12);
729 command[0] = 0xEC;
730 command[1] = LUNBITS;
731
732 result = sddr09_send_scsi_command(us, command, 12);
733 if (result)
734 return result;
735
736 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
737 data, 64, NULL);
738 *status = data[0];
739 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
740}
741
742static int
743sddr09_read_data(struct us_data *us,
744 unsigned long address,
745 unsigned int sectors) {
746
747 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
748 unsigned char *buffer;
749 unsigned int lba, maxlba, pba;
750 unsigned int page, pages;
751 unsigned int len, offset;
752 struct scatterlist *sg;
753 int result;
754
755 // Figure out the initial LBA and page
756 lba = address >> info->blockshift;
757 page = (address & info->blockmask);
758 maxlba = info->capacity >> (info->pageshift + info->blockshift);
759 if (lba >= maxlba)
760 return -EIO;
761
762 // Since we only read in one block at a time, we have to create
763 // a bounce buffer and move the data a piece at a time between the
764 // bounce buffer and the actual transfer buffer.
765
766 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
767 buffer = kmalloc(len, GFP_NOIO);
768 if (buffer == NULL) {
769 printk(KERN_WARNING "sddr09_read_data: Out of memory\n");
770 return -ENOMEM;
771 }
772
773 // This could be made much more efficient by checking for
774 // contiguous LBA's. Another exercise left to the student.
775
776 result = 0;
777 offset = 0;
778 sg = NULL;
779
780 while (sectors > 0) {
781
782 /* Find number of pages we can read in this block */
783 pages = min(sectors, info->blocksize - page);
784 len = pages << info->pageshift;
785
786 /* Not overflowing capacity? */
787 if (lba >= maxlba) {
788 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
789 lba, maxlba);
790 result = -EIO;
791 break;
792 }
793
794 /* Find where this lba lives on disk */
795 pba = info->lba_to_pba[lba];
796
797 if (pba == UNDEF) { /* this lba was never written */
798
799 usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
800 pages, lba, page);
801
802 /* This is not really an error. It just means
803 that the block has never been written.
804 Instead of returning an error
805 it is better to return all zero data. */
806
807 memset(buffer, 0, len);
808
809 } else {
810 usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
811 pages, pba, lba, page);
812
813 address = ((pba << info->blockshift) + page) <<
814 info->pageshift;
815
816 result = sddr09_read20(us, address>>1,
817 pages, info->pageshift, buffer, 0);
818 if (result)
819 break;
820 }
821
822 // Store the data in the transfer buffer
823 usb_stor_access_xfer_buf(buffer, len, us->srb,
824 &sg, &offset, TO_XFER_BUF);
825
826 page = 0;
827 lba++;
828 sectors -= pages;
829 }
830
831 kfree(buffer);
832 return result;
833}
834
835static unsigned int
836sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
837 static unsigned int lastpba = 1;
838 int zonestart, end, i;
839
840 zonestart = (lba/1000) << 10;
841 end = info->capacity >> (info->blockshift + info->pageshift);
842 end -= zonestart;
843 if (end > 1024)
844 end = 1024;
845
846 for (i = lastpba+1; i < end; i++) {
847 if (info->pba_to_lba[zonestart+i] == UNDEF) {
848 lastpba = i;
849 return zonestart+i;
850 }
851 }
852 for (i = 0; i <= lastpba; i++) {
853 if (info->pba_to_lba[zonestart+i] == UNDEF) {
854 lastpba = i;
855 return zonestart+i;
856 }
857 }
858 return 0;
859}
860
861static int
862sddr09_write_lba(struct us_data *us, unsigned int lba,
863 unsigned int page, unsigned int pages,
864 unsigned char *ptr, unsigned char *blockbuffer) {
865
866 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
867 unsigned long address;
868 unsigned int pba, lbap;
869 unsigned int pagelen;
870 unsigned char *bptr, *cptr, *xptr;
871 unsigned char ecc[3];
872 int i, result, isnew;
873
874 lbap = ((lba % 1000) << 1) | 0x1000;
875 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
876 lbap ^= 1;
877 pba = info->lba_to_pba[lba];
878 isnew = 0;
879
880 if (pba == UNDEF) {
881 pba = sddr09_find_unused_pba(info, lba);
882 if (!pba) {
883 printk(KERN_WARNING
884 "sddr09_write_lba: Out of unused blocks\n");
885 return -ENOSPC;
886 }
887 info->pba_to_lba[pba] = lba;
888 info->lba_to_pba[lba] = pba;
889 isnew = 1;
890 }
891
892 if (pba == 1) {
893 /* Maybe it is impossible to write to PBA 1.
894 Fake success, but don't do anything. */
895 printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
896 return 0;
897 }
898
899 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
900
901 /* read old contents */
902 address = (pba << (info->pageshift + info->blockshift));
903 result = sddr09_read22(us, address>>1, info->blocksize,
904 info->pageshift, blockbuffer, 0);
905 if (result)
906 return result;
907
908 /* check old contents and fill lba */
909 for (i = 0; i < info->blocksize; i++) {
910 bptr = blockbuffer + i*pagelen;
911 cptr = bptr + info->pagesize;
912 nand_compute_ecc(bptr, ecc);
913 if (!nand_compare_ecc(cptr+13, ecc)) {
914 usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
915 i, pba);
916 nand_store_ecc(cptr+13, ecc);
917 }
918 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
919 if (!nand_compare_ecc(cptr+8, ecc)) {
920 usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
921 i, pba);
922 nand_store_ecc(cptr+8, ecc);
923 }
924 cptr[6] = cptr[11] = MSB_of(lbap);
925 cptr[7] = cptr[12] = LSB_of(lbap);
926 }
927
928 /* copy in new stuff and compute ECC */
929 xptr = ptr;
930 for (i = page; i < page+pages; i++) {
931 bptr = blockbuffer + i*pagelen;
932 cptr = bptr + info->pagesize;
933 memcpy(bptr, xptr, info->pagesize);
934 xptr += info->pagesize;
935 nand_compute_ecc(bptr, ecc);
936 nand_store_ecc(cptr+13, ecc);
937 nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
938 nand_store_ecc(cptr+8, ecc);
939 }
940
941 usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
942
943 result = sddr09_write_inplace(us, address>>1, info->blocksize,
944 info->pageshift, blockbuffer, 0);
945
946 usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
947
948#if 0
949 {
950 unsigned char status = 0;
951 int result2 = sddr09_read_status(us, &status);
952 if (result2)
953 usb_stor_dbg(us, "cannot read status\n");
954 else if (status != 0xc0)
955 usb_stor_dbg(us, "status after write: 0x%x\n", status);
956 }
957#endif
958
959#if 0
960 {
961 int result2 = sddr09_test_unit_ready(us);
962 }
963#endif
964
965 return result;
966}
967
968static int
969sddr09_write_data(struct us_data *us,
970 unsigned long address,
971 unsigned int sectors) {
972
973 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
974 unsigned int lba, maxlba, page, pages;
975 unsigned int pagelen, blocklen;
976 unsigned char *blockbuffer;
977 unsigned char *buffer;
978 unsigned int len, offset;
979 struct scatterlist *sg;
980 int result;
981
982 // Figure out the initial LBA and page
983 lba = address >> info->blockshift;
984 page = (address & info->blockmask);
985 maxlba = info->capacity >> (info->pageshift + info->blockshift);
986 if (lba >= maxlba)
987 return -EIO;
988
989 // blockbuffer is used for reading in the old data, overwriting
990 // with the new data, and performing ECC calculations
991
992 /* TODO: instead of doing kmalloc/kfree for each write,
993 add a bufferpointer to the info structure */
994
995 pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
996 blocklen = (pagelen << info->blockshift);
997 blockbuffer = kmalloc(blocklen, GFP_NOIO);
998 if (!blockbuffer) {
999 printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1000 return -ENOMEM;
1001 }
1002
1003 // Since we don't write the user data directly to the device,
1004 // we have to create a bounce buffer and move the data a piece
1005 // at a time between the bounce buffer and the actual transfer buffer.
1006
1007 len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1008 buffer = kmalloc(len, GFP_NOIO);
1009 if (buffer == NULL) {
1010 printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1011 kfree(blockbuffer);
1012 return -ENOMEM;
1013 }
1014
1015 result = 0;
1016 offset = 0;
1017 sg = NULL;
1018
1019 while (sectors > 0) {
1020
1021 // Write as many sectors as possible in this block
1022
1023 pages = min(sectors, info->blocksize - page);
1024 len = (pages << info->pageshift);
1025
1026 /* Not overflowing capacity? */
1027 if (lba >= maxlba) {
1028 usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1029 lba, maxlba);
1030 result = -EIO;
1031 break;
1032 }
1033
1034 // Get the data from the transfer buffer
1035 usb_stor_access_xfer_buf(buffer, len, us->srb,
1036 &sg, &offset, FROM_XFER_BUF);
1037
1038 result = sddr09_write_lba(us, lba, page, pages,
1039 buffer, blockbuffer);
1040 if (result)
1041 break;
1042
1043 page = 0;
1044 lba++;
1045 sectors -= pages;
1046 }
1047
1048 kfree(buffer);
1049 kfree(blockbuffer);
1050
1051 return result;
1052}
1053
1054static int
1055sddr09_read_control(struct us_data *us,
1056 unsigned long address,
1057 unsigned int blocks,
1058 unsigned char *content,
1059 int use_sg) {
1060
1061 usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1062 address, blocks);
1063
1064 return sddr09_read21(us, address, blocks,
1065 CONTROL_SHIFT, content, use_sg);
1066}
1067
1068/*
1069 * Read Device ID Command: 12 bytes.
1070 * byte 0: opcode: ED
1071 *
1072 * Returns 2 bytes: Manufacturer ID and Device ID.
1073 * On more recent cards 3 bytes: the third byte is an option code A5
1074 * signifying that the secret command to read an 128-bit ID is available.
1075 * On still more recent cards 4 bytes: the fourth byte C0 means that
1076 * a second read ID cmd is available.
1077 */
1078static int
1079sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1080 unsigned char *command = us->iobuf;
1081 unsigned char *content = us->iobuf;
1082 int result, i;
1083
1084 memset(command, 0, 12);
1085 command[0] = 0xED;
1086 command[1] = LUNBITS;
1087
1088 result = sddr09_send_scsi_command(us, command, 12);
1089 if (result)
1090 return result;
1091
1092 result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1093 content, 64, NULL);
1094
1095 for (i = 0; i < 4; i++)
1096 deviceID[i] = content[i];
1097
1098 return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1099}
1100
1101static int
1102sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1103 int result;
1104 unsigned char status;
1105 const char *wp_fmt;
1106
1107 result = sddr09_read_status(us, &status);
1108 if (result) {
1109 usb_stor_dbg(us, "read_status fails\n");
1110 return result;
1111 }
1112 if ((status & 0x80) == 0) {
1113 info->flags |= SDDR09_WP; /* write protected */
1114 wp_fmt = " WP";
1115 } else {
1116 wp_fmt = "";
1117 }
1118 usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt,
1119 status & 0x40 ? " Ready" : "",
1120 status & LUNBITS ? " Suspended" : "",
1121 status & 0x01 ? " Error" : "");
1122
1123 return 0;
1124}
1125
1126#if 0
1127/*
1128 * Reset Command: 12 bytes.
1129 * byte 0: opcode: EB
1130 */
1131static int
1132sddr09_reset(struct us_data *us) {
1133
1134 unsigned char *command = us->iobuf;
1135
1136 memset(command, 0, 12);
1137 command[0] = 0xEB;
1138 command[1] = LUNBITS;
1139
1140 return sddr09_send_scsi_command(us, command, 12);
1141}
1142#endif
1143
1144static struct nand_flash_dev *
1145sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1146 struct nand_flash_dev *cardinfo;
1147 unsigned char deviceID[4];
1148 char blurbtxt[256];
1149 int result;
1150
1151 usb_stor_dbg(us, "Reading capacity...\n");
1152
1153 result = sddr09_read_deviceID(us, deviceID);
1154
1155 if (result) {
1156 usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
1157 printk(KERN_WARNING "sddr09: could not read card info\n");
1158 return NULL;
1159 }
1160
1161 sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
1162
1163 /* Byte 0 is the manufacturer */
1164 sprintf(blurbtxt + strlen(blurbtxt),
1165 ": Manuf. %s",
1166 nand_flash_manufacturer(deviceID[0]));
1167
1168 /* Byte 1 is the device type */
1169 cardinfo = nand_find_id(deviceID[1]);
1170 if (cardinfo) {
1171 /* MB or MiB? It is neither. A 16 MB card has
1172 17301504 raw bytes, of which 16384000 are
1173 usable for user data. */
1174 sprintf(blurbtxt + strlen(blurbtxt),
1175 ", %d MB", 1<<(cardinfo->chipshift - 20));
1176 } else {
1177 sprintf(blurbtxt + strlen(blurbtxt),
1178 ", type unrecognized");
1179 }
1180
1181 /* Byte 2 is code to signal availability of 128-bit ID */
1182 if (deviceID[2] == 0xa5) {
1183 sprintf(blurbtxt + strlen(blurbtxt),
1184 ", 128-bit ID");
1185 }
1186
1187 /* Byte 3 announces the availability of another read ID command */
1188 if (deviceID[3] == 0xc0) {
1189 sprintf(blurbtxt + strlen(blurbtxt),
1190 ", extra cmd");
1191 }
1192
1193 if (flags & SDDR09_WP)
1194 sprintf(blurbtxt + strlen(blurbtxt),
1195 ", WP");
1196
1197 printk(KERN_WARNING "%s\n", blurbtxt);
1198
1199 return cardinfo;
1200}
1201
1202static int
1203sddr09_read_map(struct us_data *us) {
1204
1205 struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1206 int numblocks, alloc_len, alloc_blocks;
1207 int i, j, result;
1208 unsigned char *buffer, *buffer_end, *ptr;
1209 unsigned int lba, lbact;
1210
1211 if (!info->capacity)
1212 return -1;
1213
1214 // size of a block is 1 << (blockshift + pageshift) bytes
1215 // divide into the total capacity to get the number of blocks
1216
1217 numblocks = info->capacity >> (info->blockshift + info->pageshift);
1218
1219 // read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1220 // but only use a 64 KB buffer
1221 // buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1222#define SDDR09_READ_MAP_BUFSZ 65536
1223
1224 alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1225 alloc_len = (alloc_blocks << CONTROL_SHIFT);
1226 buffer = kmalloc(alloc_len, GFP_NOIO);
1227 if (buffer == NULL) {
1228 printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1229 result = -1;
1230 goto done;
1231 }
1232 buffer_end = buffer + alloc_len;
1233
1234#undef SDDR09_READ_MAP_BUFSZ
1235
1236 kfree(info->lba_to_pba);
1237 kfree(info->pba_to_lba);
1238 info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1239 info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1240
1241 if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1242 printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1243 result = -1;
1244 goto done;
1245 }
1246
1247 for (i = 0; i < numblocks; i++)
1248 info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1249
1250 /*
1251 * Define lba-pba translation table
1252 */
1253
1254 ptr = buffer_end;
1255 for (i = 0; i < numblocks; i++) {
1256 ptr += (1 << CONTROL_SHIFT);
1257 if (ptr >= buffer_end) {
1258 unsigned long address;
1259
1260 address = i << (info->pageshift + info->blockshift);
1261 result = sddr09_read_control(
1262 us, address>>1,
1263 min(alloc_blocks, numblocks - i),
1264 buffer, 0);
1265 if (result) {
1266 result = -1;
1267 goto done;
1268 }
1269 ptr = buffer;
1270 }
1271
1272 if (i == 0 || i == 1) {
1273 info->pba_to_lba[i] = UNUSABLE;
1274 continue;
1275 }
1276
1277 /* special PBAs have control field 0^16 */
1278 for (j = 0; j < 16; j++)
1279 if (ptr[j] != 0)
1280 goto nonz;
1281 info->pba_to_lba[i] = UNUSABLE;
1282 printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1283 i);
1284 continue;
1285
1286 nonz:
1287 /* unwritten PBAs have control field FF^16 */
1288 for (j = 0; j < 16; j++)
1289 if (ptr[j] != 0xff)
1290 goto nonff;
1291 continue;
1292
1293 nonff:
1294 /* normal PBAs start with six FFs */
1295 if (j < 6) {
1296 printk(KERN_WARNING
1297 "sddr09: PBA %d has no logical mapping: "
1298 "reserved area = %02X%02X%02X%02X "
1299 "data status %02X block status %02X\n",
1300 i, ptr[0], ptr[1], ptr[2], ptr[3],
1301 ptr[4], ptr[5]);
1302 info->pba_to_lba[i] = UNUSABLE;
1303 continue;
1304 }
1305
1306 if ((ptr[6] >> 4) != 0x01) {
1307 printk(KERN_WARNING
1308 "sddr09: PBA %d has invalid address field "
1309 "%02X%02X/%02X%02X\n",
1310 i, ptr[6], ptr[7], ptr[11], ptr[12]);
1311 info->pba_to_lba[i] = UNUSABLE;
1312 continue;
1313 }
1314
1315 /* check even parity */
1316 if (parity[ptr[6] ^ ptr[7]]) {
1317 printk(KERN_WARNING
1318 "sddr09: Bad parity in LBA for block %d"
1319 " (%02X %02X)\n", i, ptr[6], ptr[7]);
1320 info->pba_to_lba[i] = UNUSABLE;
1321 continue;
1322 }
1323
1324 lba = short_pack(ptr[7], ptr[6]);
1325 lba = (lba & 0x07FF) >> 1;
1326
1327 /*
1328 * Every 1024 physical blocks ("zone"), the LBA numbers
1329 * go back to zero, but are within a higher block of LBA's.
1330 * Also, there is a maximum of 1000 LBA's per zone.
1331 * In other words, in PBA 1024-2047 you will find LBA 0-999
1332 * which are really LBA 1000-1999. This allows for 24 bad
1333 * or special physical blocks per zone.
1334 */
1335
1336 if (lba >= 1000) {
1337 printk(KERN_WARNING
1338 "sddr09: Bad low LBA %d for block %d\n",
1339 lba, i);
1340 goto possibly_erase;
1341 }
1342
1343 lba += 1000*(i/0x400);
1344
1345 if (info->lba_to_pba[lba] != UNDEF) {
1346 printk(KERN_WARNING
1347 "sddr09: LBA %d seen for PBA %d and %d\n",
1348 lba, info->lba_to_pba[lba], i);
1349 goto possibly_erase;
1350 }
1351
1352 info->pba_to_lba[i] = lba;
1353 info->lba_to_pba[lba] = i;
1354 continue;
1355
1356 possibly_erase:
1357 if (erase_bad_lba_entries) {
1358 unsigned long address;
1359
1360 address = (i << (info->pageshift + info->blockshift));
1361 sddr09_erase(us, address>>1);
1362 info->pba_to_lba[i] = UNDEF;
1363 } else
1364 info->pba_to_lba[i] = UNUSABLE;
1365 }
1366
1367 /*
1368 * Approximate capacity. This is not entirely correct yet,
1369 * since a zone with less than 1000 usable pages leads to
1370 * missing LBAs. Especially if it is the last zone, some
1371 * LBAs can be past capacity.
1372 */
1373 lbact = 0;
1374 for (i = 0; i < numblocks; i += 1024) {
1375 int ct = 0;
1376
1377 for (j = 0; j < 1024 && i+j < numblocks; j++) {
1378 if (info->pba_to_lba[i+j] != UNUSABLE) {
1379 if (ct >= 1000)
1380 info->pba_to_lba[i+j] = SPARE;
1381 else
1382 ct++;
1383 }
1384 }
1385 lbact += ct;
1386 }
1387 info->lbact = lbact;
1388 usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1389 result = 0;
1390
1391 done:
1392 if (result != 0) {
1393 kfree(info->lba_to_pba);
1394 kfree(info->pba_to_lba);
1395 info->lba_to_pba = NULL;
1396 info->pba_to_lba = NULL;
1397 }
1398 kfree(buffer);
1399 return result;
1400}
1401
1402static void
1403sddr09_card_info_destructor(void *extra) {
1404 struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1405
1406 if (!info)
1407 return;
1408
1409 kfree(info->lba_to_pba);
1410 kfree(info->pba_to_lba);
1411}
1412
1413static int
1414sddr09_common_init(struct us_data *us) {
1415 int result;
1416
1417 /* set the configuration -- STALL is an acceptable response here */
1418 if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1419 usb_stor_dbg(us, "active config #%d != 1 ??\n",
1420 us->pusb_dev->actconfig->desc.bConfigurationValue);
1421 return -EINVAL;
1422 }
1423
1424 result = usb_reset_configuration(us->pusb_dev);
1425 usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
1426 if (result == -EPIPE) {
1427 usb_stor_dbg(us, "-- stall on control interface\n");
1428 } else if (result != 0) {
1429 /* it's not a stall, but another error -- time to bail */
1430 usb_stor_dbg(us, "-- Unknown error. Rejecting device\n");
1431 return -EINVAL;
1432 }
1433
1434 us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1435 if (!us->extra)
1436 return -ENOMEM;
1437 us->extra_destructor = sddr09_card_info_destructor;
1438
1439 nand_init_ecc();
1440 return 0;
1441}
1442
1443
1444/*
1445 * This is needed at a very early stage. If this is not listed in the
1446 * unusual devices list but called from here then LUN 0 of the combo reader
1447 * is not recognized. But I do not know what precisely these calls do.
1448 */
1449static int
1450usb_stor_sddr09_dpcm_init(struct us_data *us) {
1451 int result;
1452 unsigned char *data = us->iobuf;
1453
1454 result = sddr09_common_init(us);
1455 if (result)
1456 return result;
1457
1458 result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1459 if (result) {
1460 usb_stor_dbg(us, "send_command fails\n");
1461 return result;
1462 }
1463
1464 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1465 // get 07 02
1466
1467 result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1468 if (result) {
1469 usb_stor_dbg(us, "2nd send_command fails\n");
1470 return result;
1471 }
1472
1473 usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1474 // get 07 00
1475
1476 result = sddr09_request_sense(us, data, 18);
1477 if (result == 0 && data[2] != 0) {
1478 int j;
1479 for (j=0; j<18; j++)
1480 printk(" %02X", data[j]);
1481 printk("\n");
1482 // get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1483 // 70: current command
1484 // sense key 0, sense code 0, extd sense code 0
1485 // additional transfer length * = sizeof(data) - 7
1486 // Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1487 // sense key 06, sense code 28: unit attention,
1488 // not ready to ready transition
1489 }
1490
1491 // test unit ready
1492
1493 return 0; /* not result */
1494}
1495
1496/*
1497 * Transport for the Microtech DPCM-USB
1498 */
1499static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1500{
1501 int ret;
1502
1503 usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
1504
1505 switch (srb->device->lun) {
1506 case 0:
1507
1508 /*
1509 * LUN 0 corresponds to the CompactFlash card reader.
1510 */
1511 ret = usb_stor_CB_transport(srb, us);
1512 break;
1513
1514 case 1:
1515
1516 /*
1517 * LUN 1 corresponds to the SmartMedia card reader.
1518 */
1519
1520 /*
1521 * Set the LUN to 0 (just in case).
1522 */
1523 srb->device->lun = 0;
1524 ret = sddr09_transport(srb, us);
1525 srb->device->lun = 1;
1526 break;
1527
1528 default:
1529 usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
1530 ret = USB_STOR_TRANSPORT_ERROR;
1531 break;
1532 }
1533 return ret;
1534}
1535
1536
1537/*
1538 * Transport for the Sandisk SDDR-09
1539 */
1540static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1541{
1542 static unsigned char sensekey = 0, sensecode = 0;
1543 static unsigned char havefakesense = 0;
1544 int result, i;
1545 unsigned char *ptr = us->iobuf;
1546 unsigned long capacity;
1547 unsigned int page, pages;
1548
1549 struct sddr09_card_info *info;
1550
1551 static unsigned char inquiry_response[8] = {
1552 0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1553 };
1554
1555 /* note: no block descriptor support */
1556 static unsigned char mode_page_01[19] = {
1557 0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1558 0x01, 0x0A,
1559 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1560 };
1561
1562 info = (struct sddr09_card_info *)us->extra;
1563
1564 if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1565 /* for a faked command, we have to follow with a faked sense */
1566 memset(ptr, 0, 18);
1567 ptr[0] = 0x70;
1568 ptr[2] = sensekey;
1569 ptr[7] = 11;
1570 ptr[12] = sensecode;
1571 usb_stor_set_xfer_buf(ptr, 18, srb);
1572 sensekey = sensecode = havefakesense = 0;
1573 return USB_STOR_TRANSPORT_GOOD;
1574 }
1575
1576 havefakesense = 1;
1577
1578 /* Dummy up a response for INQUIRY since SDDR09 doesn't
1579 respond to INQUIRY commands */
1580
1581 if (srb->cmnd[0] == INQUIRY) {
1582 memcpy(ptr, inquiry_response, 8);
1583 fill_inquiry_response(us, ptr, 36);
1584 return USB_STOR_TRANSPORT_GOOD;
1585 }
1586
1587 if (srb->cmnd[0] == READ_CAPACITY) {
1588 struct nand_flash_dev *cardinfo;
1589
1590 sddr09_get_wp(us, info); /* read WP bit */
1591
1592 cardinfo = sddr09_get_cardinfo(us, info->flags);
1593 if (!cardinfo) {
1594 /* probably no media */
1595 init_error:
1596 sensekey = 0x02; /* not ready */
1597 sensecode = 0x3a; /* medium not present */
1598 return USB_STOR_TRANSPORT_FAILED;
1599 }
1600
1601 info->capacity = (1 << cardinfo->chipshift);
1602 info->pageshift = cardinfo->pageshift;
1603 info->pagesize = (1 << info->pageshift);
1604 info->blockshift = cardinfo->blockshift;
1605 info->blocksize = (1 << info->blockshift);
1606 info->blockmask = info->blocksize - 1;
1607
1608 // map initialization, must follow get_cardinfo()
1609 if (sddr09_read_map(us)) {
1610 /* probably out of memory */
1611 goto init_error;
1612 }
1613
1614 // Report capacity
1615
1616 capacity = (info->lbact << info->blockshift) - 1;
1617
1618 ((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1619
1620 // Report page size
1621
1622 ((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1623 usb_stor_set_xfer_buf(ptr, 8, srb);
1624
1625 return USB_STOR_TRANSPORT_GOOD;
1626 }
1627
1628 if (srb->cmnd[0] == MODE_SENSE_10) {
1629 int modepage = (srb->cmnd[2] & 0x3F);
1630
1631 /* They ask for the Read/Write error recovery page,
1632 or for all pages. */
1633 /* %% We should check DBD %% */
1634 if (modepage == 0x01 || modepage == 0x3F) {
1635 usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1636 modepage);
1637
1638 memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1639 ((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1640 ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1641 usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1642 return USB_STOR_TRANSPORT_GOOD;
1643 }
1644
1645 sensekey = 0x05; /* illegal request */
1646 sensecode = 0x24; /* invalid field in CDB */
1647 return USB_STOR_TRANSPORT_FAILED;
1648 }
1649
1650 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1651 return USB_STOR_TRANSPORT_GOOD;
1652
1653 havefakesense = 0;
1654
1655 if (srb->cmnd[0] == READ_10) {
1656
1657 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1658 page <<= 16;
1659 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1660 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1661
1662 usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1663 page, pages);
1664
1665 result = sddr09_read_data(us, page, pages);
1666 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1667 USB_STOR_TRANSPORT_ERROR);
1668 }
1669
1670 if (srb->cmnd[0] == WRITE_10) {
1671
1672 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1673 page <<= 16;
1674 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1675 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1676
1677 usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1678 page, pages);
1679
1680 result = sddr09_write_data(us, page, pages);
1681 return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1682 USB_STOR_TRANSPORT_ERROR);
1683 }
1684
1685 /* catch-all for all other commands, except
1686 * pass TEST_UNIT_READY and REQUEST_SENSE through
1687 */
1688 if (srb->cmnd[0] != TEST_UNIT_READY &&
1689 srb->cmnd[0] != REQUEST_SENSE) {
1690 sensekey = 0x05; /* illegal request */
1691 sensecode = 0x20; /* invalid command */
1692 havefakesense = 1;
1693 return USB_STOR_TRANSPORT_FAILED;
1694 }
1695
1696 for (; srb->cmd_len<12; srb->cmd_len++)
1697 srb->cmnd[srb->cmd_len] = 0;
1698
1699 srb->cmnd[1] = LUNBITS;
1700
1701 ptr[0] = 0;
1702 for (i=0; i<12; i++)
1703 sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1704
1705 usb_stor_dbg(us, "Send control for command %s\n", ptr);
1706
1707 result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1708 if (result) {
1709 usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1710 result);
1711 return USB_STOR_TRANSPORT_ERROR;
1712 }
1713
1714 if (scsi_bufflen(srb) == 0)
1715 return USB_STOR_TRANSPORT_GOOD;
1716
1717 if (srb->sc_data_direction == DMA_TO_DEVICE ||
1718 srb->sc_data_direction == DMA_FROM_DEVICE) {
1719 unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1720 ? us->send_bulk_pipe : us->recv_bulk_pipe;
1721
1722 usb_stor_dbg(us, "%s %d bytes\n",
1723 (srb->sc_data_direction == DMA_TO_DEVICE) ?
1724 "sending" : "receiving",
1725 scsi_bufflen(srb));
1726
1727 result = usb_stor_bulk_srb(us, pipe, srb);
1728
1729 return (result == USB_STOR_XFER_GOOD ?
1730 USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1731 }
1732
1733 return USB_STOR_TRANSPORT_GOOD;
1734}
1735
1736/*
1737 * Initialization routine for the sddr09 subdriver
1738 */
1739static int
1740usb_stor_sddr09_init(struct us_data *us) {
1741 return sddr09_common_init(us);
1742}
1743
1744static struct scsi_host_template sddr09_host_template;
1745
1746static int sddr09_probe(struct usb_interface *intf,
1747 const struct usb_device_id *id)
1748{
1749 struct us_data *us;
1750 int result;
1751
1752 result = usb_stor_probe1(&us, intf, id,
1753 (id - sddr09_usb_ids) + sddr09_unusual_dev_list,
1754 &sddr09_host_template);
1755 if (result)
1756 return result;
1757
1758 if (us->protocol == USB_PR_DPCM_USB) {
1759 us->transport_name = "Control/Bulk-EUSB/SDDR09";
1760 us->transport = dpcm_transport;
1761 us->transport_reset = usb_stor_CB_reset;
1762 us->max_lun = 1;
1763 } else {
1764 us->transport_name = "EUSB/SDDR09";
1765 us->transport = sddr09_transport;
1766 us->transport_reset = usb_stor_CB_reset;
1767 us->max_lun = 0;
1768 }
1769
1770 result = usb_stor_probe2(us);
1771 return result;
1772}
1773
1774static struct usb_driver sddr09_driver = {
1775 .name = DRV_NAME,
1776 .probe = sddr09_probe,
1777 .disconnect = usb_stor_disconnect,
1778 .suspend = usb_stor_suspend,
1779 .resume = usb_stor_resume,
1780 .reset_resume = usb_stor_reset_resume,
1781 .pre_reset = usb_stor_pre_reset,
1782 .post_reset = usb_stor_post_reset,
1783 .id_table = sddr09_usb_ids,
1784 .soft_unbind = 1,
1785 .no_dynamic_id = 1,
1786};
1787
1788module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME);