Linux Audio

Check our new training course

Loading...
v3.1
   1/* Driver for SanDisk SDDR-09 SmartMedia reader
 
   2 *
   3 *   (c) 2000, 2001 Robert Baruch (autophile@starband.net)
   4 *   (c) 2002 Andries Brouwer (aeb@cwi.nl)
   5 * Developed with the assistance of:
   6 *   (c) 2002 Alan Stern <stern@rowland.org>
   7 *
   8 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
   9 * This chip is a programmable USB controller. In the SDDR-09, it has
  10 * been programmed to obey a certain limited set of SCSI commands.
  11 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
  12 * commands.
  13 *
  14 * This program is free software; you can redistribute it and/or modify it
  15 * under the terms of the GNU General Public License as published by the
  16 * Free Software Foundation; either version 2, or (at your option) any
  17 * later version.
  18 *
  19 * This program is distributed in the hope that it will be useful, but
  20 * WITHOUT ANY WARRANTY; without even the implied warranty of
  21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  22 * General Public License for more details.
  23 *
  24 * You should have received a copy of the GNU General Public License along
  25 * with this program; if not, write to the Free Software Foundation, Inc.,
  26 * 675 Mass Ave, Cambridge, MA 02139, USA.
  27 */
  28
  29/*
  30 * Known vendor commands: 12 bytes, first byte is opcode
  31 *
  32 * E7: read scatter gather
  33 * E8: read
  34 * E9: write
  35 * EA: erase
  36 * EB: reset
  37 * EC: read status
  38 * ED: read ID
  39 * EE: write CIS (?)
  40 * EF: compute checksum (?)
  41 */
  42
  43#include <linux/errno.h>
  44#include <linux/module.h>
  45#include <linux/slab.h>
  46
  47#include <scsi/scsi.h>
  48#include <scsi/scsi_cmnd.h>
  49#include <scsi/scsi_device.h>
  50
  51#include "usb.h"
  52#include "transport.h"
  53#include "protocol.h"
  54#include "debug.h"
 
 
 
  55
  56MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
  57MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
  58MODULE_LICENSE("GPL");
  59
  60static int usb_stor_sddr09_dpcm_init(struct us_data *us);
  61static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
  62static int usb_stor_sddr09_init(struct us_data *us);
  63
  64
  65/*
  66 * The table of devices
  67 */
  68#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
  69		    vendorName, productName, useProtocol, useTransport, \
  70		    initFunction, flags) \
  71{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
  72  .driver_info = (flags)|(USB_US_TYPE_STOR<<24) }
  73
  74struct usb_device_id sddr09_usb_ids[] = {
  75#	include "unusual_sddr09.h"
  76	{ }		/* Terminating entry */
  77};
  78MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
  79
  80#undef UNUSUAL_DEV
  81
  82/*
  83 * The flags table
  84 */
  85#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
  86		    vendor_name, product_name, use_protocol, use_transport, \
  87		    init_function, Flags) \
  88{ \
  89	.vendorName = vendor_name,	\
  90	.productName = product_name,	\
  91	.useProtocol = use_protocol,	\
  92	.useTransport = use_transport,	\
  93	.initFunction = init_function,	\
  94}
  95
  96static struct us_unusual_dev sddr09_unusual_dev_list[] = {
  97#	include "unusual_sddr09.h"
  98	{ }		/* Terminating entry */
  99};
 100
 101#undef UNUSUAL_DEV
 102
 103
 104#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
 105#define LSB_of(s) ((s)&0xFF)
 106#define MSB_of(s) ((s)>>8)
 107
 108/* #define US_DEBUGP printk */
 109
 110/*
 111 * First some stuff that does not belong here:
 112 * data on SmartMedia and other cards, completely
 113 * unrelated to this driver.
 114 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
 115 */
 116
 117struct nand_flash_dev {
 118	int model_id;
 119	int chipshift;		/* 1<<cs bytes total capacity */
 120	char pageshift;		/* 1<<ps bytes in a page */
 121	char blockshift;	/* 1<<bs pages in an erase block */
 122	char zoneshift;		/* 1<<zs blocks in a zone */
 123				/* # of logical blocks is 125/128 of this */
 124	char pageadrlen;	/* length of an address in bytes - 1 */
 125};
 126
 127/*
 128 * NAND Flash Manufacturer ID Codes
 129 */
 130#define NAND_MFR_AMD		0x01
 131#define NAND_MFR_NATSEMI	0x8f
 132#define NAND_MFR_TOSHIBA	0x98
 133#define NAND_MFR_SAMSUNG	0xec
 134
 135static inline char *nand_flash_manufacturer(int manuf_id) {
 136	switch(manuf_id) {
 137	case NAND_MFR_AMD:
 138		return "AMD";
 139	case NAND_MFR_NATSEMI:
 140		return "NATSEMI";
 141	case NAND_MFR_TOSHIBA:
 142		return "Toshiba";
 143	case NAND_MFR_SAMSUNG:
 144		return "Samsung";
 145	default:
 146		return "unknown";
 147	}
 148}
 149
 150/*
 151 * It looks like it is unnecessary to attach manufacturer to the
 152 * remaining data: SSFDC prescribes manufacturer-independent id codes.
 153 *
 154 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
 155 */
 156
 157static struct nand_flash_dev nand_flash_ids[] = {
 158	/* NAND flash */
 159	{ 0x6e, 20, 8, 4, 8, 2},	/* 1 MB */
 160	{ 0xe8, 20, 8, 4, 8, 2},	/* 1 MB */
 161	{ 0xec, 20, 8, 4, 8, 2},	/* 1 MB */
 162	{ 0x64, 21, 8, 4, 9, 2}, 	/* 2 MB */
 163	{ 0xea, 21, 8, 4, 9, 2},	/* 2 MB */
 164	{ 0x6b, 22, 9, 4, 9, 2},	/* 4 MB */
 165	{ 0xe3, 22, 9, 4, 9, 2},	/* 4 MB */
 166	{ 0xe5, 22, 9, 4, 9, 2},	/* 4 MB */
 167	{ 0xe6, 23, 9, 4, 10, 2},	/* 8 MB */
 168	{ 0x73, 24, 9, 5, 10, 2},	/* 16 MB */
 169	{ 0x75, 25, 9, 5, 10, 2},	/* 32 MB */
 170	{ 0x76, 26, 9, 5, 10, 3},	/* 64 MB */
 171	{ 0x79, 27, 9, 5, 10, 3},	/* 128 MB */
 172
 173	/* MASK ROM */
 174	{ 0x5d, 21, 9, 4, 8, 2},	/* 2 MB */
 175	{ 0xd5, 22, 9, 4, 9, 2},	/* 4 MB */
 176	{ 0xd6, 23, 9, 4, 10, 2},	/* 8 MB */
 177	{ 0x57, 24, 9, 4, 11, 2},	/* 16 MB */
 178	{ 0x58, 25, 9, 4, 12, 2},	/* 32 MB */
 179	{ 0,}
 180};
 181
 182static struct nand_flash_dev *
 183nand_find_id(unsigned char id) {
 184	int i;
 185
 186	for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
 187		if (nand_flash_ids[i].model_id == id)
 188			return &(nand_flash_ids[i]);
 189	return NULL;
 190}
 191
 192/*
 193 * ECC computation.
 194 */
 195static unsigned char parity[256];
 196static unsigned char ecc2[256];
 197
 198static void nand_init_ecc(void) {
 199	int i, j, a;
 200
 201	parity[0] = 0;
 202	for (i = 1; i < 256; i++)
 203		parity[i] = (parity[i&(i-1)] ^ 1);
 204
 205	for (i = 0; i < 256; i++) {
 206		a = 0;
 207		for (j = 0; j < 8; j++) {
 208			if (i & (1<<j)) {
 209				if ((j & 1) == 0)
 210					a ^= 0x04;
 211				if ((j & 2) == 0)
 212					a ^= 0x10;
 213				if ((j & 4) == 0)
 214					a ^= 0x40;
 215			}
 216		}
 217		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
 218	}
 219}
 220
 221/* compute 3-byte ecc on 256 bytes */
 222static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
 223	int i, j, a;
 224	unsigned char par, bit, bits[8];
 225
 226	par = 0;
 227	for (j = 0; j < 8; j++)
 228		bits[j] = 0;
 229
 230	/* collect 16 checksum bits */
 231	for (i = 0; i < 256; i++) {
 232		par ^= data[i];
 233		bit = parity[data[i]];
 234		for (j = 0; j < 8; j++)
 235			if ((i & (1<<j)) == 0)
 236				bits[j] ^= bit;
 237	}
 238
 239	/* put 4+4+4 = 12 bits in the ecc */
 240	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
 241	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 242
 243	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
 244	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 245
 246	ecc[2] = ecc2[par];
 247}
 248
 249static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
 250	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
 251}
 252
 253static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
 254	memcpy(data, ecc, 3);
 255}
 256
 257/*
 258 * The actual driver starts here.
 259 */
 260
 261struct sddr09_card_info {
 262	unsigned long	capacity;	/* Size of card in bytes */
 263	int		pagesize;	/* Size of page in bytes */
 264	int		pageshift;	/* log2 of pagesize */
 265	int		blocksize;	/* Size of block in pages */
 266	int		blockshift;	/* log2 of blocksize */
 267	int		blockmask;	/* 2^blockshift - 1 */
 268	int		*lba_to_pba;	/* logical to physical map */
 269	int		*pba_to_lba;	/* physical to logical map */
 270	int		lbact;		/* number of available pages */
 271	int		flags;
 272#define	SDDR09_WP	1		/* write protected */
 273};
 274
 275/*
 276 * On my 16MB card, control blocks have size 64 (16 real control bytes,
 277 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
 278 * so the reader makes up the remaining 48. Don't know whether these numbers
 279 * depend on the card. For now a constant.
 280 */
 281#define CONTROL_SHIFT 6
 282
 283/*
 284 * On my Combo CF/SM reader, the SM reader has LUN 1.
 285 * (and things fail with LUN 0).
 286 * It seems LUN is irrelevant for others.
 287 */
 288#define LUN	1
 289#define	LUNBITS	(LUN << 5)
 290
 291/*
 292 * LBA and PBA are unsigned ints. Special values.
 293 */
 294#define UNDEF    0xffffffff
 295#define SPARE    0xfffffffe
 296#define UNUSABLE 0xfffffffd
 297
 298static const int erase_bad_lba_entries = 0;
 299
 300/* send vendor interface command (0x41) */
 301/* called for requests 0, 1, 8 */
 302static int
 303sddr09_send_command(struct us_data *us,
 304		    unsigned char request,
 305		    unsigned char direction,
 306		    unsigned char *xfer_data,
 307		    unsigned int xfer_len) {
 308	unsigned int pipe;
 309	unsigned char requesttype = (0x41 | direction);
 310	int rc;
 311
 312	// Get the receive or send control pipe number
 313
 314	if (direction == USB_DIR_IN)
 315		pipe = us->recv_ctrl_pipe;
 316	else
 317		pipe = us->send_ctrl_pipe;
 318
 319	rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
 320				   0, 0, xfer_data, xfer_len);
 321	switch (rc) {
 322		case USB_STOR_XFER_GOOD:	return 0;
 323		case USB_STOR_XFER_STALLED:	return -EPIPE;
 324		default:			return -EIO;
 325	}
 326}
 327
 328static int
 329sddr09_send_scsi_command(struct us_data *us,
 330			 unsigned char *command,
 331			 unsigned int command_len) {
 332	return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
 333}
 334
 335#if 0
 336/*
 337 * Test Unit Ready Command: 12 bytes.
 338 * byte 0: opcode: 00
 339 */
 340static int
 341sddr09_test_unit_ready(struct us_data *us) {
 342	unsigned char *command = us->iobuf;
 343	int result;
 344
 345	memset(command, 0, 6);
 346	command[1] = LUNBITS;
 347
 348	result = sddr09_send_scsi_command(us, command, 6);
 349
 350	US_DEBUGP("sddr09_test_unit_ready returns %d\n", result);
 351
 352	return result;
 353}
 354#endif
 355
 356/*
 357 * Request Sense Command: 12 bytes.
 358 * byte 0: opcode: 03
 359 * byte 4: data length
 360 */
 361static int
 362sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
 363	unsigned char *command = us->iobuf;
 364	int result;
 365
 366	memset(command, 0, 12);
 367	command[0] = 0x03;
 368	command[1] = LUNBITS;
 369	command[4] = buflen;
 370
 371	result = sddr09_send_scsi_command(us, command, 12);
 372	if (result)
 373		return result;
 374
 375	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 376			sensebuf, buflen, NULL);
 377	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 378}
 379
 380/*
 381 * Read Command: 12 bytes.
 382 * byte 0: opcode: E8
 383 * byte 1: last two bits: 00: read data, 01: read blockwise control,
 384 *			10: read both, 11: read pagewise control.
 385 *	 It turns out we need values 20, 21, 22, 23 here (LUN 1).
 386 * bytes 2-5: address (interpretation depends on byte 1, see below)
 387 * bytes 10-11: count (idem)
 388 *
 389 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
 390 * A read data command gets data in 512-byte pages.
 391 * A read control command gets control in 64-byte chunks.
 392 * A read both command gets data+control in 576-byte chunks.
 393 *
 394 * Blocks are groups of 32 pages, and read blockwise control jumps to the
 395 * next block, while read pagewise control jumps to the next page after
 396 * reading a group of 64 control bytes.
 397 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
 398 *
 399 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
 400 */
 401
 402static int
 403sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
 404	     int nr_of_pages, int bulklen, unsigned char *buf,
 405	     int use_sg) {
 406
 407	unsigned char *command = us->iobuf;
 408	int result;
 409
 410	command[0] = 0xE8;
 411	command[1] = LUNBITS | x;
 412	command[2] = MSB_of(fromaddress>>16);
 413	command[3] = LSB_of(fromaddress>>16); 
 414	command[4] = MSB_of(fromaddress & 0xFFFF);
 415	command[5] = LSB_of(fromaddress & 0xFFFF); 
 416	command[6] = 0;
 417	command[7] = 0;
 418	command[8] = 0;
 419	command[9] = 0;
 420	command[10] = MSB_of(nr_of_pages);
 421	command[11] = LSB_of(nr_of_pages);
 422
 423	result = sddr09_send_scsi_command(us, command, 12);
 424
 425	if (result) {
 426		US_DEBUGP("Result for send_control in sddr09_read2%d %d\n",
 427			  x, result);
 428		return result;
 429	}
 430
 431	result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
 432				       buf, bulklen, use_sg, NULL);
 433
 434	if (result != USB_STOR_XFER_GOOD) {
 435		US_DEBUGP("Result for bulk_transfer in sddr09_read2%d %d\n",
 436			  x, result);
 437		return -EIO;
 438	}
 439	return 0;
 440}
 441
 442/*
 443 * Read Data
 444 *
 445 * fromaddress counts data shorts:
 446 * increasing it by 256 shifts the bytestream by 512 bytes;
 447 * the last 8 bits are ignored.
 448 *
 449 * nr_of_pages counts pages of size (1 << pageshift).
 450 */
 451static int
 452sddr09_read20(struct us_data *us, unsigned long fromaddress,
 453	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 454	int bulklen = nr_of_pages << pageshift;
 455
 456	/* The last 8 bits of fromaddress are ignored. */
 457	return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
 458			    buf, use_sg);
 459}
 460
 461/*
 462 * Read Blockwise Control
 463 *
 464 * fromaddress gives the starting position (as in read data;
 465 * the last 8 bits are ignored); increasing it by 32*256 shifts
 466 * the output stream by 64 bytes.
 467 *
 468 * count counts control groups of size (1 << controlshift).
 469 * For me, controlshift = 6. Is this constant?
 470 *
 471 * After getting one control group, jump to the next block
 472 * (fromaddress += 8192).
 473 */
 474static int
 475sddr09_read21(struct us_data *us, unsigned long fromaddress,
 476	      int count, int controlshift, unsigned char *buf, int use_sg) {
 477
 478	int bulklen = (count << controlshift);
 479	return sddr09_readX(us, 1, fromaddress, count, bulklen,
 480			    buf, use_sg);
 481}
 482
 483/*
 484 * Read both Data and Control
 485 *
 486 * fromaddress counts data shorts, ignoring control:
 487 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
 488 * the last 8 bits are ignored.
 489 *
 490 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
 491 */
 492static int
 493sddr09_read22(struct us_data *us, unsigned long fromaddress,
 494	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 495
 496	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 497	US_DEBUGP("sddr09_read22: reading %d pages, %d bytes\n",
 498		  nr_of_pages, bulklen);
 499	return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
 500			    buf, use_sg);
 501}
 502
 503#if 0
 504/*
 505 * Read Pagewise Control
 506 *
 507 * fromaddress gives the starting position (as in read data;
 508 * the last 8 bits are ignored); increasing it by 256 shifts
 509 * the output stream by 64 bytes.
 510 *
 511 * count counts control groups of size (1 << controlshift).
 512 * For me, controlshift = 6. Is this constant?
 513 *
 514 * After getting one control group, jump to the next page
 515 * (fromaddress += 256).
 516 */
 517static int
 518sddr09_read23(struct us_data *us, unsigned long fromaddress,
 519	      int count, int controlshift, unsigned char *buf, int use_sg) {
 520
 521	int bulklen = (count << controlshift);
 522	return sddr09_readX(us, 3, fromaddress, count, bulklen,
 523			    buf, use_sg);
 524}
 525#endif
 526
 527/*
 528 * Erase Command: 12 bytes.
 529 * byte 0: opcode: EA
 530 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 531 * 
 532 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
 533 * The byte address being erased is 2*Eaddress.
 534 * The CIS cannot be erased.
 535 */
 536static int
 537sddr09_erase(struct us_data *us, unsigned long Eaddress) {
 538	unsigned char *command = us->iobuf;
 539	int result;
 540
 541	US_DEBUGP("sddr09_erase: erase address %lu\n", Eaddress);
 542
 543	memset(command, 0, 12);
 544	command[0] = 0xEA;
 545	command[1] = LUNBITS;
 546	command[6] = MSB_of(Eaddress>>16);
 547	command[7] = LSB_of(Eaddress>>16);
 548	command[8] = MSB_of(Eaddress & 0xFFFF);
 549	command[9] = LSB_of(Eaddress & 0xFFFF);
 550
 551	result = sddr09_send_scsi_command(us, command, 12);
 552
 553	if (result)
 554		US_DEBUGP("Result for send_control in sddr09_erase %d\n",
 555			  result);
 556
 557	return result;
 558}
 559
 560/*
 561 * Write CIS Command: 12 bytes.
 562 * byte 0: opcode: EE
 563 * bytes 2-5: write address in shorts
 564 * bytes 10-11: sector count
 565 *
 566 * This writes at the indicated address. Don't know how it differs
 567 * from E9. Maybe it does not erase? However, it will also write to
 568 * the CIS.
 569 *
 570 * When two such commands on the same page follow each other directly,
 571 * the second one is not done.
 572 */
 573
 574/*
 575 * Write Command: 12 bytes.
 576 * byte 0: opcode: E9
 577 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
 578 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 579 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
 580 *
 581 * If write address equals erase address, the erase is done first,
 582 * otherwise the write is done first. When erase address equals zero
 583 * no erase is done?
 584 */
 585static int
 586sddr09_writeX(struct us_data *us,
 587	      unsigned long Waddress, unsigned long Eaddress,
 588	      int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
 589
 590	unsigned char *command = us->iobuf;
 591	int result;
 592
 593	command[0] = 0xE9;
 594	command[1] = LUNBITS;
 595
 596	command[2] = MSB_of(Waddress>>16);
 597	command[3] = LSB_of(Waddress>>16);
 598	command[4] = MSB_of(Waddress & 0xFFFF);
 599	command[5] = LSB_of(Waddress & 0xFFFF);
 600
 601	command[6] = MSB_of(Eaddress>>16);
 602	command[7] = LSB_of(Eaddress>>16);
 603	command[8] = MSB_of(Eaddress & 0xFFFF);
 604	command[9] = LSB_of(Eaddress & 0xFFFF);
 605
 606	command[10] = MSB_of(nr_of_pages);
 607	command[11] = LSB_of(nr_of_pages);
 608
 609	result = sddr09_send_scsi_command(us, command, 12);
 610
 611	if (result) {
 612		US_DEBUGP("Result for send_control in sddr09_writeX %d\n",
 613			  result);
 614		return result;
 615	}
 616
 617	result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
 618				       buf, bulklen, use_sg, NULL);
 619
 620	if (result != USB_STOR_XFER_GOOD) {
 621		US_DEBUGP("Result for bulk_transfer in sddr09_writeX %d\n",
 622			  result);
 623		return -EIO;
 624	}
 625	return 0;
 626}
 627
 628/* erase address, write same address */
 629static int
 630sddr09_write_inplace(struct us_data *us, unsigned long address,
 631		     int nr_of_pages, int pageshift, unsigned char *buf,
 632		     int use_sg) {
 633	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 634	return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
 635			     buf, use_sg);
 636}
 637
 638#if 0
 639/*
 640 * Read Scatter Gather Command: 3+4n bytes.
 641 * byte 0: opcode E7
 642 * byte 2: n
 643 * bytes 4i-1,4i,4i+1: page address
 644 * byte 4i+2: page count
 645 * (i=1..n)
 646 *
 647 * This reads several pages from the card to a single memory buffer.
 648 * The last two bits of byte 1 have the same meaning as for E8.
 649 */
 650static int
 651sddr09_read_sg_test_only(struct us_data *us) {
 652	unsigned char *command = us->iobuf;
 653	int result, bulklen, nsg, ct;
 654	unsigned char *buf;
 655	unsigned long address;
 656
 657	nsg = bulklen = 0;
 658	command[0] = 0xE7;
 659	command[1] = LUNBITS;
 660	command[2] = 0;
 661	address = 040000; ct = 1;
 662	nsg++;
 663	bulklen += (ct << 9);
 664	command[4*nsg+2] = ct;
 665	command[4*nsg+1] = ((address >> 9) & 0xFF);
 666	command[4*nsg+0] = ((address >> 17) & 0xFF);
 667	command[4*nsg-1] = ((address >> 25) & 0xFF);
 668
 669	address = 0340000; ct = 1;
 670	nsg++;
 671	bulklen += (ct << 9);
 672	command[4*nsg+2] = ct;
 673	command[4*nsg+1] = ((address >> 9) & 0xFF);
 674	command[4*nsg+0] = ((address >> 17) & 0xFF);
 675	command[4*nsg-1] = ((address >> 25) & 0xFF);
 676
 677	address = 01000000; ct = 2;
 678	nsg++;
 679	bulklen += (ct << 9);
 680	command[4*nsg+2] = ct;
 681	command[4*nsg+1] = ((address >> 9) & 0xFF);
 682	command[4*nsg+0] = ((address >> 17) & 0xFF);
 683	command[4*nsg-1] = ((address >> 25) & 0xFF);
 684
 685	command[2] = nsg;
 686
 687	result = sddr09_send_scsi_command(us, command, 4*nsg+3);
 688
 689	if (result) {
 690		US_DEBUGP("Result for send_control in sddr09_read_sg %d\n",
 691			  result);
 692		return result;
 693	}
 694
 695	buf = kmalloc(bulklen, GFP_NOIO);
 696	if (!buf)
 697		return -ENOMEM;
 698
 699	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 700				       buf, bulklen, NULL);
 701	kfree(buf);
 702	if (result != USB_STOR_XFER_GOOD) {
 703		US_DEBUGP("Result for bulk_transfer in sddr09_read_sg %d\n",
 704			  result);
 705		return -EIO;
 706	}
 707
 708	return 0;
 709}
 710#endif
 711
 712/*
 713 * Read Status Command: 12 bytes.
 714 * byte 0: opcode: EC
 715 *
 716 * Returns 64 bytes, all zero except for the first.
 717 * bit 0: 1: Error
 718 * bit 5: 1: Suspended
 719 * bit 6: 1: Ready
 720 * bit 7: 1: Not write-protected
 721 */
 722
 723static int
 724sddr09_read_status(struct us_data *us, unsigned char *status) {
 725
 726	unsigned char *command = us->iobuf;
 727	unsigned char *data = us->iobuf;
 728	int result;
 729
 730	US_DEBUGP("Reading status...\n");
 731
 732	memset(command, 0, 12);
 733	command[0] = 0xEC;
 734	command[1] = LUNBITS;
 735
 736	result = sddr09_send_scsi_command(us, command, 12);
 737	if (result)
 738		return result;
 739
 740	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 741				       data, 64, NULL);
 742	*status = data[0];
 743	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 744}
 745
 746static int
 747sddr09_read_data(struct us_data *us,
 748		 unsigned long address,
 749		 unsigned int sectors) {
 750
 751	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 752	unsigned char *buffer;
 753	unsigned int lba, maxlba, pba;
 754	unsigned int page, pages;
 755	unsigned int len, offset;
 756	struct scatterlist *sg;
 757	int result;
 758
 759	// Figure out the initial LBA and page
 760	lba = address >> info->blockshift;
 761	page = (address & info->blockmask);
 762	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 763	if (lba >= maxlba)
 764		return -EIO;
 765
 766	// Since we only read in one block at a time, we have to create
 767	// a bounce buffer and move the data a piece at a time between the
 768	// bounce buffer and the actual transfer buffer.
 769
 770	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
 771	buffer = kmalloc(len, GFP_NOIO);
 772	if (buffer == NULL) {
 773		printk(KERN_WARNING "sddr09_read_data: Out of memory\n");
 774		return -ENOMEM;
 775	}
 776
 777	// This could be made much more efficient by checking for
 778	// contiguous LBA's. Another exercise left to the student.
 779
 780	result = 0;
 781	offset = 0;
 782	sg = NULL;
 783
 784	while (sectors > 0) {
 785
 786		/* Find number of pages we can read in this block */
 787		pages = min(sectors, info->blocksize - page);
 788		len = pages << info->pageshift;
 789
 790		/* Not overflowing capacity? */
 791		if (lba >= maxlba) {
 792			US_DEBUGP("Error: Requested lba %u exceeds "
 793				  "maximum %u\n", lba, maxlba);
 794			result = -EIO;
 795			break;
 796		}
 797
 798		/* Find where this lba lives on disk */
 799		pba = info->lba_to_pba[lba];
 800
 801		if (pba == UNDEF) {	/* this lba was never written */
 802
 803			US_DEBUGP("Read %d zero pages (LBA %d) page %d\n",
 804				  pages, lba, page);
 805
 806			/* This is not really an error. It just means
 807			   that the block has never been written.
 808			   Instead of returning an error
 809			   it is better to return all zero data. */
 
 
 810
 811			memset(buffer, 0, len);
 812
 813		} else {
 814			US_DEBUGP("Read %d pages, from PBA %d"
 815				  " (LBA %d) page %d\n",
 816				  pages, pba, lba, page);
 817
 818			address = ((pba << info->blockshift) + page) << 
 819				info->pageshift;
 820
 821			result = sddr09_read20(us, address>>1,
 822					pages, info->pageshift, buffer, 0);
 823			if (result)
 824				break;
 825		}
 826
 827		// Store the data in the transfer buffer
 828		usb_stor_access_xfer_buf(buffer, len, us->srb,
 829				&sg, &offset, TO_XFER_BUF);
 830
 831		page = 0;
 832		lba++;
 833		sectors -= pages;
 834	}
 835
 836	kfree(buffer);
 837	return result;
 838}
 839
 840static unsigned int
 841sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
 842	static unsigned int lastpba = 1;
 843	int zonestart, end, i;
 844
 845	zonestart = (lba/1000) << 10;
 846	end = info->capacity >> (info->blockshift + info->pageshift);
 847	end -= zonestart;
 848	if (end > 1024)
 849		end = 1024;
 850
 851	for (i = lastpba+1; i < end; i++) {
 852		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 853			lastpba = i;
 854			return zonestart+i;
 855		}
 856	}
 857	for (i = 0; i <= lastpba; i++) {
 858		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 859			lastpba = i;
 860			return zonestart+i;
 861		}
 862	}
 863	return 0;
 864}
 865
 866static int
 867sddr09_write_lba(struct us_data *us, unsigned int lba,
 868		 unsigned int page, unsigned int pages,
 869		 unsigned char *ptr, unsigned char *blockbuffer) {
 870
 871	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 872	unsigned long address;
 873	unsigned int pba, lbap;
 874	unsigned int pagelen;
 875	unsigned char *bptr, *cptr, *xptr;
 876	unsigned char ecc[3];
 877	int i, result, isnew;
 878
 879	lbap = ((lba % 1000) << 1) | 0x1000;
 880	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
 881		lbap ^= 1;
 882	pba = info->lba_to_pba[lba];
 883	isnew = 0;
 884
 885	if (pba == UNDEF) {
 886		pba = sddr09_find_unused_pba(info, lba);
 887		if (!pba) {
 888			printk(KERN_WARNING
 889			       "sddr09_write_lba: Out of unused blocks\n");
 890			return -ENOSPC;
 891		}
 892		info->pba_to_lba[pba] = lba;
 893		info->lba_to_pba[lba] = pba;
 894		isnew = 1;
 895	}
 896
 897	if (pba == 1) {
 898		/* Maybe it is impossible to write to PBA 1.
 899		   Fake success, but don't do anything. */
 
 
 900		printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
 901		return 0;
 902	}
 903
 904	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 905
 906	/* read old contents */
 907	address = (pba << (info->pageshift + info->blockshift));
 908	result = sddr09_read22(us, address>>1, info->blocksize,
 909			       info->pageshift, blockbuffer, 0);
 910	if (result)
 911		return result;
 912
 913	/* check old contents and fill lba */
 914	for (i = 0; i < info->blocksize; i++) {
 915		bptr = blockbuffer + i*pagelen;
 916		cptr = bptr + info->pagesize;
 917		nand_compute_ecc(bptr, ecc);
 918		if (!nand_compare_ecc(cptr+13, ecc)) {
 919			US_DEBUGP("Warning: bad ecc in page %d- of pba %d\n",
 920				  i, pba);
 921			nand_store_ecc(cptr+13, ecc);
 922		}
 923		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 924		if (!nand_compare_ecc(cptr+8, ecc)) {
 925			US_DEBUGP("Warning: bad ecc in page %d+ of pba %d\n",
 926				  i, pba);
 927			nand_store_ecc(cptr+8, ecc);
 928		}
 929		cptr[6] = cptr[11] = MSB_of(lbap);
 930		cptr[7] = cptr[12] = LSB_of(lbap);
 931	}
 932
 933	/* copy in new stuff and compute ECC */
 934	xptr = ptr;
 935	for (i = page; i < page+pages; i++) {
 936		bptr = blockbuffer + i*pagelen;
 937		cptr = bptr + info->pagesize;
 938		memcpy(bptr, xptr, info->pagesize);
 939		xptr += info->pagesize;
 940		nand_compute_ecc(bptr, ecc);
 941		nand_store_ecc(cptr+13, ecc);
 942		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 943		nand_store_ecc(cptr+8, ecc);
 944	}
 945
 946	US_DEBUGP("Rewrite PBA %d (LBA %d)\n", pba, lba);
 947
 948	result = sddr09_write_inplace(us, address>>1, info->blocksize,
 949				      info->pageshift, blockbuffer, 0);
 950
 951	US_DEBUGP("sddr09_write_inplace returns %d\n", result);
 952
 953#if 0
 954	{
 955		unsigned char status = 0;
 956		int result2 = sddr09_read_status(us, &status);
 957		if (result2)
 958			US_DEBUGP("sddr09_write_inplace: cannot read status\n");
 959		else if (status != 0xc0)
 960			US_DEBUGP("sddr09_write_inplace: status after write: 0x%x\n",
 961				  status);
 962	}
 963#endif
 964
 965#if 0
 966	{
 967		int result2 = sddr09_test_unit_ready(us);
 968	}
 969#endif
 970
 971	return result;
 972}
 973
 974static int
 975sddr09_write_data(struct us_data *us,
 976		  unsigned long address,
 977		  unsigned int sectors) {
 978
 979	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 980	unsigned int lba, maxlba, page, pages;
 981	unsigned int pagelen, blocklen;
 982	unsigned char *blockbuffer;
 983	unsigned char *buffer;
 984	unsigned int len, offset;
 985	struct scatterlist *sg;
 986	int result;
 987
 988	// Figure out the initial LBA and page
 989	lba = address >> info->blockshift;
 990	page = (address & info->blockmask);
 991	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 992	if (lba >= maxlba)
 993		return -EIO;
 994
 995	// blockbuffer is used for reading in the old data, overwriting
 996	// with the new data, and performing ECC calculations
 
 
 997
 998	/* TODO: instead of doing kmalloc/kfree for each write,
 999	   add a bufferpointer to the info structure */
 
 
1000
1001	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
1002	blocklen = (pagelen << info->blockshift);
1003	blockbuffer = kmalloc(blocklen, GFP_NOIO);
1004	if (!blockbuffer) {
1005		printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1006		return -ENOMEM;
1007	}
1008
1009	// Since we don't write the user data directly to the device,
1010	// we have to create a bounce buffer and move the data a piece
1011	// at a time between the bounce buffer and the actual transfer buffer.
 
 
1012
1013	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1014	buffer = kmalloc(len, GFP_NOIO);
1015	if (buffer == NULL) {
1016		printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1017		kfree(blockbuffer);
1018		return -ENOMEM;
1019	}
1020
1021	result = 0;
1022	offset = 0;
1023	sg = NULL;
1024
1025	while (sectors > 0) {
1026
1027		// Write as many sectors as possible in this block
1028
1029		pages = min(sectors, info->blocksize - page);
1030		len = (pages << info->pageshift);
1031
1032		/* Not overflowing capacity? */
1033		if (lba >= maxlba) {
1034			US_DEBUGP("Error: Requested lba %u exceeds "
1035				  "maximum %u\n", lba, maxlba);
1036			result = -EIO;
1037			break;
1038		}
1039
1040		// Get the data from the transfer buffer
1041		usb_stor_access_xfer_buf(buffer, len, us->srb,
1042				&sg, &offset, FROM_XFER_BUF);
1043
1044		result = sddr09_write_lba(us, lba, page, pages,
1045				buffer, blockbuffer);
1046		if (result)
1047			break;
1048
1049		page = 0;
1050		lba++;
1051		sectors -= pages;
1052	}
1053
1054	kfree(buffer);
1055	kfree(blockbuffer);
1056
1057	return result;
1058}
1059
1060static int
1061sddr09_read_control(struct us_data *us,
1062		unsigned long address,
1063		unsigned int blocks,
1064		unsigned char *content,
1065		int use_sg) {
1066
1067	US_DEBUGP("Read control address %lu, blocks %d\n",
1068		address, blocks);
1069
1070	return sddr09_read21(us, address, blocks,
1071			     CONTROL_SHIFT, content, use_sg);
1072}
1073
1074/*
1075 * Read Device ID Command: 12 bytes.
1076 * byte 0: opcode: ED
1077 *
1078 * Returns 2 bytes: Manufacturer ID and Device ID.
1079 * On more recent cards 3 bytes: the third byte is an option code A5
1080 * signifying that the secret command to read an 128-bit ID is available.
1081 * On still more recent cards 4 bytes: the fourth byte C0 means that
1082 * a second read ID cmd is available.
1083 */
1084static int
1085sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1086	unsigned char *command = us->iobuf;
1087	unsigned char *content = us->iobuf;
1088	int result, i;
1089
1090	memset(command, 0, 12);
1091	command[0] = 0xED;
1092	command[1] = LUNBITS;
1093
1094	result = sddr09_send_scsi_command(us, command, 12);
1095	if (result)
1096		return result;
1097
1098	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1099			content, 64, NULL);
1100
1101	for (i = 0; i < 4; i++)
1102		deviceID[i] = content[i];
1103
1104	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1105}
1106
1107static int
1108sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1109	int result;
1110	unsigned char status;
 
1111
1112	result = sddr09_read_status(us, &status);
1113	if (result) {
1114		US_DEBUGP("sddr09_get_wp: read_status fails\n");
1115		return result;
1116	}
1117	US_DEBUGP("sddr09_get_wp: status 0x%02X", status);
1118	if ((status & 0x80) == 0) {
1119		info->flags |= SDDR09_WP;	/* write protected */
1120		US_DEBUGP(" WP");
 
 
1121	}
1122	if (status & 0x40)
1123		US_DEBUGP(" Ready");
1124	if (status & LUNBITS)
1125		US_DEBUGP(" Suspended");
1126	if (status & 0x1)
1127		US_DEBUGP(" Error");
1128	US_DEBUGP("\n");
1129	return 0;
1130}
1131
1132#if 0
1133/*
1134 * Reset Command: 12 bytes.
1135 * byte 0: opcode: EB
1136 */
1137static int
1138sddr09_reset(struct us_data *us) {
1139
1140	unsigned char *command = us->iobuf;
1141
1142	memset(command, 0, 12);
1143	command[0] = 0xEB;
1144	command[1] = LUNBITS;
1145
1146	return sddr09_send_scsi_command(us, command, 12);
1147}
1148#endif
1149
1150static struct nand_flash_dev *
1151sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1152	struct nand_flash_dev *cardinfo;
1153	unsigned char deviceID[4];
1154	char blurbtxt[256];
1155	int result;
1156
1157	US_DEBUGP("Reading capacity...\n");
1158
1159	result = sddr09_read_deviceID(us, deviceID);
1160
1161	if (result) {
1162		US_DEBUGP("Result of read_deviceID is %d\n", result);
1163		printk(KERN_WARNING "sddr09: could not read card info\n");
1164		return NULL;
1165	}
1166
1167	sprintf(blurbtxt, "sddr09: Found Flash card, ID = %02X %02X %02X %02X",
1168		deviceID[0], deviceID[1], deviceID[2], deviceID[3]);
1169
1170	/* Byte 0 is the manufacturer */
1171	sprintf(blurbtxt + strlen(blurbtxt),
1172		": Manuf. %s",
1173		nand_flash_manufacturer(deviceID[0]));
1174
1175	/* Byte 1 is the device type */
1176	cardinfo = nand_find_id(deviceID[1]);
1177	if (cardinfo) {
1178		/* MB or MiB? It is neither. A 16 MB card has
1179		   17301504 raw bytes, of which 16384000 are
1180		   usable for user data. */
 
 
1181		sprintf(blurbtxt + strlen(blurbtxt),
1182			", %d MB", 1<<(cardinfo->chipshift - 20));
1183	} else {
1184		sprintf(blurbtxt + strlen(blurbtxt),
1185			", type unrecognized");
1186	}
1187
1188	/* Byte 2 is code to signal availability of 128-bit ID */
1189	if (deviceID[2] == 0xa5) {
1190		sprintf(blurbtxt + strlen(blurbtxt),
1191			", 128-bit ID");
1192	}
1193
1194	/* Byte 3 announces the availability of another read ID command */
1195	if (deviceID[3] == 0xc0) {
1196		sprintf(blurbtxt + strlen(blurbtxt),
1197			", extra cmd");
1198	}
1199
1200	if (flags & SDDR09_WP)
1201		sprintf(blurbtxt + strlen(blurbtxt),
1202			", WP");
1203
1204	printk(KERN_WARNING "%s\n", blurbtxt);
1205
1206	return cardinfo;
1207}
1208
1209static int
1210sddr09_read_map(struct us_data *us) {
1211
1212	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1213	int numblocks, alloc_len, alloc_blocks;
1214	int i, j, result;
1215	unsigned char *buffer, *buffer_end, *ptr;
1216	unsigned int lba, lbact;
1217
1218	if (!info->capacity)
1219		return -1;
1220
1221	// size of a block is 1 << (blockshift + pageshift) bytes
1222	// divide into the total capacity to get the number of blocks
 
 
1223
1224	numblocks = info->capacity >> (info->blockshift + info->pageshift);
1225
1226	// read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1227	// but only use a 64 KB buffer
1228	// buffer size used must be a multiple of (1 << CONTROL_SHIFT)
 
 
1229#define SDDR09_READ_MAP_BUFSZ 65536
1230
1231	alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1232	alloc_len = (alloc_blocks << CONTROL_SHIFT);
1233	buffer = kmalloc(alloc_len, GFP_NOIO);
1234	if (buffer == NULL) {
1235		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1236		result = -1;
1237		goto done;
1238	}
1239	buffer_end = buffer + alloc_len;
1240
1241#undef SDDR09_READ_MAP_BUFSZ
1242
1243	kfree(info->lba_to_pba);
1244	kfree(info->pba_to_lba);
1245	info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1246	info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1247
1248	if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1249		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1250		result = -1;
1251		goto done;
1252	}
1253
1254	for (i = 0; i < numblocks; i++)
1255		info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1256
1257	/*
1258	 * Define lba-pba translation table
1259	 */
1260
1261	ptr = buffer_end;
1262	for (i = 0; i < numblocks; i++) {
1263		ptr += (1 << CONTROL_SHIFT);
1264		if (ptr >= buffer_end) {
1265			unsigned long address;
1266
1267			address = i << (info->pageshift + info->blockshift);
1268			result = sddr09_read_control(
1269				us, address>>1,
1270				min(alloc_blocks, numblocks - i),
1271				buffer, 0);
1272			if (result) {
1273				result = -1;
1274				goto done;
1275			}
1276			ptr = buffer;
1277		}
1278
1279		if (i == 0 || i == 1) {
1280			info->pba_to_lba[i] = UNUSABLE;
1281			continue;
1282		}
1283
1284		/* special PBAs have control field 0^16 */
1285		for (j = 0; j < 16; j++)
1286			if (ptr[j] != 0)
1287				goto nonz;
1288		info->pba_to_lba[i] = UNUSABLE;
1289		printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1290		       i);
1291		continue;
1292
1293	nonz:
1294		/* unwritten PBAs have control field FF^16 */
1295		for (j = 0; j < 16; j++)
1296			if (ptr[j] != 0xff)
1297				goto nonff;
1298		continue;
1299
1300	nonff:
1301		/* normal PBAs start with six FFs */
1302		if (j < 6) {
1303			printk(KERN_WARNING
1304			       "sddr09: PBA %d has no logical mapping: "
1305			       "reserved area = %02X%02X%02X%02X "
1306			       "data status %02X block status %02X\n",
1307			       i, ptr[0], ptr[1], ptr[2], ptr[3],
1308			       ptr[4], ptr[5]);
1309			info->pba_to_lba[i] = UNUSABLE;
1310			continue;
1311		}
1312
1313		if ((ptr[6] >> 4) != 0x01) {
1314			printk(KERN_WARNING
1315			       "sddr09: PBA %d has invalid address field "
1316			       "%02X%02X/%02X%02X\n",
1317			       i, ptr[6], ptr[7], ptr[11], ptr[12]);
1318			info->pba_to_lba[i] = UNUSABLE;
1319			continue;
1320		}
1321
1322		/* check even parity */
1323		if (parity[ptr[6] ^ ptr[7]]) {
1324			printk(KERN_WARNING
1325			       "sddr09: Bad parity in LBA for block %d"
1326			       " (%02X %02X)\n", i, ptr[6], ptr[7]);
1327			info->pba_to_lba[i] = UNUSABLE;
1328			continue;
1329		}
1330
1331		lba = short_pack(ptr[7], ptr[6]);
1332		lba = (lba & 0x07FF) >> 1;
1333
1334		/*
1335		 * Every 1024 physical blocks ("zone"), the LBA numbers
1336		 * go back to zero, but are within a higher block of LBA's.
1337		 * Also, there is a maximum of 1000 LBA's per zone.
1338		 * In other words, in PBA 1024-2047 you will find LBA 0-999
1339		 * which are really LBA 1000-1999. This allows for 24 bad
1340		 * or special physical blocks per zone.
1341		 */
1342
1343		if (lba >= 1000) {
1344			printk(KERN_WARNING
1345			       "sddr09: Bad low LBA %d for block %d\n",
1346			       lba, i);
1347			goto possibly_erase;
1348		}
1349
1350		lba += 1000*(i/0x400);
1351
1352		if (info->lba_to_pba[lba] != UNDEF) {
1353			printk(KERN_WARNING
1354			       "sddr09: LBA %d seen for PBA %d and %d\n",
1355			       lba, info->lba_to_pba[lba], i);
1356			goto possibly_erase;
1357		}
1358
1359		info->pba_to_lba[i] = lba;
1360		info->lba_to_pba[lba] = i;
1361		continue;
1362
1363	possibly_erase:
1364		if (erase_bad_lba_entries) {
1365			unsigned long address;
1366
1367			address = (i << (info->pageshift + info->blockshift));
1368			sddr09_erase(us, address>>1);
1369			info->pba_to_lba[i] = UNDEF;
1370		} else
1371			info->pba_to_lba[i] = UNUSABLE;
1372	}
1373
1374	/*
1375	 * Approximate capacity. This is not entirely correct yet,
1376	 * since a zone with less than 1000 usable pages leads to
1377	 * missing LBAs. Especially if it is the last zone, some
1378	 * LBAs can be past capacity.
1379	 */
1380	lbact = 0;
1381	for (i = 0; i < numblocks; i += 1024) {
1382		int ct = 0;
1383
1384		for (j = 0; j < 1024 && i+j < numblocks; j++) {
1385			if (info->pba_to_lba[i+j] != UNUSABLE) {
1386				if (ct >= 1000)
1387					info->pba_to_lba[i+j] = SPARE;
1388				else
1389					ct++;
1390			}
1391		}
1392		lbact += ct;
1393	}
1394	info->lbact = lbact;
1395	US_DEBUGP("Found %d LBA's\n", lbact);
1396	result = 0;
1397
1398 done:
1399	if (result != 0) {
1400		kfree(info->lba_to_pba);
1401		kfree(info->pba_to_lba);
1402		info->lba_to_pba = NULL;
1403		info->pba_to_lba = NULL;
1404	}
1405	kfree(buffer);
1406	return result;
1407}
1408
1409static void
1410sddr09_card_info_destructor(void *extra) {
1411	struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1412
1413	if (!info)
1414		return;
1415
1416	kfree(info->lba_to_pba);
1417	kfree(info->pba_to_lba);
1418}
1419
1420static int
1421sddr09_common_init(struct us_data *us) {
1422	int result;
1423
1424	/* set the configuration -- STALL is an acceptable response here */
1425	if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1426		US_DEBUGP("active config #%d != 1 ??\n", us->pusb_dev
1427				->actconfig->desc.bConfigurationValue);
1428		return -EINVAL;
1429	}
1430
1431	result = usb_reset_configuration(us->pusb_dev);
1432	US_DEBUGP("Result of usb_reset_configuration is %d\n", result);
1433	if (result == -EPIPE) {
1434		US_DEBUGP("-- stall on control interface\n");
1435	} else if (result != 0) {
1436		/* it's not a stall, but another error -- time to bail */
1437		US_DEBUGP("-- Unknown error.  Rejecting device\n");
1438		return -EINVAL;
1439	}
1440
1441	us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1442	if (!us->extra)
1443		return -ENOMEM;
1444	us->extra_destructor = sddr09_card_info_destructor;
1445
1446	nand_init_ecc();
1447	return 0;
1448}
1449
1450
1451/*
1452 * This is needed at a very early stage. If this is not listed in the
1453 * unusual devices list but called from here then LUN 0 of the combo reader
1454 * is not recognized. But I do not know what precisely these calls do.
1455 */
1456static int
1457usb_stor_sddr09_dpcm_init(struct us_data *us) {
1458	int result;
1459	unsigned char *data = us->iobuf;
1460
1461	result = sddr09_common_init(us);
1462	if (result)
1463		return result;
1464
1465	result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1466	if (result) {
1467		US_DEBUGP("sddr09_init: send_command fails\n");
1468		return result;
1469	}
1470
1471	US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
1472	// get 07 02
1473
1474	result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1475	if (result) {
1476		US_DEBUGP("sddr09_init: 2nd send_command fails\n");
1477		return result;
1478	}
1479
1480	US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
1481	// get 07 00
1482
1483	result = sddr09_request_sense(us, data, 18);
1484	if (result == 0 && data[2] != 0) {
1485		int j;
1486		for (j=0; j<18; j++)
1487			printk(" %02X", data[j]);
1488		printk("\n");
1489		// get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1490		// 70: current command
1491		// sense key 0, sense code 0, extd sense code 0
1492		// additional transfer length * = sizeof(data) - 7
1493		// Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1494		// sense key 06, sense code 28: unit attention,
1495		// not ready to ready transition
1496	}
1497
1498	// test unit ready
1499
1500	return 0;		/* not result */
1501}
1502
1503/*
1504 * Transport for the Microtech DPCM-USB
1505 */
1506static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1507{
1508	int ret;
1509
1510	US_DEBUGP("dpcm_transport: LUN=%d\n", srb->device->lun);
1511
1512	switch (srb->device->lun) {
1513	case 0:
1514
1515		/*
1516		 * LUN 0 corresponds to the CompactFlash card reader.
1517		 */
1518		ret = usb_stor_CB_transport(srb, us);
1519		break;
1520
1521	case 1:
1522
1523		/*
1524		 * LUN 1 corresponds to the SmartMedia card reader.
1525		 */
1526
1527		/*
1528		 * Set the LUN to 0 (just in case).
1529		 */
1530		srb->device->lun = 0;
1531		ret = sddr09_transport(srb, us);
1532		srb->device->lun = 1;
1533		break;
1534
1535	default:
1536		US_DEBUGP("dpcm_transport: Invalid LUN %d\n",
1537				srb->device->lun);
1538		ret = USB_STOR_TRANSPORT_ERROR;
1539		break;
1540	}
1541	return ret;
1542}
1543
1544
1545/*
1546 * Transport for the Sandisk SDDR-09
1547 */
1548static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1549{
1550	static unsigned char sensekey = 0, sensecode = 0;
1551	static unsigned char havefakesense = 0;
1552	int result, i;
1553	unsigned char *ptr = us->iobuf;
1554	unsigned long capacity;
1555	unsigned int page, pages;
1556
1557	struct sddr09_card_info *info;
1558
1559	static unsigned char inquiry_response[8] = {
1560		0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1561	};
1562
1563	/* note: no block descriptor support */
1564	static unsigned char mode_page_01[19] = {
1565		0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1566		0x01, 0x0A,
1567		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1568	};
1569
1570	info = (struct sddr09_card_info *)us->extra;
1571
1572	if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1573		/* for a faked command, we have to follow with a faked sense */
1574		memset(ptr, 0, 18);
1575		ptr[0] = 0x70;
1576		ptr[2] = sensekey;
1577		ptr[7] = 11;
1578		ptr[12] = sensecode;
1579		usb_stor_set_xfer_buf(ptr, 18, srb);
1580		sensekey = sensecode = havefakesense = 0;
1581		return USB_STOR_TRANSPORT_GOOD;
1582	}
1583
1584	havefakesense = 1;
1585
1586	/* Dummy up a response for INQUIRY since SDDR09 doesn't
1587	   respond to INQUIRY commands */
 
 
1588
1589	if (srb->cmnd[0] == INQUIRY) {
1590		memcpy(ptr, inquiry_response, 8);
1591		fill_inquiry_response(us, ptr, 36);
1592		return USB_STOR_TRANSPORT_GOOD;
1593	}
1594
1595	if (srb->cmnd[0] == READ_CAPACITY) {
1596		struct nand_flash_dev *cardinfo;
1597
1598		sddr09_get_wp(us, info);	/* read WP bit */
1599
1600		cardinfo = sddr09_get_cardinfo(us, info->flags);
1601		if (!cardinfo) {
1602			/* probably no media */
1603		init_error:
1604			sensekey = 0x02;	/* not ready */
1605			sensecode = 0x3a;	/* medium not present */
1606			return USB_STOR_TRANSPORT_FAILED;
1607		}
1608
1609		info->capacity = (1 << cardinfo->chipshift);
1610		info->pageshift = cardinfo->pageshift;
1611		info->pagesize = (1 << info->pageshift);
1612		info->blockshift = cardinfo->blockshift;
1613		info->blocksize = (1 << info->blockshift);
1614		info->blockmask = info->blocksize - 1;
1615
1616		// map initialization, must follow get_cardinfo()
1617		if (sddr09_read_map(us)) {
1618			/* probably out of memory */
1619			goto init_error;
1620		}
1621
1622		// Report capacity
1623
1624		capacity = (info->lbact << info->blockshift) - 1;
1625
1626		((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1627
1628		// Report page size
1629
1630		((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1631		usb_stor_set_xfer_buf(ptr, 8, srb);
1632
1633		return USB_STOR_TRANSPORT_GOOD;
1634	}
1635
1636	if (srb->cmnd[0] == MODE_SENSE_10) {
1637		int modepage = (srb->cmnd[2] & 0x3F);
1638
1639		/* They ask for the Read/Write error recovery page,
1640		   or for all pages. */
 
 
1641		/* %% We should check DBD %% */
1642		if (modepage == 0x01 || modepage == 0x3F) {
1643			US_DEBUGP("SDDR09: Dummy up request for "
1644				  "mode page 0x%x\n", modepage);
1645
1646			memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1647			((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1648			ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1649			usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1650			return USB_STOR_TRANSPORT_GOOD;
1651		}
1652
1653		sensekey = 0x05;	/* illegal request */
1654		sensecode = 0x24;	/* invalid field in CDB */
1655		return USB_STOR_TRANSPORT_FAILED;
1656	}
1657
1658	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1659		return USB_STOR_TRANSPORT_GOOD;
1660
1661	havefakesense = 0;
1662
1663	if (srb->cmnd[0] == READ_10) {
1664
1665		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1666		page <<= 16;
1667		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1668		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1669
1670		US_DEBUGP("READ_10: read page %d pagect %d\n",
1671			  page, pages);
1672
1673		result = sddr09_read_data(us, page, pages);
1674		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1675				USB_STOR_TRANSPORT_ERROR);
1676	}
1677
1678	if (srb->cmnd[0] == WRITE_10) {
1679
1680		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1681		page <<= 16;
1682		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1683		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1684
1685		US_DEBUGP("WRITE_10: write page %d pagect %d\n",
1686			  page, pages);
1687
1688		result = sddr09_write_data(us, page, pages);
1689		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1690				USB_STOR_TRANSPORT_ERROR);
1691	}
1692
1693	/* catch-all for all other commands, except
 
1694	 * pass TEST_UNIT_READY and REQUEST_SENSE through
1695	 */
1696	if (srb->cmnd[0] != TEST_UNIT_READY &&
1697	    srb->cmnd[0] != REQUEST_SENSE) {
1698		sensekey = 0x05;	/* illegal request */
1699		sensecode = 0x20;	/* invalid command */
1700		havefakesense = 1;
1701		return USB_STOR_TRANSPORT_FAILED;
1702	}
1703
1704	for (; srb->cmd_len<12; srb->cmd_len++)
1705		srb->cmnd[srb->cmd_len] = 0;
1706
1707	srb->cmnd[1] = LUNBITS;
1708
1709	ptr[0] = 0;
1710	for (i=0; i<12; i++)
1711		sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1712
1713	US_DEBUGP("SDDR09: Send control for command %s\n", ptr);
1714
1715	result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1716	if (result) {
1717		US_DEBUGP("sddr09_transport: sddr09_send_scsi_command "
1718			  "returns %d\n", result);
1719		return USB_STOR_TRANSPORT_ERROR;
1720	}
1721
1722	if (scsi_bufflen(srb) == 0)
1723		return USB_STOR_TRANSPORT_GOOD;
1724
1725	if (srb->sc_data_direction == DMA_TO_DEVICE ||
1726	    srb->sc_data_direction == DMA_FROM_DEVICE) {
1727		unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1728				? us->send_bulk_pipe : us->recv_bulk_pipe;
1729
1730		US_DEBUGP("SDDR09: %s %d bytes\n",
1731			  (srb->sc_data_direction == DMA_TO_DEVICE) ?
1732			  "sending" : "receiving",
1733			  scsi_bufflen(srb));
1734
1735		result = usb_stor_bulk_srb(us, pipe, srb);
1736
1737		return (result == USB_STOR_XFER_GOOD ?
1738			USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1739	} 
1740
1741	return USB_STOR_TRANSPORT_GOOD;
1742}
1743
1744/*
1745 * Initialization routine for the sddr09 subdriver
1746 */
1747static int
1748usb_stor_sddr09_init(struct us_data *us) {
1749	return sddr09_common_init(us);
1750}
1751
 
 
1752static int sddr09_probe(struct usb_interface *intf,
1753			 const struct usb_device_id *id)
1754{
1755	struct us_data *us;
1756	int result;
1757
1758	result = usb_stor_probe1(&us, intf, id,
1759			(id - sddr09_usb_ids) + sddr09_unusual_dev_list);
 
1760	if (result)
1761		return result;
1762
1763	if (us->protocol == USB_PR_DPCM_USB) {
1764		us->transport_name = "Control/Bulk-EUSB/SDDR09";
1765		us->transport = dpcm_transport;
1766		us->transport_reset = usb_stor_CB_reset;
1767		us->max_lun = 1;
1768	} else {
1769		us->transport_name = "EUSB/SDDR09";
1770		us->transport = sddr09_transport;
1771		us->transport_reset = usb_stor_CB_reset;
1772		us->max_lun = 0;
1773	}
1774
1775	result = usb_stor_probe2(us);
1776	return result;
1777}
1778
1779static struct usb_driver sddr09_driver = {
1780	.name =		"ums-sddr09",
1781	.probe =	sddr09_probe,
1782	.disconnect =	usb_stor_disconnect,
1783	.suspend =	usb_stor_suspend,
1784	.resume =	usb_stor_resume,
1785	.reset_resume =	usb_stor_reset_resume,
1786	.pre_reset =	usb_stor_pre_reset,
1787	.post_reset =	usb_stor_post_reset,
1788	.id_table =	sddr09_usb_ids,
1789	.soft_unbind =	1,
 
1790};
1791
1792static int __init sddr09_init(void)
1793{
1794	return usb_register(&sddr09_driver);
1795}
1796
1797static void __exit sddr09_exit(void)
1798{
1799	usb_deregister(&sddr09_driver);
1800}
1801
1802module_init(sddr09_init);
1803module_exit(sddr09_exit);
v4.10.11
   1/*
   2 * Driver for SanDisk SDDR-09 SmartMedia reader
   3 *
   4 *   (c) 2000, 2001 Robert Baruch (autophile@starband.net)
   5 *   (c) 2002 Andries Brouwer (aeb@cwi.nl)
   6 * Developed with the assistance of:
   7 *   (c) 2002 Alan Stern <stern@rowland.org>
   8 *
   9 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
  10 * This chip is a programmable USB controller. In the SDDR-09, it has
  11 * been programmed to obey a certain limited set of SCSI commands.
  12 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
  13 * commands.
  14 *
  15 * This program is free software; you can redistribute it and/or modify it
  16 * under the terms of the GNU General Public License as published by the
  17 * Free Software Foundation; either version 2, or (at your option) any
  18 * later version.
  19 *
  20 * This program is distributed in the hope that it will be useful, but
  21 * WITHOUT ANY WARRANTY; without even the implied warranty of
  22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  23 * General Public License for more details.
  24 *
  25 * You should have received a copy of the GNU General Public License along
  26 * with this program; if not, write to the Free Software Foundation, Inc.,
  27 * 675 Mass Ave, Cambridge, MA 02139, USA.
  28 */
  29
  30/*
  31 * Known vendor commands: 12 bytes, first byte is opcode
  32 *
  33 * E7: read scatter gather
  34 * E8: read
  35 * E9: write
  36 * EA: erase
  37 * EB: reset
  38 * EC: read status
  39 * ED: read ID
  40 * EE: write CIS (?)
  41 * EF: compute checksum (?)
  42 */
  43
  44#include <linux/errno.h>
  45#include <linux/module.h>
  46#include <linux/slab.h>
  47
  48#include <scsi/scsi.h>
  49#include <scsi/scsi_cmnd.h>
  50#include <scsi/scsi_device.h>
  51
  52#include "usb.h"
  53#include "transport.h"
  54#include "protocol.h"
  55#include "debug.h"
  56#include "scsiglue.h"
  57
  58#define DRV_NAME "ums-sddr09"
  59
  60MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
  61MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
  62MODULE_LICENSE("GPL");
  63
  64static int usb_stor_sddr09_dpcm_init(struct us_data *us);
  65static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
  66static int usb_stor_sddr09_init(struct us_data *us);
  67
  68
  69/*
  70 * The table of devices
  71 */
  72#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
  73		    vendorName, productName, useProtocol, useTransport, \
  74		    initFunction, flags) \
  75{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
  76  .driver_info = (flags) }
  77
  78static struct usb_device_id sddr09_usb_ids[] = {
  79#	include "unusual_sddr09.h"
  80	{ }		/* Terminating entry */
  81};
  82MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
  83
  84#undef UNUSUAL_DEV
  85
  86/*
  87 * The flags table
  88 */
  89#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
  90		    vendor_name, product_name, use_protocol, use_transport, \
  91		    init_function, Flags) \
  92{ \
  93	.vendorName = vendor_name,	\
  94	.productName = product_name,	\
  95	.useProtocol = use_protocol,	\
  96	.useTransport = use_transport,	\
  97	.initFunction = init_function,	\
  98}
  99
 100static struct us_unusual_dev sddr09_unusual_dev_list[] = {
 101#	include "unusual_sddr09.h"
 102	{ }		/* Terminating entry */
 103};
 104
 105#undef UNUSUAL_DEV
 106
 107
 108#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
 109#define LSB_of(s) ((s)&0xFF)
 110#define MSB_of(s) ((s)>>8)
 111
 
 
 112/*
 113 * First some stuff that does not belong here:
 114 * data on SmartMedia and other cards, completely
 115 * unrelated to this driver.
 116 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
 117 */
 118
 119struct nand_flash_dev {
 120	int model_id;
 121	int chipshift;		/* 1<<cs bytes total capacity */
 122	char pageshift;		/* 1<<ps bytes in a page */
 123	char blockshift;	/* 1<<bs pages in an erase block */
 124	char zoneshift;		/* 1<<zs blocks in a zone */
 125				/* # of logical blocks is 125/128 of this */
 126	char pageadrlen;	/* length of an address in bytes - 1 */
 127};
 128
 129/*
 130 * NAND Flash Manufacturer ID Codes
 131 */
 132#define NAND_MFR_AMD		0x01
 133#define NAND_MFR_NATSEMI	0x8f
 134#define NAND_MFR_TOSHIBA	0x98
 135#define NAND_MFR_SAMSUNG	0xec
 136
 137static inline char *nand_flash_manufacturer(int manuf_id) {
 138	switch(manuf_id) {
 139	case NAND_MFR_AMD:
 140		return "AMD";
 141	case NAND_MFR_NATSEMI:
 142		return "NATSEMI";
 143	case NAND_MFR_TOSHIBA:
 144		return "Toshiba";
 145	case NAND_MFR_SAMSUNG:
 146		return "Samsung";
 147	default:
 148		return "unknown";
 149	}
 150}
 151
 152/*
 153 * It looks like it is unnecessary to attach manufacturer to the
 154 * remaining data: SSFDC prescribes manufacturer-independent id codes.
 155 *
 156 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
 157 */
 158
 159static struct nand_flash_dev nand_flash_ids[] = {
 160	/* NAND flash */
 161	{ 0x6e, 20, 8, 4, 8, 2},	/* 1 MB */
 162	{ 0xe8, 20, 8, 4, 8, 2},	/* 1 MB */
 163	{ 0xec, 20, 8, 4, 8, 2},	/* 1 MB */
 164	{ 0x64, 21, 8, 4, 9, 2}, 	/* 2 MB */
 165	{ 0xea, 21, 8, 4, 9, 2},	/* 2 MB */
 166	{ 0x6b, 22, 9, 4, 9, 2},	/* 4 MB */
 167	{ 0xe3, 22, 9, 4, 9, 2},	/* 4 MB */
 168	{ 0xe5, 22, 9, 4, 9, 2},	/* 4 MB */
 169	{ 0xe6, 23, 9, 4, 10, 2},	/* 8 MB */
 170	{ 0x73, 24, 9, 5, 10, 2},	/* 16 MB */
 171	{ 0x75, 25, 9, 5, 10, 2},	/* 32 MB */
 172	{ 0x76, 26, 9, 5, 10, 3},	/* 64 MB */
 173	{ 0x79, 27, 9, 5, 10, 3},	/* 128 MB */
 174
 175	/* MASK ROM */
 176	{ 0x5d, 21, 9, 4, 8, 2},	/* 2 MB */
 177	{ 0xd5, 22, 9, 4, 9, 2},	/* 4 MB */
 178	{ 0xd6, 23, 9, 4, 10, 2},	/* 8 MB */
 179	{ 0x57, 24, 9, 4, 11, 2},	/* 16 MB */
 180	{ 0x58, 25, 9, 4, 12, 2},	/* 32 MB */
 181	{ 0,}
 182};
 183
 184static struct nand_flash_dev *
 185nand_find_id(unsigned char id) {
 186	int i;
 187
 188	for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
 189		if (nand_flash_ids[i].model_id == id)
 190			return &(nand_flash_ids[i]);
 191	return NULL;
 192}
 193
 194/*
 195 * ECC computation.
 196 */
 197static unsigned char parity[256];
 198static unsigned char ecc2[256];
 199
 200static void nand_init_ecc(void) {
 201	int i, j, a;
 202
 203	parity[0] = 0;
 204	for (i = 1; i < 256; i++)
 205		parity[i] = (parity[i&(i-1)] ^ 1);
 206
 207	for (i = 0; i < 256; i++) {
 208		a = 0;
 209		for (j = 0; j < 8; j++) {
 210			if (i & (1<<j)) {
 211				if ((j & 1) == 0)
 212					a ^= 0x04;
 213				if ((j & 2) == 0)
 214					a ^= 0x10;
 215				if ((j & 4) == 0)
 216					a ^= 0x40;
 217			}
 218		}
 219		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
 220	}
 221}
 222
 223/* compute 3-byte ecc on 256 bytes */
 224static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
 225	int i, j, a;
 226	unsigned char par = 0, bit, bits[8] = {0};
 
 
 
 
 227
 228	/* collect 16 checksum bits */
 229	for (i = 0; i < 256; i++) {
 230		par ^= data[i];
 231		bit = parity[data[i]];
 232		for (j = 0; j < 8; j++)
 233			if ((i & (1<<j)) == 0)
 234				bits[j] ^= bit;
 235	}
 236
 237	/* put 4+4+4 = 12 bits in the ecc */
 238	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
 239	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 240
 241	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
 242	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 243
 244	ecc[2] = ecc2[par];
 245}
 246
 247static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
 248	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
 249}
 250
 251static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
 252	memcpy(data, ecc, 3);
 253}
 254
 255/*
 256 * The actual driver starts here.
 257 */
 258
 259struct sddr09_card_info {
 260	unsigned long	capacity;	/* Size of card in bytes */
 261	int		pagesize;	/* Size of page in bytes */
 262	int		pageshift;	/* log2 of pagesize */
 263	int		blocksize;	/* Size of block in pages */
 264	int		blockshift;	/* log2 of blocksize */
 265	int		blockmask;	/* 2^blockshift - 1 */
 266	int		*lba_to_pba;	/* logical to physical map */
 267	int		*pba_to_lba;	/* physical to logical map */
 268	int		lbact;		/* number of available pages */
 269	int		flags;
 270#define	SDDR09_WP	1		/* write protected */
 271};
 272
 273/*
 274 * On my 16MB card, control blocks have size 64 (16 real control bytes,
 275 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
 276 * so the reader makes up the remaining 48. Don't know whether these numbers
 277 * depend on the card. For now a constant.
 278 */
 279#define CONTROL_SHIFT 6
 280
 281/*
 282 * On my Combo CF/SM reader, the SM reader has LUN 1.
 283 * (and things fail with LUN 0).
 284 * It seems LUN is irrelevant for others.
 285 */
 286#define LUN	1
 287#define	LUNBITS	(LUN << 5)
 288
 289/*
 290 * LBA and PBA are unsigned ints. Special values.
 291 */
 292#define UNDEF    0xffffffff
 293#define SPARE    0xfffffffe
 294#define UNUSABLE 0xfffffffd
 295
 296static const int erase_bad_lba_entries = 0;
 297
 298/* send vendor interface command (0x41) */
 299/* called for requests 0, 1, 8 */
 300static int
 301sddr09_send_command(struct us_data *us,
 302		    unsigned char request,
 303		    unsigned char direction,
 304		    unsigned char *xfer_data,
 305		    unsigned int xfer_len) {
 306	unsigned int pipe;
 307	unsigned char requesttype = (0x41 | direction);
 308	int rc;
 309
 310	// Get the receive or send control pipe number
 311
 312	if (direction == USB_DIR_IN)
 313		pipe = us->recv_ctrl_pipe;
 314	else
 315		pipe = us->send_ctrl_pipe;
 316
 317	rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
 318				   0, 0, xfer_data, xfer_len);
 319	switch (rc) {
 320		case USB_STOR_XFER_GOOD:	return 0;
 321		case USB_STOR_XFER_STALLED:	return -EPIPE;
 322		default:			return -EIO;
 323	}
 324}
 325
 326static int
 327sddr09_send_scsi_command(struct us_data *us,
 328			 unsigned char *command,
 329			 unsigned int command_len) {
 330	return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
 331}
 332
 333#if 0
 334/*
 335 * Test Unit Ready Command: 12 bytes.
 336 * byte 0: opcode: 00
 337 */
 338static int
 339sddr09_test_unit_ready(struct us_data *us) {
 340	unsigned char *command = us->iobuf;
 341	int result;
 342
 343	memset(command, 0, 6);
 344	command[1] = LUNBITS;
 345
 346	result = sddr09_send_scsi_command(us, command, 6);
 347
 348	usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
 349
 350	return result;
 351}
 352#endif
 353
 354/*
 355 * Request Sense Command: 12 bytes.
 356 * byte 0: opcode: 03
 357 * byte 4: data length
 358 */
 359static int
 360sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
 361	unsigned char *command = us->iobuf;
 362	int result;
 363
 364	memset(command, 0, 12);
 365	command[0] = 0x03;
 366	command[1] = LUNBITS;
 367	command[4] = buflen;
 368
 369	result = sddr09_send_scsi_command(us, command, 12);
 370	if (result)
 371		return result;
 372
 373	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 374			sensebuf, buflen, NULL);
 375	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 376}
 377
 378/*
 379 * Read Command: 12 bytes.
 380 * byte 0: opcode: E8
 381 * byte 1: last two bits: 00: read data, 01: read blockwise control,
 382 *			10: read both, 11: read pagewise control.
 383 *	 It turns out we need values 20, 21, 22, 23 here (LUN 1).
 384 * bytes 2-5: address (interpretation depends on byte 1, see below)
 385 * bytes 10-11: count (idem)
 386 *
 387 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
 388 * A read data command gets data in 512-byte pages.
 389 * A read control command gets control in 64-byte chunks.
 390 * A read both command gets data+control in 576-byte chunks.
 391 *
 392 * Blocks are groups of 32 pages, and read blockwise control jumps to the
 393 * next block, while read pagewise control jumps to the next page after
 394 * reading a group of 64 control bytes.
 395 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
 396 *
 397 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
 398 */
 399
 400static int
 401sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
 402	     int nr_of_pages, int bulklen, unsigned char *buf,
 403	     int use_sg) {
 404
 405	unsigned char *command = us->iobuf;
 406	int result;
 407
 408	command[0] = 0xE8;
 409	command[1] = LUNBITS | x;
 410	command[2] = MSB_of(fromaddress>>16);
 411	command[3] = LSB_of(fromaddress>>16); 
 412	command[4] = MSB_of(fromaddress & 0xFFFF);
 413	command[5] = LSB_of(fromaddress & 0xFFFF); 
 414	command[6] = 0;
 415	command[7] = 0;
 416	command[8] = 0;
 417	command[9] = 0;
 418	command[10] = MSB_of(nr_of_pages);
 419	command[11] = LSB_of(nr_of_pages);
 420
 421	result = sddr09_send_scsi_command(us, command, 12);
 422
 423	if (result) {
 424		usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
 425			     x, result);
 426		return result;
 427	}
 428
 429	result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
 430				       buf, bulklen, use_sg, NULL);
 431
 432	if (result != USB_STOR_XFER_GOOD) {
 433		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
 434			     x, result);
 435		return -EIO;
 436	}
 437	return 0;
 438}
 439
 440/*
 441 * Read Data
 442 *
 443 * fromaddress counts data shorts:
 444 * increasing it by 256 shifts the bytestream by 512 bytes;
 445 * the last 8 bits are ignored.
 446 *
 447 * nr_of_pages counts pages of size (1 << pageshift).
 448 */
 449static int
 450sddr09_read20(struct us_data *us, unsigned long fromaddress,
 451	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 452	int bulklen = nr_of_pages << pageshift;
 453
 454	/* The last 8 bits of fromaddress are ignored. */
 455	return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
 456			    buf, use_sg);
 457}
 458
 459/*
 460 * Read Blockwise Control
 461 *
 462 * fromaddress gives the starting position (as in read data;
 463 * the last 8 bits are ignored); increasing it by 32*256 shifts
 464 * the output stream by 64 bytes.
 465 *
 466 * count counts control groups of size (1 << controlshift).
 467 * For me, controlshift = 6. Is this constant?
 468 *
 469 * After getting one control group, jump to the next block
 470 * (fromaddress += 8192).
 471 */
 472static int
 473sddr09_read21(struct us_data *us, unsigned long fromaddress,
 474	      int count, int controlshift, unsigned char *buf, int use_sg) {
 475
 476	int bulklen = (count << controlshift);
 477	return sddr09_readX(us, 1, fromaddress, count, bulklen,
 478			    buf, use_sg);
 479}
 480
 481/*
 482 * Read both Data and Control
 483 *
 484 * fromaddress counts data shorts, ignoring control:
 485 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
 486 * the last 8 bits are ignored.
 487 *
 488 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
 489 */
 490static int
 491sddr09_read22(struct us_data *us, unsigned long fromaddress,
 492	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 493
 494	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 495	usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
 
 496	return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
 497			    buf, use_sg);
 498}
 499
 500#if 0
 501/*
 502 * Read Pagewise Control
 503 *
 504 * fromaddress gives the starting position (as in read data;
 505 * the last 8 bits are ignored); increasing it by 256 shifts
 506 * the output stream by 64 bytes.
 507 *
 508 * count counts control groups of size (1 << controlshift).
 509 * For me, controlshift = 6. Is this constant?
 510 *
 511 * After getting one control group, jump to the next page
 512 * (fromaddress += 256).
 513 */
 514static int
 515sddr09_read23(struct us_data *us, unsigned long fromaddress,
 516	      int count, int controlshift, unsigned char *buf, int use_sg) {
 517
 518	int bulklen = (count << controlshift);
 519	return sddr09_readX(us, 3, fromaddress, count, bulklen,
 520			    buf, use_sg);
 521}
 522#endif
 523
 524/*
 525 * Erase Command: 12 bytes.
 526 * byte 0: opcode: EA
 527 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 528 * 
 529 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
 530 * The byte address being erased is 2*Eaddress.
 531 * The CIS cannot be erased.
 532 */
 533static int
 534sddr09_erase(struct us_data *us, unsigned long Eaddress) {
 535	unsigned char *command = us->iobuf;
 536	int result;
 537
 538	usb_stor_dbg(us, "erase address %lu\n", Eaddress);
 539
 540	memset(command, 0, 12);
 541	command[0] = 0xEA;
 542	command[1] = LUNBITS;
 543	command[6] = MSB_of(Eaddress>>16);
 544	command[7] = LSB_of(Eaddress>>16);
 545	command[8] = MSB_of(Eaddress & 0xFFFF);
 546	command[9] = LSB_of(Eaddress & 0xFFFF);
 547
 548	result = sddr09_send_scsi_command(us, command, 12);
 549
 550	if (result)
 551		usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
 552			     result);
 553
 554	return result;
 555}
 556
 557/*
 558 * Write CIS Command: 12 bytes.
 559 * byte 0: opcode: EE
 560 * bytes 2-5: write address in shorts
 561 * bytes 10-11: sector count
 562 *
 563 * This writes at the indicated address. Don't know how it differs
 564 * from E9. Maybe it does not erase? However, it will also write to
 565 * the CIS.
 566 *
 567 * When two such commands on the same page follow each other directly,
 568 * the second one is not done.
 569 */
 570
 571/*
 572 * Write Command: 12 bytes.
 573 * byte 0: opcode: E9
 574 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
 575 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 576 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
 577 *
 578 * If write address equals erase address, the erase is done first,
 579 * otherwise the write is done first. When erase address equals zero
 580 * no erase is done?
 581 */
 582static int
 583sddr09_writeX(struct us_data *us,
 584	      unsigned long Waddress, unsigned long Eaddress,
 585	      int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
 586
 587	unsigned char *command = us->iobuf;
 588	int result;
 589
 590	command[0] = 0xE9;
 591	command[1] = LUNBITS;
 592
 593	command[2] = MSB_of(Waddress>>16);
 594	command[3] = LSB_of(Waddress>>16);
 595	command[4] = MSB_of(Waddress & 0xFFFF);
 596	command[5] = LSB_of(Waddress & 0xFFFF);
 597
 598	command[6] = MSB_of(Eaddress>>16);
 599	command[7] = LSB_of(Eaddress>>16);
 600	command[8] = MSB_of(Eaddress & 0xFFFF);
 601	command[9] = LSB_of(Eaddress & 0xFFFF);
 602
 603	command[10] = MSB_of(nr_of_pages);
 604	command[11] = LSB_of(nr_of_pages);
 605
 606	result = sddr09_send_scsi_command(us, command, 12);
 607
 608	if (result) {
 609		usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
 610			     result);
 611		return result;
 612	}
 613
 614	result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
 615				       buf, bulklen, use_sg, NULL);
 616
 617	if (result != USB_STOR_XFER_GOOD) {
 618		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
 619			     result);
 620		return -EIO;
 621	}
 622	return 0;
 623}
 624
 625/* erase address, write same address */
 626static int
 627sddr09_write_inplace(struct us_data *us, unsigned long address,
 628		     int nr_of_pages, int pageshift, unsigned char *buf,
 629		     int use_sg) {
 630	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 631	return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
 632			     buf, use_sg);
 633}
 634
 635#if 0
 636/*
 637 * Read Scatter Gather Command: 3+4n bytes.
 638 * byte 0: opcode E7
 639 * byte 2: n
 640 * bytes 4i-1,4i,4i+1: page address
 641 * byte 4i+2: page count
 642 * (i=1..n)
 643 *
 644 * This reads several pages from the card to a single memory buffer.
 645 * The last two bits of byte 1 have the same meaning as for E8.
 646 */
 647static int
 648sddr09_read_sg_test_only(struct us_data *us) {
 649	unsigned char *command = us->iobuf;
 650	int result, bulklen, nsg, ct;
 651	unsigned char *buf;
 652	unsigned long address;
 653
 654	nsg = bulklen = 0;
 655	command[0] = 0xE7;
 656	command[1] = LUNBITS;
 657	command[2] = 0;
 658	address = 040000; ct = 1;
 659	nsg++;
 660	bulklen += (ct << 9);
 661	command[4*nsg+2] = ct;
 662	command[4*nsg+1] = ((address >> 9) & 0xFF);
 663	command[4*nsg+0] = ((address >> 17) & 0xFF);
 664	command[4*nsg-1] = ((address >> 25) & 0xFF);
 665
 666	address = 0340000; ct = 1;
 667	nsg++;
 668	bulklen += (ct << 9);
 669	command[4*nsg+2] = ct;
 670	command[4*nsg+1] = ((address >> 9) & 0xFF);
 671	command[4*nsg+0] = ((address >> 17) & 0xFF);
 672	command[4*nsg-1] = ((address >> 25) & 0xFF);
 673
 674	address = 01000000; ct = 2;
 675	nsg++;
 676	bulklen += (ct << 9);
 677	command[4*nsg+2] = ct;
 678	command[4*nsg+1] = ((address >> 9) & 0xFF);
 679	command[4*nsg+0] = ((address >> 17) & 0xFF);
 680	command[4*nsg-1] = ((address >> 25) & 0xFF);
 681
 682	command[2] = nsg;
 683
 684	result = sddr09_send_scsi_command(us, command, 4*nsg+3);
 685
 686	if (result) {
 687		usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
 688			     result);
 689		return result;
 690	}
 691
 692	buf = kmalloc(bulklen, GFP_NOIO);
 693	if (!buf)
 694		return -ENOMEM;
 695
 696	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 697				       buf, bulklen, NULL);
 698	kfree(buf);
 699	if (result != USB_STOR_XFER_GOOD) {
 700		usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
 701			     result);
 702		return -EIO;
 703	}
 704
 705	return 0;
 706}
 707#endif
 708
 709/*
 710 * Read Status Command: 12 bytes.
 711 * byte 0: opcode: EC
 712 *
 713 * Returns 64 bytes, all zero except for the first.
 714 * bit 0: 1: Error
 715 * bit 5: 1: Suspended
 716 * bit 6: 1: Ready
 717 * bit 7: 1: Not write-protected
 718 */
 719
 720static int
 721sddr09_read_status(struct us_data *us, unsigned char *status) {
 722
 723	unsigned char *command = us->iobuf;
 724	unsigned char *data = us->iobuf;
 725	int result;
 726
 727	usb_stor_dbg(us, "Reading status...\n");
 728
 729	memset(command, 0, 12);
 730	command[0] = 0xEC;
 731	command[1] = LUNBITS;
 732
 733	result = sddr09_send_scsi_command(us, command, 12);
 734	if (result)
 735		return result;
 736
 737	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 738				       data, 64, NULL);
 739	*status = data[0];
 740	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 741}
 742
 743static int
 744sddr09_read_data(struct us_data *us,
 745		 unsigned long address,
 746		 unsigned int sectors) {
 747
 748	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 749	unsigned char *buffer;
 750	unsigned int lba, maxlba, pba;
 751	unsigned int page, pages;
 752	unsigned int len, offset;
 753	struct scatterlist *sg;
 754	int result;
 755
 756	// Figure out the initial LBA and page
 757	lba = address >> info->blockshift;
 758	page = (address & info->blockmask);
 759	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 760	if (lba >= maxlba)
 761		return -EIO;
 762
 763	// Since we only read in one block at a time, we have to create
 764	// a bounce buffer and move the data a piece at a time between the
 765	// bounce buffer and the actual transfer buffer.
 766
 767	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
 768	buffer = kmalloc(len, GFP_NOIO);
 769	if (!buffer)
 
 770		return -ENOMEM;
 
 771
 772	// This could be made much more efficient by checking for
 773	// contiguous LBA's. Another exercise left to the student.
 774
 775	result = 0;
 776	offset = 0;
 777	sg = NULL;
 778
 779	while (sectors > 0) {
 780
 781		/* Find number of pages we can read in this block */
 782		pages = min(sectors, info->blocksize - page);
 783		len = pages << info->pageshift;
 784
 785		/* Not overflowing capacity? */
 786		if (lba >= maxlba) {
 787			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
 788				     lba, maxlba);
 789			result = -EIO;
 790			break;
 791		}
 792
 793		/* Find where this lba lives on disk */
 794		pba = info->lba_to_pba[lba];
 795
 796		if (pba == UNDEF) {	/* this lba was never written */
 797
 798			usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
 799				     pages, lba, page);
 800
 801			/*
 802			 * This is not really an error. It just means
 803			 * that the block has never been written.
 804			 * Instead of returning an error
 805			 * it is better to return all zero data.
 806			 */
 807
 808			memset(buffer, 0, len);
 809
 810		} else {
 811			usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
 812				     pages, pba, lba, page);
 
 813
 814			address = ((pba << info->blockshift) + page) << 
 815				info->pageshift;
 816
 817			result = sddr09_read20(us, address>>1,
 818					pages, info->pageshift, buffer, 0);
 819			if (result)
 820				break;
 821		}
 822
 823		// Store the data in the transfer buffer
 824		usb_stor_access_xfer_buf(buffer, len, us->srb,
 825				&sg, &offset, TO_XFER_BUF);
 826
 827		page = 0;
 828		lba++;
 829		sectors -= pages;
 830	}
 831
 832	kfree(buffer);
 833	return result;
 834}
 835
 836static unsigned int
 837sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
 838	static unsigned int lastpba = 1;
 839	int zonestart, end, i;
 840
 841	zonestart = (lba/1000) << 10;
 842	end = info->capacity >> (info->blockshift + info->pageshift);
 843	end -= zonestart;
 844	if (end > 1024)
 845		end = 1024;
 846
 847	for (i = lastpba+1; i < end; i++) {
 848		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 849			lastpba = i;
 850			return zonestart+i;
 851		}
 852	}
 853	for (i = 0; i <= lastpba; i++) {
 854		if (info->pba_to_lba[zonestart+i] == UNDEF) {
 855			lastpba = i;
 856			return zonestart+i;
 857		}
 858	}
 859	return 0;
 860}
 861
 862static int
 863sddr09_write_lba(struct us_data *us, unsigned int lba,
 864		 unsigned int page, unsigned int pages,
 865		 unsigned char *ptr, unsigned char *blockbuffer) {
 866
 867	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 868	unsigned long address;
 869	unsigned int pba, lbap;
 870	unsigned int pagelen;
 871	unsigned char *bptr, *cptr, *xptr;
 872	unsigned char ecc[3];
 873	int i, result, isnew;
 874
 875	lbap = ((lba % 1000) << 1) | 0x1000;
 876	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
 877		lbap ^= 1;
 878	pba = info->lba_to_pba[lba];
 879	isnew = 0;
 880
 881	if (pba == UNDEF) {
 882		pba = sddr09_find_unused_pba(info, lba);
 883		if (!pba) {
 884			printk(KERN_WARNING
 885			       "sddr09_write_lba: Out of unused blocks\n");
 886			return -ENOSPC;
 887		}
 888		info->pba_to_lba[pba] = lba;
 889		info->lba_to_pba[lba] = pba;
 890		isnew = 1;
 891	}
 892
 893	if (pba == 1) {
 894		/*
 895		 * Maybe it is impossible to write to PBA 1.
 896		 * Fake success, but don't do anything.
 897		 */
 898		printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
 899		return 0;
 900	}
 901
 902	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 903
 904	/* read old contents */
 905	address = (pba << (info->pageshift + info->blockshift));
 906	result = sddr09_read22(us, address>>1, info->blocksize,
 907			       info->pageshift, blockbuffer, 0);
 908	if (result)
 909		return result;
 910
 911	/* check old contents and fill lba */
 912	for (i = 0; i < info->blocksize; i++) {
 913		bptr = blockbuffer + i*pagelen;
 914		cptr = bptr + info->pagesize;
 915		nand_compute_ecc(bptr, ecc);
 916		if (!nand_compare_ecc(cptr+13, ecc)) {
 917			usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
 918				     i, pba);
 919			nand_store_ecc(cptr+13, ecc);
 920		}
 921		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 922		if (!nand_compare_ecc(cptr+8, ecc)) {
 923			usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
 924				     i, pba);
 925			nand_store_ecc(cptr+8, ecc);
 926		}
 927		cptr[6] = cptr[11] = MSB_of(lbap);
 928		cptr[7] = cptr[12] = LSB_of(lbap);
 929	}
 930
 931	/* copy in new stuff and compute ECC */
 932	xptr = ptr;
 933	for (i = page; i < page+pages; i++) {
 934		bptr = blockbuffer + i*pagelen;
 935		cptr = bptr + info->pagesize;
 936		memcpy(bptr, xptr, info->pagesize);
 937		xptr += info->pagesize;
 938		nand_compute_ecc(bptr, ecc);
 939		nand_store_ecc(cptr+13, ecc);
 940		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 941		nand_store_ecc(cptr+8, ecc);
 942	}
 943
 944	usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
 945
 946	result = sddr09_write_inplace(us, address>>1, info->blocksize,
 947				      info->pageshift, blockbuffer, 0);
 948
 949	usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
 950
 951#if 0
 952	{
 953		unsigned char status = 0;
 954		int result2 = sddr09_read_status(us, &status);
 955		if (result2)
 956			usb_stor_dbg(us, "cannot read status\n");
 957		else if (status != 0xc0)
 958			usb_stor_dbg(us, "status after write: 0x%x\n", status);
 
 959	}
 960#endif
 961
 962#if 0
 963	{
 964		int result2 = sddr09_test_unit_ready(us);
 965	}
 966#endif
 967
 968	return result;
 969}
 970
 971static int
 972sddr09_write_data(struct us_data *us,
 973		  unsigned long address,
 974		  unsigned int sectors) {
 975
 976	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 977	unsigned int lba, maxlba, page, pages;
 978	unsigned int pagelen, blocklen;
 979	unsigned char *blockbuffer;
 980	unsigned char *buffer;
 981	unsigned int len, offset;
 982	struct scatterlist *sg;
 983	int result;
 984
 985	/* Figure out the initial LBA and page */
 986	lba = address >> info->blockshift;
 987	page = (address & info->blockmask);
 988	maxlba = info->capacity >> (info->pageshift + info->blockshift);
 989	if (lba >= maxlba)
 990		return -EIO;
 991
 992	/*
 993	 * blockbuffer is used for reading in the old data, overwriting
 994	 * with the new data, and performing ECC calculations
 995	 */
 996
 997	/*
 998	 * TODO: instead of doing kmalloc/kfree for each write,
 999	 * add a bufferpointer to the info structure
1000	 */
1001
1002	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
1003	blocklen = (pagelen << info->blockshift);
1004	blockbuffer = kmalloc(blocklen, GFP_NOIO);
1005	if (!blockbuffer)
 
1006		return -ENOMEM;
 
1007
1008	/*
1009	 * Since we don't write the user data directly to the device,
1010	 * we have to create a bounce buffer and move the data a piece
1011	 * at a time between the bounce buffer and the actual transfer buffer.
1012	 */
1013
1014	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1015	buffer = kmalloc(len, GFP_NOIO);
1016	if (!buffer) {
 
1017		kfree(blockbuffer);
1018		return -ENOMEM;
1019	}
1020
1021	result = 0;
1022	offset = 0;
1023	sg = NULL;
1024
1025	while (sectors > 0) {
1026
1027		/* Write as many sectors as possible in this block */
1028
1029		pages = min(sectors, info->blocksize - page);
1030		len = (pages << info->pageshift);
1031
1032		/* Not overflowing capacity? */
1033		if (lba >= maxlba) {
1034			usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1035				     lba, maxlba);
1036			result = -EIO;
1037			break;
1038		}
1039
1040		/* Get the data from the transfer buffer */
1041		usb_stor_access_xfer_buf(buffer, len, us->srb,
1042				&sg, &offset, FROM_XFER_BUF);
1043
1044		result = sddr09_write_lba(us, lba, page, pages,
1045				buffer, blockbuffer);
1046		if (result)
1047			break;
1048
1049		page = 0;
1050		lba++;
1051		sectors -= pages;
1052	}
1053
1054	kfree(buffer);
1055	kfree(blockbuffer);
1056
1057	return result;
1058}
1059
1060static int
1061sddr09_read_control(struct us_data *us,
1062		unsigned long address,
1063		unsigned int blocks,
1064		unsigned char *content,
1065		int use_sg) {
1066
1067	usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1068		     address, blocks);
1069
1070	return sddr09_read21(us, address, blocks,
1071			     CONTROL_SHIFT, content, use_sg);
1072}
1073
1074/*
1075 * Read Device ID Command: 12 bytes.
1076 * byte 0: opcode: ED
1077 *
1078 * Returns 2 bytes: Manufacturer ID and Device ID.
1079 * On more recent cards 3 bytes: the third byte is an option code A5
1080 * signifying that the secret command to read an 128-bit ID is available.
1081 * On still more recent cards 4 bytes: the fourth byte C0 means that
1082 * a second read ID cmd is available.
1083 */
1084static int
1085sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1086	unsigned char *command = us->iobuf;
1087	unsigned char *content = us->iobuf;
1088	int result, i;
1089
1090	memset(command, 0, 12);
1091	command[0] = 0xED;
1092	command[1] = LUNBITS;
1093
1094	result = sddr09_send_scsi_command(us, command, 12);
1095	if (result)
1096		return result;
1097
1098	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1099			content, 64, NULL);
1100
1101	for (i = 0; i < 4; i++)
1102		deviceID[i] = content[i];
1103
1104	return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1105}
1106
1107static int
1108sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1109	int result;
1110	unsigned char status;
1111	const char *wp_fmt;
1112
1113	result = sddr09_read_status(us, &status);
1114	if (result) {
1115		usb_stor_dbg(us, "read_status fails\n");
1116		return result;
1117	}
 
1118	if ((status & 0x80) == 0) {
1119		info->flags |= SDDR09_WP;	/* write protected */
1120		wp_fmt = " WP";
1121	} else {
1122		wp_fmt = "";
1123	}
1124	usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt,
1125		     status & 0x40 ? " Ready" : "",
1126		     status & LUNBITS ? " Suspended" : "",
1127		     status & 0x01 ? " Error" : "");
1128
 
 
1129	return 0;
1130}
1131
1132#if 0
1133/*
1134 * Reset Command: 12 bytes.
1135 * byte 0: opcode: EB
1136 */
1137static int
1138sddr09_reset(struct us_data *us) {
1139
1140	unsigned char *command = us->iobuf;
1141
1142	memset(command, 0, 12);
1143	command[0] = 0xEB;
1144	command[1] = LUNBITS;
1145
1146	return sddr09_send_scsi_command(us, command, 12);
1147}
1148#endif
1149
1150static struct nand_flash_dev *
1151sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1152	struct nand_flash_dev *cardinfo;
1153	unsigned char deviceID[4];
1154	char blurbtxt[256];
1155	int result;
1156
1157	usb_stor_dbg(us, "Reading capacity...\n");
1158
1159	result = sddr09_read_deviceID(us, deviceID);
1160
1161	if (result) {
1162		usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
1163		printk(KERN_WARNING "sddr09: could not read card info\n");
1164		return NULL;
1165	}
1166
1167	sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
 
1168
1169	/* Byte 0 is the manufacturer */
1170	sprintf(blurbtxt + strlen(blurbtxt),
1171		": Manuf. %s",
1172		nand_flash_manufacturer(deviceID[0]));
1173
1174	/* Byte 1 is the device type */
1175	cardinfo = nand_find_id(deviceID[1]);
1176	if (cardinfo) {
1177		/*
1178		 * MB or MiB? It is neither. A 16 MB card has
1179		 * 17301504 raw bytes, of which 16384000 are
1180		 * usable for user data.
1181		 */
1182		sprintf(blurbtxt + strlen(blurbtxt),
1183			", %d MB", 1<<(cardinfo->chipshift - 20));
1184	} else {
1185		sprintf(blurbtxt + strlen(blurbtxt),
1186			", type unrecognized");
1187	}
1188
1189	/* Byte 2 is code to signal availability of 128-bit ID */
1190	if (deviceID[2] == 0xa5) {
1191		sprintf(blurbtxt + strlen(blurbtxt),
1192			", 128-bit ID");
1193	}
1194
1195	/* Byte 3 announces the availability of another read ID command */
1196	if (deviceID[3] == 0xc0) {
1197		sprintf(blurbtxt + strlen(blurbtxt),
1198			", extra cmd");
1199	}
1200
1201	if (flags & SDDR09_WP)
1202		sprintf(blurbtxt + strlen(blurbtxt),
1203			", WP");
1204
1205	printk(KERN_WARNING "%s\n", blurbtxt);
1206
1207	return cardinfo;
1208}
1209
1210static int
1211sddr09_read_map(struct us_data *us) {
1212
1213	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1214	int numblocks, alloc_len, alloc_blocks;
1215	int i, j, result;
1216	unsigned char *buffer, *buffer_end, *ptr;
1217	unsigned int lba, lbact;
1218
1219	if (!info->capacity)
1220		return -1;
1221
1222	/*
1223	 * size of a block is 1 << (blockshift + pageshift) bytes
1224	 * divide into the total capacity to get the number of blocks
1225	 */
1226
1227	numblocks = info->capacity >> (info->blockshift + info->pageshift);
1228
1229	/*
1230	 * read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1231	 * but only use a 64 KB buffer
1232	 * buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1233	 */
1234#define SDDR09_READ_MAP_BUFSZ 65536
1235
1236	alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1237	alloc_len = (alloc_blocks << CONTROL_SHIFT);
1238	buffer = kmalloc(alloc_len, GFP_NOIO);
1239	if (!buffer) {
 
1240		result = -1;
1241		goto done;
1242	}
1243	buffer_end = buffer + alloc_len;
1244
1245#undef SDDR09_READ_MAP_BUFSZ
1246
1247	kfree(info->lba_to_pba);
1248	kfree(info->pba_to_lba);
1249	info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1250	info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1251
1252	if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1253		printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1254		result = -1;
1255		goto done;
1256	}
1257
1258	for (i = 0; i < numblocks; i++)
1259		info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1260
1261	/*
1262	 * Define lba-pba translation table
1263	 */
1264
1265	ptr = buffer_end;
1266	for (i = 0; i < numblocks; i++) {
1267		ptr += (1 << CONTROL_SHIFT);
1268		if (ptr >= buffer_end) {
1269			unsigned long address;
1270
1271			address = i << (info->pageshift + info->blockshift);
1272			result = sddr09_read_control(
1273				us, address>>1,
1274				min(alloc_blocks, numblocks - i),
1275				buffer, 0);
1276			if (result) {
1277				result = -1;
1278				goto done;
1279			}
1280			ptr = buffer;
1281		}
1282
1283		if (i == 0 || i == 1) {
1284			info->pba_to_lba[i] = UNUSABLE;
1285			continue;
1286		}
1287
1288		/* special PBAs have control field 0^16 */
1289		for (j = 0; j < 16; j++)
1290			if (ptr[j] != 0)
1291				goto nonz;
1292		info->pba_to_lba[i] = UNUSABLE;
1293		printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1294		       i);
1295		continue;
1296
1297	nonz:
1298		/* unwritten PBAs have control field FF^16 */
1299		for (j = 0; j < 16; j++)
1300			if (ptr[j] != 0xff)
1301				goto nonff;
1302		continue;
1303
1304	nonff:
1305		/* normal PBAs start with six FFs */
1306		if (j < 6) {
1307			printk(KERN_WARNING
1308			       "sddr09: PBA %d has no logical mapping: "
1309			       "reserved area = %02X%02X%02X%02X "
1310			       "data status %02X block status %02X\n",
1311			       i, ptr[0], ptr[1], ptr[2], ptr[3],
1312			       ptr[4], ptr[5]);
1313			info->pba_to_lba[i] = UNUSABLE;
1314			continue;
1315		}
1316
1317		if ((ptr[6] >> 4) != 0x01) {
1318			printk(KERN_WARNING
1319			       "sddr09: PBA %d has invalid address field "
1320			       "%02X%02X/%02X%02X\n",
1321			       i, ptr[6], ptr[7], ptr[11], ptr[12]);
1322			info->pba_to_lba[i] = UNUSABLE;
1323			continue;
1324		}
1325
1326		/* check even parity */
1327		if (parity[ptr[6] ^ ptr[7]]) {
1328			printk(KERN_WARNING
1329			       "sddr09: Bad parity in LBA for block %d"
1330			       " (%02X %02X)\n", i, ptr[6], ptr[7]);
1331			info->pba_to_lba[i] = UNUSABLE;
1332			continue;
1333		}
1334
1335		lba = short_pack(ptr[7], ptr[6]);
1336		lba = (lba & 0x07FF) >> 1;
1337
1338		/*
1339		 * Every 1024 physical blocks ("zone"), the LBA numbers
1340		 * go back to zero, but are within a higher block of LBA's.
1341		 * Also, there is a maximum of 1000 LBA's per zone.
1342		 * In other words, in PBA 1024-2047 you will find LBA 0-999
1343		 * which are really LBA 1000-1999. This allows for 24 bad
1344		 * or special physical blocks per zone.
1345		 */
1346
1347		if (lba >= 1000) {
1348			printk(KERN_WARNING
1349			       "sddr09: Bad low LBA %d for block %d\n",
1350			       lba, i);
1351			goto possibly_erase;
1352		}
1353
1354		lba += 1000*(i/0x400);
1355
1356		if (info->lba_to_pba[lba] != UNDEF) {
1357			printk(KERN_WARNING
1358			       "sddr09: LBA %d seen for PBA %d and %d\n",
1359			       lba, info->lba_to_pba[lba], i);
1360			goto possibly_erase;
1361		}
1362
1363		info->pba_to_lba[i] = lba;
1364		info->lba_to_pba[lba] = i;
1365		continue;
1366
1367	possibly_erase:
1368		if (erase_bad_lba_entries) {
1369			unsigned long address;
1370
1371			address = (i << (info->pageshift + info->blockshift));
1372			sddr09_erase(us, address>>1);
1373			info->pba_to_lba[i] = UNDEF;
1374		} else
1375			info->pba_to_lba[i] = UNUSABLE;
1376	}
1377
1378	/*
1379	 * Approximate capacity. This is not entirely correct yet,
1380	 * since a zone with less than 1000 usable pages leads to
1381	 * missing LBAs. Especially if it is the last zone, some
1382	 * LBAs can be past capacity.
1383	 */
1384	lbact = 0;
1385	for (i = 0; i < numblocks; i += 1024) {
1386		int ct = 0;
1387
1388		for (j = 0; j < 1024 && i+j < numblocks; j++) {
1389			if (info->pba_to_lba[i+j] != UNUSABLE) {
1390				if (ct >= 1000)
1391					info->pba_to_lba[i+j] = SPARE;
1392				else
1393					ct++;
1394			}
1395		}
1396		lbact += ct;
1397	}
1398	info->lbact = lbact;
1399	usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1400	result = 0;
1401
1402 done:
1403	if (result != 0) {
1404		kfree(info->lba_to_pba);
1405		kfree(info->pba_to_lba);
1406		info->lba_to_pba = NULL;
1407		info->pba_to_lba = NULL;
1408	}
1409	kfree(buffer);
1410	return result;
1411}
1412
1413static void
1414sddr09_card_info_destructor(void *extra) {
1415	struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1416
1417	if (!info)
1418		return;
1419
1420	kfree(info->lba_to_pba);
1421	kfree(info->pba_to_lba);
1422}
1423
1424static int
1425sddr09_common_init(struct us_data *us) {
1426	int result;
1427
1428	/* set the configuration -- STALL is an acceptable response here */
1429	if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1430		usb_stor_dbg(us, "active config #%d != 1 ??\n",
1431			     us->pusb_dev->actconfig->desc.bConfigurationValue);
1432		return -EINVAL;
1433	}
1434
1435	result = usb_reset_configuration(us->pusb_dev);
1436	usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
1437	if (result == -EPIPE) {
1438		usb_stor_dbg(us, "-- stall on control interface\n");
1439	} else if (result != 0) {
1440		/* it's not a stall, but another error -- time to bail */
1441		usb_stor_dbg(us, "-- Unknown error.  Rejecting device\n");
1442		return -EINVAL;
1443	}
1444
1445	us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1446	if (!us->extra)
1447		return -ENOMEM;
1448	us->extra_destructor = sddr09_card_info_destructor;
1449
1450	nand_init_ecc();
1451	return 0;
1452}
1453
1454
1455/*
1456 * This is needed at a very early stage. If this is not listed in the
1457 * unusual devices list but called from here then LUN 0 of the combo reader
1458 * is not recognized. But I do not know what precisely these calls do.
1459 */
1460static int
1461usb_stor_sddr09_dpcm_init(struct us_data *us) {
1462	int result;
1463	unsigned char *data = us->iobuf;
1464
1465	result = sddr09_common_init(us);
1466	if (result)
1467		return result;
1468
1469	result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1470	if (result) {
1471		usb_stor_dbg(us, "send_command fails\n");
1472		return result;
1473	}
1474
1475	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1476	// get 07 02
1477
1478	result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1479	if (result) {
1480		usb_stor_dbg(us, "2nd send_command fails\n");
1481		return result;
1482	}
1483
1484	usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1485	// get 07 00
1486
1487	result = sddr09_request_sense(us, data, 18);
1488	if (result == 0 && data[2] != 0) {
1489		int j;
1490		for (j=0; j<18; j++)
1491			printk(" %02X", data[j]);
1492		printk("\n");
1493		// get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1494		// 70: current command
1495		// sense key 0, sense code 0, extd sense code 0
1496		// additional transfer length * = sizeof(data) - 7
1497		// Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1498		// sense key 06, sense code 28: unit attention,
1499		// not ready to ready transition
1500	}
1501
1502	// test unit ready
1503
1504	return 0;		/* not result */
1505}
1506
1507/*
1508 * Transport for the Microtech DPCM-USB
1509 */
1510static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1511{
1512	int ret;
1513
1514	usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
1515
1516	switch (srb->device->lun) {
1517	case 0:
1518
1519		/*
1520		 * LUN 0 corresponds to the CompactFlash card reader.
1521		 */
1522		ret = usb_stor_CB_transport(srb, us);
1523		break;
1524
1525	case 1:
1526
1527		/*
1528		 * LUN 1 corresponds to the SmartMedia card reader.
1529		 */
1530
1531		/*
1532		 * Set the LUN to 0 (just in case).
1533		 */
1534		srb->device->lun = 0;
1535		ret = sddr09_transport(srb, us);
1536		srb->device->lun = 1;
1537		break;
1538
1539	default:
1540	    usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
 
1541		ret = USB_STOR_TRANSPORT_ERROR;
1542		break;
1543	}
1544	return ret;
1545}
1546
1547
1548/*
1549 * Transport for the Sandisk SDDR-09
1550 */
1551static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1552{
1553	static unsigned char sensekey = 0, sensecode = 0;
1554	static unsigned char havefakesense = 0;
1555	int result, i;
1556	unsigned char *ptr = us->iobuf;
1557	unsigned long capacity;
1558	unsigned int page, pages;
1559
1560	struct sddr09_card_info *info;
1561
1562	static unsigned char inquiry_response[8] = {
1563		0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1564	};
1565
1566	/* note: no block descriptor support */
1567	static unsigned char mode_page_01[19] = {
1568		0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1569		0x01, 0x0A,
1570		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1571	};
1572
1573	info = (struct sddr09_card_info *)us->extra;
1574
1575	if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1576		/* for a faked command, we have to follow with a faked sense */
1577		memset(ptr, 0, 18);
1578		ptr[0] = 0x70;
1579		ptr[2] = sensekey;
1580		ptr[7] = 11;
1581		ptr[12] = sensecode;
1582		usb_stor_set_xfer_buf(ptr, 18, srb);
1583		sensekey = sensecode = havefakesense = 0;
1584		return USB_STOR_TRANSPORT_GOOD;
1585	}
1586
1587	havefakesense = 1;
1588
1589	/*
1590	 * Dummy up a response for INQUIRY since SDDR09 doesn't
1591	 * respond to INQUIRY commands
1592	 */
1593
1594	if (srb->cmnd[0] == INQUIRY) {
1595		memcpy(ptr, inquiry_response, 8);
1596		fill_inquiry_response(us, ptr, 36);
1597		return USB_STOR_TRANSPORT_GOOD;
1598	}
1599
1600	if (srb->cmnd[0] == READ_CAPACITY) {
1601		struct nand_flash_dev *cardinfo;
1602
1603		sddr09_get_wp(us, info);	/* read WP bit */
1604
1605		cardinfo = sddr09_get_cardinfo(us, info->flags);
1606		if (!cardinfo) {
1607			/* probably no media */
1608		init_error:
1609			sensekey = 0x02;	/* not ready */
1610			sensecode = 0x3a;	/* medium not present */
1611			return USB_STOR_TRANSPORT_FAILED;
1612		}
1613
1614		info->capacity = (1 << cardinfo->chipshift);
1615		info->pageshift = cardinfo->pageshift;
1616		info->pagesize = (1 << info->pageshift);
1617		info->blockshift = cardinfo->blockshift;
1618		info->blocksize = (1 << info->blockshift);
1619		info->blockmask = info->blocksize - 1;
1620
1621		// map initialization, must follow get_cardinfo()
1622		if (sddr09_read_map(us)) {
1623			/* probably out of memory */
1624			goto init_error;
1625		}
1626
1627		// Report capacity
1628
1629		capacity = (info->lbact << info->blockshift) - 1;
1630
1631		((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1632
1633		// Report page size
1634
1635		((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1636		usb_stor_set_xfer_buf(ptr, 8, srb);
1637
1638		return USB_STOR_TRANSPORT_GOOD;
1639	}
1640
1641	if (srb->cmnd[0] == MODE_SENSE_10) {
1642		int modepage = (srb->cmnd[2] & 0x3F);
1643
1644		/*
1645		 * They ask for the Read/Write error recovery page,
1646		 * or for all pages.
1647		 */
1648		/* %% We should check DBD %% */
1649		if (modepage == 0x01 || modepage == 0x3F) {
1650			usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1651				     modepage);
1652
1653			memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1654			((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1655			ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1656			usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1657			return USB_STOR_TRANSPORT_GOOD;
1658		}
1659
1660		sensekey = 0x05;	/* illegal request */
1661		sensecode = 0x24;	/* invalid field in CDB */
1662		return USB_STOR_TRANSPORT_FAILED;
1663	}
1664
1665	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1666		return USB_STOR_TRANSPORT_GOOD;
1667
1668	havefakesense = 0;
1669
1670	if (srb->cmnd[0] == READ_10) {
1671
1672		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1673		page <<= 16;
1674		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1675		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1676
1677		usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1678			     page, pages);
1679
1680		result = sddr09_read_data(us, page, pages);
1681		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1682				USB_STOR_TRANSPORT_ERROR);
1683	}
1684
1685	if (srb->cmnd[0] == WRITE_10) {
1686
1687		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1688		page <<= 16;
1689		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1690		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1691
1692		usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1693			     page, pages);
1694
1695		result = sddr09_write_data(us, page, pages);
1696		return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1697				USB_STOR_TRANSPORT_ERROR);
1698	}
1699
1700	/*
1701	 * catch-all for all other commands, except
1702	 * pass TEST_UNIT_READY and REQUEST_SENSE through
1703	 */
1704	if (srb->cmnd[0] != TEST_UNIT_READY &&
1705	    srb->cmnd[0] != REQUEST_SENSE) {
1706		sensekey = 0x05;	/* illegal request */
1707		sensecode = 0x20;	/* invalid command */
1708		havefakesense = 1;
1709		return USB_STOR_TRANSPORT_FAILED;
1710	}
1711
1712	for (; srb->cmd_len<12; srb->cmd_len++)
1713		srb->cmnd[srb->cmd_len] = 0;
1714
1715	srb->cmnd[1] = LUNBITS;
1716
1717	ptr[0] = 0;
1718	for (i=0; i<12; i++)
1719		sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1720
1721	usb_stor_dbg(us, "Send control for command %s\n", ptr);
1722
1723	result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1724	if (result) {
1725		usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1726			     result);
1727		return USB_STOR_TRANSPORT_ERROR;
1728	}
1729
1730	if (scsi_bufflen(srb) == 0)
1731		return USB_STOR_TRANSPORT_GOOD;
1732
1733	if (srb->sc_data_direction == DMA_TO_DEVICE ||
1734	    srb->sc_data_direction == DMA_FROM_DEVICE) {
1735		unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1736				? us->send_bulk_pipe : us->recv_bulk_pipe;
1737
1738		usb_stor_dbg(us, "%s %d bytes\n",
1739			     (srb->sc_data_direction == DMA_TO_DEVICE) ?
1740			     "sending" : "receiving",
1741			     scsi_bufflen(srb));
1742
1743		result = usb_stor_bulk_srb(us, pipe, srb);
1744
1745		return (result == USB_STOR_XFER_GOOD ?
1746			USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1747	} 
1748
1749	return USB_STOR_TRANSPORT_GOOD;
1750}
1751
1752/*
1753 * Initialization routine for the sddr09 subdriver
1754 */
1755static int
1756usb_stor_sddr09_init(struct us_data *us) {
1757	return sddr09_common_init(us);
1758}
1759
1760static struct scsi_host_template sddr09_host_template;
1761
1762static int sddr09_probe(struct usb_interface *intf,
1763			 const struct usb_device_id *id)
1764{
1765	struct us_data *us;
1766	int result;
1767
1768	result = usb_stor_probe1(&us, intf, id,
1769			(id - sddr09_usb_ids) + sddr09_unusual_dev_list,
1770			&sddr09_host_template);
1771	if (result)
1772		return result;
1773
1774	if (us->protocol == USB_PR_DPCM_USB) {
1775		us->transport_name = "Control/Bulk-EUSB/SDDR09";
1776		us->transport = dpcm_transport;
1777		us->transport_reset = usb_stor_CB_reset;
1778		us->max_lun = 1;
1779	} else {
1780		us->transport_name = "EUSB/SDDR09";
1781		us->transport = sddr09_transport;
1782		us->transport_reset = usb_stor_CB_reset;
1783		us->max_lun = 0;
1784	}
1785
1786	result = usb_stor_probe2(us);
1787	return result;
1788}
1789
1790static struct usb_driver sddr09_driver = {
1791	.name =		DRV_NAME,
1792	.probe =	sddr09_probe,
1793	.disconnect =	usb_stor_disconnect,
1794	.suspend =	usb_stor_suspend,
1795	.resume =	usb_stor_resume,
1796	.reset_resume =	usb_stor_reset_resume,
1797	.pre_reset =	usb_stor_pre_reset,
1798	.post_reset =	usb_stor_post_reset,
1799	.id_table =	sddr09_usb_ids,
1800	.soft_unbind =	1,
1801	.no_dynamic_id = 1,
1802};
1803
1804module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME);