Loading...
1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <asm/unaligned.h>
18#include "hw.h"
19#include "ar9002_phy.h"
20
21static void ath9k_get_txgain_index(struct ath_hw *ah,
22 struct ath9k_channel *chan,
23 struct calDataPerFreqOpLoop *rawDatasetOpLoop,
24 u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx)
25{
26 u8 pcdac, i = 0;
27 u16 idxL = 0, idxR = 0, numPiers;
28 bool match;
29 struct chan_centers centers;
30
31 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
32
33 for (numPiers = 0; numPiers < availPiers; numPiers++)
34 if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
35 break;
36
37 match = ath9k_hw_get_lower_upper_index(
38 (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
39 calChans, numPiers, &idxL, &idxR);
40 if (match) {
41 pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
42 *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
43 } else {
44 pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
45 *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
46 rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
47 }
48
49 while (pcdac > ah->originalGain[i] &&
50 i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
51 i++;
52
53 *pcdacIdx = i;
54}
55
56static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
57 u32 initTxGain,
58 int txPower,
59 u8 *pPDADCValues)
60{
61 u32 i;
62 u32 offset;
63
64 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
65 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
66 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
67 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
68
69 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
70 AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
71
72 offset = txPower;
73 for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
74 if (i < offset)
75 pPDADCValues[i] = 0x0;
76 else
77 pPDADCValues[i] = 0xFF;
78}
79
80static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
81{
82 return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
83}
84
85static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
86{
87 return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
88}
89
90#define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
91
92static bool __ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
93{
94 struct ath_common *common = ath9k_hw_common(ah);
95 u16 *eep_data = (u16 *)&ah->eeprom.def;
96 int addr, ar5416_eep_start_loc = 0x100;
97
98 for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
99 if (!ath9k_hw_nvram_read(common, addr + ar5416_eep_start_loc,
100 eep_data)) {
101 ath_err(ath9k_hw_common(ah),
102 "Unable to read eeprom region\n");
103 return false;
104 }
105 eep_data++;
106 }
107 return true;
108}
109
110static bool __ath9k_hw_usb_def_fill_eeprom(struct ath_hw *ah)
111{
112 u16 *eep_data = (u16 *)&ah->eeprom.def;
113
114 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
115 0x100, SIZE_EEPROM_DEF);
116 return true;
117}
118
119static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
120{
121 struct ath_common *common = ath9k_hw_common(ah);
122
123 if (!ath9k_hw_use_flash(ah)) {
124 ath_dbg(common, ATH_DBG_EEPROM,
125 "Reading from EEPROM, not flash\n");
126 }
127
128 if (common->bus_ops->ath_bus_type == ATH_USB)
129 return __ath9k_hw_usb_def_fill_eeprom(ah);
130 else
131 return __ath9k_hw_def_fill_eeprom(ah);
132}
133
134#undef SIZE_EEPROM_DEF
135
136static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
137{
138 struct ar5416_eeprom_def *eep =
139 (struct ar5416_eeprom_def *) &ah->eeprom.def;
140 struct ath_common *common = ath9k_hw_common(ah);
141 u16 *eepdata, temp, magic, magic2;
142 u32 sum = 0, el;
143 bool need_swap = false;
144 int i, addr, size;
145
146 if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
147 ath_err(common, "Reading Magic # failed\n");
148 return false;
149 }
150
151 if (!ath9k_hw_use_flash(ah)) {
152 ath_dbg(common, ATH_DBG_EEPROM,
153 "Read Magic = 0x%04X\n", magic);
154
155 if (magic != AR5416_EEPROM_MAGIC) {
156 magic2 = swab16(magic);
157
158 if (magic2 == AR5416_EEPROM_MAGIC) {
159 size = sizeof(struct ar5416_eeprom_def);
160 need_swap = true;
161 eepdata = (u16 *) (&ah->eeprom);
162
163 for (addr = 0; addr < size / sizeof(u16); addr++) {
164 temp = swab16(*eepdata);
165 *eepdata = temp;
166 eepdata++;
167 }
168 } else {
169 ath_err(common,
170 "Invalid EEPROM Magic. Endianness mismatch.\n");
171 return -EINVAL;
172 }
173 }
174 }
175
176 ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
177 need_swap ? "True" : "False");
178
179 if (need_swap)
180 el = swab16(ah->eeprom.def.baseEepHeader.length);
181 else
182 el = ah->eeprom.def.baseEepHeader.length;
183
184 if (el > sizeof(struct ar5416_eeprom_def))
185 el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
186 else
187 el = el / sizeof(u16);
188
189 eepdata = (u16 *)(&ah->eeprom);
190
191 for (i = 0; i < el; i++)
192 sum ^= *eepdata++;
193
194 if (need_swap) {
195 u32 integer, j;
196 u16 word;
197
198 ath_dbg(common, ATH_DBG_EEPROM,
199 "EEPROM Endianness is not native.. Changing.\n");
200
201 word = swab16(eep->baseEepHeader.length);
202 eep->baseEepHeader.length = word;
203
204 word = swab16(eep->baseEepHeader.checksum);
205 eep->baseEepHeader.checksum = word;
206
207 word = swab16(eep->baseEepHeader.version);
208 eep->baseEepHeader.version = word;
209
210 word = swab16(eep->baseEepHeader.regDmn[0]);
211 eep->baseEepHeader.regDmn[0] = word;
212
213 word = swab16(eep->baseEepHeader.regDmn[1]);
214 eep->baseEepHeader.regDmn[1] = word;
215
216 word = swab16(eep->baseEepHeader.rfSilent);
217 eep->baseEepHeader.rfSilent = word;
218
219 word = swab16(eep->baseEepHeader.blueToothOptions);
220 eep->baseEepHeader.blueToothOptions = word;
221
222 word = swab16(eep->baseEepHeader.deviceCap);
223 eep->baseEepHeader.deviceCap = word;
224
225 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
226 struct modal_eep_header *pModal =
227 &eep->modalHeader[j];
228 integer = swab32(pModal->antCtrlCommon);
229 pModal->antCtrlCommon = integer;
230
231 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
232 integer = swab32(pModal->antCtrlChain[i]);
233 pModal->antCtrlChain[i] = integer;
234 }
235 for (i = 0; i < 3; i++) {
236 word = swab16(pModal->xpaBiasLvlFreq[i]);
237 pModal->xpaBiasLvlFreq[i] = word;
238 }
239
240 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
241 word = swab16(pModal->spurChans[i].spurChan);
242 pModal->spurChans[i].spurChan = word;
243 }
244 }
245 }
246
247 if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
248 ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
249 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
250 sum, ah->eep_ops->get_eeprom_ver(ah));
251 return -EINVAL;
252 }
253
254 /* Enable fixup for AR_AN_TOP2 if necessary */
255 if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
256 ((eep->baseEepHeader.version & 0xff) > 0x0a) &&
257 (eep->baseEepHeader.pwdclkind == 0))
258 ah->need_an_top2_fixup = 1;
259
260 if ((common->bus_ops->ath_bus_type == ATH_USB) &&
261 (AR_SREV_9280(ah)))
262 eep->modalHeader[0].xpaBiasLvl = 0;
263
264 return 0;
265}
266
267static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
268 enum eeprom_param param)
269{
270 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
271 struct modal_eep_header *pModal = eep->modalHeader;
272 struct base_eep_header *pBase = &eep->baseEepHeader;
273
274 switch (param) {
275 case EEP_NFTHRESH_5:
276 return pModal[0].noiseFloorThreshCh[0];
277 case EEP_NFTHRESH_2:
278 return pModal[1].noiseFloorThreshCh[0];
279 case EEP_MAC_LSW:
280 return get_unaligned_be16(pBase->macAddr);
281 case EEP_MAC_MID:
282 return get_unaligned_be16(pBase->macAddr + 2);
283 case EEP_MAC_MSW:
284 return get_unaligned_be16(pBase->macAddr + 4);
285 case EEP_REG_0:
286 return pBase->regDmn[0];
287 case EEP_REG_1:
288 return pBase->regDmn[1];
289 case EEP_OP_CAP:
290 return pBase->deviceCap;
291 case EEP_OP_MODE:
292 return pBase->opCapFlags;
293 case EEP_RF_SILENT:
294 return pBase->rfSilent;
295 case EEP_OB_5:
296 return pModal[0].ob;
297 case EEP_DB_5:
298 return pModal[0].db;
299 case EEP_OB_2:
300 return pModal[1].ob;
301 case EEP_DB_2:
302 return pModal[1].db;
303 case EEP_MINOR_REV:
304 return AR5416_VER_MASK;
305 case EEP_TX_MASK:
306 return pBase->txMask;
307 case EEP_RX_MASK:
308 return pBase->rxMask;
309 case EEP_FSTCLK_5G:
310 return pBase->fastClk5g;
311 case EEP_RXGAIN_TYPE:
312 return pBase->rxGainType;
313 case EEP_TXGAIN_TYPE:
314 return pBase->txGainType;
315 case EEP_OL_PWRCTRL:
316 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
317 return pBase->openLoopPwrCntl ? true : false;
318 else
319 return false;
320 case EEP_RC_CHAIN_MASK:
321 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
322 return pBase->rcChainMask;
323 else
324 return 0;
325 case EEP_DAC_HPWR_5G:
326 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
327 return pBase->dacHiPwrMode_5G;
328 else
329 return 0;
330 case EEP_FRAC_N_5G:
331 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
332 return pBase->frac_n_5g;
333 else
334 return 0;
335 case EEP_PWR_TABLE_OFFSET:
336 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21)
337 return pBase->pwr_table_offset;
338 else
339 return AR5416_PWR_TABLE_OFFSET_DB;
340 default:
341 return 0;
342 }
343}
344
345static void ath9k_hw_def_set_gain(struct ath_hw *ah,
346 struct modal_eep_header *pModal,
347 struct ar5416_eeprom_def *eep,
348 u8 txRxAttenLocal, int regChainOffset, int i)
349{
350 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
351 txRxAttenLocal = pModal->txRxAttenCh[i];
352
353 if (AR_SREV_9280_20_OR_LATER(ah)) {
354 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
355 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
356 pModal->bswMargin[i]);
357 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
358 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
359 pModal->bswAtten[i]);
360 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
361 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
362 pModal->xatten2Margin[i]);
363 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
364 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
365 pModal->xatten2Db[i]);
366 } else {
367 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
368 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
369 ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
370 | SM(pModal-> bswMargin[i],
371 AR_PHY_GAIN_2GHZ_BSW_MARGIN));
372 REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
373 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
374 ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
375 | SM(pModal->bswAtten[i],
376 AR_PHY_GAIN_2GHZ_BSW_ATTEN));
377 }
378 }
379
380 if (AR_SREV_9280_20_OR_LATER(ah)) {
381 REG_RMW_FIELD(ah,
382 AR_PHY_RXGAIN + regChainOffset,
383 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
384 REG_RMW_FIELD(ah,
385 AR_PHY_RXGAIN + regChainOffset,
386 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
387 } else {
388 REG_WRITE(ah,
389 AR_PHY_RXGAIN + regChainOffset,
390 (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
391 ~AR_PHY_RXGAIN_TXRX_ATTEN)
392 | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
393 REG_WRITE(ah,
394 AR_PHY_GAIN_2GHZ + regChainOffset,
395 (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
396 ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
397 SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
398 }
399}
400
401static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
402 struct ath9k_channel *chan)
403{
404 struct modal_eep_header *pModal;
405 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
406 int i, regChainOffset;
407 u8 txRxAttenLocal;
408
409 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
410 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
411
412 REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon & 0xffff);
413
414 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
415 if (AR_SREV_9280(ah)) {
416 if (i >= 2)
417 break;
418 }
419
420 if (AR_SREV_5416_20_OR_LATER(ah) &&
421 (ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
422 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
423 else
424 regChainOffset = i * 0x1000;
425
426 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
427 pModal->antCtrlChain[i]);
428
429 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
430 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
431 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
432 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
433 SM(pModal->iqCalICh[i],
434 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
435 SM(pModal->iqCalQCh[i],
436 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
437
438 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah))
439 ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
440 regChainOffset, i);
441 }
442
443 if (AR_SREV_9280_20_OR_LATER(ah)) {
444 if (IS_CHAN_2GHZ(chan)) {
445 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
446 AR_AN_RF2G1_CH0_OB,
447 AR_AN_RF2G1_CH0_OB_S,
448 pModal->ob);
449 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
450 AR_AN_RF2G1_CH0_DB,
451 AR_AN_RF2G1_CH0_DB_S,
452 pModal->db);
453 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
454 AR_AN_RF2G1_CH1_OB,
455 AR_AN_RF2G1_CH1_OB_S,
456 pModal->ob_ch1);
457 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
458 AR_AN_RF2G1_CH1_DB,
459 AR_AN_RF2G1_CH1_DB_S,
460 pModal->db_ch1);
461 } else {
462 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
463 AR_AN_RF5G1_CH0_OB5,
464 AR_AN_RF5G1_CH0_OB5_S,
465 pModal->ob);
466 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
467 AR_AN_RF5G1_CH0_DB5,
468 AR_AN_RF5G1_CH0_DB5_S,
469 pModal->db);
470 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
471 AR_AN_RF5G1_CH1_OB5,
472 AR_AN_RF5G1_CH1_OB5_S,
473 pModal->ob_ch1);
474 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
475 AR_AN_RF5G1_CH1_DB5,
476 AR_AN_RF5G1_CH1_DB5_S,
477 pModal->db_ch1);
478 }
479 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
480 AR_AN_TOP2_XPABIAS_LVL,
481 AR_AN_TOP2_XPABIAS_LVL_S,
482 pModal->xpaBiasLvl);
483 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
484 AR_AN_TOP2_LOCALBIAS,
485 AR_AN_TOP2_LOCALBIAS_S,
486 !!(pModal->lna_ctl &
487 LNA_CTL_LOCAL_BIAS));
488 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
489 !!(pModal->lna_ctl & LNA_CTL_FORCE_XPA));
490 }
491
492 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
493 pModal->switchSettling);
494 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
495 pModal->adcDesiredSize);
496
497 if (!AR_SREV_9280_20_OR_LATER(ah))
498 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
499 AR_PHY_DESIRED_SZ_PGA,
500 pModal->pgaDesiredSize);
501
502 REG_WRITE(ah, AR_PHY_RF_CTL4,
503 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
504 | SM(pModal->txEndToXpaOff,
505 AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
506 | SM(pModal->txFrameToXpaOn,
507 AR_PHY_RF_CTL4_FRAME_XPAA_ON)
508 | SM(pModal->txFrameToXpaOn,
509 AR_PHY_RF_CTL4_FRAME_XPAB_ON));
510
511 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
512 pModal->txEndToRxOn);
513
514 if (AR_SREV_9280_20_OR_LATER(ah)) {
515 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
516 pModal->thresh62);
517 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
518 AR_PHY_EXT_CCA0_THRESH62,
519 pModal->thresh62);
520 } else {
521 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
522 pModal->thresh62);
523 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
524 AR_PHY_EXT_CCA_THRESH62,
525 pModal->thresh62);
526 }
527
528 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
529 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
530 AR_PHY_TX_END_DATA_START,
531 pModal->txFrameToDataStart);
532 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
533 pModal->txFrameToPaOn);
534 }
535
536 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
537 if (IS_CHAN_HT40(chan))
538 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
539 AR_PHY_SETTLING_SWITCH,
540 pModal->swSettleHt40);
541 }
542
543 if (AR_SREV_9280_20_OR_LATER(ah) &&
544 AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
545 REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
546 AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
547 pModal->miscBits);
548
549
550 if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
551 if (IS_CHAN_2GHZ(chan))
552 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
553 eep->baseEepHeader.dacLpMode);
554 else if (eep->baseEepHeader.dacHiPwrMode_5G)
555 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
556 else
557 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
558 eep->baseEepHeader.dacLpMode);
559
560 udelay(100);
561
562 REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
563 pModal->miscBits >> 2);
564
565 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
566 AR_PHY_TX_DESIRED_SCALE_CCK,
567 eep->baseEepHeader.desiredScaleCCK);
568 }
569}
570
571static void ath9k_hw_def_set_addac(struct ath_hw *ah,
572 struct ath9k_channel *chan)
573{
574#define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
575 struct modal_eep_header *pModal;
576 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
577 u8 biaslevel;
578
579 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
580 return;
581
582 if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
583 return;
584
585 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
586
587 if (pModal->xpaBiasLvl != 0xff) {
588 biaslevel = pModal->xpaBiasLvl;
589 } else {
590 u16 resetFreqBin, freqBin, freqCount = 0;
591 struct chan_centers centers;
592
593 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
594
595 resetFreqBin = FREQ2FBIN(centers.synth_center,
596 IS_CHAN_2GHZ(chan));
597 freqBin = XPA_LVL_FREQ(0) & 0xff;
598 biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
599
600 freqCount++;
601
602 while (freqCount < 3) {
603 if (XPA_LVL_FREQ(freqCount) == 0x0)
604 break;
605
606 freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
607 if (resetFreqBin >= freqBin)
608 biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
609 else
610 break;
611 freqCount++;
612 }
613 }
614
615 if (IS_CHAN_2GHZ(chan)) {
616 INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
617 7, 1) & (~0x18)) | biaslevel << 3;
618 } else {
619 INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
620 6, 1) & (~0xc0)) | biaslevel << 6;
621 }
622#undef XPA_LVL_FREQ
623}
624
625static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
626 u16 *gb,
627 u16 numXpdGain,
628 u16 pdGainOverlap_t2,
629 int8_t pwr_table_offset,
630 int16_t *diff)
631
632{
633 u16 k;
634
635 /* Prior to writing the boundaries or the pdadc vs. power table
636 * into the chip registers the default starting point on the pdadc
637 * vs. power table needs to be checked and the curve boundaries
638 * adjusted accordingly
639 */
640 if (AR_SREV_9280_20_OR_LATER(ah)) {
641 u16 gb_limit;
642
643 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
644 /* get the difference in dB */
645 *diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
646 /* get the number of half dB steps */
647 *diff *= 2;
648 /* change the original gain boundary settings
649 * by the number of half dB steps
650 */
651 for (k = 0; k < numXpdGain; k++)
652 gb[k] = (u16)(gb[k] - *diff);
653 }
654 /* Because of a hardware limitation, ensure the gain boundary
655 * is not larger than (63 - overlap)
656 */
657 gb_limit = (u16)(MAX_RATE_POWER - pdGainOverlap_t2);
658
659 for (k = 0; k < numXpdGain; k++)
660 gb[k] = (u16)min(gb_limit, gb[k]);
661 }
662
663 return *diff;
664}
665
666static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
667 int8_t pwr_table_offset,
668 int16_t diff,
669 u8 *pdadcValues)
670{
671#define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
672 u16 k;
673
674 /* If this is a board that has a pwrTableOffset that differs from
675 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
676 * pdadc vs pwr table needs to be adjusted prior to writing to the
677 * chip.
678 */
679 if (AR_SREV_9280_20_OR_LATER(ah)) {
680 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
681 /* shift the table to start at the new offset */
682 for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
683 pdadcValues[k] = pdadcValues[k + diff];
684 }
685
686 /* fill the back of the table */
687 for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
688 pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
689 }
690 }
691 }
692#undef NUM_PDADC
693}
694
695static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
696 struct ath9k_channel *chan,
697 int16_t *pTxPowerIndexOffset)
698{
699#define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
700#define SM_PDGAIN_B(x, y) \
701 SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
702 struct ath_common *common = ath9k_hw_common(ah);
703 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
704 struct cal_data_per_freq *pRawDataset;
705 u8 *pCalBChans = NULL;
706 u16 pdGainOverlap_t2;
707 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
708 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
709 u16 numPiers, i, j;
710 int16_t diff = 0;
711 u16 numXpdGain, xpdMask;
712 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
713 u32 reg32, regOffset, regChainOffset;
714 int16_t modalIdx;
715 int8_t pwr_table_offset;
716
717 modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
718 xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
719
720 pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
721
722 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
723 AR5416_EEP_MINOR_VER_2) {
724 pdGainOverlap_t2 =
725 pEepData->modalHeader[modalIdx].pdGainOverlap;
726 } else {
727 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
728 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
729 }
730
731 if (IS_CHAN_2GHZ(chan)) {
732 pCalBChans = pEepData->calFreqPier2G;
733 numPiers = AR5416_NUM_2G_CAL_PIERS;
734 } else {
735 pCalBChans = pEepData->calFreqPier5G;
736 numPiers = AR5416_NUM_5G_CAL_PIERS;
737 }
738
739 if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
740 pRawDataset = pEepData->calPierData2G[0];
741 ah->initPDADC = ((struct calDataPerFreqOpLoop *)
742 pRawDataset)->vpdPdg[0][0];
743 }
744
745 numXpdGain = 0;
746
747 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
748 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
749 if (numXpdGain >= AR5416_NUM_PD_GAINS)
750 break;
751 xpdGainValues[numXpdGain] =
752 (u16)(AR5416_PD_GAINS_IN_MASK - i);
753 numXpdGain++;
754 }
755 }
756
757 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
758 (numXpdGain - 1) & 0x3);
759 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
760 xpdGainValues[0]);
761 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
762 xpdGainValues[1]);
763 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
764 xpdGainValues[2]);
765
766 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
767 if (AR_SREV_5416_20_OR_LATER(ah) &&
768 (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
769 (i != 0)) {
770 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
771 } else
772 regChainOffset = i * 0x1000;
773
774 if (pEepData->baseEepHeader.txMask & (1 << i)) {
775 if (IS_CHAN_2GHZ(chan))
776 pRawDataset = pEepData->calPierData2G[i];
777 else
778 pRawDataset = pEepData->calPierData5G[i];
779
780
781 if (OLC_FOR_AR9280_20_LATER) {
782 u8 pcdacIdx;
783 u8 txPower;
784
785 ath9k_get_txgain_index(ah, chan,
786 (struct calDataPerFreqOpLoop *)pRawDataset,
787 pCalBChans, numPiers, &txPower, &pcdacIdx);
788 ath9k_olc_get_pdadcs(ah, pcdacIdx,
789 txPower/2, pdadcValues);
790 } else {
791 ath9k_hw_get_gain_boundaries_pdadcs(ah,
792 chan, pRawDataset,
793 pCalBChans, numPiers,
794 pdGainOverlap_t2,
795 gainBoundaries,
796 pdadcValues,
797 numXpdGain);
798 }
799
800 diff = ath9k_change_gain_boundary_setting(ah,
801 gainBoundaries,
802 numXpdGain,
803 pdGainOverlap_t2,
804 pwr_table_offset,
805 &diff);
806
807 ENABLE_REGWRITE_BUFFER(ah);
808
809 if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
810 if (OLC_FOR_AR9280_20_LATER) {
811 REG_WRITE(ah,
812 AR_PHY_TPCRG5 + regChainOffset,
813 SM(0x6,
814 AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
815 SM_PD_GAIN(1) | SM_PD_GAIN(2) |
816 SM_PD_GAIN(3) | SM_PD_GAIN(4));
817 } else {
818 REG_WRITE(ah,
819 AR_PHY_TPCRG5 + regChainOffset,
820 SM(pdGainOverlap_t2,
821 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
822 SM_PDGAIN_B(0, 1) |
823 SM_PDGAIN_B(1, 2) |
824 SM_PDGAIN_B(2, 3) |
825 SM_PDGAIN_B(3, 4));
826 }
827 }
828
829
830 ath9k_adjust_pdadc_values(ah, pwr_table_offset,
831 diff, pdadcValues);
832
833 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
834 for (j = 0; j < 32; j++) {
835 reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
836 REG_WRITE(ah, regOffset, reg32);
837
838 ath_dbg(common, ATH_DBG_EEPROM,
839 "PDADC (%d,%4x): %4.4x %8.8x\n",
840 i, regChainOffset, regOffset,
841 reg32);
842 ath_dbg(common, ATH_DBG_EEPROM,
843 "PDADC: Chain %d | PDADC %3d "
844 "Value %3d | PDADC %3d Value %3d | "
845 "PDADC %3d Value %3d | PDADC %3d "
846 "Value %3d |\n",
847 i, 4 * j, pdadcValues[4 * j],
848 4 * j + 1, pdadcValues[4 * j + 1],
849 4 * j + 2, pdadcValues[4 * j + 2],
850 4 * j + 3, pdadcValues[4 * j + 3]);
851
852 regOffset += 4;
853 }
854 REGWRITE_BUFFER_FLUSH(ah);
855 }
856 }
857
858 *pTxPowerIndexOffset = 0;
859#undef SM_PD_GAIN
860#undef SM_PDGAIN_B
861}
862
863static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
864 struct ath9k_channel *chan,
865 int16_t *ratesArray,
866 u16 cfgCtl,
867 u16 AntennaReduction,
868 u16 twiceMaxRegulatoryPower,
869 u16 powerLimit)
870{
871#define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
872#define REDUCE_SCALED_POWER_BY_THREE_CHAIN 9 /* 10*log10(3)*2 */
873
874 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
875 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
876 u16 twiceMaxEdgePower = MAX_RATE_POWER;
877 static const u16 tpScaleReductionTable[5] =
878 { 0, 3, 6, 9, MAX_RATE_POWER };
879
880 int i;
881 int16_t twiceLargestAntenna;
882 struct cal_ctl_data *rep;
883 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
884 0, { 0, 0, 0, 0}
885 };
886 struct cal_target_power_leg targetPowerOfdmExt = {
887 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
888 0, { 0, 0, 0, 0 }
889 };
890 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
891 0, {0, 0, 0, 0}
892 };
893 u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
894 static const u16 ctlModesFor11a[] = {
895 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
896 };
897 static const u16 ctlModesFor11g[] = {
898 CTL_11B, CTL_11G, CTL_2GHT20,
899 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
900 };
901 u16 numCtlModes;
902 const u16 *pCtlMode;
903 u16 ctlMode, freq;
904 struct chan_centers centers;
905 int tx_chainmask;
906 u16 twiceMinEdgePower;
907
908 tx_chainmask = ah->txchainmask;
909
910 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
911
912 twiceLargestAntenna = max(
913 pEepData->modalHeader
914 [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
915 pEepData->modalHeader
916 [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
917
918 twiceLargestAntenna = max((u8)twiceLargestAntenna,
919 pEepData->modalHeader
920 [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
921
922 twiceLargestAntenna = (int16_t)min(AntennaReduction -
923 twiceLargestAntenna, 0);
924
925 maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
926
927 if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
928 maxRegAllowedPower -=
929 (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
930 }
931
932 scaledPower = min(powerLimit, maxRegAllowedPower);
933
934 switch (ar5416_get_ntxchains(tx_chainmask)) {
935 case 1:
936 break;
937 case 2:
938 if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
939 scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
940 else
941 scaledPower = 0;
942 break;
943 case 3:
944 if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
945 scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
946 else
947 scaledPower = 0;
948 break;
949 }
950
951 if (IS_CHAN_2GHZ(chan)) {
952 numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
953 SUB_NUM_CTL_MODES_AT_2G_40;
954 pCtlMode = ctlModesFor11g;
955
956 ath9k_hw_get_legacy_target_powers(ah, chan,
957 pEepData->calTargetPowerCck,
958 AR5416_NUM_2G_CCK_TARGET_POWERS,
959 &targetPowerCck, 4, false);
960 ath9k_hw_get_legacy_target_powers(ah, chan,
961 pEepData->calTargetPower2G,
962 AR5416_NUM_2G_20_TARGET_POWERS,
963 &targetPowerOfdm, 4, false);
964 ath9k_hw_get_target_powers(ah, chan,
965 pEepData->calTargetPower2GHT20,
966 AR5416_NUM_2G_20_TARGET_POWERS,
967 &targetPowerHt20, 8, false);
968
969 if (IS_CHAN_HT40(chan)) {
970 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
971 ath9k_hw_get_target_powers(ah, chan,
972 pEepData->calTargetPower2GHT40,
973 AR5416_NUM_2G_40_TARGET_POWERS,
974 &targetPowerHt40, 8, true);
975 ath9k_hw_get_legacy_target_powers(ah, chan,
976 pEepData->calTargetPowerCck,
977 AR5416_NUM_2G_CCK_TARGET_POWERS,
978 &targetPowerCckExt, 4, true);
979 ath9k_hw_get_legacy_target_powers(ah, chan,
980 pEepData->calTargetPower2G,
981 AR5416_NUM_2G_20_TARGET_POWERS,
982 &targetPowerOfdmExt, 4, true);
983 }
984 } else {
985 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
986 SUB_NUM_CTL_MODES_AT_5G_40;
987 pCtlMode = ctlModesFor11a;
988
989 ath9k_hw_get_legacy_target_powers(ah, chan,
990 pEepData->calTargetPower5G,
991 AR5416_NUM_5G_20_TARGET_POWERS,
992 &targetPowerOfdm, 4, false);
993 ath9k_hw_get_target_powers(ah, chan,
994 pEepData->calTargetPower5GHT20,
995 AR5416_NUM_5G_20_TARGET_POWERS,
996 &targetPowerHt20, 8, false);
997
998 if (IS_CHAN_HT40(chan)) {
999 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1000 ath9k_hw_get_target_powers(ah, chan,
1001 pEepData->calTargetPower5GHT40,
1002 AR5416_NUM_5G_40_TARGET_POWERS,
1003 &targetPowerHt40, 8, true);
1004 ath9k_hw_get_legacy_target_powers(ah, chan,
1005 pEepData->calTargetPower5G,
1006 AR5416_NUM_5G_20_TARGET_POWERS,
1007 &targetPowerOfdmExt, 4, true);
1008 }
1009 }
1010
1011 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1012 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1013 (pCtlMode[ctlMode] == CTL_2GHT40);
1014 if (isHt40CtlMode)
1015 freq = centers.synth_center;
1016 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1017 freq = centers.ext_center;
1018 else
1019 freq = centers.ctl_center;
1020
1021 if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
1022 ah->eep_ops->get_eeprom_rev(ah) <= 2)
1023 twiceMaxEdgePower = MAX_RATE_POWER;
1024
1025 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1026 if ((((cfgCtl & ~CTL_MODE_M) |
1027 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1028 pEepData->ctlIndex[i]) ||
1029 (((cfgCtl & ~CTL_MODE_M) |
1030 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1031 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1032 rep = &(pEepData->ctlData[i]);
1033
1034 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1035 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1036 IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1037
1038 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1039 twiceMaxEdgePower = min(twiceMaxEdgePower,
1040 twiceMinEdgePower);
1041 } else {
1042 twiceMaxEdgePower = twiceMinEdgePower;
1043 break;
1044 }
1045 }
1046 }
1047
1048 minCtlPower = min(twiceMaxEdgePower, scaledPower);
1049
1050 switch (pCtlMode[ctlMode]) {
1051 case CTL_11B:
1052 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1053 targetPowerCck.tPow2x[i] =
1054 min((u16)targetPowerCck.tPow2x[i],
1055 minCtlPower);
1056 }
1057 break;
1058 case CTL_11A:
1059 case CTL_11G:
1060 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1061 targetPowerOfdm.tPow2x[i] =
1062 min((u16)targetPowerOfdm.tPow2x[i],
1063 minCtlPower);
1064 }
1065 break;
1066 case CTL_5GHT20:
1067 case CTL_2GHT20:
1068 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1069 targetPowerHt20.tPow2x[i] =
1070 min((u16)targetPowerHt20.tPow2x[i],
1071 minCtlPower);
1072 }
1073 break;
1074 case CTL_11B_EXT:
1075 targetPowerCckExt.tPow2x[0] = min((u16)
1076 targetPowerCckExt.tPow2x[0],
1077 minCtlPower);
1078 break;
1079 case CTL_11A_EXT:
1080 case CTL_11G_EXT:
1081 targetPowerOfdmExt.tPow2x[0] = min((u16)
1082 targetPowerOfdmExt.tPow2x[0],
1083 minCtlPower);
1084 break;
1085 case CTL_5GHT40:
1086 case CTL_2GHT40:
1087 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1088 targetPowerHt40.tPow2x[i] =
1089 min((u16)targetPowerHt40.tPow2x[i],
1090 minCtlPower);
1091 }
1092 break;
1093 default:
1094 break;
1095 }
1096 }
1097
1098 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1099 ratesArray[rate18mb] = ratesArray[rate24mb] =
1100 targetPowerOfdm.tPow2x[0];
1101 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1102 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1103 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1104 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1105
1106 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1107 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1108
1109 if (IS_CHAN_2GHZ(chan)) {
1110 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1111 ratesArray[rate2s] = ratesArray[rate2l] =
1112 targetPowerCck.tPow2x[1];
1113 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1114 targetPowerCck.tPow2x[2];
1115 ratesArray[rate11s] = ratesArray[rate11l] =
1116 targetPowerCck.tPow2x[3];
1117 }
1118 if (IS_CHAN_HT40(chan)) {
1119 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1120 ratesArray[rateHt40_0 + i] =
1121 targetPowerHt40.tPow2x[i];
1122 }
1123 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1124 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1125 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1126 if (IS_CHAN_2GHZ(chan)) {
1127 ratesArray[rateExtCck] =
1128 targetPowerCckExt.tPow2x[0];
1129 }
1130 }
1131}
1132
1133static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1134 struct ath9k_channel *chan,
1135 u16 cfgCtl,
1136 u8 twiceAntennaReduction,
1137 u8 twiceMaxRegulatoryPower,
1138 u8 powerLimit, bool test)
1139{
1140#define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1141 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1142 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1143 struct modal_eep_header *pModal =
1144 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1145 int16_t ratesArray[Ar5416RateSize];
1146 int16_t txPowerIndexOffset = 0;
1147 u8 ht40PowerIncForPdadc = 2;
1148 int i, cck_ofdm_delta = 0;
1149
1150 memset(ratesArray, 0, sizeof(ratesArray));
1151
1152 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1153 AR5416_EEP_MINOR_VER_2) {
1154 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1155 }
1156
1157 ath9k_hw_set_def_power_per_rate_table(ah, chan,
1158 &ratesArray[0], cfgCtl,
1159 twiceAntennaReduction,
1160 twiceMaxRegulatoryPower,
1161 powerLimit);
1162
1163 ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset);
1164
1165 regulatory->max_power_level = 0;
1166 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1167 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
1168 if (ratesArray[i] > MAX_RATE_POWER)
1169 ratesArray[i] = MAX_RATE_POWER;
1170 if (ratesArray[i] > regulatory->max_power_level)
1171 regulatory->max_power_level = ratesArray[i];
1172 }
1173
1174 if (!test) {
1175 i = rate6mb;
1176
1177 if (IS_CHAN_HT40(chan))
1178 i = rateHt40_0;
1179 else if (IS_CHAN_HT20(chan))
1180 i = rateHt20_0;
1181
1182 regulatory->max_power_level = ratesArray[i];
1183 }
1184
1185 switch(ar5416_get_ntxchains(ah->txchainmask)) {
1186 case 1:
1187 break;
1188 case 2:
1189 regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
1190 break;
1191 case 3:
1192 regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
1193 break;
1194 default:
1195 ath_dbg(ath9k_hw_common(ah), ATH_DBG_EEPROM,
1196 "Invalid chainmask configuration\n");
1197 break;
1198 }
1199
1200 if (test)
1201 return;
1202
1203 if (AR_SREV_9280_20_OR_LATER(ah)) {
1204 for (i = 0; i < Ar5416RateSize; i++) {
1205 int8_t pwr_table_offset;
1206
1207 pwr_table_offset = ah->eep_ops->get_eeprom(ah,
1208 EEP_PWR_TABLE_OFFSET);
1209 ratesArray[i] -= pwr_table_offset * 2;
1210 }
1211 }
1212
1213 ENABLE_REGWRITE_BUFFER(ah);
1214
1215 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1216 ATH9K_POW_SM(ratesArray[rate18mb], 24)
1217 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1218 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1219 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1220 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1221 ATH9K_POW_SM(ratesArray[rate54mb], 24)
1222 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1223 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1224 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1225
1226 if (IS_CHAN_2GHZ(chan)) {
1227 if (OLC_FOR_AR9280_20_LATER) {
1228 cck_ofdm_delta = 2;
1229 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1230 ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1231 | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1232 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1233 | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1234 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1235 ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1236 | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1237 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1238 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1239 } else {
1240 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1241 ATH9K_POW_SM(ratesArray[rate2s], 24)
1242 | ATH9K_POW_SM(ratesArray[rate2l], 16)
1243 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1244 | ATH9K_POW_SM(ratesArray[rate1l], 0));
1245 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1246 ATH9K_POW_SM(ratesArray[rate11s], 24)
1247 | ATH9K_POW_SM(ratesArray[rate11l], 16)
1248 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1249 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1250 }
1251 }
1252
1253 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1254 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1255 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1256 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1257 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1258 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1259 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1260 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1261 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1262 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1263
1264 if (IS_CHAN_HT40(chan)) {
1265 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1266 ATH9K_POW_SM(ratesArray[rateHt40_3] +
1267 ht40PowerIncForPdadc, 24)
1268 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1269 ht40PowerIncForPdadc, 16)
1270 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1271 ht40PowerIncForPdadc, 8)
1272 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1273 ht40PowerIncForPdadc, 0));
1274 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1275 ATH9K_POW_SM(ratesArray[rateHt40_7] +
1276 ht40PowerIncForPdadc, 24)
1277 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1278 ht40PowerIncForPdadc, 16)
1279 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1280 ht40PowerIncForPdadc, 8)
1281 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1282 ht40PowerIncForPdadc, 0));
1283 if (OLC_FOR_AR9280_20_LATER) {
1284 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1285 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1286 | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1287 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1288 | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1289 } else {
1290 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1291 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1292 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1293 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1294 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1295 }
1296 }
1297
1298 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1299 ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1300 | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1301
1302 REGWRITE_BUFFER_FLUSH(ah);
1303}
1304
1305static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1306{
1307#define EEP_DEF_SPURCHAN \
1308 (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
1309 struct ath_common *common = ath9k_hw_common(ah);
1310
1311 u16 spur_val = AR_NO_SPUR;
1312
1313 ath_dbg(common, ATH_DBG_ANI,
1314 "Getting spur idx:%d is2Ghz:%d val:%x\n",
1315 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1316
1317 switch (ah->config.spurmode) {
1318 case SPUR_DISABLE:
1319 break;
1320 case SPUR_ENABLE_IOCTL:
1321 spur_val = ah->config.spurchans[i][is2GHz];
1322 ath_dbg(common, ATH_DBG_ANI,
1323 "Getting spur val from new loc. %d\n", spur_val);
1324 break;
1325 case SPUR_ENABLE_EEPROM:
1326 spur_val = EEP_DEF_SPURCHAN;
1327 break;
1328 }
1329
1330 return spur_val;
1331
1332#undef EEP_DEF_SPURCHAN
1333}
1334
1335const struct eeprom_ops eep_def_ops = {
1336 .check_eeprom = ath9k_hw_def_check_eeprom,
1337 .get_eeprom = ath9k_hw_def_get_eeprom,
1338 .fill_eeprom = ath9k_hw_def_fill_eeprom,
1339 .get_eeprom_ver = ath9k_hw_def_get_eeprom_ver,
1340 .get_eeprom_rev = ath9k_hw_def_get_eeprom_rev,
1341 .set_board_values = ath9k_hw_def_set_board_values,
1342 .set_addac = ath9k_hw_def_set_addac,
1343 .set_txpower = ath9k_hw_def_set_txpower,
1344 .get_spur_channel = ath9k_hw_def_get_spur_channel
1345};
1/*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <asm/unaligned.h>
18#include "hw.h"
19#include "ar9002_phy.h"
20
21static void ath9k_get_txgain_index(struct ath_hw *ah,
22 struct ath9k_channel *chan,
23 struct calDataPerFreqOpLoop *rawDatasetOpLoop,
24 u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx)
25{
26 u8 pcdac, i = 0;
27 u16 idxL = 0, idxR = 0, numPiers;
28 bool match;
29 struct chan_centers centers;
30
31 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
32
33 for (numPiers = 0; numPiers < availPiers; numPiers++)
34 if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
35 break;
36
37 match = ath9k_hw_get_lower_upper_index(
38 (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
39 calChans, numPiers, &idxL, &idxR);
40 if (match) {
41 pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
42 *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
43 } else {
44 pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
45 *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
46 rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
47 }
48
49 while (pcdac > ah->originalGain[i] &&
50 i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
51 i++;
52
53 *pcdacIdx = i;
54}
55
56static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
57 u32 initTxGain,
58 int txPower,
59 u8 *pPDADCValues)
60{
61 u32 i;
62 u32 offset;
63
64 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
65 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
66 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
67 AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
68
69 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
70 AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
71
72 offset = txPower;
73 for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
74 if (i < offset)
75 pPDADCValues[i] = 0x0;
76 else
77 pPDADCValues[i] = 0xFF;
78}
79
80static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
81{
82 return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
83}
84
85static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
86{
87 return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
88}
89
90#define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
91
92static bool __ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
93{
94 u16 *eep_data = (u16 *)&ah->eeprom.def;
95 int addr, ar5416_eep_start_loc = 0x100;
96
97 for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
98 if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
99 eep_data))
100 return false;
101 eep_data++;
102 }
103 return true;
104}
105
106static bool __ath9k_hw_usb_def_fill_eeprom(struct ath_hw *ah)
107{
108 u16 *eep_data = (u16 *)&ah->eeprom.def;
109
110 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
111 0x100, SIZE_EEPROM_DEF);
112 return true;
113}
114
115static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
116{
117 struct ath_common *common = ath9k_hw_common(ah);
118
119 if (!ath9k_hw_use_flash(ah)) {
120 ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
121 }
122
123 if (common->bus_ops->ath_bus_type == ATH_USB)
124 return __ath9k_hw_usb_def_fill_eeprom(ah);
125 else
126 return __ath9k_hw_def_fill_eeprom(ah);
127}
128
129#if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
130static u32 ath9k_def_dump_modal_eeprom(char *buf, u32 len, u32 size,
131 struct modal_eep_header *modal_hdr)
132{
133 PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
134 PR_EEP("Chain1 Ant. Control", modal_hdr->antCtrlChain[1]);
135 PR_EEP("Chain2 Ant. Control", modal_hdr->antCtrlChain[2]);
136 PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
137 PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
138 PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
139 PR_EEP("Chain2 Ant. Gain", modal_hdr->antennaGainCh[2]);
140 PR_EEP("Switch Settle", modal_hdr->switchSettling);
141 PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
142 PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
143 PR_EEP("Chain2 TxRxAtten", modal_hdr->txRxAttenCh[2]);
144 PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
145 PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
146 PR_EEP("Chain2 RxTxMargin", modal_hdr->rxTxMarginCh[2]);
147 PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
148 PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
149 PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
150 PR_EEP("Chain1 xlna Gain", modal_hdr->xlnaGainCh[1]);
151 PR_EEP("Chain2 xlna Gain", modal_hdr->xlnaGainCh[2]);
152 PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
153 PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
154 PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
155 PR_EEP("CCA Threshold)", modal_hdr->thresh62);
156 PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
157 PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
158 PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
159 PR_EEP("xpdGain", modal_hdr->xpdGain);
160 PR_EEP("External PD", modal_hdr->xpd);
161 PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
162 PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
163 PR_EEP("Chain2 I Coefficient", modal_hdr->iqCalICh[2]);
164 PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
165 PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
166 PR_EEP("Chain2 Q Coefficient", modal_hdr->iqCalQCh[2]);
167 PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
168 PR_EEP("Chain0 OutputBias", modal_hdr->ob);
169 PR_EEP("Chain0 DriverBias", modal_hdr->db);
170 PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
171 PR_EEP("2chain pwr decrease", modal_hdr->pwrDecreaseFor2Chain);
172 PR_EEP("3chain pwr decrease", modal_hdr->pwrDecreaseFor3Chain);
173 PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
174 PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
175 PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
176 PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
177 PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
178 PR_EEP("Chain2 bswAtten", modal_hdr->bswAtten[2]);
179 PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
180 PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
181 PR_EEP("Chain2 bswMargin", modal_hdr->bswMargin[2]);
182 PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
183 PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
184 PR_EEP("Chain1 xatten2Db", modal_hdr->xatten2Db[1]);
185 PR_EEP("Chain2 xatten2Db", modal_hdr->xatten2Db[2]);
186 PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
187 PR_EEP("Chain1 xatten2Margin", modal_hdr->xatten2Margin[1]);
188 PR_EEP("Chain2 xatten2Margin", modal_hdr->xatten2Margin[2]);
189 PR_EEP("Chain1 OutputBias", modal_hdr->ob_ch1);
190 PR_EEP("Chain1 DriverBias", modal_hdr->db_ch1);
191 PR_EEP("LNA Control", modal_hdr->lna_ctl);
192 PR_EEP("XPA Bias Freq0", modal_hdr->xpaBiasLvlFreq[0]);
193 PR_EEP("XPA Bias Freq1", modal_hdr->xpaBiasLvlFreq[1]);
194 PR_EEP("XPA Bias Freq2", modal_hdr->xpaBiasLvlFreq[2]);
195
196 return len;
197}
198
199static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
200 u8 *buf, u32 len, u32 size)
201{
202 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
203 struct base_eep_header *pBase = &eep->baseEepHeader;
204
205 if (!dump_base_hdr) {
206 len += scnprintf(buf + len, size - len,
207 "%20s :\n", "2GHz modal Header");
208 len = ath9k_def_dump_modal_eeprom(buf, len, size,
209 &eep->modalHeader[0]);
210 len += scnprintf(buf + len, size - len,
211 "%20s :\n", "5GHz modal Header");
212 len = ath9k_def_dump_modal_eeprom(buf, len, size,
213 &eep->modalHeader[1]);
214 goto out;
215 }
216
217 PR_EEP("Major Version", pBase->version >> 12);
218 PR_EEP("Minor Version", pBase->version & 0xFFF);
219 PR_EEP("Checksum", pBase->checksum);
220 PR_EEP("Length", pBase->length);
221 PR_EEP("RegDomain1", pBase->regDmn[0]);
222 PR_EEP("RegDomain2", pBase->regDmn[1]);
223 PR_EEP("TX Mask", pBase->txMask);
224 PR_EEP("RX Mask", pBase->rxMask);
225 PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
226 PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
227 PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
228 AR5416_OPFLAGS_N_2G_HT20));
229 PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
230 AR5416_OPFLAGS_N_2G_HT40));
231 PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
232 AR5416_OPFLAGS_N_5G_HT20));
233 PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
234 AR5416_OPFLAGS_N_5G_HT40));
235 PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
236 PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
237 PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
238 PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
239 PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
240
241 len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
242 pBase->macAddr);
243
244out:
245 if (len > size)
246 len = size;
247
248 return len;
249}
250#else
251static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
252 u8 *buf, u32 len, u32 size)
253{
254 return 0;
255}
256#endif
257
258static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
259{
260 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
261 struct ath_common *common = ath9k_hw_common(ah);
262 u32 el;
263 bool need_swap;
264 int i, err;
265
266 err = ath9k_hw_nvram_swap_data(ah, &need_swap, SIZE_EEPROM_DEF);
267 if (err)
268 return err;
269
270 if (need_swap)
271 el = swab16(eep->baseEepHeader.length);
272 else
273 el = eep->baseEepHeader.length;
274
275 el = min(el / sizeof(u16), SIZE_EEPROM_DEF);
276 if (!ath9k_hw_nvram_validate_checksum(ah, el))
277 return -EINVAL;
278
279 if (need_swap) {
280 u32 integer, j;
281 u16 word;
282
283 word = swab16(eep->baseEepHeader.length);
284 eep->baseEepHeader.length = word;
285
286 word = swab16(eep->baseEepHeader.checksum);
287 eep->baseEepHeader.checksum = word;
288
289 word = swab16(eep->baseEepHeader.version);
290 eep->baseEepHeader.version = word;
291
292 word = swab16(eep->baseEepHeader.regDmn[0]);
293 eep->baseEepHeader.regDmn[0] = word;
294
295 word = swab16(eep->baseEepHeader.regDmn[1]);
296 eep->baseEepHeader.regDmn[1] = word;
297
298 word = swab16(eep->baseEepHeader.rfSilent);
299 eep->baseEepHeader.rfSilent = word;
300
301 word = swab16(eep->baseEepHeader.blueToothOptions);
302 eep->baseEepHeader.blueToothOptions = word;
303
304 word = swab16(eep->baseEepHeader.deviceCap);
305 eep->baseEepHeader.deviceCap = word;
306
307 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
308 struct modal_eep_header *pModal =
309 &eep->modalHeader[j];
310 integer = swab32(pModal->antCtrlCommon);
311 pModal->antCtrlCommon = integer;
312
313 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
314 integer = swab32(pModal->antCtrlChain[i]);
315 pModal->antCtrlChain[i] = integer;
316 }
317 for (i = 0; i < 3; i++) {
318 word = swab16(pModal->xpaBiasLvlFreq[i]);
319 pModal->xpaBiasLvlFreq[i] = word;
320 }
321
322 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
323 word = swab16(pModal->spurChans[i].spurChan);
324 pModal->spurChans[i].spurChan = word;
325 }
326 }
327 }
328
329 if (!ath9k_hw_nvram_check_version(ah, AR5416_EEP_VER,
330 AR5416_EEP_NO_BACK_VER))
331 return -EINVAL;
332
333 /* Enable fixup for AR_AN_TOP2 if necessary */
334 if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
335 ((eep->baseEepHeader.version & 0xff) > 0x0a) &&
336 (eep->baseEepHeader.pwdclkind == 0))
337 ah->need_an_top2_fixup = true;
338
339 if ((common->bus_ops->ath_bus_type == ATH_USB) &&
340 (AR_SREV_9280(ah)))
341 eep->modalHeader[0].xpaBiasLvl = 0;
342
343 return 0;
344}
345
346#undef SIZE_EEPROM_DEF
347
348static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
349 enum eeprom_param param)
350{
351 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
352 struct modal_eep_header *pModal = eep->modalHeader;
353 struct base_eep_header *pBase = &eep->baseEepHeader;
354 int band = 0;
355
356 switch (param) {
357 case EEP_NFTHRESH_5:
358 return pModal[0].noiseFloorThreshCh[0];
359 case EEP_NFTHRESH_2:
360 return pModal[1].noiseFloorThreshCh[0];
361 case EEP_MAC_LSW:
362 return get_unaligned_be16(pBase->macAddr);
363 case EEP_MAC_MID:
364 return get_unaligned_be16(pBase->macAddr + 2);
365 case EEP_MAC_MSW:
366 return get_unaligned_be16(pBase->macAddr + 4);
367 case EEP_REG_0:
368 return pBase->regDmn[0];
369 case EEP_OP_CAP:
370 return pBase->deviceCap;
371 case EEP_OP_MODE:
372 return pBase->opCapFlags;
373 case EEP_RF_SILENT:
374 return pBase->rfSilent;
375 case EEP_OB_5:
376 return pModal[0].ob;
377 case EEP_DB_5:
378 return pModal[0].db;
379 case EEP_OB_2:
380 return pModal[1].ob;
381 case EEP_DB_2:
382 return pModal[1].db;
383 case EEP_MINOR_REV:
384 return AR5416_VER_MASK;
385 case EEP_TX_MASK:
386 return pBase->txMask;
387 case EEP_RX_MASK:
388 return pBase->rxMask;
389 case EEP_FSTCLK_5G:
390 return pBase->fastClk5g;
391 case EEP_RXGAIN_TYPE:
392 return pBase->rxGainType;
393 case EEP_TXGAIN_TYPE:
394 return pBase->txGainType;
395 case EEP_OL_PWRCTRL:
396 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
397 return pBase->openLoopPwrCntl ? true : false;
398 else
399 return false;
400 case EEP_RC_CHAIN_MASK:
401 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
402 return pBase->rcChainMask;
403 else
404 return 0;
405 case EEP_DAC_HPWR_5G:
406 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
407 return pBase->dacHiPwrMode_5G;
408 else
409 return 0;
410 case EEP_FRAC_N_5G:
411 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
412 return pBase->frac_n_5g;
413 else
414 return 0;
415 case EEP_PWR_TABLE_OFFSET:
416 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21)
417 return pBase->pwr_table_offset;
418 else
419 return AR5416_PWR_TABLE_OFFSET_DB;
420 case EEP_ANTENNA_GAIN_2G:
421 band = 1;
422 /* fall through */
423 case EEP_ANTENNA_GAIN_5G:
424 return max_t(u8, max_t(u8,
425 pModal[band].antennaGainCh[0],
426 pModal[band].antennaGainCh[1]),
427 pModal[band].antennaGainCh[2]);
428 default:
429 return 0;
430 }
431}
432
433static void ath9k_hw_def_set_gain(struct ath_hw *ah,
434 struct modal_eep_header *pModal,
435 struct ar5416_eeprom_def *eep,
436 u8 txRxAttenLocal, int regChainOffset, int i)
437{
438 ENABLE_REG_RMW_BUFFER(ah);
439 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
440 txRxAttenLocal = pModal->txRxAttenCh[i];
441
442 if (AR_SREV_9280_20_OR_LATER(ah)) {
443 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
444 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
445 pModal->bswMargin[i]);
446 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
447 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
448 pModal->bswAtten[i]);
449 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
450 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
451 pModal->xatten2Margin[i]);
452 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
453 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
454 pModal->xatten2Db[i]);
455 } else {
456 REG_RMW(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
457 SM(pModal-> bswMargin[i], AR_PHY_GAIN_2GHZ_BSW_MARGIN),
458 AR_PHY_GAIN_2GHZ_BSW_MARGIN);
459 REG_RMW(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
460 SM(pModal->bswAtten[i], AR_PHY_GAIN_2GHZ_BSW_ATTEN),
461 AR_PHY_GAIN_2GHZ_BSW_ATTEN);
462 }
463 }
464
465 if (AR_SREV_9280_20_OR_LATER(ah)) {
466 REG_RMW_FIELD(ah,
467 AR_PHY_RXGAIN + regChainOffset,
468 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
469 REG_RMW_FIELD(ah,
470 AR_PHY_RXGAIN + regChainOffset,
471 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
472 } else {
473 REG_RMW(ah, AR_PHY_RXGAIN + regChainOffset,
474 SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN),
475 AR_PHY_RXGAIN_TXRX_ATTEN);
476 REG_RMW(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
477 SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN),
478 AR_PHY_GAIN_2GHZ_RXTX_MARGIN);
479 }
480 REG_RMW_BUFFER_FLUSH(ah);
481}
482
483static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
484 struct ath9k_channel *chan)
485{
486 struct modal_eep_header *pModal;
487 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
488 int i, regChainOffset;
489 u8 txRxAttenLocal;
490
491 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
492 txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
493
494 REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon & 0xffff);
495
496 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
497 if (AR_SREV_9280(ah)) {
498 if (i >= 2)
499 break;
500 }
501
502 if ((ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
503 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
504 else
505 regChainOffset = i * 0x1000;
506
507 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
508 pModal->antCtrlChain[i]);
509
510 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
511 (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
512 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
513 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
514 SM(pModal->iqCalICh[i],
515 AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
516 SM(pModal->iqCalQCh[i],
517 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
518
519 ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
520 regChainOffset, i);
521 }
522
523 if (AR_SREV_9280_20_OR_LATER(ah)) {
524 if (IS_CHAN_2GHZ(chan)) {
525 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
526 AR_AN_RF2G1_CH0_OB,
527 AR_AN_RF2G1_CH0_OB_S,
528 pModal->ob);
529 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
530 AR_AN_RF2G1_CH0_DB,
531 AR_AN_RF2G1_CH0_DB_S,
532 pModal->db);
533 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
534 AR_AN_RF2G1_CH1_OB,
535 AR_AN_RF2G1_CH1_OB_S,
536 pModal->ob_ch1);
537 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
538 AR_AN_RF2G1_CH1_DB,
539 AR_AN_RF2G1_CH1_DB_S,
540 pModal->db_ch1);
541 } else {
542 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
543 AR_AN_RF5G1_CH0_OB5,
544 AR_AN_RF5G1_CH0_OB5_S,
545 pModal->ob);
546 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
547 AR_AN_RF5G1_CH0_DB5,
548 AR_AN_RF5G1_CH0_DB5_S,
549 pModal->db);
550 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
551 AR_AN_RF5G1_CH1_OB5,
552 AR_AN_RF5G1_CH1_OB5_S,
553 pModal->ob_ch1);
554 ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
555 AR_AN_RF5G1_CH1_DB5,
556 AR_AN_RF5G1_CH1_DB5_S,
557 pModal->db_ch1);
558 }
559 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
560 AR_AN_TOP2_XPABIAS_LVL,
561 AR_AN_TOP2_XPABIAS_LVL_S,
562 pModal->xpaBiasLvl);
563 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
564 AR_AN_TOP2_LOCALBIAS,
565 AR_AN_TOP2_LOCALBIAS_S,
566 !!(pModal->lna_ctl &
567 LNA_CTL_LOCAL_BIAS));
568 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
569 !!(pModal->lna_ctl & LNA_CTL_FORCE_XPA));
570 }
571
572 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
573 pModal->switchSettling);
574 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
575 pModal->adcDesiredSize);
576
577 if (!AR_SREV_9280_20_OR_LATER(ah))
578 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
579 AR_PHY_DESIRED_SZ_PGA,
580 pModal->pgaDesiredSize);
581
582 REG_WRITE(ah, AR_PHY_RF_CTL4,
583 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
584 | SM(pModal->txEndToXpaOff,
585 AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
586 | SM(pModal->txFrameToXpaOn,
587 AR_PHY_RF_CTL4_FRAME_XPAA_ON)
588 | SM(pModal->txFrameToXpaOn,
589 AR_PHY_RF_CTL4_FRAME_XPAB_ON));
590
591 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
592 pModal->txEndToRxOn);
593
594 if (AR_SREV_9280_20_OR_LATER(ah)) {
595 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
596 pModal->thresh62);
597 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
598 AR_PHY_EXT_CCA0_THRESH62,
599 pModal->thresh62);
600 } else {
601 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
602 pModal->thresh62);
603 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
604 AR_PHY_EXT_CCA_THRESH62,
605 pModal->thresh62);
606 }
607
608 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
609 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
610 AR_PHY_TX_END_DATA_START,
611 pModal->txFrameToDataStart);
612 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
613 pModal->txFrameToPaOn);
614 }
615
616 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
617 if (IS_CHAN_HT40(chan))
618 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
619 AR_PHY_SETTLING_SWITCH,
620 pModal->swSettleHt40);
621 }
622
623 if (AR_SREV_9280_20_OR_LATER(ah) &&
624 AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
625 REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
626 AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
627 pModal->miscBits);
628
629
630 if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
631 if (IS_CHAN_2GHZ(chan))
632 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
633 eep->baseEepHeader.dacLpMode);
634 else if (eep->baseEepHeader.dacHiPwrMode_5G)
635 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
636 else
637 REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
638 eep->baseEepHeader.dacLpMode);
639
640 udelay(100);
641
642 REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
643 pModal->miscBits >> 2);
644
645 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
646 AR_PHY_TX_DESIRED_SCALE_CCK,
647 eep->baseEepHeader.desiredScaleCCK);
648 }
649}
650
651static void ath9k_hw_def_set_addac(struct ath_hw *ah,
652 struct ath9k_channel *chan)
653{
654#define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
655 struct modal_eep_header *pModal;
656 struct ar5416_eeprom_def *eep = &ah->eeprom.def;
657 u8 biaslevel;
658
659 if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
660 return;
661
662 if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
663 return;
664
665 pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
666
667 if (pModal->xpaBiasLvl != 0xff) {
668 biaslevel = pModal->xpaBiasLvl;
669 } else {
670 u16 resetFreqBin, freqBin, freqCount = 0;
671 struct chan_centers centers;
672
673 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
674
675 resetFreqBin = FREQ2FBIN(centers.synth_center,
676 IS_CHAN_2GHZ(chan));
677 freqBin = XPA_LVL_FREQ(0) & 0xff;
678 biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
679
680 freqCount++;
681
682 while (freqCount < 3) {
683 if (XPA_LVL_FREQ(freqCount) == 0x0)
684 break;
685
686 freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
687 if (resetFreqBin >= freqBin)
688 biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
689 else
690 break;
691 freqCount++;
692 }
693 }
694
695 if (IS_CHAN_2GHZ(chan)) {
696 INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
697 7, 1) & (~0x18)) | biaslevel << 3;
698 } else {
699 INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
700 6, 1) & (~0xc0)) | biaslevel << 6;
701 }
702#undef XPA_LVL_FREQ
703}
704
705static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
706 u16 *gb,
707 u16 numXpdGain,
708 u16 pdGainOverlap_t2,
709 int8_t pwr_table_offset,
710 int16_t *diff)
711
712{
713 u16 k;
714
715 /* Prior to writing the boundaries or the pdadc vs. power table
716 * into the chip registers the default starting point on the pdadc
717 * vs. power table needs to be checked and the curve boundaries
718 * adjusted accordingly
719 */
720 if (AR_SREV_9280_20_OR_LATER(ah)) {
721 u16 gb_limit;
722
723 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
724 /* get the difference in dB */
725 *diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
726 /* get the number of half dB steps */
727 *diff *= 2;
728 /* change the original gain boundary settings
729 * by the number of half dB steps
730 */
731 for (k = 0; k < numXpdGain; k++)
732 gb[k] = (u16)(gb[k] - *diff);
733 }
734 /* Because of a hardware limitation, ensure the gain boundary
735 * is not larger than (63 - overlap)
736 */
737 gb_limit = (u16)(MAX_RATE_POWER - pdGainOverlap_t2);
738
739 for (k = 0; k < numXpdGain; k++)
740 gb[k] = (u16)min(gb_limit, gb[k]);
741 }
742
743 return *diff;
744}
745
746static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
747 int8_t pwr_table_offset,
748 int16_t diff,
749 u8 *pdadcValues)
750{
751#define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
752 u16 k;
753
754 /* If this is a board that has a pwrTableOffset that differs from
755 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
756 * pdadc vs pwr table needs to be adjusted prior to writing to the
757 * chip.
758 */
759 if (AR_SREV_9280_20_OR_LATER(ah)) {
760 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
761 /* shift the table to start at the new offset */
762 for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
763 pdadcValues[k] = pdadcValues[k + diff];
764 }
765
766 /* fill the back of the table */
767 for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
768 pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
769 }
770 }
771 }
772#undef NUM_PDADC
773}
774
775static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
776 struct ath9k_channel *chan)
777{
778#define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
779#define SM_PDGAIN_B(x, y) \
780 SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
781 struct ath_common *common = ath9k_hw_common(ah);
782 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
783 struct cal_data_per_freq *pRawDataset;
784 u8 *pCalBChans = NULL;
785 u16 pdGainOverlap_t2;
786 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
787 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
788 u16 numPiers, i, j;
789 int16_t diff = 0;
790 u16 numXpdGain, xpdMask;
791 u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
792 u32 reg32, regOffset, regChainOffset;
793 int16_t modalIdx;
794 int8_t pwr_table_offset;
795
796 modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
797 xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
798
799 pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
800
801 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
802 AR5416_EEP_MINOR_VER_2) {
803 pdGainOverlap_t2 =
804 pEepData->modalHeader[modalIdx].pdGainOverlap;
805 } else {
806 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
807 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
808 }
809
810 if (IS_CHAN_2GHZ(chan)) {
811 pCalBChans = pEepData->calFreqPier2G;
812 numPiers = AR5416_NUM_2G_CAL_PIERS;
813 } else {
814 pCalBChans = pEepData->calFreqPier5G;
815 numPiers = AR5416_NUM_5G_CAL_PIERS;
816 }
817
818 if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
819 pRawDataset = pEepData->calPierData2G[0];
820 ah->initPDADC = ((struct calDataPerFreqOpLoop *)
821 pRawDataset)->vpdPdg[0][0];
822 }
823
824 numXpdGain = 0;
825
826 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
827 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
828 if (numXpdGain >= AR5416_NUM_PD_GAINS)
829 break;
830 xpdGainValues[numXpdGain] =
831 (u16)(AR5416_PD_GAINS_IN_MASK - i);
832 numXpdGain++;
833 }
834 }
835
836 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
837 (numXpdGain - 1) & 0x3);
838 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
839 xpdGainValues[0]);
840 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
841 xpdGainValues[1]);
842 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
843 xpdGainValues[2]);
844
845 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
846 if ((ah->rxchainmask == 5 || ah->txchainmask == 5) &&
847 (i != 0)) {
848 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
849 } else
850 regChainOffset = i * 0x1000;
851
852 if (pEepData->baseEepHeader.txMask & (1 << i)) {
853 if (IS_CHAN_2GHZ(chan))
854 pRawDataset = pEepData->calPierData2G[i];
855 else
856 pRawDataset = pEepData->calPierData5G[i];
857
858
859 if (OLC_FOR_AR9280_20_LATER) {
860 u8 pcdacIdx;
861 u8 txPower;
862
863 ath9k_get_txgain_index(ah, chan,
864 (struct calDataPerFreqOpLoop *)pRawDataset,
865 pCalBChans, numPiers, &txPower, &pcdacIdx);
866 ath9k_olc_get_pdadcs(ah, pcdacIdx,
867 txPower/2, pdadcValues);
868 } else {
869 ath9k_hw_get_gain_boundaries_pdadcs(ah,
870 chan, pRawDataset,
871 pCalBChans, numPiers,
872 pdGainOverlap_t2,
873 gainBoundaries,
874 pdadcValues,
875 numXpdGain);
876 }
877
878 diff = ath9k_change_gain_boundary_setting(ah,
879 gainBoundaries,
880 numXpdGain,
881 pdGainOverlap_t2,
882 pwr_table_offset,
883 &diff);
884
885 ENABLE_REGWRITE_BUFFER(ah);
886
887 if (OLC_FOR_AR9280_20_LATER) {
888 REG_WRITE(ah,
889 AR_PHY_TPCRG5 + regChainOffset,
890 SM(0x6,
891 AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
892 SM_PD_GAIN(1) | SM_PD_GAIN(2) |
893 SM_PD_GAIN(3) | SM_PD_GAIN(4));
894 } else {
895 REG_WRITE(ah,
896 AR_PHY_TPCRG5 + regChainOffset,
897 SM(pdGainOverlap_t2,
898 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
899 SM_PDGAIN_B(0, 1) |
900 SM_PDGAIN_B(1, 2) |
901 SM_PDGAIN_B(2, 3) |
902 SM_PDGAIN_B(3, 4));
903 }
904
905 ath9k_adjust_pdadc_values(ah, pwr_table_offset,
906 diff, pdadcValues);
907
908 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
909 for (j = 0; j < 32; j++) {
910 reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
911 REG_WRITE(ah, regOffset, reg32);
912
913 ath_dbg(common, EEPROM,
914 "PDADC (%d,%4x): %4.4x %8.8x\n",
915 i, regChainOffset, regOffset,
916 reg32);
917 ath_dbg(common, EEPROM,
918 "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
919 i, 4 * j, pdadcValues[4 * j],
920 4 * j + 1, pdadcValues[4 * j + 1],
921 4 * j + 2, pdadcValues[4 * j + 2],
922 4 * j + 3, pdadcValues[4 * j + 3]);
923
924 regOffset += 4;
925 }
926 REGWRITE_BUFFER_FLUSH(ah);
927 }
928 }
929
930#undef SM_PD_GAIN
931#undef SM_PDGAIN_B
932}
933
934static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
935 struct ath9k_channel *chan,
936 int16_t *ratesArray,
937 u16 cfgCtl,
938 u16 antenna_reduction,
939 u16 powerLimit)
940{
941 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
942 u16 twiceMaxEdgePower;
943 int i;
944 struct cal_ctl_data *rep;
945 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
946 0, { 0, 0, 0, 0}
947 };
948 struct cal_target_power_leg targetPowerOfdmExt = {
949 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
950 0, { 0, 0, 0, 0 }
951 };
952 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
953 0, {0, 0, 0, 0}
954 };
955 u16 scaledPower = 0, minCtlPower;
956 static const u16 ctlModesFor11a[] = {
957 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
958 };
959 static const u16 ctlModesFor11g[] = {
960 CTL_11B, CTL_11G, CTL_2GHT20,
961 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
962 };
963 u16 numCtlModes;
964 const u16 *pCtlMode;
965 u16 ctlMode, freq;
966 struct chan_centers centers;
967 int tx_chainmask;
968 u16 twiceMinEdgePower;
969
970 tx_chainmask = ah->txchainmask;
971
972 ath9k_hw_get_channel_centers(ah, chan, ¢ers);
973
974 scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
975 antenna_reduction);
976
977 if (IS_CHAN_2GHZ(chan)) {
978 numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
979 SUB_NUM_CTL_MODES_AT_2G_40;
980 pCtlMode = ctlModesFor11g;
981
982 ath9k_hw_get_legacy_target_powers(ah, chan,
983 pEepData->calTargetPowerCck,
984 AR5416_NUM_2G_CCK_TARGET_POWERS,
985 &targetPowerCck, 4, false);
986 ath9k_hw_get_legacy_target_powers(ah, chan,
987 pEepData->calTargetPower2G,
988 AR5416_NUM_2G_20_TARGET_POWERS,
989 &targetPowerOfdm, 4, false);
990 ath9k_hw_get_target_powers(ah, chan,
991 pEepData->calTargetPower2GHT20,
992 AR5416_NUM_2G_20_TARGET_POWERS,
993 &targetPowerHt20, 8, false);
994
995 if (IS_CHAN_HT40(chan)) {
996 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
997 ath9k_hw_get_target_powers(ah, chan,
998 pEepData->calTargetPower2GHT40,
999 AR5416_NUM_2G_40_TARGET_POWERS,
1000 &targetPowerHt40, 8, true);
1001 ath9k_hw_get_legacy_target_powers(ah, chan,
1002 pEepData->calTargetPowerCck,
1003 AR5416_NUM_2G_CCK_TARGET_POWERS,
1004 &targetPowerCckExt, 4, true);
1005 ath9k_hw_get_legacy_target_powers(ah, chan,
1006 pEepData->calTargetPower2G,
1007 AR5416_NUM_2G_20_TARGET_POWERS,
1008 &targetPowerOfdmExt, 4, true);
1009 }
1010 } else {
1011 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
1012 SUB_NUM_CTL_MODES_AT_5G_40;
1013 pCtlMode = ctlModesFor11a;
1014
1015 ath9k_hw_get_legacy_target_powers(ah, chan,
1016 pEepData->calTargetPower5G,
1017 AR5416_NUM_5G_20_TARGET_POWERS,
1018 &targetPowerOfdm, 4, false);
1019 ath9k_hw_get_target_powers(ah, chan,
1020 pEepData->calTargetPower5GHT20,
1021 AR5416_NUM_5G_20_TARGET_POWERS,
1022 &targetPowerHt20, 8, false);
1023
1024 if (IS_CHAN_HT40(chan)) {
1025 numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1026 ath9k_hw_get_target_powers(ah, chan,
1027 pEepData->calTargetPower5GHT40,
1028 AR5416_NUM_5G_40_TARGET_POWERS,
1029 &targetPowerHt40, 8, true);
1030 ath9k_hw_get_legacy_target_powers(ah, chan,
1031 pEepData->calTargetPower5G,
1032 AR5416_NUM_5G_20_TARGET_POWERS,
1033 &targetPowerOfdmExt, 4, true);
1034 }
1035 }
1036
1037 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1038 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1039 (pCtlMode[ctlMode] == CTL_2GHT40);
1040 if (isHt40CtlMode)
1041 freq = centers.synth_center;
1042 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1043 freq = centers.ext_center;
1044 else
1045 freq = centers.ctl_center;
1046
1047 twiceMaxEdgePower = MAX_RATE_POWER;
1048
1049 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1050 if ((((cfgCtl & ~CTL_MODE_M) |
1051 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1052 pEepData->ctlIndex[i]) ||
1053 (((cfgCtl & ~CTL_MODE_M) |
1054 (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1055 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1056 rep = &(pEepData->ctlData[i]);
1057
1058 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1059 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1060 IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1061
1062 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1063 twiceMaxEdgePower = min(twiceMaxEdgePower,
1064 twiceMinEdgePower);
1065 } else {
1066 twiceMaxEdgePower = twiceMinEdgePower;
1067 break;
1068 }
1069 }
1070 }
1071
1072 minCtlPower = min(twiceMaxEdgePower, scaledPower);
1073
1074 switch (pCtlMode[ctlMode]) {
1075 case CTL_11B:
1076 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1077 targetPowerCck.tPow2x[i] =
1078 min((u16)targetPowerCck.tPow2x[i],
1079 minCtlPower);
1080 }
1081 break;
1082 case CTL_11A:
1083 case CTL_11G:
1084 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1085 targetPowerOfdm.tPow2x[i] =
1086 min((u16)targetPowerOfdm.tPow2x[i],
1087 minCtlPower);
1088 }
1089 break;
1090 case CTL_5GHT20:
1091 case CTL_2GHT20:
1092 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1093 targetPowerHt20.tPow2x[i] =
1094 min((u16)targetPowerHt20.tPow2x[i],
1095 minCtlPower);
1096 }
1097 break;
1098 case CTL_11B_EXT:
1099 targetPowerCckExt.tPow2x[0] = min((u16)
1100 targetPowerCckExt.tPow2x[0],
1101 minCtlPower);
1102 break;
1103 case CTL_11A_EXT:
1104 case CTL_11G_EXT:
1105 targetPowerOfdmExt.tPow2x[0] = min((u16)
1106 targetPowerOfdmExt.tPow2x[0],
1107 minCtlPower);
1108 break;
1109 case CTL_5GHT40:
1110 case CTL_2GHT40:
1111 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1112 targetPowerHt40.tPow2x[i] =
1113 min((u16)targetPowerHt40.tPow2x[i],
1114 minCtlPower);
1115 }
1116 break;
1117 default:
1118 break;
1119 }
1120 }
1121
1122 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1123 ratesArray[rate18mb] = ratesArray[rate24mb] =
1124 targetPowerOfdm.tPow2x[0];
1125 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1126 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1127 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1128 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1129
1130 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1131 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1132
1133 if (IS_CHAN_2GHZ(chan)) {
1134 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1135 ratesArray[rate2s] = ratesArray[rate2l] =
1136 targetPowerCck.tPow2x[1];
1137 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1138 targetPowerCck.tPow2x[2];
1139 ratesArray[rate11s] = ratesArray[rate11l] =
1140 targetPowerCck.tPow2x[3];
1141 }
1142 if (IS_CHAN_HT40(chan)) {
1143 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1144 ratesArray[rateHt40_0 + i] =
1145 targetPowerHt40.tPow2x[i];
1146 }
1147 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1148 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1149 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1150 if (IS_CHAN_2GHZ(chan)) {
1151 ratesArray[rateExtCck] =
1152 targetPowerCckExt.tPow2x[0];
1153 }
1154 }
1155}
1156
1157static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1158 struct ath9k_channel *chan,
1159 u16 cfgCtl,
1160 u8 twiceAntennaReduction,
1161 u8 powerLimit, bool test)
1162{
1163#define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1164 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1165 struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1166 struct modal_eep_header *pModal =
1167 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1168 int16_t ratesArray[Ar5416RateSize];
1169 u8 ht40PowerIncForPdadc = 2;
1170 int i, cck_ofdm_delta = 0;
1171
1172 memset(ratesArray, 0, sizeof(ratesArray));
1173
1174 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1175 AR5416_EEP_MINOR_VER_2) {
1176 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1177 }
1178
1179 ath9k_hw_set_def_power_per_rate_table(ah, chan,
1180 &ratesArray[0], cfgCtl,
1181 twiceAntennaReduction,
1182 powerLimit);
1183
1184 ath9k_hw_set_def_power_cal_table(ah, chan);
1185
1186 regulatory->max_power_level = 0;
1187 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1188 if (ratesArray[i] > MAX_RATE_POWER)
1189 ratesArray[i] = MAX_RATE_POWER;
1190 if (ratesArray[i] > regulatory->max_power_level)
1191 regulatory->max_power_level = ratesArray[i];
1192 }
1193
1194 ath9k_hw_update_regulatory_maxpower(ah);
1195
1196 if (test)
1197 return;
1198
1199 if (AR_SREV_9280_20_OR_LATER(ah)) {
1200 for (i = 0; i < Ar5416RateSize; i++) {
1201 int8_t pwr_table_offset;
1202
1203 pwr_table_offset = ah->eep_ops->get_eeprom(ah,
1204 EEP_PWR_TABLE_OFFSET);
1205 ratesArray[i] -= pwr_table_offset * 2;
1206 }
1207 }
1208
1209 ENABLE_REGWRITE_BUFFER(ah);
1210
1211 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1212 ATH9K_POW_SM(ratesArray[rate18mb], 24)
1213 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1214 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1215 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1216 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1217 ATH9K_POW_SM(ratesArray[rate54mb], 24)
1218 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1219 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1220 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1221
1222 if (IS_CHAN_2GHZ(chan)) {
1223 if (OLC_FOR_AR9280_20_LATER) {
1224 cck_ofdm_delta = 2;
1225 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1226 ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1227 | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1228 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1229 | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1230 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1231 ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1232 | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1233 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1234 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1235 } else {
1236 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1237 ATH9K_POW_SM(ratesArray[rate2s], 24)
1238 | ATH9K_POW_SM(ratesArray[rate2l], 16)
1239 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1240 | ATH9K_POW_SM(ratesArray[rate1l], 0));
1241 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1242 ATH9K_POW_SM(ratesArray[rate11s], 24)
1243 | ATH9K_POW_SM(ratesArray[rate11l], 16)
1244 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1245 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1246 }
1247 }
1248
1249 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1250 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1251 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1252 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1253 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1254 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1255 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1256 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1257 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1258 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1259
1260 if (IS_CHAN_HT40(chan)) {
1261 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1262 ATH9K_POW_SM(ratesArray[rateHt40_3] +
1263 ht40PowerIncForPdadc, 24)
1264 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1265 ht40PowerIncForPdadc, 16)
1266 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1267 ht40PowerIncForPdadc, 8)
1268 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1269 ht40PowerIncForPdadc, 0));
1270 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1271 ATH9K_POW_SM(ratesArray[rateHt40_7] +
1272 ht40PowerIncForPdadc, 24)
1273 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1274 ht40PowerIncForPdadc, 16)
1275 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1276 ht40PowerIncForPdadc, 8)
1277 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1278 ht40PowerIncForPdadc, 0));
1279 if (OLC_FOR_AR9280_20_LATER) {
1280 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1281 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1282 | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1283 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1284 | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1285 } else {
1286 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1287 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1288 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1289 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1290 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1291 }
1292 }
1293
1294 REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1295 ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1296 | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1297
1298 /* TPC initializations */
1299 if (ah->tpc_enabled) {
1300 int ht40_delta;
1301
1302 ht40_delta = (IS_CHAN_HT40(chan)) ? ht40PowerIncForPdadc : 0;
1303 ar5008_hw_init_rate_txpower(ah, ratesArray, chan, ht40_delta);
1304 /* Enable TPC */
1305 REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX,
1306 MAX_RATE_POWER | AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
1307 } else {
1308 /* Disable TPC */
1309 REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER);
1310 }
1311
1312 REGWRITE_BUFFER_FLUSH(ah);
1313}
1314
1315static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1316{
1317 return ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan;
1318}
1319
1320const struct eeprom_ops eep_def_ops = {
1321 .check_eeprom = ath9k_hw_def_check_eeprom,
1322 .get_eeprom = ath9k_hw_def_get_eeprom,
1323 .fill_eeprom = ath9k_hw_def_fill_eeprom,
1324 .dump_eeprom = ath9k_hw_def_dump_eeprom,
1325 .get_eeprom_ver = ath9k_hw_def_get_eeprom_ver,
1326 .get_eeprom_rev = ath9k_hw_def_get_eeprom_rev,
1327 .set_board_values = ath9k_hw_def_set_board_values,
1328 .set_addac = ath9k_hw_def_set_addac,
1329 .set_txpower = ath9k_hw_def_set_txpower,
1330 .get_spur_channel = ath9k_hw_def_get_spur_channel
1331};