Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include <asm/unaligned.h>
  18#include "hw.h"
  19#include "ar9002_phy.h"
  20
  21static void ath9k_get_txgain_index(struct ath_hw *ah,
  22		struct ath9k_channel *chan,
  23		struct calDataPerFreqOpLoop *rawDatasetOpLoop,
  24		u8 *calChans,  u16 availPiers, u8 *pwr, u8 *pcdacIdx)
  25{
  26	u8 pcdac, i = 0;
  27	u16 idxL = 0, idxR = 0, numPiers;
  28	bool match;
  29	struct chan_centers centers;
  30
  31	ath9k_hw_get_channel_centers(ah, chan, &centers);
  32
  33	for (numPiers = 0; numPiers < availPiers; numPiers++)
  34		if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
  35			break;
  36
  37	match = ath9k_hw_get_lower_upper_index(
  38			(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
  39			calChans, numPiers, &idxL, &idxR);
  40	if (match) {
  41		pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
  42		*pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
  43	} else {
  44		pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
  45		*pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
  46				rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
  47	}
  48
  49	while (pcdac > ah->originalGain[i] &&
  50			i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
  51		i++;
  52
  53	*pcdacIdx = i;
  54}
  55
  56static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
  57				u32 initTxGain,
  58				int txPower,
  59				u8 *pPDADCValues)
  60{
  61	u32 i;
  62	u32 offset;
  63
  64	REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
  65			AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
  66	REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
  67			AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
  68
  69	REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
  70			AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
  71
  72	offset = txPower;
  73	for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
  74		if (i < offset)
  75			pPDADCValues[i] = 0x0;
  76		else
  77			pPDADCValues[i] = 0xFF;
  78}
  79
  80static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
  81{
  82	return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
  83}
  84
  85static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
  86{
  87	return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
  88}
  89
  90#define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
  91
  92static bool __ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
  93{
  94	struct ath_common *common = ath9k_hw_common(ah);
  95	u16 *eep_data = (u16 *)&ah->eeprom.def;
  96	int addr, ar5416_eep_start_loc = 0x100;
  97
  98	for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
  99		if (!ath9k_hw_nvram_read(common, addr + ar5416_eep_start_loc,
 100					 eep_data)) {
 101			ath_err(ath9k_hw_common(ah),
 102				"Unable to read eeprom region\n");
 103			return false;
 104		}
 105		eep_data++;
 106	}
 107	return true;
 108}
 109
 110static bool __ath9k_hw_usb_def_fill_eeprom(struct ath_hw *ah)
 111{
 112	u16 *eep_data = (u16 *)&ah->eeprom.def;
 113
 114	ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
 115				     0x100, SIZE_EEPROM_DEF);
 116	return true;
 117}
 118
 119static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
 120{
 121	struct ath_common *common = ath9k_hw_common(ah);
 122
 123	if (!ath9k_hw_use_flash(ah)) {
 124		ath_dbg(common, ATH_DBG_EEPROM,
 125			"Reading from EEPROM, not flash\n");
 126	}
 127
 128	if (common->bus_ops->ath_bus_type == ATH_USB)
 129		return __ath9k_hw_usb_def_fill_eeprom(ah);
 130	else
 131		return __ath9k_hw_def_fill_eeprom(ah);
 132}
 133
 134#undef SIZE_EEPROM_DEF
 135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
 137{
 138	struct ar5416_eeprom_def *eep =
 139		(struct ar5416_eeprom_def *) &ah->eeprom.def;
 140	struct ath_common *common = ath9k_hw_common(ah);
 141	u16 *eepdata, temp, magic, magic2;
 142	u32 sum = 0, el;
 143	bool need_swap = false;
 144	int i, addr, size;
 145
 146	if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
 147		ath_err(common, "Reading Magic # failed\n");
 148		return false;
 149	}
 150
 151	if (!ath9k_hw_use_flash(ah)) {
 152		ath_dbg(common, ATH_DBG_EEPROM,
 153			"Read Magic = 0x%04X\n", magic);
 154
 155		if (magic != AR5416_EEPROM_MAGIC) {
 156			magic2 = swab16(magic);
 157
 158			if (magic2 == AR5416_EEPROM_MAGIC) {
 159				size = sizeof(struct ar5416_eeprom_def);
 160				need_swap = true;
 161				eepdata = (u16 *) (&ah->eeprom);
 162
 163				for (addr = 0; addr < size / sizeof(u16); addr++) {
 164					temp = swab16(*eepdata);
 165					*eepdata = temp;
 166					eepdata++;
 167				}
 168			} else {
 169				ath_err(common,
 170					"Invalid EEPROM Magic. Endianness mismatch.\n");
 171				return -EINVAL;
 172			}
 173		}
 174	}
 175
 176	ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
 177		need_swap ? "True" : "False");
 178
 179	if (need_swap)
 180		el = swab16(ah->eeprom.def.baseEepHeader.length);
 181	else
 182		el = ah->eeprom.def.baseEepHeader.length;
 183
 184	if (el > sizeof(struct ar5416_eeprom_def))
 185		el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
 186	else
 187		el = el / sizeof(u16);
 188
 189	eepdata = (u16 *)(&ah->eeprom);
 190
 191	for (i = 0; i < el; i++)
 192		sum ^= *eepdata++;
 193
 194	if (need_swap) {
 195		u32 integer, j;
 196		u16 word;
 197
 198		ath_dbg(common, ATH_DBG_EEPROM,
 199			"EEPROM Endianness is not native.. Changing.\n");
 200
 201		word = swab16(eep->baseEepHeader.length);
 202		eep->baseEepHeader.length = word;
 203
 204		word = swab16(eep->baseEepHeader.checksum);
 205		eep->baseEepHeader.checksum = word;
 206
 207		word = swab16(eep->baseEepHeader.version);
 208		eep->baseEepHeader.version = word;
 209
 210		word = swab16(eep->baseEepHeader.regDmn[0]);
 211		eep->baseEepHeader.regDmn[0] = word;
 212
 213		word = swab16(eep->baseEepHeader.regDmn[1]);
 214		eep->baseEepHeader.regDmn[1] = word;
 215
 216		word = swab16(eep->baseEepHeader.rfSilent);
 217		eep->baseEepHeader.rfSilent = word;
 218
 219		word = swab16(eep->baseEepHeader.blueToothOptions);
 220		eep->baseEepHeader.blueToothOptions = word;
 221
 222		word = swab16(eep->baseEepHeader.deviceCap);
 223		eep->baseEepHeader.deviceCap = word;
 224
 225		for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
 226			struct modal_eep_header *pModal =
 227				&eep->modalHeader[j];
 228			integer = swab32(pModal->antCtrlCommon);
 229			pModal->antCtrlCommon = integer;
 230
 231			for (i = 0; i < AR5416_MAX_CHAINS; i++) {
 232				integer = swab32(pModal->antCtrlChain[i]);
 233				pModal->antCtrlChain[i] = integer;
 234			}
 235			for (i = 0; i < 3; i++) {
 236				word = swab16(pModal->xpaBiasLvlFreq[i]);
 237				pModal->xpaBiasLvlFreq[i] = word;
 238			}
 239
 240			for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
 241				word = swab16(pModal->spurChans[i].spurChan);
 242				pModal->spurChans[i].spurChan = word;
 243			}
 244		}
 245	}
 246
 247	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
 248	    ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
 249		ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
 250			sum, ah->eep_ops->get_eeprom_ver(ah));
 251		return -EINVAL;
 252	}
 253
 254	/* Enable fixup for AR_AN_TOP2 if necessary */
 255	if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
 256	    ((eep->baseEepHeader.version & 0xff) > 0x0a) &&
 257	    (eep->baseEepHeader.pwdclkind == 0))
 258		ah->need_an_top2_fixup = 1;
 259
 260	if ((common->bus_ops->ath_bus_type == ATH_USB) &&
 261	    (AR_SREV_9280(ah)))
 262		eep->modalHeader[0].xpaBiasLvl = 0;
 263
 264	return 0;
 265}
 266
 267static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
 268				   enum eeprom_param param)
 269{
 270	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
 271	struct modal_eep_header *pModal = eep->modalHeader;
 272	struct base_eep_header *pBase = &eep->baseEepHeader;
 
 273
 274	switch (param) {
 275	case EEP_NFTHRESH_5:
 276		return pModal[0].noiseFloorThreshCh[0];
 277	case EEP_NFTHRESH_2:
 278		return pModal[1].noiseFloorThreshCh[0];
 279	case EEP_MAC_LSW:
 280		return get_unaligned_be16(pBase->macAddr);
 281	case EEP_MAC_MID:
 282		return get_unaligned_be16(pBase->macAddr + 2);
 283	case EEP_MAC_MSW:
 284		return get_unaligned_be16(pBase->macAddr + 4);
 285	case EEP_REG_0:
 286		return pBase->regDmn[0];
 287	case EEP_REG_1:
 288		return pBase->regDmn[1];
 289	case EEP_OP_CAP:
 290		return pBase->deviceCap;
 291	case EEP_OP_MODE:
 292		return pBase->opCapFlags;
 293	case EEP_RF_SILENT:
 294		return pBase->rfSilent;
 295	case EEP_OB_5:
 296		return pModal[0].ob;
 297	case EEP_DB_5:
 298		return pModal[0].db;
 299	case EEP_OB_2:
 300		return pModal[1].ob;
 301	case EEP_DB_2:
 302		return pModal[1].db;
 303	case EEP_MINOR_REV:
 304		return AR5416_VER_MASK;
 305	case EEP_TX_MASK:
 306		return pBase->txMask;
 307	case EEP_RX_MASK:
 308		return pBase->rxMask;
 309	case EEP_FSTCLK_5G:
 310		return pBase->fastClk5g;
 311	case EEP_RXGAIN_TYPE:
 312		return pBase->rxGainType;
 313	case EEP_TXGAIN_TYPE:
 314		return pBase->txGainType;
 315	case EEP_OL_PWRCTRL:
 316		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
 317			return pBase->openLoopPwrCntl ? true : false;
 318		else
 319			return false;
 320	case EEP_RC_CHAIN_MASK:
 321		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
 322			return pBase->rcChainMask;
 323		else
 324			return 0;
 325	case EEP_DAC_HPWR_5G:
 326		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
 327			return pBase->dacHiPwrMode_5G;
 328		else
 329			return 0;
 330	case EEP_FRAC_N_5G:
 331		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
 332			return pBase->frac_n_5g;
 333		else
 334			return 0;
 335	case EEP_PWR_TABLE_OFFSET:
 336		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21)
 337			return pBase->pwr_table_offset;
 338		else
 339			return AR5416_PWR_TABLE_OFFSET_DB;
 
 
 
 
 
 
 
 
 340	default:
 341		return 0;
 342	}
 343}
 344
 345static void ath9k_hw_def_set_gain(struct ath_hw *ah,
 346				  struct modal_eep_header *pModal,
 347				  struct ar5416_eeprom_def *eep,
 348				  u8 txRxAttenLocal, int regChainOffset, int i)
 349{
 350	if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
 351		txRxAttenLocal = pModal->txRxAttenCh[i];
 352
 353		if (AR_SREV_9280_20_OR_LATER(ah)) {
 354			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
 355			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
 356			      pModal->bswMargin[i]);
 357			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
 358			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
 359			      pModal->bswAtten[i]);
 360			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
 361			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
 362			      pModal->xatten2Margin[i]);
 363			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
 364			      AR_PHY_GAIN_2GHZ_XATTEN2_DB,
 365			      pModal->xatten2Db[i]);
 366		} else {
 367			REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
 368			  (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
 369			   ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
 370			  | SM(pModal-> bswMargin[i],
 371			       AR_PHY_GAIN_2GHZ_BSW_MARGIN));
 372			REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
 373			  (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
 374			   ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
 375			  | SM(pModal->bswAtten[i],
 376			       AR_PHY_GAIN_2GHZ_BSW_ATTEN));
 377		}
 378	}
 379
 380	if (AR_SREV_9280_20_OR_LATER(ah)) {
 381		REG_RMW_FIELD(ah,
 382		      AR_PHY_RXGAIN + regChainOffset,
 383		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
 384		REG_RMW_FIELD(ah,
 385		      AR_PHY_RXGAIN + regChainOffset,
 386		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
 387	} else {
 388		REG_WRITE(ah,
 389			  AR_PHY_RXGAIN + regChainOffset,
 390			  (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
 391			   ~AR_PHY_RXGAIN_TXRX_ATTEN)
 392			  | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
 393		REG_WRITE(ah,
 394			  AR_PHY_GAIN_2GHZ + regChainOffset,
 395			  (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
 396			   ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
 397			  SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
 398	}
 399}
 400
 401static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
 402					  struct ath9k_channel *chan)
 403{
 404	struct modal_eep_header *pModal;
 405	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
 406	int i, regChainOffset;
 407	u8 txRxAttenLocal;
 408
 409	pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
 410	txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
 411
 412	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon & 0xffff);
 413
 414	for (i = 0; i < AR5416_MAX_CHAINS; i++) {
 415		if (AR_SREV_9280(ah)) {
 416			if (i >= 2)
 417				break;
 418		}
 419
 420		if (AR_SREV_5416_20_OR_LATER(ah) &&
 421		    (ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
 422			regChainOffset = (i == 1) ? 0x2000 : 0x1000;
 423		else
 424			regChainOffset = i * 0x1000;
 425
 426		REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
 427			  pModal->antCtrlChain[i]);
 428
 429		REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
 430			  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
 431			   ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
 432			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
 433			  SM(pModal->iqCalICh[i],
 434			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
 435			  SM(pModal->iqCalQCh[i],
 436			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
 437
 438		if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah))
 439			ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
 440					      regChainOffset, i);
 441	}
 442
 443	if (AR_SREV_9280_20_OR_LATER(ah)) {
 444		if (IS_CHAN_2GHZ(chan)) {
 445			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
 446						  AR_AN_RF2G1_CH0_OB,
 447						  AR_AN_RF2G1_CH0_OB_S,
 448						  pModal->ob);
 449			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
 450						  AR_AN_RF2G1_CH0_DB,
 451						  AR_AN_RF2G1_CH0_DB_S,
 452						  pModal->db);
 453			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
 454						  AR_AN_RF2G1_CH1_OB,
 455						  AR_AN_RF2G1_CH1_OB_S,
 456						  pModal->ob_ch1);
 457			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
 458						  AR_AN_RF2G1_CH1_DB,
 459						  AR_AN_RF2G1_CH1_DB_S,
 460						  pModal->db_ch1);
 461		} else {
 462			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
 463						  AR_AN_RF5G1_CH0_OB5,
 464						  AR_AN_RF5G1_CH0_OB5_S,
 465						  pModal->ob);
 466			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
 467						  AR_AN_RF5G1_CH0_DB5,
 468						  AR_AN_RF5G1_CH0_DB5_S,
 469						  pModal->db);
 470			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
 471						  AR_AN_RF5G1_CH1_OB5,
 472						  AR_AN_RF5G1_CH1_OB5_S,
 473						  pModal->ob_ch1);
 474			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
 475						  AR_AN_RF5G1_CH1_DB5,
 476						  AR_AN_RF5G1_CH1_DB5_S,
 477						  pModal->db_ch1);
 478		}
 479		ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
 480					  AR_AN_TOP2_XPABIAS_LVL,
 481					  AR_AN_TOP2_XPABIAS_LVL_S,
 482					  pModal->xpaBiasLvl);
 483		ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
 484					  AR_AN_TOP2_LOCALBIAS,
 485					  AR_AN_TOP2_LOCALBIAS_S,
 486					  !!(pModal->lna_ctl &
 487					     LNA_CTL_LOCAL_BIAS));
 488		REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
 489			      !!(pModal->lna_ctl & LNA_CTL_FORCE_XPA));
 490	}
 491
 492	REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
 493		      pModal->switchSettling);
 494	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
 495		      pModal->adcDesiredSize);
 496
 497	if (!AR_SREV_9280_20_OR_LATER(ah))
 498		REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
 499			      AR_PHY_DESIRED_SZ_PGA,
 500			      pModal->pgaDesiredSize);
 501
 502	REG_WRITE(ah, AR_PHY_RF_CTL4,
 503		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
 504		  | SM(pModal->txEndToXpaOff,
 505		       AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
 506		  | SM(pModal->txFrameToXpaOn,
 507		       AR_PHY_RF_CTL4_FRAME_XPAA_ON)
 508		  | SM(pModal->txFrameToXpaOn,
 509		       AR_PHY_RF_CTL4_FRAME_XPAB_ON));
 510
 511	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
 512		      pModal->txEndToRxOn);
 513
 514	if (AR_SREV_9280_20_OR_LATER(ah)) {
 515		REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
 516			      pModal->thresh62);
 517		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
 518			      AR_PHY_EXT_CCA0_THRESH62,
 519			      pModal->thresh62);
 520	} else {
 521		REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
 522			      pModal->thresh62);
 523		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
 524			      AR_PHY_EXT_CCA_THRESH62,
 525			      pModal->thresh62);
 526	}
 527
 528	if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
 529		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
 530			      AR_PHY_TX_END_DATA_START,
 531			      pModal->txFrameToDataStart);
 532		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
 533			      pModal->txFrameToPaOn);
 534	}
 535
 536	if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
 537		if (IS_CHAN_HT40(chan))
 538			REG_RMW_FIELD(ah, AR_PHY_SETTLING,
 539				      AR_PHY_SETTLING_SWITCH,
 540				      pModal->swSettleHt40);
 541	}
 542
 543	if (AR_SREV_9280_20_OR_LATER(ah) &&
 544	    AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
 545		REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
 546			      AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
 547			      pModal->miscBits);
 548
 549
 550	if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
 551		if (IS_CHAN_2GHZ(chan))
 552			REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
 553					eep->baseEepHeader.dacLpMode);
 554		else if (eep->baseEepHeader.dacHiPwrMode_5G)
 555			REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
 556		else
 557			REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
 558				      eep->baseEepHeader.dacLpMode);
 559
 560		udelay(100);
 561
 562		REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
 563			      pModal->miscBits >> 2);
 564
 565		REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
 566			      AR_PHY_TX_DESIRED_SCALE_CCK,
 567			      eep->baseEepHeader.desiredScaleCCK);
 568	}
 569}
 570
 571static void ath9k_hw_def_set_addac(struct ath_hw *ah,
 572				   struct ath9k_channel *chan)
 573{
 574#define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
 575	struct modal_eep_header *pModal;
 576	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
 577	u8 biaslevel;
 578
 579	if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
 580		return;
 581
 582	if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
 583		return;
 584
 585	pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
 586
 587	if (pModal->xpaBiasLvl != 0xff) {
 588		biaslevel = pModal->xpaBiasLvl;
 589	} else {
 590		u16 resetFreqBin, freqBin, freqCount = 0;
 591		struct chan_centers centers;
 592
 593		ath9k_hw_get_channel_centers(ah, chan, &centers);
 594
 595		resetFreqBin = FREQ2FBIN(centers.synth_center,
 596					 IS_CHAN_2GHZ(chan));
 597		freqBin = XPA_LVL_FREQ(0) & 0xff;
 598		biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
 599
 600		freqCount++;
 601
 602		while (freqCount < 3) {
 603			if (XPA_LVL_FREQ(freqCount) == 0x0)
 604				break;
 605
 606			freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
 607			if (resetFreqBin >= freqBin)
 608				biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
 609			else
 610				break;
 611			freqCount++;
 612		}
 613	}
 614
 615	if (IS_CHAN_2GHZ(chan)) {
 616		INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
 617					7, 1) & (~0x18)) | biaslevel << 3;
 618	} else {
 619		INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
 620					6, 1) & (~0xc0)) | biaslevel << 6;
 621	}
 622#undef XPA_LVL_FREQ
 623}
 624
 625static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
 626				u16 *gb,
 627				u16 numXpdGain,
 628				u16 pdGainOverlap_t2,
 629				int8_t pwr_table_offset,
 630				int16_t *diff)
 631
 632{
 633	u16 k;
 634
 635	/* Prior to writing the boundaries or the pdadc vs. power table
 636	 * into the chip registers the default starting point on the pdadc
 637	 * vs. power table needs to be checked and the curve boundaries
 638	 * adjusted accordingly
 639	 */
 640	if (AR_SREV_9280_20_OR_LATER(ah)) {
 641		u16 gb_limit;
 642
 643		if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
 644			/* get the difference in dB */
 645			*diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
 646			/* get the number of half dB steps */
 647			*diff *= 2;
 648			/* change the original gain boundary settings
 649			 * by the number of half dB steps
 650			 */
 651			for (k = 0; k < numXpdGain; k++)
 652				gb[k] = (u16)(gb[k] - *diff);
 653		}
 654		/* Because of a hardware limitation, ensure the gain boundary
 655		 * is not larger than (63 - overlap)
 656		 */
 657		gb_limit = (u16)(MAX_RATE_POWER - pdGainOverlap_t2);
 658
 659		for (k = 0; k < numXpdGain; k++)
 660			gb[k] = (u16)min(gb_limit, gb[k]);
 661	}
 662
 663	return *diff;
 664}
 665
 666static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
 667				      int8_t pwr_table_offset,
 668				      int16_t diff,
 669				      u8 *pdadcValues)
 670{
 671#define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
 672	u16 k;
 673
 674	/* If this is a board that has a pwrTableOffset that differs from
 675	 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
 676	 * pdadc vs pwr table needs to be adjusted prior to writing to the
 677	 * chip.
 678	 */
 679	if (AR_SREV_9280_20_OR_LATER(ah)) {
 680		if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
 681			/* shift the table to start at the new offset */
 682			for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
 683				pdadcValues[k] = pdadcValues[k + diff];
 684			}
 685
 686			/* fill the back of the table */
 687			for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
 688				pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
 689			}
 690		}
 691	}
 692#undef NUM_PDADC
 693}
 694
 695static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
 696				  struct ath9k_channel *chan,
 697				  int16_t *pTxPowerIndexOffset)
 698{
 699#define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
 700#define SM_PDGAIN_B(x, y) \
 701		SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
 702	struct ath_common *common = ath9k_hw_common(ah);
 703	struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
 704	struct cal_data_per_freq *pRawDataset;
 705	u8 *pCalBChans = NULL;
 706	u16 pdGainOverlap_t2;
 707	static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
 708	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
 709	u16 numPiers, i, j;
 710	int16_t diff = 0;
 711	u16 numXpdGain, xpdMask;
 712	u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
 713	u32 reg32, regOffset, regChainOffset;
 714	int16_t modalIdx;
 715	int8_t pwr_table_offset;
 716
 717	modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
 718	xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
 719
 720	pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
 721
 722	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
 723	    AR5416_EEP_MINOR_VER_2) {
 724		pdGainOverlap_t2 =
 725			pEepData->modalHeader[modalIdx].pdGainOverlap;
 726	} else {
 727		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
 728					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
 729	}
 730
 731	if (IS_CHAN_2GHZ(chan)) {
 732		pCalBChans = pEepData->calFreqPier2G;
 733		numPiers = AR5416_NUM_2G_CAL_PIERS;
 734	} else {
 735		pCalBChans = pEepData->calFreqPier5G;
 736		numPiers = AR5416_NUM_5G_CAL_PIERS;
 737	}
 738
 739	if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
 740		pRawDataset = pEepData->calPierData2G[0];
 741		ah->initPDADC = ((struct calDataPerFreqOpLoop *)
 742				 pRawDataset)->vpdPdg[0][0];
 743	}
 744
 745	numXpdGain = 0;
 746
 747	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
 748		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
 749			if (numXpdGain >= AR5416_NUM_PD_GAINS)
 750				break;
 751			xpdGainValues[numXpdGain] =
 752				(u16)(AR5416_PD_GAINS_IN_MASK - i);
 753			numXpdGain++;
 754		}
 755	}
 756
 757	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
 758		      (numXpdGain - 1) & 0x3);
 759	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
 760		      xpdGainValues[0]);
 761	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
 762		      xpdGainValues[1]);
 763	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
 764		      xpdGainValues[2]);
 765
 766	for (i = 0; i < AR5416_MAX_CHAINS; i++) {
 767		if (AR_SREV_5416_20_OR_LATER(ah) &&
 768		    (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
 769		    (i != 0)) {
 770			regChainOffset = (i == 1) ? 0x2000 : 0x1000;
 771		} else
 772			regChainOffset = i * 0x1000;
 773
 774		if (pEepData->baseEepHeader.txMask & (1 << i)) {
 775			if (IS_CHAN_2GHZ(chan))
 776				pRawDataset = pEepData->calPierData2G[i];
 777			else
 778				pRawDataset = pEepData->calPierData5G[i];
 779
 780
 781			if (OLC_FOR_AR9280_20_LATER) {
 782				u8 pcdacIdx;
 783				u8 txPower;
 784
 785				ath9k_get_txgain_index(ah, chan,
 786				(struct calDataPerFreqOpLoop *)pRawDataset,
 787				pCalBChans, numPiers, &txPower, &pcdacIdx);
 788				ath9k_olc_get_pdadcs(ah, pcdacIdx,
 789						     txPower/2, pdadcValues);
 790			} else {
 791				ath9k_hw_get_gain_boundaries_pdadcs(ah,
 792							chan, pRawDataset,
 793							pCalBChans, numPiers,
 794							pdGainOverlap_t2,
 795							gainBoundaries,
 796							pdadcValues,
 797							numXpdGain);
 798			}
 799
 800			diff = ath9k_change_gain_boundary_setting(ah,
 801							   gainBoundaries,
 802							   numXpdGain,
 803							   pdGainOverlap_t2,
 804							   pwr_table_offset,
 805							   &diff);
 806
 807			ENABLE_REGWRITE_BUFFER(ah);
 808
 809			if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
 810				if (OLC_FOR_AR9280_20_LATER) {
 811					REG_WRITE(ah,
 812						AR_PHY_TPCRG5 + regChainOffset,
 813						SM(0x6,
 814						AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
 815						SM_PD_GAIN(1) | SM_PD_GAIN(2) |
 816						SM_PD_GAIN(3) | SM_PD_GAIN(4));
 817				} else {
 818					REG_WRITE(ah,
 819						AR_PHY_TPCRG5 + regChainOffset,
 820						SM(pdGainOverlap_t2,
 821						AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
 822						SM_PDGAIN_B(0, 1) |
 823						SM_PDGAIN_B(1, 2) |
 824						SM_PDGAIN_B(2, 3) |
 825						SM_PDGAIN_B(3, 4));
 826				}
 827			}
 828
 829
 830			ath9k_adjust_pdadc_values(ah, pwr_table_offset,
 831						  diff, pdadcValues);
 832
 833			regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
 834			for (j = 0; j < 32; j++) {
 835				reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
 836				REG_WRITE(ah, regOffset, reg32);
 837
 838				ath_dbg(common, ATH_DBG_EEPROM,
 839					"PDADC (%d,%4x): %4.4x %8.8x\n",
 840					i, regChainOffset, regOffset,
 841					reg32);
 842				ath_dbg(common, ATH_DBG_EEPROM,
 843					"PDADC: Chain %d | PDADC %3d "
 844					"Value %3d | PDADC %3d Value %3d | "
 845					"PDADC %3d Value %3d | PDADC %3d "
 846					"Value %3d |\n",
 847					i, 4 * j, pdadcValues[4 * j],
 848					4 * j + 1, pdadcValues[4 * j + 1],
 849					4 * j + 2, pdadcValues[4 * j + 2],
 850					4 * j + 3, pdadcValues[4 * j + 3]);
 851
 852				regOffset += 4;
 853			}
 854			REGWRITE_BUFFER_FLUSH(ah);
 855		}
 856	}
 857
 858	*pTxPowerIndexOffset = 0;
 859#undef SM_PD_GAIN
 860#undef SM_PDGAIN_B
 861}
 862
 863static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
 864						  struct ath9k_channel *chan,
 865						  int16_t *ratesArray,
 866						  u16 cfgCtl,
 867						  u16 AntennaReduction,
 868						  u16 twiceMaxRegulatoryPower,
 869						  u16 powerLimit)
 870{
 871#define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6  /* 10*log10(2)*2 */
 872#define REDUCE_SCALED_POWER_BY_THREE_CHAIN   9 /* 10*log10(3)*2 */
 873
 874	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 875	struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
 876	u16 twiceMaxEdgePower = MAX_RATE_POWER;
 877	static const u16 tpScaleReductionTable[5] =
 878		{ 0, 3, 6, 9, MAX_RATE_POWER };
 879
 880	int i;
 881	int16_t twiceLargestAntenna;
 882	struct cal_ctl_data *rep;
 883	struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
 884		0, { 0, 0, 0, 0}
 885	};
 886	struct cal_target_power_leg targetPowerOfdmExt = {
 887		0, { 0, 0, 0, 0} }, targetPowerCckExt = {
 888		0, { 0, 0, 0, 0 }
 889	};
 890	struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
 891		0, {0, 0, 0, 0}
 892	};
 893	u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
 894	static const u16 ctlModesFor11a[] = {
 895		CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
 896	};
 897	static const u16 ctlModesFor11g[] = {
 898		CTL_11B, CTL_11G, CTL_2GHT20,
 899		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
 900	};
 901	u16 numCtlModes;
 902	const u16 *pCtlMode;
 903	u16 ctlMode, freq;
 904	struct chan_centers centers;
 905	int tx_chainmask;
 906	u16 twiceMinEdgePower;
 907
 908	tx_chainmask = ah->txchainmask;
 909
 910	ath9k_hw_get_channel_centers(ah, chan, &centers);
 911
 912	twiceLargestAntenna = max(
 913		pEepData->modalHeader
 914			[IS_CHAN_2GHZ(chan)].antennaGainCh[0],
 915		pEepData->modalHeader
 916			[IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
 917
 918	twiceLargestAntenna = max((u8)twiceLargestAntenna,
 919				  pEepData->modalHeader
 920				  [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
 921
 922	twiceLargestAntenna = (int16_t)min(AntennaReduction -
 923					   twiceLargestAntenna, 0);
 924
 925	maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
 926
 927	if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
 928		maxRegAllowedPower -=
 929			(tpScaleReductionTable[(regulatory->tp_scale)] * 2);
 930	}
 931
 932	scaledPower = min(powerLimit, maxRegAllowedPower);
 933
 934	switch (ar5416_get_ntxchains(tx_chainmask)) {
 935	case 1:
 936		break;
 937	case 2:
 938		if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
 939			scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
 940		else
 941			scaledPower = 0;
 942		break;
 943	case 3:
 944		if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
 945			scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
 946		else
 947			scaledPower = 0;
 948		break;
 949	}
 950
 951	if (IS_CHAN_2GHZ(chan)) {
 952		numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
 953			SUB_NUM_CTL_MODES_AT_2G_40;
 954		pCtlMode = ctlModesFor11g;
 955
 956		ath9k_hw_get_legacy_target_powers(ah, chan,
 957			pEepData->calTargetPowerCck,
 958			AR5416_NUM_2G_CCK_TARGET_POWERS,
 959			&targetPowerCck, 4, false);
 960		ath9k_hw_get_legacy_target_powers(ah, chan,
 961			pEepData->calTargetPower2G,
 962			AR5416_NUM_2G_20_TARGET_POWERS,
 963			&targetPowerOfdm, 4, false);
 964		ath9k_hw_get_target_powers(ah, chan,
 965			pEepData->calTargetPower2GHT20,
 966			AR5416_NUM_2G_20_TARGET_POWERS,
 967			&targetPowerHt20, 8, false);
 968
 969		if (IS_CHAN_HT40(chan)) {
 970			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
 971			ath9k_hw_get_target_powers(ah, chan,
 972				pEepData->calTargetPower2GHT40,
 973				AR5416_NUM_2G_40_TARGET_POWERS,
 974				&targetPowerHt40, 8, true);
 975			ath9k_hw_get_legacy_target_powers(ah, chan,
 976				pEepData->calTargetPowerCck,
 977				AR5416_NUM_2G_CCK_TARGET_POWERS,
 978				&targetPowerCckExt, 4, true);
 979			ath9k_hw_get_legacy_target_powers(ah, chan,
 980				pEepData->calTargetPower2G,
 981				AR5416_NUM_2G_20_TARGET_POWERS,
 982				&targetPowerOfdmExt, 4, true);
 983		}
 984	} else {
 985		numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
 986			SUB_NUM_CTL_MODES_AT_5G_40;
 987		pCtlMode = ctlModesFor11a;
 988
 989		ath9k_hw_get_legacy_target_powers(ah, chan,
 990			pEepData->calTargetPower5G,
 991			AR5416_NUM_5G_20_TARGET_POWERS,
 992			&targetPowerOfdm, 4, false);
 993		ath9k_hw_get_target_powers(ah, chan,
 994			pEepData->calTargetPower5GHT20,
 995			AR5416_NUM_5G_20_TARGET_POWERS,
 996			&targetPowerHt20, 8, false);
 997
 998		if (IS_CHAN_HT40(chan)) {
 999			numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1000			ath9k_hw_get_target_powers(ah, chan,
1001				pEepData->calTargetPower5GHT40,
1002				AR5416_NUM_5G_40_TARGET_POWERS,
1003				&targetPowerHt40, 8, true);
1004			ath9k_hw_get_legacy_target_powers(ah, chan,
1005				pEepData->calTargetPower5G,
1006				AR5416_NUM_5G_20_TARGET_POWERS,
1007				&targetPowerOfdmExt, 4, true);
1008		}
1009	}
1010
1011	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1012		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1013			(pCtlMode[ctlMode] == CTL_2GHT40);
1014		if (isHt40CtlMode)
1015			freq = centers.synth_center;
1016		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1017			freq = centers.ext_center;
1018		else
1019			freq = centers.ctl_center;
1020
1021		if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
1022		    ah->eep_ops->get_eeprom_rev(ah) <= 2)
1023			twiceMaxEdgePower = MAX_RATE_POWER;
1024
1025		for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1026			if ((((cfgCtl & ~CTL_MODE_M) |
1027			      (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1028			     pEepData->ctlIndex[i]) ||
1029			    (((cfgCtl & ~CTL_MODE_M) |
1030			      (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1031			     ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1032				rep = &(pEepData->ctlData[i]);
1033
1034				twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1035				rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1036				IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1037
1038				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1039					twiceMaxEdgePower = min(twiceMaxEdgePower,
1040								twiceMinEdgePower);
1041				} else {
1042					twiceMaxEdgePower = twiceMinEdgePower;
1043					break;
1044				}
1045			}
1046		}
1047
1048		minCtlPower = min(twiceMaxEdgePower, scaledPower);
1049
1050		switch (pCtlMode[ctlMode]) {
1051		case CTL_11B:
1052			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1053				targetPowerCck.tPow2x[i] =
1054					min((u16)targetPowerCck.tPow2x[i],
1055					    minCtlPower);
1056			}
1057			break;
1058		case CTL_11A:
1059		case CTL_11G:
1060			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1061				targetPowerOfdm.tPow2x[i] =
1062					min((u16)targetPowerOfdm.tPow2x[i],
1063					    minCtlPower);
1064			}
1065			break;
1066		case CTL_5GHT20:
1067		case CTL_2GHT20:
1068			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1069				targetPowerHt20.tPow2x[i] =
1070					min((u16)targetPowerHt20.tPow2x[i],
1071					    minCtlPower);
1072			}
1073			break;
1074		case CTL_11B_EXT:
1075			targetPowerCckExt.tPow2x[0] = min((u16)
1076					targetPowerCckExt.tPow2x[0],
1077					minCtlPower);
1078			break;
1079		case CTL_11A_EXT:
1080		case CTL_11G_EXT:
1081			targetPowerOfdmExt.tPow2x[0] = min((u16)
1082					targetPowerOfdmExt.tPow2x[0],
1083					minCtlPower);
1084			break;
1085		case CTL_5GHT40:
1086		case CTL_2GHT40:
1087			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1088				targetPowerHt40.tPow2x[i] =
1089					min((u16)targetPowerHt40.tPow2x[i],
1090					    minCtlPower);
1091			}
1092			break;
1093		default:
1094			break;
1095		}
1096	}
1097
1098	ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1099		ratesArray[rate18mb] = ratesArray[rate24mb] =
1100		targetPowerOfdm.tPow2x[0];
1101	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1102	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1103	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1104	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1105
1106	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1107		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1108
1109	if (IS_CHAN_2GHZ(chan)) {
1110		ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1111		ratesArray[rate2s] = ratesArray[rate2l] =
1112			targetPowerCck.tPow2x[1];
1113		ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1114			targetPowerCck.tPow2x[2];
1115		ratesArray[rate11s] = ratesArray[rate11l] =
1116			targetPowerCck.tPow2x[3];
1117	}
1118	if (IS_CHAN_HT40(chan)) {
1119		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1120			ratesArray[rateHt40_0 + i] =
1121				targetPowerHt40.tPow2x[i];
1122		}
1123		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1124		ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1125		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1126		if (IS_CHAN_2GHZ(chan)) {
1127			ratesArray[rateExtCck] =
1128				targetPowerCckExt.tPow2x[0];
1129		}
1130	}
1131}
1132
1133static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1134				    struct ath9k_channel *chan,
1135				    u16 cfgCtl,
1136				    u8 twiceAntennaReduction,
1137				    u8 twiceMaxRegulatoryPower,
1138				    u8 powerLimit, bool test)
1139{
1140#define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1141	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1142	struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1143	struct modal_eep_header *pModal =
1144		&(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1145	int16_t ratesArray[Ar5416RateSize];
1146	int16_t txPowerIndexOffset = 0;
1147	u8 ht40PowerIncForPdadc = 2;
1148	int i, cck_ofdm_delta = 0;
1149
1150	memset(ratesArray, 0, sizeof(ratesArray));
1151
1152	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1153	    AR5416_EEP_MINOR_VER_2) {
1154		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1155	}
1156
1157	ath9k_hw_set_def_power_per_rate_table(ah, chan,
1158					       &ratesArray[0], cfgCtl,
1159					       twiceAntennaReduction,
1160					       twiceMaxRegulatoryPower,
1161					       powerLimit);
1162
1163	ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset);
1164
1165	regulatory->max_power_level = 0;
1166	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1167		ratesArray[i] =	(int16_t)(txPowerIndexOffset + ratesArray[i]);
1168		if (ratesArray[i] > MAX_RATE_POWER)
1169			ratesArray[i] = MAX_RATE_POWER;
1170		if (ratesArray[i] > regulatory->max_power_level)
1171			regulatory->max_power_level = ratesArray[i];
1172	}
1173
1174	if (!test) {
1175		i = rate6mb;
1176
1177		if (IS_CHAN_HT40(chan))
1178			i = rateHt40_0;
1179		else if (IS_CHAN_HT20(chan))
1180			i = rateHt20_0;
1181
1182		regulatory->max_power_level = ratesArray[i];
1183	}
1184
1185	switch(ar5416_get_ntxchains(ah->txchainmask)) {
1186	case 1:
1187		break;
1188	case 2:
1189		regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
1190		break;
1191	case 3:
1192		regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
1193		break;
1194	default:
1195		ath_dbg(ath9k_hw_common(ah), ATH_DBG_EEPROM,
1196			"Invalid chainmask configuration\n");
1197		break;
1198	}
1199
1200	if (test)
1201		return;
1202
1203	if (AR_SREV_9280_20_OR_LATER(ah)) {
1204		for (i = 0; i < Ar5416RateSize; i++) {
1205			int8_t pwr_table_offset;
1206
1207			pwr_table_offset = ah->eep_ops->get_eeprom(ah,
1208							EEP_PWR_TABLE_OFFSET);
1209			ratesArray[i] -= pwr_table_offset * 2;
1210		}
1211	}
1212
1213	ENABLE_REGWRITE_BUFFER(ah);
1214
1215	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1216		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
1217		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1218		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1219		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1220	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1221		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
1222		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1223		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1224		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1225
1226	if (IS_CHAN_2GHZ(chan)) {
1227		if (OLC_FOR_AR9280_20_LATER) {
1228			cck_ofdm_delta = 2;
1229			REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1230				ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1231				| ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1232				| ATH9K_POW_SM(ratesArray[rateXr], 8)
1233				| ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1234			REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1235				ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1236				| ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1237				| ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1238				| ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1239		} else {
1240			REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1241				ATH9K_POW_SM(ratesArray[rate2s], 24)
1242				| ATH9K_POW_SM(ratesArray[rate2l], 16)
1243				| ATH9K_POW_SM(ratesArray[rateXr], 8)
1244				| ATH9K_POW_SM(ratesArray[rate1l], 0));
1245			REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1246				ATH9K_POW_SM(ratesArray[rate11s], 24)
1247				| ATH9K_POW_SM(ratesArray[rate11l], 16)
1248				| ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1249				| ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1250		}
1251	}
1252
1253	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1254		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1255		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1256		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1257		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1258	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1259		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1260		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1261		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1262		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1263
1264	if (IS_CHAN_HT40(chan)) {
1265		REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1266			  ATH9K_POW_SM(ratesArray[rateHt40_3] +
1267				       ht40PowerIncForPdadc, 24)
1268			  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1269					 ht40PowerIncForPdadc, 16)
1270			  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1271					 ht40PowerIncForPdadc, 8)
1272			  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1273					 ht40PowerIncForPdadc, 0));
1274		REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1275			  ATH9K_POW_SM(ratesArray[rateHt40_7] +
1276				       ht40PowerIncForPdadc, 24)
1277			  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1278					 ht40PowerIncForPdadc, 16)
1279			  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1280					 ht40PowerIncForPdadc, 8)
1281			  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1282					 ht40PowerIncForPdadc, 0));
1283		if (OLC_FOR_AR9280_20_LATER) {
1284			REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1285				ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1286				| ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1287				| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1288				| ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1289		} else {
1290			REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1291				ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1292				| ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1293				| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1294				| ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1295		}
1296	}
1297
1298	REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1299		  ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1300		  | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1301
1302	REGWRITE_BUFFER_FLUSH(ah);
1303}
1304
1305static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1306{
1307#define EEP_DEF_SPURCHAN \
1308	(ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
1309	struct ath_common *common = ath9k_hw_common(ah);
1310
1311	u16 spur_val = AR_NO_SPUR;
1312
1313	ath_dbg(common, ATH_DBG_ANI,
1314		"Getting spur idx:%d is2Ghz:%d val:%x\n",
1315		i, is2GHz, ah->config.spurchans[i][is2GHz]);
1316
1317	switch (ah->config.spurmode) {
1318	case SPUR_DISABLE:
1319		break;
1320	case SPUR_ENABLE_IOCTL:
1321		spur_val = ah->config.spurchans[i][is2GHz];
1322		ath_dbg(common, ATH_DBG_ANI,
1323			"Getting spur val from new loc. %d\n", spur_val);
1324		break;
1325	case SPUR_ENABLE_EEPROM:
1326		spur_val = EEP_DEF_SPURCHAN;
1327		break;
1328	}
1329
1330	return spur_val;
1331
1332#undef EEP_DEF_SPURCHAN
1333}
1334
1335const struct eeprom_ops eep_def_ops = {
1336	.check_eeprom		= ath9k_hw_def_check_eeprom,
1337	.get_eeprom		= ath9k_hw_def_get_eeprom,
1338	.fill_eeprom		= ath9k_hw_def_fill_eeprom,
 
1339	.get_eeprom_ver		= ath9k_hw_def_get_eeprom_ver,
1340	.get_eeprom_rev		= ath9k_hw_def_get_eeprom_rev,
1341	.set_board_values	= ath9k_hw_def_set_board_values,
1342	.set_addac		= ath9k_hw_def_set_addac,
1343	.set_txpower		= ath9k_hw_def_set_txpower,
1344	.get_spur_channel	= ath9k_hw_def_get_spur_channel
1345};
v3.15
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include <asm/unaligned.h>
  18#include "hw.h"
  19#include "ar9002_phy.h"
  20
  21static void ath9k_get_txgain_index(struct ath_hw *ah,
  22		struct ath9k_channel *chan,
  23		struct calDataPerFreqOpLoop *rawDatasetOpLoop,
  24		u8 *calChans,  u16 availPiers, u8 *pwr, u8 *pcdacIdx)
  25{
  26	u8 pcdac, i = 0;
  27	u16 idxL = 0, idxR = 0, numPiers;
  28	bool match;
  29	struct chan_centers centers;
  30
  31	ath9k_hw_get_channel_centers(ah, chan, &centers);
  32
  33	for (numPiers = 0; numPiers < availPiers; numPiers++)
  34		if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
  35			break;
  36
  37	match = ath9k_hw_get_lower_upper_index(
  38			(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
  39			calChans, numPiers, &idxL, &idxR);
  40	if (match) {
  41		pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
  42		*pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
  43	} else {
  44		pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
  45		*pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
  46				rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
  47	}
  48
  49	while (pcdac > ah->originalGain[i] &&
  50			i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
  51		i++;
  52
  53	*pcdacIdx = i;
  54}
  55
  56static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
  57				u32 initTxGain,
  58				int txPower,
  59				u8 *pPDADCValues)
  60{
  61	u32 i;
  62	u32 offset;
  63
  64	REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
  65			AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
  66	REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
  67			AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
  68
  69	REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
  70			AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
  71
  72	offset = txPower;
  73	for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
  74		if (i < offset)
  75			pPDADCValues[i] = 0x0;
  76		else
  77			pPDADCValues[i] = 0xFF;
  78}
  79
  80static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
  81{
  82	return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
  83}
  84
  85static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
  86{
  87	return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
  88}
  89
  90#define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
  91
  92static bool __ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
  93{
 
  94	u16 *eep_data = (u16 *)&ah->eeprom.def;
  95	int addr, ar5416_eep_start_loc = 0x100;
  96
  97	for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
  98		if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
  99					 eep_data))
 
 
 100			return false;
 
 101		eep_data++;
 102	}
 103	return true;
 104}
 105
 106static bool __ath9k_hw_usb_def_fill_eeprom(struct ath_hw *ah)
 107{
 108	u16 *eep_data = (u16 *)&ah->eeprom.def;
 109
 110	ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
 111				     0x100, SIZE_EEPROM_DEF);
 112	return true;
 113}
 114
 115static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
 116{
 117	struct ath_common *common = ath9k_hw_common(ah);
 118
 119	if (!ath9k_hw_use_flash(ah)) {
 120		ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
 
 121	}
 122
 123	if (common->bus_ops->ath_bus_type == ATH_USB)
 124		return __ath9k_hw_usb_def_fill_eeprom(ah);
 125	else
 126		return __ath9k_hw_def_fill_eeprom(ah);
 127}
 128
 129#undef SIZE_EEPROM_DEF
 130
 131#if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
 132static u32 ath9k_def_dump_modal_eeprom(char *buf, u32 len, u32 size,
 133				       struct modal_eep_header *modal_hdr)
 134{
 135	PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
 136	PR_EEP("Chain1 Ant. Control", modal_hdr->antCtrlChain[1]);
 137	PR_EEP("Chain2 Ant. Control", modal_hdr->antCtrlChain[2]);
 138	PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
 139	PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
 140	PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
 141	PR_EEP("Chain2 Ant. Gain", modal_hdr->antennaGainCh[2]);
 142	PR_EEP("Switch Settle", modal_hdr->switchSettling);
 143	PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
 144	PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
 145	PR_EEP("Chain2 TxRxAtten", modal_hdr->txRxAttenCh[2]);
 146	PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
 147	PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
 148	PR_EEP("Chain2 RxTxMargin", modal_hdr->rxTxMarginCh[2]);
 149	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
 150	PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
 151	PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
 152	PR_EEP("Chain1 xlna Gain", modal_hdr->xlnaGainCh[1]);
 153	PR_EEP("Chain2 xlna Gain", modal_hdr->xlnaGainCh[2]);
 154	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
 155	PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
 156	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
 157	PR_EEP("CCA Threshold)", modal_hdr->thresh62);
 158	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
 159	PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
 160	PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
 161	PR_EEP("xpdGain", modal_hdr->xpdGain);
 162	PR_EEP("External PD", modal_hdr->xpd);
 163	PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
 164	PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
 165	PR_EEP("Chain2 I Coefficient", modal_hdr->iqCalICh[2]);
 166	PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
 167	PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
 168	PR_EEP("Chain2 Q Coefficient", modal_hdr->iqCalQCh[2]);
 169	PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
 170	PR_EEP("Chain0 OutputBias", modal_hdr->ob);
 171	PR_EEP("Chain0 DriverBias", modal_hdr->db);
 172	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
 173	PR_EEP("2chain pwr decrease", modal_hdr->pwrDecreaseFor2Chain);
 174	PR_EEP("3chain pwr decrease", modal_hdr->pwrDecreaseFor3Chain);
 175	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
 176	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
 177	PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
 178	PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
 179	PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
 180	PR_EEP("Chain2 bswAtten", modal_hdr->bswAtten[2]);
 181	PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
 182	PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
 183	PR_EEP("Chain2 bswMargin", modal_hdr->bswMargin[2]);
 184	PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
 185	PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
 186	PR_EEP("Chain1 xatten2Db", modal_hdr->xatten2Db[1]);
 187	PR_EEP("Chain2 xatten2Db", modal_hdr->xatten2Db[2]);
 188	PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
 189	PR_EEP("Chain1 xatten2Margin", modal_hdr->xatten2Margin[1]);
 190	PR_EEP("Chain2 xatten2Margin", modal_hdr->xatten2Margin[2]);
 191	PR_EEP("Chain1 OutputBias", modal_hdr->ob_ch1);
 192	PR_EEP("Chain1 DriverBias", modal_hdr->db_ch1);
 193	PR_EEP("LNA Control", modal_hdr->lna_ctl);
 194	PR_EEP("XPA Bias Freq0", modal_hdr->xpaBiasLvlFreq[0]);
 195	PR_EEP("XPA Bias Freq1", modal_hdr->xpaBiasLvlFreq[1]);
 196	PR_EEP("XPA Bias Freq2", modal_hdr->xpaBiasLvlFreq[2]);
 197
 198	return len;
 199}
 200
 201static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
 202				    u8 *buf, u32 len, u32 size)
 203{
 204	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
 205	struct base_eep_header *pBase = &eep->baseEepHeader;
 206
 207	if (!dump_base_hdr) {
 208		len += scnprintf(buf + len, size - len,
 209				 "%20s :\n", "2GHz modal Header");
 210		len = ath9k_def_dump_modal_eeprom(buf, len, size,
 211						   &eep->modalHeader[0]);
 212		len += scnprintf(buf + len, size - len,
 213				 "%20s :\n", "5GHz modal Header");
 214		len = ath9k_def_dump_modal_eeprom(buf, len, size,
 215						   &eep->modalHeader[1]);
 216		goto out;
 217	}
 218
 219	PR_EEP("Major Version", pBase->version >> 12);
 220	PR_EEP("Minor Version", pBase->version & 0xFFF);
 221	PR_EEP("Checksum", pBase->checksum);
 222	PR_EEP("Length", pBase->length);
 223	PR_EEP("RegDomain1", pBase->regDmn[0]);
 224	PR_EEP("RegDomain2", pBase->regDmn[1]);
 225	PR_EEP("TX Mask", pBase->txMask);
 226	PR_EEP("RX Mask", pBase->rxMask);
 227	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
 228	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
 229	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
 230					AR5416_OPFLAGS_N_2G_HT20));
 231	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
 232					AR5416_OPFLAGS_N_2G_HT40));
 233	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
 234					AR5416_OPFLAGS_N_5G_HT20));
 235	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
 236					AR5416_OPFLAGS_N_5G_HT40));
 237	PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
 238	PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
 239	PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
 240	PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
 241	PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
 242
 243	len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
 244			 pBase->macAddr);
 245
 246out:
 247	if (len > size)
 248		len = size;
 249
 250	return len;
 251}
 252#else
 253static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
 254				    u8 *buf, u32 len, u32 size)
 255{
 256	return 0;
 257}
 258#endif
 259
 260
 261static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
 262{
 263	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
 
 264	struct ath_common *common = ath9k_hw_common(ah);
 265	u16 *eepdata, temp, magic, magic2;
 266	u32 sum = 0, el;
 267	bool need_swap = false;
 268	int i, addr, size;
 269
 270	if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
 271		ath_err(common, "Reading Magic # failed\n");
 272		return false;
 273	}
 274
 275	if (!ath9k_hw_use_flash(ah)) {
 276		ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
 
 277
 278		if (magic != AR5416_EEPROM_MAGIC) {
 279			magic2 = swab16(magic);
 280
 281			if (magic2 == AR5416_EEPROM_MAGIC) {
 282				size = sizeof(struct ar5416_eeprom_def);
 283				need_swap = true;
 284				eepdata = (u16 *) (&ah->eeprom);
 285
 286				for (addr = 0; addr < size / sizeof(u16); addr++) {
 287					temp = swab16(*eepdata);
 288					*eepdata = temp;
 289					eepdata++;
 290				}
 291			} else {
 292				ath_err(common,
 293					"Invalid EEPROM Magic. Endianness mismatch.\n");
 294				return -EINVAL;
 295			}
 296		}
 297	}
 298
 299	ath_dbg(common, EEPROM, "need_swap = %s\n",
 300		need_swap ? "True" : "False");
 301
 302	if (need_swap)
 303		el = swab16(ah->eeprom.def.baseEepHeader.length);
 304	else
 305		el = ah->eeprom.def.baseEepHeader.length;
 306
 307	if (el > sizeof(struct ar5416_eeprom_def))
 308		el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
 309	else
 310		el = el / sizeof(u16);
 311
 312	eepdata = (u16 *)(&ah->eeprom);
 313
 314	for (i = 0; i < el; i++)
 315		sum ^= *eepdata++;
 316
 317	if (need_swap) {
 318		u32 integer, j;
 319		u16 word;
 320
 321		ath_dbg(common, EEPROM,
 322			"EEPROM Endianness is not native.. Changing.\n");
 323
 324		word = swab16(eep->baseEepHeader.length);
 325		eep->baseEepHeader.length = word;
 326
 327		word = swab16(eep->baseEepHeader.checksum);
 328		eep->baseEepHeader.checksum = word;
 329
 330		word = swab16(eep->baseEepHeader.version);
 331		eep->baseEepHeader.version = word;
 332
 333		word = swab16(eep->baseEepHeader.regDmn[0]);
 334		eep->baseEepHeader.regDmn[0] = word;
 335
 336		word = swab16(eep->baseEepHeader.regDmn[1]);
 337		eep->baseEepHeader.regDmn[1] = word;
 338
 339		word = swab16(eep->baseEepHeader.rfSilent);
 340		eep->baseEepHeader.rfSilent = word;
 341
 342		word = swab16(eep->baseEepHeader.blueToothOptions);
 343		eep->baseEepHeader.blueToothOptions = word;
 344
 345		word = swab16(eep->baseEepHeader.deviceCap);
 346		eep->baseEepHeader.deviceCap = word;
 347
 348		for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
 349			struct modal_eep_header *pModal =
 350				&eep->modalHeader[j];
 351			integer = swab32(pModal->antCtrlCommon);
 352			pModal->antCtrlCommon = integer;
 353
 354			for (i = 0; i < AR5416_MAX_CHAINS; i++) {
 355				integer = swab32(pModal->antCtrlChain[i]);
 356				pModal->antCtrlChain[i] = integer;
 357			}
 358			for (i = 0; i < 3; i++) {
 359				word = swab16(pModal->xpaBiasLvlFreq[i]);
 360				pModal->xpaBiasLvlFreq[i] = word;
 361			}
 362
 363			for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
 364				word = swab16(pModal->spurChans[i].spurChan);
 365				pModal->spurChans[i].spurChan = word;
 366			}
 367		}
 368	}
 369
 370	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
 371	    ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
 372		ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
 373			sum, ah->eep_ops->get_eeprom_ver(ah));
 374		return -EINVAL;
 375	}
 376
 377	/* Enable fixup for AR_AN_TOP2 if necessary */
 378	if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
 379	    ((eep->baseEepHeader.version & 0xff) > 0x0a) &&
 380	    (eep->baseEepHeader.pwdclkind == 0))
 381		ah->need_an_top2_fixup = true;
 382
 383	if ((common->bus_ops->ath_bus_type == ATH_USB) &&
 384	    (AR_SREV_9280(ah)))
 385		eep->modalHeader[0].xpaBiasLvl = 0;
 386
 387	return 0;
 388}
 389
 390static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
 391				   enum eeprom_param param)
 392{
 393	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
 394	struct modal_eep_header *pModal = eep->modalHeader;
 395	struct base_eep_header *pBase = &eep->baseEepHeader;
 396	int band = 0;
 397
 398	switch (param) {
 399	case EEP_NFTHRESH_5:
 400		return pModal[0].noiseFloorThreshCh[0];
 401	case EEP_NFTHRESH_2:
 402		return pModal[1].noiseFloorThreshCh[0];
 403	case EEP_MAC_LSW:
 404		return get_unaligned_be16(pBase->macAddr);
 405	case EEP_MAC_MID:
 406		return get_unaligned_be16(pBase->macAddr + 2);
 407	case EEP_MAC_MSW:
 408		return get_unaligned_be16(pBase->macAddr + 4);
 409	case EEP_REG_0:
 410		return pBase->regDmn[0];
 
 
 411	case EEP_OP_CAP:
 412		return pBase->deviceCap;
 413	case EEP_OP_MODE:
 414		return pBase->opCapFlags;
 415	case EEP_RF_SILENT:
 416		return pBase->rfSilent;
 417	case EEP_OB_5:
 418		return pModal[0].ob;
 419	case EEP_DB_5:
 420		return pModal[0].db;
 421	case EEP_OB_2:
 422		return pModal[1].ob;
 423	case EEP_DB_2:
 424		return pModal[1].db;
 425	case EEP_MINOR_REV:
 426		return AR5416_VER_MASK;
 427	case EEP_TX_MASK:
 428		return pBase->txMask;
 429	case EEP_RX_MASK:
 430		return pBase->rxMask;
 431	case EEP_FSTCLK_5G:
 432		return pBase->fastClk5g;
 433	case EEP_RXGAIN_TYPE:
 434		return pBase->rxGainType;
 435	case EEP_TXGAIN_TYPE:
 436		return pBase->txGainType;
 437	case EEP_OL_PWRCTRL:
 438		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
 439			return pBase->openLoopPwrCntl ? true : false;
 440		else
 441			return false;
 442	case EEP_RC_CHAIN_MASK:
 443		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
 444			return pBase->rcChainMask;
 445		else
 446			return 0;
 447	case EEP_DAC_HPWR_5G:
 448		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
 449			return pBase->dacHiPwrMode_5G;
 450		else
 451			return 0;
 452	case EEP_FRAC_N_5G:
 453		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
 454			return pBase->frac_n_5g;
 455		else
 456			return 0;
 457	case EEP_PWR_TABLE_OFFSET:
 458		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21)
 459			return pBase->pwr_table_offset;
 460		else
 461			return AR5416_PWR_TABLE_OFFSET_DB;
 462	case EEP_ANTENNA_GAIN_2G:
 463		band = 1;
 464		/* fall through */
 465	case EEP_ANTENNA_GAIN_5G:
 466		return max_t(u8, max_t(u8,
 467			pModal[band].antennaGainCh[0],
 468			pModal[band].antennaGainCh[1]),
 469			pModal[band].antennaGainCh[2]);
 470	default:
 471		return 0;
 472	}
 473}
 474
 475static void ath9k_hw_def_set_gain(struct ath_hw *ah,
 476				  struct modal_eep_header *pModal,
 477				  struct ar5416_eeprom_def *eep,
 478				  u8 txRxAttenLocal, int regChainOffset, int i)
 479{
 480	if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
 481		txRxAttenLocal = pModal->txRxAttenCh[i];
 482
 483		if (AR_SREV_9280_20_OR_LATER(ah)) {
 484			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
 485			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
 486			      pModal->bswMargin[i]);
 487			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
 488			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
 489			      pModal->bswAtten[i]);
 490			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
 491			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
 492			      pModal->xatten2Margin[i]);
 493			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
 494			      AR_PHY_GAIN_2GHZ_XATTEN2_DB,
 495			      pModal->xatten2Db[i]);
 496		} else {
 497			REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
 498			  (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
 499			   ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
 500			  | SM(pModal-> bswMargin[i],
 501			       AR_PHY_GAIN_2GHZ_BSW_MARGIN));
 502			REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
 503			  (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
 504			   ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
 505			  | SM(pModal->bswAtten[i],
 506			       AR_PHY_GAIN_2GHZ_BSW_ATTEN));
 507		}
 508	}
 509
 510	if (AR_SREV_9280_20_OR_LATER(ah)) {
 511		REG_RMW_FIELD(ah,
 512		      AR_PHY_RXGAIN + regChainOffset,
 513		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
 514		REG_RMW_FIELD(ah,
 515		      AR_PHY_RXGAIN + regChainOffset,
 516		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
 517	} else {
 518		REG_WRITE(ah,
 519			  AR_PHY_RXGAIN + regChainOffset,
 520			  (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
 521			   ~AR_PHY_RXGAIN_TXRX_ATTEN)
 522			  | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
 523		REG_WRITE(ah,
 524			  AR_PHY_GAIN_2GHZ + regChainOffset,
 525			  (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
 526			   ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
 527			  SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
 528	}
 529}
 530
 531static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
 532					  struct ath9k_channel *chan)
 533{
 534	struct modal_eep_header *pModal;
 535	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
 536	int i, regChainOffset;
 537	u8 txRxAttenLocal;
 538
 539	pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
 540	txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
 541
 542	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon & 0xffff);
 543
 544	for (i = 0; i < AR5416_MAX_CHAINS; i++) {
 545		if (AR_SREV_9280(ah)) {
 546			if (i >= 2)
 547				break;
 548		}
 549
 550		if ((ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
 
 551			regChainOffset = (i == 1) ? 0x2000 : 0x1000;
 552		else
 553			regChainOffset = i * 0x1000;
 554
 555		REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
 556			  pModal->antCtrlChain[i]);
 557
 558		REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
 559			  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
 560			   ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
 561			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
 562			  SM(pModal->iqCalICh[i],
 563			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
 564			  SM(pModal->iqCalQCh[i],
 565			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
 566
 567		ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
 568				      regChainOffset, i);
 
 569	}
 570
 571	if (AR_SREV_9280_20_OR_LATER(ah)) {
 572		if (IS_CHAN_2GHZ(chan)) {
 573			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
 574						  AR_AN_RF2G1_CH0_OB,
 575						  AR_AN_RF2G1_CH0_OB_S,
 576						  pModal->ob);
 577			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
 578						  AR_AN_RF2G1_CH0_DB,
 579						  AR_AN_RF2G1_CH0_DB_S,
 580						  pModal->db);
 581			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
 582						  AR_AN_RF2G1_CH1_OB,
 583						  AR_AN_RF2G1_CH1_OB_S,
 584						  pModal->ob_ch1);
 585			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
 586						  AR_AN_RF2G1_CH1_DB,
 587						  AR_AN_RF2G1_CH1_DB_S,
 588						  pModal->db_ch1);
 589		} else {
 590			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
 591						  AR_AN_RF5G1_CH0_OB5,
 592						  AR_AN_RF5G1_CH0_OB5_S,
 593						  pModal->ob);
 594			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
 595						  AR_AN_RF5G1_CH0_DB5,
 596						  AR_AN_RF5G1_CH0_DB5_S,
 597						  pModal->db);
 598			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
 599						  AR_AN_RF5G1_CH1_OB5,
 600						  AR_AN_RF5G1_CH1_OB5_S,
 601						  pModal->ob_ch1);
 602			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
 603						  AR_AN_RF5G1_CH1_DB5,
 604						  AR_AN_RF5G1_CH1_DB5_S,
 605						  pModal->db_ch1);
 606		}
 607		ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
 608					  AR_AN_TOP2_XPABIAS_LVL,
 609					  AR_AN_TOP2_XPABIAS_LVL_S,
 610					  pModal->xpaBiasLvl);
 611		ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
 612					  AR_AN_TOP2_LOCALBIAS,
 613					  AR_AN_TOP2_LOCALBIAS_S,
 614					  !!(pModal->lna_ctl &
 615					     LNA_CTL_LOCAL_BIAS));
 616		REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
 617			      !!(pModal->lna_ctl & LNA_CTL_FORCE_XPA));
 618	}
 619
 620	REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
 621		      pModal->switchSettling);
 622	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
 623		      pModal->adcDesiredSize);
 624
 625	if (!AR_SREV_9280_20_OR_LATER(ah))
 626		REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
 627			      AR_PHY_DESIRED_SZ_PGA,
 628			      pModal->pgaDesiredSize);
 629
 630	REG_WRITE(ah, AR_PHY_RF_CTL4,
 631		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
 632		  | SM(pModal->txEndToXpaOff,
 633		       AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
 634		  | SM(pModal->txFrameToXpaOn,
 635		       AR_PHY_RF_CTL4_FRAME_XPAA_ON)
 636		  | SM(pModal->txFrameToXpaOn,
 637		       AR_PHY_RF_CTL4_FRAME_XPAB_ON));
 638
 639	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
 640		      pModal->txEndToRxOn);
 641
 642	if (AR_SREV_9280_20_OR_LATER(ah)) {
 643		REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
 644			      pModal->thresh62);
 645		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
 646			      AR_PHY_EXT_CCA0_THRESH62,
 647			      pModal->thresh62);
 648	} else {
 649		REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
 650			      pModal->thresh62);
 651		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
 652			      AR_PHY_EXT_CCA_THRESH62,
 653			      pModal->thresh62);
 654	}
 655
 656	if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
 657		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
 658			      AR_PHY_TX_END_DATA_START,
 659			      pModal->txFrameToDataStart);
 660		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
 661			      pModal->txFrameToPaOn);
 662	}
 663
 664	if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
 665		if (IS_CHAN_HT40(chan))
 666			REG_RMW_FIELD(ah, AR_PHY_SETTLING,
 667				      AR_PHY_SETTLING_SWITCH,
 668				      pModal->swSettleHt40);
 669	}
 670
 671	if (AR_SREV_9280_20_OR_LATER(ah) &&
 672	    AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
 673		REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
 674			      AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
 675			      pModal->miscBits);
 676
 677
 678	if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
 679		if (IS_CHAN_2GHZ(chan))
 680			REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
 681					eep->baseEepHeader.dacLpMode);
 682		else if (eep->baseEepHeader.dacHiPwrMode_5G)
 683			REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
 684		else
 685			REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
 686				      eep->baseEepHeader.dacLpMode);
 687
 688		udelay(100);
 689
 690		REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
 691			      pModal->miscBits >> 2);
 692
 693		REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
 694			      AR_PHY_TX_DESIRED_SCALE_CCK,
 695			      eep->baseEepHeader.desiredScaleCCK);
 696	}
 697}
 698
 699static void ath9k_hw_def_set_addac(struct ath_hw *ah,
 700				   struct ath9k_channel *chan)
 701{
 702#define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
 703	struct modal_eep_header *pModal;
 704	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
 705	u8 biaslevel;
 706
 707	if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
 708		return;
 709
 710	if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
 711		return;
 712
 713	pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
 714
 715	if (pModal->xpaBiasLvl != 0xff) {
 716		biaslevel = pModal->xpaBiasLvl;
 717	} else {
 718		u16 resetFreqBin, freqBin, freqCount = 0;
 719		struct chan_centers centers;
 720
 721		ath9k_hw_get_channel_centers(ah, chan, &centers);
 722
 723		resetFreqBin = FREQ2FBIN(centers.synth_center,
 724					 IS_CHAN_2GHZ(chan));
 725		freqBin = XPA_LVL_FREQ(0) & 0xff;
 726		biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
 727
 728		freqCount++;
 729
 730		while (freqCount < 3) {
 731			if (XPA_LVL_FREQ(freqCount) == 0x0)
 732				break;
 733
 734			freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
 735			if (resetFreqBin >= freqBin)
 736				biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
 737			else
 738				break;
 739			freqCount++;
 740		}
 741	}
 742
 743	if (IS_CHAN_2GHZ(chan)) {
 744		INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
 745					7, 1) & (~0x18)) | biaslevel << 3;
 746	} else {
 747		INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
 748					6, 1) & (~0xc0)) | biaslevel << 6;
 749	}
 750#undef XPA_LVL_FREQ
 751}
 752
 753static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
 754				u16 *gb,
 755				u16 numXpdGain,
 756				u16 pdGainOverlap_t2,
 757				int8_t pwr_table_offset,
 758				int16_t *diff)
 759
 760{
 761	u16 k;
 762
 763	/* Prior to writing the boundaries or the pdadc vs. power table
 764	 * into the chip registers the default starting point on the pdadc
 765	 * vs. power table needs to be checked and the curve boundaries
 766	 * adjusted accordingly
 767	 */
 768	if (AR_SREV_9280_20_OR_LATER(ah)) {
 769		u16 gb_limit;
 770
 771		if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
 772			/* get the difference in dB */
 773			*diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
 774			/* get the number of half dB steps */
 775			*diff *= 2;
 776			/* change the original gain boundary settings
 777			 * by the number of half dB steps
 778			 */
 779			for (k = 0; k < numXpdGain; k++)
 780				gb[k] = (u16)(gb[k] - *diff);
 781		}
 782		/* Because of a hardware limitation, ensure the gain boundary
 783		 * is not larger than (63 - overlap)
 784		 */
 785		gb_limit = (u16)(MAX_RATE_POWER - pdGainOverlap_t2);
 786
 787		for (k = 0; k < numXpdGain; k++)
 788			gb[k] = (u16)min(gb_limit, gb[k]);
 789	}
 790
 791	return *diff;
 792}
 793
 794static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
 795				      int8_t pwr_table_offset,
 796				      int16_t diff,
 797				      u8 *pdadcValues)
 798{
 799#define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
 800	u16 k;
 801
 802	/* If this is a board that has a pwrTableOffset that differs from
 803	 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
 804	 * pdadc vs pwr table needs to be adjusted prior to writing to the
 805	 * chip.
 806	 */
 807	if (AR_SREV_9280_20_OR_LATER(ah)) {
 808		if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
 809			/* shift the table to start at the new offset */
 810			for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
 811				pdadcValues[k] = pdadcValues[k + diff];
 812			}
 813
 814			/* fill the back of the table */
 815			for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
 816				pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
 817			}
 818		}
 819	}
 820#undef NUM_PDADC
 821}
 822
 823static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
 824				  struct ath9k_channel *chan)
 
 825{
 826#define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
 827#define SM_PDGAIN_B(x, y) \
 828		SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
 829	struct ath_common *common = ath9k_hw_common(ah);
 830	struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
 831	struct cal_data_per_freq *pRawDataset;
 832	u8 *pCalBChans = NULL;
 833	u16 pdGainOverlap_t2;
 834	static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
 835	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
 836	u16 numPiers, i, j;
 837	int16_t diff = 0;
 838	u16 numXpdGain, xpdMask;
 839	u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
 840	u32 reg32, regOffset, regChainOffset;
 841	int16_t modalIdx;
 842	int8_t pwr_table_offset;
 843
 844	modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
 845	xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
 846
 847	pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
 848
 849	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
 850	    AR5416_EEP_MINOR_VER_2) {
 851		pdGainOverlap_t2 =
 852			pEepData->modalHeader[modalIdx].pdGainOverlap;
 853	} else {
 854		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
 855					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
 856	}
 857
 858	if (IS_CHAN_2GHZ(chan)) {
 859		pCalBChans = pEepData->calFreqPier2G;
 860		numPiers = AR5416_NUM_2G_CAL_PIERS;
 861	} else {
 862		pCalBChans = pEepData->calFreqPier5G;
 863		numPiers = AR5416_NUM_5G_CAL_PIERS;
 864	}
 865
 866	if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
 867		pRawDataset = pEepData->calPierData2G[0];
 868		ah->initPDADC = ((struct calDataPerFreqOpLoop *)
 869				 pRawDataset)->vpdPdg[0][0];
 870	}
 871
 872	numXpdGain = 0;
 873
 874	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
 875		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
 876			if (numXpdGain >= AR5416_NUM_PD_GAINS)
 877				break;
 878			xpdGainValues[numXpdGain] =
 879				(u16)(AR5416_PD_GAINS_IN_MASK - i);
 880			numXpdGain++;
 881		}
 882	}
 883
 884	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
 885		      (numXpdGain - 1) & 0x3);
 886	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
 887		      xpdGainValues[0]);
 888	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
 889		      xpdGainValues[1]);
 890	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
 891		      xpdGainValues[2]);
 892
 893	for (i = 0; i < AR5416_MAX_CHAINS; i++) {
 894		if ((ah->rxchainmask == 5 || ah->txchainmask == 5) &&
 
 895		    (i != 0)) {
 896			regChainOffset = (i == 1) ? 0x2000 : 0x1000;
 897		} else
 898			regChainOffset = i * 0x1000;
 899
 900		if (pEepData->baseEepHeader.txMask & (1 << i)) {
 901			if (IS_CHAN_2GHZ(chan))
 902				pRawDataset = pEepData->calPierData2G[i];
 903			else
 904				pRawDataset = pEepData->calPierData5G[i];
 905
 906
 907			if (OLC_FOR_AR9280_20_LATER) {
 908				u8 pcdacIdx;
 909				u8 txPower;
 910
 911				ath9k_get_txgain_index(ah, chan,
 912				(struct calDataPerFreqOpLoop *)pRawDataset,
 913				pCalBChans, numPiers, &txPower, &pcdacIdx);
 914				ath9k_olc_get_pdadcs(ah, pcdacIdx,
 915						     txPower/2, pdadcValues);
 916			} else {
 917				ath9k_hw_get_gain_boundaries_pdadcs(ah,
 918							chan, pRawDataset,
 919							pCalBChans, numPiers,
 920							pdGainOverlap_t2,
 921							gainBoundaries,
 922							pdadcValues,
 923							numXpdGain);
 924			}
 925
 926			diff = ath9k_change_gain_boundary_setting(ah,
 927							   gainBoundaries,
 928							   numXpdGain,
 929							   pdGainOverlap_t2,
 930							   pwr_table_offset,
 931							   &diff);
 932
 933			ENABLE_REGWRITE_BUFFER(ah);
 934
 935			if (OLC_FOR_AR9280_20_LATER) {
 936				REG_WRITE(ah,
 937					AR_PHY_TPCRG5 + regChainOffset,
 938					SM(0x6,
 939					AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
 940					SM_PD_GAIN(1) | SM_PD_GAIN(2) |
 941					SM_PD_GAIN(3) | SM_PD_GAIN(4));
 942			} else {
 943				REG_WRITE(ah,
 944					AR_PHY_TPCRG5 + regChainOffset,
 945					SM(pdGainOverlap_t2,
 946					AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
 947					SM_PDGAIN_B(0, 1) |
 948					SM_PDGAIN_B(1, 2) |
 949					SM_PDGAIN_B(2, 3) |
 950					SM_PDGAIN_B(3, 4));
 
 
 951			}
 952
 
 953			ath9k_adjust_pdadc_values(ah, pwr_table_offset,
 954						  diff, pdadcValues);
 955
 956			regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
 957			for (j = 0; j < 32; j++) {
 958				reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
 959				REG_WRITE(ah, regOffset, reg32);
 960
 961				ath_dbg(common, EEPROM,
 962					"PDADC (%d,%4x): %4.4x %8.8x\n",
 963					i, regChainOffset, regOffset,
 964					reg32);
 965				ath_dbg(common, EEPROM,
 966					"PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
 
 
 
 967					i, 4 * j, pdadcValues[4 * j],
 968					4 * j + 1, pdadcValues[4 * j + 1],
 969					4 * j + 2, pdadcValues[4 * j + 2],
 970					4 * j + 3, pdadcValues[4 * j + 3]);
 971
 972				regOffset += 4;
 973			}
 974			REGWRITE_BUFFER_FLUSH(ah);
 975		}
 976	}
 977
 
 978#undef SM_PD_GAIN
 979#undef SM_PDGAIN_B
 980}
 981
 982static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
 983						  struct ath9k_channel *chan,
 984						  int16_t *ratesArray,
 985						  u16 cfgCtl,
 986						  u16 antenna_reduction,
 
 987						  u16 powerLimit)
 988{
 
 
 
 
 989	struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
 990	u16 twiceMaxEdgePower;
 
 
 
 991	int i;
 
 992	struct cal_ctl_data *rep;
 993	struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
 994		0, { 0, 0, 0, 0}
 995	};
 996	struct cal_target_power_leg targetPowerOfdmExt = {
 997		0, { 0, 0, 0, 0} }, targetPowerCckExt = {
 998		0, { 0, 0, 0, 0 }
 999	};
1000	struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
1001		0, {0, 0, 0, 0}
1002	};
1003	u16 scaledPower = 0, minCtlPower;
1004	static const u16 ctlModesFor11a[] = {
1005		CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
1006	};
1007	static const u16 ctlModesFor11g[] = {
1008		CTL_11B, CTL_11G, CTL_2GHT20,
1009		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
1010	};
1011	u16 numCtlModes;
1012	const u16 *pCtlMode;
1013	u16 ctlMode, freq;
1014	struct chan_centers centers;
1015	int tx_chainmask;
1016	u16 twiceMinEdgePower;
1017
1018	tx_chainmask = ah->txchainmask;
1019
1020	ath9k_hw_get_channel_centers(ah, chan, &centers);
1021
1022	scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
1023						antenna_reduction);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1024
1025	if (IS_CHAN_2GHZ(chan)) {
1026		numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
1027			SUB_NUM_CTL_MODES_AT_2G_40;
1028		pCtlMode = ctlModesFor11g;
1029
1030		ath9k_hw_get_legacy_target_powers(ah, chan,
1031			pEepData->calTargetPowerCck,
1032			AR5416_NUM_2G_CCK_TARGET_POWERS,
1033			&targetPowerCck, 4, false);
1034		ath9k_hw_get_legacy_target_powers(ah, chan,
1035			pEepData->calTargetPower2G,
1036			AR5416_NUM_2G_20_TARGET_POWERS,
1037			&targetPowerOfdm, 4, false);
1038		ath9k_hw_get_target_powers(ah, chan,
1039			pEepData->calTargetPower2GHT20,
1040			AR5416_NUM_2G_20_TARGET_POWERS,
1041			&targetPowerHt20, 8, false);
1042
1043		if (IS_CHAN_HT40(chan)) {
1044			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
1045			ath9k_hw_get_target_powers(ah, chan,
1046				pEepData->calTargetPower2GHT40,
1047				AR5416_NUM_2G_40_TARGET_POWERS,
1048				&targetPowerHt40, 8, true);
1049			ath9k_hw_get_legacy_target_powers(ah, chan,
1050				pEepData->calTargetPowerCck,
1051				AR5416_NUM_2G_CCK_TARGET_POWERS,
1052				&targetPowerCckExt, 4, true);
1053			ath9k_hw_get_legacy_target_powers(ah, chan,
1054				pEepData->calTargetPower2G,
1055				AR5416_NUM_2G_20_TARGET_POWERS,
1056				&targetPowerOfdmExt, 4, true);
1057		}
1058	} else {
1059		numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
1060			SUB_NUM_CTL_MODES_AT_5G_40;
1061		pCtlMode = ctlModesFor11a;
1062
1063		ath9k_hw_get_legacy_target_powers(ah, chan,
1064			pEepData->calTargetPower5G,
1065			AR5416_NUM_5G_20_TARGET_POWERS,
1066			&targetPowerOfdm, 4, false);
1067		ath9k_hw_get_target_powers(ah, chan,
1068			pEepData->calTargetPower5GHT20,
1069			AR5416_NUM_5G_20_TARGET_POWERS,
1070			&targetPowerHt20, 8, false);
1071
1072		if (IS_CHAN_HT40(chan)) {
1073			numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1074			ath9k_hw_get_target_powers(ah, chan,
1075				pEepData->calTargetPower5GHT40,
1076				AR5416_NUM_5G_40_TARGET_POWERS,
1077				&targetPowerHt40, 8, true);
1078			ath9k_hw_get_legacy_target_powers(ah, chan,
1079				pEepData->calTargetPower5G,
1080				AR5416_NUM_5G_20_TARGET_POWERS,
1081				&targetPowerOfdmExt, 4, true);
1082		}
1083	}
1084
1085	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1086		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1087			(pCtlMode[ctlMode] == CTL_2GHT40);
1088		if (isHt40CtlMode)
1089			freq = centers.synth_center;
1090		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1091			freq = centers.ext_center;
1092		else
1093			freq = centers.ctl_center;
1094
1095		twiceMaxEdgePower = MAX_RATE_POWER;
 
 
1096
1097		for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1098			if ((((cfgCtl & ~CTL_MODE_M) |
1099			      (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1100			     pEepData->ctlIndex[i]) ||
1101			    (((cfgCtl & ~CTL_MODE_M) |
1102			      (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1103			     ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1104				rep = &(pEepData->ctlData[i]);
1105
1106				twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1107				rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1108				IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1109
1110				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1111					twiceMaxEdgePower = min(twiceMaxEdgePower,
1112								twiceMinEdgePower);
1113				} else {
1114					twiceMaxEdgePower = twiceMinEdgePower;
1115					break;
1116				}
1117			}
1118		}
1119
1120		minCtlPower = min(twiceMaxEdgePower, scaledPower);
1121
1122		switch (pCtlMode[ctlMode]) {
1123		case CTL_11B:
1124			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1125				targetPowerCck.tPow2x[i] =
1126					min((u16)targetPowerCck.tPow2x[i],
1127					    minCtlPower);
1128			}
1129			break;
1130		case CTL_11A:
1131		case CTL_11G:
1132			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1133				targetPowerOfdm.tPow2x[i] =
1134					min((u16)targetPowerOfdm.tPow2x[i],
1135					    minCtlPower);
1136			}
1137			break;
1138		case CTL_5GHT20:
1139		case CTL_2GHT20:
1140			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1141				targetPowerHt20.tPow2x[i] =
1142					min((u16)targetPowerHt20.tPow2x[i],
1143					    minCtlPower);
1144			}
1145			break;
1146		case CTL_11B_EXT:
1147			targetPowerCckExt.tPow2x[0] = min((u16)
1148					targetPowerCckExt.tPow2x[0],
1149					minCtlPower);
1150			break;
1151		case CTL_11A_EXT:
1152		case CTL_11G_EXT:
1153			targetPowerOfdmExt.tPow2x[0] = min((u16)
1154					targetPowerOfdmExt.tPow2x[0],
1155					minCtlPower);
1156			break;
1157		case CTL_5GHT40:
1158		case CTL_2GHT40:
1159			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1160				targetPowerHt40.tPow2x[i] =
1161					min((u16)targetPowerHt40.tPow2x[i],
1162					    minCtlPower);
1163			}
1164			break;
1165		default:
1166			break;
1167		}
1168	}
1169
1170	ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1171		ratesArray[rate18mb] = ratesArray[rate24mb] =
1172		targetPowerOfdm.tPow2x[0];
1173	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1174	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1175	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1176	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1177
1178	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1179		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1180
1181	if (IS_CHAN_2GHZ(chan)) {
1182		ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1183		ratesArray[rate2s] = ratesArray[rate2l] =
1184			targetPowerCck.tPow2x[1];
1185		ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1186			targetPowerCck.tPow2x[2];
1187		ratesArray[rate11s] = ratesArray[rate11l] =
1188			targetPowerCck.tPow2x[3];
1189	}
1190	if (IS_CHAN_HT40(chan)) {
1191		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1192			ratesArray[rateHt40_0 + i] =
1193				targetPowerHt40.tPow2x[i];
1194		}
1195		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1196		ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1197		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1198		if (IS_CHAN_2GHZ(chan)) {
1199			ratesArray[rateExtCck] =
1200				targetPowerCckExt.tPow2x[0];
1201		}
1202	}
1203}
1204
1205static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1206				    struct ath9k_channel *chan,
1207				    u16 cfgCtl,
1208				    u8 twiceAntennaReduction,
 
1209				    u8 powerLimit, bool test)
1210{
1211#define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1212	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1213	struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1214	struct modal_eep_header *pModal =
1215		&(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1216	int16_t ratesArray[Ar5416RateSize];
 
1217	u8 ht40PowerIncForPdadc = 2;
1218	int i, cck_ofdm_delta = 0;
1219
1220	memset(ratesArray, 0, sizeof(ratesArray));
1221
1222	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1223	    AR5416_EEP_MINOR_VER_2) {
1224		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1225	}
1226
1227	ath9k_hw_set_def_power_per_rate_table(ah, chan,
1228					       &ratesArray[0], cfgCtl,
1229					       twiceAntennaReduction,
 
1230					       powerLimit);
1231
1232	ath9k_hw_set_def_power_cal_table(ah, chan);
1233
1234	regulatory->max_power_level = 0;
1235	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
 
1236		if (ratesArray[i] > MAX_RATE_POWER)
1237			ratesArray[i] = MAX_RATE_POWER;
1238		if (ratesArray[i] > regulatory->max_power_level)
1239			regulatory->max_power_level = ratesArray[i];
1240	}
1241
1242	ath9k_hw_update_regulatory_maxpower(ah);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243
1244	if (test)
1245		return;
1246
1247	if (AR_SREV_9280_20_OR_LATER(ah)) {
1248		for (i = 0; i < Ar5416RateSize; i++) {
1249			int8_t pwr_table_offset;
1250
1251			pwr_table_offset = ah->eep_ops->get_eeprom(ah,
1252							EEP_PWR_TABLE_OFFSET);
1253			ratesArray[i] -= pwr_table_offset * 2;
1254		}
1255	}
1256
1257	ENABLE_REGWRITE_BUFFER(ah);
1258
1259	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1260		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
1261		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1262		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1263		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1264	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1265		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
1266		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1267		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1268		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1269
1270	if (IS_CHAN_2GHZ(chan)) {
1271		if (OLC_FOR_AR9280_20_LATER) {
1272			cck_ofdm_delta = 2;
1273			REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1274				ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1275				| ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1276				| ATH9K_POW_SM(ratesArray[rateXr], 8)
1277				| ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1278			REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1279				ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1280				| ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1281				| ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1282				| ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1283		} else {
1284			REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1285				ATH9K_POW_SM(ratesArray[rate2s], 24)
1286				| ATH9K_POW_SM(ratesArray[rate2l], 16)
1287				| ATH9K_POW_SM(ratesArray[rateXr], 8)
1288				| ATH9K_POW_SM(ratesArray[rate1l], 0));
1289			REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1290				ATH9K_POW_SM(ratesArray[rate11s], 24)
1291				| ATH9K_POW_SM(ratesArray[rate11l], 16)
1292				| ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1293				| ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1294		}
1295	}
1296
1297	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1298		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1299		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1300		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1301		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1302	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1303		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1304		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1305		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1306		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1307
1308	if (IS_CHAN_HT40(chan)) {
1309		REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1310			  ATH9K_POW_SM(ratesArray[rateHt40_3] +
1311				       ht40PowerIncForPdadc, 24)
1312			  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1313					 ht40PowerIncForPdadc, 16)
1314			  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1315					 ht40PowerIncForPdadc, 8)
1316			  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1317					 ht40PowerIncForPdadc, 0));
1318		REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1319			  ATH9K_POW_SM(ratesArray[rateHt40_7] +
1320				       ht40PowerIncForPdadc, 24)
1321			  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1322					 ht40PowerIncForPdadc, 16)
1323			  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1324					 ht40PowerIncForPdadc, 8)
1325			  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1326					 ht40PowerIncForPdadc, 0));
1327		if (OLC_FOR_AR9280_20_LATER) {
1328			REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1329				ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1330				| ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1331				| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1332				| ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1333		} else {
1334			REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1335				ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1336				| ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1337				| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1338				| ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1339		}
1340	}
1341
1342	REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1343		  ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1344		  | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1345
1346	REGWRITE_BUFFER_FLUSH(ah);
1347}
1348
1349static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1350{
1351	return ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1352}
1353
1354const struct eeprom_ops eep_def_ops = {
1355	.check_eeprom		= ath9k_hw_def_check_eeprom,
1356	.get_eeprom		= ath9k_hw_def_get_eeprom,
1357	.fill_eeprom		= ath9k_hw_def_fill_eeprom,
1358	.dump_eeprom		= ath9k_hw_def_dump_eeprom,
1359	.get_eeprom_ver		= ath9k_hw_def_get_eeprom_ver,
1360	.get_eeprom_rev		= ath9k_hw_def_get_eeprom_rev,
1361	.set_board_values	= ath9k_hw_def_set_board_values,
1362	.set_addac		= ath9k_hw_def_set_addac,
1363	.set_txpower		= ath9k_hw_def_set_txpower,
1364	.get_spur_channel	= ath9k_hw_def_get_spur_channel
1365};