Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright 2012 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/init.h>
  17#include <linux/moduleparam.h>
  18#include <linux/sched.h>
  19#include <linux/kernel.h>      /* printk() */
  20#include <linux/slab.h>        /* kmalloc() */
  21#include <linux/errno.h>       /* error codes */
  22#include <linux/types.h>       /* size_t */
  23#include <linux/interrupt.h>
  24#include <linux/in.h>
  25#include <linux/irq.h>
  26#include <linux/netdevice.h>   /* struct device, and other headers */
  27#include <linux/etherdevice.h> /* eth_type_trans */
  28#include <linux/skbuff.h>
  29#include <linux/ioctl.h>
  30#include <linux/cdev.h>
  31#include <linux/hugetlb.h>
  32#include <linux/in6.h>
  33#include <linux/timer.h>
  34#include <linux/hrtimer.h>
  35#include <linux/ktime.h>
  36#include <linux/io.h>
  37#include <linux/ctype.h>
  38#include <linux/ip.h>
  39#include <linux/ipv6.h>
  40#include <linux/tcp.h>
  41#include <linux/net_tstamp.h>
  42#include <linux/ptp_clock_kernel.h>
  43#include <linux/tick.h>
  44
  45#include <asm/checksum.h>
  46#include <asm/homecache.h>
  47#include <gxio/mpipe.h>
  48#include <arch/sim.h>
  49
  50/* Default transmit lockup timeout period, in jiffies. */
  51#define TILE_NET_TIMEOUT (5 * HZ)
  52
  53/* The maximum number of distinct channels (idesc.channel is 5 bits). */
  54#define TILE_NET_CHANNELS 32
  55
  56/* Maximum number of idescs to handle per "poll". */
  57#define TILE_NET_BATCH 128
  58
  59/* Maximum number of packets to handle per "poll". */
  60#define TILE_NET_WEIGHT 64
  61
  62/* Number of entries in each iqueue. */
  63#define IQUEUE_ENTRIES 512
  64
  65/* Number of entries in each equeue. */
  66#define EQUEUE_ENTRIES 2048
  67
  68/* Total header bytes per equeue slot.  Must be big enough for 2 bytes
  69 * of NET_IP_ALIGN alignment, plus 14 bytes (?) of L2 header, plus up to
  70 * 60 bytes of actual TCP header.  We round up to align to cache lines.
  71 */
  72#define HEADER_BYTES 128
  73
  74/* Maximum completions per cpu per device (must be a power of two).
  75 * ISSUE: What is the right number here?  If this is too small, then
  76 * egress might block waiting for free space in a completions array.
  77 * ISSUE: At the least, allocate these only for initialized echannels.
  78 */
  79#define TILE_NET_MAX_COMPS 64
  80
  81#define MAX_FRAGS (MAX_SKB_FRAGS + 1)
  82
  83/* The "kinds" of buffer stacks (small/large/jumbo). */
  84#define MAX_KINDS 3
  85
  86/* Size of completions data to allocate.
  87 * ISSUE: Probably more than needed since we don't use all the channels.
  88 */
  89#define COMPS_SIZE (TILE_NET_CHANNELS * sizeof(struct tile_net_comps))
  90
  91/* Size of NotifRing data to allocate. */
  92#define NOTIF_RING_SIZE (IQUEUE_ENTRIES * sizeof(gxio_mpipe_idesc_t))
  93
  94/* Timeout to wake the per-device TX timer after we stop the queue.
  95 * We don't want the timeout too short (adds overhead, and might end
  96 * up causing stop/wake/stop/wake cycles) or too long (affects performance).
  97 * For the 10 Gb NIC, 30 usec means roughly 30+ 1500-byte packets.
  98 */
  99#define TX_TIMER_DELAY_USEC 30
 100
 101/* Timeout to wake the per-cpu egress timer to free completions. */
 102#define EGRESS_TIMER_DELAY_USEC 1000
 103
 104MODULE_AUTHOR("Tilera Corporation");
 105MODULE_LICENSE("GPL");
 106
 107/* A "packet fragment" (a chunk of memory). */
 108struct frag {
 109	void *buf;
 110	size_t length;
 111};
 112
 113/* A single completion. */
 114struct tile_net_comp {
 115	/* The "complete_count" when the completion will be complete. */
 116	s64 when;
 117	/* The buffer to be freed when the completion is complete. */
 118	struct sk_buff *skb;
 119};
 120
 121/* The completions for a given cpu and echannel. */
 122struct tile_net_comps {
 123	/* The completions. */
 124	struct tile_net_comp comp_queue[TILE_NET_MAX_COMPS];
 125	/* The number of completions used. */
 126	unsigned long comp_next;
 127	/* The number of completions freed. */
 128	unsigned long comp_last;
 129};
 130
 131/* The transmit wake timer for a given cpu and echannel. */
 132struct tile_net_tx_wake {
 133	int tx_queue_idx;
 134	struct hrtimer timer;
 135	struct net_device *dev;
 136};
 137
 138/* Info for a specific cpu. */
 139struct tile_net_info {
 140	/* Our cpu. */
 141	int my_cpu;
 142	/* A timer for handling egress completions. */
 143	struct hrtimer egress_timer;
 144	/* True if "egress_timer" is scheduled. */
 145	bool egress_timer_scheduled;
 146	struct info_mpipe {
 147		/* Packet queue. */
 148		gxio_mpipe_iqueue_t iqueue;
 149		/* The NAPI struct. */
 150		struct napi_struct napi;
 151		/* Number of buffers (by kind) which must still be provided. */
 152		unsigned int num_needed_buffers[MAX_KINDS];
 153		/* instance id. */
 154		int instance;
 155		/* True if iqueue is valid. */
 156		bool has_iqueue;
 157		/* NAPI flags. */
 158		bool napi_added;
 159		bool napi_enabled;
 160		/* Comps for each egress channel. */
 161		struct tile_net_comps *comps_for_echannel[TILE_NET_CHANNELS];
 162		/* Transmit wake timer for each egress channel. */
 163		struct tile_net_tx_wake tx_wake[TILE_NET_CHANNELS];
 164	} mpipe[NR_MPIPE_MAX];
 165};
 166
 167/* Info for egress on a particular egress channel. */
 168struct tile_net_egress {
 169	/* The "equeue". */
 170	gxio_mpipe_equeue_t *equeue;
 171	/* The headers for TSO. */
 172	unsigned char *headers;
 173};
 174
 175/* Info for a specific device. */
 176struct tile_net_priv {
 177	/* Our network device. */
 178	struct net_device *dev;
 179	/* The primary link. */
 180	gxio_mpipe_link_t link;
 181	/* The primary channel, if open, else -1. */
 182	int channel;
 183	/* The "loopify" egress link, if needed. */
 184	gxio_mpipe_link_t loopify_link;
 185	/* The "loopify" egress channel, if open, else -1. */
 186	int loopify_channel;
 187	/* The egress channel (channel or loopify_channel). */
 188	int echannel;
 189	/* mPIPE instance, 0 or 1. */
 190	int instance;
 191	/* The timestamp config. */
 192	struct hwtstamp_config stamp_cfg;
 193};
 194
 195static struct mpipe_data {
 196	/* The ingress irq. */
 197	int ingress_irq;
 198
 199	/* The "context" for all devices. */
 200	gxio_mpipe_context_t context;
 201
 202	/* Egress info, indexed by "priv->echannel"
 203	 * (lazily created as needed).
 204	 */
 205	struct tile_net_egress
 206	egress_for_echannel[TILE_NET_CHANNELS];
 207
 208	/* Devices currently associated with each channel.
 209	 * NOTE: The array entry can become NULL after ifconfig down, but
 210	 * we do not free the underlying net_device structures, so it is
 211	 * safe to use a pointer after reading it from this array.
 212	 */
 213	struct net_device
 214	*tile_net_devs_for_channel[TILE_NET_CHANNELS];
 215
 216	/* The actual memory allocated for the buffer stacks. */
 217	void *buffer_stack_vas[MAX_KINDS];
 218
 219	/* The amount of memory allocated for each buffer stack. */
 220	size_t buffer_stack_bytes[MAX_KINDS];
 221
 222	/* The first buffer stack index
 223	 * (small = +0, large = +1, jumbo = +2).
 224	 */
 225	int first_buffer_stack;
 226
 227	/* The buckets. */
 228	int first_bucket;
 229	int num_buckets;
 230
 231	/* PTP-specific data. */
 232	struct ptp_clock *ptp_clock;
 233	struct ptp_clock_info caps;
 234
 235	/* Lock for ptp accessors. */
 236	struct mutex ptp_lock;
 237
 238} mpipe_data[NR_MPIPE_MAX] = {
 239	[0 ... (NR_MPIPE_MAX - 1)] {
 240		.ingress_irq = -1,
 241		.first_buffer_stack = -1,
 242		.first_bucket = -1,
 243		.num_buckets = 1
 244	}
 245};
 246
 247/* A mutex for "tile_net_devs_for_channel". */
 248static DEFINE_MUTEX(tile_net_devs_for_channel_mutex);
 249
 250/* The per-cpu info. */
 251static DEFINE_PER_CPU(struct tile_net_info, per_cpu_info);
 252
 253
 254/* The buffer size enums for each buffer stack.
 255 * See arch/tile/include/gxio/mpipe.h for the set of possible values.
 256 * We avoid the "10384" size because it can induce "false chaining"
 257 * on "cut-through" jumbo packets.
 258 */
 259static gxio_mpipe_buffer_size_enum_t buffer_size_enums[MAX_KINDS] = {
 260	GXIO_MPIPE_BUFFER_SIZE_128,
 261	GXIO_MPIPE_BUFFER_SIZE_1664,
 262	GXIO_MPIPE_BUFFER_SIZE_16384
 263};
 264
 265/* Text value of tile_net.cpus if passed as a module parameter. */
 266static char *network_cpus_string;
 267
 268/* The actual cpus in "network_cpus". */
 269static struct cpumask network_cpus_map;
 270
 271/* If "tile_net.loopify=LINK" was specified, this is "LINK". */
 272static char *loopify_link_name;
 273
 274/* If "tile_net.custom" was specified, this is true. */
 275static bool custom_flag;
 276
 277/* If "tile_net.jumbo=NUM" was specified, this is "NUM". */
 278static uint jumbo_num;
 279
 280/* Obtain mpipe instance from struct tile_net_priv given struct net_device. */
 281static inline int mpipe_instance(struct net_device *dev)
 282{
 283	struct tile_net_priv *priv = netdev_priv(dev);
 284	return priv->instance;
 285}
 286
 287/* The "tile_net.cpus" argument specifies the cpus that are dedicated
 288 * to handle ingress packets.
 289 *
 290 * The parameter should be in the form "tile_net.cpus=m-n[,x-y]", where
 291 * m, n, x, y are integer numbers that represent the cpus that can be
 292 * neither a dedicated cpu nor a dataplane cpu.
 293 */
 294static bool network_cpus_init(void)
 295{
 296	int rc;
 297
 298	if (network_cpus_string == NULL)
 299		return false;
 300
 301	rc = cpulist_parse_crop(network_cpus_string, &network_cpus_map);
 302	if (rc != 0) {
 303		pr_warn("tile_net.cpus=%s: malformed cpu list\n",
 304			network_cpus_string);
 305		return false;
 306	}
 307
 308	/* Remove dedicated cpus. */
 309	cpumask_and(&network_cpus_map, &network_cpus_map, cpu_possible_mask);
 310
 311	if (cpumask_empty(&network_cpus_map)) {
 312		pr_warn("Ignoring empty tile_net.cpus='%s'.\n",
 313			network_cpus_string);
 314		return false;
 315	}
 316
 317	pr_info("Linux network CPUs: %*pbl\n",
 318		cpumask_pr_args(&network_cpus_map));
 319	return true;
 320}
 321
 322module_param_named(cpus, network_cpus_string, charp, 0444);
 323MODULE_PARM_DESC(cpus, "cpulist of cores that handle network interrupts");
 324
 325/* The "tile_net.loopify=LINK" argument causes the named device to
 326 * actually use "loop0" for ingress, and "loop1" for egress.  This
 327 * allows an app to sit between the actual link and linux, passing
 328 * (some) packets along to linux, and forwarding (some) packets sent
 329 * out by linux.
 330 */
 331module_param_named(loopify, loopify_link_name, charp, 0444);
 332MODULE_PARM_DESC(loopify, "name the device to use loop0/1 for ingress/egress");
 333
 334/* The "tile_net.custom" argument causes us to ignore the "conventional"
 335 * classifier metadata, in particular, the "l2_offset".
 336 */
 337module_param_named(custom, custom_flag, bool, 0444);
 338MODULE_PARM_DESC(custom, "indicates a (heavily) customized classifier");
 339
 340/* The "tile_net.jumbo" argument causes us to support "jumbo" packets,
 341 * and to allocate the given number of "jumbo" buffers.
 342 */
 343module_param_named(jumbo, jumbo_num, uint, 0444);
 344MODULE_PARM_DESC(jumbo, "the number of buffers to support jumbo packets");
 345
 346/* Atomically update a statistics field.
 347 * Note that on TILE-Gx, this operation is fire-and-forget on the
 348 * issuing core (single-cycle dispatch) and takes only a few cycles
 349 * longer than a regular store when the request reaches the home cache.
 350 * No expensive bus management overhead is required.
 351 */
 352static void tile_net_stats_add(unsigned long value, unsigned long *field)
 353{
 354	BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(unsigned long));
 355	atomic_long_add(value, (atomic_long_t *)field);
 356}
 357
 358/* Allocate and push a buffer. */
 359static bool tile_net_provide_buffer(int instance, int kind)
 360{
 361	struct mpipe_data *md = &mpipe_data[instance];
 362	gxio_mpipe_buffer_size_enum_t bse = buffer_size_enums[kind];
 363	size_t bs = gxio_mpipe_buffer_size_enum_to_buffer_size(bse);
 364	const unsigned long buffer_alignment = 128;
 365	struct sk_buff *skb;
 366	int len;
 367
 368	len = sizeof(struct sk_buff **) + buffer_alignment + bs;
 369	skb = dev_alloc_skb(len);
 370	if (skb == NULL)
 371		return false;
 372
 373	/* Make room for a back-pointer to 'skb' and guarantee alignment. */
 374	skb_reserve(skb, sizeof(struct sk_buff **));
 375	skb_reserve(skb, -(long)skb->data & (buffer_alignment - 1));
 376
 377	/* Save a back-pointer to 'skb'. */
 378	*(struct sk_buff **)(skb->data - sizeof(struct sk_buff **)) = skb;
 379
 380	/* Make sure "skb" and the back-pointer have been flushed. */
 381	wmb();
 382
 383	gxio_mpipe_push_buffer(&md->context, md->first_buffer_stack + kind,
 384			       (void *)va_to_tile_io_addr(skb->data));
 385
 386	return true;
 387}
 388
 389/* Convert a raw mpipe buffer to its matching skb pointer. */
 390static struct sk_buff *mpipe_buf_to_skb(void *va)
 391{
 392	/* Acquire the associated "skb". */
 393	struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
 394	struct sk_buff *skb = *skb_ptr;
 395
 396	/* Paranoia. */
 397	if (skb->data != va) {
 398		/* Panic here since there's a reasonable chance
 399		 * that corrupt buffers means generic memory
 400		 * corruption, with unpredictable system effects.
 401		 */
 402		panic("Corrupt linux buffer! va=%p, skb=%p, skb->data=%p",
 403		      va, skb, skb->data);
 404	}
 405
 406	return skb;
 407}
 408
 409static void tile_net_pop_all_buffers(int instance, int stack)
 410{
 411	struct mpipe_data *md = &mpipe_data[instance];
 412
 413	for (;;) {
 414		tile_io_addr_t addr =
 415			(tile_io_addr_t)gxio_mpipe_pop_buffer(&md->context,
 416							      stack);
 417		if (addr == 0)
 418			break;
 419		dev_kfree_skb_irq(mpipe_buf_to_skb(tile_io_addr_to_va(addr)));
 420	}
 421}
 422
 423/* Provide linux buffers to mPIPE. */
 424static void tile_net_provide_needed_buffers(void)
 425{
 426	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
 427	int instance, kind;
 428	for (instance = 0; instance < NR_MPIPE_MAX &&
 429		     info->mpipe[instance].has_iqueue; instance++)	{
 430		for (kind = 0; kind < MAX_KINDS; kind++) {
 431			while (info->mpipe[instance].num_needed_buffers[kind]
 432			       != 0) {
 433				if (!tile_net_provide_buffer(instance, kind)) {
 434					pr_notice("Tile %d still needs"
 435						  " some buffers\n",
 436						  info->my_cpu);
 437					return;
 438				}
 439				info->mpipe[instance].
 440					num_needed_buffers[kind]--;
 441			}
 442		}
 443	}
 444}
 445
 446/* Get RX timestamp, and store it in the skb. */
 447static void tile_rx_timestamp(struct tile_net_priv *priv, struct sk_buff *skb,
 448			      gxio_mpipe_idesc_t *idesc)
 449{
 450	if (unlikely(priv->stamp_cfg.rx_filter != HWTSTAMP_FILTER_NONE)) {
 451		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
 452		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
 453		shhwtstamps->hwtstamp = ktime_set(idesc->time_stamp_sec,
 454						  idesc->time_stamp_ns);
 455	}
 456}
 457
 458/* Get TX timestamp, and store it in the skb. */
 459static void tile_tx_timestamp(struct sk_buff *skb, int instance)
 460{
 461	struct skb_shared_info *shtx = skb_shinfo(skb);
 462	if (unlikely((shtx->tx_flags & SKBTX_HW_TSTAMP) != 0)) {
 463		struct mpipe_data *md = &mpipe_data[instance];
 464		struct skb_shared_hwtstamps shhwtstamps;
 465		struct timespec ts;
 466
 467		shtx->tx_flags |= SKBTX_IN_PROGRESS;
 468		gxio_mpipe_get_timestamp(&md->context, &ts);
 469		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
 470		shhwtstamps.hwtstamp = ktime_set(ts.tv_sec, ts.tv_nsec);
 471		skb_tstamp_tx(skb, &shhwtstamps);
 472	}
 473}
 474
 475/* Use ioctl() to enable or disable TX or RX timestamping. */
 476static int tile_hwtstamp_set(struct net_device *dev, struct ifreq *rq)
 477{
 478	struct hwtstamp_config config;
 479	struct tile_net_priv *priv = netdev_priv(dev);
 480
 481	if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
 482		return -EFAULT;
 483
 484	if (config.flags)  /* reserved for future extensions */
 485		return -EINVAL;
 486
 487	switch (config.tx_type) {
 488	case HWTSTAMP_TX_OFF:
 489	case HWTSTAMP_TX_ON:
 490		break;
 491	default:
 492		return -ERANGE;
 493	}
 494
 495	switch (config.rx_filter) {
 496	case HWTSTAMP_FILTER_NONE:
 497		break;
 498	case HWTSTAMP_FILTER_ALL:
 499	case HWTSTAMP_FILTER_SOME:
 500	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
 501	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
 502	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
 503	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
 504	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
 505	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
 506	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
 507	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
 508	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
 509	case HWTSTAMP_FILTER_PTP_V2_EVENT:
 510	case HWTSTAMP_FILTER_PTP_V2_SYNC:
 511	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
 512		config.rx_filter = HWTSTAMP_FILTER_ALL;
 513		break;
 514	default:
 515		return -ERANGE;
 516	}
 517
 518	if (copy_to_user(rq->ifr_data, &config, sizeof(config)))
 519		return -EFAULT;
 520
 521	priv->stamp_cfg = config;
 522	return 0;
 523}
 524
 525static int tile_hwtstamp_get(struct net_device *dev, struct ifreq *rq)
 526{
 527	struct tile_net_priv *priv = netdev_priv(dev);
 528
 529	if (copy_to_user(rq->ifr_data, &priv->stamp_cfg,
 530			 sizeof(priv->stamp_cfg)))
 531		return -EFAULT;
 532
 533	return 0;
 534}
 535
 536static inline bool filter_packet(struct net_device *dev, void *buf)
 537{
 538	/* Filter packets received before we're up. */
 539	if (dev == NULL || !(dev->flags & IFF_UP))
 540		return true;
 541
 542	/* Filter out packets that aren't for us. */
 543	if (!(dev->flags & IFF_PROMISC) &&
 544	    !is_multicast_ether_addr(buf) &&
 545	    !ether_addr_equal(dev->dev_addr, buf))
 546		return true;
 547
 548	return false;
 549}
 550
 551static void tile_net_receive_skb(struct net_device *dev, struct sk_buff *skb,
 552				 gxio_mpipe_idesc_t *idesc, unsigned long len)
 553{
 554	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
 555	struct tile_net_priv *priv = netdev_priv(dev);
 556	int instance = priv->instance;
 557
 558	/* Encode the actual packet length. */
 559	skb_put(skb, len);
 560
 561	skb->protocol = eth_type_trans(skb, dev);
 562
 563	/* Acknowledge "good" hardware checksums. */
 564	if (idesc->cs && idesc->csum_seed_val == 0xFFFF)
 565		skb->ip_summed = CHECKSUM_UNNECESSARY;
 566
 567	/* Get RX timestamp from idesc. */
 568	tile_rx_timestamp(priv, skb, idesc);
 569
 570	napi_gro_receive(&info->mpipe[instance].napi, skb);
 571
 572	/* Update stats. */
 573	tile_net_stats_add(1, &dev->stats.rx_packets);
 574	tile_net_stats_add(len, &dev->stats.rx_bytes);
 575
 576	/* Need a new buffer. */
 577	if (idesc->size == buffer_size_enums[0])
 578		info->mpipe[instance].num_needed_buffers[0]++;
 579	else if (idesc->size == buffer_size_enums[1])
 580		info->mpipe[instance].num_needed_buffers[1]++;
 581	else
 582		info->mpipe[instance].num_needed_buffers[2]++;
 583}
 584
 585/* Handle a packet.  Return true if "processed", false if "filtered". */
 586static bool tile_net_handle_packet(int instance, gxio_mpipe_idesc_t *idesc)
 587{
 588	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
 589	struct mpipe_data *md = &mpipe_data[instance];
 590	struct net_device *dev = md->tile_net_devs_for_channel[idesc->channel];
 591	uint8_t l2_offset;
 592	void *va;
 593	void *buf;
 594	unsigned long len;
 595	bool filter;
 596
 597	/* Drop packets for which no buffer was available (which can
 598	 * happen under heavy load), or for which the me/tr/ce flags
 599	 * are set (which can happen for jumbo cut-through packets,
 600	 * or with a customized classifier).
 601	 */
 602	if (idesc->be || idesc->me || idesc->tr || idesc->ce) {
 603		if (dev)
 604			tile_net_stats_add(1, &dev->stats.rx_errors);
 605		goto drop;
 606	}
 607
 608	/* Get the "l2_offset", if allowed. */
 609	l2_offset = custom_flag ? 0 : gxio_mpipe_idesc_get_l2_offset(idesc);
 610
 611	/* Get the VA (including NET_IP_ALIGN bytes of "headroom"). */
 612	va = tile_io_addr_to_va((unsigned long)idesc->va);
 613
 614	/* Get the actual packet start/length. */
 615	buf = va + l2_offset;
 616	len = idesc->l2_size - l2_offset;
 617
 618	/* Point "va" at the raw buffer. */
 619	va -= NET_IP_ALIGN;
 620
 621	filter = filter_packet(dev, buf);
 622	if (filter) {
 623		if (dev)
 624			tile_net_stats_add(1, &dev->stats.rx_dropped);
 625drop:
 626		gxio_mpipe_iqueue_drop(&info->mpipe[instance].iqueue, idesc);
 627	} else {
 628		struct sk_buff *skb = mpipe_buf_to_skb(va);
 629
 630		/* Skip headroom, and any custom header. */
 631		skb_reserve(skb, NET_IP_ALIGN + l2_offset);
 632
 633		tile_net_receive_skb(dev, skb, idesc, len);
 634	}
 635
 636	gxio_mpipe_iqueue_consume(&info->mpipe[instance].iqueue, idesc);
 637	return !filter;
 638}
 639
 640/* Handle some packets for the current CPU.
 641 *
 642 * This function handles up to TILE_NET_BATCH idescs per call.
 643 *
 644 * ISSUE: Since we do not provide new buffers until this function is
 645 * complete, we must initially provide enough buffers for each network
 646 * cpu to fill its iqueue and also its batched idescs.
 647 *
 648 * ISSUE: The "rotting packet" race condition occurs if a packet
 649 * arrives after the queue appears to be empty, and before the
 650 * hypervisor interrupt is re-enabled.
 651 */
 652static int tile_net_poll(struct napi_struct *napi, int budget)
 653{
 654	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
 655	unsigned int work = 0;
 656	gxio_mpipe_idesc_t *idesc;
 657	int instance, i, n;
 658	struct mpipe_data *md;
 659	struct info_mpipe *info_mpipe =
 660		container_of(napi, struct info_mpipe, napi);
 661
 662	if (budget <= 0)
 663		goto done;
 664
 665	instance = info_mpipe->instance;
 666	while ((n = gxio_mpipe_iqueue_try_peek(
 667			&info_mpipe->iqueue,
 668			&idesc)) > 0) {
 669		for (i = 0; i < n; i++) {
 670			if (i == TILE_NET_BATCH)
 671				goto done;
 672			if (tile_net_handle_packet(instance,
 673						   idesc + i)) {
 674				if (++work >= budget)
 675					goto done;
 676			}
 677		}
 678	}
 679
 680	/* There are no packets left. */
 681	napi_complete(&info_mpipe->napi);
 682
 683	md = &mpipe_data[instance];
 684	/* Re-enable hypervisor interrupts. */
 685	gxio_mpipe_enable_notif_ring_interrupt(
 686		&md->context, info->mpipe[instance].iqueue.ring);
 687
 688	/* HACK: Avoid the "rotting packet" problem. */
 689	if (gxio_mpipe_iqueue_try_peek(&info_mpipe->iqueue, &idesc) > 0)
 690		napi_schedule(&info_mpipe->napi);
 691
 692	/* ISSUE: Handle completions? */
 693
 694done:
 695	tile_net_provide_needed_buffers();
 696
 697	return work;
 698}
 699
 700/* Handle an ingress interrupt from an instance on the current cpu. */
 701static irqreturn_t tile_net_handle_ingress_irq(int irq, void *id)
 702{
 703	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
 704	napi_schedule(&info->mpipe[(uint64_t)id].napi);
 705	return IRQ_HANDLED;
 706}
 707
 708/* Free some completions.  This must be called with interrupts blocked. */
 709static int tile_net_free_comps(gxio_mpipe_equeue_t *equeue,
 710				struct tile_net_comps *comps,
 711				int limit, bool force_update)
 712{
 713	int n = 0;
 714	while (comps->comp_last < comps->comp_next) {
 715		unsigned int cid = comps->comp_last % TILE_NET_MAX_COMPS;
 716		struct tile_net_comp *comp = &comps->comp_queue[cid];
 717		if (!gxio_mpipe_equeue_is_complete(equeue, comp->when,
 718						   force_update || n == 0))
 719			break;
 720		dev_kfree_skb_irq(comp->skb);
 721		comps->comp_last++;
 722		if (++n == limit)
 723			break;
 724	}
 725	return n;
 726}
 727
 728/* Add a completion.  This must be called with interrupts blocked.
 729 * tile_net_equeue_try_reserve() will have ensured a free completion entry.
 730 */
 731static void add_comp(gxio_mpipe_equeue_t *equeue,
 732		     struct tile_net_comps *comps,
 733		     uint64_t when, struct sk_buff *skb)
 734{
 735	int cid = comps->comp_next % TILE_NET_MAX_COMPS;
 736	comps->comp_queue[cid].when = when;
 737	comps->comp_queue[cid].skb = skb;
 738	comps->comp_next++;
 739}
 740
 741static void tile_net_schedule_tx_wake_timer(struct net_device *dev,
 742                                            int tx_queue_idx)
 743{
 744	struct tile_net_info *info = &per_cpu(per_cpu_info, tx_queue_idx);
 745	struct tile_net_priv *priv = netdev_priv(dev);
 746	int instance = priv->instance;
 747	struct tile_net_tx_wake *tx_wake =
 748		&info->mpipe[instance].tx_wake[priv->echannel];
 749
 750	hrtimer_start(&tx_wake->timer,
 751		      ktime_set(0, TX_TIMER_DELAY_USEC * 1000UL),
 752		      HRTIMER_MODE_REL_PINNED);
 753}
 754
 755static enum hrtimer_restart tile_net_handle_tx_wake_timer(struct hrtimer *t)
 756{
 757	struct tile_net_tx_wake *tx_wake =
 758		container_of(t, struct tile_net_tx_wake, timer);
 759	netif_wake_subqueue(tx_wake->dev, tx_wake->tx_queue_idx);
 760	return HRTIMER_NORESTART;
 761}
 762
 763/* Make sure the egress timer is scheduled. */
 764static void tile_net_schedule_egress_timer(void)
 765{
 766	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
 767
 768	if (!info->egress_timer_scheduled) {
 769		hrtimer_start(&info->egress_timer,
 770			      ktime_set(0, EGRESS_TIMER_DELAY_USEC * 1000UL),
 771			      HRTIMER_MODE_REL_PINNED);
 772		info->egress_timer_scheduled = true;
 773	}
 774}
 775
 776/* The "function" for "info->egress_timer".
 777 *
 778 * This timer will reschedule itself as long as there are any pending
 779 * completions expected for this tile.
 780 */
 781static enum hrtimer_restart tile_net_handle_egress_timer(struct hrtimer *t)
 782{
 783	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
 784	unsigned long irqflags;
 785	bool pending = false;
 786	int i, instance;
 787
 788	local_irq_save(irqflags);
 789
 790	/* The timer is no longer scheduled. */
 791	info->egress_timer_scheduled = false;
 792
 793	/* Free all possible comps for this tile. */
 794	for (instance = 0; instance < NR_MPIPE_MAX &&
 795		     info->mpipe[instance].has_iqueue; instance++) {
 796		for (i = 0; i < TILE_NET_CHANNELS; i++) {
 797			struct tile_net_egress *egress =
 798				&mpipe_data[instance].egress_for_echannel[i];
 799			struct tile_net_comps *comps =
 800				info->mpipe[instance].comps_for_echannel[i];
 801			if (!egress || comps->comp_last >= comps->comp_next)
 802				continue;
 803			tile_net_free_comps(egress->equeue, comps, -1, true);
 804			pending = pending ||
 805				(comps->comp_last < comps->comp_next);
 806		}
 807	}
 808
 809	/* Reschedule timer if needed. */
 810	if (pending)
 811		tile_net_schedule_egress_timer();
 812
 813	local_irq_restore(irqflags);
 814
 815	return HRTIMER_NORESTART;
 816}
 817
 818/* PTP clock operations. */
 819
 820static int ptp_mpipe_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
 821{
 822	int ret = 0;
 823	struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
 824	mutex_lock(&md->ptp_lock);
 825	if (gxio_mpipe_adjust_timestamp_freq(&md->context, ppb))
 826		ret = -EINVAL;
 827	mutex_unlock(&md->ptp_lock);
 828	return ret;
 829}
 830
 831static int ptp_mpipe_adjtime(struct ptp_clock_info *ptp, s64 delta)
 832{
 833	int ret = 0;
 834	struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
 835	mutex_lock(&md->ptp_lock);
 836	if (gxio_mpipe_adjust_timestamp(&md->context, delta))
 837		ret = -EBUSY;
 838	mutex_unlock(&md->ptp_lock);
 839	return ret;
 840}
 841
 842static int ptp_mpipe_gettime(struct ptp_clock_info *ptp,
 843			     struct timespec64 *ts)
 844{
 845	int ret = 0;
 846	struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
 847	mutex_lock(&md->ptp_lock);
 848	if (gxio_mpipe_get_timestamp(&md->context, ts))
 849		ret = -EBUSY;
 850	mutex_unlock(&md->ptp_lock);
 851	return ret;
 852}
 853
 854static int ptp_mpipe_settime(struct ptp_clock_info *ptp,
 855			     const struct timespec64 *ts)
 856{
 857	int ret = 0;
 858	struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
 859	mutex_lock(&md->ptp_lock);
 860	if (gxio_mpipe_set_timestamp(&md->context, ts))
 861		ret = -EBUSY;
 862	mutex_unlock(&md->ptp_lock);
 863	return ret;
 864}
 865
 866static int ptp_mpipe_enable(struct ptp_clock_info *ptp,
 867			    struct ptp_clock_request *request, int on)
 868{
 869	return -EOPNOTSUPP;
 870}
 871
 872static struct ptp_clock_info ptp_mpipe_caps = {
 873	.owner		= THIS_MODULE,
 874	.name		= "mPIPE clock",
 875	.max_adj	= 999999999,
 876	.n_ext_ts	= 0,
 877	.n_pins		= 0,
 878	.pps		= 0,
 879	.adjfreq	= ptp_mpipe_adjfreq,
 880	.adjtime	= ptp_mpipe_adjtime,
 881	.gettime64	= ptp_mpipe_gettime,
 882	.settime64	= ptp_mpipe_settime,
 883	.enable		= ptp_mpipe_enable,
 884};
 885
 886/* Sync mPIPE's timestamp up with Linux system time and register PTP clock. */
 887static void register_ptp_clock(struct net_device *dev, struct mpipe_data *md)
 888{
 889	struct timespec ts;
 890
 891	getnstimeofday(&ts);
 892	gxio_mpipe_set_timestamp(&md->context, &ts);
 893
 894	mutex_init(&md->ptp_lock);
 895	md->caps = ptp_mpipe_caps;
 896	md->ptp_clock = ptp_clock_register(&md->caps, NULL);
 897	if (IS_ERR(md->ptp_clock))
 898		netdev_err(dev, "ptp_clock_register failed %ld\n",
 899			   PTR_ERR(md->ptp_clock));
 900}
 901
 902/* Initialize PTP fields in a new device. */
 903static void init_ptp_dev(struct tile_net_priv *priv)
 904{
 905	priv->stamp_cfg.rx_filter = HWTSTAMP_FILTER_NONE;
 906	priv->stamp_cfg.tx_type = HWTSTAMP_TX_OFF;
 907}
 908
 909/* Helper functions for "tile_net_update()". */
 910static void enable_ingress_irq(void *irq)
 911{
 912	enable_percpu_irq((long)irq, 0);
 913}
 914
 915static void disable_ingress_irq(void *irq)
 916{
 917	disable_percpu_irq((long)irq);
 918}
 919
 920/* Helper function for tile_net_open() and tile_net_stop().
 921 * Always called under tile_net_devs_for_channel_mutex.
 922 */
 923static int tile_net_update(struct net_device *dev)
 924{
 925	static gxio_mpipe_rules_t rules;  /* too big to fit on the stack */
 926	bool saw_channel = false;
 927	int instance = mpipe_instance(dev);
 928	struct mpipe_data *md = &mpipe_data[instance];
 929	int channel;
 930	int rc;
 931	int cpu;
 932
 933	saw_channel = false;
 934	gxio_mpipe_rules_init(&rules, &md->context);
 935
 936	for (channel = 0; channel < TILE_NET_CHANNELS; channel++) {
 937		if (md->tile_net_devs_for_channel[channel] == NULL)
 938			continue;
 939		if (!saw_channel) {
 940			saw_channel = true;
 941			gxio_mpipe_rules_begin(&rules, md->first_bucket,
 942					       md->num_buckets, NULL);
 943			gxio_mpipe_rules_set_headroom(&rules, NET_IP_ALIGN);
 944		}
 945		gxio_mpipe_rules_add_channel(&rules, channel);
 946	}
 947
 948	/* NOTE: This can fail if there is no classifier.
 949	 * ISSUE: Can anything else cause it to fail?
 950	 */
 951	rc = gxio_mpipe_rules_commit(&rules);
 952	if (rc != 0) {
 953		netdev_warn(dev, "gxio_mpipe_rules_commit: mpipe[%d] %d\n",
 954			    instance, rc);
 955		return -EIO;
 956	}
 957
 958	/* Update all cpus, sequentially (to protect "netif_napi_add()").
 959	 * We use on_each_cpu to handle the IPI mask or unmask.
 960	 */
 961	if (!saw_channel)
 962		on_each_cpu(disable_ingress_irq,
 963			    (void *)(long)(md->ingress_irq), 1);
 964	for_each_online_cpu(cpu) {
 965		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
 966
 967		if (!info->mpipe[instance].has_iqueue)
 968			continue;
 969		if (saw_channel) {
 970			if (!info->mpipe[instance].napi_added) {
 971				netif_napi_add(dev, &info->mpipe[instance].napi,
 972					       tile_net_poll, TILE_NET_WEIGHT);
 973				info->mpipe[instance].napi_added = true;
 974			}
 975			if (!info->mpipe[instance].napi_enabled) {
 976				napi_enable(&info->mpipe[instance].napi);
 977				info->mpipe[instance].napi_enabled = true;
 978			}
 979		} else {
 980			if (info->mpipe[instance].napi_enabled) {
 981				napi_disable(&info->mpipe[instance].napi);
 982				info->mpipe[instance].napi_enabled = false;
 983			}
 984			/* FIXME: Drain the iqueue. */
 985		}
 986	}
 987	if (saw_channel)
 988		on_each_cpu(enable_ingress_irq,
 989			    (void *)(long)(md->ingress_irq), 1);
 990
 991	/* HACK: Allow packets to flow in the simulator. */
 992	if (saw_channel)
 993		sim_enable_mpipe_links(instance, -1);
 994
 995	return 0;
 996}
 997
 998/* Initialize a buffer stack. */
 999static int create_buffer_stack(struct net_device *dev,
1000			       int kind, size_t num_buffers)
1001{
1002	pte_t hash_pte = pte_set_home((pte_t) { 0 }, PAGE_HOME_HASH);
1003	int instance = mpipe_instance(dev);
1004	struct mpipe_data *md = &mpipe_data[instance];
1005	size_t needed = gxio_mpipe_calc_buffer_stack_bytes(num_buffers);
1006	int stack_idx = md->first_buffer_stack + kind;
1007	void *va;
1008	int i, rc;
1009
1010	/* Round up to 64KB and then use alloc_pages() so we get the
1011	 * required 64KB alignment.
1012	 */
1013	md->buffer_stack_bytes[kind] =
1014		ALIGN(needed, 64 * 1024);
1015
1016	va = alloc_pages_exact(md->buffer_stack_bytes[kind], GFP_KERNEL);
1017	if (va == NULL) {
1018		netdev_err(dev,
1019			   "Could not alloc %zd bytes for buffer stack %d\n",
1020			   md->buffer_stack_bytes[kind], kind);
1021		return -ENOMEM;
1022	}
1023
1024	/* Initialize the buffer stack. */
1025	rc = gxio_mpipe_init_buffer_stack(&md->context, stack_idx,
1026					  buffer_size_enums[kind],  va,
1027					  md->buffer_stack_bytes[kind], 0);
1028	if (rc != 0) {
1029		netdev_err(dev, "gxio_mpipe_init_buffer_stack: mpipe[%d] %d\n",
1030			   instance, rc);
1031		free_pages_exact(va, md->buffer_stack_bytes[kind]);
1032		return rc;
1033	}
1034
1035	md->buffer_stack_vas[kind] = va;
1036
1037	rc = gxio_mpipe_register_client_memory(&md->context, stack_idx,
1038					       hash_pte, 0);
1039	if (rc != 0) {
1040		netdev_err(dev,
1041			   "gxio_mpipe_register_client_memory: mpipe[%d] %d\n",
1042			   instance, rc);
1043		return rc;
1044	}
1045
1046	/* Provide initial buffers. */
1047	for (i = 0; i < num_buffers; i++) {
1048		if (!tile_net_provide_buffer(instance, kind)) {
1049			netdev_err(dev, "Cannot allocate initial sk_bufs!\n");
1050			return -ENOMEM;
1051		}
1052	}
1053
1054	return 0;
1055}
1056
1057/* Allocate and initialize mpipe buffer stacks, and register them in
1058 * the mPIPE TLBs, for small, large, and (possibly) jumbo packet sizes.
1059 * This routine supports tile_net_init_mpipe(), below.
1060 */
1061static int init_buffer_stacks(struct net_device *dev,
1062			      int network_cpus_count)
1063{
1064	int num_kinds = MAX_KINDS - (jumbo_num == 0);
1065	size_t num_buffers;
1066	int rc;
1067	int instance = mpipe_instance(dev);
1068	struct mpipe_data *md = &mpipe_data[instance];
1069
1070	/* Allocate the buffer stacks. */
1071	rc = gxio_mpipe_alloc_buffer_stacks(&md->context, num_kinds, 0, 0);
1072	if (rc < 0) {
1073		netdev_err(dev,
1074			   "gxio_mpipe_alloc_buffer_stacks: mpipe[%d] %d\n",
1075			   instance, rc);
1076		return rc;
1077	}
1078	md->first_buffer_stack = rc;
1079
1080	/* Enough small/large buffers to (normally) avoid buffer errors. */
1081	num_buffers =
1082		network_cpus_count * (IQUEUE_ENTRIES + TILE_NET_BATCH);
1083
1084	/* Allocate the small memory stack. */
1085	if (rc >= 0)
1086		rc = create_buffer_stack(dev, 0, num_buffers);
1087
1088	/* Allocate the large buffer stack. */
1089	if (rc >= 0)
1090		rc = create_buffer_stack(dev, 1, num_buffers);
1091
1092	/* Allocate the jumbo buffer stack if needed. */
1093	if (rc >= 0 && jumbo_num != 0)
1094		rc = create_buffer_stack(dev, 2, jumbo_num);
1095
1096	return rc;
1097}
1098
1099/* Allocate per-cpu resources (memory for completions and idescs).
1100 * This routine supports tile_net_init_mpipe(), below.
1101 */
1102static int alloc_percpu_mpipe_resources(struct net_device *dev,
1103					int cpu, int ring)
1104{
1105	struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1106	int order, i, rc;
1107	int instance = mpipe_instance(dev);
1108	struct mpipe_data *md = &mpipe_data[instance];
1109	struct page *page;
1110	void *addr;
1111
1112	/* Allocate the "comps". */
1113	order = get_order(COMPS_SIZE);
1114	page = homecache_alloc_pages(GFP_KERNEL, order, cpu);
1115	if (page == NULL) {
1116		netdev_err(dev, "Failed to alloc %zd bytes comps memory\n",
1117			   COMPS_SIZE);
1118		return -ENOMEM;
1119	}
1120	addr = pfn_to_kaddr(page_to_pfn(page));
1121	memset(addr, 0, COMPS_SIZE);
1122	for (i = 0; i < TILE_NET_CHANNELS; i++)
1123		info->mpipe[instance].comps_for_echannel[i] =
1124			addr + i * sizeof(struct tile_net_comps);
1125
1126	/* If this is a network cpu, create an iqueue. */
1127	if (cpumask_test_cpu(cpu, &network_cpus_map)) {
1128		order = get_order(NOTIF_RING_SIZE);
1129		page = homecache_alloc_pages(GFP_KERNEL, order, cpu);
1130		if (page == NULL) {
1131			netdev_err(dev,
1132				   "Failed to alloc %zd bytes iqueue memory\n",
1133				   NOTIF_RING_SIZE);
1134			return -ENOMEM;
1135		}
1136		addr = pfn_to_kaddr(page_to_pfn(page));
1137		rc = gxio_mpipe_iqueue_init(&info->mpipe[instance].iqueue,
1138					    &md->context, ring++, addr,
1139					    NOTIF_RING_SIZE, 0);
1140		if (rc < 0) {
1141			netdev_err(dev,
1142				   "gxio_mpipe_iqueue_init failed: %d\n", rc);
1143			return rc;
1144		}
1145		info->mpipe[instance].has_iqueue = true;
1146	}
1147
1148	return ring;
1149}
1150
1151/* Initialize NotifGroup and buckets.
1152 * This routine supports tile_net_init_mpipe(), below.
1153 */
1154static int init_notif_group_and_buckets(struct net_device *dev,
1155					int ring, int network_cpus_count)
1156{
1157	int group, rc;
1158	int instance = mpipe_instance(dev);
1159	struct mpipe_data *md = &mpipe_data[instance];
1160
1161	/* Allocate one NotifGroup. */
1162	rc = gxio_mpipe_alloc_notif_groups(&md->context, 1, 0, 0);
1163	if (rc < 0) {
1164		netdev_err(dev, "gxio_mpipe_alloc_notif_groups: mpipe[%d] %d\n",
1165			   instance, rc);
1166		return rc;
1167	}
1168	group = rc;
1169
1170	/* Initialize global num_buckets value. */
1171	if (network_cpus_count > 4)
1172		md->num_buckets = 256;
1173	else if (network_cpus_count > 1)
1174		md->num_buckets = 16;
1175
1176	/* Allocate some buckets, and set global first_bucket value. */
1177	rc = gxio_mpipe_alloc_buckets(&md->context, md->num_buckets, 0, 0);
1178	if (rc < 0) {
1179		netdev_err(dev, "gxio_mpipe_alloc_buckets: mpipe[%d] %d\n",
1180			   instance, rc);
1181		return rc;
1182	}
1183	md->first_bucket = rc;
1184
1185	/* Init group and buckets. */
1186	rc = gxio_mpipe_init_notif_group_and_buckets(
1187		&md->context, group, ring, network_cpus_count,
1188		md->first_bucket, md->num_buckets,
1189		GXIO_MPIPE_BUCKET_STICKY_FLOW_LOCALITY);
1190	if (rc != 0) {
1191		netdev_err(dev,	"gxio_mpipe_init_notif_group_and_buckets: "
1192			   "mpipe[%d] %d\n", instance, rc);
1193		return rc;
1194	}
1195
1196	return 0;
1197}
1198
1199/* Create an irq and register it, then activate the irq and request
1200 * interrupts on all cores.  Note that "ingress_irq" being initialized
1201 * is how we know not to call tile_net_init_mpipe() again.
1202 * This routine supports tile_net_init_mpipe(), below.
1203 */
1204static int tile_net_setup_interrupts(struct net_device *dev)
1205{
1206	int cpu, rc, irq;
1207	int instance = mpipe_instance(dev);
1208	struct mpipe_data *md = &mpipe_data[instance];
1209
1210	irq = md->ingress_irq;
1211	if (irq < 0) {
1212		irq = irq_alloc_hwirq(-1);
1213		if (!irq) {
1214			netdev_err(dev,
1215				   "create_irq failed: mpipe[%d] %d\n",
1216				   instance, irq);
1217			return irq;
1218		}
1219		tile_irq_activate(irq, TILE_IRQ_PERCPU);
1220
1221		rc = request_irq(irq, tile_net_handle_ingress_irq,
1222				 0, "tile_net", (void *)((uint64_t)instance));
1223
1224		if (rc != 0) {
1225			netdev_err(dev, "request_irq failed: mpipe[%d] %d\n",
1226				   instance, rc);
1227			irq_free_hwirq(irq);
1228			return rc;
1229		}
1230		md->ingress_irq = irq;
1231	}
1232
1233	for_each_online_cpu(cpu) {
1234		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1235		if (info->mpipe[instance].has_iqueue) {
1236			gxio_mpipe_request_notif_ring_interrupt(&md->context,
1237				cpu_x(cpu), cpu_y(cpu), KERNEL_PL, irq,
1238				info->mpipe[instance].iqueue.ring);
1239		}
1240	}
1241
1242	return 0;
1243}
1244
1245/* Undo any state set up partially by a failed call to tile_net_init_mpipe. */
1246static void tile_net_init_mpipe_fail(int instance)
1247{
1248	int kind, cpu;
1249	struct mpipe_data *md = &mpipe_data[instance];
1250
1251	/* Do cleanups that require the mpipe context first. */
1252	for (kind = 0; kind < MAX_KINDS; kind++) {
1253		if (md->buffer_stack_vas[kind] != NULL) {
1254			tile_net_pop_all_buffers(instance,
1255						 md->first_buffer_stack +
1256						 kind);
1257		}
1258	}
1259
1260	/* Destroy mpipe context so the hardware no longer owns any memory. */
1261	gxio_mpipe_destroy(&md->context);
1262
1263	for_each_online_cpu(cpu) {
1264		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1265		free_pages(
1266			(unsigned long)(
1267				info->mpipe[instance].comps_for_echannel[0]),
1268			get_order(COMPS_SIZE));
1269		info->mpipe[instance].comps_for_echannel[0] = NULL;
1270		free_pages((unsigned long)(info->mpipe[instance].iqueue.idescs),
1271			   get_order(NOTIF_RING_SIZE));
1272		info->mpipe[instance].iqueue.idescs = NULL;
1273	}
1274
1275	for (kind = 0; kind < MAX_KINDS; kind++) {
1276		if (md->buffer_stack_vas[kind] != NULL) {
1277			free_pages_exact(md->buffer_stack_vas[kind],
1278					 md->buffer_stack_bytes[kind]);
1279			md->buffer_stack_vas[kind] = NULL;
1280		}
1281	}
1282
1283	md->first_buffer_stack = -1;
1284	md->first_bucket = -1;
1285}
1286
1287/* The first time any tilegx network device is opened, we initialize
1288 * the global mpipe state.  If this step fails, we fail to open the
1289 * device, but if it succeeds, we never need to do it again, and since
1290 * tile_net can't be unloaded, we never undo it.
1291 *
1292 * Note that some resources in this path (buffer stack indices,
1293 * bindings from init_buffer_stack, etc.) are hypervisor resources
1294 * that are freed implicitly by gxio_mpipe_destroy().
1295 */
1296static int tile_net_init_mpipe(struct net_device *dev)
1297{
1298	int rc;
1299	int cpu;
1300	int first_ring, ring;
1301	int instance = mpipe_instance(dev);
1302	struct mpipe_data *md = &mpipe_data[instance];
1303	int network_cpus_count = cpumask_weight(&network_cpus_map);
1304
1305	if (!hash_default) {
1306		netdev_err(dev, "Networking requires hash_default!\n");
1307		return -EIO;
1308	}
1309
1310	rc = gxio_mpipe_init(&md->context, instance);
1311	if (rc != 0) {
1312		netdev_err(dev, "gxio_mpipe_init: mpipe[%d] %d\n",
1313			   instance, rc);
1314		return -EIO;
1315	}
1316
1317	/* Set up the buffer stacks. */
1318	rc = init_buffer_stacks(dev, network_cpus_count);
1319	if (rc != 0)
1320		goto fail;
1321
1322	/* Allocate one NotifRing for each network cpu. */
1323	rc = gxio_mpipe_alloc_notif_rings(&md->context,
1324					  network_cpus_count, 0, 0);
1325	if (rc < 0) {
1326		netdev_err(dev, "gxio_mpipe_alloc_notif_rings failed %d\n",
1327			   rc);
1328		goto fail;
1329	}
1330
1331	/* Init NotifRings per-cpu. */
1332	first_ring = rc;
1333	ring = first_ring;
1334	for_each_online_cpu(cpu) {
1335		rc = alloc_percpu_mpipe_resources(dev, cpu, ring);
1336		if (rc < 0)
1337			goto fail;
1338		ring = rc;
1339	}
1340
1341	/* Initialize NotifGroup and buckets. */
1342	rc = init_notif_group_and_buckets(dev, first_ring, network_cpus_count);
1343	if (rc != 0)
1344		goto fail;
1345
1346	/* Create and enable interrupts. */
1347	rc = tile_net_setup_interrupts(dev);
1348	if (rc != 0)
1349		goto fail;
1350
1351	/* Register PTP clock and set mPIPE timestamp, if configured. */
1352	register_ptp_clock(dev, md);
1353
1354	return 0;
1355
1356fail:
1357	tile_net_init_mpipe_fail(instance);
1358	return rc;
1359}
1360
1361/* Create persistent egress info for a given egress channel.
1362 * Note that this may be shared between, say, "gbe0" and "xgbe0".
1363 * ISSUE: Defer header allocation until TSO is actually needed?
1364 */
1365static int tile_net_init_egress(struct net_device *dev, int echannel)
1366{
1367	static int ering = -1;
1368	struct page *headers_page, *edescs_page, *equeue_page;
1369	gxio_mpipe_edesc_t *edescs;
1370	gxio_mpipe_equeue_t *equeue;
1371	unsigned char *headers;
1372	int headers_order, edescs_order, equeue_order;
1373	size_t edescs_size;
1374	int rc = -ENOMEM;
1375	int instance = mpipe_instance(dev);
1376	struct mpipe_data *md = &mpipe_data[instance];
1377
1378	/* Only initialize once. */
1379	if (md->egress_for_echannel[echannel].equeue != NULL)
1380		return 0;
1381
1382	/* Allocate memory for the "headers". */
1383	headers_order = get_order(EQUEUE_ENTRIES * HEADER_BYTES);
1384	headers_page = alloc_pages(GFP_KERNEL, headers_order);
1385	if (headers_page == NULL) {
1386		netdev_warn(dev,
1387			    "Could not alloc %zd bytes for TSO headers.\n",
1388			    PAGE_SIZE << headers_order);
1389		goto fail;
1390	}
1391	headers = pfn_to_kaddr(page_to_pfn(headers_page));
1392
1393	/* Allocate memory for the "edescs". */
1394	edescs_size = EQUEUE_ENTRIES * sizeof(*edescs);
1395	edescs_order = get_order(edescs_size);
1396	edescs_page = alloc_pages(GFP_KERNEL, edescs_order);
1397	if (edescs_page == NULL) {
1398		netdev_warn(dev,
1399			    "Could not alloc %zd bytes for eDMA ring.\n",
1400			    edescs_size);
1401		goto fail_headers;
1402	}
1403	edescs = pfn_to_kaddr(page_to_pfn(edescs_page));
1404
1405	/* Allocate memory for the "equeue". */
1406	equeue_order = get_order(sizeof(*equeue));
1407	equeue_page = alloc_pages(GFP_KERNEL, equeue_order);
1408	if (equeue_page == NULL) {
1409		netdev_warn(dev,
1410			    "Could not alloc %zd bytes for equeue info.\n",
1411			    PAGE_SIZE << equeue_order);
1412		goto fail_edescs;
1413	}
1414	equeue = pfn_to_kaddr(page_to_pfn(equeue_page));
1415
1416	/* Allocate an edma ring (using a one entry "free list"). */
1417	if (ering < 0) {
1418		rc = gxio_mpipe_alloc_edma_rings(&md->context, 1, 0, 0);
1419		if (rc < 0) {
1420			netdev_warn(dev, "gxio_mpipe_alloc_edma_rings: "
1421				    "mpipe[%d] %d\n", instance, rc);
1422			goto fail_equeue;
1423		}
1424		ering = rc;
1425	}
1426
1427	/* Initialize the equeue. */
1428	rc = gxio_mpipe_equeue_init(equeue, &md->context, ering, echannel,
1429				    edescs, edescs_size, 0);
1430	if (rc != 0) {
1431		netdev_err(dev, "gxio_mpipe_equeue_init: mpipe[%d] %d\n",
1432			   instance, rc);
1433		goto fail_equeue;
1434	}
1435
1436	/* Don't reuse the ering later. */
1437	ering = -1;
1438
1439	if (jumbo_num != 0) {
1440		/* Make sure "jumbo" packets can be egressed safely. */
1441		if (gxio_mpipe_equeue_set_snf_size(equeue, 10368) < 0) {
1442			/* ISSUE: There is no "gxio_mpipe_equeue_destroy()". */
1443			netdev_warn(dev, "Jumbo packets may not be egressed"
1444				    " properly on channel %d\n", echannel);
1445		}
1446	}
1447
1448	/* Done. */
1449	md->egress_for_echannel[echannel].equeue = equeue;
1450	md->egress_for_echannel[echannel].headers = headers;
1451	return 0;
1452
1453fail_equeue:
1454	__free_pages(equeue_page, equeue_order);
1455
1456fail_edescs:
1457	__free_pages(edescs_page, edescs_order);
1458
1459fail_headers:
1460	__free_pages(headers_page, headers_order);
1461
1462fail:
1463	return rc;
1464}
1465
1466/* Return channel number for a newly-opened link. */
1467static int tile_net_link_open(struct net_device *dev, gxio_mpipe_link_t *link,
1468			      const char *link_name)
1469{
1470	int instance = mpipe_instance(dev);
1471	struct mpipe_data *md = &mpipe_data[instance];
1472	int rc = gxio_mpipe_link_open(link, &md->context, link_name, 0);
1473	if (rc < 0) {
1474		netdev_err(dev, "Failed to open '%s', mpipe[%d], %d\n",
1475			   link_name, instance, rc);
1476		return rc;
1477	}
1478	if (jumbo_num != 0) {
1479		u32 attr = GXIO_MPIPE_LINK_RECEIVE_JUMBO;
1480		rc = gxio_mpipe_link_set_attr(link, attr, 1);
1481		if (rc != 0) {
1482			netdev_err(dev,
1483				   "Cannot receive jumbo packets on '%s'\n",
1484				   link_name);
1485			gxio_mpipe_link_close(link);
1486			return rc;
1487		}
1488	}
1489	rc = gxio_mpipe_link_channel(link);
1490	if (rc < 0 || rc >= TILE_NET_CHANNELS) {
1491		netdev_err(dev, "gxio_mpipe_link_channel bad value: %d\n", rc);
1492		gxio_mpipe_link_close(link);
1493		return -EINVAL;
1494	}
1495	return rc;
1496}
1497
1498/* Help the kernel activate the given network interface. */
1499static int tile_net_open(struct net_device *dev)
1500{
1501	struct tile_net_priv *priv = netdev_priv(dev);
1502	int cpu, rc, instance;
1503
1504	mutex_lock(&tile_net_devs_for_channel_mutex);
1505
1506	/* Get the instance info. */
1507	rc = gxio_mpipe_link_instance(dev->name);
1508	if (rc < 0 || rc >= NR_MPIPE_MAX) {
1509		mutex_unlock(&tile_net_devs_for_channel_mutex);
1510		return -EIO;
1511	}
1512
1513	priv->instance = rc;
1514	instance = rc;
1515	if (!mpipe_data[rc].context.mmio_fast_base) {
1516		/* Do one-time initialization per instance the first time
1517		 * any device is opened.
1518		 */
1519		rc = tile_net_init_mpipe(dev);
1520		if (rc != 0)
1521			goto fail;
1522	}
1523
1524	/* Determine if this is the "loopify" device. */
1525	if (unlikely((loopify_link_name != NULL) &&
1526		     !strcmp(dev->name, loopify_link_name))) {
1527		rc = tile_net_link_open(dev, &priv->link, "loop0");
1528		if (rc < 0)
1529			goto fail;
1530		priv->channel = rc;
1531		rc = tile_net_link_open(dev, &priv->loopify_link, "loop1");
1532		if (rc < 0)
1533			goto fail;
1534		priv->loopify_channel = rc;
1535		priv->echannel = rc;
1536	} else {
1537		rc = tile_net_link_open(dev, &priv->link, dev->name);
1538		if (rc < 0)
1539			goto fail;
1540		priv->channel = rc;
1541		priv->echannel = rc;
1542	}
1543
1544	/* Initialize egress info (if needed).  Once ever, per echannel. */
1545	rc = tile_net_init_egress(dev, priv->echannel);
1546	if (rc != 0)
1547		goto fail;
1548
1549	mpipe_data[instance].tile_net_devs_for_channel[priv->channel] = dev;
1550
1551	rc = tile_net_update(dev);
1552	if (rc != 0)
1553		goto fail;
1554
1555	mutex_unlock(&tile_net_devs_for_channel_mutex);
1556
1557	/* Initialize the transmit wake timer for this device for each cpu. */
1558	for_each_online_cpu(cpu) {
1559		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1560		struct tile_net_tx_wake *tx_wake =
1561			&info->mpipe[instance].tx_wake[priv->echannel];
1562
1563		hrtimer_init(&tx_wake->timer, CLOCK_MONOTONIC,
1564			     HRTIMER_MODE_REL);
1565		tx_wake->tx_queue_idx = cpu;
1566		tx_wake->timer.function = tile_net_handle_tx_wake_timer;
1567		tx_wake->dev = dev;
1568	}
1569
1570	for_each_online_cpu(cpu)
1571		netif_start_subqueue(dev, cpu);
1572	netif_carrier_on(dev);
1573	return 0;
1574
1575fail:
1576	if (priv->loopify_channel >= 0) {
1577		if (gxio_mpipe_link_close(&priv->loopify_link) != 0)
1578			netdev_warn(dev, "Failed to close loopify link!\n");
1579		priv->loopify_channel = -1;
1580	}
1581	if (priv->channel >= 0) {
1582		if (gxio_mpipe_link_close(&priv->link) != 0)
1583			netdev_warn(dev, "Failed to close link!\n");
1584		priv->channel = -1;
1585	}
1586	priv->echannel = -1;
1587	mpipe_data[instance].tile_net_devs_for_channel[priv->channel] =	NULL;
1588	mutex_unlock(&tile_net_devs_for_channel_mutex);
1589
1590	/* Don't return raw gxio error codes to generic Linux. */
1591	return (rc > -512) ? rc : -EIO;
1592}
1593
1594/* Help the kernel deactivate the given network interface. */
1595static int tile_net_stop(struct net_device *dev)
1596{
1597	struct tile_net_priv *priv = netdev_priv(dev);
1598	int cpu;
1599	int instance = priv->instance;
1600	struct mpipe_data *md = &mpipe_data[instance];
1601
1602	for_each_online_cpu(cpu) {
1603		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1604		struct tile_net_tx_wake *tx_wake =
1605			&info->mpipe[instance].tx_wake[priv->echannel];
1606
1607		hrtimer_cancel(&tx_wake->timer);
1608		netif_stop_subqueue(dev, cpu);
1609	}
1610
1611	mutex_lock(&tile_net_devs_for_channel_mutex);
1612	md->tile_net_devs_for_channel[priv->channel] = NULL;
1613	(void)tile_net_update(dev);
1614	if (priv->loopify_channel >= 0) {
1615		if (gxio_mpipe_link_close(&priv->loopify_link) != 0)
1616			netdev_warn(dev, "Failed to close loopify link!\n");
1617		priv->loopify_channel = -1;
1618	}
1619	if (priv->channel >= 0) {
1620		if (gxio_mpipe_link_close(&priv->link) != 0)
1621			netdev_warn(dev, "Failed to close link!\n");
1622		priv->channel = -1;
1623	}
1624	priv->echannel = -1;
1625	mutex_unlock(&tile_net_devs_for_channel_mutex);
1626
1627	return 0;
1628}
1629
1630/* Determine the VA for a fragment. */
1631static inline void *tile_net_frag_buf(skb_frag_t *f)
1632{
1633	unsigned long pfn = page_to_pfn(skb_frag_page(f));
1634	return pfn_to_kaddr(pfn) + f->page_offset;
1635}
1636
1637/* Acquire a completion entry and an egress slot, or if we can't,
1638 * stop the queue and schedule the tx_wake timer.
1639 */
1640static s64 tile_net_equeue_try_reserve(struct net_device *dev,
1641				       int tx_queue_idx,
1642				       struct tile_net_comps *comps,
1643				       gxio_mpipe_equeue_t *equeue,
1644				       int num_edescs)
1645{
1646	/* Try to acquire a completion entry. */
1647	if (comps->comp_next - comps->comp_last < TILE_NET_MAX_COMPS - 1 ||
1648	    tile_net_free_comps(equeue, comps, 32, false) != 0) {
1649
1650		/* Try to acquire an egress slot. */
1651		s64 slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs);
1652		if (slot >= 0)
1653			return slot;
1654
1655		/* Freeing some completions gives the equeue time to drain. */
1656		tile_net_free_comps(equeue, comps, TILE_NET_MAX_COMPS, false);
1657
1658		slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs);
1659		if (slot >= 0)
1660			return slot;
1661	}
1662
1663	/* Still nothing; give up and stop the queue for a short while. */
1664	netif_stop_subqueue(dev, tx_queue_idx);
1665	tile_net_schedule_tx_wake_timer(dev, tx_queue_idx);
1666	return -1;
1667}
1668
1669/* Determine how many edesc's are needed for TSO.
1670 *
1671 * Sometimes, if "sendfile()" requires copying, we will be called with
1672 * "data" containing the header and payload, with "frags" being empty.
1673 * Sometimes, for example when using NFS over TCP, a single segment can
1674 * span 3 fragments.  This requires special care.
1675 */
1676static int tso_count_edescs(struct sk_buff *skb)
1677{
1678	struct skb_shared_info *sh = skb_shinfo(skb);
1679	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1680	unsigned int data_len = skb->len - sh_len;
1681	unsigned int p_len = sh->gso_size;
1682	long f_id = -1;    /* id of the current fragment */
1683	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1684	long f_used = 0;  /* bytes used from the current fragment */
1685	long n;            /* size of the current piece of payload */
1686	int num_edescs = 0;
1687	int segment;
1688
1689	for (segment = 0; segment < sh->gso_segs; segment++) {
1690
1691		unsigned int p_used = 0;
1692
1693		/* One edesc for header and for each piece of the payload. */
1694		for (num_edescs++; p_used < p_len; num_edescs++) {
1695
1696			/* Advance as needed. */
1697			while (f_used >= f_size) {
1698				f_id++;
1699				f_size = skb_frag_size(&sh->frags[f_id]);
1700				f_used = 0;
1701			}
1702
1703			/* Use bytes from the current fragment. */
1704			n = p_len - p_used;
1705			if (n > f_size - f_used)
1706				n = f_size - f_used;
1707			f_used += n;
1708			p_used += n;
1709		}
1710
1711		/* The last segment may be less than gso_size. */
1712		data_len -= p_len;
1713		if (data_len < p_len)
1714			p_len = data_len;
1715	}
1716
1717	return num_edescs;
1718}
1719
1720/* Prepare modified copies of the skbuff headers. */
1721static void tso_headers_prepare(struct sk_buff *skb, unsigned char *headers,
1722				s64 slot)
1723{
1724	struct skb_shared_info *sh = skb_shinfo(skb);
1725	struct iphdr *ih;
1726	struct ipv6hdr *ih6;
1727	struct tcphdr *th;
1728	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1729	unsigned int data_len = skb->len - sh_len;
1730	unsigned char *data = skb->data;
1731	unsigned int ih_off, th_off, p_len;
1732	unsigned int isum_seed, tsum_seed, seq;
1733	unsigned int uninitialized_var(id);
1734	int is_ipv6;
1735	long f_id = -1;    /* id of the current fragment */
1736	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1737	long f_used = 0;  /* bytes used from the current fragment */
1738	long n;            /* size of the current piece of payload */
1739	int segment;
1740
1741	/* Locate original headers and compute various lengths. */
1742	is_ipv6 = skb_is_gso_v6(skb);
1743	if (is_ipv6) {
1744		ih6 = ipv6_hdr(skb);
1745		ih_off = skb_network_offset(skb);
1746	} else {
1747		ih = ip_hdr(skb);
1748		ih_off = skb_network_offset(skb);
1749		isum_seed = ((0xFFFF - ih->check) +
1750			     (0xFFFF - ih->tot_len) +
1751			     (0xFFFF - ih->id));
1752		id = ntohs(ih->id);
1753	}
1754
1755	th = tcp_hdr(skb);
1756	th_off = skb_transport_offset(skb);
1757	p_len = sh->gso_size;
1758
1759	tsum_seed = th->check + (0xFFFF ^ htons(skb->len));
1760	seq = ntohl(th->seq);
1761
1762	/* Prepare all the headers. */
1763	for (segment = 0; segment < sh->gso_segs; segment++) {
1764		unsigned char *buf;
1765		unsigned int p_used = 0;
1766
1767		/* Copy to the header memory for this segment. */
1768		buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES +
1769			NET_IP_ALIGN;
1770		memcpy(buf, data, sh_len);
1771
1772		/* Update copied ip header. */
1773		if (is_ipv6) {
1774			ih6 = (struct ipv6hdr *)(buf + ih_off);
1775			ih6->payload_len = htons(sh_len + p_len - ih_off -
1776						 sizeof(*ih6));
1777		} else {
1778			ih = (struct iphdr *)(buf + ih_off);
1779			ih->tot_len = htons(sh_len + p_len - ih_off);
1780			ih->id = htons(id++);
1781			ih->check = csum_long(isum_seed + ih->tot_len +
1782					      ih->id) ^ 0xffff;
1783		}
1784
1785		/* Update copied tcp header. */
1786		th = (struct tcphdr *)(buf + th_off);
1787		th->seq = htonl(seq);
1788		th->check = csum_long(tsum_seed + htons(sh_len + p_len));
1789		if (segment != sh->gso_segs - 1) {
1790			th->fin = 0;
1791			th->psh = 0;
1792		}
1793
1794		/* Skip past the header. */
1795		slot++;
1796
1797		/* Skip past the payload. */
1798		while (p_used < p_len) {
1799
1800			/* Advance as needed. */
1801			while (f_used >= f_size) {
1802				f_id++;
1803				f_size = skb_frag_size(&sh->frags[f_id]);
1804				f_used = 0;
1805			}
1806
1807			/* Use bytes from the current fragment. */
1808			n = p_len - p_used;
1809			if (n > f_size - f_used)
1810				n = f_size - f_used;
1811			f_used += n;
1812			p_used += n;
1813
1814			slot++;
1815		}
1816
1817		seq += p_len;
1818
1819		/* The last segment may be less than gso_size. */
1820		data_len -= p_len;
1821		if (data_len < p_len)
1822			p_len = data_len;
1823	}
1824
1825	/* Flush the headers so they are ready for hardware DMA. */
1826	wmb();
1827}
1828
1829/* Pass all the data to mpipe for egress. */
1830static void tso_egress(struct net_device *dev, gxio_mpipe_equeue_t *equeue,
1831		       struct sk_buff *skb, unsigned char *headers, s64 slot)
1832{
1833	struct skb_shared_info *sh = skb_shinfo(skb);
1834	int instance = mpipe_instance(dev);
1835	struct mpipe_data *md = &mpipe_data[instance];
1836	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1837	unsigned int data_len = skb->len - sh_len;
1838	unsigned int p_len = sh->gso_size;
1839	gxio_mpipe_edesc_t edesc_head = { { 0 } };
1840	gxio_mpipe_edesc_t edesc_body = { { 0 } };
1841	long f_id = -1;    /* id of the current fragment */
1842	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1843	long f_used = 0;  /* bytes used from the current fragment */
1844	void *f_data = skb->data + sh_len;
1845	long n;            /* size of the current piece of payload */
1846	unsigned long tx_packets = 0, tx_bytes = 0;
1847	unsigned int csum_start;
1848	int segment;
1849
1850	/* Prepare to egress the headers: set up header edesc. */
1851	csum_start = skb_checksum_start_offset(skb);
1852	edesc_head.csum = 1;
1853	edesc_head.csum_start = csum_start;
1854	edesc_head.csum_dest = csum_start + skb->csum_offset;
1855	edesc_head.xfer_size = sh_len;
1856
1857	/* This is only used to specify the TLB. */
1858	edesc_head.stack_idx = md->first_buffer_stack;
1859	edesc_body.stack_idx = md->first_buffer_stack;
1860
1861	/* Egress all the edescs. */
1862	for (segment = 0; segment < sh->gso_segs; segment++) {
1863		unsigned char *buf;
1864		unsigned int p_used = 0;
1865
1866		/* Egress the header. */
1867		buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES +
1868			NET_IP_ALIGN;
1869		edesc_head.va = va_to_tile_io_addr(buf);
1870		gxio_mpipe_equeue_put_at(equeue, edesc_head, slot);
1871		slot++;
1872
1873		/* Egress the payload. */
1874		while (p_used < p_len) {
1875			void *va;
1876
1877			/* Advance as needed. */
1878			while (f_used >= f_size) {
1879				f_id++;
1880				f_size = skb_frag_size(&sh->frags[f_id]);
1881				f_data = tile_net_frag_buf(&sh->frags[f_id]);
1882				f_used = 0;
1883			}
1884
1885			va = f_data + f_used;
1886
1887			/* Use bytes from the current fragment. */
1888			n = p_len - p_used;
1889			if (n > f_size - f_used)
1890				n = f_size - f_used;
1891			f_used += n;
1892			p_used += n;
1893
1894			/* Egress a piece of the payload. */
1895			edesc_body.va = va_to_tile_io_addr(va);
1896			edesc_body.xfer_size = n;
1897			edesc_body.bound = !(p_used < p_len);
1898			gxio_mpipe_equeue_put_at(equeue, edesc_body, slot);
1899			slot++;
1900		}
1901
1902		tx_packets++;
1903		tx_bytes += sh_len + p_len;
1904
1905		/* The last segment may be less than gso_size. */
1906		data_len -= p_len;
1907		if (data_len < p_len)
1908			p_len = data_len;
1909	}
1910
1911	/* Update stats. */
1912	tile_net_stats_add(tx_packets, &dev->stats.tx_packets);
1913	tile_net_stats_add(tx_bytes, &dev->stats.tx_bytes);
1914}
1915
1916/* Do "TSO" handling for egress.
1917 *
1918 * Normally drivers set NETIF_F_TSO only to support hardware TSO;
1919 * otherwise the stack uses scatter-gather to implement GSO in software.
1920 * On our testing, enabling GSO support (via NETIF_F_SG) drops network
1921 * performance down to around 7.5 Gbps on the 10G interfaces, although
1922 * also dropping cpu utilization way down, to under 8%.  But
1923 * implementing "TSO" in the driver brings performance back up to line
1924 * rate, while dropping cpu usage even further, to less than 4%.  In
1925 * practice, profiling of GSO shows that skb_segment() is what causes
1926 * the performance overheads; we benefit in the driver from using
1927 * preallocated memory to duplicate the TCP/IP headers.
1928 */
1929static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev)
1930{
1931	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
1932	struct tile_net_priv *priv = netdev_priv(dev);
1933	int channel = priv->echannel;
1934	int instance = priv->instance;
1935	struct mpipe_data *md = &mpipe_data[instance];
1936	struct tile_net_egress *egress = &md->egress_for_echannel[channel];
1937	struct tile_net_comps *comps =
1938		info->mpipe[instance].comps_for_echannel[channel];
1939	gxio_mpipe_equeue_t *equeue = egress->equeue;
1940	unsigned long irqflags;
1941	int num_edescs;
1942	s64 slot;
1943
1944	/* Determine how many mpipe edesc's are needed. */
1945	num_edescs = tso_count_edescs(skb);
1946
1947	local_irq_save(irqflags);
1948
1949	/* Try to acquire a completion entry and an egress slot. */
1950	slot = tile_net_equeue_try_reserve(dev, skb->queue_mapping, comps,
1951					   equeue, num_edescs);
1952	if (slot < 0) {
1953		local_irq_restore(irqflags);
1954		return NETDEV_TX_BUSY;
1955	}
1956
1957	/* Set up copies of header data properly. */
1958	tso_headers_prepare(skb, egress->headers, slot);
1959
1960	/* Actually pass the data to the network hardware. */
1961	tso_egress(dev, equeue, skb, egress->headers, slot);
1962
1963	/* Add a completion record. */
1964	add_comp(equeue, comps, slot + num_edescs - 1, skb);
1965
1966	local_irq_restore(irqflags);
1967
1968	/* Make sure the egress timer is scheduled. */
1969	tile_net_schedule_egress_timer();
1970
1971	return NETDEV_TX_OK;
1972}
1973
1974/* Analyze the body and frags for a transmit request. */
1975static unsigned int tile_net_tx_frags(struct frag *frags,
1976				       struct sk_buff *skb,
1977				       void *b_data, unsigned int b_len)
1978{
1979	unsigned int i, n = 0;
1980
1981	struct skb_shared_info *sh = skb_shinfo(skb);
1982
1983	if (b_len != 0) {
1984		frags[n].buf = b_data;
1985		frags[n++].length = b_len;
1986	}
1987
1988	for (i = 0; i < sh->nr_frags; i++) {
1989		skb_frag_t *f = &sh->frags[i];
1990		frags[n].buf = tile_net_frag_buf(f);
1991		frags[n++].length = skb_frag_size(f);
1992	}
1993
1994	return n;
1995}
1996
1997/* Help the kernel transmit a packet. */
1998static int tile_net_tx(struct sk_buff *skb, struct net_device *dev)
1999{
2000	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
2001	struct tile_net_priv *priv = netdev_priv(dev);
2002	int instance = priv->instance;
2003	struct mpipe_data *md = &mpipe_data[instance];
2004	struct tile_net_egress *egress =
2005		&md->egress_for_echannel[priv->echannel];
2006	gxio_mpipe_equeue_t *equeue = egress->equeue;
2007	struct tile_net_comps *comps =
2008		info->mpipe[instance].comps_for_echannel[priv->echannel];
2009	unsigned int len = skb->len;
2010	unsigned char *data = skb->data;
2011	unsigned int num_edescs;
2012	struct frag frags[MAX_FRAGS];
2013	gxio_mpipe_edesc_t edescs[MAX_FRAGS];
2014	unsigned long irqflags;
2015	gxio_mpipe_edesc_t edesc = { { 0 } };
2016	unsigned int i;
2017	s64 slot;
2018
2019	if (skb_is_gso(skb))
2020		return tile_net_tx_tso(skb, dev);
2021
2022	num_edescs = tile_net_tx_frags(frags, skb, data, skb_headlen(skb));
2023
2024	/* This is only used to specify the TLB. */
2025	edesc.stack_idx = md->first_buffer_stack;
2026
2027	/* Prepare the edescs. */
2028	for (i = 0; i < num_edescs; i++) {
2029		edesc.xfer_size = frags[i].length;
2030		edesc.va = va_to_tile_io_addr(frags[i].buf);
2031		edescs[i] = edesc;
2032	}
2033
2034	/* Mark the final edesc. */
2035	edescs[num_edescs - 1].bound = 1;
2036
2037	/* Add checksum info to the initial edesc, if needed. */
2038	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2039		unsigned int csum_start = skb_checksum_start_offset(skb);
2040		edescs[0].csum = 1;
2041		edescs[0].csum_start = csum_start;
2042		edescs[0].csum_dest = csum_start + skb->csum_offset;
2043	}
2044
2045	local_irq_save(irqflags);
2046
2047	/* Try to acquire a completion entry and an egress slot. */
2048	slot = tile_net_equeue_try_reserve(dev, skb->queue_mapping, comps,
2049					   equeue, num_edescs);
2050	if (slot < 0) {
2051		local_irq_restore(irqflags);
2052		return NETDEV_TX_BUSY;
2053	}
2054
2055	for (i = 0; i < num_edescs; i++)
2056		gxio_mpipe_equeue_put_at(equeue, edescs[i], slot++);
2057
2058	/* Store TX timestamp if needed. */
2059	tile_tx_timestamp(skb, instance);
2060
2061	/* Add a completion record. */
2062	add_comp(equeue, comps, slot - 1, skb);
2063
2064	/* NOTE: Use ETH_ZLEN for short packets (e.g. 42 < 60). */
2065	tile_net_stats_add(1, &dev->stats.tx_packets);
2066	tile_net_stats_add(max_t(unsigned int, len, ETH_ZLEN),
2067			   &dev->stats.tx_bytes);
2068
2069	local_irq_restore(irqflags);
2070
2071	/* Make sure the egress timer is scheduled. */
2072	tile_net_schedule_egress_timer();
2073
2074	return NETDEV_TX_OK;
2075}
2076
2077/* Return subqueue id on this core (one per core). */
2078static u16 tile_net_select_queue(struct net_device *dev, struct sk_buff *skb,
2079				 void *accel_priv, select_queue_fallback_t fallback)
2080{
2081	return smp_processor_id();
2082}
2083
2084/* Deal with a transmit timeout. */
2085static void tile_net_tx_timeout(struct net_device *dev)
2086{
2087	int cpu;
2088
2089	for_each_online_cpu(cpu)
2090		netif_wake_subqueue(dev, cpu);
2091}
2092
2093/* Ioctl commands. */
2094static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2095{
2096	if (cmd == SIOCSHWTSTAMP)
2097		return tile_hwtstamp_set(dev, rq);
2098	if (cmd == SIOCGHWTSTAMP)
2099		return tile_hwtstamp_get(dev, rq);
2100
2101	return -EOPNOTSUPP;
2102}
2103
2104/* Change the MTU. */
2105static int tile_net_change_mtu(struct net_device *dev, int new_mtu)
2106{
2107	if (new_mtu < 68)
2108		return -EINVAL;
2109	if (new_mtu > ((jumbo_num != 0) ? 9000 : 1500))
2110		return -EINVAL;
2111	dev->mtu = new_mtu;
2112	return 0;
2113}
2114
2115/* Change the Ethernet address of the NIC.
2116 *
2117 * The hypervisor driver does not support changing MAC address.  However,
2118 * the hardware does not do anything with the MAC address, so the address
2119 * which gets used on outgoing packets, and which is accepted on incoming
2120 * packets, is completely up to us.
2121 *
2122 * Returns 0 on success, negative on failure.
2123 */
2124static int tile_net_set_mac_address(struct net_device *dev, void *p)
2125{
2126	struct sockaddr *addr = p;
2127
2128	if (!is_valid_ether_addr(addr->sa_data))
2129		return -EINVAL;
2130	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2131	return 0;
2132}
2133
2134#ifdef CONFIG_NET_POLL_CONTROLLER
2135/* Polling 'interrupt' - used by things like netconsole to send skbs
2136 * without having to re-enable interrupts. It's not called while
2137 * the interrupt routine is executing.
2138 */
2139static void tile_net_netpoll(struct net_device *dev)
2140{
2141	int instance = mpipe_instance(dev);
2142	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
2143	struct mpipe_data *md = &mpipe_data[instance];
2144
2145	disable_percpu_irq(md->ingress_irq);
2146	napi_schedule(&info->mpipe[instance].napi);
2147	enable_percpu_irq(md->ingress_irq, 0);
2148}
2149#endif
2150
2151static const struct net_device_ops tile_net_ops = {
2152	.ndo_open = tile_net_open,
2153	.ndo_stop = tile_net_stop,
2154	.ndo_start_xmit = tile_net_tx,
2155	.ndo_select_queue = tile_net_select_queue,
2156	.ndo_do_ioctl = tile_net_ioctl,
2157	.ndo_change_mtu = tile_net_change_mtu,
2158	.ndo_tx_timeout = tile_net_tx_timeout,
2159	.ndo_set_mac_address = tile_net_set_mac_address,
2160#ifdef CONFIG_NET_POLL_CONTROLLER
2161	.ndo_poll_controller = tile_net_netpoll,
2162#endif
2163};
2164
2165/* The setup function.
2166 *
2167 * This uses ether_setup() to assign various fields in dev, including
2168 * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
2169 */
2170static void tile_net_setup(struct net_device *dev)
2171{
2172	netdev_features_t features = 0;
2173
2174	ether_setup(dev);
2175	dev->netdev_ops = &tile_net_ops;
2176	dev->watchdog_timeo = TILE_NET_TIMEOUT;
2177	dev->mtu = 1500;
2178
2179	features |= NETIF_F_HW_CSUM;
2180	features |= NETIF_F_SG;
2181	features |= NETIF_F_TSO;
2182	features |= NETIF_F_TSO6;
2183
2184	dev->hw_features   |= features;
2185	dev->vlan_features |= features;
2186	dev->features      |= features;
2187}
2188
2189/* Allocate the device structure, register the device, and obtain the
2190 * MAC address from the hypervisor.
2191 */
2192static void tile_net_dev_init(const char *name, const uint8_t *mac)
2193{
2194	int ret;
2195	struct net_device *dev;
2196	struct tile_net_priv *priv;
2197
2198	/* HACK: Ignore "loop" links. */
2199	if (strncmp(name, "loop", 4) == 0)
2200		return;
2201
2202	/* Allocate the device structure.  Normally, "name" is a
2203	 * template, instantiated by register_netdev(), but not for us.
2204	 */
2205	dev = alloc_netdev_mqs(sizeof(*priv), name, NET_NAME_UNKNOWN,
2206			       tile_net_setup, NR_CPUS, 1);
2207	if (!dev) {
2208		pr_err("alloc_netdev_mqs(%s) failed\n", name);
2209		return;
2210	}
2211
2212	/* Initialize "priv". */
2213	priv = netdev_priv(dev);
2214	priv->dev = dev;
2215	priv->channel = -1;
2216	priv->loopify_channel = -1;
2217	priv->echannel = -1;
2218	init_ptp_dev(priv);
2219
2220	/* Get the MAC address and set it in the device struct; this must
2221	 * be done before the device is opened.  If the MAC is all zeroes,
2222	 * we use a random address, since we're probably on the simulator.
2223	 */
2224	if (!is_zero_ether_addr(mac))
2225		ether_addr_copy(dev->dev_addr, mac);
2226	else
2227		eth_hw_addr_random(dev);
2228
2229	/* Register the network device. */
2230	ret = register_netdev(dev);
2231	if (ret) {
2232		netdev_err(dev, "register_netdev failed %d\n", ret);
2233		free_netdev(dev);
2234		return;
2235	}
2236}
2237
2238/* Per-cpu module initialization. */
2239static void tile_net_init_module_percpu(void *unused)
2240{
2241	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
2242	int my_cpu = smp_processor_id();
2243	int instance;
2244
2245	for (instance = 0; instance < NR_MPIPE_MAX; instance++) {
2246		info->mpipe[instance].has_iqueue = false;
2247		info->mpipe[instance].instance = instance;
2248	}
2249	info->my_cpu = my_cpu;
2250
2251	/* Initialize the egress timer. */
2252	hrtimer_init(&info->egress_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2253	info->egress_timer.function = tile_net_handle_egress_timer;
2254}
2255
2256/* Module initialization. */
2257static int __init tile_net_init_module(void)
2258{
2259	int i;
2260	char name[GXIO_MPIPE_LINK_NAME_LEN];
2261	uint8_t mac[6];
2262
2263	pr_info("Tilera Network Driver\n");
2264
2265	BUILD_BUG_ON(NR_MPIPE_MAX != 2);
2266
2267	mutex_init(&tile_net_devs_for_channel_mutex);
2268
2269	/* Initialize each CPU. */
2270	on_each_cpu(tile_net_init_module_percpu, NULL, 1);
2271
2272	/* Find out what devices we have, and initialize them. */
2273	for (i = 0; gxio_mpipe_link_enumerate_mac(i, name, mac) >= 0; i++)
2274		tile_net_dev_init(name, mac);
2275
2276	if (!network_cpus_init())
2277		cpumask_and(&network_cpus_map, housekeeping_cpumask(),
2278			    cpu_online_mask);
2279
2280	return 0;
2281}
2282
2283module_init(tile_net_init_module);