Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
Note: File does not exist in v3.1.
   1/*  SuperH Ethernet device driver
   2 *
   3 *  Copyright (C) 2014  Renesas Electronics Corporation
   4 *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
   5 *  Copyright (C) 2008-2014 Renesas Solutions Corp.
   6 *  Copyright (C) 2013-2016 Cogent Embedded, Inc.
   7 *  Copyright (C) 2014 Codethink Limited
   8 *
   9 *  This program is free software; you can redistribute it and/or modify it
  10 *  under the terms and conditions of the GNU General Public License,
  11 *  version 2, as published by the Free Software Foundation.
  12 *
  13 *  This program is distributed in the hope it will be useful, but WITHOUT
  14 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  16 *  more details.
  17 *
  18 *  The full GNU General Public License is included in this distribution in
  19 *  the file called "COPYING".
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/kernel.h>
  24#include <linux/spinlock.h>
  25#include <linux/interrupt.h>
  26#include <linux/dma-mapping.h>
  27#include <linux/etherdevice.h>
  28#include <linux/delay.h>
  29#include <linux/platform_device.h>
  30#include <linux/mdio-bitbang.h>
  31#include <linux/netdevice.h>
  32#include <linux/of.h>
  33#include <linux/of_device.h>
  34#include <linux/of_irq.h>
  35#include <linux/of_net.h>
  36#include <linux/phy.h>
  37#include <linux/cache.h>
  38#include <linux/io.h>
  39#include <linux/pm_runtime.h>
  40#include <linux/slab.h>
  41#include <linux/ethtool.h>
  42#include <linux/if_vlan.h>
  43#include <linux/clk.h>
  44#include <linux/sh_eth.h>
  45#include <linux/of_mdio.h>
  46
  47#include "sh_eth.h"
  48
  49#define SH_ETH_DEF_MSG_ENABLE \
  50		(NETIF_MSG_LINK	| \
  51		NETIF_MSG_TIMER	| \
  52		NETIF_MSG_RX_ERR| \
  53		NETIF_MSG_TX_ERR)
  54
  55#define SH_ETH_OFFSET_INVALID	((u16)~0)
  56
  57#define SH_ETH_OFFSET_DEFAULTS			\
  58	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
  59
  60static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
  61	SH_ETH_OFFSET_DEFAULTS,
  62
  63	[EDSR]		= 0x0000,
  64	[EDMR]		= 0x0400,
  65	[EDTRR]		= 0x0408,
  66	[EDRRR]		= 0x0410,
  67	[EESR]		= 0x0428,
  68	[EESIPR]	= 0x0430,
  69	[TDLAR]		= 0x0010,
  70	[TDFAR]		= 0x0014,
  71	[TDFXR]		= 0x0018,
  72	[TDFFR]		= 0x001c,
  73	[RDLAR]		= 0x0030,
  74	[RDFAR]		= 0x0034,
  75	[RDFXR]		= 0x0038,
  76	[RDFFR]		= 0x003c,
  77	[TRSCER]	= 0x0438,
  78	[RMFCR]		= 0x0440,
  79	[TFTR]		= 0x0448,
  80	[FDR]		= 0x0450,
  81	[RMCR]		= 0x0458,
  82	[RPADIR]	= 0x0460,
  83	[FCFTR]		= 0x0468,
  84	[CSMR]		= 0x04E4,
  85
  86	[ECMR]		= 0x0500,
  87	[ECSR]		= 0x0510,
  88	[ECSIPR]	= 0x0518,
  89	[PIR]		= 0x0520,
  90	[PSR]		= 0x0528,
  91	[PIPR]		= 0x052c,
  92	[RFLR]		= 0x0508,
  93	[APR]		= 0x0554,
  94	[MPR]		= 0x0558,
  95	[PFTCR]		= 0x055c,
  96	[PFRCR]		= 0x0560,
  97	[TPAUSER]	= 0x0564,
  98	[GECMR]		= 0x05b0,
  99	[BCULR]		= 0x05b4,
 100	[MAHR]		= 0x05c0,
 101	[MALR]		= 0x05c8,
 102	[TROCR]		= 0x0700,
 103	[CDCR]		= 0x0708,
 104	[LCCR]		= 0x0710,
 105	[CEFCR]		= 0x0740,
 106	[FRECR]		= 0x0748,
 107	[TSFRCR]	= 0x0750,
 108	[TLFRCR]	= 0x0758,
 109	[RFCR]		= 0x0760,
 110	[CERCR]		= 0x0768,
 111	[CEECR]		= 0x0770,
 112	[MAFCR]		= 0x0778,
 113	[RMII_MII]	= 0x0790,
 114
 115	[ARSTR]		= 0x0000,
 116	[TSU_CTRST]	= 0x0004,
 117	[TSU_FWEN0]	= 0x0010,
 118	[TSU_FWEN1]	= 0x0014,
 119	[TSU_FCM]	= 0x0018,
 120	[TSU_BSYSL0]	= 0x0020,
 121	[TSU_BSYSL1]	= 0x0024,
 122	[TSU_PRISL0]	= 0x0028,
 123	[TSU_PRISL1]	= 0x002c,
 124	[TSU_FWSL0]	= 0x0030,
 125	[TSU_FWSL1]	= 0x0034,
 126	[TSU_FWSLC]	= 0x0038,
 127	[TSU_QTAG0]	= 0x0040,
 128	[TSU_QTAG1]	= 0x0044,
 129	[TSU_FWSR]	= 0x0050,
 130	[TSU_FWINMK]	= 0x0054,
 131	[TSU_ADQT0]	= 0x0048,
 132	[TSU_ADQT1]	= 0x004c,
 133	[TSU_VTAG0]	= 0x0058,
 134	[TSU_VTAG1]	= 0x005c,
 135	[TSU_ADSBSY]	= 0x0060,
 136	[TSU_TEN]	= 0x0064,
 137	[TSU_POST1]	= 0x0070,
 138	[TSU_POST2]	= 0x0074,
 139	[TSU_POST3]	= 0x0078,
 140	[TSU_POST4]	= 0x007c,
 141	[TSU_ADRH0]	= 0x0100,
 142
 143	[TXNLCR0]	= 0x0080,
 144	[TXALCR0]	= 0x0084,
 145	[RXNLCR0]	= 0x0088,
 146	[RXALCR0]	= 0x008c,
 147	[FWNLCR0]	= 0x0090,
 148	[FWALCR0]	= 0x0094,
 149	[TXNLCR1]	= 0x00a0,
 150	[TXALCR1]	= 0x00a0,
 151	[RXNLCR1]	= 0x00a8,
 152	[RXALCR1]	= 0x00ac,
 153	[FWNLCR1]	= 0x00b0,
 154	[FWALCR1]	= 0x00b4,
 155};
 156
 157static const u16 sh_eth_offset_fast_rz[SH_ETH_MAX_REGISTER_OFFSET] = {
 158	SH_ETH_OFFSET_DEFAULTS,
 159
 160	[EDSR]		= 0x0000,
 161	[EDMR]		= 0x0400,
 162	[EDTRR]		= 0x0408,
 163	[EDRRR]		= 0x0410,
 164	[EESR]		= 0x0428,
 165	[EESIPR]	= 0x0430,
 166	[TDLAR]		= 0x0010,
 167	[TDFAR]		= 0x0014,
 168	[TDFXR]		= 0x0018,
 169	[TDFFR]		= 0x001c,
 170	[RDLAR]		= 0x0030,
 171	[RDFAR]		= 0x0034,
 172	[RDFXR]		= 0x0038,
 173	[RDFFR]		= 0x003c,
 174	[TRSCER]	= 0x0438,
 175	[RMFCR]		= 0x0440,
 176	[TFTR]		= 0x0448,
 177	[FDR]		= 0x0450,
 178	[RMCR]		= 0x0458,
 179	[RPADIR]	= 0x0460,
 180	[FCFTR]		= 0x0468,
 181	[CSMR]		= 0x04E4,
 182
 183	[ECMR]		= 0x0500,
 184	[RFLR]		= 0x0508,
 185	[ECSR]		= 0x0510,
 186	[ECSIPR]	= 0x0518,
 187	[PIR]		= 0x0520,
 188	[APR]		= 0x0554,
 189	[MPR]		= 0x0558,
 190	[PFTCR]		= 0x055c,
 191	[PFRCR]		= 0x0560,
 192	[TPAUSER]	= 0x0564,
 193	[MAHR]		= 0x05c0,
 194	[MALR]		= 0x05c8,
 195	[CEFCR]		= 0x0740,
 196	[FRECR]		= 0x0748,
 197	[TSFRCR]	= 0x0750,
 198	[TLFRCR]	= 0x0758,
 199	[RFCR]		= 0x0760,
 200	[MAFCR]		= 0x0778,
 201
 202	[ARSTR]		= 0x0000,
 203	[TSU_CTRST]	= 0x0004,
 204	[TSU_VTAG0]	= 0x0058,
 205	[TSU_ADSBSY]	= 0x0060,
 206	[TSU_TEN]	= 0x0064,
 207	[TSU_ADRH0]	= 0x0100,
 208
 209	[TXNLCR0]	= 0x0080,
 210	[TXALCR0]	= 0x0084,
 211	[RXNLCR0]	= 0x0088,
 212	[RXALCR0]	= 0x008C,
 213};
 214
 215static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
 216	SH_ETH_OFFSET_DEFAULTS,
 217
 218	[ECMR]		= 0x0300,
 219	[RFLR]		= 0x0308,
 220	[ECSR]		= 0x0310,
 221	[ECSIPR]	= 0x0318,
 222	[PIR]		= 0x0320,
 223	[PSR]		= 0x0328,
 224	[RDMLR]		= 0x0340,
 225	[IPGR]		= 0x0350,
 226	[APR]		= 0x0354,
 227	[MPR]		= 0x0358,
 228	[RFCF]		= 0x0360,
 229	[TPAUSER]	= 0x0364,
 230	[TPAUSECR]	= 0x0368,
 231	[MAHR]		= 0x03c0,
 232	[MALR]		= 0x03c8,
 233	[TROCR]		= 0x03d0,
 234	[CDCR]		= 0x03d4,
 235	[LCCR]		= 0x03d8,
 236	[CNDCR]		= 0x03dc,
 237	[CEFCR]		= 0x03e4,
 238	[FRECR]		= 0x03e8,
 239	[TSFRCR]	= 0x03ec,
 240	[TLFRCR]	= 0x03f0,
 241	[RFCR]		= 0x03f4,
 242	[MAFCR]		= 0x03f8,
 243
 244	[EDMR]		= 0x0200,
 245	[EDTRR]		= 0x0208,
 246	[EDRRR]		= 0x0210,
 247	[TDLAR]		= 0x0218,
 248	[RDLAR]		= 0x0220,
 249	[EESR]		= 0x0228,
 250	[EESIPR]	= 0x0230,
 251	[TRSCER]	= 0x0238,
 252	[RMFCR]		= 0x0240,
 253	[TFTR]		= 0x0248,
 254	[FDR]		= 0x0250,
 255	[RMCR]		= 0x0258,
 256	[TFUCR]		= 0x0264,
 257	[RFOCR]		= 0x0268,
 258	[RMIIMODE]      = 0x026c,
 259	[FCFTR]		= 0x0270,
 260	[TRIMD]		= 0x027c,
 261};
 262
 263static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
 264	SH_ETH_OFFSET_DEFAULTS,
 265
 266	[ECMR]		= 0x0100,
 267	[RFLR]		= 0x0108,
 268	[ECSR]		= 0x0110,
 269	[ECSIPR]	= 0x0118,
 270	[PIR]		= 0x0120,
 271	[PSR]		= 0x0128,
 272	[RDMLR]		= 0x0140,
 273	[IPGR]		= 0x0150,
 274	[APR]		= 0x0154,
 275	[MPR]		= 0x0158,
 276	[TPAUSER]	= 0x0164,
 277	[RFCF]		= 0x0160,
 278	[TPAUSECR]	= 0x0168,
 279	[BCFRR]		= 0x016c,
 280	[MAHR]		= 0x01c0,
 281	[MALR]		= 0x01c8,
 282	[TROCR]		= 0x01d0,
 283	[CDCR]		= 0x01d4,
 284	[LCCR]		= 0x01d8,
 285	[CNDCR]		= 0x01dc,
 286	[CEFCR]		= 0x01e4,
 287	[FRECR]		= 0x01e8,
 288	[TSFRCR]	= 0x01ec,
 289	[TLFRCR]	= 0x01f0,
 290	[RFCR]		= 0x01f4,
 291	[MAFCR]		= 0x01f8,
 292	[RTRATE]	= 0x01fc,
 293
 294	[EDMR]		= 0x0000,
 295	[EDTRR]		= 0x0008,
 296	[EDRRR]		= 0x0010,
 297	[TDLAR]		= 0x0018,
 298	[RDLAR]		= 0x0020,
 299	[EESR]		= 0x0028,
 300	[EESIPR]	= 0x0030,
 301	[TRSCER]	= 0x0038,
 302	[RMFCR]		= 0x0040,
 303	[TFTR]		= 0x0048,
 304	[FDR]		= 0x0050,
 305	[RMCR]		= 0x0058,
 306	[TFUCR]		= 0x0064,
 307	[RFOCR]		= 0x0068,
 308	[FCFTR]		= 0x0070,
 309	[RPADIR]	= 0x0078,
 310	[TRIMD]		= 0x007c,
 311	[RBWAR]		= 0x00c8,
 312	[RDFAR]		= 0x00cc,
 313	[TBRAR]		= 0x00d4,
 314	[TDFAR]		= 0x00d8,
 315};
 316
 317static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
 318	SH_ETH_OFFSET_DEFAULTS,
 319
 320	[EDMR]		= 0x0000,
 321	[EDTRR]		= 0x0004,
 322	[EDRRR]		= 0x0008,
 323	[TDLAR]		= 0x000c,
 324	[RDLAR]		= 0x0010,
 325	[EESR]		= 0x0014,
 326	[EESIPR]	= 0x0018,
 327	[TRSCER]	= 0x001c,
 328	[RMFCR]		= 0x0020,
 329	[TFTR]		= 0x0024,
 330	[FDR]		= 0x0028,
 331	[RMCR]		= 0x002c,
 332	[EDOCR]		= 0x0030,
 333	[FCFTR]		= 0x0034,
 334	[RPADIR]	= 0x0038,
 335	[TRIMD]		= 0x003c,
 336	[RBWAR]		= 0x0040,
 337	[RDFAR]		= 0x0044,
 338	[TBRAR]		= 0x004c,
 339	[TDFAR]		= 0x0050,
 340
 341	[ECMR]		= 0x0160,
 342	[ECSR]		= 0x0164,
 343	[ECSIPR]	= 0x0168,
 344	[PIR]		= 0x016c,
 345	[MAHR]		= 0x0170,
 346	[MALR]		= 0x0174,
 347	[RFLR]		= 0x0178,
 348	[PSR]		= 0x017c,
 349	[TROCR]		= 0x0180,
 350	[CDCR]		= 0x0184,
 351	[LCCR]		= 0x0188,
 352	[CNDCR]		= 0x018c,
 353	[CEFCR]		= 0x0194,
 354	[FRECR]		= 0x0198,
 355	[TSFRCR]	= 0x019c,
 356	[TLFRCR]	= 0x01a0,
 357	[RFCR]		= 0x01a4,
 358	[MAFCR]		= 0x01a8,
 359	[IPGR]		= 0x01b4,
 360	[APR]		= 0x01b8,
 361	[MPR]		= 0x01bc,
 362	[TPAUSER]	= 0x01c4,
 363	[BCFR]		= 0x01cc,
 364
 365	[ARSTR]		= 0x0000,
 366	[TSU_CTRST]	= 0x0004,
 367	[TSU_FWEN0]	= 0x0010,
 368	[TSU_FWEN1]	= 0x0014,
 369	[TSU_FCM]	= 0x0018,
 370	[TSU_BSYSL0]	= 0x0020,
 371	[TSU_BSYSL1]	= 0x0024,
 372	[TSU_PRISL0]	= 0x0028,
 373	[TSU_PRISL1]	= 0x002c,
 374	[TSU_FWSL0]	= 0x0030,
 375	[TSU_FWSL1]	= 0x0034,
 376	[TSU_FWSLC]	= 0x0038,
 377	[TSU_QTAGM0]	= 0x0040,
 378	[TSU_QTAGM1]	= 0x0044,
 379	[TSU_ADQT0]	= 0x0048,
 380	[TSU_ADQT1]	= 0x004c,
 381	[TSU_FWSR]	= 0x0050,
 382	[TSU_FWINMK]	= 0x0054,
 383	[TSU_ADSBSY]	= 0x0060,
 384	[TSU_TEN]	= 0x0064,
 385	[TSU_POST1]	= 0x0070,
 386	[TSU_POST2]	= 0x0074,
 387	[TSU_POST3]	= 0x0078,
 388	[TSU_POST4]	= 0x007c,
 389
 390	[TXNLCR0]	= 0x0080,
 391	[TXALCR0]	= 0x0084,
 392	[RXNLCR0]	= 0x0088,
 393	[RXALCR0]	= 0x008c,
 394	[FWNLCR0]	= 0x0090,
 395	[FWALCR0]	= 0x0094,
 396	[TXNLCR1]	= 0x00a0,
 397	[TXALCR1]	= 0x00a0,
 398	[RXNLCR1]	= 0x00a8,
 399	[RXALCR1]	= 0x00ac,
 400	[FWNLCR1]	= 0x00b0,
 401	[FWALCR1]	= 0x00b4,
 402
 403	[TSU_ADRH0]	= 0x0100,
 404};
 405
 406static void sh_eth_rcv_snd_disable(struct net_device *ndev);
 407static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
 408
 409static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
 410{
 411	struct sh_eth_private *mdp = netdev_priv(ndev);
 412	u16 offset = mdp->reg_offset[enum_index];
 413
 414	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
 415		return;
 416
 417	iowrite32(data, mdp->addr + offset);
 418}
 419
 420static u32 sh_eth_read(struct net_device *ndev, int enum_index)
 421{
 422	struct sh_eth_private *mdp = netdev_priv(ndev);
 423	u16 offset = mdp->reg_offset[enum_index];
 424
 425	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
 426		return ~0U;
 427
 428	return ioread32(mdp->addr + offset);
 429}
 430
 431static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
 432			  u32 set)
 433{
 434	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
 435		     enum_index);
 436}
 437
 438static bool sh_eth_is_gether(struct sh_eth_private *mdp)
 439{
 440	return mdp->reg_offset == sh_eth_offset_gigabit;
 441}
 442
 443static bool sh_eth_is_rz_fast_ether(struct sh_eth_private *mdp)
 444{
 445	return mdp->reg_offset == sh_eth_offset_fast_rz;
 446}
 447
 448static void sh_eth_select_mii(struct net_device *ndev)
 449{
 450	struct sh_eth_private *mdp = netdev_priv(ndev);
 451	u32 value;
 452
 453	switch (mdp->phy_interface) {
 454	case PHY_INTERFACE_MODE_GMII:
 455		value = 0x2;
 456		break;
 457	case PHY_INTERFACE_MODE_MII:
 458		value = 0x1;
 459		break;
 460	case PHY_INTERFACE_MODE_RMII:
 461		value = 0x0;
 462		break;
 463	default:
 464		netdev_warn(ndev,
 465			    "PHY interface mode was not setup. Set to MII.\n");
 466		value = 0x1;
 467		break;
 468	}
 469
 470	sh_eth_write(ndev, value, RMII_MII);
 471}
 472
 473static void sh_eth_set_duplex(struct net_device *ndev)
 474{
 475	struct sh_eth_private *mdp = netdev_priv(ndev);
 476
 477	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
 478}
 479
 480static void sh_eth_chip_reset(struct net_device *ndev)
 481{
 482	struct sh_eth_private *mdp = netdev_priv(ndev);
 483
 484	/* reset device */
 485	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
 486	mdelay(1);
 487}
 488
 489static void sh_eth_set_rate_gether(struct net_device *ndev)
 490{
 491	struct sh_eth_private *mdp = netdev_priv(ndev);
 492
 493	switch (mdp->speed) {
 494	case 10: /* 10BASE */
 495		sh_eth_write(ndev, GECMR_10, GECMR);
 496		break;
 497	case 100:/* 100BASE */
 498		sh_eth_write(ndev, GECMR_100, GECMR);
 499		break;
 500	case 1000: /* 1000BASE */
 501		sh_eth_write(ndev, GECMR_1000, GECMR);
 502		break;
 503	}
 504}
 505
 506#ifdef CONFIG_OF
 507/* R7S72100 */
 508static struct sh_eth_cpu_data r7s72100_data = {
 509	.chip_reset	= sh_eth_chip_reset,
 510	.set_duplex	= sh_eth_set_duplex,
 511
 512	.register_type	= SH_ETH_REG_FAST_RZ,
 513
 514	.ecsr_value	= ECSR_ICD,
 515	.ecsipr_value	= ECSIPR_ICDIP,
 516	.eesipr_value	= 0xff7f009f,
 517
 518	.tx_check	= EESR_TC1 | EESR_FTC,
 519	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 520			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
 521			  EESR_TDE | EESR_ECI,
 522	.fdr_value	= 0x0000070f,
 523
 524	.no_psr		= 1,
 525	.apr		= 1,
 526	.mpr		= 1,
 527	.tpauser	= 1,
 528	.hw_swap	= 1,
 529	.rpadir		= 1,
 530	.rpadir_value   = 2 << 16,
 531	.no_trimd	= 1,
 532	.no_ade		= 1,
 533	.hw_crc		= 1,
 534	.tsu		= 1,
 535	.shift_rd0	= 1,
 536};
 537
 538static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
 539{
 540	struct sh_eth_private *mdp = netdev_priv(ndev);
 541
 542	/* reset device */
 543	sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
 544	mdelay(1);
 545
 546	sh_eth_select_mii(ndev);
 547}
 548
 549/* R8A7740 */
 550static struct sh_eth_cpu_data r8a7740_data = {
 551	.chip_reset	= sh_eth_chip_reset_r8a7740,
 552	.set_duplex	= sh_eth_set_duplex,
 553	.set_rate	= sh_eth_set_rate_gether,
 554
 555	.register_type	= SH_ETH_REG_GIGABIT,
 556
 557	.ecsr_value	= ECSR_ICD | ECSR_MPD,
 558	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
 559	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
 560
 561	.tx_check	= EESR_TC1 | EESR_FTC,
 562	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 563			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
 564			  EESR_TDE | EESR_ECI,
 565	.fdr_value	= 0x0000070f,
 566
 567	.apr		= 1,
 568	.mpr		= 1,
 569	.tpauser	= 1,
 570	.bculr		= 1,
 571	.hw_swap	= 1,
 572	.rpadir		= 1,
 573	.rpadir_value   = 2 << 16,
 574	.no_trimd	= 1,
 575	.no_ade		= 1,
 576	.tsu		= 1,
 577	.select_mii	= 1,
 578	.shift_rd0	= 1,
 579};
 580
 581/* There is CPU dependent code */
 582static void sh_eth_set_rate_r8a777x(struct net_device *ndev)
 583{
 584	struct sh_eth_private *mdp = netdev_priv(ndev);
 585
 586	switch (mdp->speed) {
 587	case 10: /* 10BASE */
 588		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
 589		break;
 590	case 100:/* 100BASE */
 591		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
 592		break;
 593	}
 594}
 595
 596/* R8A7778/9 */
 597static struct sh_eth_cpu_data r8a777x_data = {
 598	.set_duplex	= sh_eth_set_duplex,
 599	.set_rate	= sh_eth_set_rate_r8a777x,
 600
 601	.register_type	= SH_ETH_REG_FAST_RCAR,
 602
 603	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
 604	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
 605	.eesipr_value	= 0x01ff009f,
 606
 607	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
 608	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 609			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
 610			  EESR_ECI,
 611	.fdr_value	= 0x00000f0f,
 612
 613	.apr		= 1,
 614	.mpr		= 1,
 615	.tpauser	= 1,
 616	.hw_swap	= 1,
 617};
 618
 619/* R8A7790/1 */
 620static struct sh_eth_cpu_data r8a779x_data = {
 621	.set_duplex	= sh_eth_set_duplex,
 622	.set_rate	= sh_eth_set_rate_r8a777x,
 623
 624	.register_type	= SH_ETH_REG_FAST_RCAR,
 625
 626	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
 627	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
 628	.eesipr_value	= 0x01ff009f,
 629
 630	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
 631	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 632			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
 633			  EESR_ECI,
 634	.fdr_value	= 0x00000f0f,
 635
 636	.trscer_err_mask = DESC_I_RINT8,
 637
 638	.apr		= 1,
 639	.mpr		= 1,
 640	.tpauser	= 1,
 641	.hw_swap	= 1,
 642	.rmiimode	= 1,
 643};
 644#endif /* CONFIG_OF */
 645
 646static void sh_eth_set_rate_sh7724(struct net_device *ndev)
 647{
 648	struct sh_eth_private *mdp = netdev_priv(ndev);
 649
 650	switch (mdp->speed) {
 651	case 10: /* 10BASE */
 652		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
 653		break;
 654	case 100:/* 100BASE */
 655		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
 656		break;
 657	}
 658}
 659
 660/* SH7724 */
 661static struct sh_eth_cpu_data sh7724_data = {
 662	.set_duplex	= sh_eth_set_duplex,
 663	.set_rate	= sh_eth_set_rate_sh7724,
 664
 665	.register_type	= SH_ETH_REG_FAST_SH4,
 666
 667	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
 668	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
 669	.eesipr_value	= 0x01ff009f,
 670
 671	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
 672	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 673			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
 674			  EESR_ECI,
 675
 676	.apr		= 1,
 677	.mpr		= 1,
 678	.tpauser	= 1,
 679	.hw_swap	= 1,
 680	.rpadir		= 1,
 681	.rpadir_value	= 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
 682};
 683
 684static void sh_eth_set_rate_sh7757(struct net_device *ndev)
 685{
 686	struct sh_eth_private *mdp = netdev_priv(ndev);
 687
 688	switch (mdp->speed) {
 689	case 10: /* 10BASE */
 690		sh_eth_write(ndev, 0, RTRATE);
 691		break;
 692	case 100:/* 100BASE */
 693		sh_eth_write(ndev, 1, RTRATE);
 694		break;
 695	}
 696}
 697
 698/* SH7757 */
 699static struct sh_eth_cpu_data sh7757_data = {
 700	.set_duplex	= sh_eth_set_duplex,
 701	.set_rate	= sh_eth_set_rate_sh7757,
 702
 703	.register_type	= SH_ETH_REG_FAST_SH4,
 704
 705	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
 706
 707	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
 708	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 709			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
 710			  EESR_ECI,
 711
 712	.irq_flags	= IRQF_SHARED,
 713	.apr		= 1,
 714	.mpr		= 1,
 715	.tpauser	= 1,
 716	.hw_swap	= 1,
 717	.no_ade		= 1,
 718	.rpadir		= 1,
 719	.rpadir_value   = 2 << 16,
 720	.rtrate		= 1,
 721};
 722
 723#define SH_GIGA_ETH_BASE	0xfee00000UL
 724#define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
 725#define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
 726static void sh_eth_chip_reset_giga(struct net_device *ndev)
 727{
 728	int i;
 729	u32 mahr[2], malr[2];
 730
 731	/* save MAHR and MALR */
 732	for (i = 0; i < 2; i++) {
 733		malr[i] = ioread32((void *)GIGA_MALR(i));
 734		mahr[i] = ioread32((void *)GIGA_MAHR(i));
 735	}
 736
 737	/* reset device */
 738	iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
 739	mdelay(1);
 740
 741	/* restore MAHR and MALR */
 742	for (i = 0; i < 2; i++) {
 743		iowrite32(malr[i], (void *)GIGA_MALR(i));
 744		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
 745	}
 746}
 747
 748static void sh_eth_set_rate_giga(struct net_device *ndev)
 749{
 750	struct sh_eth_private *mdp = netdev_priv(ndev);
 751
 752	switch (mdp->speed) {
 753	case 10: /* 10BASE */
 754		sh_eth_write(ndev, 0x00000000, GECMR);
 755		break;
 756	case 100:/* 100BASE */
 757		sh_eth_write(ndev, 0x00000010, GECMR);
 758		break;
 759	case 1000: /* 1000BASE */
 760		sh_eth_write(ndev, 0x00000020, GECMR);
 761		break;
 762	}
 763}
 764
 765/* SH7757(GETHERC) */
 766static struct sh_eth_cpu_data sh7757_data_giga = {
 767	.chip_reset	= sh_eth_chip_reset_giga,
 768	.set_duplex	= sh_eth_set_duplex,
 769	.set_rate	= sh_eth_set_rate_giga,
 770
 771	.register_type	= SH_ETH_REG_GIGABIT,
 772
 773	.ecsr_value	= ECSR_ICD | ECSR_MPD,
 774	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
 775	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
 776
 777	.tx_check	= EESR_TC1 | EESR_FTC,
 778	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 779			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
 780			  EESR_TDE | EESR_ECI,
 781	.fdr_value	= 0x0000072f,
 782
 783	.irq_flags	= IRQF_SHARED,
 784	.apr		= 1,
 785	.mpr		= 1,
 786	.tpauser	= 1,
 787	.bculr		= 1,
 788	.hw_swap	= 1,
 789	.rpadir		= 1,
 790	.rpadir_value   = 2 << 16,
 791	.no_trimd	= 1,
 792	.no_ade		= 1,
 793	.tsu		= 1,
 794};
 795
 796/* SH7734 */
 797static struct sh_eth_cpu_data sh7734_data = {
 798	.chip_reset	= sh_eth_chip_reset,
 799	.set_duplex	= sh_eth_set_duplex,
 800	.set_rate	= sh_eth_set_rate_gether,
 801
 802	.register_type	= SH_ETH_REG_GIGABIT,
 803
 804	.ecsr_value	= ECSR_ICD | ECSR_MPD,
 805	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
 806	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
 807
 808	.tx_check	= EESR_TC1 | EESR_FTC,
 809	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 810			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
 811			  EESR_TDE | EESR_ECI,
 812
 813	.apr		= 1,
 814	.mpr		= 1,
 815	.tpauser	= 1,
 816	.bculr		= 1,
 817	.hw_swap	= 1,
 818	.no_trimd	= 1,
 819	.no_ade		= 1,
 820	.tsu		= 1,
 821	.hw_crc		= 1,
 822	.select_mii	= 1,
 823};
 824
 825/* SH7763 */
 826static struct sh_eth_cpu_data sh7763_data = {
 827	.chip_reset	= sh_eth_chip_reset,
 828	.set_duplex	= sh_eth_set_duplex,
 829	.set_rate	= sh_eth_set_rate_gether,
 830
 831	.register_type	= SH_ETH_REG_GIGABIT,
 832
 833	.ecsr_value	= ECSR_ICD | ECSR_MPD,
 834	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
 835	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
 836
 837	.tx_check	= EESR_TC1 | EESR_FTC,
 838	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 839			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE |
 840			  EESR_ECI,
 841
 842	.apr		= 1,
 843	.mpr		= 1,
 844	.tpauser	= 1,
 845	.bculr		= 1,
 846	.hw_swap	= 1,
 847	.no_trimd	= 1,
 848	.no_ade		= 1,
 849	.tsu		= 1,
 850	.irq_flags	= IRQF_SHARED,
 851};
 852
 853static struct sh_eth_cpu_data sh7619_data = {
 854	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
 855
 856	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
 857
 858	.apr		= 1,
 859	.mpr		= 1,
 860	.tpauser	= 1,
 861	.hw_swap	= 1,
 862};
 863
 864static struct sh_eth_cpu_data sh771x_data = {
 865	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
 866
 867	.eesipr_value	= DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
 868	.tsu		= 1,
 869};
 870
 871static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
 872{
 873	if (!cd->ecsr_value)
 874		cd->ecsr_value = DEFAULT_ECSR_INIT;
 875
 876	if (!cd->ecsipr_value)
 877		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
 878
 879	if (!cd->fcftr_value)
 880		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
 881				  DEFAULT_FIFO_F_D_RFD;
 882
 883	if (!cd->fdr_value)
 884		cd->fdr_value = DEFAULT_FDR_INIT;
 885
 886	if (!cd->tx_check)
 887		cd->tx_check = DEFAULT_TX_CHECK;
 888
 889	if (!cd->eesr_err_check)
 890		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
 891
 892	if (!cd->trscer_err_mask)
 893		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
 894}
 895
 896static int sh_eth_check_reset(struct net_device *ndev)
 897{
 898	int ret = 0;
 899	int cnt = 100;
 900
 901	while (cnt > 0) {
 902		if (!(sh_eth_read(ndev, EDMR) & 0x3))
 903			break;
 904		mdelay(1);
 905		cnt--;
 906	}
 907	if (cnt <= 0) {
 908		netdev_err(ndev, "Device reset failed\n");
 909		ret = -ETIMEDOUT;
 910	}
 911	return ret;
 912}
 913
 914static int sh_eth_reset(struct net_device *ndev)
 915{
 916	struct sh_eth_private *mdp = netdev_priv(ndev);
 917	int ret = 0;
 918
 919	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp)) {
 920		sh_eth_write(ndev, EDSR_ENALL, EDSR);
 921		sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
 922
 923		ret = sh_eth_check_reset(ndev);
 924		if (ret)
 925			return ret;
 926
 927		/* Table Init */
 928		sh_eth_write(ndev, 0x0, TDLAR);
 929		sh_eth_write(ndev, 0x0, TDFAR);
 930		sh_eth_write(ndev, 0x0, TDFXR);
 931		sh_eth_write(ndev, 0x0, TDFFR);
 932		sh_eth_write(ndev, 0x0, RDLAR);
 933		sh_eth_write(ndev, 0x0, RDFAR);
 934		sh_eth_write(ndev, 0x0, RDFXR);
 935		sh_eth_write(ndev, 0x0, RDFFR);
 936
 937		/* Reset HW CRC register */
 938		if (mdp->cd->hw_crc)
 939			sh_eth_write(ndev, 0x0, CSMR);
 940
 941		/* Select MII mode */
 942		if (mdp->cd->select_mii)
 943			sh_eth_select_mii(ndev);
 944	} else {
 945		sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
 946		mdelay(3);
 947		sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
 948	}
 949
 950	return ret;
 951}
 952
 953static void sh_eth_set_receive_align(struct sk_buff *skb)
 954{
 955	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
 956
 957	if (reserve)
 958		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
 959}
 960
 961/* Program the hardware MAC address from dev->dev_addr. */
 962static void update_mac_address(struct net_device *ndev)
 963{
 964	sh_eth_write(ndev,
 965		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
 966		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
 967	sh_eth_write(ndev,
 968		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
 969}
 970
 971/* Get MAC address from SuperH MAC address register
 972 *
 973 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
 974 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
 975 * When you want use this device, you must set MAC address in bootloader.
 976 *
 977 */
 978static void read_mac_address(struct net_device *ndev, unsigned char *mac)
 979{
 980	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
 981		memcpy(ndev->dev_addr, mac, ETH_ALEN);
 982	} else {
 983		u32 mahr = sh_eth_read(ndev, MAHR);
 984		u32 malr = sh_eth_read(ndev, MALR);
 985
 986		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
 987		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
 988		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
 989		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
 990		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
 991		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
 992	}
 993}
 994
 995static u32 sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
 996{
 997	if (sh_eth_is_gether(mdp) || sh_eth_is_rz_fast_ether(mdp))
 998		return EDTRR_TRNS_GETHER;
 999	else
1000		return EDTRR_TRNS_ETHER;
1001}
1002
1003struct bb_info {
1004	void (*set_gate)(void *addr);
1005	struct mdiobb_ctrl ctrl;
1006	void *addr;
1007};
1008
1009static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1010{
1011	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1012	u32 pir;
1013
1014	if (bitbang->set_gate)
1015		bitbang->set_gate(bitbang->addr);
1016
1017	pir = ioread32(bitbang->addr);
1018	if (set)
1019		pir |=  mask;
1020	else
1021		pir &= ~mask;
1022	iowrite32(pir, bitbang->addr);
1023}
1024
1025/* Data I/O pin control */
1026static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1027{
1028	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1029}
1030
1031/* Set bit data*/
1032static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1033{
1034	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1035}
1036
1037/* Get bit data*/
1038static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1039{
1040	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1041
1042	if (bitbang->set_gate)
1043		bitbang->set_gate(bitbang->addr);
1044
1045	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1046}
1047
1048/* MDC pin control */
1049static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1050{
1051	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1052}
1053
1054/* mdio bus control struct */
1055static struct mdiobb_ops bb_ops = {
1056	.owner = THIS_MODULE,
1057	.set_mdc = sh_mdc_ctrl,
1058	.set_mdio_dir = sh_mmd_ctrl,
1059	.set_mdio_data = sh_set_mdio,
1060	.get_mdio_data = sh_get_mdio,
1061};
1062
1063/* free skb and descriptor buffer */
1064static void sh_eth_ring_free(struct net_device *ndev)
1065{
1066	struct sh_eth_private *mdp = netdev_priv(ndev);
1067	int ringsize, i;
1068
1069	/* Free Rx skb ringbuffer */
1070	if (mdp->rx_skbuff) {
1071		for (i = 0; i < mdp->num_rx_ring; i++)
1072			dev_kfree_skb(mdp->rx_skbuff[i]);
1073	}
1074	kfree(mdp->rx_skbuff);
1075	mdp->rx_skbuff = NULL;
1076
1077	/* Free Tx skb ringbuffer */
1078	if (mdp->tx_skbuff) {
1079		for (i = 0; i < mdp->num_tx_ring; i++)
1080			dev_kfree_skb(mdp->tx_skbuff[i]);
1081	}
1082	kfree(mdp->tx_skbuff);
1083	mdp->tx_skbuff = NULL;
1084
1085	if (mdp->rx_ring) {
1086		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1087		dma_free_coherent(NULL, ringsize, mdp->rx_ring,
1088				  mdp->rx_desc_dma);
1089		mdp->rx_ring = NULL;
1090	}
1091
1092	if (mdp->tx_ring) {
1093		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1094		dma_free_coherent(NULL, ringsize, mdp->tx_ring,
1095				  mdp->tx_desc_dma);
1096		mdp->tx_ring = NULL;
1097	}
1098}
1099
1100/* format skb and descriptor buffer */
1101static void sh_eth_ring_format(struct net_device *ndev)
1102{
1103	struct sh_eth_private *mdp = netdev_priv(ndev);
1104	int i;
1105	struct sk_buff *skb;
1106	struct sh_eth_rxdesc *rxdesc = NULL;
1107	struct sh_eth_txdesc *txdesc = NULL;
1108	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1109	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1110	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1111	dma_addr_t dma_addr;
1112	u32 buf_len;
1113
1114	mdp->cur_rx = 0;
1115	mdp->cur_tx = 0;
1116	mdp->dirty_rx = 0;
1117	mdp->dirty_tx = 0;
1118
1119	memset(mdp->rx_ring, 0, rx_ringsize);
1120
1121	/* build Rx ring buffer */
1122	for (i = 0; i < mdp->num_rx_ring; i++) {
1123		/* skb */
1124		mdp->rx_skbuff[i] = NULL;
1125		skb = netdev_alloc_skb(ndev, skbuff_size);
1126		if (skb == NULL)
1127			break;
1128		sh_eth_set_receive_align(skb);
1129
1130		/* The size of the buffer is a multiple of 32 bytes. */
1131		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1132		dma_addr = dma_map_single(&ndev->dev, skb->data, buf_len,
1133					  DMA_FROM_DEVICE);
1134		if (dma_mapping_error(&ndev->dev, dma_addr)) {
1135			kfree_skb(skb);
1136			break;
1137		}
1138		mdp->rx_skbuff[i] = skb;
1139
1140		/* RX descriptor */
1141		rxdesc = &mdp->rx_ring[i];
1142		rxdesc->len = cpu_to_le32(buf_len << 16);
1143		rxdesc->addr = cpu_to_le32(dma_addr);
1144		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1145
1146		/* Rx descriptor address set */
1147		if (i == 0) {
1148			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1149			if (sh_eth_is_gether(mdp) ||
1150			    sh_eth_is_rz_fast_ether(mdp))
1151				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1152		}
1153	}
1154
1155	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1156
1157	/* Mark the last entry as wrapping the ring. */
1158	if (rxdesc)
1159		rxdesc->status |= cpu_to_le32(RD_RDLE);
1160
1161	memset(mdp->tx_ring, 0, tx_ringsize);
1162
1163	/* build Tx ring buffer */
1164	for (i = 0; i < mdp->num_tx_ring; i++) {
1165		mdp->tx_skbuff[i] = NULL;
1166		txdesc = &mdp->tx_ring[i];
1167		txdesc->status = cpu_to_le32(TD_TFP);
1168		txdesc->len = cpu_to_le32(0);
1169		if (i == 0) {
1170			/* Tx descriptor address set */
1171			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1172			if (sh_eth_is_gether(mdp) ||
1173			    sh_eth_is_rz_fast_ether(mdp))
1174				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1175		}
1176	}
1177
1178	txdesc->status |= cpu_to_le32(TD_TDLE);
1179}
1180
1181/* Get skb and descriptor buffer */
1182static int sh_eth_ring_init(struct net_device *ndev)
1183{
1184	struct sh_eth_private *mdp = netdev_priv(ndev);
1185	int rx_ringsize, tx_ringsize;
1186
1187	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1188	 * card needs room to do 8 byte alignment, +2 so we can reserve
1189	 * the first 2 bytes, and +16 gets room for the status word from the
1190	 * card.
1191	 */
1192	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1193			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1194	if (mdp->cd->rpadir)
1195		mdp->rx_buf_sz += NET_IP_ALIGN;
1196
1197	/* Allocate RX and TX skb rings */
1198	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1199				 GFP_KERNEL);
1200	if (!mdp->rx_skbuff)
1201		return -ENOMEM;
1202
1203	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1204				 GFP_KERNEL);
1205	if (!mdp->tx_skbuff)
1206		goto ring_free;
1207
1208	/* Allocate all Rx descriptors. */
1209	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1210	mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
1211					  GFP_KERNEL);
1212	if (!mdp->rx_ring)
1213		goto ring_free;
1214
1215	mdp->dirty_rx = 0;
1216
1217	/* Allocate all Tx descriptors. */
1218	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1219	mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
1220					  GFP_KERNEL);
1221	if (!mdp->tx_ring)
1222		goto ring_free;
1223	return 0;
1224
1225ring_free:
1226	/* Free Rx and Tx skb ring buffer and DMA buffer */
1227	sh_eth_ring_free(ndev);
1228
1229	return -ENOMEM;
1230}
1231
1232static int sh_eth_dev_init(struct net_device *ndev, bool start)
1233{
1234	struct sh_eth_private *mdp = netdev_priv(ndev);
1235	int ret;
1236
1237	/* Soft Reset */
1238	ret = sh_eth_reset(ndev);
1239	if (ret)
1240		return ret;
1241
1242	if (mdp->cd->rmiimode)
1243		sh_eth_write(ndev, 0x1, RMIIMODE);
1244
1245	/* Descriptor format */
1246	sh_eth_ring_format(ndev);
1247	if (mdp->cd->rpadir)
1248		sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
1249
1250	/* all sh_eth int mask */
1251	sh_eth_write(ndev, 0, EESIPR);
1252
1253#if defined(__LITTLE_ENDIAN)
1254	if (mdp->cd->hw_swap)
1255		sh_eth_write(ndev, EDMR_EL, EDMR);
1256	else
1257#endif
1258		sh_eth_write(ndev, 0, EDMR);
1259
1260	/* FIFO size set */
1261	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1262	sh_eth_write(ndev, 0, TFTR);
1263
1264	/* Frame recv control (enable multiple-packets per rx irq) */
1265	sh_eth_write(ndev, RMCR_RNC, RMCR);
1266
1267	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1268
1269	if (mdp->cd->bculr)
1270		sh_eth_write(ndev, 0x800, BCULR);	/* Burst sycle set */
1271
1272	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1273
1274	if (!mdp->cd->no_trimd)
1275		sh_eth_write(ndev, 0, TRIMD);
1276
1277	/* Recv frame limit set register */
1278	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1279		     RFLR);
1280
1281	sh_eth_modify(ndev, EESR, 0, 0);
1282	if (start) {
1283		mdp->irq_enabled = true;
1284		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1285	}
1286
1287	/* PAUSE Prohibition */
1288	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1289		     ECMR_TE | ECMR_RE, ECMR);
1290
1291	if (mdp->cd->set_rate)
1292		mdp->cd->set_rate(ndev);
1293
1294	/* E-MAC Status Register clear */
1295	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1296
1297	/* E-MAC Interrupt Enable register */
1298	if (start)
1299		sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1300
1301	/* Set MAC address */
1302	update_mac_address(ndev);
1303
1304	/* mask reset */
1305	if (mdp->cd->apr)
1306		sh_eth_write(ndev, APR_AP, APR);
1307	if (mdp->cd->mpr)
1308		sh_eth_write(ndev, MPR_MP, MPR);
1309	if (mdp->cd->tpauser)
1310		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1311
1312	if (start) {
1313		/* Setting the Rx mode will start the Rx process. */
1314		sh_eth_write(ndev, EDRRR_R, EDRRR);
1315	}
1316
1317	return ret;
1318}
1319
1320static void sh_eth_dev_exit(struct net_device *ndev)
1321{
1322	struct sh_eth_private *mdp = netdev_priv(ndev);
1323	int i;
1324
1325	/* Deactivate all TX descriptors, so DMA should stop at next
1326	 * packet boundary if it's currently running
1327	 */
1328	for (i = 0; i < mdp->num_tx_ring; i++)
1329		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1330
1331	/* Disable TX FIFO egress to MAC */
1332	sh_eth_rcv_snd_disable(ndev);
1333
1334	/* Stop RX DMA at next packet boundary */
1335	sh_eth_write(ndev, 0, EDRRR);
1336
1337	/* Aside from TX DMA, we can't tell when the hardware is
1338	 * really stopped, so we need to reset to make sure.
1339	 * Before doing that, wait for long enough to *probably*
1340	 * finish transmitting the last packet and poll stats.
1341	 */
1342	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1343	sh_eth_get_stats(ndev);
1344	sh_eth_reset(ndev);
1345
1346	/* Set MAC address again */
1347	update_mac_address(ndev);
1348}
1349
1350/* free Tx skb function */
1351static int sh_eth_txfree(struct net_device *ndev)
1352{
1353	struct sh_eth_private *mdp = netdev_priv(ndev);
1354	struct sh_eth_txdesc *txdesc;
1355	int free_num = 0;
1356	int entry;
1357
1358	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1359		entry = mdp->dirty_tx % mdp->num_tx_ring;
1360		txdesc = &mdp->tx_ring[entry];
1361		if (txdesc->status & cpu_to_le32(TD_TACT))
1362			break;
1363		/* TACT bit must be checked before all the following reads */
1364		dma_rmb();
1365		netif_info(mdp, tx_done, ndev,
1366			   "tx entry %d status 0x%08x\n",
1367			   entry, le32_to_cpu(txdesc->status));
1368		/* Free the original skb. */
1369		if (mdp->tx_skbuff[entry]) {
1370			dma_unmap_single(&ndev->dev, le32_to_cpu(txdesc->addr),
1371					 le32_to_cpu(txdesc->len) >> 16,
1372					 DMA_TO_DEVICE);
1373			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1374			mdp->tx_skbuff[entry] = NULL;
1375			free_num++;
1376		}
1377		txdesc->status = cpu_to_le32(TD_TFP);
1378		if (entry >= mdp->num_tx_ring - 1)
1379			txdesc->status |= cpu_to_le32(TD_TDLE);
1380
1381		ndev->stats.tx_packets++;
1382		ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1383	}
1384	return free_num;
1385}
1386
1387/* Packet receive function */
1388static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1389{
1390	struct sh_eth_private *mdp = netdev_priv(ndev);
1391	struct sh_eth_rxdesc *rxdesc;
1392
1393	int entry = mdp->cur_rx % mdp->num_rx_ring;
1394	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1395	int limit;
1396	struct sk_buff *skb;
1397	u32 desc_status;
1398	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1399	dma_addr_t dma_addr;
1400	u16 pkt_len;
1401	u32 buf_len;
1402
1403	boguscnt = min(boguscnt, *quota);
1404	limit = boguscnt;
1405	rxdesc = &mdp->rx_ring[entry];
1406	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1407		/* RACT bit must be checked before all the following reads */
1408		dma_rmb();
1409		desc_status = le32_to_cpu(rxdesc->status);
1410		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1411
1412		if (--boguscnt < 0)
1413			break;
1414
1415		netif_info(mdp, rx_status, ndev,
1416			   "rx entry %d status 0x%08x len %d\n",
1417			   entry, desc_status, pkt_len);
1418
1419		if (!(desc_status & RDFEND))
1420			ndev->stats.rx_length_errors++;
1421
1422		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1423		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1424		 * bit 0. However, in case of the R8A7740 and R7S72100
1425		 * the RFS bits are from bit 25 to bit 16. So, the
1426		 * driver needs right shifting by 16.
1427		 */
1428		if (mdp->cd->shift_rd0)
1429			desc_status >>= 16;
1430
1431		skb = mdp->rx_skbuff[entry];
1432		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1433				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1434			ndev->stats.rx_errors++;
1435			if (desc_status & RD_RFS1)
1436				ndev->stats.rx_crc_errors++;
1437			if (desc_status & RD_RFS2)
1438				ndev->stats.rx_frame_errors++;
1439			if (desc_status & RD_RFS3)
1440				ndev->stats.rx_length_errors++;
1441			if (desc_status & RD_RFS4)
1442				ndev->stats.rx_length_errors++;
1443			if (desc_status & RD_RFS6)
1444				ndev->stats.rx_missed_errors++;
1445			if (desc_status & RD_RFS10)
1446				ndev->stats.rx_over_errors++;
1447		} else	if (skb) {
1448			dma_addr = le32_to_cpu(rxdesc->addr);
1449			if (!mdp->cd->hw_swap)
1450				sh_eth_soft_swap(
1451					phys_to_virt(ALIGN(dma_addr, 4)),
1452					pkt_len + 2);
1453			mdp->rx_skbuff[entry] = NULL;
1454			if (mdp->cd->rpadir)
1455				skb_reserve(skb, NET_IP_ALIGN);
1456			dma_unmap_single(&ndev->dev, dma_addr,
1457					 ALIGN(mdp->rx_buf_sz, 32),
1458					 DMA_FROM_DEVICE);
1459			skb_put(skb, pkt_len);
1460			skb->protocol = eth_type_trans(skb, ndev);
1461			netif_receive_skb(skb);
1462			ndev->stats.rx_packets++;
1463			ndev->stats.rx_bytes += pkt_len;
1464			if (desc_status & RD_RFS8)
1465				ndev->stats.multicast++;
1466		}
1467		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1468		rxdesc = &mdp->rx_ring[entry];
1469	}
1470
1471	/* Refill the Rx ring buffers. */
1472	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1473		entry = mdp->dirty_rx % mdp->num_rx_ring;
1474		rxdesc = &mdp->rx_ring[entry];
1475		/* The size of the buffer is 32 byte boundary. */
1476		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1477		rxdesc->len = cpu_to_le32(buf_len << 16);
1478
1479		if (mdp->rx_skbuff[entry] == NULL) {
1480			skb = netdev_alloc_skb(ndev, skbuff_size);
1481			if (skb == NULL)
1482				break;	/* Better luck next round. */
1483			sh_eth_set_receive_align(skb);
1484			dma_addr = dma_map_single(&ndev->dev, skb->data,
1485						  buf_len, DMA_FROM_DEVICE);
1486			if (dma_mapping_error(&ndev->dev, dma_addr)) {
1487				kfree_skb(skb);
1488				break;
1489			}
1490			mdp->rx_skbuff[entry] = skb;
1491
1492			skb_checksum_none_assert(skb);
1493			rxdesc->addr = cpu_to_le32(dma_addr);
1494		}
1495		dma_wmb(); /* RACT bit must be set after all the above writes */
1496		if (entry >= mdp->num_rx_ring - 1)
1497			rxdesc->status |=
1498				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1499		else
1500			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1501	}
1502
1503	/* Restart Rx engine if stopped. */
1504	/* If we don't need to check status, don't. -KDU */
1505	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1506		/* fix the values for the next receiving if RDE is set */
1507		if (intr_status & EESR_RDE &&
1508		    mdp->reg_offset[RDFAR] != SH_ETH_OFFSET_INVALID) {
1509			u32 count = (sh_eth_read(ndev, RDFAR) -
1510				     sh_eth_read(ndev, RDLAR)) >> 4;
1511
1512			mdp->cur_rx = count;
1513			mdp->dirty_rx = count;
1514		}
1515		sh_eth_write(ndev, EDRRR_R, EDRRR);
1516	}
1517
1518	*quota -= limit - boguscnt - 1;
1519
1520	return *quota <= 0;
1521}
1522
1523static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1524{
1525	/* disable tx and rx */
1526	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1527}
1528
1529static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1530{
1531	/* enable tx and rx */
1532	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1533}
1534
1535/* error control function */
1536static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1537{
1538	struct sh_eth_private *mdp = netdev_priv(ndev);
1539	u32 felic_stat;
1540	u32 link_stat;
1541	u32 mask;
1542
1543	if (intr_status & EESR_ECI) {
1544		felic_stat = sh_eth_read(ndev, ECSR);
1545		sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1546		if (felic_stat & ECSR_ICD)
1547			ndev->stats.tx_carrier_errors++;
1548		if (felic_stat & ECSR_LCHNG) {
1549			/* Link Changed */
1550			if (mdp->cd->no_psr || mdp->no_ether_link) {
1551				goto ignore_link;
1552			} else {
1553				link_stat = (sh_eth_read(ndev, PSR));
1554				if (mdp->ether_link_active_low)
1555					link_stat = ~link_stat;
1556			}
1557			if (!(link_stat & PHY_ST_LINK)) {
1558				sh_eth_rcv_snd_disable(ndev);
1559			} else {
1560				/* Link Up */
1561				sh_eth_modify(ndev, EESIPR, DMAC_M_ECI, 0);
1562				/* clear int */
1563				sh_eth_modify(ndev, ECSR, 0, 0);
1564				sh_eth_modify(ndev, EESIPR, DMAC_M_ECI,
1565					      DMAC_M_ECI);
1566				/* enable tx and rx */
1567				sh_eth_rcv_snd_enable(ndev);
1568			}
1569		}
1570	}
1571
1572ignore_link:
1573	if (intr_status & EESR_TWB) {
1574		/* Unused write back interrupt */
1575		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1576			ndev->stats.tx_aborted_errors++;
1577			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1578		}
1579	}
1580
1581	if (intr_status & EESR_RABT) {
1582		/* Receive Abort int */
1583		if (intr_status & EESR_RFRMER) {
1584			/* Receive Frame Overflow int */
1585			ndev->stats.rx_frame_errors++;
1586		}
1587	}
1588
1589	if (intr_status & EESR_TDE) {
1590		/* Transmit Descriptor Empty int */
1591		ndev->stats.tx_fifo_errors++;
1592		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1593	}
1594
1595	if (intr_status & EESR_TFE) {
1596		/* FIFO under flow */
1597		ndev->stats.tx_fifo_errors++;
1598		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1599	}
1600
1601	if (intr_status & EESR_RDE) {
1602		/* Receive Descriptor Empty int */
1603		ndev->stats.rx_over_errors++;
1604	}
1605
1606	if (intr_status & EESR_RFE) {
1607		/* Receive FIFO Overflow int */
1608		ndev->stats.rx_fifo_errors++;
1609	}
1610
1611	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1612		/* Address Error */
1613		ndev->stats.tx_fifo_errors++;
1614		netif_err(mdp, tx_err, ndev, "Address Error\n");
1615	}
1616
1617	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1618	if (mdp->cd->no_ade)
1619		mask &= ~EESR_ADE;
1620	if (intr_status & mask) {
1621		/* Tx error */
1622		u32 edtrr = sh_eth_read(ndev, EDTRR);
1623
1624		/* dmesg */
1625		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1626			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1627			   (u32)ndev->state, edtrr);
1628		/* dirty buffer free */
1629		sh_eth_txfree(ndev);
1630
1631		/* SH7712 BUG */
1632		if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
1633			/* tx dma start */
1634			sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
1635		}
1636		/* wakeup */
1637		netif_wake_queue(ndev);
1638	}
1639}
1640
1641static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1642{
1643	struct net_device *ndev = netdev;
1644	struct sh_eth_private *mdp = netdev_priv(ndev);
1645	struct sh_eth_cpu_data *cd = mdp->cd;
1646	irqreturn_t ret = IRQ_NONE;
1647	u32 intr_status, intr_enable;
1648
1649	spin_lock(&mdp->lock);
1650
1651	/* Get interrupt status */
1652	intr_status = sh_eth_read(ndev, EESR);
1653	/* Mask it with the interrupt mask, forcing ECI interrupt to be always
1654	 * enabled since it's the one that  comes thru regardless of the mask,
1655	 * and we need to fully handle it in sh_eth_error() in order to quench
1656	 * it as it doesn't get cleared by just writing 1 to the ECI bit...
1657	 */
1658	intr_enable = sh_eth_read(ndev, EESIPR);
1659	intr_status &= intr_enable | DMAC_M_ECI;
1660	if (intr_status & (EESR_RX_CHECK | cd->tx_check | cd->eesr_err_check))
1661		ret = IRQ_HANDLED;
1662	else
1663		goto out;
1664
1665	if (!likely(mdp->irq_enabled)) {
1666		sh_eth_write(ndev, 0, EESIPR);
1667		goto out;
1668	}
1669
1670	if (intr_status & EESR_RX_CHECK) {
1671		if (napi_schedule_prep(&mdp->napi)) {
1672			/* Mask Rx interrupts */
1673			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1674				     EESIPR);
1675			__napi_schedule(&mdp->napi);
1676		} else {
1677			netdev_warn(ndev,
1678				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1679				    intr_status, intr_enable);
1680		}
1681	}
1682
1683	/* Tx Check */
1684	if (intr_status & cd->tx_check) {
1685		/* Clear Tx interrupts */
1686		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1687
1688		sh_eth_txfree(ndev);
1689		netif_wake_queue(ndev);
1690	}
1691
1692	if (intr_status & cd->eesr_err_check) {
1693		/* Clear error interrupts */
1694		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1695
1696		sh_eth_error(ndev, intr_status);
1697	}
1698
1699out:
1700	spin_unlock(&mdp->lock);
1701
1702	return ret;
1703}
1704
1705static int sh_eth_poll(struct napi_struct *napi, int budget)
1706{
1707	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1708						  napi);
1709	struct net_device *ndev = napi->dev;
1710	int quota = budget;
1711	u32 intr_status;
1712
1713	for (;;) {
1714		intr_status = sh_eth_read(ndev, EESR);
1715		if (!(intr_status & EESR_RX_CHECK))
1716			break;
1717		/* Clear Rx interrupts */
1718		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1719
1720		if (sh_eth_rx(ndev, intr_status, &quota))
1721			goto out;
1722	}
1723
1724	napi_complete(napi);
1725
1726	/* Reenable Rx interrupts */
1727	if (mdp->irq_enabled)
1728		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1729out:
1730	return budget - quota;
1731}
1732
1733/* PHY state control function */
1734static void sh_eth_adjust_link(struct net_device *ndev)
1735{
1736	struct sh_eth_private *mdp = netdev_priv(ndev);
1737	struct phy_device *phydev = mdp->phydev;
1738	int new_state = 0;
1739
1740	if (phydev->link) {
1741		if (phydev->duplex != mdp->duplex) {
1742			new_state = 1;
1743			mdp->duplex = phydev->duplex;
1744			if (mdp->cd->set_duplex)
1745				mdp->cd->set_duplex(ndev);
1746		}
1747
1748		if (phydev->speed != mdp->speed) {
1749			new_state = 1;
1750			mdp->speed = phydev->speed;
1751			if (mdp->cd->set_rate)
1752				mdp->cd->set_rate(ndev);
1753		}
1754		if (!mdp->link) {
1755			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1756			new_state = 1;
1757			mdp->link = phydev->link;
1758			if (mdp->cd->no_psr || mdp->no_ether_link)
1759				sh_eth_rcv_snd_enable(ndev);
1760		}
1761	} else if (mdp->link) {
1762		new_state = 1;
1763		mdp->link = 0;
1764		mdp->speed = 0;
1765		mdp->duplex = -1;
1766		if (mdp->cd->no_psr || mdp->no_ether_link)
1767			sh_eth_rcv_snd_disable(ndev);
1768	}
1769
1770	if (new_state && netif_msg_link(mdp))
1771		phy_print_status(phydev);
1772}
1773
1774/* PHY init function */
1775static int sh_eth_phy_init(struct net_device *ndev)
1776{
1777	struct device_node *np = ndev->dev.parent->of_node;
1778	struct sh_eth_private *mdp = netdev_priv(ndev);
1779	struct phy_device *phydev;
1780
1781	mdp->link = 0;
1782	mdp->speed = 0;
1783	mdp->duplex = -1;
1784
1785	/* Try connect to PHY */
1786	if (np) {
1787		struct device_node *pn;
1788
1789		pn = of_parse_phandle(np, "phy-handle", 0);
1790		phydev = of_phy_connect(ndev, pn,
1791					sh_eth_adjust_link, 0,
1792					mdp->phy_interface);
1793
1794		if (!phydev)
1795			phydev = ERR_PTR(-ENOENT);
1796	} else {
1797		char phy_id[MII_BUS_ID_SIZE + 3];
1798
1799		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1800			 mdp->mii_bus->id, mdp->phy_id);
1801
1802		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
1803				     mdp->phy_interface);
1804	}
1805
1806	if (IS_ERR(phydev)) {
1807		netdev_err(ndev, "failed to connect PHY\n");
1808		return PTR_ERR(phydev);
1809	}
1810
1811	phy_attached_info(phydev);
1812
1813	mdp->phydev = phydev;
1814
1815	return 0;
1816}
1817
1818/* PHY control start function */
1819static int sh_eth_phy_start(struct net_device *ndev)
1820{
1821	struct sh_eth_private *mdp = netdev_priv(ndev);
1822	int ret;
1823
1824	ret = sh_eth_phy_init(ndev);
1825	if (ret)
1826		return ret;
1827
1828	phy_start(mdp->phydev);
1829
1830	return 0;
1831}
1832
1833static int sh_eth_get_settings(struct net_device *ndev,
1834			       struct ethtool_cmd *ecmd)
1835{
1836	struct sh_eth_private *mdp = netdev_priv(ndev);
1837	unsigned long flags;
1838	int ret;
1839
1840	if (!mdp->phydev)
1841		return -ENODEV;
1842
1843	spin_lock_irqsave(&mdp->lock, flags);
1844	ret = phy_ethtool_gset(mdp->phydev, ecmd);
1845	spin_unlock_irqrestore(&mdp->lock, flags);
1846
1847	return ret;
1848}
1849
1850static int sh_eth_set_settings(struct net_device *ndev,
1851			       struct ethtool_cmd *ecmd)
1852{
1853	struct sh_eth_private *mdp = netdev_priv(ndev);
1854	unsigned long flags;
1855	int ret;
1856
1857	if (!mdp->phydev)
1858		return -ENODEV;
1859
1860	spin_lock_irqsave(&mdp->lock, flags);
1861
1862	/* disable tx and rx */
1863	sh_eth_rcv_snd_disable(ndev);
1864
1865	ret = phy_ethtool_sset(mdp->phydev, ecmd);
1866	if (ret)
1867		goto error_exit;
1868
1869	if (ecmd->duplex == DUPLEX_FULL)
1870		mdp->duplex = 1;
1871	else
1872		mdp->duplex = 0;
1873
1874	if (mdp->cd->set_duplex)
1875		mdp->cd->set_duplex(ndev);
1876
1877error_exit:
1878	mdelay(1);
1879
1880	/* enable tx and rx */
1881	sh_eth_rcv_snd_enable(ndev);
1882
1883	spin_unlock_irqrestore(&mdp->lock, flags);
1884
1885	return ret;
1886}
1887
1888/* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
1889 * version must be bumped as well.  Just adding registers up to that
1890 * limit is fine, as long as the existing register indices don't
1891 * change.
1892 */
1893#define SH_ETH_REG_DUMP_VERSION		1
1894#define SH_ETH_REG_DUMP_MAX_REGS	256
1895
1896static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
1897{
1898	struct sh_eth_private *mdp = netdev_priv(ndev);
1899	struct sh_eth_cpu_data *cd = mdp->cd;
1900	u32 *valid_map;
1901	size_t len;
1902
1903	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
1904
1905	/* Dump starts with a bitmap that tells ethtool which
1906	 * registers are defined for this chip.
1907	 */
1908	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
1909	if (buf) {
1910		valid_map = buf;
1911		buf += len;
1912	} else {
1913		valid_map = NULL;
1914	}
1915
1916	/* Add a register to the dump, if it has a defined offset.
1917	 * This automatically skips most undefined registers, but for
1918	 * some it is also necessary to check a capability flag in
1919	 * struct sh_eth_cpu_data.
1920	 */
1921#define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
1922#define add_reg_from(reg, read_expr) do {				\
1923		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
1924			if (buf) {					\
1925				mark_reg_valid(reg);			\
1926				*buf++ = read_expr;			\
1927			}						\
1928			++len;						\
1929		}							\
1930	} while (0)
1931#define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
1932#define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
1933
1934	add_reg(EDSR);
1935	add_reg(EDMR);
1936	add_reg(EDTRR);
1937	add_reg(EDRRR);
1938	add_reg(EESR);
1939	add_reg(EESIPR);
1940	add_reg(TDLAR);
1941	add_reg(TDFAR);
1942	add_reg(TDFXR);
1943	add_reg(TDFFR);
1944	add_reg(RDLAR);
1945	add_reg(RDFAR);
1946	add_reg(RDFXR);
1947	add_reg(RDFFR);
1948	add_reg(TRSCER);
1949	add_reg(RMFCR);
1950	add_reg(TFTR);
1951	add_reg(FDR);
1952	add_reg(RMCR);
1953	add_reg(TFUCR);
1954	add_reg(RFOCR);
1955	if (cd->rmiimode)
1956		add_reg(RMIIMODE);
1957	add_reg(FCFTR);
1958	if (cd->rpadir)
1959		add_reg(RPADIR);
1960	if (!cd->no_trimd)
1961		add_reg(TRIMD);
1962	add_reg(ECMR);
1963	add_reg(ECSR);
1964	add_reg(ECSIPR);
1965	add_reg(PIR);
1966	if (!cd->no_psr)
1967		add_reg(PSR);
1968	add_reg(RDMLR);
1969	add_reg(RFLR);
1970	add_reg(IPGR);
1971	if (cd->apr)
1972		add_reg(APR);
1973	if (cd->mpr)
1974		add_reg(MPR);
1975	add_reg(RFCR);
1976	add_reg(RFCF);
1977	if (cd->tpauser)
1978		add_reg(TPAUSER);
1979	add_reg(TPAUSECR);
1980	add_reg(GECMR);
1981	if (cd->bculr)
1982		add_reg(BCULR);
1983	add_reg(MAHR);
1984	add_reg(MALR);
1985	add_reg(TROCR);
1986	add_reg(CDCR);
1987	add_reg(LCCR);
1988	add_reg(CNDCR);
1989	add_reg(CEFCR);
1990	add_reg(FRECR);
1991	add_reg(TSFRCR);
1992	add_reg(TLFRCR);
1993	add_reg(CERCR);
1994	add_reg(CEECR);
1995	add_reg(MAFCR);
1996	if (cd->rtrate)
1997		add_reg(RTRATE);
1998	if (cd->hw_crc)
1999		add_reg(CSMR);
2000	if (cd->select_mii)
2001		add_reg(RMII_MII);
2002	add_reg(ARSTR);
2003	if (cd->tsu) {
2004		add_tsu_reg(TSU_CTRST);
2005		add_tsu_reg(TSU_FWEN0);
2006		add_tsu_reg(TSU_FWEN1);
2007		add_tsu_reg(TSU_FCM);
2008		add_tsu_reg(TSU_BSYSL0);
2009		add_tsu_reg(TSU_BSYSL1);
2010		add_tsu_reg(TSU_PRISL0);
2011		add_tsu_reg(TSU_PRISL1);
2012		add_tsu_reg(TSU_FWSL0);
2013		add_tsu_reg(TSU_FWSL1);
2014		add_tsu_reg(TSU_FWSLC);
2015		add_tsu_reg(TSU_QTAG0);
2016		add_tsu_reg(TSU_QTAG1);
2017		add_tsu_reg(TSU_QTAGM0);
2018		add_tsu_reg(TSU_QTAGM1);
2019		add_tsu_reg(TSU_FWSR);
2020		add_tsu_reg(TSU_FWINMK);
2021		add_tsu_reg(TSU_ADQT0);
2022		add_tsu_reg(TSU_ADQT1);
2023		add_tsu_reg(TSU_VTAG0);
2024		add_tsu_reg(TSU_VTAG1);
2025		add_tsu_reg(TSU_ADSBSY);
2026		add_tsu_reg(TSU_TEN);
2027		add_tsu_reg(TSU_POST1);
2028		add_tsu_reg(TSU_POST2);
2029		add_tsu_reg(TSU_POST3);
2030		add_tsu_reg(TSU_POST4);
2031		if (mdp->reg_offset[TSU_ADRH0] != SH_ETH_OFFSET_INVALID) {
2032			/* This is the start of a table, not just a single
2033			 * register.
2034			 */
2035			if (buf) {
2036				unsigned int i;
2037
2038				mark_reg_valid(TSU_ADRH0);
2039				for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2040					*buf++ = ioread32(
2041						mdp->tsu_addr +
2042						mdp->reg_offset[TSU_ADRH0] +
2043						i * 4);
2044			}
2045			len += SH_ETH_TSU_CAM_ENTRIES * 2;
2046		}
2047	}
2048
2049#undef mark_reg_valid
2050#undef add_reg_from
2051#undef add_reg
2052#undef add_tsu_reg
2053
2054	return len * 4;
2055}
2056
2057static int sh_eth_get_regs_len(struct net_device *ndev)
2058{
2059	return __sh_eth_get_regs(ndev, NULL);
2060}
2061
2062static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2063			    void *buf)
2064{
2065	struct sh_eth_private *mdp = netdev_priv(ndev);
2066
2067	regs->version = SH_ETH_REG_DUMP_VERSION;
2068
2069	pm_runtime_get_sync(&mdp->pdev->dev);
2070	__sh_eth_get_regs(ndev, buf);
2071	pm_runtime_put_sync(&mdp->pdev->dev);
2072}
2073
2074static int sh_eth_nway_reset(struct net_device *ndev)
2075{
2076	struct sh_eth_private *mdp = netdev_priv(ndev);
2077	unsigned long flags;
2078	int ret;
2079
2080	if (!mdp->phydev)
2081		return -ENODEV;
2082
2083	spin_lock_irqsave(&mdp->lock, flags);
2084	ret = phy_start_aneg(mdp->phydev);
2085	spin_unlock_irqrestore(&mdp->lock, flags);
2086
2087	return ret;
2088}
2089
2090static u32 sh_eth_get_msglevel(struct net_device *ndev)
2091{
2092	struct sh_eth_private *mdp = netdev_priv(ndev);
2093	return mdp->msg_enable;
2094}
2095
2096static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2097{
2098	struct sh_eth_private *mdp = netdev_priv(ndev);
2099	mdp->msg_enable = value;
2100}
2101
2102static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2103	"rx_current", "tx_current",
2104	"rx_dirty", "tx_dirty",
2105};
2106#define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2107
2108static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2109{
2110	switch (sset) {
2111	case ETH_SS_STATS:
2112		return SH_ETH_STATS_LEN;
2113	default:
2114		return -EOPNOTSUPP;
2115	}
2116}
2117
2118static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2119				     struct ethtool_stats *stats, u64 *data)
2120{
2121	struct sh_eth_private *mdp = netdev_priv(ndev);
2122	int i = 0;
2123
2124	/* device-specific stats */
2125	data[i++] = mdp->cur_rx;
2126	data[i++] = mdp->cur_tx;
2127	data[i++] = mdp->dirty_rx;
2128	data[i++] = mdp->dirty_tx;
2129}
2130
2131static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2132{
2133	switch (stringset) {
2134	case ETH_SS_STATS:
2135		memcpy(data, *sh_eth_gstrings_stats,
2136		       sizeof(sh_eth_gstrings_stats));
2137		break;
2138	}
2139}
2140
2141static void sh_eth_get_ringparam(struct net_device *ndev,
2142				 struct ethtool_ringparam *ring)
2143{
2144	struct sh_eth_private *mdp = netdev_priv(ndev);
2145
2146	ring->rx_max_pending = RX_RING_MAX;
2147	ring->tx_max_pending = TX_RING_MAX;
2148	ring->rx_pending = mdp->num_rx_ring;
2149	ring->tx_pending = mdp->num_tx_ring;
2150}
2151
2152static int sh_eth_set_ringparam(struct net_device *ndev,
2153				struct ethtool_ringparam *ring)
2154{
2155	struct sh_eth_private *mdp = netdev_priv(ndev);
2156	int ret;
2157
2158	if (ring->tx_pending > TX_RING_MAX ||
2159	    ring->rx_pending > RX_RING_MAX ||
2160	    ring->tx_pending < TX_RING_MIN ||
2161	    ring->rx_pending < RX_RING_MIN)
2162		return -EINVAL;
2163	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2164		return -EINVAL;
2165
2166	if (netif_running(ndev)) {
2167		netif_device_detach(ndev);
2168		netif_tx_disable(ndev);
2169
2170		/* Serialise with the interrupt handler and NAPI, then
2171		 * disable interrupts.  We have to clear the
2172		 * irq_enabled flag first to ensure that interrupts
2173		 * won't be re-enabled.
2174		 */
2175		mdp->irq_enabled = false;
2176		synchronize_irq(ndev->irq);
2177		napi_synchronize(&mdp->napi);
2178		sh_eth_write(ndev, 0x0000, EESIPR);
2179
2180		sh_eth_dev_exit(ndev);
2181
2182		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2183		sh_eth_ring_free(ndev);
2184	}
2185
2186	/* Set new parameters */
2187	mdp->num_rx_ring = ring->rx_pending;
2188	mdp->num_tx_ring = ring->tx_pending;
2189
2190	if (netif_running(ndev)) {
2191		ret = sh_eth_ring_init(ndev);
2192		if (ret < 0) {
2193			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2194				   __func__);
2195			return ret;
2196		}
2197		ret = sh_eth_dev_init(ndev, true);
2198		if (ret < 0) {
2199			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2200				   __func__);
2201			return ret;
2202		}
2203
2204		netif_device_attach(ndev);
2205	}
2206
2207	return 0;
2208}
2209
2210static const struct ethtool_ops sh_eth_ethtool_ops = {
2211	.get_settings	= sh_eth_get_settings,
2212	.set_settings	= sh_eth_set_settings,
2213	.get_regs_len	= sh_eth_get_regs_len,
2214	.get_regs	= sh_eth_get_regs,
2215	.nway_reset	= sh_eth_nway_reset,
2216	.get_msglevel	= sh_eth_get_msglevel,
2217	.set_msglevel	= sh_eth_set_msglevel,
2218	.get_link	= ethtool_op_get_link,
2219	.get_strings	= sh_eth_get_strings,
2220	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2221	.get_sset_count     = sh_eth_get_sset_count,
2222	.get_ringparam	= sh_eth_get_ringparam,
2223	.set_ringparam	= sh_eth_set_ringparam,
2224};
2225
2226/* network device open function */
2227static int sh_eth_open(struct net_device *ndev)
2228{
2229	struct sh_eth_private *mdp = netdev_priv(ndev);
2230	int ret;
2231
2232	pm_runtime_get_sync(&mdp->pdev->dev);
2233
2234	napi_enable(&mdp->napi);
2235
2236	ret = request_irq(ndev->irq, sh_eth_interrupt,
2237			  mdp->cd->irq_flags, ndev->name, ndev);
2238	if (ret) {
2239		netdev_err(ndev, "Can not assign IRQ number\n");
2240		goto out_napi_off;
2241	}
2242
2243	/* Descriptor set */
2244	ret = sh_eth_ring_init(ndev);
2245	if (ret)
2246		goto out_free_irq;
2247
2248	/* device init */
2249	ret = sh_eth_dev_init(ndev, true);
2250	if (ret)
2251		goto out_free_irq;
2252
2253	/* PHY control start*/
2254	ret = sh_eth_phy_start(ndev);
2255	if (ret)
2256		goto out_free_irq;
2257
2258	netif_start_queue(ndev);
2259
2260	mdp->is_opened = 1;
2261
2262	return ret;
2263
2264out_free_irq:
2265	free_irq(ndev->irq, ndev);
2266out_napi_off:
2267	napi_disable(&mdp->napi);
2268	pm_runtime_put_sync(&mdp->pdev->dev);
2269	return ret;
2270}
2271
2272/* Timeout function */
2273static void sh_eth_tx_timeout(struct net_device *ndev)
2274{
2275	struct sh_eth_private *mdp = netdev_priv(ndev);
2276	struct sh_eth_rxdesc *rxdesc;
2277	int i;
2278
2279	netif_stop_queue(ndev);
2280
2281	netif_err(mdp, timer, ndev,
2282		  "transmit timed out, status %8.8x, resetting...\n",
2283		  sh_eth_read(ndev, EESR));
2284
2285	/* tx_errors count up */
2286	ndev->stats.tx_errors++;
2287
2288	/* Free all the skbuffs in the Rx queue. */
2289	for (i = 0; i < mdp->num_rx_ring; i++) {
2290		rxdesc = &mdp->rx_ring[i];
2291		rxdesc->status = cpu_to_le32(0);
2292		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2293		dev_kfree_skb(mdp->rx_skbuff[i]);
2294		mdp->rx_skbuff[i] = NULL;
2295	}
2296	for (i = 0; i < mdp->num_tx_ring; i++) {
2297		dev_kfree_skb(mdp->tx_skbuff[i]);
2298		mdp->tx_skbuff[i] = NULL;
2299	}
2300
2301	/* device init */
2302	sh_eth_dev_init(ndev, true);
2303
2304	netif_start_queue(ndev);
2305}
2306
2307/* Packet transmit function */
2308static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2309{
2310	struct sh_eth_private *mdp = netdev_priv(ndev);
2311	struct sh_eth_txdesc *txdesc;
2312	dma_addr_t dma_addr;
2313	u32 entry;
2314	unsigned long flags;
2315
2316	spin_lock_irqsave(&mdp->lock, flags);
2317	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2318		if (!sh_eth_txfree(ndev)) {
2319			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2320			netif_stop_queue(ndev);
2321			spin_unlock_irqrestore(&mdp->lock, flags);
2322			return NETDEV_TX_BUSY;
2323		}
2324	}
2325	spin_unlock_irqrestore(&mdp->lock, flags);
2326
2327	if (skb_put_padto(skb, ETH_ZLEN))
2328		return NETDEV_TX_OK;
2329
2330	entry = mdp->cur_tx % mdp->num_tx_ring;
2331	mdp->tx_skbuff[entry] = skb;
2332	txdesc = &mdp->tx_ring[entry];
2333	/* soft swap. */
2334	if (!mdp->cd->hw_swap)
2335		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2336	dma_addr = dma_map_single(&ndev->dev, skb->data, skb->len,
2337				  DMA_TO_DEVICE);
2338	if (dma_mapping_error(&ndev->dev, dma_addr)) {
2339		kfree_skb(skb);
2340		return NETDEV_TX_OK;
2341	}
2342	txdesc->addr = cpu_to_le32(dma_addr);
2343	txdesc->len  = cpu_to_le32(skb->len << 16);
2344
2345	dma_wmb(); /* TACT bit must be set after all the above writes */
2346	if (entry >= mdp->num_tx_ring - 1)
2347		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2348	else
2349		txdesc->status |= cpu_to_le32(TD_TACT);
2350
2351	mdp->cur_tx++;
2352
2353	if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
2354		sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
2355
2356	return NETDEV_TX_OK;
2357}
2358
2359/* The statistics registers have write-clear behaviour, which means we
2360 * will lose any increment between the read and write.  We mitigate
2361 * this by only clearing when we read a non-zero value, so we will
2362 * never falsely report a total of zero.
2363 */
2364static void
2365sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2366{
2367	u32 delta = sh_eth_read(ndev, reg);
2368
2369	if (delta) {
2370		*stat += delta;
2371		sh_eth_write(ndev, 0, reg);
2372	}
2373}
2374
2375static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2376{
2377	struct sh_eth_private *mdp = netdev_priv(ndev);
2378
2379	if (sh_eth_is_rz_fast_ether(mdp))
2380		return &ndev->stats;
2381
2382	if (!mdp->is_opened)
2383		return &ndev->stats;
2384
2385	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2386	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2387	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2388
2389	if (sh_eth_is_gether(mdp)) {
2390		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2391				   CERCR);
2392		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2393				   CEECR);
2394	} else {
2395		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2396				   CNDCR);
2397	}
2398
2399	return &ndev->stats;
2400}
2401
2402/* device close function */
2403static int sh_eth_close(struct net_device *ndev)
2404{
2405	struct sh_eth_private *mdp = netdev_priv(ndev);
2406
2407	netif_stop_queue(ndev);
2408
2409	/* Serialise with the interrupt handler and NAPI, then disable
2410	 * interrupts.  We have to clear the irq_enabled flag first to
2411	 * ensure that interrupts won't be re-enabled.
2412	 */
2413	mdp->irq_enabled = false;
2414	synchronize_irq(ndev->irq);
2415	napi_disable(&mdp->napi);
2416	sh_eth_write(ndev, 0x0000, EESIPR);
2417
2418	sh_eth_dev_exit(ndev);
2419
2420	/* PHY Disconnect */
2421	if (mdp->phydev) {
2422		phy_stop(mdp->phydev);
2423		phy_disconnect(mdp->phydev);
2424		mdp->phydev = NULL;
2425	}
2426
2427	free_irq(ndev->irq, ndev);
2428
2429	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2430	sh_eth_ring_free(ndev);
2431
2432	pm_runtime_put_sync(&mdp->pdev->dev);
2433
2434	mdp->is_opened = 0;
2435
2436	return 0;
2437}
2438
2439/* ioctl to device function */
2440static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2441{
2442	struct sh_eth_private *mdp = netdev_priv(ndev);
2443	struct phy_device *phydev = mdp->phydev;
2444
2445	if (!netif_running(ndev))
2446		return -EINVAL;
2447
2448	if (!phydev)
2449		return -ENODEV;
2450
2451	return phy_mii_ioctl(phydev, rq, cmd);
2452}
2453
2454/* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2455static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
2456					    int entry)
2457{
2458	return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
2459}
2460
2461static u32 sh_eth_tsu_get_post_mask(int entry)
2462{
2463	return 0x0f << (28 - ((entry % 8) * 4));
2464}
2465
2466static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2467{
2468	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2469}
2470
2471static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2472					     int entry)
2473{
2474	struct sh_eth_private *mdp = netdev_priv(ndev);
2475	u32 tmp;
2476	void *reg_offset;
2477
2478	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2479	tmp = ioread32(reg_offset);
2480	iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
2481}
2482
2483static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2484					      int entry)
2485{
2486	struct sh_eth_private *mdp = netdev_priv(ndev);
2487	u32 post_mask, ref_mask, tmp;
2488	void *reg_offset;
2489
2490	reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
2491	post_mask = sh_eth_tsu_get_post_mask(entry);
2492	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2493
2494	tmp = ioread32(reg_offset);
2495	iowrite32(tmp & ~post_mask, reg_offset);
2496
2497	/* If other port enables, the function returns "true" */
2498	return tmp & ref_mask;
2499}
2500
2501static int sh_eth_tsu_busy(struct net_device *ndev)
2502{
2503	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2504	struct sh_eth_private *mdp = netdev_priv(ndev);
2505
2506	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2507		udelay(10);
2508		timeout--;
2509		if (timeout <= 0) {
2510			netdev_err(ndev, "%s: timeout\n", __func__);
2511			return -ETIMEDOUT;
2512		}
2513	}
2514
2515	return 0;
2516}
2517
2518static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
2519				  const u8 *addr)
2520{
2521	u32 val;
2522
2523	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2524	iowrite32(val, reg);
2525	if (sh_eth_tsu_busy(ndev) < 0)
2526		return -EBUSY;
2527
2528	val = addr[4] << 8 | addr[5];
2529	iowrite32(val, reg + 4);
2530	if (sh_eth_tsu_busy(ndev) < 0)
2531		return -EBUSY;
2532
2533	return 0;
2534}
2535
2536static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
2537{
2538	u32 val;
2539
2540	val = ioread32(reg);
2541	addr[0] = (val >> 24) & 0xff;
2542	addr[1] = (val >> 16) & 0xff;
2543	addr[2] = (val >> 8) & 0xff;
2544	addr[3] = val & 0xff;
2545	val = ioread32(reg + 4);
2546	addr[4] = (val >> 8) & 0xff;
2547	addr[5] = val & 0xff;
2548}
2549
2550
2551static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2552{
2553	struct sh_eth_private *mdp = netdev_priv(ndev);
2554	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2555	int i;
2556	u8 c_addr[ETH_ALEN];
2557
2558	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2559		sh_eth_tsu_read_entry(reg_offset, c_addr);
2560		if (ether_addr_equal(addr, c_addr))
2561			return i;
2562	}
2563
2564	return -ENOENT;
2565}
2566
2567static int sh_eth_tsu_find_empty(struct net_device *ndev)
2568{
2569	u8 blank[ETH_ALEN];
2570	int entry;
2571
2572	memset(blank, 0, sizeof(blank));
2573	entry = sh_eth_tsu_find_entry(ndev, blank);
2574	return (entry < 0) ? -ENOMEM : entry;
2575}
2576
2577static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2578					      int entry)
2579{
2580	struct sh_eth_private *mdp = netdev_priv(ndev);
2581	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2582	int ret;
2583	u8 blank[ETH_ALEN];
2584
2585	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2586			 ~(1 << (31 - entry)), TSU_TEN);
2587
2588	memset(blank, 0, sizeof(blank));
2589	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2590	if (ret < 0)
2591		return ret;
2592	return 0;
2593}
2594
2595static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2596{
2597	struct sh_eth_private *mdp = netdev_priv(ndev);
2598	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2599	int i, ret;
2600
2601	if (!mdp->cd->tsu)
2602		return 0;
2603
2604	i = sh_eth_tsu_find_entry(ndev, addr);
2605	if (i < 0) {
2606		/* No entry found, create one */
2607		i = sh_eth_tsu_find_empty(ndev);
2608		if (i < 0)
2609			return -ENOMEM;
2610		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2611		if (ret < 0)
2612			return ret;
2613
2614		/* Enable the entry */
2615		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2616				 (1 << (31 - i)), TSU_TEN);
2617	}
2618
2619	/* Entry found or created, enable POST */
2620	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2621
2622	return 0;
2623}
2624
2625static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2626{
2627	struct sh_eth_private *mdp = netdev_priv(ndev);
2628	int i, ret;
2629
2630	if (!mdp->cd->tsu)
2631		return 0;
2632
2633	i = sh_eth_tsu_find_entry(ndev, addr);
2634	if (i) {
2635		/* Entry found */
2636		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2637			goto done;
2638
2639		/* Disable the entry if both ports was disabled */
2640		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2641		if (ret < 0)
2642			return ret;
2643	}
2644done:
2645	return 0;
2646}
2647
2648static int sh_eth_tsu_purge_all(struct net_device *ndev)
2649{
2650	struct sh_eth_private *mdp = netdev_priv(ndev);
2651	int i, ret;
2652
2653	if (!mdp->cd->tsu)
2654		return 0;
2655
2656	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2657		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2658			continue;
2659
2660		/* Disable the entry if both ports was disabled */
2661		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2662		if (ret < 0)
2663			return ret;
2664	}
2665
2666	return 0;
2667}
2668
2669static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2670{
2671	struct sh_eth_private *mdp = netdev_priv(ndev);
2672	u8 addr[ETH_ALEN];
2673	void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2674	int i;
2675
2676	if (!mdp->cd->tsu)
2677		return;
2678
2679	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2680		sh_eth_tsu_read_entry(reg_offset, addr);
2681		if (is_multicast_ether_addr(addr))
2682			sh_eth_tsu_del_entry(ndev, addr);
2683	}
2684}
2685
2686/* Update promiscuous flag and multicast filter */
2687static void sh_eth_set_rx_mode(struct net_device *ndev)
2688{
2689	struct sh_eth_private *mdp = netdev_priv(ndev);
2690	u32 ecmr_bits;
2691	int mcast_all = 0;
2692	unsigned long flags;
2693
2694	spin_lock_irqsave(&mdp->lock, flags);
2695	/* Initial condition is MCT = 1, PRM = 0.
2696	 * Depending on ndev->flags, set PRM or clear MCT
2697	 */
2698	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2699	if (mdp->cd->tsu)
2700		ecmr_bits |= ECMR_MCT;
2701
2702	if (!(ndev->flags & IFF_MULTICAST)) {
2703		sh_eth_tsu_purge_mcast(ndev);
2704		mcast_all = 1;
2705	}
2706	if (ndev->flags & IFF_ALLMULTI) {
2707		sh_eth_tsu_purge_mcast(ndev);
2708		ecmr_bits &= ~ECMR_MCT;
2709		mcast_all = 1;
2710	}
2711
2712	if (ndev->flags & IFF_PROMISC) {
2713		sh_eth_tsu_purge_all(ndev);
2714		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2715	} else if (mdp->cd->tsu) {
2716		struct netdev_hw_addr *ha;
2717		netdev_for_each_mc_addr(ha, ndev) {
2718			if (mcast_all && is_multicast_ether_addr(ha->addr))
2719				continue;
2720
2721			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2722				if (!mcast_all) {
2723					sh_eth_tsu_purge_mcast(ndev);
2724					ecmr_bits &= ~ECMR_MCT;
2725					mcast_all = 1;
2726				}
2727			}
2728		}
2729	}
2730
2731	/* update the ethernet mode */
2732	sh_eth_write(ndev, ecmr_bits, ECMR);
2733
2734	spin_unlock_irqrestore(&mdp->lock, flags);
2735}
2736
2737static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2738{
2739	if (!mdp->port)
2740		return TSU_VTAG0;
2741	else
2742		return TSU_VTAG1;
2743}
2744
2745static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2746				  __be16 proto, u16 vid)
2747{
2748	struct sh_eth_private *mdp = netdev_priv(ndev);
2749	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2750
2751	if (unlikely(!mdp->cd->tsu))
2752		return -EPERM;
2753
2754	/* No filtering if vid = 0 */
2755	if (!vid)
2756		return 0;
2757
2758	mdp->vlan_num_ids++;
2759
2760	/* The controller has one VLAN tag HW filter. So, if the filter is
2761	 * already enabled, the driver disables it and the filte
2762	 */
2763	if (mdp->vlan_num_ids > 1) {
2764		/* disable VLAN filter */
2765		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2766		return 0;
2767	}
2768
2769	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2770			 vtag_reg_index);
2771
2772	return 0;
2773}
2774
2775static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2776				   __be16 proto, u16 vid)
2777{
2778	struct sh_eth_private *mdp = netdev_priv(ndev);
2779	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2780
2781	if (unlikely(!mdp->cd->tsu))
2782		return -EPERM;
2783
2784	/* No filtering if vid = 0 */
2785	if (!vid)
2786		return 0;
2787
2788	mdp->vlan_num_ids--;
2789	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2790
2791	return 0;
2792}
2793
2794/* SuperH's TSU register init function */
2795static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2796{
2797	if (sh_eth_is_rz_fast_ether(mdp)) {
2798		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2799		return;
2800	}
2801
2802	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2803	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2804	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2805	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2806	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2807	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
2808	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
2809	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
2810	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
2811	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
2812	if (sh_eth_is_gether(mdp)) {
2813		sh_eth_tsu_write(mdp, 0, TSU_QTAG0);	/* Disable QTAG(0->1) */
2814		sh_eth_tsu_write(mdp, 0, TSU_QTAG1);	/* Disable QTAG(1->0) */
2815	} else {
2816		sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
2817		sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
2818	}
2819	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
2820	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
2821	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
2822	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
2823	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
2824	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
2825	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
2826}
2827
2828/* MDIO bus release function */
2829static int sh_mdio_release(struct sh_eth_private *mdp)
2830{
2831	/* unregister mdio bus */
2832	mdiobus_unregister(mdp->mii_bus);
2833
2834	/* free bitbang info */
2835	free_mdio_bitbang(mdp->mii_bus);
2836
2837	return 0;
2838}
2839
2840/* MDIO bus init function */
2841static int sh_mdio_init(struct sh_eth_private *mdp,
2842			struct sh_eth_plat_data *pd)
2843{
2844	int ret;
2845	struct bb_info *bitbang;
2846	struct platform_device *pdev = mdp->pdev;
2847	struct device *dev = &mdp->pdev->dev;
2848
2849	/* create bit control struct for PHY */
2850	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
2851	if (!bitbang)
2852		return -ENOMEM;
2853
2854	/* bitbang init */
2855	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
2856	bitbang->set_gate = pd->set_mdio_gate;
2857	bitbang->ctrl.ops = &bb_ops;
2858
2859	/* MII controller setting */
2860	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
2861	if (!mdp->mii_bus)
2862		return -ENOMEM;
2863
2864	/* Hook up MII support for ethtool */
2865	mdp->mii_bus->name = "sh_mii";
2866	mdp->mii_bus->parent = dev;
2867	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2868		 pdev->name, pdev->id);
2869
2870	/* register MDIO bus */
2871	if (dev->of_node) {
2872		ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
2873	} else {
2874		if (pd->phy_irq > 0)
2875			mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
2876
2877		ret = mdiobus_register(mdp->mii_bus);
2878	}
2879
2880	if (ret)
2881		goto out_free_bus;
2882
2883	return 0;
2884
2885out_free_bus:
2886	free_mdio_bitbang(mdp->mii_bus);
2887	return ret;
2888}
2889
2890static const u16 *sh_eth_get_register_offset(int register_type)
2891{
2892	const u16 *reg_offset = NULL;
2893
2894	switch (register_type) {
2895	case SH_ETH_REG_GIGABIT:
2896		reg_offset = sh_eth_offset_gigabit;
2897		break;
2898	case SH_ETH_REG_FAST_RZ:
2899		reg_offset = sh_eth_offset_fast_rz;
2900		break;
2901	case SH_ETH_REG_FAST_RCAR:
2902		reg_offset = sh_eth_offset_fast_rcar;
2903		break;
2904	case SH_ETH_REG_FAST_SH4:
2905		reg_offset = sh_eth_offset_fast_sh4;
2906		break;
2907	case SH_ETH_REG_FAST_SH3_SH2:
2908		reg_offset = sh_eth_offset_fast_sh3_sh2;
2909		break;
2910	}
2911
2912	return reg_offset;
2913}
2914
2915static const struct net_device_ops sh_eth_netdev_ops = {
2916	.ndo_open		= sh_eth_open,
2917	.ndo_stop		= sh_eth_close,
2918	.ndo_start_xmit		= sh_eth_start_xmit,
2919	.ndo_get_stats		= sh_eth_get_stats,
2920	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
2921	.ndo_tx_timeout		= sh_eth_tx_timeout,
2922	.ndo_do_ioctl		= sh_eth_do_ioctl,
2923	.ndo_validate_addr	= eth_validate_addr,
2924	.ndo_set_mac_address	= eth_mac_addr,
2925	.ndo_change_mtu		= eth_change_mtu,
2926};
2927
2928static const struct net_device_ops sh_eth_netdev_ops_tsu = {
2929	.ndo_open		= sh_eth_open,
2930	.ndo_stop		= sh_eth_close,
2931	.ndo_start_xmit		= sh_eth_start_xmit,
2932	.ndo_get_stats		= sh_eth_get_stats,
2933	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
2934	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
2935	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
2936	.ndo_tx_timeout		= sh_eth_tx_timeout,
2937	.ndo_do_ioctl		= sh_eth_do_ioctl,
2938	.ndo_validate_addr	= eth_validate_addr,
2939	.ndo_set_mac_address	= eth_mac_addr,
2940	.ndo_change_mtu		= eth_change_mtu,
2941};
2942
2943#ifdef CONFIG_OF
2944static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2945{
2946	struct device_node *np = dev->of_node;
2947	struct sh_eth_plat_data *pdata;
2948	const char *mac_addr;
2949
2950	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2951	if (!pdata)
2952		return NULL;
2953
2954	pdata->phy_interface = of_get_phy_mode(np);
2955
2956	mac_addr = of_get_mac_address(np);
2957	if (mac_addr)
2958		memcpy(pdata->mac_addr, mac_addr, ETH_ALEN);
2959
2960	pdata->no_ether_link =
2961		of_property_read_bool(np, "renesas,no-ether-link");
2962	pdata->ether_link_active_low =
2963		of_property_read_bool(np, "renesas,ether-link-active-low");
2964
2965	return pdata;
2966}
2967
2968static const struct of_device_id sh_eth_match_table[] = {
2969	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
2970	{ .compatible = "renesas,ether-r8a7778", .data = &r8a777x_data },
2971	{ .compatible = "renesas,ether-r8a7779", .data = &r8a777x_data },
2972	{ .compatible = "renesas,ether-r8a7790", .data = &r8a779x_data },
2973	{ .compatible = "renesas,ether-r8a7791", .data = &r8a779x_data },
2974	{ .compatible = "renesas,ether-r8a7793", .data = &r8a779x_data },
2975	{ .compatible = "renesas,ether-r8a7794", .data = &r8a779x_data },
2976	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
2977	{ }
2978};
2979MODULE_DEVICE_TABLE(of, sh_eth_match_table);
2980#else
2981static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
2982{
2983	return NULL;
2984}
2985#endif
2986
2987static int sh_eth_drv_probe(struct platform_device *pdev)
2988{
2989	struct resource *res;
2990	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
2991	const struct platform_device_id *id = platform_get_device_id(pdev);
2992	struct sh_eth_private *mdp;
2993	struct net_device *ndev;
2994	int ret, devno;
2995
2996	/* get base addr */
2997	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2998
2999	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3000	if (!ndev)
3001		return -ENOMEM;
3002
3003	pm_runtime_enable(&pdev->dev);
3004	pm_runtime_get_sync(&pdev->dev);
3005
3006	devno = pdev->id;
3007	if (devno < 0)
3008		devno = 0;
3009
3010	ndev->dma = -1;
3011	ret = platform_get_irq(pdev, 0);
3012	if (ret < 0)
3013		goto out_release;
3014	ndev->irq = ret;
3015
3016	SET_NETDEV_DEV(ndev, &pdev->dev);
3017
3018	mdp = netdev_priv(ndev);
3019	mdp->num_tx_ring = TX_RING_SIZE;
3020	mdp->num_rx_ring = RX_RING_SIZE;
3021	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3022	if (IS_ERR(mdp->addr)) {
3023		ret = PTR_ERR(mdp->addr);
3024		goto out_release;
3025	}
3026
3027	ndev->base_addr = res->start;
3028
3029	spin_lock_init(&mdp->lock);
3030	mdp->pdev = pdev;
3031
3032	if (pdev->dev.of_node)
3033		pd = sh_eth_parse_dt(&pdev->dev);
3034	if (!pd) {
3035		dev_err(&pdev->dev, "no platform data\n");
3036		ret = -EINVAL;
3037		goto out_release;
3038	}
3039
3040	/* get PHY ID */
3041	mdp->phy_id = pd->phy;
3042	mdp->phy_interface = pd->phy_interface;
3043	mdp->no_ether_link = pd->no_ether_link;
3044	mdp->ether_link_active_low = pd->ether_link_active_low;
3045
3046	/* set cpu data */
3047	if (id)
3048		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3049	else
3050		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3051
3052	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3053	if (!mdp->reg_offset) {
3054		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3055			mdp->cd->register_type);
3056		ret = -EINVAL;
3057		goto out_release;
3058	}
3059	sh_eth_set_default_cpu_data(mdp->cd);
3060
3061	/* set function */
3062	if (mdp->cd->tsu)
3063		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3064	else
3065		ndev->netdev_ops = &sh_eth_netdev_ops;
3066	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3067	ndev->watchdog_timeo = TX_TIMEOUT;
3068
3069	/* debug message level */
3070	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3071
3072	/* read and set MAC address */
3073	read_mac_address(ndev, pd->mac_addr);
3074	if (!is_valid_ether_addr(ndev->dev_addr)) {
3075		dev_warn(&pdev->dev,
3076			 "no valid MAC address supplied, using a random one.\n");
3077		eth_hw_addr_random(ndev);
3078	}
3079
3080	/* ioremap the TSU registers */
3081	if (mdp->cd->tsu) {
3082		struct resource *rtsu;
3083		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3084		mdp->tsu_addr = devm_ioremap_resource(&pdev->dev, rtsu);
3085		if (IS_ERR(mdp->tsu_addr)) {
3086			ret = PTR_ERR(mdp->tsu_addr);
3087			goto out_release;
3088		}
3089		mdp->port = devno % 2;
3090		ndev->features = NETIF_F_HW_VLAN_CTAG_FILTER;
3091	}
3092
3093	/* initialize first or needed device */
3094	if (!devno || pd->needs_init) {
3095		if (mdp->cd->chip_reset)
3096			mdp->cd->chip_reset(ndev);
3097
3098		if (mdp->cd->tsu) {
3099			/* TSU init (Init only)*/
3100			sh_eth_tsu_init(mdp);
3101		}
3102	}
3103
3104	if (mdp->cd->rmiimode)
3105		sh_eth_write(ndev, 0x1, RMIIMODE);
3106
3107	/* MDIO bus init */
3108	ret = sh_mdio_init(mdp, pd);
3109	if (ret) {
3110		dev_err(&ndev->dev, "failed to initialise MDIO\n");
3111		goto out_release;
3112	}
3113
3114	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3115
3116	/* network device register */
3117	ret = register_netdev(ndev);
3118	if (ret)
3119		goto out_napi_del;
3120
3121	/* print device information */
3122	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3123		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3124
3125	pm_runtime_put(&pdev->dev);
3126	platform_set_drvdata(pdev, ndev);
3127
3128	return ret;
3129
3130out_napi_del:
3131	netif_napi_del(&mdp->napi);
3132	sh_mdio_release(mdp);
3133
3134out_release:
3135	/* net_dev free */
3136	if (ndev)
3137		free_netdev(ndev);
3138
3139	pm_runtime_put(&pdev->dev);
3140	pm_runtime_disable(&pdev->dev);
3141	return ret;
3142}
3143
3144static int sh_eth_drv_remove(struct platform_device *pdev)
3145{
3146	struct net_device *ndev = platform_get_drvdata(pdev);
3147	struct sh_eth_private *mdp = netdev_priv(ndev);
3148
3149	unregister_netdev(ndev);
3150	netif_napi_del(&mdp->napi);
3151	sh_mdio_release(mdp);
3152	pm_runtime_disable(&pdev->dev);
3153	free_netdev(ndev);
3154
3155	return 0;
3156}
3157
3158#ifdef CONFIG_PM
3159#ifdef CONFIG_PM_SLEEP
3160static int sh_eth_suspend(struct device *dev)
3161{
3162	struct net_device *ndev = dev_get_drvdata(dev);
3163	int ret = 0;
3164
3165	if (netif_running(ndev)) {
3166		netif_device_detach(ndev);
3167		ret = sh_eth_close(ndev);
3168	}
3169
3170	return ret;
3171}
3172
3173static int sh_eth_resume(struct device *dev)
3174{
3175	struct net_device *ndev = dev_get_drvdata(dev);
3176	int ret = 0;
3177
3178	if (netif_running(ndev)) {
3179		ret = sh_eth_open(ndev);
3180		if (ret < 0)
3181			return ret;
3182		netif_device_attach(ndev);
3183	}
3184
3185	return ret;
3186}
3187#endif
3188
3189static int sh_eth_runtime_nop(struct device *dev)
3190{
3191	/* Runtime PM callback shared between ->runtime_suspend()
3192	 * and ->runtime_resume(). Simply returns success.
3193	 *
3194	 * This driver re-initializes all registers after
3195	 * pm_runtime_get_sync() anyway so there is no need
3196	 * to save and restore registers here.
3197	 */
3198	return 0;
3199}
3200
3201static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3202	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3203	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3204};
3205#define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3206#else
3207#define SH_ETH_PM_OPS NULL
3208#endif
3209
3210static struct platform_device_id sh_eth_id_table[] = {
3211	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3212	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3213	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3214	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3215	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3216	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3217	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3218	{ }
3219};
3220MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3221
3222static struct platform_driver sh_eth_driver = {
3223	.probe = sh_eth_drv_probe,
3224	.remove = sh_eth_drv_remove,
3225	.id_table = sh_eth_id_table,
3226	.driver = {
3227		   .name = CARDNAME,
3228		   .pm = SH_ETH_PM_OPS,
3229		   .of_match_table = of_match_ptr(sh_eth_match_table),
3230	},
3231};
3232
3233module_platform_driver(sh_eth_driver);
3234
3235MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3236MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3237MODULE_LICENSE("GPL v2");