Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*  SuperH Ethernet device driver
   3 *
   4 *  Copyright (C) 2014 Renesas Electronics Corporation
   5 *  Copyright (C) 2006-2012 Nobuhiro Iwamatsu
   6 *  Copyright (C) 2008-2014 Renesas Solutions Corp.
   7 *  Copyright (C) 2013-2017 Cogent Embedded, Inc.
   8 *  Copyright (C) 2014 Codethink Limited
   9 */
  10
  11#include <linux/module.h>
  12#include <linux/kernel.h>
  13#include <linux/spinlock.h>
  14#include <linux/interrupt.h>
  15#include <linux/dma-mapping.h>
  16#include <linux/etherdevice.h>
  17#include <linux/delay.h>
  18#include <linux/platform_device.h>
  19#include <linux/mdio-bitbang.h>
  20#include <linux/netdevice.h>
  21#include <linux/of.h>
  22#include <linux/of_device.h>
  23#include <linux/of_irq.h>
  24#include <linux/of_net.h>
  25#include <linux/phy.h>
  26#include <linux/cache.h>
  27#include <linux/io.h>
  28#include <linux/pm_runtime.h>
  29#include <linux/slab.h>
  30#include <linux/ethtool.h>
  31#include <linux/if_vlan.h>
  32#include <linux/sh_eth.h>
  33#include <linux/of_mdio.h>
  34
  35#include "sh_eth.h"
  36
  37#define SH_ETH_DEF_MSG_ENABLE \
  38		(NETIF_MSG_LINK	| \
  39		NETIF_MSG_TIMER	| \
  40		NETIF_MSG_RX_ERR| \
  41		NETIF_MSG_TX_ERR)
  42
  43#define SH_ETH_OFFSET_INVALID	((u16)~0)
  44
  45#define SH_ETH_OFFSET_DEFAULTS			\
  46	[0 ... SH_ETH_MAX_REGISTER_OFFSET - 1] = SH_ETH_OFFSET_INVALID
  47
  48static const u16 sh_eth_offset_gigabit[SH_ETH_MAX_REGISTER_OFFSET] = {
  49	SH_ETH_OFFSET_DEFAULTS,
  50
  51	[EDSR]		= 0x0000,
  52	[EDMR]		= 0x0400,
  53	[EDTRR]		= 0x0408,
  54	[EDRRR]		= 0x0410,
  55	[EESR]		= 0x0428,
  56	[EESIPR]	= 0x0430,
  57	[TDLAR]		= 0x0010,
  58	[TDFAR]		= 0x0014,
  59	[TDFXR]		= 0x0018,
  60	[TDFFR]		= 0x001c,
  61	[RDLAR]		= 0x0030,
  62	[RDFAR]		= 0x0034,
  63	[RDFXR]		= 0x0038,
  64	[RDFFR]		= 0x003c,
  65	[TRSCER]	= 0x0438,
  66	[RMFCR]		= 0x0440,
  67	[TFTR]		= 0x0448,
  68	[FDR]		= 0x0450,
  69	[RMCR]		= 0x0458,
  70	[RPADIR]	= 0x0460,
  71	[FCFTR]		= 0x0468,
  72	[CSMR]		= 0x04E4,
  73
  74	[ECMR]		= 0x0500,
  75	[ECSR]		= 0x0510,
  76	[ECSIPR]	= 0x0518,
  77	[PIR]		= 0x0520,
  78	[PSR]		= 0x0528,
  79	[PIPR]		= 0x052c,
  80	[RFLR]		= 0x0508,
  81	[APR]		= 0x0554,
  82	[MPR]		= 0x0558,
  83	[PFTCR]		= 0x055c,
  84	[PFRCR]		= 0x0560,
  85	[TPAUSER]	= 0x0564,
  86	[GECMR]		= 0x05b0,
  87	[BCULR]		= 0x05b4,
  88	[MAHR]		= 0x05c0,
  89	[MALR]		= 0x05c8,
  90	[TROCR]		= 0x0700,
  91	[CDCR]		= 0x0708,
  92	[LCCR]		= 0x0710,
  93	[CEFCR]		= 0x0740,
  94	[FRECR]		= 0x0748,
  95	[TSFRCR]	= 0x0750,
  96	[TLFRCR]	= 0x0758,
  97	[RFCR]		= 0x0760,
  98	[CERCR]		= 0x0768,
  99	[CEECR]		= 0x0770,
 100	[MAFCR]		= 0x0778,
 101	[RMII_MII]	= 0x0790,
 102
 103	[ARSTR]		= 0x0000,
 104	[TSU_CTRST]	= 0x0004,
 105	[TSU_FWEN0]	= 0x0010,
 106	[TSU_FWEN1]	= 0x0014,
 107	[TSU_FCM]	= 0x0018,
 108	[TSU_BSYSL0]	= 0x0020,
 109	[TSU_BSYSL1]	= 0x0024,
 110	[TSU_PRISL0]	= 0x0028,
 111	[TSU_PRISL1]	= 0x002c,
 112	[TSU_FWSL0]	= 0x0030,
 113	[TSU_FWSL1]	= 0x0034,
 114	[TSU_FWSLC]	= 0x0038,
 115	[TSU_QTAGM0]	= 0x0040,
 116	[TSU_QTAGM1]	= 0x0044,
 117	[TSU_FWSR]	= 0x0050,
 118	[TSU_FWINMK]	= 0x0054,
 119	[TSU_ADQT0]	= 0x0048,
 120	[TSU_ADQT1]	= 0x004c,
 121	[TSU_VTAG0]	= 0x0058,
 122	[TSU_VTAG1]	= 0x005c,
 123	[TSU_ADSBSY]	= 0x0060,
 124	[TSU_TEN]	= 0x0064,
 125	[TSU_POST1]	= 0x0070,
 126	[TSU_POST2]	= 0x0074,
 127	[TSU_POST3]	= 0x0078,
 128	[TSU_POST4]	= 0x007c,
 129	[TSU_ADRH0]	= 0x0100,
 130
 131	[TXNLCR0]	= 0x0080,
 132	[TXALCR0]	= 0x0084,
 133	[RXNLCR0]	= 0x0088,
 134	[RXALCR0]	= 0x008c,
 135	[FWNLCR0]	= 0x0090,
 136	[FWALCR0]	= 0x0094,
 137	[TXNLCR1]	= 0x00a0,
 138	[TXALCR1]	= 0x00a4,
 139	[RXNLCR1]	= 0x00a8,
 140	[RXALCR1]	= 0x00ac,
 141	[FWNLCR1]	= 0x00b0,
 142	[FWALCR1]	= 0x00b4,
 143};
 144
 145static const u16 sh_eth_offset_fast_rcar[SH_ETH_MAX_REGISTER_OFFSET] = {
 146	SH_ETH_OFFSET_DEFAULTS,
 147
 148	[ECMR]		= 0x0300,
 149	[RFLR]		= 0x0308,
 150	[ECSR]		= 0x0310,
 151	[ECSIPR]	= 0x0318,
 152	[PIR]		= 0x0320,
 153	[PSR]		= 0x0328,
 154	[RDMLR]		= 0x0340,
 155	[IPGR]		= 0x0350,
 156	[APR]		= 0x0354,
 157	[MPR]		= 0x0358,
 158	[RFCF]		= 0x0360,
 159	[TPAUSER]	= 0x0364,
 160	[TPAUSECR]	= 0x0368,
 161	[MAHR]		= 0x03c0,
 162	[MALR]		= 0x03c8,
 163	[TROCR]		= 0x03d0,
 164	[CDCR]		= 0x03d4,
 165	[LCCR]		= 0x03d8,
 166	[CNDCR]		= 0x03dc,
 167	[CEFCR]		= 0x03e4,
 168	[FRECR]		= 0x03e8,
 169	[TSFRCR]	= 0x03ec,
 170	[TLFRCR]	= 0x03f0,
 171	[RFCR]		= 0x03f4,
 172	[MAFCR]		= 0x03f8,
 173
 174	[EDMR]		= 0x0200,
 175	[EDTRR]		= 0x0208,
 176	[EDRRR]		= 0x0210,
 177	[TDLAR]		= 0x0218,
 178	[RDLAR]		= 0x0220,
 179	[EESR]		= 0x0228,
 180	[EESIPR]	= 0x0230,
 181	[TRSCER]	= 0x0238,
 182	[RMFCR]		= 0x0240,
 183	[TFTR]		= 0x0248,
 184	[FDR]		= 0x0250,
 185	[RMCR]		= 0x0258,
 186	[TFUCR]		= 0x0264,
 187	[RFOCR]		= 0x0268,
 188	[RMIIMODE]      = 0x026c,
 189	[FCFTR]		= 0x0270,
 190	[TRIMD]		= 0x027c,
 191};
 192
 193static const u16 sh_eth_offset_fast_sh4[SH_ETH_MAX_REGISTER_OFFSET] = {
 194	SH_ETH_OFFSET_DEFAULTS,
 195
 196	[ECMR]		= 0x0100,
 197	[RFLR]		= 0x0108,
 198	[ECSR]		= 0x0110,
 199	[ECSIPR]	= 0x0118,
 200	[PIR]		= 0x0120,
 201	[PSR]		= 0x0128,
 202	[RDMLR]		= 0x0140,
 203	[IPGR]		= 0x0150,
 204	[APR]		= 0x0154,
 205	[MPR]		= 0x0158,
 206	[TPAUSER]	= 0x0164,
 207	[RFCF]		= 0x0160,
 208	[TPAUSECR]	= 0x0168,
 209	[BCFRR]		= 0x016c,
 210	[MAHR]		= 0x01c0,
 211	[MALR]		= 0x01c8,
 212	[TROCR]		= 0x01d0,
 213	[CDCR]		= 0x01d4,
 214	[LCCR]		= 0x01d8,
 215	[CNDCR]		= 0x01dc,
 216	[CEFCR]		= 0x01e4,
 217	[FRECR]		= 0x01e8,
 218	[TSFRCR]	= 0x01ec,
 219	[TLFRCR]	= 0x01f0,
 220	[RFCR]		= 0x01f4,
 221	[MAFCR]		= 0x01f8,
 222	[RTRATE]	= 0x01fc,
 223
 224	[EDMR]		= 0x0000,
 225	[EDTRR]		= 0x0008,
 226	[EDRRR]		= 0x0010,
 227	[TDLAR]		= 0x0018,
 228	[RDLAR]		= 0x0020,
 229	[EESR]		= 0x0028,
 230	[EESIPR]	= 0x0030,
 231	[TRSCER]	= 0x0038,
 232	[RMFCR]		= 0x0040,
 233	[TFTR]		= 0x0048,
 234	[FDR]		= 0x0050,
 235	[RMCR]		= 0x0058,
 236	[TFUCR]		= 0x0064,
 237	[RFOCR]		= 0x0068,
 238	[FCFTR]		= 0x0070,
 239	[RPADIR]	= 0x0078,
 240	[TRIMD]		= 0x007c,
 241	[RBWAR]		= 0x00c8,
 242	[RDFAR]		= 0x00cc,
 243	[TBRAR]		= 0x00d4,
 244	[TDFAR]		= 0x00d8,
 245};
 246
 247static const u16 sh_eth_offset_fast_sh3_sh2[SH_ETH_MAX_REGISTER_OFFSET] = {
 248	SH_ETH_OFFSET_DEFAULTS,
 249
 250	[EDMR]		= 0x0000,
 251	[EDTRR]		= 0x0004,
 252	[EDRRR]		= 0x0008,
 253	[TDLAR]		= 0x000c,
 254	[RDLAR]		= 0x0010,
 255	[EESR]		= 0x0014,
 256	[EESIPR]	= 0x0018,
 257	[TRSCER]	= 0x001c,
 258	[RMFCR]		= 0x0020,
 259	[TFTR]		= 0x0024,
 260	[FDR]		= 0x0028,
 261	[RMCR]		= 0x002c,
 262	[EDOCR]		= 0x0030,
 263	[FCFTR]		= 0x0034,
 264	[RPADIR]	= 0x0038,
 265	[TRIMD]		= 0x003c,
 266	[RBWAR]		= 0x0040,
 267	[RDFAR]		= 0x0044,
 268	[TBRAR]		= 0x004c,
 269	[TDFAR]		= 0x0050,
 270
 271	[ECMR]		= 0x0160,
 272	[ECSR]		= 0x0164,
 273	[ECSIPR]	= 0x0168,
 274	[PIR]		= 0x016c,
 275	[MAHR]		= 0x0170,
 276	[MALR]		= 0x0174,
 277	[RFLR]		= 0x0178,
 278	[PSR]		= 0x017c,
 279	[TROCR]		= 0x0180,
 280	[CDCR]		= 0x0184,
 281	[LCCR]		= 0x0188,
 282	[CNDCR]		= 0x018c,
 283	[CEFCR]		= 0x0194,
 284	[FRECR]		= 0x0198,
 285	[TSFRCR]	= 0x019c,
 286	[TLFRCR]	= 0x01a0,
 287	[RFCR]		= 0x01a4,
 288	[MAFCR]		= 0x01a8,
 289	[IPGR]		= 0x01b4,
 290	[APR]		= 0x01b8,
 291	[MPR]		= 0x01bc,
 292	[TPAUSER]	= 0x01c4,
 293	[BCFR]		= 0x01cc,
 294
 295	[ARSTR]		= 0x0000,
 296	[TSU_CTRST]	= 0x0004,
 297	[TSU_FWEN0]	= 0x0010,
 298	[TSU_FWEN1]	= 0x0014,
 299	[TSU_FCM]	= 0x0018,
 300	[TSU_BSYSL0]	= 0x0020,
 301	[TSU_BSYSL1]	= 0x0024,
 302	[TSU_PRISL0]	= 0x0028,
 303	[TSU_PRISL1]	= 0x002c,
 304	[TSU_FWSL0]	= 0x0030,
 305	[TSU_FWSL1]	= 0x0034,
 306	[TSU_FWSLC]	= 0x0038,
 307	[TSU_QTAGM0]	= 0x0040,
 308	[TSU_QTAGM1]	= 0x0044,
 309	[TSU_ADQT0]	= 0x0048,
 310	[TSU_ADQT1]	= 0x004c,
 311	[TSU_FWSR]	= 0x0050,
 312	[TSU_FWINMK]	= 0x0054,
 313	[TSU_ADSBSY]	= 0x0060,
 314	[TSU_TEN]	= 0x0064,
 315	[TSU_POST1]	= 0x0070,
 316	[TSU_POST2]	= 0x0074,
 317	[TSU_POST3]	= 0x0078,
 318	[TSU_POST4]	= 0x007c,
 319
 320	[TXNLCR0]	= 0x0080,
 321	[TXALCR0]	= 0x0084,
 322	[RXNLCR0]	= 0x0088,
 323	[RXALCR0]	= 0x008c,
 324	[FWNLCR0]	= 0x0090,
 325	[FWALCR0]	= 0x0094,
 326	[TXNLCR1]	= 0x00a0,
 327	[TXALCR1]	= 0x00a4,
 328	[RXNLCR1]	= 0x00a8,
 329	[RXALCR1]	= 0x00ac,
 330	[FWNLCR1]	= 0x00b0,
 331	[FWALCR1]	= 0x00b4,
 332
 333	[TSU_ADRH0]	= 0x0100,
 334};
 335
 336static void sh_eth_rcv_snd_disable(struct net_device *ndev);
 337static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev);
 338
 339static void sh_eth_write(struct net_device *ndev, u32 data, int enum_index)
 340{
 341	struct sh_eth_private *mdp = netdev_priv(ndev);
 342	u16 offset = mdp->reg_offset[enum_index];
 343
 344	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
 345		return;
 346
 347	iowrite32(data, mdp->addr + offset);
 348}
 349
 350static u32 sh_eth_read(struct net_device *ndev, int enum_index)
 351{
 352	struct sh_eth_private *mdp = netdev_priv(ndev);
 353	u16 offset = mdp->reg_offset[enum_index];
 354
 355	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
 356		return ~0U;
 357
 358	return ioread32(mdp->addr + offset);
 359}
 360
 361static void sh_eth_modify(struct net_device *ndev, int enum_index, u32 clear,
 362			  u32 set)
 363{
 364	sh_eth_write(ndev, (sh_eth_read(ndev, enum_index) & ~clear) | set,
 365		     enum_index);
 366}
 367
 368static u16 sh_eth_tsu_get_offset(struct sh_eth_private *mdp, int enum_index)
 369{
 370	return mdp->reg_offset[enum_index];
 371}
 372
 373static void sh_eth_tsu_write(struct sh_eth_private *mdp, u32 data,
 374			     int enum_index)
 375{
 376	u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
 377
 378	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
 379		return;
 380
 381	iowrite32(data, mdp->tsu_addr + offset);
 382}
 383
 384static u32 sh_eth_tsu_read(struct sh_eth_private *mdp, int enum_index)
 385{
 386	u16 offset = sh_eth_tsu_get_offset(mdp, enum_index);
 387
 388	if (WARN_ON(offset == SH_ETH_OFFSET_INVALID))
 389		return ~0U;
 390
 391	return ioread32(mdp->tsu_addr + offset);
 392}
 393
 394static void sh_eth_soft_swap(char *src, int len)
 395{
 396#ifdef __LITTLE_ENDIAN
 397	u32 *p = (u32 *)src;
 398	u32 *maxp = p + DIV_ROUND_UP(len, sizeof(u32));
 399
 400	for (; p < maxp; p++)
 401		*p = swab32(*p);
 402#endif
 403}
 404
 405static void sh_eth_select_mii(struct net_device *ndev)
 406{
 407	struct sh_eth_private *mdp = netdev_priv(ndev);
 408	u32 value;
 409
 410	switch (mdp->phy_interface) {
 411	case PHY_INTERFACE_MODE_RGMII ... PHY_INTERFACE_MODE_RGMII_TXID:
 412		value = 0x3;
 413		break;
 414	case PHY_INTERFACE_MODE_GMII:
 415		value = 0x2;
 416		break;
 417	case PHY_INTERFACE_MODE_MII:
 418		value = 0x1;
 419		break;
 420	case PHY_INTERFACE_MODE_RMII:
 421		value = 0x0;
 422		break;
 423	default:
 424		netdev_warn(ndev,
 425			    "PHY interface mode was not setup. Set to MII.\n");
 426		value = 0x1;
 427		break;
 428	}
 429
 430	sh_eth_write(ndev, value, RMII_MII);
 431}
 432
 433static void sh_eth_set_duplex(struct net_device *ndev)
 434{
 435	struct sh_eth_private *mdp = netdev_priv(ndev);
 436
 437	sh_eth_modify(ndev, ECMR, ECMR_DM, mdp->duplex ? ECMR_DM : 0);
 438}
 439
 440static void sh_eth_chip_reset(struct net_device *ndev)
 441{
 442	struct sh_eth_private *mdp = netdev_priv(ndev);
 443
 444	/* reset device */
 445	sh_eth_tsu_write(mdp, ARSTR_ARST, ARSTR);
 446	mdelay(1);
 447}
 448
 449static int sh_eth_soft_reset(struct net_device *ndev)
 450{
 451	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, EDMR_SRST_ETHER);
 452	mdelay(3);
 453	sh_eth_modify(ndev, EDMR, EDMR_SRST_ETHER, 0);
 454
 455	return 0;
 456}
 457
 458static int sh_eth_check_soft_reset(struct net_device *ndev)
 459{
 460	int cnt;
 461
 462	for (cnt = 100; cnt > 0; cnt--) {
 463		if (!(sh_eth_read(ndev, EDMR) & EDMR_SRST_GETHER))
 464			return 0;
 465		mdelay(1);
 466	}
 467
 468	netdev_err(ndev, "Device reset failed\n");
 469	return -ETIMEDOUT;
 470}
 471
 472static int sh_eth_soft_reset_gether(struct net_device *ndev)
 473{
 474	struct sh_eth_private *mdp = netdev_priv(ndev);
 475	int ret;
 476
 477	sh_eth_write(ndev, EDSR_ENALL, EDSR);
 478	sh_eth_modify(ndev, EDMR, EDMR_SRST_GETHER, EDMR_SRST_GETHER);
 479
 480	ret = sh_eth_check_soft_reset(ndev);
 481	if (ret)
 482		return ret;
 483
 484	/* Table Init */
 485	sh_eth_write(ndev, 0, TDLAR);
 486	sh_eth_write(ndev, 0, TDFAR);
 487	sh_eth_write(ndev, 0, TDFXR);
 488	sh_eth_write(ndev, 0, TDFFR);
 489	sh_eth_write(ndev, 0, RDLAR);
 490	sh_eth_write(ndev, 0, RDFAR);
 491	sh_eth_write(ndev, 0, RDFXR);
 492	sh_eth_write(ndev, 0, RDFFR);
 493
 494	/* Reset HW CRC register */
 495	if (mdp->cd->csmr)
 496		sh_eth_write(ndev, 0, CSMR);
 497
 498	/* Select MII mode */
 499	if (mdp->cd->select_mii)
 500		sh_eth_select_mii(ndev);
 501
 502	return ret;
 503}
 504
 505static void sh_eth_set_rate_gether(struct net_device *ndev)
 506{
 507	struct sh_eth_private *mdp = netdev_priv(ndev);
 508
 509	if (WARN_ON(!mdp->cd->gecmr))
 510		return;
 511
 512	switch (mdp->speed) {
 513	case 10: /* 10BASE */
 514		sh_eth_write(ndev, GECMR_10, GECMR);
 515		break;
 516	case 100:/* 100BASE */
 517		sh_eth_write(ndev, GECMR_100, GECMR);
 518		break;
 519	case 1000: /* 1000BASE */
 520		sh_eth_write(ndev, GECMR_1000, GECMR);
 521		break;
 522	}
 523}
 524
 525#ifdef CONFIG_OF
 526/* R7S72100 */
 527static struct sh_eth_cpu_data r7s72100_data = {
 528	.soft_reset	= sh_eth_soft_reset_gether,
 529
 530	.chip_reset	= sh_eth_chip_reset,
 531	.set_duplex	= sh_eth_set_duplex,
 532
 533	.register_type	= SH_ETH_REG_GIGABIT,
 534
 535	.edtrr_trns	= EDTRR_TRNS_GETHER,
 536	.ecsr_value	= ECSR_ICD,
 537	.ecsipr_value	= ECSIPR_ICDIP,
 538	.eesipr_value	= EESIPR_TWB1IP | EESIPR_TWBIP | EESIPR_TC1IP |
 539			  EESIPR_TABTIP | EESIPR_RABTIP | EESIPR_RFCOFIP |
 540			  EESIPR_ECIIP |
 541			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 542			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 543			  EESIPR_RMAFIP | EESIPR_RRFIP |
 544			  EESIPR_RTLFIP | EESIPR_RTSFIP |
 545			  EESIPR_PREIP | EESIPR_CERFIP,
 546
 547	.tx_check	= EESR_TC1 | EESR_FTC,
 548	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 549			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
 550			  EESR_TDE,
 551	.fdr_value	= 0x0000070f,
 552
 553	.no_psr		= 1,
 554	.apr		= 1,
 555	.mpr		= 1,
 556	.tpauser	= 1,
 557	.hw_swap	= 1,
 558	.rpadir		= 1,
 559	.no_trimd	= 1,
 560	.no_ade		= 1,
 561	.xdfar_rw	= 1,
 562	.csmr		= 1,
 563	.rx_csum	= 1,
 564	.tsu		= 1,
 565	.no_tx_cntrs	= 1,
 566};
 567
 568static void sh_eth_chip_reset_r8a7740(struct net_device *ndev)
 569{
 570	sh_eth_chip_reset(ndev);
 571
 572	sh_eth_select_mii(ndev);
 573}
 574
 575/* R8A7740 */
 576static struct sh_eth_cpu_data r8a7740_data = {
 577	.soft_reset	= sh_eth_soft_reset_gether,
 578
 579	.chip_reset	= sh_eth_chip_reset_r8a7740,
 580	.set_duplex	= sh_eth_set_duplex,
 581	.set_rate	= sh_eth_set_rate_gether,
 582
 583	.register_type	= SH_ETH_REG_GIGABIT,
 584
 585	.edtrr_trns	= EDTRR_TRNS_GETHER,
 586	.ecsr_value	= ECSR_ICD | ECSR_MPD,
 587	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
 588	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
 589			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 590			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 591			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
 592			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
 593			  EESIPR_CEEFIP | EESIPR_CELFIP |
 594			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
 595			  EESIPR_PREIP | EESIPR_CERFIP,
 596
 597	.tx_check	= EESR_TC1 | EESR_FTC,
 598	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 599			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
 600			  EESR_TDE,
 601	.fdr_value	= 0x0000070f,
 602
 603	.apr		= 1,
 604	.mpr		= 1,
 605	.tpauser	= 1,
 606	.gecmr		= 1,
 607	.bculr		= 1,
 608	.hw_swap	= 1,
 609	.rpadir		= 1,
 610	.no_trimd	= 1,
 611	.no_ade		= 1,
 612	.xdfar_rw	= 1,
 613	.csmr		= 1,
 614	.rx_csum	= 1,
 615	.tsu		= 1,
 616	.select_mii	= 1,
 617	.magic		= 1,
 618	.cexcr		= 1,
 619};
 620
 621/* There is CPU dependent code */
 622static void sh_eth_set_rate_rcar(struct net_device *ndev)
 623{
 624	struct sh_eth_private *mdp = netdev_priv(ndev);
 625
 626	switch (mdp->speed) {
 627	case 10: /* 10BASE */
 628		sh_eth_modify(ndev, ECMR, ECMR_ELB, 0);
 629		break;
 630	case 100:/* 100BASE */
 631		sh_eth_modify(ndev, ECMR, ECMR_ELB, ECMR_ELB);
 632		break;
 633	}
 634}
 635
 636/* R-Car Gen1 */
 637static struct sh_eth_cpu_data rcar_gen1_data = {
 638	.soft_reset	= sh_eth_soft_reset,
 639
 640	.set_duplex	= sh_eth_set_duplex,
 641	.set_rate	= sh_eth_set_rate_rcar,
 642
 643	.register_type	= SH_ETH_REG_FAST_RCAR,
 644
 645	.edtrr_trns	= EDTRR_TRNS_ETHER,
 646	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
 647	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
 648	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
 649			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 650			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 651			  EESIPR_RMAFIP | EESIPR_RRFIP |
 652			  EESIPR_RTLFIP | EESIPR_RTSFIP |
 653			  EESIPR_PREIP | EESIPR_CERFIP,
 654
 655	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
 656	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 657			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
 658	.fdr_value	= 0x00000f0f,
 659
 660	.apr		= 1,
 661	.mpr		= 1,
 662	.tpauser	= 1,
 663	.hw_swap	= 1,
 664	.no_xdfar	= 1,
 665};
 666
 667/* R-Car Gen2 and RZ/G1 */
 668static struct sh_eth_cpu_data rcar_gen2_data = {
 669	.soft_reset	= sh_eth_soft_reset,
 670
 671	.set_duplex	= sh_eth_set_duplex,
 672	.set_rate	= sh_eth_set_rate_rcar,
 673
 674	.register_type	= SH_ETH_REG_FAST_RCAR,
 675
 676	.edtrr_trns	= EDTRR_TRNS_ETHER,
 677	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
 678	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
 679			  ECSIPR_MPDIP,
 680	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
 681			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 682			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 683			  EESIPR_RMAFIP | EESIPR_RRFIP |
 684			  EESIPR_RTLFIP | EESIPR_RTSFIP |
 685			  EESIPR_PREIP | EESIPR_CERFIP,
 686
 687	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
 688	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 689			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
 690	.fdr_value	= 0x00000f0f,
 691
 692	.trscer_err_mask = DESC_I_RINT8,
 693
 694	.apr		= 1,
 695	.mpr		= 1,
 696	.tpauser	= 1,
 697	.hw_swap	= 1,
 698	.no_xdfar	= 1,
 699	.rmiimode	= 1,
 700	.magic		= 1,
 701};
 702
 703/* R8A77980 */
 704static struct sh_eth_cpu_data r8a77980_data = {
 705	.soft_reset	= sh_eth_soft_reset_gether,
 706
 707	.set_duplex	= sh_eth_set_duplex,
 708	.set_rate	= sh_eth_set_rate_gether,
 709
 710	.register_type  = SH_ETH_REG_GIGABIT,
 711
 712	.edtrr_trns	= EDTRR_TRNS_GETHER,
 713	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD | ECSR_MPD,
 714	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP |
 715			  ECSIPR_MPDIP,
 716	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
 717			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 718			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 719			  EESIPR_RMAFIP | EESIPR_RRFIP |
 720			  EESIPR_RTLFIP | EESIPR_RTSFIP |
 721			  EESIPR_PREIP | EESIPR_CERFIP,
 722
 723	.tx_check       = EESR_FTC | EESR_CD | EESR_TRO,
 724	.eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 725			  EESR_RFE | EESR_RDE | EESR_RFRMER |
 726			  EESR_TFE | EESR_TDE | EESR_ECI,
 727	.fdr_value	= 0x0000070f,
 728
 729	.apr		= 1,
 730	.mpr		= 1,
 731	.tpauser	= 1,
 732	.gecmr		= 1,
 733	.bculr		= 1,
 734	.hw_swap	= 1,
 735	.nbst		= 1,
 736	.rpadir		= 1,
 737	.no_trimd	= 1,
 738	.no_ade		= 1,
 739	.xdfar_rw	= 1,
 740	.csmr		= 1,
 741	.rx_csum	= 1,
 742	.select_mii	= 1,
 743	.magic		= 1,
 744	.cexcr		= 1,
 745};
 746
 747/* R7S9210 */
 748static struct sh_eth_cpu_data r7s9210_data = {
 749	.soft_reset	= sh_eth_soft_reset,
 750
 751	.set_duplex	= sh_eth_set_duplex,
 752	.set_rate	= sh_eth_set_rate_rcar,
 753
 754	.register_type	= SH_ETH_REG_FAST_SH4,
 755
 756	.edtrr_trns	= EDTRR_TRNS_ETHER,
 757	.ecsr_value	= ECSR_ICD,
 758	.ecsipr_value	= ECSIPR_ICDIP,
 759	.eesipr_value	= EESIPR_TWBIP | EESIPR_TABTIP | EESIPR_RABTIP |
 760			  EESIPR_RFCOFIP | EESIPR_ECIIP | EESIPR_FTCIP |
 761			  EESIPR_TDEIP | EESIPR_TFUFIP | EESIPR_FRIP |
 762			  EESIPR_RDEIP | EESIPR_RFOFIP | EESIPR_CNDIP |
 763			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
 764			  EESIPR_RMAFIP | EESIPR_RRFIP | EESIPR_RTLFIP |
 765			  EESIPR_RTSFIP | EESIPR_PREIP | EESIPR_CERFIP,
 766
 767	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
 768	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 769			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
 770
 771	.fdr_value	= 0x0000070f,
 772
 773	.apr		= 1,
 774	.mpr		= 1,
 775	.tpauser	= 1,
 776	.hw_swap	= 1,
 777	.rpadir		= 1,
 778	.no_ade		= 1,
 779	.xdfar_rw	= 1,
 780};
 781#endif /* CONFIG_OF */
 782
 783static void sh_eth_set_rate_sh7724(struct net_device *ndev)
 784{
 785	struct sh_eth_private *mdp = netdev_priv(ndev);
 786
 787	switch (mdp->speed) {
 788	case 10: /* 10BASE */
 789		sh_eth_modify(ndev, ECMR, ECMR_RTM, 0);
 790		break;
 791	case 100:/* 100BASE */
 792		sh_eth_modify(ndev, ECMR, ECMR_RTM, ECMR_RTM);
 793		break;
 794	}
 795}
 796
 797/* SH7724 */
 798static struct sh_eth_cpu_data sh7724_data = {
 799	.soft_reset	= sh_eth_soft_reset,
 800
 801	.set_duplex	= sh_eth_set_duplex,
 802	.set_rate	= sh_eth_set_rate_sh7724,
 803
 804	.register_type	= SH_ETH_REG_FAST_SH4,
 805
 806	.edtrr_trns	= EDTRR_TRNS_ETHER,
 807	.ecsr_value	= ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
 808	.ecsipr_value	= ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
 809	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ADEIP | EESIPR_ECIIP |
 810			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 811			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 812			  EESIPR_RMAFIP | EESIPR_RRFIP |
 813			  EESIPR_RTLFIP | EESIPR_RTSFIP |
 814			  EESIPR_PREIP | EESIPR_CERFIP,
 815
 816	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
 817	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 818			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
 819
 820	.apr		= 1,
 821	.mpr		= 1,
 822	.tpauser	= 1,
 823	.hw_swap	= 1,
 824	.rpadir		= 1,
 825};
 826
 827static void sh_eth_set_rate_sh7757(struct net_device *ndev)
 828{
 829	struct sh_eth_private *mdp = netdev_priv(ndev);
 830
 831	switch (mdp->speed) {
 832	case 10: /* 10BASE */
 833		sh_eth_write(ndev, 0, RTRATE);
 834		break;
 835	case 100:/* 100BASE */
 836		sh_eth_write(ndev, 1, RTRATE);
 837		break;
 838	}
 839}
 840
 841/* SH7757 */
 842static struct sh_eth_cpu_data sh7757_data = {
 843	.soft_reset	= sh_eth_soft_reset,
 844
 845	.set_duplex	= sh_eth_set_duplex,
 846	.set_rate	= sh_eth_set_rate_sh7757,
 847
 848	.register_type	= SH_ETH_REG_FAST_SH4,
 849
 850	.edtrr_trns	= EDTRR_TRNS_ETHER,
 851	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
 852			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 853			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 854			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
 855			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
 856			  EESIPR_CEEFIP | EESIPR_CELFIP |
 857			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
 858			  EESIPR_PREIP | EESIPR_CERFIP,
 859
 860	.tx_check	= EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_TRO,
 861	.eesr_err_check	= EESR_TWB | EESR_TABT | EESR_RABT | EESR_RFE |
 862			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
 863
 864	.irq_flags	= IRQF_SHARED,
 865	.apr		= 1,
 866	.mpr		= 1,
 867	.tpauser	= 1,
 868	.hw_swap	= 1,
 869	.no_ade		= 1,
 870	.rpadir		= 1,
 871	.rtrate		= 1,
 872	.dual_port	= 1,
 873};
 874
 875#define SH_GIGA_ETH_BASE	0xfee00000UL
 876#define GIGA_MALR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
 877#define GIGA_MAHR(port)		(SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
 878static void sh_eth_chip_reset_giga(struct net_device *ndev)
 879{
 880	u32 mahr[2], malr[2];
 881	int i;
 882
 883	/* save MAHR and MALR */
 884	for (i = 0; i < 2; i++) {
 885		malr[i] = ioread32((void *)GIGA_MALR(i));
 886		mahr[i] = ioread32((void *)GIGA_MAHR(i));
 887	}
 888
 889	sh_eth_chip_reset(ndev);
 890
 891	/* restore MAHR and MALR */
 892	for (i = 0; i < 2; i++) {
 893		iowrite32(malr[i], (void *)GIGA_MALR(i));
 894		iowrite32(mahr[i], (void *)GIGA_MAHR(i));
 895	}
 896}
 897
 898static void sh_eth_set_rate_giga(struct net_device *ndev)
 899{
 900	struct sh_eth_private *mdp = netdev_priv(ndev);
 901
 902	if (WARN_ON(!mdp->cd->gecmr))
 903		return;
 904
 905	switch (mdp->speed) {
 906	case 10: /* 10BASE */
 907		sh_eth_write(ndev, 0x00000000, GECMR);
 908		break;
 909	case 100:/* 100BASE */
 910		sh_eth_write(ndev, 0x00000010, GECMR);
 911		break;
 912	case 1000: /* 1000BASE */
 913		sh_eth_write(ndev, 0x00000020, GECMR);
 914		break;
 915	}
 916}
 917
 918/* SH7757(GETHERC) */
 919static struct sh_eth_cpu_data sh7757_data_giga = {
 920	.soft_reset	= sh_eth_soft_reset_gether,
 921
 922	.chip_reset	= sh_eth_chip_reset_giga,
 923	.set_duplex	= sh_eth_set_duplex,
 924	.set_rate	= sh_eth_set_rate_giga,
 925
 926	.register_type	= SH_ETH_REG_GIGABIT,
 927
 928	.edtrr_trns	= EDTRR_TRNS_GETHER,
 929	.ecsr_value	= ECSR_ICD | ECSR_MPD,
 930	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
 931	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
 932			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 933			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 934			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
 935			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
 936			  EESIPR_CEEFIP | EESIPR_CELFIP |
 937			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
 938			  EESIPR_PREIP | EESIPR_CERFIP,
 939
 940	.tx_check	= EESR_TC1 | EESR_FTC,
 941	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 942			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
 943			  EESR_TDE,
 944	.fdr_value	= 0x0000072f,
 945
 946	.irq_flags	= IRQF_SHARED,
 947	.apr		= 1,
 948	.mpr		= 1,
 949	.tpauser	= 1,
 950	.gecmr		= 1,
 951	.bculr		= 1,
 952	.hw_swap	= 1,
 953	.rpadir		= 1,
 954	.no_trimd	= 1,
 955	.no_ade		= 1,
 956	.xdfar_rw	= 1,
 957	.tsu		= 1,
 958	.cexcr		= 1,
 959	.dual_port	= 1,
 960};
 961
 962/* SH7734 */
 963static struct sh_eth_cpu_data sh7734_data = {
 964	.soft_reset	= sh_eth_soft_reset_gether,
 965
 966	.chip_reset	= sh_eth_chip_reset,
 967	.set_duplex	= sh_eth_set_duplex,
 968	.set_rate	= sh_eth_set_rate_gether,
 969
 970	.register_type	= SH_ETH_REG_GIGABIT,
 971
 972	.edtrr_trns	= EDTRR_TRNS_GETHER,
 973	.ecsr_value	= ECSR_ICD | ECSR_MPD,
 974	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
 975	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
 976			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
 977			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
 978			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
 979			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
 980			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
 981			  EESIPR_PREIP | EESIPR_CERFIP,
 982
 983	.tx_check	= EESR_TC1 | EESR_FTC,
 984	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
 985			  EESR_RFE | EESR_RDE | EESR_RFRMER | EESR_TFE |
 986			  EESR_TDE,
 987
 988	.apr		= 1,
 989	.mpr		= 1,
 990	.tpauser	= 1,
 991	.gecmr		= 1,
 992	.bculr		= 1,
 993	.hw_swap	= 1,
 994	.no_trimd	= 1,
 995	.no_ade		= 1,
 996	.xdfar_rw	= 1,
 997	.tsu		= 1,
 998	.csmr		= 1,
 999	.rx_csum	= 1,
1000	.select_mii	= 1,
1001	.magic		= 1,
1002	.cexcr		= 1,
1003};
1004
1005/* SH7763 */
1006static struct sh_eth_cpu_data sh7763_data = {
1007	.soft_reset	= sh_eth_soft_reset_gether,
1008
1009	.chip_reset	= sh_eth_chip_reset,
1010	.set_duplex	= sh_eth_set_duplex,
1011	.set_rate	= sh_eth_set_rate_gether,
1012
1013	.register_type	= SH_ETH_REG_GIGABIT,
1014
1015	.edtrr_trns	= EDTRR_TRNS_GETHER,
1016	.ecsr_value	= ECSR_ICD | ECSR_MPD,
1017	.ecsipr_value	= ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
1018	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1019			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1020			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1021			  EESIPR_DLCIP | EESIPR_CDIP | EESIPR_TROIP |
1022			  EESIPR_RMAFIP | EESIPR_CEEFIP | EESIPR_CELFIP |
1023			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1024			  EESIPR_PREIP | EESIPR_CERFIP,
1025
1026	.tx_check	= EESR_TC1 | EESR_FTC,
1027	.eesr_err_check	= EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT |
1028			  EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE,
1029
1030	.apr		= 1,
1031	.mpr		= 1,
1032	.tpauser	= 1,
1033	.gecmr		= 1,
1034	.bculr		= 1,
1035	.hw_swap	= 1,
1036	.no_trimd	= 1,
1037	.no_ade		= 1,
1038	.xdfar_rw	= 1,
1039	.tsu		= 1,
1040	.irq_flags	= IRQF_SHARED,
1041	.magic		= 1,
1042	.cexcr		= 1,
1043	.rx_csum	= 1,
1044	.dual_port	= 1,
1045};
1046
1047static struct sh_eth_cpu_data sh7619_data = {
1048	.soft_reset	= sh_eth_soft_reset,
1049
1050	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1051
1052	.edtrr_trns	= EDTRR_TRNS_ETHER,
1053	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1054			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1055			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1056			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1057			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1058			  EESIPR_CEEFIP | EESIPR_CELFIP |
1059			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1060			  EESIPR_PREIP | EESIPR_CERFIP,
1061
1062	.apr		= 1,
1063	.mpr		= 1,
1064	.tpauser	= 1,
1065	.hw_swap	= 1,
1066};
1067
1068static struct sh_eth_cpu_data sh771x_data = {
1069	.soft_reset	= sh_eth_soft_reset,
1070
1071	.register_type	= SH_ETH_REG_FAST_SH3_SH2,
1072
1073	.edtrr_trns	= EDTRR_TRNS_ETHER,
1074	.eesipr_value	= EESIPR_RFCOFIP | EESIPR_ECIIP |
1075			  EESIPR_FTCIP | EESIPR_TDEIP | EESIPR_TFUFIP |
1076			  EESIPR_FRIP | EESIPR_RDEIP | EESIPR_RFOFIP |
1077			  0x0000f000 | EESIPR_CNDIP | EESIPR_DLCIP |
1078			  EESIPR_CDIP | EESIPR_TROIP | EESIPR_RMAFIP |
1079			  EESIPR_CEEFIP | EESIPR_CELFIP |
1080			  EESIPR_RRFIP | EESIPR_RTLFIP | EESIPR_RTSFIP |
1081			  EESIPR_PREIP | EESIPR_CERFIP,
1082	.tsu		= 1,
1083	.dual_port	= 1,
1084};
1085
1086static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
1087{
1088	if (!cd->ecsr_value)
1089		cd->ecsr_value = DEFAULT_ECSR_INIT;
1090
1091	if (!cd->ecsipr_value)
1092		cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
1093
1094	if (!cd->fcftr_value)
1095		cd->fcftr_value = DEFAULT_FIFO_F_D_RFF |
1096				  DEFAULT_FIFO_F_D_RFD;
1097
1098	if (!cd->fdr_value)
1099		cd->fdr_value = DEFAULT_FDR_INIT;
1100
1101	if (!cd->tx_check)
1102		cd->tx_check = DEFAULT_TX_CHECK;
1103
1104	if (!cd->eesr_err_check)
1105		cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
1106
1107	if (!cd->trscer_err_mask)
1108		cd->trscer_err_mask = DEFAULT_TRSCER_ERR_MASK;
1109}
1110
1111static void sh_eth_set_receive_align(struct sk_buff *skb)
1112{
1113	uintptr_t reserve = (uintptr_t)skb->data & (SH_ETH_RX_ALIGN - 1);
1114
1115	if (reserve)
1116		skb_reserve(skb, SH_ETH_RX_ALIGN - reserve);
1117}
1118
1119/* Program the hardware MAC address from dev->dev_addr. */
1120static void update_mac_address(struct net_device *ndev)
1121{
1122	sh_eth_write(ndev,
1123		     (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
1124		     (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
1125	sh_eth_write(ndev,
1126		     (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
1127}
1128
1129/* Get MAC address from SuperH MAC address register
1130 *
1131 * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
1132 * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
1133 * When you want use this device, you must set MAC address in bootloader.
1134 *
1135 */
1136static void read_mac_address(struct net_device *ndev, unsigned char *mac)
1137{
1138	if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
1139		memcpy(ndev->dev_addr, mac, ETH_ALEN);
1140	} else {
1141		u32 mahr = sh_eth_read(ndev, MAHR);
1142		u32 malr = sh_eth_read(ndev, MALR);
1143
1144		ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
1145		ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
1146		ndev->dev_addr[2] = (mahr >>  8) & 0xFF;
1147		ndev->dev_addr[3] = (mahr >>  0) & 0xFF;
1148		ndev->dev_addr[4] = (malr >>  8) & 0xFF;
1149		ndev->dev_addr[5] = (malr >>  0) & 0xFF;
1150	}
1151}
1152
1153struct bb_info {
1154	void (*set_gate)(void *addr);
1155	struct mdiobb_ctrl ctrl;
1156	void *addr;
1157};
1158
1159static void sh_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
1160{
1161	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1162	u32 pir;
1163
1164	if (bitbang->set_gate)
1165		bitbang->set_gate(bitbang->addr);
1166
1167	pir = ioread32(bitbang->addr);
1168	if (set)
1169		pir |=  mask;
1170	else
1171		pir &= ~mask;
1172	iowrite32(pir, bitbang->addr);
1173}
1174
1175/* Data I/O pin control */
1176static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1177{
1178	sh_mdio_ctrl(ctrl, PIR_MMD, bit);
1179}
1180
1181/* Set bit data*/
1182static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
1183{
1184	sh_mdio_ctrl(ctrl, PIR_MDO, bit);
1185}
1186
1187/* Get bit data*/
1188static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
1189{
1190	struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
1191
1192	if (bitbang->set_gate)
1193		bitbang->set_gate(bitbang->addr);
1194
1195	return (ioread32(bitbang->addr) & PIR_MDI) != 0;
1196}
1197
1198/* MDC pin control */
1199static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
1200{
1201	sh_mdio_ctrl(ctrl, PIR_MDC, bit);
1202}
1203
1204/* mdio bus control struct */
1205static struct mdiobb_ops bb_ops = {
1206	.owner = THIS_MODULE,
1207	.set_mdc = sh_mdc_ctrl,
1208	.set_mdio_dir = sh_mmd_ctrl,
1209	.set_mdio_data = sh_set_mdio,
1210	.get_mdio_data = sh_get_mdio,
1211};
1212
1213/* free Tx skb function */
1214static int sh_eth_tx_free(struct net_device *ndev, bool sent_only)
1215{
1216	struct sh_eth_private *mdp = netdev_priv(ndev);
1217	struct sh_eth_txdesc *txdesc;
1218	int free_num = 0;
1219	int entry;
1220	bool sent;
1221
1222	for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
1223		entry = mdp->dirty_tx % mdp->num_tx_ring;
1224		txdesc = &mdp->tx_ring[entry];
1225		sent = !(txdesc->status & cpu_to_le32(TD_TACT));
1226		if (sent_only && !sent)
1227			break;
1228		/* TACT bit must be checked before all the following reads */
1229		dma_rmb();
1230		netif_info(mdp, tx_done, ndev,
1231			   "tx entry %d status 0x%08x\n",
1232			   entry, le32_to_cpu(txdesc->status));
1233		/* Free the original skb. */
1234		if (mdp->tx_skbuff[entry]) {
1235			dma_unmap_single(&mdp->pdev->dev,
1236					 le32_to_cpu(txdesc->addr),
1237					 le32_to_cpu(txdesc->len) >> 16,
1238					 DMA_TO_DEVICE);
1239			dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
1240			mdp->tx_skbuff[entry] = NULL;
1241			free_num++;
1242		}
1243		txdesc->status = cpu_to_le32(TD_TFP);
1244		if (entry >= mdp->num_tx_ring - 1)
1245			txdesc->status |= cpu_to_le32(TD_TDLE);
1246
1247		if (sent) {
1248			ndev->stats.tx_packets++;
1249			ndev->stats.tx_bytes += le32_to_cpu(txdesc->len) >> 16;
1250		}
1251	}
1252	return free_num;
1253}
1254
1255/* free skb and descriptor buffer */
1256static void sh_eth_ring_free(struct net_device *ndev)
1257{
1258	struct sh_eth_private *mdp = netdev_priv(ndev);
1259	int ringsize, i;
1260
1261	if (mdp->rx_ring) {
1262		for (i = 0; i < mdp->num_rx_ring; i++) {
1263			if (mdp->rx_skbuff[i]) {
1264				struct sh_eth_rxdesc *rxdesc = &mdp->rx_ring[i];
1265
1266				dma_unmap_single(&mdp->pdev->dev,
1267						 le32_to_cpu(rxdesc->addr),
1268						 ALIGN(mdp->rx_buf_sz, 32),
1269						 DMA_FROM_DEVICE);
1270			}
1271		}
1272		ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1273		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->rx_ring,
1274				  mdp->rx_desc_dma);
1275		mdp->rx_ring = NULL;
1276	}
1277
1278	/* Free Rx skb ringbuffer */
1279	if (mdp->rx_skbuff) {
1280		for (i = 0; i < mdp->num_rx_ring; i++)
1281			dev_kfree_skb(mdp->rx_skbuff[i]);
1282	}
1283	kfree(mdp->rx_skbuff);
1284	mdp->rx_skbuff = NULL;
1285
1286	if (mdp->tx_ring) {
1287		sh_eth_tx_free(ndev, false);
1288
1289		ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1290		dma_free_coherent(&mdp->pdev->dev, ringsize, mdp->tx_ring,
1291				  mdp->tx_desc_dma);
1292		mdp->tx_ring = NULL;
1293	}
1294
1295	/* Free Tx skb ringbuffer */
1296	kfree(mdp->tx_skbuff);
1297	mdp->tx_skbuff = NULL;
1298}
1299
1300/* format skb and descriptor buffer */
1301static void sh_eth_ring_format(struct net_device *ndev)
1302{
1303	struct sh_eth_private *mdp = netdev_priv(ndev);
1304	int i;
1305	struct sk_buff *skb;
1306	struct sh_eth_rxdesc *rxdesc = NULL;
1307	struct sh_eth_txdesc *txdesc = NULL;
1308	int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
1309	int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
1310	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1311	dma_addr_t dma_addr;
1312	u32 buf_len;
1313
1314	mdp->cur_rx = 0;
1315	mdp->cur_tx = 0;
1316	mdp->dirty_rx = 0;
1317	mdp->dirty_tx = 0;
1318
1319	memset(mdp->rx_ring, 0, rx_ringsize);
1320
1321	/* build Rx ring buffer */
1322	for (i = 0; i < mdp->num_rx_ring; i++) {
1323		/* skb */
1324		mdp->rx_skbuff[i] = NULL;
1325		skb = netdev_alloc_skb(ndev, skbuff_size);
1326		if (skb == NULL)
1327			break;
1328		sh_eth_set_receive_align(skb);
1329
1330		/* The size of the buffer is a multiple of 32 bytes. */
1331		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1332		dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, buf_len,
1333					  DMA_FROM_DEVICE);
1334		if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1335			kfree_skb(skb);
1336			break;
1337		}
1338		mdp->rx_skbuff[i] = skb;
1339
1340		/* RX descriptor */
1341		rxdesc = &mdp->rx_ring[i];
1342		rxdesc->len = cpu_to_le32(buf_len << 16);
1343		rxdesc->addr = cpu_to_le32(dma_addr);
1344		rxdesc->status = cpu_to_le32(RD_RACT | RD_RFP);
1345
1346		/* Rx descriptor address set */
1347		if (i == 0) {
1348			sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
1349			if (mdp->cd->xdfar_rw)
1350				sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
1351		}
1352	}
1353
1354	mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
1355
1356	/* Mark the last entry as wrapping the ring. */
1357	if (rxdesc)
1358		rxdesc->status |= cpu_to_le32(RD_RDLE);
1359
1360	memset(mdp->tx_ring, 0, tx_ringsize);
1361
1362	/* build Tx ring buffer */
1363	for (i = 0; i < mdp->num_tx_ring; i++) {
1364		mdp->tx_skbuff[i] = NULL;
1365		txdesc = &mdp->tx_ring[i];
1366		txdesc->status = cpu_to_le32(TD_TFP);
1367		txdesc->len = cpu_to_le32(0);
1368		if (i == 0) {
1369			/* Tx descriptor address set */
1370			sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
1371			if (mdp->cd->xdfar_rw)
1372				sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
1373		}
1374	}
1375
1376	txdesc->status |= cpu_to_le32(TD_TDLE);
1377}
1378
1379/* Get skb and descriptor buffer */
1380static int sh_eth_ring_init(struct net_device *ndev)
1381{
1382	struct sh_eth_private *mdp = netdev_priv(ndev);
1383	int rx_ringsize, tx_ringsize;
1384
1385	/* +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
1386	 * card needs room to do 8 byte alignment, +2 so we can reserve
1387	 * the first 2 bytes, and +16 gets room for the status word from the
1388	 * card.
1389	 */
1390	mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
1391			  (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
1392	if (mdp->cd->rpadir)
1393		mdp->rx_buf_sz += NET_IP_ALIGN;
1394
1395	/* Allocate RX and TX skb rings */
1396	mdp->rx_skbuff = kcalloc(mdp->num_rx_ring, sizeof(*mdp->rx_skbuff),
1397				 GFP_KERNEL);
1398	if (!mdp->rx_skbuff)
1399		return -ENOMEM;
1400
1401	mdp->tx_skbuff = kcalloc(mdp->num_tx_ring, sizeof(*mdp->tx_skbuff),
1402				 GFP_KERNEL);
1403	if (!mdp->tx_skbuff)
1404		goto ring_free;
1405
1406	/* Allocate all Rx descriptors. */
1407	rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
1408	mdp->rx_ring = dma_alloc_coherent(&mdp->pdev->dev, rx_ringsize,
1409					  &mdp->rx_desc_dma, GFP_KERNEL);
1410	if (!mdp->rx_ring)
1411		goto ring_free;
1412
1413	mdp->dirty_rx = 0;
1414
1415	/* Allocate all Tx descriptors. */
1416	tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
1417	mdp->tx_ring = dma_alloc_coherent(&mdp->pdev->dev, tx_ringsize,
1418					  &mdp->tx_desc_dma, GFP_KERNEL);
1419	if (!mdp->tx_ring)
1420		goto ring_free;
1421	return 0;
1422
1423ring_free:
1424	/* Free Rx and Tx skb ring buffer and DMA buffer */
1425	sh_eth_ring_free(ndev);
1426
1427	return -ENOMEM;
1428}
1429
1430static int sh_eth_dev_init(struct net_device *ndev)
1431{
1432	struct sh_eth_private *mdp = netdev_priv(ndev);
1433	int ret;
1434
1435	/* Soft Reset */
1436	ret = mdp->cd->soft_reset(ndev);
1437	if (ret)
1438		return ret;
1439
1440	if (mdp->cd->rmiimode)
1441		sh_eth_write(ndev, 0x1, RMIIMODE);
1442
1443	/* Descriptor format */
1444	sh_eth_ring_format(ndev);
1445	if (mdp->cd->rpadir)
1446		sh_eth_write(ndev, NET_IP_ALIGN << 16, RPADIR);
1447
1448	/* all sh_eth int mask */
1449	sh_eth_write(ndev, 0, EESIPR);
1450
1451#if defined(__LITTLE_ENDIAN)
1452	if (mdp->cd->hw_swap)
1453		sh_eth_write(ndev, EDMR_EL, EDMR);
1454	else
1455#endif
1456		sh_eth_write(ndev, 0, EDMR);
1457
1458	/* FIFO size set */
1459	sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
1460	sh_eth_write(ndev, 0, TFTR);
1461
1462	/* Frame recv control (enable multiple-packets per rx irq) */
1463	sh_eth_write(ndev, RMCR_RNC, RMCR);
1464
1465	sh_eth_write(ndev, mdp->cd->trscer_err_mask, TRSCER);
1466
1467	/* DMA transfer burst mode */
1468	if (mdp->cd->nbst)
1469		sh_eth_modify(ndev, EDMR, EDMR_NBST, EDMR_NBST);
1470
1471	/* Burst cycle count upper-limit */
1472	if (mdp->cd->bculr)
1473		sh_eth_write(ndev, 0x800, BCULR);
1474
1475	sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
1476
1477	if (!mdp->cd->no_trimd)
1478		sh_eth_write(ndev, 0, TRIMD);
1479
1480	/* Recv frame limit set register */
1481	sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
1482		     RFLR);
1483
1484	sh_eth_modify(ndev, EESR, 0, 0);
1485	mdp->irq_enabled = true;
1486	sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1487
1488	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
1489	sh_eth_write(ndev, ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) |
1490		     (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
1491		     ECMR_TE | ECMR_RE, ECMR);
1492
1493	if (mdp->cd->set_rate)
1494		mdp->cd->set_rate(ndev);
1495
1496	/* E-MAC Status Register clear */
1497	sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
1498
1499	/* E-MAC Interrupt Enable register */
1500	sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
1501
1502	/* Set MAC address */
1503	update_mac_address(ndev);
1504
1505	/* mask reset */
1506	if (mdp->cd->apr)
1507		sh_eth_write(ndev, 1, APR);
1508	if (mdp->cd->mpr)
1509		sh_eth_write(ndev, 1, MPR);
1510	if (mdp->cd->tpauser)
1511		sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
1512
1513	/* Setting the Rx mode will start the Rx process. */
1514	sh_eth_write(ndev, EDRRR_R, EDRRR);
1515
1516	return ret;
1517}
1518
1519static void sh_eth_dev_exit(struct net_device *ndev)
1520{
1521	struct sh_eth_private *mdp = netdev_priv(ndev);
1522	int i;
1523
1524	/* Deactivate all TX descriptors, so DMA should stop at next
1525	 * packet boundary if it's currently running
1526	 */
1527	for (i = 0; i < mdp->num_tx_ring; i++)
1528		mdp->tx_ring[i].status &= ~cpu_to_le32(TD_TACT);
1529
1530	/* Disable TX FIFO egress to MAC */
1531	sh_eth_rcv_snd_disable(ndev);
1532
1533	/* Stop RX DMA at next packet boundary */
1534	sh_eth_write(ndev, 0, EDRRR);
1535
1536	/* Aside from TX DMA, we can't tell when the hardware is
1537	 * really stopped, so we need to reset to make sure.
1538	 * Before doing that, wait for long enough to *probably*
1539	 * finish transmitting the last packet and poll stats.
1540	 */
1541	msleep(2); /* max frame time at 10 Mbps < 1250 us */
1542	sh_eth_get_stats(ndev);
1543	mdp->cd->soft_reset(ndev);
1544
1545	/* Set the RMII mode again if required */
1546	if (mdp->cd->rmiimode)
1547		sh_eth_write(ndev, 0x1, RMIIMODE);
1548
1549	/* Set MAC address again */
1550	update_mac_address(ndev);
1551}
1552
1553static void sh_eth_rx_csum(struct sk_buff *skb)
1554{
1555	u8 *hw_csum;
1556
1557	/* The hardware checksum is 2 bytes appended to packet data */
1558	if (unlikely(skb->len < sizeof(__sum16)))
1559		return;
1560	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
1561	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
1562	skb->ip_summed = CHECKSUM_COMPLETE;
1563	skb_trim(skb, skb->len - sizeof(__sum16));
1564}
1565
1566/* Packet receive function */
1567static int sh_eth_rx(struct net_device *ndev, u32 intr_status, int *quota)
1568{
1569	struct sh_eth_private *mdp = netdev_priv(ndev);
1570	struct sh_eth_rxdesc *rxdesc;
1571
1572	int entry = mdp->cur_rx % mdp->num_rx_ring;
1573	int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
1574	int limit;
1575	struct sk_buff *skb;
1576	u32 desc_status;
1577	int skbuff_size = mdp->rx_buf_sz + SH_ETH_RX_ALIGN + 32 - 1;
1578	dma_addr_t dma_addr;
1579	u16 pkt_len;
1580	u32 buf_len;
1581
1582	boguscnt = min(boguscnt, *quota);
1583	limit = boguscnt;
1584	rxdesc = &mdp->rx_ring[entry];
1585	while (!(rxdesc->status & cpu_to_le32(RD_RACT))) {
1586		/* RACT bit must be checked before all the following reads */
1587		dma_rmb();
1588		desc_status = le32_to_cpu(rxdesc->status);
1589		pkt_len = le32_to_cpu(rxdesc->len) & RD_RFL;
1590
1591		if (--boguscnt < 0)
1592			break;
1593
1594		netif_info(mdp, rx_status, ndev,
1595			   "rx entry %d status 0x%08x len %d\n",
1596			   entry, desc_status, pkt_len);
1597
1598		if (!(desc_status & RDFEND))
1599			ndev->stats.rx_length_errors++;
1600
1601		/* In case of almost all GETHER/ETHERs, the Receive Frame State
1602		 * (RFS) bits in the Receive Descriptor 0 are from bit 9 to
1603		 * bit 0. However, in case of the R8A7740 and R7S72100
1604		 * the RFS bits are from bit 25 to bit 16. So, the
1605		 * driver needs right shifting by 16.
1606		 */
1607		if (mdp->cd->csmr)
1608			desc_status >>= 16;
1609
1610		skb = mdp->rx_skbuff[entry];
1611		if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
1612				   RD_RFS5 | RD_RFS6 | RD_RFS10)) {
1613			ndev->stats.rx_errors++;
1614			if (desc_status & RD_RFS1)
1615				ndev->stats.rx_crc_errors++;
1616			if (desc_status & RD_RFS2)
1617				ndev->stats.rx_frame_errors++;
1618			if (desc_status & RD_RFS3)
1619				ndev->stats.rx_length_errors++;
1620			if (desc_status & RD_RFS4)
1621				ndev->stats.rx_length_errors++;
1622			if (desc_status & RD_RFS6)
1623				ndev->stats.rx_missed_errors++;
1624			if (desc_status & RD_RFS10)
1625				ndev->stats.rx_over_errors++;
1626		} else	if (skb) {
1627			dma_addr = le32_to_cpu(rxdesc->addr);
1628			if (!mdp->cd->hw_swap)
1629				sh_eth_soft_swap(
1630					phys_to_virt(ALIGN(dma_addr, 4)),
1631					pkt_len + 2);
1632			mdp->rx_skbuff[entry] = NULL;
1633			if (mdp->cd->rpadir)
1634				skb_reserve(skb, NET_IP_ALIGN);
1635			dma_unmap_single(&mdp->pdev->dev, dma_addr,
1636					 ALIGN(mdp->rx_buf_sz, 32),
1637					 DMA_FROM_DEVICE);
1638			skb_put(skb, pkt_len);
1639			skb->protocol = eth_type_trans(skb, ndev);
1640			if (ndev->features & NETIF_F_RXCSUM)
1641				sh_eth_rx_csum(skb);
1642			netif_receive_skb(skb);
1643			ndev->stats.rx_packets++;
1644			ndev->stats.rx_bytes += pkt_len;
1645			if (desc_status & RD_RFS8)
1646				ndev->stats.multicast++;
1647		}
1648		entry = (++mdp->cur_rx) % mdp->num_rx_ring;
1649		rxdesc = &mdp->rx_ring[entry];
1650	}
1651
1652	/* Refill the Rx ring buffers. */
1653	for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
1654		entry = mdp->dirty_rx % mdp->num_rx_ring;
1655		rxdesc = &mdp->rx_ring[entry];
1656		/* The size of the buffer is 32 byte boundary. */
1657		buf_len = ALIGN(mdp->rx_buf_sz, 32);
1658		rxdesc->len = cpu_to_le32(buf_len << 16);
1659
1660		if (mdp->rx_skbuff[entry] == NULL) {
1661			skb = netdev_alloc_skb(ndev, skbuff_size);
1662			if (skb == NULL)
1663				break;	/* Better luck next round. */
1664			sh_eth_set_receive_align(skb);
1665			dma_addr = dma_map_single(&mdp->pdev->dev, skb->data,
1666						  buf_len, DMA_FROM_DEVICE);
1667			if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
1668				kfree_skb(skb);
1669				break;
1670			}
1671			mdp->rx_skbuff[entry] = skb;
1672
1673			skb_checksum_none_assert(skb);
1674			rxdesc->addr = cpu_to_le32(dma_addr);
1675		}
1676		dma_wmb(); /* RACT bit must be set after all the above writes */
1677		if (entry >= mdp->num_rx_ring - 1)
1678			rxdesc->status |=
1679				cpu_to_le32(RD_RACT | RD_RFP | RD_RDLE);
1680		else
1681			rxdesc->status |= cpu_to_le32(RD_RACT | RD_RFP);
1682	}
1683
1684	/* Restart Rx engine if stopped. */
1685	/* If we don't need to check status, don't. -KDU */
1686	if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
1687		/* fix the values for the next receiving if RDE is set */
1688		if (intr_status & EESR_RDE && !mdp->cd->no_xdfar) {
1689			u32 count = (sh_eth_read(ndev, RDFAR) -
1690				     sh_eth_read(ndev, RDLAR)) >> 4;
1691
1692			mdp->cur_rx = count;
1693			mdp->dirty_rx = count;
1694		}
1695		sh_eth_write(ndev, EDRRR_R, EDRRR);
1696	}
1697
1698	*quota -= limit - boguscnt - 1;
1699
1700	return *quota <= 0;
1701}
1702
1703static void sh_eth_rcv_snd_disable(struct net_device *ndev)
1704{
1705	/* disable tx and rx */
1706	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1707}
1708
1709static void sh_eth_rcv_snd_enable(struct net_device *ndev)
1710{
1711	/* enable tx and rx */
1712	sh_eth_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1713}
1714
1715/* E-MAC interrupt handler */
1716static void sh_eth_emac_interrupt(struct net_device *ndev)
1717{
1718	struct sh_eth_private *mdp = netdev_priv(ndev);
1719	u32 felic_stat;
1720	u32 link_stat;
1721
1722	felic_stat = sh_eth_read(ndev, ECSR) & sh_eth_read(ndev, ECSIPR);
1723	sh_eth_write(ndev, felic_stat, ECSR);	/* clear int */
1724	if (felic_stat & ECSR_ICD)
1725		ndev->stats.tx_carrier_errors++;
1726	if (felic_stat & ECSR_MPD)
1727		pm_wakeup_event(&mdp->pdev->dev, 0);
1728	if (felic_stat & ECSR_LCHNG) {
1729		/* Link Changed */
1730		if (mdp->cd->no_psr || mdp->no_ether_link)
1731			return;
1732		link_stat = sh_eth_read(ndev, PSR);
1733		if (mdp->ether_link_active_low)
1734			link_stat = ~link_stat;
1735		if (!(link_stat & PHY_ST_LINK)) {
1736			sh_eth_rcv_snd_disable(ndev);
1737		} else {
1738			/* Link Up */
1739			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, 0);
1740			/* clear int */
1741			sh_eth_modify(ndev, ECSR, 0, 0);
1742			sh_eth_modify(ndev, EESIPR, EESIPR_ECIIP, EESIPR_ECIIP);
1743			/* enable tx and rx */
1744			sh_eth_rcv_snd_enable(ndev);
1745		}
1746	}
1747}
1748
1749/* error control function */
1750static void sh_eth_error(struct net_device *ndev, u32 intr_status)
1751{
1752	struct sh_eth_private *mdp = netdev_priv(ndev);
1753	u32 mask;
1754
1755	if (intr_status & EESR_TWB) {
1756		/* Unused write back interrupt */
1757		if (intr_status & EESR_TABT) {	/* Transmit Abort int */
1758			ndev->stats.tx_aborted_errors++;
1759			netif_err(mdp, tx_err, ndev, "Transmit Abort\n");
1760		}
1761	}
1762
1763	if (intr_status & EESR_RABT) {
1764		/* Receive Abort int */
1765		if (intr_status & EESR_RFRMER) {
1766			/* Receive Frame Overflow int */
1767			ndev->stats.rx_frame_errors++;
1768		}
1769	}
1770
1771	if (intr_status & EESR_TDE) {
1772		/* Transmit Descriptor Empty int */
1773		ndev->stats.tx_fifo_errors++;
1774		netif_err(mdp, tx_err, ndev, "Transmit Descriptor Empty\n");
1775	}
1776
1777	if (intr_status & EESR_TFE) {
1778		/* FIFO under flow */
1779		ndev->stats.tx_fifo_errors++;
1780		netif_err(mdp, tx_err, ndev, "Transmit FIFO Under flow\n");
1781	}
1782
1783	if (intr_status & EESR_RDE) {
1784		/* Receive Descriptor Empty int */
1785		ndev->stats.rx_over_errors++;
1786	}
1787
1788	if (intr_status & EESR_RFE) {
1789		/* Receive FIFO Overflow int */
1790		ndev->stats.rx_fifo_errors++;
1791	}
1792
1793	if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
1794		/* Address Error */
1795		ndev->stats.tx_fifo_errors++;
1796		netif_err(mdp, tx_err, ndev, "Address Error\n");
1797	}
1798
1799	mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
1800	if (mdp->cd->no_ade)
1801		mask &= ~EESR_ADE;
1802	if (intr_status & mask) {
1803		/* Tx error */
1804		u32 edtrr = sh_eth_read(ndev, EDTRR);
1805
1806		/* dmesg */
1807		netdev_err(ndev, "TX error. status=%8.8x cur_tx=%8.8x dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
1808			   intr_status, mdp->cur_tx, mdp->dirty_tx,
1809			   (u32)ndev->state, edtrr);
1810		/* dirty buffer free */
1811		sh_eth_tx_free(ndev, true);
1812
1813		/* SH7712 BUG */
1814		if (edtrr ^ mdp->cd->edtrr_trns) {
1815			/* tx dma start */
1816			sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
1817		}
1818		/* wakeup */
1819		netif_wake_queue(ndev);
1820	}
1821}
1822
1823static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
1824{
1825	struct net_device *ndev = netdev;
1826	struct sh_eth_private *mdp = netdev_priv(ndev);
1827	struct sh_eth_cpu_data *cd = mdp->cd;
1828	irqreturn_t ret = IRQ_NONE;
1829	u32 intr_status, intr_enable;
1830
1831	spin_lock(&mdp->lock);
1832
1833	/* Get interrupt status */
1834	intr_status = sh_eth_read(ndev, EESR);
1835	/* Mask it with the interrupt mask, forcing ECI interrupt  to be always
1836	 * enabled since it's the one that  comes  thru regardless of the mask,
1837	 * and  we need to fully handle it  in sh_eth_emac_interrupt() in order
1838	 * to quench it as it doesn't get cleared by just writing 1 to the  ECI
1839	 * bit...
1840	 */
1841	intr_enable = sh_eth_read(ndev, EESIPR);
1842	intr_status &= intr_enable | EESIPR_ECIIP;
1843	if (intr_status & (EESR_RX_CHECK | cd->tx_check | EESR_ECI |
1844			   cd->eesr_err_check))
1845		ret = IRQ_HANDLED;
1846	else
1847		goto out;
1848
1849	if (unlikely(!mdp->irq_enabled)) {
1850		sh_eth_write(ndev, 0, EESIPR);
1851		goto out;
1852	}
1853
1854	if (intr_status & EESR_RX_CHECK) {
1855		if (napi_schedule_prep(&mdp->napi)) {
1856			/* Mask Rx interrupts */
1857			sh_eth_write(ndev, intr_enable & ~EESR_RX_CHECK,
1858				     EESIPR);
1859			__napi_schedule(&mdp->napi);
1860		} else {
1861			netdev_warn(ndev,
1862				    "ignoring interrupt, status 0x%08x, mask 0x%08x.\n",
1863				    intr_status, intr_enable);
1864		}
1865	}
1866
1867	/* Tx Check */
1868	if (intr_status & cd->tx_check) {
1869		/* Clear Tx interrupts */
1870		sh_eth_write(ndev, intr_status & cd->tx_check, EESR);
1871
1872		sh_eth_tx_free(ndev, true);
1873		netif_wake_queue(ndev);
1874	}
1875
1876	/* E-MAC interrupt */
1877	if (intr_status & EESR_ECI)
1878		sh_eth_emac_interrupt(ndev);
1879
1880	if (intr_status & cd->eesr_err_check) {
1881		/* Clear error interrupts */
1882		sh_eth_write(ndev, intr_status & cd->eesr_err_check, EESR);
1883
1884		sh_eth_error(ndev, intr_status);
1885	}
1886
1887out:
1888	spin_unlock(&mdp->lock);
1889
1890	return ret;
1891}
1892
1893static int sh_eth_poll(struct napi_struct *napi, int budget)
1894{
1895	struct sh_eth_private *mdp = container_of(napi, struct sh_eth_private,
1896						  napi);
1897	struct net_device *ndev = napi->dev;
1898	int quota = budget;
1899	u32 intr_status;
1900
1901	for (;;) {
1902		intr_status = sh_eth_read(ndev, EESR);
1903		if (!(intr_status & EESR_RX_CHECK))
1904			break;
1905		/* Clear Rx interrupts */
1906		sh_eth_write(ndev, intr_status & EESR_RX_CHECK, EESR);
1907
1908		if (sh_eth_rx(ndev, intr_status, &quota))
1909			goto out;
1910	}
1911
1912	napi_complete(napi);
1913
1914	/* Reenable Rx interrupts */
1915	if (mdp->irq_enabled)
1916		sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
1917out:
1918	return budget - quota;
1919}
1920
1921/* PHY state control function */
1922static void sh_eth_adjust_link(struct net_device *ndev)
1923{
1924	struct sh_eth_private *mdp = netdev_priv(ndev);
1925	struct phy_device *phydev = ndev->phydev;
1926	unsigned long flags;
1927	int new_state = 0;
1928
1929	spin_lock_irqsave(&mdp->lock, flags);
1930
1931	/* Disable TX and RX right over here, if E-MAC change is ignored */
1932	if (mdp->cd->no_psr || mdp->no_ether_link)
1933		sh_eth_rcv_snd_disable(ndev);
1934
1935	if (phydev->link) {
1936		if (phydev->duplex != mdp->duplex) {
1937			new_state = 1;
1938			mdp->duplex = phydev->duplex;
1939			if (mdp->cd->set_duplex)
1940				mdp->cd->set_duplex(ndev);
1941		}
1942
1943		if (phydev->speed != mdp->speed) {
1944			new_state = 1;
1945			mdp->speed = phydev->speed;
1946			if (mdp->cd->set_rate)
1947				mdp->cd->set_rate(ndev);
1948		}
1949		if (!mdp->link) {
1950			sh_eth_modify(ndev, ECMR, ECMR_TXF, 0);
1951			new_state = 1;
1952			mdp->link = phydev->link;
1953		}
1954	} else if (mdp->link) {
1955		new_state = 1;
1956		mdp->link = 0;
1957		mdp->speed = 0;
1958		mdp->duplex = -1;
1959	}
1960
1961	/* Enable TX and RX right over here, if E-MAC change is ignored */
1962	if ((mdp->cd->no_psr || mdp->no_ether_link) && phydev->link)
1963		sh_eth_rcv_snd_enable(ndev);
1964
1965	spin_unlock_irqrestore(&mdp->lock, flags);
1966
1967	if (new_state && netif_msg_link(mdp))
1968		phy_print_status(phydev);
1969}
1970
1971/* PHY init function */
1972static int sh_eth_phy_init(struct net_device *ndev)
1973{
1974	struct device_node *np = ndev->dev.parent->of_node;
1975	struct sh_eth_private *mdp = netdev_priv(ndev);
1976	struct phy_device *phydev;
1977
1978	mdp->link = 0;
1979	mdp->speed = 0;
1980	mdp->duplex = -1;
1981
1982	/* Try connect to PHY */
1983	if (np) {
1984		struct device_node *pn;
1985
1986		pn = of_parse_phandle(np, "phy-handle", 0);
1987		phydev = of_phy_connect(ndev, pn,
1988					sh_eth_adjust_link, 0,
1989					mdp->phy_interface);
1990
1991		of_node_put(pn);
1992		if (!phydev)
1993			phydev = ERR_PTR(-ENOENT);
1994	} else {
1995		char phy_id[MII_BUS_ID_SIZE + 3];
1996
1997		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
1998			 mdp->mii_bus->id, mdp->phy_id);
1999
2000		phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
2001				     mdp->phy_interface);
2002	}
2003
2004	if (IS_ERR(phydev)) {
2005		netdev_err(ndev, "failed to connect PHY\n");
2006		return PTR_ERR(phydev);
2007	}
2008
2009	/* mask with MAC supported features */
2010	if (mdp->cd->register_type != SH_ETH_REG_GIGABIT) {
2011		int err = phy_set_max_speed(phydev, SPEED_100);
2012		if (err) {
2013			netdev_err(ndev, "failed to limit PHY to 100 Mbit/s\n");
2014			phy_disconnect(phydev);
2015			return err;
2016		}
2017	}
2018
2019	phy_attached_info(phydev);
2020
2021	return 0;
2022}
2023
2024/* PHY control start function */
2025static int sh_eth_phy_start(struct net_device *ndev)
2026{
2027	int ret;
2028
2029	ret = sh_eth_phy_init(ndev);
2030	if (ret)
2031		return ret;
2032
2033	phy_start(ndev->phydev);
2034
2035	return 0;
2036}
2037
2038/* If it is ever necessary to increase SH_ETH_REG_DUMP_MAX_REGS, the
2039 * version must be bumped as well.  Just adding registers up to that
2040 * limit is fine, as long as the existing register indices don't
2041 * change.
2042 */
2043#define SH_ETH_REG_DUMP_VERSION		1
2044#define SH_ETH_REG_DUMP_MAX_REGS	256
2045
2046static size_t __sh_eth_get_regs(struct net_device *ndev, u32 *buf)
2047{
2048	struct sh_eth_private *mdp = netdev_priv(ndev);
2049	struct sh_eth_cpu_data *cd = mdp->cd;
2050	u32 *valid_map;
2051	size_t len;
2052
2053	BUILD_BUG_ON(SH_ETH_MAX_REGISTER_OFFSET > SH_ETH_REG_DUMP_MAX_REGS);
2054
2055	/* Dump starts with a bitmap that tells ethtool which
2056	 * registers are defined for this chip.
2057	 */
2058	len = DIV_ROUND_UP(SH_ETH_REG_DUMP_MAX_REGS, 32);
2059	if (buf) {
2060		valid_map = buf;
2061		buf += len;
2062	} else {
2063		valid_map = NULL;
2064	}
2065
2066	/* Add a register to the dump, if it has a defined offset.
2067	 * This automatically skips most undefined registers, but for
2068	 * some it is also necessary to check a capability flag in
2069	 * struct sh_eth_cpu_data.
2070	 */
2071#define mark_reg_valid(reg) valid_map[reg / 32] |= 1U << (reg % 32)
2072#define add_reg_from(reg, read_expr) do {				\
2073		if (mdp->reg_offset[reg] != SH_ETH_OFFSET_INVALID) {	\
2074			if (buf) {					\
2075				mark_reg_valid(reg);			\
2076				*buf++ = read_expr;			\
2077			}						\
2078			++len;						\
2079		}							\
2080	} while (0)
2081#define add_reg(reg) add_reg_from(reg, sh_eth_read(ndev, reg))
2082#define add_tsu_reg(reg) add_reg_from(reg, sh_eth_tsu_read(mdp, reg))
2083
2084	add_reg(EDSR);
2085	add_reg(EDMR);
2086	add_reg(EDTRR);
2087	add_reg(EDRRR);
2088	add_reg(EESR);
2089	add_reg(EESIPR);
2090	add_reg(TDLAR);
2091	if (!cd->no_xdfar)
2092		add_reg(TDFAR);
2093	add_reg(TDFXR);
2094	add_reg(TDFFR);
2095	add_reg(RDLAR);
2096	if (!cd->no_xdfar)
2097		add_reg(RDFAR);
2098	add_reg(RDFXR);
2099	add_reg(RDFFR);
2100	add_reg(TRSCER);
2101	add_reg(RMFCR);
2102	add_reg(TFTR);
2103	add_reg(FDR);
2104	add_reg(RMCR);
2105	add_reg(TFUCR);
2106	add_reg(RFOCR);
2107	if (cd->rmiimode)
2108		add_reg(RMIIMODE);
2109	add_reg(FCFTR);
2110	if (cd->rpadir)
2111		add_reg(RPADIR);
2112	if (!cd->no_trimd)
2113		add_reg(TRIMD);
2114	add_reg(ECMR);
2115	add_reg(ECSR);
2116	add_reg(ECSIPR);
2117	add_reg(PIR);
2118	if (!cd->no_psr)
2119		add_reg(PSR);
2120	add_reg(RDMLR);
2121	add_reg(RFLR);
2122	add_reg(IPGR);
2123	if (cd->apr)
2124		add_reg(APR);
2125	if (cd->mpr)
2126		add_reg(MPR);
2127	add_reg(RFCR);
2128	add_reg(RFCF);
2129	if (cd->tpauser)
2130		add_reg(TPAUSER);
2131	add_reg(TPAUSECR);
2132	if (cd->gecmr)
2133		add_reg(GECMR);
2134	if (cd->bculr)
2135		add_reg(BCULR);
2136	add_reg(MAHR);
2137	add_reg(MALR);
2138	if (!cd->no_tx_cntrs) {
2139		add_reg(TROCR);
2140		add_reg(CDCR);
2141		add_reg(LCCR);
2142		add_reg(CNDCR);
2143	}
2144	add_reg(CEFCR);
2145	add_reg(FRECR);
2146	add_reg(TSFRCR);
2147	add_reg(TLFRCR);
2148	if (cd->cexcr) {
2149		add_reg(CERCR);
2150		add_reg(CEECR);
2151	}
2152	add_reg(MAFCR);
2153	if (cd->rtrate)
2154		add_reg(RTRATE);
2155	if (cd->csmr)
2156		add_reg(CSMR);
2157	if (cd->select_mii)
2158		add_reg(RMII_MII);
2159	if (cd->tsu) {
2160		add_tsu_reg(ARSTR);
2161		add_tsu_reg(TSU_CTRST);
2162		if (cd->dual_port) {
2163			add_tsu_reg(TSU_FWEN0);
2164			add_tsu_reg(TSU_FWEN1);
2165			add_tsu_reg(TSU_FCM);
2166			add_tsu_reg(TSU_BSYSL0);
2167			add_tsu_reg(TSU_BSYSL1);
2168			add_tsu_reg(TSU_PRISL0);
2169			add_tsu_reg(TSU_PRISL1);
2170			add_tsu_reg(TSU_FWSL0);
2171			add_tsu_reg(TSU_FWSL1);
2172		}
2173		add_tsu_reg(TSU_FWSLC);
2174		if (cd->dual_port) {
2175			add_tsu_reg(TSU_QTAGM0);
2176			add_tsu_reg(TSU_QTAGM1);
2177			add_tsu_reg(TSU_FWSR);
2178			add_tsu_reg(TSU_FWINMK);
2179			add_tsu_reg(TSU_ADQT0);
2180			add_tsu_reg(TSU_ADQT1);
2181			add_tsu_reg(TSU_VTAG0);
2182			add_tsu_reg(TSU_VTAG1);
2183		}
2184		add_tsu_reg(TSU_ADSBSY);
2185		add_tsu_reg(TSU_TEN);
2186		add_tsu_reg(TSU_POST1);
2187		add_tsu_reg(TSU_POST2);
2188		add_tsu_reg(TSU_POST3);
2189		add_tsu_reg(TSU_POST4);
2190		/* This is the start of a table, not just a single register. */
2191		if (buf) {
2192			unsigned int i;
2193
2194			mark_reg_valid(TSU_ADRH0);
2195			for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES * 2; i++)
2196				*buf++ = ioread32(mdp->tsu_addr +
2197						  mdp->reg_offset[TSU_ADRH0] +
2198						  i * 4);
2199		}
2200		len += SH_ETH_TSU_CAM_ENTRIES * 2;
2201	}
2202
2203#undef mark_reg_valid
2204#undef add_reg_from
2205#undef add_reg
2206#undef add_tsu_reg
2207
2208	return len * 4;
2209}
2210
2211static int sh_eth_get_regs_len(struct net_device *ndev)
2212{
2213	return __sh_eth_get_regs(ndev, NULL);
2214}
2215
2216static void sh_eth_get_regs(struct net_device *ndev, struct ethtool_regs *regs,
2217			    void *buf)
2218{
2219	struct sh_eth_private *mdp = netdev_priv(ndev);
2220
2221	regs->version = SH_ETH_REG_DUMP_VERSION;
2222
2223	pm_runtime_get_sync(&mdp->pdev->dev);
2224	__sh_eth_get_regs(ndev, buf);
2225	pm_runtime_put_sync(&mdp->pdev->dev);
2226}
2227
2228static u32 sh_eth_get_msglevel(struct net_device *ndev)
2229{
2230	struct sh_eth_private *mdp = netdev_priv(ndev);
2231	return mdp->msg_enable;
2232}
2233
2234static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
2235{
2236	struct sh_eth_private *mdp = netdev_priv(ndev);
2237	mdp->msg_enable = value;
2238}
2239
2240static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
2241	"rx_current", "tx_current",
2242	"rx_dirty", "tx_dirty",
2243};
2244#define SH_ETH_STATS_LEN  ARRAY_SIZE(sh_eth_gstrings_stats)
2245
2246static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
2247{
2248	switch (sset) {
2249	case ETH_SS_STATS:
2250		return SH_ETH_STATS_LEN;
2251	default:
2252		return -EOPNOTSUPP;
2253	}
2254}
2255
2256static void sh_eth_get_ethtool_stats(struct net_device *ndev,
2257				     struct ethtool_stats *stats, u64 *data)
2258{
2259	struct sh_eth_private *mdp = netdev_priv(ndev);
2260	int i = 0;
2261
2262	/* device-specific stats */
2263	data[i++] = mdp->cur_rx;
2264	data[i++] = mdp->cur_tx;
2265	data[i++] = mdp->dirty_rx;
2266	data[i++] = mdp->dirty_tx;
2267}
2268
2269static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
2270{
2271	switch (stringset) {
2272	case ETH_SS_STATS:
2273		memcpy(data, *sh_eth_gstrings_stats,
2274		       sizeof(sh_eth_gstrings_stats));
2275		break;
2276	}
2277}
2278
2279static void sh_eth_get_ringparam(struct net_device *ndev,
2280				 struct ethtool_ringparam *ring)
2281{
2282	struct sh_eth_private *mdp = netdev_priv(ndev);
2283
2284	ring->rx_max_pending = RX_RING_MAX;
2285	ring->tx_max_pending = TX_RING_MAX;
2286	ring->rx_pending = mdp->num_rx_ring;
2287	ring->tx_pending = mdp->num_tx_ring;
2288}
2289
2290static int sh_eth_set_ringparam(struct net_device *ndev,
2291				struct ethtool_ringparam *ring)
2292{
2293	struct sh_eth_private *mdp = netdev_priv(ndev);
2294	int ret;
2295
2296	if (ring->tx_pending > TX_RING_MAX ||
2297	    ring->rx_pending > RX_RING_MAX ||
2298	    ring->tx_pending < TX_RING_MIN ||
2299	    ring->rx_pending < RX_RING_MIN)
2300		return -EINVAL;
2301	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
2302		return -EINVAL;
2303
2304	if (netif_running(ndev)) {
2305		netif_device_detach(ndev);
2306		netif_tx_disable(ndev);
2307
2308		/* Serialise with the interrupt handler and NAPI, then
2309		 * disable interrupts.  We have to clear the
2310		 * irq_enabled flag first to ensure that interrupts
2311		 * won't be re-enabled.
2312		 */
2313		mdp->irq_enabled = false;
2314		synchronize_irq(ndev->irq);
2315		napi_synchronize(&mdp->napi);
2316		sh_eth_write(ndev, 0x0000, EESIPR);
2317
2318		sh_eth_dev_exit(ndev);
2319
2320		/* Free all the skbuffs in the Rx queue and the DMA buffers. */
2321		sh_eth_ring_free(ndev);
2322	}
2323
2324	/* Set new parameters */
2325	mdp->num_rx_ring = ring->rx_pending;
2326	mdp->num_tx_ring = ring->tx_pending;
2327
2328	if (netif_running(ndev)) {
2329		ret = sh_eth_ring_init(ndev);
2330		if (ret < 0) {
2331			netdev_err(ndev, "%s: sh_eth_ring_init failed.\n",
2332				   __func__);
2333			return ret;
2334		}
2335		ret = sh_eth_dev_init(ndev);
2336		if (ret < 0) {
2337			netdev_err(ndev, "%s: sh_eth_dev_init failed.\n",
2338				   __func__);
2339			return ret;
2340		}
2341
2342		netif_device_attach(ndev);
2343	}
2344
2345	return 0;
2346}
2347
2348static void sh_eth_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2349{
2350	struct sh_eth_private *mdp = netdev_priv(ndev);
2351
2352	wol->supported = 0;
2353	wol->wolopts = 0;
2354
2355	if (mdp->cd->magic) {
2356		wol->supported = WAKE_MAGIC;
2357		wol->wolopts = mdp->wol_enabled ? WAKE_MAGIC : 0;
2358	}
2359}
2360
2361static int sh_eth_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2362{
2363	struct sh_eth_private *mdp = netdev_priv(ndev);
2364
2365	if (!mdp->cd->magic || wol->wolopts & ~WAKE_MAGIC)
2366		return -EOPNOTSUPP;
2367
2368	mdp->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
2369
2370	device_set_wakeup_enable(&mdp->pdev->dev, mdp->wol_enabled);
2371
2372	return 0;
2373}
2374
2375static const struct ethtool_ops sh_eth_ethtool_ops = {
2376	.get_regs_len	= sh_eth_get_regs_len,
2377	.get_regs	= sh_eth_get_regs,
2378	.nway_reset	= phy_ethtool_nway_reset,
2379	.get_msglevel	= sh_eth_get_msglevel,
2380	.set_msglevel	= sh_eth_set_msglevel,
2381	.get_link	= ethtool_op_get_link,
2382	.get_strings	= sh_eth_get_strings,
2383	.get_ethtool_stats  = sh_eth_get_ethtool_stats,
2384	.get_sset_count     = sh_eth_get_sset_count,
2385	.get_ringparam	= sh_eth_get_ringparam,
2386	.set_ringparam	= sh_eth_set_ringparam,
2387	.get_link_ksettings = phy_ethtool_get_link_ksettings,
2388	.set_link_ksettings = phy_ethtool_set_link_ksettings,
2389	.get_wol	= sh_eth_get_wol,
2390	.set_wol	= sh_eth_set_wol,
2391};
2392
2393/* network device open function */
2394static int sh_eth_open(struct net_device *ndev)
2395{
2396	struct sh_eth_private *mdp = netdev_priv(ndev);
2397	int ret;
2398
2399	pm_runtime_get_sync(&mdp->pdev->dev);
2400
2401	napi_enable(&mdp->napi);
2402
2403	ret = request_irq(ndev->irq, sh_eth_interrupt,
2404			  mdp->cd->irq_flags, ndev->name, ndev);
2405	if (ret) {
2406		netdev_err(ndev, "Can not assign IRQ number\n");
2407		goto out_napi_off;
2408	}
2409
2410	/* Descriptor set */
2411	ret = sh_eth_ring_init(ndev);
2412	if (ret)
2413		goto out_free_irq;
2414
2415	/* device init */
2416	ret = sh_eth_dev_init(ndev);
2417	if (ret)
2418		goto out_free_irq;
2419
2420	/* PHY control start*/
2421	ret = sh_eth_phy_start(ndev);
2422	if (ret)
2423		goto out_free_irq;
2424
2425	netif_start_queue(ndev);
2426
2427	mdp->is_opened = 1;
2428
2429	return ret;
2430
2431out_free_irq:
2432	free_irq(ndev->irq, ndev);
2433out_napi_off:
2434	napi_disable(&mdp->napi);
2435	pm_runtime_put_sync(&mdp->pdev->dev);
2436	return ret;
2437}
2438
2439/* Timeout function */
2440static void sh_eth_tx_timeout(struct net_device *ndev, unsigned int txqueue)
2441{
2442	struct sh_eth_private *mdp = netdev_priv(ndev);
2443	struct sh_eth_rxdesc *rxdesc;
2444	int i;
2445
2446	netif_stop_queue(ndev);
2447
2448	netif_err(mdp, timer, ndev,
2449		  "transmit timed out, status %8.8x, resetting...\n",
2450		  sh_eth_read(ndev, EESR));
2451
2452	/* tx_errors count up */
2453	ndev->stats.tx_errors++;
2454
2455	/* Free all the skbuffs in the Rx queue. */
2456	for (i = 0; i < mdp->num_rx_ring; i++) {
2457		rxdesc = &mdp->rx_ring[i];
2458		rxdesc->status = cpu_to_le32(0);
2459		rxdesc->addr = cpu_to_le32(0xBADF00D0);
2460		dev_kfree_skb(mdp->rx_skbuff[i]);
2461		mdp->rx_skbuff[i] = NULL;
2462	}
2463	for (i = 0; i < mdp->num_tx_ring; i++) {
2464		dev_kfree_skb(mdp->tx_skbuff[i]);
2465		mdp->tx_skbuff[i] = NULL;
2466	}
2467
2468	/* device init */
2469	sh_eth_dev_init(ndev);
2470
2471	netif_start_queue(ndev);
2472}
2473
2474/* Packet transmit function */
2475static netdev_tx_t sh_eth_start_xmit(struct sk_buff *skb,
2476				     struct net_device *ndev)
2477{
2478	struct sh_eth_private *mdp = netdev_priv(ndev);
2479	struct sh_eth_txdesc *txdesc;
2480	dma_addr_t dma_addr;
2481	u32 entry;
2482	unsigned long flags;
2483
2484	spin_lock_irqsave(&mdp->lock, flags);
2485	if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
2486		if (!sh_eth_tx_free(ndev, true)) {
2487			netif_warn(mdp, tx_queued, ndev, "TxFD exhausted.\n");
2488			netif_stop_queue(ndev);
2489			spin_unlock_irqrestore(&mdp->lock, flags);
2490			return NETDEV_TX_BUSY;
2491		}
2492	}
2493	spin_unlock_irqrestore(&mdp->lock, flags);
2494
2495	if (skb_put_padto(skb, ETH_ZLEN))
2496		return NETDEV_TX_OK;
2497
2498	entry = mdp->cur_tx % mdp->num_tx_ring;
2499	mdp->tx_skbuff[entry] = skb;
2500	txdesc = &mdp->tx_ring[entry];
2501	/* soft swap. */
2502	if (!mdp->cd->hw_swap)
2503		sh_eth_soft_swap(PTR_ALIGN(skb->data, 4), skb->len + 2);
2504	dma_addr = dma_map_single(&mdp->pdev->dev, skb->data, skb->len,
2505				  DMA_TO_DEVICE);
2506	if (dma_mapping_error(&mdp->pdev->dev, dma_addr)) {
2507		kfree_skb(skb);
2508		return NETDEV_TX_OK;
2509	}
2510	txdesc->addr = cpu_to_le32(dma_addr);
2511	txdesc->len  = cpu_to_le32(skb->len << 16);
2512
2513	dma_wmb(); /* TACT bit must be set after all the above writes */
2514	if (entry >= mdp->num_tx_ring - 1)
2515		txdesc->status |= cpu_to_le32(TD_TACT | TD_TDLE);
2516	else
2517		txdesc->status |= cpu_to_le32(TD_TACT);
2518
2519	mdp->cur_tx++;
2520
2521	if (!(sh_eth_read(ndev, EDTRR) & mdp->cd->edtrr_trns))
2522		sh_eth_write(ndev, mdp->cd->edtrr_trns, EDTRR);
2523
2524	return NETDEV_TX_OK;
2525}
2526
2527/* The statistics registers have write-clear behaviour, which means we
2528 * will lose any increment between the read and write.  We mitigate
2529 * this by only clearing when we read a non-zero value, so we will
2530 * never falsely report a total of zero.
2531 */
2532static void
2533sh_eth_update_stat(struct net_device *ndev, unsigned long *stat, int reg)
2534{
2535	u32 delta = sh_eth_read(ndev, reg);
2536
2537	if (delta) {
2538		*stat += delta;
2539		sh_eth_write(ndev, 0, reg);
2540	}
2541}
2542
2543static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
2544{
2545	struct sh_eth_private *mdp = netdev_priv(ndev);
2546
2547	if (mdp->cd->no_tx_cntrs)
2548		return &ndev->stats;
2549
2550	if (!mdp->is_opened)
2551		return &ndev->stats;
2552
2553	sh_eth_update_stat(ndev, &ndev->stats.tx_dropped, TROCR);
2554	sh_eth_update_stat(ndev, &ndev->stats.collisions, CDCR);
2555	sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors, LCCR);
2556
2557	if (mdp->cd->cexcr) {
2558		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2559				   CERCR);
2560		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2561				   CEECR);
2562	} else {
2563		sh_eth_update_stat(ndev, &ndev->stats.tx_carrier_errors,
2564				   CNDCR);
2565	}
2566
2567	return &ndev->stats;
2568}
2569
2570/* device close function */
2571static int sh_eth_close(struct net_device *ndev)
2572{
2573	struct sh_eth_private *mdp = netdev_priv(ndev);
2574
2575	netif_stop_queue(ndev);
2576
2577	/* Serialise with the interrupt handler and NAPI, then disable
2578	 * interrupts.  We have to clear the irq_enabled flag first to
2579	 * ensure that interrupts won't be re-enabled.
2580	 */
2581	mdp->irq_enabled = false;
2582	synchronize_irq(ndev->irq);
2583	napi_disable(&mdp->napi);
2584	sh_eth_write(ndev, 0x0000, EESIPR);
2585
2586	sh_eth_dev_exit(ndev);
2587
2588	/* PHY Disconnect */
2589	if (ndev->phydev) {
2590		phy_stop(ndev->phydev);
2591		phy_disconnect(ndev->phydev);
2592	}
2593
2594	free_irq(ndev->irq, ndev);
2595
2596	/* Free all the skbuffs in the Rx queue and the DMA buffer. */
2597	sh_eth_ring_free(ndev);
2598
2599	pm_runtime_put_sync(&mdp->pdev->dev);
2600
2601	mdp->is_opened = 0;
2602
2603	return 0;
2604}
2605
2606static int sh_eth_change_mtu(struct net_device *ndev, int new_mtu)
2607{
2608	if (netif_running(ndev))
2609		return -EBUSY;
2610
2611	ndev->mtu = new_mtu;
2612	netdev_update_features(ndev);
2613
2614	return 0;
2615}
2616
2617/* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
2618static u32 sh_eth_tsu_get_post_mask(int entry)
2619{
2620	return 0x0f << (28 - ((entry % 8) * 4));
2621}
2622
2623static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
2624{
2625	return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
2626}
2627
2628static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
2629					     int entry)
2630{
2631	struct sh_eth_private *mdp = netdev_priv(ndev);
2632	int reg = TSU_POST1 + entry / 8;
2633	u32 tmp;
2634
2635	tmp = sh_eth_tsu_read(mdp, reg);
2636	sh_eth_tsu_write(mdp, tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg);
2637}
2638
2639static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
2640					      int entry)
2641{
2642	struct sh_eth_private *mdp = netdev_priv(ndev);
2643	int reg = TSU_POST1 + entry / 8;
2644	u32 post_mask, ref_mask, tmp;
2645
2646	post_mask = sh_eth_tsu_get_post_mask(entry);
2647	ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
2648
2649	tmp = sh_eth_tsu_read(mdp, reg);
2650	sh_eth_tsu_write(mdp, tmp & ~post_mask, reg);
2651
2652	/* If other port enables, the function returns "true" */
2653	return tmp & ref_mask;
2654}
2655
2656static int sh_eth_tsu_busy(struct net_device *ndev)
2657{
2658	int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
2659	struct sh_eth_private *mdp = netdev_priv(ndev);
2660
2661	while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
2662		udelay(10);
2663		timeout--;
2664		if (timeout <= 0) {
2665			netdev_err(ndev, "%s: timeout\n", __func__);
2666			return -ETIMEDOUT;
2667		}
2668	}
2669
2670	return 0;
2671}
2672
2673static int sh_eth_tsu_write_entry(struct net_device *ndev, u16 offset,
2674				  const u8 *addr)
2675{
2676	struct sh_eth_private *mdp = netdev_priv(ndev);
2677	u32 val;
2678
2679	val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
2680	iowrite32(val, mdp->tsu_addr + offset);
2681	if (sh_eth_tsu_busy(ndev) < 0)
2682		return -EBUSY;
2683
2684	val = addr[4] << 8 | addr[5];
2685	iowrite32(val, mdp->tsu_addr + offset + 4);
2686	if (sh_eth_tsu_busy(ndev) < 0)
2687		return -EBUSY;
2688
2689	return 0;
2690}
2691
2692static void sh_eth_tsu_read_entry(struct net_device *ndev, u16 offset, u8 *addr)
2693{
2694	struct sh_eth_private *mdp = netdev_priv(ndev);
2695	u32 val;
2696
2697	val = ioread32(mdp->tsu_addr + offset);
2698	addr[0] = (val >> 24) & 0xff;
2699	addr[1] = (val >> 16) & 0xff;
2700	addr[2] = (val >> 8) & 0xff;
2701	addr[3] = val & 0xff;
2702	val = ioread32(mdp->tsu_addr + offset + 4);
2703	addr[4] = (val >> 8) & 0xff;
2704	addr[5] = val & 0xff;
2705}
2706
2707
2708static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
2709{
2710	struct sh_eth_private *mdp = netdev_priv(ndev);
2711	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2712	int i;
2713	u8 c_addr[ETH_ALEN];
2714
2715	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2716		sh_eth_tsu_read_entry(ndev, reg_offset, c_addr);
2717		if (ether_addr_equal(addr, c_addr))
2718			return i;
2719	}
2720
2721	return -ENOENT;
2722}
2723
2724static int sh_eth_tsu_find_empty(struct net_device *ndev)
2725{
2726	u8 blank[ETH_ALEN];
2727	int entry;
2728
2729	memset(blank, 0, sizeof(blank));
2730	entry = sh_eth_tsu_find_entry(ndev, blank);
2731	return (entry < 0) ? -ENOMEM : entry;
2732}
2733
2734static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
2735					      int entry)
2736{
2737	struct sh_eth_private *mdp = netdev_priv(ndev);
2738	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2739	int ret;
2740	u8 blank[ETH_ALEN];
2741
2742	sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
2743			 ~(1 << (31 - entry)), TSU_TEN);
2744
2745	memset(blank, 0, sizeof(blank));
2746	ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
2747	if (ret < 0)
2748		return ret;
2749	return 0;
2750}
2751
2752static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
2753{
2754	struct sh_eth_private *mdp = netdev_priv(ndev);
2755	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2756	int i, ret;
2757
2758	if (!mdp->cd->tsu)
2759		return 0;
2760
2761	i = sh_eth_tsu_find_entry(ndev, addr);
2762	if (i < 0) {
2763		/* No entry found, create one */
2764		i = sh_eth_tsu_find_empty(ndev);
2765		if (i < 0)
2766			return -ENOMEM;
2767		ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
2768		if (ret < 0)
2769			return ret;
2770
2771		/* Enable the entry */
2772		sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
2773				 (1 << (31 - i)), TSU_TEN);
2774	}
2775
2776	/* Entry found or created, enable POST */
2777	sh_eth_tsu_enable_cam_entry_post(ndev, i);
2778
2779	return 0;
2780}
2781
2782static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
2783{
2784	struct sh_eth_private *mdp = netdev_priv(ndev);
2785	int i, ret;
2786
2787	if (!mdp->cd->tsu)
2788		return 0;
2789
2790	i = sh_eth_tsu_find_entry(ndev, addr);
2791	if (i) {
2792		/* Entry found */
2793		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2794			goto done;
2795
2796		/* Disable the entry if both ports was disabled */
2797		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2798		if (ret < 0)
2799			return ret;
2800	}
2801done:
2802	return 0;
2803}
2804
2805static int sh_eth_tsu_purge_all(struct net_device *ndev)
2806{
2807	struct sh_eth_private *mdp = netdev_priv(ndev);
2808	int i, ret;
2809
2810	if (!mdp->cd->tsu)
2811		return 0;
2812
2813	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
2814		if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
2815			continue;
2816
2817		/* Disable the entry if both ports was disabled */
2818		ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
2819		if (ret < 0)
2820			return ret;
2821	}
2822
2823	return 0;
2824}
2825
2826static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
2827{
2828	struct sh_eth_private *mdp = netdev_priv(ndev);
2829	u16 reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
2830	u8 addr[ETH_ALEN];
2831	int i;
2832
2833	if (!mdp->cd->tsu)
2834		return;
2835
2836	for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
2837		sh_eth_tsu_read_entry(ndev, reg_offset, addr);
2838		if (is_multicast_ether_addr(addr))
2839			sh_eth_tsu_del_entry(ndev, addr);
2840	}
2841}
2842
2843/* Update promiscuous flag and multicast filter */
2844static void sh_eth_set_rx_mode(struct net_device *ndev)
2845{
2846	struct sh_eth_private *mdp = netdev_priv(ndev);
2847	u32 ecmr_bits;
2848	int mcast_all = 0;
2849	unsigned long flags;
2850
2851	spin_lock_irqsave(&mdp->lock, flags);
2852	/* Initial condition is MCT = 1, PRM = 0.
2853	 * Depending on ndev->flags, set PRM or clear MCT
2854	 */
2855	ecmr_bits = sh_eth_read(ndev, ECMR) & ~ECMR_PRM;
2856	if (mdp->cd->tsu)
2857		ecmr_bits |= ECMR_MCT;
2858
2859	if (!(ndev->flags & IFF_MULTICAST)) {
2860		sh_eth_tsu_purge_mcast(ndev);
2861		mcast_all = 1;
2862	}
2863	if (ndev->flags & IFF_ALLMULTI) {
2864		sh_eth_tsu_purge_mcast(ndev);
2865		ecmr_bits &= ~ECMR_MCT;
2866		mcast_all = 1;
2867	}
2868
2869	if (ndev->flags & IFF_PROMISC) {
2870		sh_eth_tsu_purge_all(ndev);
2871		ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
2872	} else if (mdp->cd->tsu) {
2873		struct netdev_hw_addr *ha;
2874		netdev_for_each_mc_addr(ha, ndev) {
2875			if (mcast_all && is_multicast_ether_addr(ha->addr))
2876				continue;
2877
2878			if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
2879				if (!mcast_all) {
2880					sh_eth_tsu_purge_mcast(ndev);
2881					ecmr_bits &= ~ECMR_MCT;
2882					mcast_all = 1;
2883				}
2884			}
2885		}
2886	}
2887
2888	/* update the ethernet mode */
2889	sh_eth_write(ndev, ecmr_bits, ECMR);
2890
2891	spin_unlock_irqrestore(&mdp->lock, flags);
2892}
2893
2894static void sh_eth_set_rx_csum(struct net_device *ndev, bool enable)
2895{
2896	struct sh_eth_private *mdp = netdev_priv(ndev);
2897	unsigned long flags;
2898
2899	spin_lock_irqsave(&mdp->lock, flags);
2900
2901	/* Disable TX and RX */
2902	sh_eth_rcv_snd_disable(ndev);
2903
2904	/* Modify RX Checksum setting */
2905	sh_eth_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2906
2907	/* Enable TX and RX */
2908	sh_eth_rcv_snd_enable(ndev);
2909
2910	spin_unlock_irqrestore(&mdp->lock, flags);
2911}
2912
2913static int sh_eth_set_features(struct net_device *ndev,
2914			       netdev_features_t features)
2915{
2916	netdev_features_t changed = ndev->features ^ features;
2917	struct sh_eth_private *mdp = netdev_priv(ndev);
2918
2919	if (changed & NETIF_F_RXCSUM && mdp->cd->rx_csum)
2920		sh_eth_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2921
2922	ndev->features = features;
2923
2924	return 0;
2925}
2926
2927static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
2928{
2929	if (!mdp->port)
2930		return TSU_VTAG0;
2931	else
2932		return TSU_VTAG1;
2933}
2934
2935static int sh_eth_vlan_rx_add_vid(struct net_device *ndev,
2936				  __be16 proto, u16 vid)
2937{
2938	struct sh_eth_private *mdp = netdev_priv(ndev);
2939	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2940
2941	if (unlikely(!mdp->cd->tsu))
2942		return -EPERM;
2943
2944	/* No filtering if vid = 0 */
2945	if (!vid)
2946		return 0;
2947
2948	mdp->vlan_num_ids++;
2949
2950	/* The controller has one VLAN tag HW filter. So, if the filter is
2951	 * already enabled, the driver disables it and the filte
2952	 */
2953	if (mdp->vlan_num_ids > 1) {
2954		/* disable VLAN filter */
2955		sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2956		return 0;
2957	}
2958
2959	sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
2960			 vtag_reg_index);
2961
2962	return 0;
2963}
2964
2965static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev,
2966				   __be16 proto, u16 vid)
2967{
2968	struct sh_eth_private *mdp = netdev_priv(ndev);
2969	int vtag_reg_index = sh_eth_get_vtag_index(mdp);
2970
2971	if (unlikely(!mdp->cd->tsu))
2972		return -EPERM;
2973
2974	/* No filtering if vid = 0 */
2975	if (!vid)
2976		return 0;
2977
2978	mdp->vlan_num_ids--;
2979	sh_eth_tsu_write(mdp, 0, vtag_reg_index);
2980
2981	return 0;
2982}
2983
2984/* SuperH's TSU register init function */
2985static void sh_eth_tsu_init(struct sh_eth_private *mdp)
2986{
2987	if (!mdp->cd->dual_port) {
2988		sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
2989		sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL,
2990				 TSU_FWSLC);	/* Enable POST registers */
2991		return;
2992	}
2993
2994	sh_eth_tsu_write(mdp, 0, TSU_FWEN0);	/* Disable forward(0->1) */
2995	sh_eth_tsu_write(mdp, 0, TSU_FWEN1);	/* Disable forward(1->0) */
2996	sh_eth_tsu_write(mdp, 0, TSU_FCM);	/* forward fifo 3k-3k */
2997	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
2998	sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
2999	sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
3000	sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
3001	sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
3002	sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
3003	sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
3004	sh_eth_tsu_write(mdp, 0, TSU_QTAGM0);	/* Disable QTAG(0->1) */
3005	sh_eth_tsu_write(mdp, 0, TSU_QTAGM1);	/* Disable QTAG(1->0) */
3006	sh_eth_tsu_write(mdp, 0, TSU_FWSR);	/* all interrupt status clear */
3007	sh_eth_tsu_write(mdp, 0, TSU_FWINMK);	/* Disable all interrupt */
3008	sh_eth_tsu_write(mdp, 0, TSU_TEN);	/* Disable all CAM entry */
3009	sh_eth_tsu_write(mdp, 0, TSU_POST1);	/* Disable CAM entry [ 0- 7] */
3010	sh_eth_tsu_write(mdp, 0, TSU_POST2);	/* Disable CAM entry [ 8-15] */
3011	sh_eth_tsu_write(mdp, 0, TSU_POST3);	/* Disable CAM entry [16-23] */
3012	sh_eth_tsu_write(mdp, 0, TSU_POST4);	/* Disable CAM entry [24-31] */
3013}
3014
3015/* MDIO bus release function */
3016static int sh_mdio_release(struct sh_eth_private *mdp)
3017{
3018	/* unregister mdio bus */
3019	mdiobus_unregister(mdp->mii_bus);
3020
3021	/* free bitbang info */
3022	free_mdio_bitbang(mdp->mii_bus);
3023
3024	return 0;
3025}
3026
3027/* MDIO bus init function */
3028static int sh_mdio_init(struct sh_eth_private *mdp,
3029			struct sh_eth_plat_data *pd)
3030{
3031	int ret;
3032	struct bb_info *bitbang;
3033	struct platform_device *pdev = mdp->pdev;
3034	struct device *dev = &mdp->pdev->dev;
3035
3036	/* create bit control struct for PHY */
3037	bitbang = devm_kzalloc(dev, sizeof(struct bb_info), GFP_KERNEL);
3038	if (!bitbang)
3039		return -ENOMEM;
3040
3041	/* bitbang init */
3042	bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
3043	bitbang->set_gate = pd->set_mdio_gate;
3044	bitbang->ctrl.ops = &bb_ops;
3045
3046	/* MII controller setting */
3047	mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
3048	if (!mdp->mii_bus)
3049		return -ENOMEM;
3050
3051	/* Hook up MII support for ethtool */
3052	mdp->mii_bus->name = "sh_mii";
3053	mdp->mii_bus->parent = dev;
3054	snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
3055		 pdev->name, pdev->id);
3056
3057	/* register MDIO bus */
3058	if (pd->phy_irq > 0)
3059		mdp->mii_bus->irq[pd->phy] = pd->phy_irq;
3060
3061	ret = of_mdiobus_register(mdp->mii_bus, dev->of_node);
3062	if (ret)
3063		goto out_free_bus;
3064
3065	return 0;
3066
3067out_free_bus:
3068	free_mdio_bitbang(mdp->mii_bus);
3069	return ret;
3070}
3071
3072static const u16 *sh_eth_get_register_offset(int register_type)
3073{
3074	const u16 *reg_offset = NULL;
3075
3076	switch (register_type) {
3077	case SH_ETH_REG_GIGABIT:
3078		reg_offset = sh_eth_offset_gigabit;
3079		break;
3080	case SH_ETH_REG_FAST_RCAR:
3081		reg_offset = sh_eth_offset_fast_rcar;
3082		break;
3083	case SH_ETH_REG_FAST_SH4:
3084		reg_offset = sh_eth_offset_fast_sh4;
3085		break;
3086	case SH_ETH_REG_FAST_SH3_SH2:
3087		reg_offset = sh_eth_offset_fast_sh3_sh2;
3088		break;
3089	}
3090
3091	return reg_offset;
3092}
3093
3094static const struct net_device_ops sh_eth_netdev_ops = {
3095	.ndo_open		= sh_eth_open,
3096	.ndo_stop		= sh_eth_close,
3097	.ndo_start_xmit		= sh_eth_start_xmit,
3098	.ndo_get_stats		= sh_eth_get_stats,
3099	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3100	.ndo_tx_timeout		= sh_eth_tx_timeout,
3101	.ndo_do_ioctl		= phy_do_ioctl_running,
3102	.ndo_change_mtu		= sh_eth_change_mtu,
3103	.ndo_validate_addr	= eth_validate_addr,
3104	.ndo_set_mac_address	= eth_mac_addr,
3105	.ndo_set_features	= sh_eth_set_features,
3106};
3107
3108static const struct net_device_ops sh_eth_netdev_ops_tsu = {
3109	.ndo_open		= sh_eth_open,
3110	.ndo_stop		= sh_eth_close,
3111	.ndo_start_xmit		= sh_eth_start_xmit,
3112	.ndo_get_stats		= sh_eth_get_stats,
3113	.ndo_set_rx_mode	= sh_eth_set_rx_mode,
3114	.ndo_vlan_rx_add_vid	= sh_eth_vlan_rx_add_vid,
3115	.ndo_vlan_rx_kill_vid	= sh_eth_vlan_rx_kill_vid,
3116	.ndo_tx_timeout		= sh_eth_tx_timeout,
3117	.ndo_do_ioctl		= phy_do_ioctl_running,
3118	.ndo_change_mtu		= sh_eth_change_mtu,
3119	.ndo_validate_addr	= eth_validate_addr,
3120	.ndo_set_mac_address	= eth_mac_addr,
3121	.ndo_set_features	= sh_eth_set_features,
3122};
3123
3124#ifdef CONFIG_OF
3125static struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3126{
3127	struct device_node *np = dev->of_node;
3128	struct sh_eth_plat_data *pdata;
3129	phy_interface_t interface;
3130	const char *mac_addr;
3131	int ret;
3132
3133	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3134	if (!pdata)
3135		return NULL;
3136
3137	ret = of_get_phy_mode(np, &interface);
3138	if (ret)
3139		return NULL;
3140	pdata->phy_interface = interface;
3141
3142	mac_addr = of_get_mac_address(np);
3143	if (!IS_ERR(mac_addr))
3144		ether_addr_copy(pdata->mac_addr, mac_addr);
3145
3146	pdata->no_ether_link =
3147		of_property_read_bool(np, "renesas,no-ether-link");
3148	pdata->ether_link_active_low =
3149		of_property_read_bool(np, "renesas,ether-link-active-low");
3150
3151	return pdata;
3152}
3153
3154static const struct of_device_id sh_eth_match_table[] = {
3155	{ .compatible = "renesas,gether-r8a7740", .data = &r8a7740_data },
3156	{ .compatible = "renesas,ether-r8a7743", .data = &rcar_gen2_data },
3157	{ .compatible = "renesas,ether-r8a7745", .data = &rcar_gen2_data },
3158	{ .compatible = "renesas,ether-r8a7778", .data = &rcar_gen1_data },
3159	{ .compatible = "renesas,ether-r8a7779", .data = &rcar_gen1_data },
3160	{ .compatible = "renesas,ether-r8a7790", .data = &rcar_gen2_data },
3161	{ .compatible = "renesas,ether-r8a7791", .data = &rcar_gen2_data },
3162	{ .compatible = "renesas,ether-r8a7793", .data = &rcar_gen2_data },
3163	{ .compatible = "renesas,ether-r8a7794", .data = &rcar_gen2_data },
3164	{ .compatible = "renesas,gether-r8a77980", .data = &r8a77980_data },
3165	{ .compatible = "renesas,ether-r7s72100", .data = &r7s72100_data },
3166	{ .compatible = "renesas,ether-r7s9210", .data = &r7s9210_data },
3167	{ .compatible = "renesas,rcar-gen1-ether", .data = &rcar_gen1_data },
3168	{ .compatible = "renesas,rcar-gen2-ether", .data = &rcar_gen2_data },
3169	{ }
3170};
3171MODULE_DEVICE_TABLE(of, sh_eth_match_table);
3172#else
3173static inline struct sh_eth_plat_data *sh_eth_parse_dt(struct device *dev)
3174{
3175	return NULL;
3176}
3177#endif
3178
3179static int sh_eth_drv_probe(struct platform_device *pdev)
3180{
3181	struct resource *res;
3182	struct sh_eth_plat_data *pd = dev_get_platdata(&pdev->dev);
3183	const struct platform_device_id *id = platform_get_device_id(pdev);
3184	struct sh_eth_private *mdp;
3185	struct net_device *ndev;
3186	int ret;
3187
3188	/* get base addr */
3189	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3190
3191	ndev = alloc_etherdev(sizeof(struct sh_eth_private));
3192	if (!ndev)
3193		return -ENOMEM;
3194
3195	pm_runtime_enable(&pdev->dev);
3196	pm_runtime_get_sync(&pdev->dev);
3197
3198	ret = platform_get_irq(pdev, 0);
3199	if (ret < 0)
3200		goto out_release;
3201	ndev->irq = ret;
3202
3203	SET_NETDEV_DEV(ndev, &pdev->dev);
3204
3205	mdp = netdev_priv(ndev);
3206	mdp->num_tx_ring = TX_RING_SIZE;
3207	mdp->num_rx_ring = RX_RING_SIZE;
3208	mdp->addr = devm_ioremap_resource(&pdev->dev, res);
3209	if (IS_ERR(mdp->addr)) {
3210		ret = PTR_ERR(mdp->addr);
3211		goto out_release;
3212	}
3213
3214	ndev->base_addr = res->start;
3215
3216	spin_lock_init(&mdp->lock);
3217	mdp->pdev = pdev;
3218
3219	if (pdev->dev.of_node)
3220		pd = sh_eth_parse_dt(&pdev->dev);
3221	if (!pd) {
3222		dev_err(&pdev->dev, "no platform data\n");
3223		ret = -EINVAL;
3224		goto out_release;
3225	}
3226
3227	/* get PHY ID */
3228	mdp->phy_id = pd->phy;
3229	mdp->phy_interface = pd->phy_interface;
3230	mdp->no_ether_link = pd->no_ether_link;
3231	mdp->ether_link_active_low = pd->ether_link_active_low;
3232
3233	/* set cpu data */
3234	if (id)
3235		mdp->cd = (struct sh_eth_cpu_data *)id->driver_data;
3236	else
3237		mdp->cd = (struct sh_eth_cpu_data *)of_device_get_match_data(&pdev->dev);
3238
3239	mdp->reg_offset = sh_eth_get_register_offset(mdp->cd->register_type);
3240	if (!mdp->reg_offset) {
3241		dev_err(&pdev->dev, "Unknown register type (%d)\n",
3242			mdp->cd->register_type);
3243		ret = -EINVAL;
3244		goto out_release;
3245	}
3246	sh_eth_set_default_cpu_data(mdp->cd);
3247
3248	/* User's manual states max MTU should be 2048 but due to the
3249	 * alignment calculations in sh_eth_ring_init() the practical
3250	 * MTU is a bit less. Maybe this can be optimized some more.
3251	 */
3252	ndev->max_mtu = 2000 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3253	ndev->min_mtu = ETH_MIN_MTU;
3254
3255	if (mdp->cd->rx_csum) {
3256		ndev->features = NETIF_F_RXCSUM;
3257		ndev->hw_features = NETIF_F_RXCSUM;
3258	}
3259
3260	/* set function */
3261	if (mdp->cd->tsu)
3262		ndev->netdev_ops = &sh_eth_netdev_ops_tsu;
3263	else
3264		ndev->netdev_ops = &sh_eth_netdev_ops;
3265	ndev->ethtool_ops = &sh_eth_ethtool_ops;
3266	ndev->watchdog_timeo = TX_TIMEOUT;
3267
3268	/* debug message level */
3269	mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
3270
3271	/* read and set MAC address */
3272	read_mac_address(ndev, pd->mac_addr);
3273	if (!is_valid_ether_addr(ndev->dev_addr)) {
3274		dev_warn(&pdev->dev,
3275			 "no valid MAC address supplied, using a random one.\n");
3276		eth_hw_addr_random(ndev);
3277	}
3278
3279	if (mdp->cd->tsu) {
3280		int port = pdev->id < 0 ? 0 : pdev->id % 2;
3281		struct resource *rtsu;
3282
3283		rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
3284		if (!rtsu) {
3285			dev_err(&pdev->dev, "no TSU resource\n");
3286			ret = -ENODEV;
3287			goto out_release;
3288		}
3289		/* We can only request the  TSU region  for the first port
3290		 * of the two  sharing this TSU for the probe to succeed...
3291		 */
3292		if (port == 0 &&
3293		    !devm_request_mem_region(&pdev->dev, rtsu->start,
3294					     resource_size(rtsu),
3295					     dev_name(&pdev->dev))) {
3296			dev_err(&pdev->dev, "can't request TSU resource.\n");
3297			ret = -EBUSY;
3298			goto out_release;
3299		}
3300		/* ioremap the TSU registers */
3301		mdp->tsu_addr = devm_ioremap(&pdev->dev, rtsu->start,
3302					     resource_size(rtsu));
3303		if (!mdp->tsu_addr) {
3304			dev_err(&pdev->dev, "TSU region ioremap() failed.\n");
3305			ret = -ENOMEM;
3306			goto out_release;
3307		}
3308		mdp->port = port;
3309		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3310
3311		/* Need to init only the first port of the two sharing a TSU */
3312		if (port == 0) {
3313			if (mdp->cd->chip_reset)
3314				mdp->cd->chip_reset(ndev);
3315
3316			/* TSU init (Init only)*/
3317			sh_eth_tsu_init(mdp);
3318		}
3319	}
3320
3321	if (mdp->cd->rmiimode)
3322		sh_eth_write(ndev, 0x1, RMIIMODE);
3323
3324	/* MDIO bus init */
3325	ret = sh_mdio_init(mdp, pd);
3326	if (ret) {
3327		if (ret != -EPROBE_DEFER)
3328			dev_err(&pdev->dev, "MDIO init failed: %d\n", ret);
3329		goto out_release;
3330	}
3331
3332	netif_napi_add(ndev, &mdp->napi, sh_eth_poll, 64);
3333
3334	/* network device register */
3335	ret = register_netdev(ndev);
3336	if (ret)
3337		goto out_napi_del;
3338
3339	if (mdp->cd->magic)
3340		device_set_wakeup_capable(&pdev->dev, 1);
3341
3342	/* print device information */
3343	netdev_info(ndev, "Base address at 0x%x, %pM, IRQ %d.\n",
3344		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3345
3346	pm_runtime_put(&pdev->dev);
3347	platform_set_drvdata(pdev, ndev);
3348
3349	return ret;
3350
3351out_napi_del:
3352	netif_napi_del(&mdp->napi);
3353	sh_mdio_release(mdp);
3354
3355out_release:
3356	/* net_dev free */
3357	free_netdev(ndev);
3358
3359	pm_runtime_put(&pdev->dev);
3360	pm_runtime_disable(&pdev->dev);
3361	return ret;
3362}
3363
3364static int sh_eth_drv_remove(struct platform_device *pdev)
3365{
3366	struct net_device *ndev = platform_get_drvdata(pdev);
3367	struct sh_eth_private *mdp = netdev_priv(ndev);
3368
3369	unregister_netdev(ndev);
3370	netif_napi_del(&mdp->napi);
3371	sh_mdio_release(mdp);
3372	pm_runtime_disable(&pdev->dev);
3373	free_netdev(ndev);
3374
3375	return 0;
3376}
3377
3378#ifdef CONFIG_PM
3379#ifdef CONFIG_PM_SLEEP
3380static int sh_eth_wol_setup(struct net_device *ndev)
3381{
3382	struct sh_eth_private *mdp = netdev_priv(ndev);
3383
3384	/* Only allow ECI interrupts */
3385	synchronize_irq(ndev->irq);
3386	napi_disable(&mdp->napi);
3387	sh_eth_write(ndev, EESIPR_ECIIP, EESIPR);
3388
3389	/* Enable MagicPacket */
3390	sh_eth_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3391
3392	return enable_irq_wake(ndev->irq);
3393}
3394
3395static int sh_eth_wol_restore(struct net_device *ndev)
3396{
3397	struct sh_eth_private *mdp = netdev_priv(ndev);
3398	int ret;
3399
3400	napi_enable(&mdp->napi);
3401
3402	/* Disable MagicPacket */
3403	sh_eth_modify(ndev, ECMR, ECMR_MPDE, 0);
3404
3405	/* The device needs to be reset to restore MagicPacket logic
3406	 * for next wakeup. If we close and open the device it will
3407	 * both be reset and all registers restored. This is what
3408	 * happens during suspend and resume without WoL enabled.
3409	 */
3410	ret = sh_eth_close(ndev);
3411	if (ret < 0)
3412		return ret;
3413	ret = sh_eth_open(ndev);
3414	if (ret < 0)
3415		return ret;
3416
3417	return disable_irq_wake(ndev->irq);
3418}
3419
3420static int sh_eth_suspend(struct device *dev)
3421{
3422	struct net_device *ndev = dev_get_drvdata(dev);
3423	struct sh_eth_private *mdp = netdev_priv(ndev);
3424	int ret = 0;
3425
3426	if (!netif_running(ndev))
3427		return 0;
3428
3429	netif_device_detach(ndev);
3430
3431	if (mdp->wol_enabled)
3432		ret = sh_eth_wol_setup(ndev);
3433	else
3434		ret = sh_eth_close(ndev);
3435
3436	return ret;
3437}
3438
3439static int sh_eth_resume(struct device *dev)
3440{
3441	struct net_device *ndev = dev_get_drvdata(dev);
3442	struct sh_eth_private *mdp = netdev_priv(ndev);
3443	int ret = 0;
3444
3445	if (!netif_running(ndev))
3446		return 0;
3447
3448	if (mdp->wol_enabled)
3449		ret = sh_eth_wol_restore(ndev);
3450	else
3451		ret = sh_eth_open(ndev);
3452
3453	if (ret < 0)
3454		return ret;
3455
3456	netif_device_attach(ndev);
3457
3458	return ret;
3459}
3460#endif
3461
3462static int sh_eth_runtime_nop(struct device *dev)
3463{
3464	/* Runtime PM callback shared between ->runtime_suspend()
3465	 * and ->runtime_resume(). Simply returns success.
3466	 *
3467	 * This driver re-initializes all registers after
3468	 * pm_runtime_get_sync() anyway so there is no need
3469	 * to save and restore registers here.
3470	 */
3471	return 0;
3472}
3473
3474static const struct dev_pm_ops sh_eth_dev_pm_ops = {
3475	SET_SYSTEM_SLEEP_PM_OPS(sh_eth_suspend, sh_eth_resume)
3476	SET_RUNTIME_PM_OPS(sh_eth_runtime_nop, sh_eth_runtime_nop, NULL)
3477};
3478#define SH_ETH_PM_OPS (&sh_eth_dev_pm_ops)
3479#else
3480#define SH_ETH_PM_OPS NULL
3481#endif
3482
3483static const struct platform_device_id sh_eth_id_table[] = {
3484	{ "sh7619-ether", (kernel_ulong_t)&sh7619_data },
3485	{ "sh771x-ether", (kernel_ulong_t)&sh771x_data },
3486	{ "sh7724-ether", (kernel_ulong_t)&sh7724_data },
3487	{ "sh7734-gether", (kernel_ulong_t)&sh7734_data },
3488	{ "sh7757-ether", (kernel_ulong_t)&sh7757_data },
3489	{ "sh7757-gether", (kernel_ulong_t)&sh7757_data_giga },
3490	{ "sh7763-gether", (kernel_ulong_t)&sh7763_data },
3491	{ }
3492};
3493MODULE_DEVICE_TABLE(platform, sh_eth_id_table);
3494
3495static struct platform_driver sh_eth_driver = {
3496	.probe = sh_eth_drv_probe,
3497	.remove = sh_eth_drv_remove,
3498	.id_table = sh_eth_id_table,
3499	.driver = {
3500		   .name = CARDNAME,
3501		   .pm = SH_ETH_PM_OPS,
3502		   .of_match_table = of_match_ptr(sh_eth_match_table),
3503	},
3504};
3505
3506module_platform_driver(sh_eth_driver);
3507
3508MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
3509MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
3510MODULE_LICENSE("GPL v2");