Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
   2/*
   3    Copyright (c) 2001, 2002 by D-Link Corporation
   4    Written by Edward Peng.<edward_peng@dlink.com.tw>
   5    Created 03-May-2001, base on Linux' sundance.c.
   6
   7    This program is free software; you can redistribute it and/or modify
   8    it under the terms of the GNU General Public License as published by
   9    the Free Software Foundation; either version 2 of the License, or
  10    (at your option) any later version.
  11*/
  12
  13#define DRV_NAME	"DL2000/TC902x-based linux driver"
  14#define DRV_VERSION	"v1.19"
  15#define DRV_RELDATE	"2007/08/12"
  16#include "dl2k.h"
  17#include <linux/dma-mapping.h>
  18
  19#define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
  20#define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
  21#define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
  22#define dr32(reg)	ioread32(ioaddr + (reg))
  23#define dr16(reg)	ioread16(ioaddr + (reg))
  24#define dr8(reg)	ioread8(ioaddr + (reg))
  25
  26static char version[] =
  27      KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
  28#define MAX_UNITS 8
  29static int mtu[MAX_UNITS];
  30static int vlan[MAX_UNITS];
  31static int jumbo[MAX_UNITS];
  32static char *media[MAX_UNITS];
  33static int tx_flow=-1;
  34static int rx_flow=-1;
  35static int copy_thresh;
  36static int rx_coalesce=10;	/* Rx frame count each interrupt */
  37static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
  38static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
  39
  40
  41MODULE_AUTHOR ("Edward Peng");
  42MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
  43MODULE_LICENSE("GPL");
  44module_param_array(mtu, int, NULL, 0);
  45module_param_array(media, charp, NULL, 0);
  46module_param_array(vlan, int, NULL, 0);
  47module_param_array(jumbo, int, NULL, 0);
  48module_param(tx_flow, int, 0);
  49module_param(rx_flow, int, 0);
  50module_param(copy_thresh, int, 0);
  51module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
  52module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
  53module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
  54
  55
  56/* Enable the default interrupts */
  57#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
  58       UpdateStats | LinkEvent)
  59
  60static void dl2k_enable_int(struct netdev_private *np)
  61{
  62	void __iomem *ioaddr = np->ioaddr;
  63
  64	dw16(IntEnable, DEFAULT_INTR);
  65}
  66
  67static const int max_intrloop = 50;
  68static const int multicast_filter_limit = 0x40;
  69
  70static int rio_open (struct net_device *dev);
  71static void rio_timer (unsigned long data);
  72static void rio_tx_timeout (struct net_device *dev);
  73static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
  74static irqreturn_t rio_interrupt (int irq, void *dev_instance);
  75static void rio_free_tx (struct net_device *dev, int irq);
  76static void tx_error (struct net_device *dev, int tx_status);
  77static int receive_packet (struct net_device *dev);
  78static void rio_error (struct net_device *dev, int int_status);
  79static int change_mtu (struct net_device *dev, int new_mtu);
  80static void set_multicast (struct net_device *dev);
  81static struct net_device_stats *get_stats (struct net_device *dev);
  82static int clear_stats (struct net_device *dev);
  83static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
  84static int rio_close (struct net_device *dev);
  85static int find_miiphy (struct net_device *dev);
  86static int parse_eeprom (struct net_device *dev);
  87static int read_eeprom (struct netdev_private *, int eep_addr);
  88static int mii_wait_link (struct net_device *dev, int wait);
  89static int mii_set_media (struct net_device *dev);
  90static int mii_get_media (struct net_device *dev);
  91static int mii_set_media_pcs (struct net_device *dev);
  92static int mii_get_media_pcs (struct net_device *dev);
  93static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
  94static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
  95		      u16 data);
  96
  97static const struct ethtool_ops ethtool_ops;
  98
  99static const struct net_device_ops netdev_ops = {
 100	.ndo_open		= rio_open,
 101	.ndo_start_xmit	= start_xmit,
 102	.ndo_stop		= rio_close,
 103	.ndo_get_stats		= get_stats,
 104	.ndo_validate_addr	= eth_validate_addr,
 105	.ndo_set_mac_address 	= eth_mac_addr,
 106	.ndo_set_rx_mode	= set_multicast,
 107	.ndo_do_ioctl		= rio_ioctl,
 108	.ndo_tx_timeout		= rio_tx_timeout,
 109	.ndo_change_mtu		= change_mtu,
 110};
 111
 112static int
 113rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
 114{
 115	struct net_device *dev;
 116	struct netdev_private *np;
 117	static int card_idx;
 118	int chip_idx = ent->driver_data;
 119	int err, irq;
 120	void __iomem *ioaddr;
 121	static int version_printed;
 122	void *ring_space;
 123	dma_addr_t ring_dma;
 124
 125	if (!version_printed++)
 126		printk ("%s", version);
 127
 128	err = pci_enable_device (pdev);
 129	if (err)
 130		return err;
 131
 132	irq = pdev->irq;
 133	err = pci_request_regions (pdev, "dl2k");
 134	if (err)
 135		goto err_out_disable;
 136
 137	pci_set_master (pdev);
 138
 139	err = -ENOMEM;
 140
 141	dev = alloc_etherdev (sizeof (*np));
 142	if (!dev)
 143		goto err_out_res;
 144	SET_NETDEV_DEV(dev, &pdev->dev);
 145
 146	np = netdev_priv(dev);
 147
 148	/* IO registers range. */
 149	ioaddr = pci_iomap(pdev, 0, 0);
 150	if (!ioaddr)
 151		goto err_out_dev;
 152	np->eeprom_addr = ioaddr;
 153
 154#ifdef MEM_MAPPING
 155	/* MM registers range. */
 156	ioaddr = pci_iomap(pdev, 1, 0);
 157	if (!ioaddr)
 158		goto err_out_iounmap;
 159#endif
 160	np->ioaddr = ioaddr;
 161	np->chip_id = chip_idx;
 162	np->pdev = pdev;
 163	spin_lock_init (&np->tx_lock);
 164	spin_lock_init (&np->rx_lock);
 165
 166	/* Parse manual configuration */
 167	np->an_enable = 1;
 168	np->tx_coalesce = 1;
 169	if (card_idx < MAX_UNITS) {
 170		if (media[card_idx] != NULL) {
 171			np->an_enable = 0;
 172			if (strcmp (media[card_idx], "auto") == 0 ||
 173			    strcmp (media[card_idx], "autosense") == 0 ||
 174			    strcmp (media[card_idx], "0") == 0 ) {
 175				np->an_enable = 2;
 176			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
 177			    strcmp (media[card_idx], "4") == 0) {
 178				np->speed = 100;
 179				np->full_duplex = 1;
 180			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
 181				   strcmp (media[card_idx], "3") == 0) {
 182				np->speed = 100;
 183				np->full_duplex = 0;
 184			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
 185				   strcmp (media[card_idx], "2") == 0) {
 186				np->speed = 10;
 187				np->full_duplex = 1;
 188			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
 189				   strcmp (media[card_idx], "1") == 0) {
 190				np->speed = 10;
 191				np->full_duplex = 0;
 192			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
 193				 strcmp (media[card_idx], "6") == 0) {
 194				np->speed=1000;
 195				np->full_duplex=1;
 196			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
 197				 strcmp (media[card_idx], "5") == 0) {
 198				np->speed = 1000;
 199				np->full_duplex = 0;
 200			} else {
 201				np->an_enable = 1;
 202			}
 203		}
 204		if (jumbo[card_idx] != 0) {
 205			np->jumbo = 1;
 206			dev->mtu = MAX_JUMBO;
 207		} else {
 208			np->jumbo = 0;
 209			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
 210				dev->mtu = mtu[card_idx];
 211		}
 212		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
 213		    vlan[card_idx] : 0;
 214		if (rx_coalesce > 0 && rx_timeout > 0) {
 215			np->rx_coalesce = rx_coalesce;
 216			np->rx_timeout = rx_timeout;
 217			np->coalesce = 1;
 218		}
 219		np->tx_flow = (tx_flow == 0) ? 0 : 1;
 220		np->rx_flow = (rx_flow == 0) ? 0 : 1;
 221
 222		if (tx_coalesce < 1)
 223			tx_coalesce = 1;
 224		else if (tx_coalesce > TX_RING_SIZE-1)
 225			tx_coalesce = TX_RING_SIZE - 1;
 226	}
 227	dev->netdev_ops = &netdev_ops;
 228	dev->watchdog_timeo = TX_TIMEOUT;
 229	dev->ethtool_ops = &ethtool_ops;
 230#if 0
 231	dev->features = NETIF_F_IP_CSUM;
 232#endif
 233	pci_set_drvdata (pdev, dev);
 234
 235	ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
 236	if (!ring_space)
 237		goto err_out_iounmap;
 238	np->tx_ring = ring_space;
 239	np->tx_ring_dma = ring_dma;
 240
 241	ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
 242	if (!ring_space)
 243		goto err_out_unmap_tx;
 244	np->rx_ring = ring_space;
 245	np->rx_ring_dma = ring_dma;
 246
 247	/* Parse eeprom data */
 248	parse_eeprom (dev);
 249
 250	/* Find PHY address */
 251	err = find_miiphy (dev);
 252	if (err)
 253		goto err_out_unmap_rx;
 254
 255	/* Fiber device? */
 256	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
 257	np->link_status = 0;
 258	/* Set media and reset PHY */
 259	if (np->phy_media) {
 260		/* default Auto-Negotiation for fiber deivices */
 261	 	if (np->an_enable == 2) {
 262			np->an_enable = 1;
 263		}
 264	} else {
 265		/* Auto-Negotiation is mandatory for 1000BASE-T,
 266		   IEEE 802.3ab Annex 28D page 14 */
 267		if (np->speed == 1000)
 268			np->an_enable = 1;
 269	}
 270
 271	err = register_netdev (dev);
 272	if (err)
 273		goto err_out_unmap_rx;
 274
 275	card_idx++;
 276
 277	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
 278		dev->name, np->name, dev->dev_addr, irq);
 279	if (tx_coalesce > 1)
 280		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
 281				tx_coalesce);
 282	if (np->coalesce)
 283		printk(KERN_INFO
 284		       "rx_coalesce:\t%d packets\n"
 285		       "rx_timeout: \t%d ns\n",
 286				np->rx_coalesce, np->rx_timeout*640);
 287	if (np->vlan)
 288		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
 289	return 0;
 290
 291err_out_unmap_rx:
 292	pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
 293err_out_unmap_tx:
 294	pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
 295err_out_iounmap:
 296#ifdef MEM_MAPPING
 297	pci_iounmap(pdev, np->ioaddr);
 298#endif
 299	pci_iounmap(pdev, np->eeprom_addr);
 300err_out_dev:
 301	free_netdev (dev);
 302err_out_res:
 303	pci_release_regions (pdev);
 304err_out_disable:
 305	pci_disable_device (pdev);
 306	return err;
 307}
 308
 309static int
 310find_miiphy (struct net_device *dev)
 311{
 312	struct netdev_private *np = netdev_priv(dev);
 313	int i, phy_found = 0;
 314	np = netdev_priv(dev);
 315	np->phy_addr = 1;
 316
 317	for (i = 31; i >= 0; i--) {
 318		int mii_status = mii_read (dev, i, 1);
 319		if (mii_status != 0xffff && mii_status != 0x0000) {
 320			np->phy_addr = i;
 321			phy_found++;
 322		}
 323	}
 324	if (!phy_found) {
 325		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
 326		return -ENODEV;
 327	}
 328	return 0;
 329}
 330
 331static int
 332parse_eeprom (struct net_device *dev)
 333{
 334	struct netdev_private *np = netdev_priv(dev);
 335	void __iomem *ioaddr = np->ioaddr;
 336	int i, j;
 337	u8 sromdata[256];
 338	u8 *psib;
 339	u32 crc;
 340	PSROM_t psrom = (PSROM_t) sromdata;
 341
 342	int cid, next;
 343
 344	for (i = 0; i < 128; i++)
 345		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
 346
 347	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
 348		/* Check CRC */
 349		crc = ~ether_crc_le (256 - 4, sromdata);
 350		if (psrom->crc != cpu_to_le32(crc)) {
 351			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
 352					dev->name);
 353			return -1;
 354		}
 355	}
 356
 357	/* Set MAC address */
 358	for (i = 0; i < 6; i++)
 359		dev->dev_addr[i] = psrom->mac_addr[i];
 360
 361	if (np->chip_id == CHIP_IP1000A) {
 362		np->led_mode = psrom->led_mode;
 363		return 0;
 364	}
 365
 366	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
 367		return 0;
 368	}
 369
 370	/* Parse Software Information Block */
 371	i = 0x30;
 372	psib = (u8 *) sromdata;
 373	do {
 374		cid = psib[i++];
 375		next = psib[i++];
 376		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
 377			printk (KERN_ERR "Cell data error\n");
 378			return -1;
 379		}
 380		switch (cid) {
 381		case 0:	/* Format version */
 382			break;
 383		case 1:	/* End of cell */
 384			return 0;
 385		case 2:	/* Duplex Polarity */
 386			np->duplex_polarity = psib[i];
 387			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
 388			break;
 389		case 3:	/* Wake Polarity */
 390			np->wake_polarity = psib[i];
 391			break;
 392		case 9:	/* Adapter description */
 393			j = (next - i > 255) ? 255 : next - i;
 394			memcpy (np->name, &(psib[i]), j);
 395			break;
 396		case 4:
 397		case 5:
 398		case 6:
 399		case 7:
 400		case 8:	/* Reversed */
 401			break;
 402		default:	/* Unknown cell */
 403			return -1;
 404		}
 405		i = next;
 406	} while (1);
 407
 408	return 0;
 409}
 410
 411static void rio_set_led_mode(struct net_device *dev)
 412{
 413	struct netdev_private *np = netdev_priv(dev);
 414	void __iomem *ioaddr = np->ioaddr;
 415	u32 mode;
 416
 417	if (np->chip_id != CHIP_IP1000A)
 418		return;
 419
 420	mode = dr32(ASICCtrl);
 421	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
 422
 423	if (np->led_mode & 0x01)
 424		mode |= IPG_AC_LED_MODE;
 425	if (np->led_mode & 0x02)
 426		mode |= IPG_AC_LED_MODE_BIT_1;
 427	if (np->led_mode & 0x08)
 428		mode |= IPG_AC_LED_SPEED;
 429
 430	dw32(ASICCtrl, mode);
 431}
 432
 433static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
 434{
 435	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
 436}
 437
 438static void free_list(struct net_device *dev)
 439{
 440	struct netdev_private *np = netdev_priv(dev);
 441	struct sk_buff *skb;
 442	int i;
 443
 444	/* Free all the skbuffs in the queue. */
 445	for (i = 0; i < RX_RING_SIZE; i++) {
 446		skb = np->rx_skbuff[i];
 447		if (skb) {
 448			pci_unmap_single(np->pdev, desc_to_dma(&np->rx_ring[i]),
 449					 skb->len, PCI_DMA_FROMDEVICE);
 450			dev_kfree_skb(skb);
 451			np->rx_skbuff[i] = NULL;
 452		}
 453		np->rx_ring[i].status = 0;
 454		np->rx_ring[i].fraginfo = 0;
 455	}
 456	for (i = 0; i < TX_RING_SIZE; i++) {
 457		skb = np->tx_skbuff[i];
 458		if (skb) {
 459			pci_unmap_single(np->pdev, desc_to_dma(&np->tx_ring[i]),
 460					 skb->len, PCI_DMA_TODEVICE);
 461			dev_kfree_skb(skb);
 462			np->tx_skbuff[i] = NULL;
 463		}
 464	}
 465}
 466
 467static void rio_reset_ring(struct netdev_private *np)
 468{
 469	int i;
 470
 471	np->cur_rx = 0;
 472	np->cur_tx = 0;
 473	np->old_rx = 0;
 474	np->old_tx = 0;
 475
 476	for (i = 0; i < TX_RING_SIZE; i++)
 477		np->tx_ring[i].status = cpu_to_le64(TFDDone);
 478
 479	for (i = 0; i < RX_RING_SIZE; i++)
 480		np->rx_ring[i].status = 0;
 481}
 482
 483 /* allocate and initialize Tx and Rx descriptors */
 484static int alloc_list(struct net_device *dev)
 485{
 486	struct netdev_private *np = netdev_priv(dev);
 487	int i;
 488
 489	rio_reset_ring(np);
 490	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
 491
 492	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
 493	for (i = 0; i < TX_RING_SIZE; i++) {
 494		np->tx_skbuff[i] = NULL;
 495		np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
 496					      ((i + 1) % TX_RING_SIZE) *
 497					      sizeof(struct netdev_desc));
 498	}
 499
 500	/* Initialize Rx descriptors & allocate buffers */
 501	for (i = 0; i < RX_RING_SIZE; i++) {
 502		/* Allocated fixed size of skbuff */
 503		struct sk_buff *skb;
 504
 505		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
 506		np->rx_skbuff[i] = skb;
 507		if (!skb) {
 508			free_list(dev);
 509			return -ENOMEM;
 510		}
 511
 512		np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
 513						((i + 1) % RX_RING_SIZE) *
 514						sizeof(struct netdev_desc));
 515		/* Rubicon now supports 40 bits of addressing space. */
 516		np->rx_ring[i].fraginfo =
 517		    cpu_to_le64(pci_map_single(
 518				  np->pdev, skb->data, np->rx_buf_sz,
 519				  PCI_DMA_FROMDEVICE));
 520		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
 521	}
 522
 523	return 0;
 524}
 525
 526static void rio_hw_init(struct net_device *dev)
 527{
 528	struct netdev_private *np = netdev_priv(dev);
 529	void __iomem *ioaddr = np->ioaddr;
 530	int i;
 531	u16 macctrl;
 532
 533	/* Reset all logic functions */
 534	dw16(ASICCtrl + 2,
 535	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
 536	mdelay(10);
 537
 538	rio_set_led_mode(dev);
 539
 540	/* DebugCtrl bit 4, 5, 9 must set */
 541	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
 542
 543	if (np->chip_id == CHIP_IP1000A &&
 544	    (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
 545		/* PHY magic taken from ipg driver, undocumented registers */
 546		mii_write(dev, np->phy_addr, 31, 0x0001);
 547		mii_write(dev, np->phy_addr, 27, 0x01e0);
 548		mii_write(dev, np->phy_addr, 31, 0x0002);
 549		mii_write(dev, np->phy_addr, 27, 0xeb8e);
 550		mii_write(dev, np->phy_addr, 31, 0x0000);
 551		mii_write(dev, np->phy_addr, 30, 0x005e);
 552		/* advertise 1000BASE-T half & full duplex, prefer MASTER */
 553		mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
 554	}
 555
 556	if (np->phy_media)
 557		mii_set_media_pcs(dev);
 558	else
 559		mii_set_media(dev);
 560
 561	/* Jumbo frame */
 562	if (np->jumbo != 0)
 563		dw16(MaxFrameSize, MAX_JUMBO+14);
 564
 565	/* Set RFDListPtr */
 566	dw32(RFDListPtr0, np->rx_ring_dma);
 567	dw32(RFDListPtr1, 0);
 568
 569	/* Set station address */
 570	/* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
 571	 * too. However, it doesn't work on IP1000A so we use 16-bit access.
 572	 */
 573	for (i = 0; i < 3; i++)
 574		dw16(StationAddr0 + 2 * i,
 575		     cpu_to_le16(((u16 *)dev->dev_addr)[i]));
 576
 577	set_multicast (dev);
 578	if (np->coalesce) {
 579		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
 580	}
 581	/* Set RIO to poll every N*320nsec. */
 582	dw8(RxDMAPollPeriod, 0x20);
 583	dw8(TxDMAPollPeriod, 0xff);
 584	dw8(RxDMABurstThresh, 0x30);
 585	dw8(RxDMAUrgentThresh, 0x30);
 586	dw32(RmonStatMask, 0x0007ffff);
 587	/* clear statistics */
 588	clear_stats (dev);
 589
 590	/* VLAN supported */
 591	if (np->vlan) {
 592		/* priority field in RxDMAIntCtrl  */
 593		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
 594		/* VLANId */
 595		dw16(VLANId, np->vlan);
 596		/* Length/Type should be 0x8100 */
 597		dw32(VLANTag, 0x8100 << 16 | np->vlan);
 598		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
 599		   VLAN information tagged by TFC' VID, CFI fields. */
 600		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
 601	}
 602
 603	/* Start Tx/Rx */
 604	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
 605
 606	macctrl = 0;
 607	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
 608	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
 609	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
 610	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
 611	dw16(MACCtrl, macctrl);
 612}
 613
 614static void rio_hw_stop(struct net_device *dev)
 615{
 616	struct netdev_private *np = netdev_priv(dev);
 617	void __iomem *ioaddr = np->ioaddr;
 618
 619	/* Disable interrupts */
 620	dw16(IntEnable, 0);
 621
 622	/* Stop Tx and Rx logics */
 623	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
 624}
 625
 626static int rio_open(struct net_device *dev)
 627{
 628	struct netdev_private *np = netdev_priv(dev);
 629	const int irq = np->pdev->irq;
 630	int i;
 631
 632	i = alloc_list(dev);
 633	if (i)
 634		return i;
 635
 636	rio_hw_init(dev);
 637
 638	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
 639	if (i) {
 640		rio_hw_stop(dev);
 641		free_list(dev);
 642		return i;
 643	}
 644
 645	setup_timer(&np->timer, rio_timer, (unsigned long)dev);
 646	np->timer.expires = jiffies + 1 * HZ;
 647	add_timer(&np->timer);
 648
 649	netif_start_queue (dev);
 650
 651	dl2k_enable_int(np);
 652	return 0;
 653}
 654
 655static void
 656rio_timer (unsigned long data)
 657{
 658	struct net_device *dev = (struct net_device *)data;
 659	struct netdev_private *np = netdev_priv(dev);
 660	unsigned int entry;
 661	int next_tick = 1*HZ;
 662	unsigned long flags;
 663
 664	spin_lock_irqsave(&np->rx_lock, flags);
 665	/* Recover rx ring exhausted error */
 666	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
 667		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
 668		/* Re-allocate skbuffs to fill the descriptor ring */
 669		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
 670			struct sk_buff *skb;
 671			entry = np->old_rx % RX_RING_SIZE;
 672			/* Dropped packets don't need to re-allocate */
 673			if (np->rx_skbuff[entry] == NULL) {
 674				skb = netdev_alloc_skb_ip_align(dev,
 675								np->rx_buf_sz);
 676				if (skb == NULL) {
 677					np->rx_ring[entry].fraginfo = 0;
 678					printk (KERN_INFO
 679						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
 680						dev->name, entry);
 681					break;
 682				}
 683				np->rx_skbuff[entry] = skb;
 684				np->rx_ring[entry].fraginfo =
 685				    cpu_to_le64 (pci_map_single
 686					 (np->pdev, skb->data, np->rx_buf_sz,
 687					  PCI_DMA_FROMDEVICE));
 688			}
 689			np->rx_ring[entry].fraginfo |=
 690			    cpu_to_le64((u64)np->rx_buf_sz << 48);
 691			np->rx_ring[entry].status = 0;
 692		} /* end for */
 693	} /* end if */
 694	spin_unlock_irqrestore (&np->rx_lock, flags);
 695	np->timer.expires = jiffies + next_tick;
 696	add_timer(&np->timer);
 697}
 698
 699static void
 700rio_tx_timeout (struct net_device *dev)
 701{
 702	struct netdev_private *np = netdev_priv(dev);
 703	void __iomem *ioaddr = np->ioaddr;
 704
 705	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
 706		dev->name, dr32(TxStatus));
 707	rio_free_tx(dev, 0);
 708	dev->if_port = 0;
 709	dev->trans_start = jiffies; /* prevent tx timeout */
 710}
 711
 712static netdev_tx_t
 713start_xmit (struct sk_buff *skb, struct net_device *dev)
 714{
 715	struct netdev_private *np = netdev_priv(dev);
 716	void __iomem *ioaddr = np->ioaddr;
 717	struct netdev_desc *txdesc;
 718	unsigned entry;
 719	u64 tfc_vlan_tag = 0;
 720
 721	if (np->link_status == 0) {	/* Link Down */
 722		dev_kfree_skb(skb);
 723		return NETDEV_TX_OK;
 724	}
 725	entry = np->cur_tx % TX_RING_SIZE;
 726	np->tx_skbuff[entry] = skb;
 727	txdesc = &np->tx_ring[entry];
 728
 729#if 0
 730	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 731		txdesc->status |=
 732		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
 733				 IPChecksumEnable);
 734	}
 735#endif
 736	if (np->vlan) {
 737		tfc_vlan_tag = VLANTagInsert |
 738		    ((u64)np->vlan << 32) |
 739		    ((u64)skb->priority << 45);
 740	}
 741	txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
 742							skb->len,
 743							PCI_DMA_TODEVICE));
 744	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
 745
 746	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
 747	 * Work around: Always use 1 descriptor in 10Mbps mode */
 748	if (entry % np->tx_coalesce == 0 || np->speed == 10)
 749		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 750					      WordAlignDisable |
 751					      TxDMAIndicate |
 752					      (1 << FragCountShift));
 753	else
 754		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 755					      WordAlignDisable |
 756					      (1 << FragCountShift));
 757
 758	/* TxDMAPollNow */
 759	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
 760	/* Schedule ISR */
 761	dw32(CountDown, 10000);
 762	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
 763	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 764			< TX_QUEUE_LEN - 1 && np->speed != 10) {
 765		/* do nothing */
 766	} else if (!netif_queue_stopped(dev)) {
 767		netif_stop_queue (dev);
 768	}
 769
 770	/* The first TFDListPtr */
 771	if (!dr32(TFDListPtr0)) {
 772		dw32(TFDListPtr0, np->tx_ring_dma +
 773		     entry * sizeof (struct netdev_desc));
 774		dw32(TFDListPtr1, 0);
 775	}
 776
 777	return NETDEV_TX_OK;
 778}
 779
 780static irqreturn_t
 781rio_interrupt (int irq, void *dev_instance)
 782{
 783	struct net_device *dev = dev_instance;
 784	struct netdev_private *np = netdev_priv(dev);
 785	void __iomem *ioaddr = np->ioaddr;
 786	unsigned int_status;
 787	int cnt = max_intrloop;
 788	int handled = 0;
 789
 790	while (1) {
 791		int_status = dr16(IntStatus);
 792		dw16(IntStatus, int_status);
 793		int_status &= DEFAULT_INTR;
 794		if (int_status == 0 || --cnt < 0)
 795			break;
 796		handled = 1;
 797		/* Processing received packets */
 798		if (int_status & RxDMAComplete)
 799			receive_packet (dev);
 800		/* TxDMAComplete interrupt */
 801		if ((int_status & (TxDMAComplete|IntRequested))) {
 802			int tx_status;
 803			tx_status = dr32(TxStatus);
 804			if (tx_status & 0x01)
 805				tx_error (dev, tx_status);
 806			/* Free used tx skbuffs */
 807			rio_free_tx (dev, 1);
 808		}
 809
 810		/* Handle uncommon events */
 811		if (int_status &
 812		    (HostError | LinkEvent | UpdateStats))
 813			rio_error (dev, int_status);
 814	}
 815	if (np->cur_tx != np->old_tx)
 816		dw32(CountDown, 100);
 817	return IRQ_RETVAL(handled);
 818}
 819
 820static void
 821rio_free_tx (struct net_device *dev, int irq)
 822{
 823	struct netdev_private *np = netdev_priv(dev);
 824	int entry = np->old_tx % TX_RING_SIZE;
 825	int tx_use = 0;
 826	unsigned long flag = 0;
 827
 828	if (irq)
 829		spin_lock(&np->tx_lock);
 830	else
 831		spin_lock_irqsave(&np->tx_lock, flag);
 832
 833	/* Free used tx skbuffs */
 834	while (entry != np->cur_tx) {
 835		struct sk_buff *skb;
 836
 837		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
 838			break;
 839		skb = np->tx_skbuff[entry];
 840		pci_unmap_single (np->pdev,
 841				  desc_to_dma(&np->tx_ring[entry]),
 842				  skb->len, PCI_DMA_TODEVICE);
 843		if (irq)
 844			dev_kfree_skb_irq (skb);
 845		else
 846			dev_kfree_skb (skb);
 847
 848		np->tx_skbuff[entry] = NULL;
 849		entry = (entry + 1) % TX_RING_SIZE;
 850		tx_use++;
 851	}
 852	if (irq)
 853		spin_unlock(&np->tx_lock);
 854	else
 855		spin_unlock_irqrestore(&np->tx_lock, flag);
 856	np->old_tx = entry;
 857
 858	/* If the ring is no longer full, clear tx_full and
 859	   call netif_wake_queue() */
 860
 861	if (netif_queue_stopped(dev) &&
 862	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 863	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
 864		netif_wake_queue (dev);
 865	}
 866}
 867
 868static void
 869tx_error (struct net_device *dev, int tx_status)
 870{
 871	struct netdev_private *np = netdev_priv(dev);
 872	void __iomem *ioaddr = np->ioaddr;
 873	int frame_id;
 874	int i;
 875
 876	frame_id = (tx_status & 0xffff0000);
 877	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
 878		dev->name, tx_status, frame_id);
 879	np->stats.tx_errors++;
 880	/* Ttransmit Underrun */
 881	if (tx_status & 0x10) {
 882		np->stats.tx_fifo_errors++;
 883		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
 884		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
 885		dw16(ASICCtrl + 2,
 886		     TxReset | DMAReset | FIFOReset | NetworkReset);
 887		/* Wait for ResetBusy bit clear */
 888		for (i = 50; i > 0; i--) {
 889			if (!(dr16(ASICCtrl + 2) & ResetBusy))
 890				break;
 891			mdelay (1);
 892		}
 893		rio_set_led_mode(dev);
 894		rio_free_tx (dev, 1);
 895		/* Reset TFDListPtr */
 896		dw32(TFDListPtr0, np->tx_ring_dma +
 897		     np->old_tx * sizeof (struct netdev_desc));
 898		dw32(TFDListPtr1, 0);
 899
 900		/* Let TxStartThresh stay default value */
 901	}
 902	/* Late Collision */
 903	if (tx_status & 0x04) {
 904		np->stats.tx_fifo_errors++;
 905		/* TxReset and clear FIFO */
 906		dw16(ASICCtrl + 2, TxReset | FIFOReset);
 907		/* Wait reset done */
 908		for (i = 50; i > 0; i--) {
 909			if (!(dr16(ASICCtrl + 2) & ResetBusy))
 910				break;
 911			mdelay (1);
 912		}
 913		rio_set_led_mode(dev);
 914		/* Let TxStartThresh stay default value */
 915	}
 916	/* Maximum Collisions */
 917#ifdef ETHER_STATS
 918	if (tx_status & 0x08)
 919		np->stats.collisions16++;
 920#else
 921	if (tx_status & 0x08)
 922		np->stats.collisions++;
 923#endif
 924	/* Restart the Tx */
 925	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
 926}
 927
 928static int
 929receive_packet (struct net_device *dev)
 930{
 931	struct netdev_private *np = netdev_priv(dev);
 932	int entry = np->cur_rx % RX_RING_SIZE;
 933	int cnt = 30;
 934
 935	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
 936	while (1) {
 937		struct netdev_desc *desc = &np->rx_ring[entry];
 938		int pkt_len;
 939		u64 frame_status;
 940
 941		if (!(desc->status & cpu_to_le64(RFDDone)) ||
 942		    !(desc->status & cpu_to_le64(FrameStart)) ||
 943		    !(desc->status & cpu_to_le64(FrameEnd)))
 944			break;
 945
 946		/* Chip omits the CRC. */
 947		frame_status = le64_to_cpu(desc->status);
 948		pkt_len = frame_status & 0xffff;
 949		if (--cnt < 0)
 950			break;
 951		/* Update rx error statistics, drop packet. */
 952		if (frame_status & RFS_Errors) {
 953			np->stats.rx_errors++;
 954			if (frame_status & (RxRuntFrame | RxLengthError))
 955				np->stats.rx_length_errors++;
 956			if (frame_status & RxFCSError)
 957				np->stats.rx_crc_errors++;
 958			if (frame_status & RxAlignmentError && np->speed != 1000)
 959				np->stats.rx_frame_errors++;
 960			if (frame_status & RxFIFOOverrun)
 961	 			np->stats.rx_fifo_errors++;
 962		} else {
 963			struct sk_buff *skb;
 964
 965			/* Small skbuffs for short packets */
 966			if (pkt_len > copy_thresh) {
 967				pci_unmap_single (np->pdev,
 968						  desc_to_dma(desc),
 969						  np->rx_buf_sz,
 970						  PCI_DMA_FROMDEVICE);
 971				skb_put (skb = np->rx_skbuff[entry], pkt_len);
 972				np->rx_skbuff[entry] = NULL;
 973			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
 974				pci_dma_sync_single_for_cpu(np->pdev,
 975							    desc_to_dma(desc),
 976							    np->rx_buf_sz,
 977							    PCI_DMA_FROMDEVICE);
 978				skb_copy_to_linear_data (skb,
 979						  np->rx_skbuff[entry]->data,
 980						  pkt_len);
 981				skb_put (skb, pkt_len);
 982				pci_dma_sync_single_for_device(np->pdev,
 983							       desc_to_dma(desc),
 984							       np->rx_buf_sz,
 985							       PCI_DMA_FROMDEVICE);
 986			}
 987			skb->protocol = eth_type_trans (skb, dev);
 988#if 0
 989			/* Checksum done by hw, but csum value unavailable. */
 990			if (np->pdev->pci_rev_id >= 0x0c &&
 991				!(frame_status & (TCPError | UDPError | IPError))) {
 992				skb->ip_summed = CHECKSUM_UNNECESSARY;
 993			}
 994#endif
 995			netif_rx (skb);
 996		}
 997		entry = (entry + 1) % RX_RING_SIZE;
 998	}
 999	spin_lock(&np->rx_lock);
1000	np->cur_rx = entry;
1001	/* Re-allocate skbuffs to fill the descriptor ring */
1002	entry = np->old_rx;
1003	while (entry != np->cur_rx) {
1004		struct sk_buff *skb;
1005		/* Dropped packets don't need to re-allocate */
1006		if (np->rx_skbuff[entry] == NULL) {
1007			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
1008			if (skb == NULL) {
1009				np->rx_ring[entry].fraginfo = 0;
1010				printk (KERN_INFO
1011					"%s: receive_packet: "
1012					"Unable to re-allocate Rx skbuff.#%d\n",
1013					dev->name, entry);
1014				break;
1015			}
1016			np->rx_skbuff[entry] = skb;
1017			np->rx_ring[entry].fraginfo =
1018			    cpu_to_le64 (pci_map_single
1019					 (np->pdev, skb->data, np->rx_buf_sz,
1020					  PCI_DMA_FROMDEVICE));
1021		}
1022		np->rx_ring[entry].fraginfo |=
1023		    cpu_to_le64((u64)np->rx_buf_sz << 48);
1024		np->rx_ring[entry].status = 0;
1025		entry = (entry + 1) % RX_RING_SIZE;
1026	}
1027	np->old_rx = entry;
1028	spin_unlock(&np->rx_lock);
1029	return 0;
1030}
1031
1032static void
1033rio_error (struct net_device *dev, int int_status)
1034{
1035	struct netdev_private *np = netdev_priv(dev);
1036	void __iomem *ioaddr = np->ioaddr;
1037	u16 macctrl;
1038
1039	/* Link change event */
1040	if (int_status & LinkEvent) {
1041		if (mii_wait_link (dev, 10) == 0) {
1042			printk (KERN_INFO "%s: Link up\n", dev->name);
1043			if (np->phy_media)
1044				mii_get_media_pcs (dev);
1045			else
1046				mii_get_media (dev);
1047			if (np->speed == 1000)
1048				np->tx_coalesce = tx_coalesce;
1049			else
1050				np->tx_coalesce = 1;
1051			macctrl = 0;
1052			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1053			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1054			macctrl |= (np->tx_flow) ?
1055				TxFlowControlEnable : 0;
1056			macctrl |= (np->rx_flow) ?
1057				RxFlowControlEnable : 0;
1058			dw16(MACCtrl, macctrl);
1059			np->link_status = 1;
1060			netif_carrier_on(dev);
1061		} else {
1062			printk (KERN_INFO "%s: Link off\n", dev->name);
1063			np->link_status = 0;
1064			netif_carrier_off(dev);
1065		}
1066	}
1067
1068	/* UpdateStats statistics registers */
1069	if (int_status & UpdateStats) {
1070		get_stats (dev);
1071	}
1072
1073	/* PCI Error, a catastronphic error related to the bus interface
1074	   occurs, set GlobalReset and HostReset to reset. */
1075	if (int_status & HostError) {
1076		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1077			dev->name, int_status);
1078		dw16(ASICCtrl + 2, GlobalReset | HostReset);
1079		mdelay (500);
1080		rio_set_led_mode(dev);
1081	}
1082}
1083
1084static struct net_device_stats *
1085get_stats (struct net_device *dev)
1086{
1087	struct netdev_private *np = netdev_priv(dev);
1088	void __iomem *ioaddr = np->ioaddr;
1089#ifdef MEM_MAPPING
1090	int i;
1091#endif
1092	unsigned int stat_reg;
1093
1094	/* All statistics registers need to be acknowledged,
1095	   else statistic overflow could cause problems */
1096
1097	np->stats.rx_packets += dr32(FramesRcvOk);
1098	np->stats.tx_packets += dr32(FramesXmtOk);
1099	np->stats.rx_bytes += dr32(OctetRcvOk);
1100	np->stats.tx_bytes += dr32(OctetXmtOk);
1101
1102	np->stats.multicast = dr32(McstFramesRcvdOk);
1103	np->stats.collisions += dr32(SingleColFrames)
1104			     +  dr32(MultiColFrames);
1105
1106	/* detailed tx errors */
1107	stat_reg = dr16(FramesAbortXSColls);
1108	np->stats.tx_aborted_errors += stat_reg;
1109	np->stats.tx_errors += stat_reg;
1110
1111	stat_reg = dr16(CarrierSenseErrors);
1112	np->stats.tx_carrier_errors += stat_reg;
1113	np->stats.tx_errors += stat_reg;
1114
1115	/* Clear all other statistic register. */
1116	dr32(McstOctetXmtOk);
1117	dr16(BcstFramesXmtdOk);
1118	dr32(McstFramesXmtdOk);
1119	dr16(BcstFramesRcvdOk);
1120	dr16(MacControlFramesRcvd);
1121	dr16(FrameTooLongErrors);
1122	dr16(InRangeLengthErrors);
1123	dr16(FramesCheckSeqErrors);
1124	dr16(FramesLostRxErrors);
1125	dr32(McstOctetXmtOk);
1126	dr32(BcstOctetXmtOk);
1127	dr32(McstFramesXmtdOk);
1128	dr32(FramesWDeferredXmt);
1129	dr32(LateCollisions);
1130	dr16(BcstFramesXmtdOk);
1131	dr16(MacControlFramesXmtd);
1132	dr16(FramesWEXDeferal);
1133
1134#ifdef MEM_MAPPING
1135	for (i = 0x100; i <= 0x150; i += 4)
1136		dr32(i);
1137#endif
1138	dr16(TxJumboFrames);
1139	dr16(RxJumboFrames);
1140	dr16(TCPCheckSumErrors);
1141	dr16(UDPCheckSumErrors);
1142	dr16(IPCheckSumErrors);
1143	return &np->stats;
1144}
1145
1146static int
1147clear_stats (struct net_device *dev)
1148{
1149	struct netdev_private *np = netdev_priv(dev);
1150	void __iomem *ioaddr = np->ioaddr;
1151#ifdef MEM_MAPPING
1152	int i;
1153#endif
1154
1155	/* All statistics registers need to be acknowledged,
1156	   else statistic overflow could cause problems */
1157	dr32(FramesRcvOk);
1158	dr32(FramesXmtOk);
1159	dr32(OctetRcvOk);
1160	dr32(OctetXmtOk);
1161
1162	dr32(McstFramesRcvdOk);
1163	dr32(SingleColFrames);
1164	dr32(MultiColFrames);
1165	dr32(LateCollisions);
1166	/* detailed rx errors */
1167	dr16(FrameTooLongErrors);
1168	dr16(InRangeLengthErrors);
1169	dr16(FramesCheckSeqErrors);
1170	dr16(FramesLostRxErrors);
1171
1172	/* detailed tx errors */
1173	dr16(FramesAbortXSColls);
1174	dr16(CarrierSenseErrors);
1175
1176	/* Clear all other statistic register. */
1177	dr32(McstOctetXmtOk);
1178	dr16(BcstFramesXmtdOk);
1179	dr32(McstFramesXmtdOk);
1180	dr16(BcstFramesRcvdOk);
1181	dr16(MacControlFramesRcvd);
1182	dr32(McstOctetXmtOk);
1183	dr32(BcstOctetXmtOk);
1184	dr32(McstFramesXmtdOk);
1185	dr32(FramesWDeferredXmt);
1186	dr16(BcstFramesXmtdOk);
1187	dr16(MacControlFramesXmtd);
1188	dr16(FramesWEXDeferal);
1189#ifdef MEM_MAPPING
1190	for (i = 0x100; i <= 0x150; i += 4)
1191		dr32(i);
1192#endif
1193	dr16(TxJumboFrames);
1194	dr16(RxJumboFrames);
1195	dr16(TCPCheckSumErrors);
1196	dr16(UDPCheckSumErrors);
1197	dr16(IPCheckSumErrors);
1198	return 0;
1199}
1200
1201
1202static int
1203change_mtu (struct net_device *dev, int new_mtu)
1204{
1205	struct netdev_private *np = netdev_priv(dev);
1206	int max = (np->jumbo) ? MAX_JUMBO : 1536;
1207
1208	if ((new_mtu < 68) || (new_mtu > max)) {
1209		return -EINVAL;
1210	}
1211
1212	dev->mtu = new_mtu;
1213
1214	return 0;
1215}
1216
1217static void
1218set_multicast (struct net_device *dev)
1219{
1220	struct netdev_private *np = netdev_priv(dev);
1221	void __iomem *ioaddr = np->ioaddr;
1222	u32 hash_table[2];
1223	u16 rx_mode = 0;
1224
1225	hash_table[0] = hash_table[1] = 0;
1226	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1227	hash_table[1] |= 0x02000000;
1228	if (dev->flags & IFF_PROMISC) {
1229		/* Receive all frames promiscuously. */
1230		rx_mode = ReceiveAllFrames;
1231	} else if ((dev->flags & IFF_ALLMULTI) ||
1232			(netdev_mc_count(dev) > multicast_filter_limit)) {
1233		/* Receive broadcast and multicast frames */
1234		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1235	} else if (!netdev_mc_empty(dev)) {
1236		struct netdev_hw_addr *ha;
1237		/* Receive broadcast frames and multicast frames filtering
1238		   by Hashtable */
1239		rx_mode =
1240		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1241		netdev_for_each_mc_addr(ha, dev) {
1242			int bit, index = 0;
1243			int crc = ether_crc_le(ETH_ALEN, ha->addr);
1244			/* The inverted high significant 6 bits of CRC are
1245			   used as an index to hashtable */
1246			for (bit = 0; bit < 6; bit++)
1247				if (crc & (1 << (31 - bit)))
1248					index |= (1 << bit);
1249			hash_table[index / 32] |= (1 << (index % 32));
1250		}
1251	} else {
1252		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1253	}
1254	if (np->vlan) {
1255		/* ReceiveVLANMatch field in ReceiveMode */
1256		rx_mode |= ReceiveVLANMatch;
1257	}
1258
1259	dw32(HashTable0, hash_table[0]);
1260	dw32(HashTable1, hash_table[1]);
1261	dw16(ReceiveMode, rx_mode);
1262}
1263
1264static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1265{
1266	struct netdev_private *np = netdev_priv(dev);
1267
1268	strlcpy(info->driver, "dl2k", sizeof(info->driver));
1269	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1270	strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1271}
1272
1273static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1274{
1275	struct netdev_private *np = netdev_priv(dev);
1276	if (np->phy_media) {
1277		/* fiber device */
1278		cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1279		cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1280		cmd->port = PORT_FIBRE;
1281		cmd->transceiver = XCVR_INTERNAL;
1282	} else {
1283		/* copper device */
1284		cmd->supported = SUPPORTED_10baseT_Half |
1285			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1286			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1287			SUPPORTED_Autoneg | SUPPORTED_MII;
1288		cmd->advertising = ADVERTISED_10baseT_Half |
1289			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1290			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
1291			ADVERTISED_Autoneg | ADVERTISED_MII;
1292		cmd->port = PORT_MII;
1293		cmd->transceiver = XCVR_INTERNAL;
1294	}
1295	if ( np->link_status ) {
1296		ethtool_cmd_speed_set(cmd, np->speed);
1297		cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1298	} else {
1299		ethtool_cmd_speed_set(cmd, SPEED_UNKNOWN);
1300		cmd->duplex = DUPLEX_UNKNOWN;
1301	}
1302	if ( np->an_enable)
1303		cmd->autoneg = AUTONEG_ENABLE;
1304	else
1305		cmd->autoneg = AUTONEG_DISABLE;
1306
1307	cmd->phy_address = np->phy_addr;
1308	return 0;
1309}
1310
1311static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1312{
1313	struct netdev_private *np = netdev_priv(dev);
1314	netif_carrier_off(dev);
1315	if (cmd->autoneg == AUTONEG_ENABLE) {
1316		if (np->an_enable)
1317			return 0;
1318		else {
1319			np->an_enable = 1;
1320			mii_set_media(dev);
1321			return 0;
1322		}
1323	} else {
1324		np->an_enable = 0;
1325		if (np->speed == 1000) {
1326			ethtool_cmd_speed_set(cmd, SPEED_100);
1327			cmd->duplex = DUPLEX_FULL;
1328			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1329		}
1330		switch (ethtool_cmd_speed(cmd)) {
1331		case SPEED_10:
1332			np->speed = 10;
1333			np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1334			break;
1335		case SPEED_100:
1336			np->speed = 100;
1337			np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1338			break;
1339		case SPEED_1000: /* not supported */
1340		default:
1341			return -EINVAL;
1342		}
1343		mii_set_media(dev);
1344	}
1345	return 0;
1346}
1347
1348static u32 rio_get_link(struct net_device *dev)
1349{
1350	struct netdev_private *np = netdev_priv(dev);
1351	return np->link_status;
1352}
1353
1354static const struct ethtool_ops ethtool_ops = {
1355	.get_drvinfo = rio_get_drvinfo,
1356	.get_settings = rio_get_settings,
1357	.set_settings = rio_set_settings,
1358	.get_link = rio_get_link,
1359};
1360
1361static int
1362rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1363{
1364	int phy_addr;
1365	struct netdev_private *np = netdev_priv(dev);
1366	struct mii_ioctl_data *miidata = if_mii(rq);
1367
1368	phy_addr = np->phy_addr;
1369	switch (cmd) {
1370	case SIOCGMIIPHY:
1371		miidata->phy_id = phy_addr;
1372		break;
1373	case SIOCGMIIREG:
1374		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1375		break;
1376	case SIOCSMIIREG:
1377		if (!capable(CAP_NET_ADMIN))
1378			return -EPERM;
1379		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1380		break;
1381	default:
1382		return -EOPNOTSUPP;
1383	}
1384	return 0;
1385}
1386
1387#define EEP_READ 0x0200
1388#define EEP_BUSY 0x8000
1389/* Read the EEPROM word */
1390/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1391static int read_eeprom(struct netdev_private *np, int eep_addr)
1392{
1393	void __iomem *ioaddr = np->eeprom_addr;
1394	int i = 1000;
1395
1396	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1397	while (i-- > 0) {
1398		if (!(dr16(EepromCtrl) & EEP_BUSY))
1399			return dr16(EepromData);
1400	}
1401	return 0;
1402}
1403
1404enum phy_ctrl_bits {
1405	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1406	MII_DUPLEX = 0x08,
1407};
1408
1409#define mii_delay() dr8(PhyCtrl)
1410static void
1411mii_sendbit (struct net_device *dev, u32 data)
1412{
1413	struct netdev_private *np = netdev_priv(dev);
1414	void __iomem *ioaddr = np->ioaddr;
1415
1416	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1417	dw8(PhyCtrl, data);
1418	mii_delay ();
1419	dw8(PhyCtrl, data | MII_CLK);
1420	mii_delay ();
1421}
1422
1423static int
1424mii_getbit (struct net_device *dev)
1425{
1426	struct netdev_private *np = netdev_priv(dev);
1427	void __iomem *ioaddr = np->ioaddr;
1428	u8 data;
1429
1430	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1431	dw8(PhyCtrl, data);
1432	mii_delay ();
1433	dw8(PhyCtrl, data | MII_CLK);
1434	mii_delay ();
1435	return (dr8(PhyCtrl) >> 1) & 1;
1436}
1437
1438static void
1439mii_send_bits (struct net_device *dev, u32 data, int len)
1440{
1441	int i;
1442
1443	for (i = len - 1; i >= 0; i--) {
1444		mii_sendbit (dev, data & (1 << i));
1445	}
1446}
1447
1448static int
1449mii_read (struct net_device *dev, int phy_addr, int reg_num)
1450{
1451	u32 cmd;
1452	int i;
1453	u32 retval = 0;
1454
1455	/* Preamble */
1456	mii_send_bits (dev, 0xffffffff, 32);
1457	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1458	/* ST,OP = 0110'b for read operation */
1459	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1460	mii_send_bits (dev, cmd, 14);
1461	/* Turnaround */
1462	if (mii_getbit (dev))
1463		goto err_out;
1464	/* Read data */
1465	for (i = 0; i < 16; i++) {
1466		retval |= mii_getbit (dev);
1467		retval <<= 1;
1468	}
1469	/* End cycle */
1470	mii_getbit (dev);
1471	return (retval >> 1) & 0xffff;
1472
1473      err_out:
1474	return 0;
1475}
1476static int
1477mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1478{
1479	u32 cmd;
1480
1481	/* Preamble */
1482	mii_send_bits (dev, 0xffffffff, 32);
1483	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1484	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1485	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1486	mii_send_bits (dev, cmd, 32);
1487	/* End cycle */
1488	mii_getbit (dev);
1489	return 0;
1490}
1491static int
1492mii_wait_link (struct net_device *dev, int wait)
1493{
1494	__u16 bmsr;
1495	int phy_addr;
1496	struct netdev_private *np;
1497
1498	np = netdev_priv(dev);
1499	phy_addr = np->phy_addr;
1500
1501	do {
1502		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1503		if (bmsr & BMSR_LSTATUS)
1504			return 0;
1505		mdelay (1);
1506	} while (--wait > 0);
1507	return -1;
1508}
1509static int
1510mii_get_media (struct net_device *dev)
1511{
1512	__u16 negotiate;
1513	__u16 bmsr;
1514	__u16 mscr;
1515	__u16 mssr;
1516	int phy_addr;
1517	struct netdev_private *np;
1518
1519	np = netdev_priv(dev);
1520	phy_addr = np->phy_addr;
1521
1522	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1523	if (np->an_enable) {
1524		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1525			/* Auto-Negotiation not completed */
1526			return -1;
1527		}
1528		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1529			mii_read (dev, phy_addr, MII_LPA);
1530		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1531		mssr = mii_read (dev, phy_addr, MII_STAT1000);
1532		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1533			np->speed = 1000;
1534			np->full_duplex = 1;
1535			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1536		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1537			np->speed = 1000;
1538			np->full_duplex = 0;
1539			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1540		} else if (negotiate & ADVERTISE_100FULL) {
1541			np->speed = 100;
1542			np->full_duplex = 1;
1543			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1544		} else if (negotiate & ADVERTISE_100HALF) {
1545			np->speed = 100;
1546			np->full_duplex = 0;
1547			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1548		} else if (negotiate & ADVERTISE_10FULL) {
1549			np->speed = 10;
1550			np->full_duplex = 1;
1551			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1552		} else if (negotiate & ADVERTISE_10HALF) {
1553			np->speed = 10;
1554			np->full_duplex = 0;
1555			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1556		}
1557		if (negotiate & ADVERTISE_PAUSE_CAP) {
1558			np->tx_flow &= 1;
1559			np->rx_flow &= 1;
1560		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1561			np->tx_flow = 0;
1562			np->rx_flow &= 1;
1563		}
1564		/* else tx_flow, rx_flow = user select  */
1565	} else {
1566		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1567		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1568		case BMCR_SPEED1000:
1569			printk (KERN_INFO "Operating at 1000 Mbps, ");
1570			break;
1571		case BMCR_SPEED100:
1572			printk (KERN_INFO "Operating at 100 Mbps, ");
1573			break;
1574		case 0:
1575			printk (KERN_INFO "Operating at 10 Mbps, ");
1576		}
1577		if (bmcr & BMCR_FULLDPLX) {
1578			printk (KERN_CONT "Full duplex\n");
1579		} else {
1580			printk (KERN_CONT "Half duplex\n");
1581		}
1582	}
1583	if (np->tx_flow)
1584		printk(KERN_INFO "Enable Tx Flow Control\n");
1585	else
1586		printk(KERN_INFO "Disable Tx Flow Control\n");
1587	if (np->rx_flow)
1588		printk(KERN_INFO "Enable Rx Flow Control\n");
1589	else
1590		printk(KERN_INFO "Disable Rx Flow Control\n");
1591
1592	return 0;
1593}
1594
1595static int
1596mii_set_media (struct net_device *dev)
1597{
1598	__u16 pscr;
1599	__u16 bmcr;
1600	__u16 bmsr;
1601	__u16 anar;
1602	int phy_addr;
1603	struct netdev_private *np;
1604	np = netdev_priv(dev);
1605	phy_addr = np->phy_addr;
1606
1607	/* Does user set speed? */
1608	if (np->an_enable) {
1609		/* Advertise capabilities */
1610		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1611		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1612			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1613			  ADVERTISE_100HALF | ADVERTISE_10HALF |
1614			  ADVERTISE_100BASE4);
1615		if (bmsr & BMSR_100FULL)
1616			anar |= ADVERTISE_100FULL;
1617		if (bmsr & BMSR_100HALF)
1618			anar |= ADVERTISE_100HALF;
1619		if (bmsr & BMSR_100BASE4)
1620			anar |= ADVERTISE_100BASE4;
1621		if (bmsr & BMSR_10FULL)
1622			anar |= ADVERTISE_10FULL;
1623		if (bmsr & BMSR_10HALF)
1624			anar |= ADVERTISE_10HALF;
1625		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1626		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1627
1628		/* Enable Auto crossover */
1629		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1630		pscr |= 3 << 5;	/* 11'b */
1631		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1632
1633		/* Soft reset PHY */
1634		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1635		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1636		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1637		mdelay(1);
1638	} else {
1639		/* Force speed setting */
1640		/* 1) Disable Auto crossover */
1641		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1642		pscr &= ~(3 << 5);
1643		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1644
1645		/* 2) PHY Reset */
1646		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1647		bmcr |= BMCR_RESET;
1648		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1649
1650		/* 3) Power Down */
1651		bmcr = 0x1940;	/* must be 0x1940 */
1652		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1653		mdelay (100);	/* wait a certain time */
1654
1655		/* 4) Advertise nothing */
1656		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1657
1658		/* 5) Set media and Power Up */
1659		bmcr = BMCR_PDOWN;
1660		if (np->speed == 100) {
1661			bmcr |= BMCR_SPEED100;
1662			printk (KERN_INFO "Manual 100 Mbps, ");
1663		} else if (np->speed == 10) {
1664			printk (KERN_INFO "Manual 10 Mbps, ");
1665		}
1666		if (np->full_duplex) {
1667			bmcr |= BMCR_FULLDPLX;
1668			printk (KERN_CONT "Full duplex\n");
1669		} else {
1670			printk (KERN_CONT "Half duplex\n");
1671		}
1672#if 0
1673		/* Set 1000BaseT Master/Slave setting */
1674		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1675		mscr |= MII_MSCR_CFG_ENABLE;
1676		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1677#endif
1678		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1679		mdelay(10);
1680	}
1681	return 0;
1682}
1683
1684static int
1685mii_get_media_pcs (struct net_device *dev)
1686{
1687	__u16 negotiate;
1688	__u16 bmsr;
1689	int phy_addr;
1690	struct netdev_private *np;
1691
1692	np = netdev_priv(dev);
1693	phy_addr = np->phy_addr;
1694
1695	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1696	if (np->an_enable) {
1697		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1698			/* Auto-Negotiation not completed */
1699			return -1;
1700		}
1701		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1702			mii_read (dev, phy_addr, PCS_ANLPAR);
1703		np->speed = 1000;
1704		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1705			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1706			np->full_duplex = 1;
1707		} else {
1708			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1709			np->full_duplex = 0;
1710		}
1711		if (negotiate & PCS_ANAR_PAUSE) {
1712			np->tx_flow &= 1;
1713			np->rx_flow &= 1;
1714		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1715			np->tx_flow = 0;
1716			np->rx_flow &= 1;
1717		}
1718		/* else tx_flow, rx_flow = user select  */
1719	} else {
1720		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1721		printk (KERN_INFO "Operating at 1000 Mbps, ");
1722		if (bmcr & BMCR_FULLDPLX) {
1723			printk (KERN_CONT "Full duplex\n");
1724		} else {
1725			printk (KERN_CONT "Half duplex\n");
1726		}
1727	}
1728	if (np->tx_flow)
1729		printk(KERN_INFO "Enable Tx Flow Control\n");
1730	else
1731		printk(KERN_INFO "Disable Tx Flow Control\n");
1732	if (np->rx_flow)
1733		printk(KERN_INFO "Enable Rx Flow Control\n");
1734	else
1735		printk(KERN_INFO "Disable Rx Flow Control\n");
1736
1737	return 0;
1738}
1739
1740static int
1741mii_set_media_pcs (struct net_device *dev)
1742{
1743	__u16 bmcr;
1744	__u16 esr;
1745	__u16 anar;
1746	int phy_addr;
1747	struct netdev_private *np;
1748	np = netdev_priv(dev);
1749	phy_addr = np->phy_addr;
1750
1751	/* Auto-Negotiation? */
1752	if (np->an_enable) {
1753		/* Advertise capabilities */
1754		esr = mii_read (dev, phy_addr, PCS_ESR);
1755		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1756			~PCS_ANAR_HALF_DUPLEX &
1757			~PCS_ANAR_FULL_DUPLEX;
1758		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1759			anar |= PCS_ANAR_HALF_DUPLEX;
1760		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1761			anar |= PCS_ANAR_FULL_DUPLEX;
1762		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1763		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1764
1765		/* Soft reset PHY */
1766		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1767		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1768		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1769		mdelay(1);
1770	} else {
1771		/* Force speed setting */
1772		/* PHY Reset */
1773		bmcr = BMCR_RESET;
1774		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1775		mdelay(10);
1776		if (np->full_duplex) {
1777			bmcr = BMCR_FULLDPLX;
1778			printk (KERN_INFO "Manual full duplex\n");
1779		} else {
1780			bmcr = 0;
1781			printk (KERN_INFO "Manual half duplex\n");
1782		}
1783		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1784		mdelay(10);
1785
1786		/*  Advertise nothing */
1787		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1788	}
1789	return 0;
1790}
1791
1792
1793static int
1794rio_close (struct net_device *dev)
1795{
1796	struct netdev_private *np = netdev_priv(dev);
1797	struct pci_dev *pdev = np->pdev;
1798
1799	netif_stop_queue (dev);
1800
1801	rio_hw_stop(dev);
1802
1803	free_irq(pdev->irq, dev);
1804	del_timer_sync (&np->timer);
1805
1806	free_list(dev);
1807
1808	return 0;
1809}
1810
1811static void
1812rio_remove1 (struct pci_dev *pdev)
1813{
1814	struct net_device *dev = pci_get_drvdata (pdev);
1815
1816	if (dev) {
1817		struct netdev_private *np = netdev_priv(dev);
1818
1819		unregister_netdev (dev);
1820		pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1821				     np->rx_ring_dma);
1822		pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1823				     np->tx_ring_dma);
1824#ifdef MEM_MAPPING
1825		pci_iounmap(pdev, np->ioaddr);
1826#endif
1827		pci_iounmap(pdev, np->eeprom_addr);
1828		free_netdev (dev);
1829		pci_release_regions (pdev);
1830		pci_disable_device (pdev);
1831	}
1832}
1833
1834#ifdef CONFIG_PM_SLEEP
1835static int rio_suspend(struct device *device)
1836{
1837	struct net_device *dev = dev_get_drvdata(device);
1838	struct netdev_private *np = netdev_priv(dev);
1839
1840	if (!netif_running(dev))
1841		return 0;
1842
1843	netif_device_detach(dev);
1844	del_timer_sync(&np->timer);
1845	rio_hw_stop(dev);
1846
1847	return 0;
1848}
1849
1850static int rio_resume(struct device *device)
1851{
1852	struct net_device *dev = dev_get_drvdata(device);
1853	struct netdev_private *np = netdev_priv(dev);
1854
1855	if (!netif_running(dev))
1856		return 0;
1857
1858	rio_reset_ring(np);
1859	rio_hw_init(dev);
1860	np->timer.expires = jiffies + 1 * HZ;
1861	add_timer(&np->timer);
1862	netif_device_attach(dev);
1863	dl2k_enable_int(np);
1864
1865	return 0;
1866}
1867
1868static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1869#define RIO_PM_OPS    (&rio_pm_ops)
1870
1871#else
1872
1873#define RIO_PM_OPS	NULL
1874
1875#endif /* CONFIG_PM_SLEEP */
1876
1877static struct pci_driver rio_driver = {
1878	.name		= "dl2k",
1879	.id_table	= rio_pci_tbl,
1880	.probe		= rio_probe1,
1881	.remove		= rio_remove1,
1882	.driver.pm	= RIO_PM_OPS,
1883};
1884
1885module_pci_driver(rio_driver);
1886/*
1887
1888Compile command:
1889
1890gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1891
1892Read Documentation/networking/dl2k.txt for details.
1893
1894*/
1895