Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Copyright (C) 2011 Red Hat, Inc.
  3 *
  4 * This file is released under the GPL.
  5 */
  6
  7#include "dm-btree-internal.h"
  8#include "dm-space-map.h"
  9#include "dm-transaction-manager.h"
 10
 11#include <linux/export.h>
 12#include <linux/device-mapper.h>
 13
 14#define DM_MSG_PREFIX "btree"
 15
 16/*----------------------------------------------------------------
 17 * Array manipulation
 18 *--------------------------------------------------------------*/
 19static void memcpy_disk(void *dest, const void *src, size_t len)
 20	__dm_written_to_disk(src)
 21{
 22	memcpy(dest, src, len);
 23	__dm_unbless_for_disk(src);
 24}
 25
 26static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
 27			 unsigned index, void *elt)
 28	__dm_written_to_disk(elt)
 29{
 30	if (index < nr_elts)
 31		memmove(base + (elt_size * (index + 1)),
 32			base + (elt_size * index),
 33			(nr_elts - index) * elt_size);
 34
 35	memcpy_disk(base + (elt_size * index), elt, elt_size);
 36}
 37
 38/*----------------------------------------------------------------*/
 39
 40/* makes the assumption that no two keys are the same. */
 41static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
 42{
 43	int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
 44
 45	while (hi - lo > 1) {
 46		int mid = lo + ((hi - lo) / 2);
 47		uint64_t mid_key = le64_to_cpu(n->keys[mid]);
 48
 49		if (mid_key == key)
 50			return mid;
 51
 52		if (mid_key < key)
 53			lo = mid;
 54		else
 55			hi = mid;
 56	}
 57
 58	return want_hi ? hi : lo;
 59}
 60
 61int lower_bound(struct btree_node *n, uint64_t key)
 62{
 63	return bsearch(n, key, 0);
 64}
 65
 66static int upper_bound(struct btree_node *n, uint64_t key)
 67{
 68	return bsearch(n, key, 1);
 69}
 70
 71void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
 72		  struct dm_btree_value_type *vt)
 73{
 74	unsigned i;
 75	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
 76
 77	if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
 78		for (i = 0; i < nr_entries; i++)
 79			dm_tm_inc(tm, value64(n, i));
 80	else if (vt->inc)
 81		for (i = 0; i < nr_entries; i++)
 82			vt->inc(vt->context, value_ptr(n, i));
 83}
 84
 85static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
 86		      uint64_t key, void *value)
 87		      __dm_written_to_disk(value)
 88{
 89	uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
 90	__le64 key_le = cpu_to_le64(key);
 91
 92	if (index > nr_entries ||
 93	    index >= le32_to_cpu(node->header.max_entries)) {
 94		DMERR("too many entries in btree node for insert");
 95		__dm_unbless_for_disk(value);
 96		return -ENOMEM;
 97	}
 98
 99	__dm_bless_for_disk(&key_le);
100
101	array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
102	array_insert(value_base(node), value_size, nr_entries, index, value);
103	node->header.nr_entries = cpu_to_le32(nr_entries + 1);
104
105	return 0;
106}
107
108/*----------------------------------------------------------------*/
109
110/*
111 * We want 3n entries (for some n).  This works more nicely for repeated
112 * insert remove loops than (2n + 1).
113 */
114static uint32_t calc_max_entries(size_t value_size, size_t block_size)
115{
116	uint32_t total, n;
117	size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
118
119	block_size -= sizeof(struct node_header);
120	total = block_size / elt_size;
121	n = total / 3;		/* rounds down */
122
123	return 3 * n;
124}
125
126int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
127{
128	int r;
129	struct dm_block *b;
130	struct btree_node *n;
131	size_t block_size;
132	uint32_t max_entries;
133
134	r = new_block(info, &b);
135	if (r < 0)
136		return r;
137
138	block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
139	max_entries = calc_max_entries(info->value_type.size, block_size);
140
141	n = dm_block_data(b);
142	memset(n, 0, block_size);
143	n->header.flags = cpu_to_le32(LEAF_NODE);
144	n->header.nr_entries = cpu_to_le32(0);
145	n->header.max_entries = cpu_to_le32(max_entries);
146	n->header.value_size = cpu_to_le32(info->value_type.size);
147
148	*root = dm_block_location(b);
149	unlock_block(info, b);
150
151	return 0;
152}
153EXPORT_SYMBOL_GPL(dm_btree_empty);
154
155/*----------------------------------------------------------------*/
156
157/*
158 * Deletion uses a recursive algorithm, since we have limited stack space
159 * we explicitly manage our own stack on the heap.
160 */
161#define MAX_SPINE_DEPTH 64
162struct frame {
163	struct dm_block *b;
164	struct btree_node *n;
165	unsigned level;
166	unsigned nr_children;
167	unsigned current_child;
168};
169
170struct del_stack {
171	struct dm_btree_info *info;
172	struct dm_transaction_manager *tm;
173	int top;
174	struct frame spine[MAX_SPINE_DEPTH];
175};
176
177static int top_frame(struct del_stack *s, struct frame **f)
178{
179	if (s->top < 0) {
180		DMERR("btree deletion stack empty");
181		return -EINVAL;
182	}
183
184	*f = s->spine + s->top;
185
186	return 0;
187}
188
189static int unprocessed_frames(struct del_stack *s)
190{
191	return s->top >= 0;
192}
193
194static void prefetch_children(struct del_stack *s, struct frame *f)
195{
196	unsigned i;
197	struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
198
199	for (i = 0; i < f->nr_children; i++)
200		dm_bm_prefetch(bm, value64(f->n, i));
201}
202
203static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
204{
205	return f->level < (info->levels - 1);
206}
207
208static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
209{
210	int r;
211	uint32_t ref_count;
212
213	if (s->top >= MAX_SPINE_DEPTH - 1) {
214		DMERR("btree deletion stack out of memory");
215		return -ENOMEM;
216	}
217
218	r = dm_tm_ref(s->tm, b, &ref_count);
219	if (r)
220		return r;
221
222	if (ref_count > 1)
223		/*
224		 * This is a shared node, so we can just decrement it's
225		 * reference counter and leave the children.
226		 */
227		dm_tm_dec(s->tm, b);
228
229	else {
230		uint32_t flags;
231		struct frame *f = s->spine + ++s->top;
232
233		r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
234		if (r) {
235			s->top--;
236			return r;
237		}
238
239		f->n = dm_block_data(f->b);
240		f->level = level;
241		f->nr_children = le32_to_cpu(f->n->header.nr_entries);
242		f->current_child = 0;
243
244		flags = le32_to_cpu(f->n->header.flags);
245		if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
246			prefetch_children(s, f);
247	}
248
249	return 0;
250}
251
252static void pop_frame(struct del_stack *s)
253{
254	struct frame *f = s->spine + s->top--;
255
256	dm_tm_dec(s->tm, dm_block_location(f->b));
257	dm_tm_unlock(s->tm, f->b);
258}
259
260static void unlock_all_frames(struct del_stack *s)
261{
262	struct frame *f;
263
264	while (unprocessed_frames(s)) {
265		f = s->spine + s->top--;
266		dm_tm_unlock(s->tm, f->b);
267	}
268}
269
270int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
271{
272	int r;
273	struct del_stack *s;
274
275	s = kmalloc(sizeof(*s), GFP_NOIO);
276	if (!s)
277		return -ENOMEM;
278	s->info = info;
279	s->tm = info->tm;
280	s->top = -1;
281
282	r = push_frame(s, root, 0);
283	if (r)
284		goto out;
285
286	while (unprocessed_frames(s)) {
287		uint32_t flags;
288		struct frame *f;
289		dm_block_t b;
290
291		r = top_frame(s, &f);
292		if (r)
293			goto out;
294
295		if (f->current_child >= f->nr_children) {
296			pop_frame(s);
297			continue;
298		}
299
300		flags = le32_to_cpu(f->n->header.flags);
301		if (flags & INTERNAL_NODE) {
302			b = value64(f->n, f->current_child);
303			f->current_child++;
304			r = push_frame(s, b, f->level);
305			if (r)
306				goto out;
307
308		} else if (is_internal_level(info, f)) {
309			b = value64(f->n, f->current_child);
310			f->current_child++;
311			r = push_frame(s, b, f->level + 1);
312			if (r)
313				goto out;
314
315		} else {
316			if (info->value_type.dec) {
317				unsigned i;
318
319				for (i = 0; i < f->nr_children; i++)
320					info->value_type.dec(info->value_type.context,
321							     value_ptr(f->n, i));
322			}
323			pop_frame(s);
324		}
325	}
326out:
327	if (r) {
328		/* cleanup all frames of del_stack */
329		unlock_all_frames(s);
330	}
331	kfree(s);
332
333	return r;
334}
335EXPORT_SYMBOL_GPL(dm_btree_del);
336
337/*----------------------------------------------------------------*/
338
339static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
340			    int (*search_fn)(struct btree_node *, uint64_t),
341			    uint64_t *result_key, void *v, size_t value_size)
342{
343	int i, r;
344	uint32_t flags, nr_entries;
345
346	do {
347		r = ro_step(s, block);
348		if (r < 0)
349			return r;
350
351		i = search_fn(ro_node(s), key);
352
353		flags = le32_to_cpu(ro_node(s)->header.flags);
354		nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
355		if (i < 0 || i >= nr_entries)
356			return -ENODATA;
357
358		if (flags & INTERNAL_NODE)
359			block = value64(ro_node(s), i);
360
361	} while (!(flags & LEAF_NODE));
362
363	*result_key = le64_to_cpu(ro_node(s)->keys[i]);
364	memcpy(v, value_ptr(ro_node(s), i), value_size);
365
366	return 0;
367}
368
369int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
370		    uint64_t *keys, void *value_le)
371{
372	unsigned level, last_level = info->levels - 1;
373	int r = -ENODATA;
374	uint64_t rkey;
375	__le64 internal_value_le;
376	struct ro_spine spine;
377
378	init_ro_spine(&spine, info);
379	for (level = 0; level < info->levels; level++) {
380		size_t size;
381		void *value_p;
382
383		if (level == last_level) {
384			value_p = value_le;
385			size = info->value_type.size;
386
387		} else {
388			value_p = &internal_value_le;
389			size = sizeof(uint64_t);
390		}
391
392		r = btree_lookup_raw(&spine, root, keys[level],
393				     lower_bound, &rkey,
394				     value_p, size);
395
396		if (!r) {
397			if (rkey != keys[level]) {
398				exit_ro_spine(&spine);
399				return -ENODATA;
400			}
401		} else {
402			exit_ro_spine(&spine);
403			return r;
404		}
405
406		root = le64_to_cpu(internal_value_le);
407	}
408	exit_ro_spine(&spine);
409
410	return r;
411}
412EXPORT_SYMBOL_GPL(dm_btree_lookup);
413
414static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
415				       uint64_t key, uint64_t *rkey, void *value_le)
416{
417	int r, i;
418	uint32_t flags, nr_entries;
419	struct dm_block *node;
420	struct btree_node *n;
421
422	r = bn_read_lock(info, root, &node);
423	if (r)
424		return r;
425
426	n = dm_block_data(node);
427	flags = le32_to_cpu(n->header.flags);
428	nr_entries = le32_to_cpu(n->header.nr_entries);
429
430	if (flags & INTERNAL_NODE) {
431		i = lower_bound(n, key);
432		if (i < 0 || i >= nr_entries) {
433			r = -ENODATA;
434			goto out;
435		}
436
437		r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
438		if (r == -ENODATA && i < (nr_entries - 1)) {
439			i++;
440			r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
441		}
442
443	} else {
444		i = upper_bound(n, key);
445		if (i < 0 || i >= nr_entries) {
446			r = -ENODATA;
447			goto out;
448		}
449
450		*rkey = le64_to_cpu(n->keys[i]);
451		memcpy(value_le, value_ptr(n, i), info->value_type.size);
452	}
453out:
454	dm_tm_unlock(info->tm, node);
455	return r;
456}
457
458int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
459			 uint64_t *keys, uint64_t *rkey, void *value_le)
460{
461	unsigned level;
462	int r = -ENODATA;
463	__le64 internal_value_le;
464	struct ro_spine spine;
465
466	init_ro_spine(&spine, info);
467	for (level = 0; level < info->levels - 1u; level++) {
468		r = btree_lookup_raw(&spine, root, keys[level],
469				     lower_bound, rkey,
470				     &internal_value_le, sizeof(uint64_t));
471		if (r)
472			goto out;
473
474		if (*rkey != keys[level]) {
475			r = -ENODATA;
476			goto out;
477		}
478
479		root = le64_to_cpu(internal_value_le);
480	}
481
482	r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
483out:
484	exit_ro_spine(&spine);
485	return r;
486}
487
488EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
489
490/*
491 * Splits a node by creating a sibling node and shifting half the nodes
492 * contents across.  Assumes there is a parent node, and it has room for
493 * another child.
494 *
495 * Before:
496 *	  +--------+
497 *	  | Parent |
498 *	  +--------+
499 *	     |
500 *	     v
501 *	+----------+
502 *	| A ++++++ |
503 *	+----------+
504 *
505 *
506 * After:
507 *		+--------+
508 *		| Parent |
509 *		+--------+
510 *		  |	|
511 *		  v	+------+
512 *	    +---------+	       |
513 *	    | A* +++  |	       v
514 *	    +---------+	  +-------+
515 *			  | B +++ |
516 *			  +-------+
517 *
518 * Where A* is a shadow of A.
519 */
520static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
521			       uint64_t key)
522{
523	int r;
524	size_t size;
525	unsigned nr_left, nr_right;
526	struct dm_block *left, *right, *parent;
527	struct btree_node *ln, *rn, *pn;
528	__le64 location;
529
530	left = shadow_current(s);
531
532	r = new_block(s->info, &right);
533	if (r < 0)
534		return r;
535
536	ln = dm_block_data(left);
537	rn = dm_block_data(right);
538
539	nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
540	nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
541
542	ln->header.nr_entries = cpu_to_le32(nr_left);
543
544	rn->header.flags = ln->header.flags;
545	rn->header.nr_entries = cpu_to_le32(nr_right);
546	rn->header.max_entries = ln->header.max_entries;
547	rn->header.value_size = ln->header.value_size;
548	memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
549
550	size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
551		sizeof(uint64_t) : s->info->value_type.size;
552	memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
553	       size * nr_right);
554
555	/*
556	 * Patch up the parent
557	 */
558	parent = shadow_parent(s);
559
560	pn = dm_block_data(parent);
561	location = cpu_to_le64(dm_block_location(left));
562	__dm_bless_for_disk(&location);
563	memcpy_disk(value_ptr(pn, parent_index),
564		    &location, sizeof(__le64));
565
566	location = cpu_to_le64(dm_block_location(right));
567	__dm_bless_for_disk(&location);
568
569	r = insert_at(sizeof(__le64), pn, parent_index + 1,
570		      le64_to_cpu(rn->keys[0]), &location);
571	if (r) {
572		unlock_block(s->info, right);
573		return r;
574	}
575
576	if (key < le64_to_cpu(rn->keys[0])) {
577		unlock_block(s->info, right);
578		s->nodes[1] = left;
579	} else {
580		unlock_block(s->info, left);
581		s->nodes[1] = right;
582	}
583
584	return 0;
585}
586
587/*
588 * Splits a node by creating two new children beneath the given node.
589 *
590 * Before:
591 *	  +----------+
592 *	  | A ++++++ |
593 *	  +----------+
594 *
595 *
596 * After:
597 *	+------------+
598 *	| A (shadow) |
599 *	+------------+
600 *	    |	|
601 *   +------+	+----+
602 *   |		     |
603 *   v		     v
604 * +-------+	 +-------+
605 * | B +++ |	 | C +++ |
606 * +-------+	 +-------+
607 */
608static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
609{
610	int r;
611	size_t size;
612	unsigned nr_left, nr_right;
613	struct dm_block *left, *right, *new_parent;
614	struct btree_node *pn, *ln, *rn;
615	__le64 val;
616
617	new_parent = shadow_current(s);
618
619	r = new_block(s->info, &left);
620	if (r < 0)
621		return r;
622
623	r = new_block(s->info, &right);
624	if (r < 0) {
625		unlock_block(s->info, left);
626		return r;
627	}
628
629	pn = dm_block_data(new_parent);
630	ln = dm_block_data(left);
631	rn = dm_block_data(right);
632
633	nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
634	nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
635
636	ln->header.flags = pn->header.flags;
637	ln->header.nr_entries = cpu_to_le32(nr_left);
638	ln->header.max_entries = pn->header.max_entries;
639	ln->header.value_size = pn->header.value_size;
640
641	rn->header.flags = pn->header.flags;
642	rn->header.nr_entries = cpu_to_le32(nr_right);
643	rn->header.max_entries = pn->header.max_entries;
644	rn->header.value_size = pn->header.value_size;
645
646	memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
647	memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
648
649	size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
650		sizeof(__le64) : s->info->value_type.size;
651	memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
652	memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
653	       nr_right * size);
654
655	/* new_parent should just point to l and r now */
656	pn->header.flags = cpu_to_le32(INTERNAL_NODE);
657	pn->header.nr_entries = cpu_to_le32(2);
658	pn->header.max_entries = cpu_to_le32(
659		calc_max_entries(sizeof(__le64),
660				 dm_bm_block_size(
661					 dm_tm_get_bm(s->info->tm))));
662	pn->header.value_size = cpu_to_le32(sizeof(__le64));
663
664	val = cpu_to_le64(dm_block_location(left));
665	__dm_bless_for_disk(&val);
666	pn->keys[0] = ln->keys[0];
667	memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
668
669	val = cpu_to_le64(dm_block_location(right));
670	__dm_bless_for_disk(&val);
671	pn->keys[1] = rn->keys[0];
672	memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
673
674	/*
675	 * rejig the spine.  This is ugly, since it knows too
676	 * much about the spine
677	 */
678	if (s->nodes[0] != new_parent) {
679		unlock_block(s->info, s->nodes[0]);
680		s->nodes[0] = new_parent;
681	}
682	if (key < le64_to_cpu(rn->keys[0])) {
683		unlock_block(s->info, right);
684		s->nodes[1] = left;
685	} else {
686		unlock_block(s->info, left);
687		s->nodes[1] = right;
688	}
689	s->count = 2;
690
691	return 0;
692}
693
694static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
695			    struct dm_btree_value_type *vt,
696			    uint64_t key, unsigned *index)
697{
698	int r, i = *index, top = 1;
699	struct btree_node *node;
700
701	for (;;) {
702		r = shadow_step(s, root, vt);
703		if (r < 0)
704			return r;
705
706		node = dm_block_data(shadow_current(s));
707
708		/*
709		 * We have to patch up the parent node, ugly, but I don't
710		 * see a way to do this automatically as part of the spine
711		 * op.
712		 */
713		if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
714			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
715
716			__dm_bless_for_disk(&location);
717			memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
718				    &location, sizeof(__le64));
719		}
720
721		node = dm_block_data(shadow_current(s));
722
723		if (node->header.nr_entries == node->header.max_entries) {
724			if (top)
725				r = btree_split_beneath(s, key);
726			else
727				r = btree_split_sibling(s, i, key);
728
729			if (r < 0)
730				return r;
731		}
732
733		node = dm_block_data(shadow_current(s));
734
735		i = lower_bound(node, key);
736
737		if (le32_to_cpu(node->header.flags) & LEAF_NODE)
738			break;
739
740		if (i < 0) {
741			/* change the bounds on the lowest key */
742			node->keys[0] = cpu_to_le64(key);
743			i = 0;
744		}
745
746		root = value64(node, i);
747		top = 0;
748	}
749
750	if (i < 0 || le64_to_cpu(node->keys[i]) != key)
751		i++;
752
753	*index = i;
754	return 0;
755}
756
757static bool need_insert(struct btree_node *node, uint64_t *keys,
758			unsigned level, unsigned index)
759{
760        return ((index >= le32_to_cpu(node->header.nr_entries)) ||
761		(le64_to_cpu(node->keys[index]) != keys[level]));
762}
763
764static int insert(struct dm_btree_info *info, dm_block_t root,
765		  uint64_t *keys, void *value, dm_block_t *new_root,
766		  int *inserted)
767		  __dm_written_to_disk(value)
768{
769	int r;
770	unsigned level, index = -1, last_level = info->levels - 1;
771	dm_block_t block = root;
772	struct shadow_spine spine;
773	struct btree_node *n;
774	struct dm_btree_value_type le64_type;
775
776	init_le64_type(info->tm, &le64_type);
777	init_shadow_spine(&spine, info);
778
779	for (level = 0; level < (info->levels - 1); level++) {
780		r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
781		if (r < 0)
782			goto bad;
783
784		n = dm_block_data(shadow_current(&spine));
785
786		if (need_insert(n, keys, level, index)) {
787			dm_block_t new_tree;
788			__le64 new_le;
789
790			r = dm_btree_empty(info, &new_tree);
791			if (r < 0)
792				goto bad;
793
794			new_le = cpu_to_le64(new_tree);
795			__dm_bless_for_disk(&new_le);
796
797			r = insert_at(sizeof(uint64_t), n, index,
798				      keys[level], &new_le);
799			if (r)
800				goto bad;
801		}
802
803		if (level < last_level)
804			block = value64(n, index);
805	}
806
807	r = btree_insert_raw(&spine, block, &info->value_type,
808			     keys[level], &index);
809	if (r < 0)
810		goto bad;
811
812	n = dm_block_data(shadow_current(&spine));
813
814	if (need_insert(n, keys, level, index)) {
815		if (inserted)
816			*inserted = 1;
817
818		r = insert_at(info->value_type.size, n, index,
819			      keys[level], value);
820		if (r)
821			goto bad_unblessed;
822	} else {
823		if (inserted)
824			*inserted = 0;
825
826		if (info->value_type.dec &&
827		    (!info->value_type.equal ||
828		     !info->value_type.equal(
829			     info->value_type.context,
830			     value_ptr(n, index),
831			     value))) {
832			info->value_type.dec(info->value_type.context,
833					     value_ptr(n, index));
834		}
835		memcpy_disk(value_ptr(n, index),
836			    value, info->value_type.size);
837	}
838
839	*new_root = shadow_root(&spine);
840	exit_shadow_spine(&spine);
841
842	return 0;
843
844bad:
845	__dm_unbless_for_disk(value);
846bad_unblessed:
847	exit_shadow_spine(&spine);
848	return r;
849}
850
851int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
852		    uint64_t *keys, void *value, dm_block_t *new_root)
853		    __dm_written_to_disk(value)
854{
855	return insert(info, root, keys, value, new_root, NULL);
856}
857EXPORT_SYMBOL_GPL(dm_btree_insert);
858
859int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
860			   uint64_t *keys, void *value, dm_block_t *new_root,
861			   int *inserted)
862			   __dm_written_to_disk(value)
863{
864	return insert(info, root, keys, value, new_root, inserted);
865}
866EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
867
868/*----------------------------------------------------------------*/
869
870static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
871		    uint64_t *result_key, dm_block_t *next_block)
872{
873	int i, r;
874	uint32_t flags;
875
876	do {
877		r = ro_step(s, block);
878		if (r < 0)
879			return r;
880
881		flags = le32_to_cpu(ro_node(s)->header.flags);
882		i = le32_to_cpu(ro_node(s)->header.nr_entries);
883		if (!i)
884			return -ENODATA;
885		else
886			i--;
887
888		if (find_highest)
889			*result_key = le64_to_cpu(ro_node(s)->keys[i]);
890		else
891			*result_key = le64_to_cpu(ro_node(s)->keys[0]);
892
893		if (next_block || flags & INTERNAL_NODE)
894			block = value64(ro_node(s), i);
895
896	} while (flags & INTERNAL_NODE);
897
898	if (next_block)
899		*next_block = block;
900	return 0;
901}
902
903static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
904			     bool find_highest, uint64_t *result_keys)
905{
906	int r = 0, count = 0, level;
907	struct ro_spine spine;
908
909	init_ro_spine(&spine, info);
910	for (level = 0; level < info->levels; level++) {
911		r = find_key(&spine, root, find_highest, result_keys + level,
912			     level == info->levels - 1 ? NULL : &root);
913		if (r == -ENODATA) {
914			r = 0;
915			break;
916
917		} else if (r)
918			break;
919
920		count++;
921	}
922	exit_ro_spine(&spine);
923
924	return r ? r : count;
925}
926
927int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
928			      uint64_t *result_keys)
929{
930	return dm_btree_find_key(info, root, true, result_keys);
931}
932EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
933
934int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
935			     uint64_t *result_keys)
936{
937	return dm_btree_find_key(info, root, false, result_keys);
938}
939EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
940
941/*----------------------------------------------------------------*/
942
943/*
944 * FIXME: We shouldn't use a recursive algorithm when we have limited stack
945 * space.  Also this only works for single level trees.
946 */
947static int walk_node(struct dm_btree_info *info, dm_block_t block,
948		     int (*fn)(void *context, uint64_t *keys, void *leaf),
949		     void *context)
950{
951	int r;
952	unsigned i, nr;
953	struct dm_block *node;
954	struct btree_node *n;
955	uint64_t keys;
956
957	r = bn_read_lock(info, block, &node);
958	if (r)
959		return r;
960
961	n = dm_block_data(node);
962
963	nr = le32_to_cpu(n->header.nr_entries);
964	for (i = 0; i < nr; i++) {
965		if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
966			r = walk_node(info, value64(n, i), fn, context);
967			if (r)
968				goto out;
969		} else {
970			keys = le64_to_cpu(*key_ptr(n, i));
971			r = fn(context, &keys, value_ptr(n, i));
972			if (r)
973				goto out;
974		}
975	}
976
977out:
978	dm_tm_unlock(info->tm, node);
979	return r;
980}
981
982int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
983		  int (*fn)(void *context, uint64_t *keys, void *leaf),
984		  void *context)
985{
986	BUG_ON(info->levels > 1);
987	return walk_node(info, root, fn, context);
988}
989EXPORT_SYMBOL_GPL(dm_btree_walk);