Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (C) 2011 Red Hat, Inc.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-btree-internal.h"
   8#include "dm-space-map.h"
   9#include "dm-transaction-manager.h"
  10
  11#include <linux/export.h>
  12#include <linux/device-mapper.h>
  13
  14#define DM_MSG_PREFIX "btree"
  15
  16/*----------------------------------------------------------------
  17 * Array manipulation
  18 *--------------------------------------------------------------*/
  19static void memcpy_disk(void *dest, const void *src, size_t len)
  20	__dm_written_to_disk(src)
  21{
  22	memcpy(dest, src, len);
  23	__dm_unbless_for_disk(src);
  24}
  25
  26static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
  27			 unsigned index, void *elt)
  28	__dm_written_to_disk(elt)
  29{
  30	if (index < nr_elts)
  31		memmove(base + (elt_size * (index + 1)),
  32			base + (elt_size * index),
  33			(nr_elts - index) * elt_size);
  34
  35	memcpy_disk(base + (elt_size * index), elt, elt_size);
  36}
  37
  38/*----------------------------------------------------------------*/
  39
  40/* makes the assumption that no two keys are the same. */
  41static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
  42{
  43	int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
  44
  45	while (hi - lo > 1) {
  46		int mid = lo + ((hi - lo) / 2);
  47		uint64_t mid_key = le64_to_cpu(n->keys[mid]);
  48
  49		if (mid_key == key)
  50			return mid;
  51
  52		if (mid_key < key)
  53			lo = mid;
  54		else
  55			hi = mid;
  56	}
  57
  58	return want_hi ? hi : lo;
  59}
  60
  61int lower_bound(struct btree_node *n, uint64_t key)
  62{
  63	return bsearch(n, key, 0);
  64}
  65
  66static int upper_bound(struct btree_node *n, uint64_t key)
  67{
  68	return bsearch(n, key, 1);
  69}
  70
  71void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
  72		  struct dm_btree_value_type *vt)
  73{
  74	unsigned i;
  75	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
  76
  77	if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
  78		for (i = 0; i < nr_entries; i++)
  79			dm_tm_inc(tm, value64(n, i));
  80	else if (vt->inc)
  81		for (i = 0; i < nr_entries; i++)
  82			vt->inc(vt->context, value_ptr(n, i));
  83}
  84
  85static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
  86		      uint64_t key, void *value)
  87		      __dm_written_to_disk(value)
  88{
  89	uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
  90	__le64 key_le = cpu_to_le64(key);
  91
  92	if (index > nr_entries ||
  93	    index >= le32_to_cpu(node->header.max_entries)) {
  94		DMERR("too many entries in btree node for insert");
  95		__dm_unbless_for_disk(value);
  96		return -ENOMEM;
  97	}
  98
  99	__dm_bless_for_disk(&key_le);
 100
 101	array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
 102	array_insert(value_base(node), value_size, nr_entries, index, value);
 103	node->header.nr_entries = cpu_to_le32(nr_entries + 1);
 104
 105	return 0;
 106}
 107
 108/*----------------------------------------------------------------*/
 109
 110/*
 111 * We want 3n entries (for some n).  This works more nicely for repeated
 112 * insert remove loops than (2n + 1).
 113 */
 114static uint32_t calc_max_entries(size_t value_size, size_t block_size)
 115{
 116	uint32_t total, n;
 117	size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
 118
 119	block_size -= sizeof(struct node_header);
 120	total = block_size / elt_size;
 121	n = total / 3;		/* rounds down */
 122
 123	return 3 * n;
 124}
 125
 126int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
 127{
 128	int r;
 129	struct dm_block *b;
 130	struct btree_node *n;
 131	size_t block_size;
 132	uint32_t max_entries;
 133
 134	r = new_block(info, &b);
 135	if (r < 0)
 136		return r;
 137
 138	block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
 139	max_entries = calc_max_entries(info->value_type.size, block_size);
 140
 141	n = dm_block_data(b);
 142	memset(n, 0, block_size);
 143	n->header.flags = cpu_to_le32(LEAF_NODE);
 144	n->header.nr_entries = cpu_to_le32(0);
 145	n->header.max_entries = cpu_to_le32(max_entries);
 146	n->header.value_size = cpu_to_le32(info->value_type.size);
 147
 148	*root = dm_block_location(b);
 149	unlock_block(info, b);
 150
 151	return 0;
 152}
 153EXPORT_SYMBOL_GPL(dm_btree_empty);
 154
 155/*----------------------------------------------------------------*/
 156
 157/*
 158 * Deletion uses a recursive algorithm, since we have limited stack space
 159 * we explicitly manage our own stack on the heap.
 160 */
 161#define MAX_SPINE_DEPTH 64
 162struct frame {
 163	struct dm_block *b;
 164	struct btree_node *n;
 165	unsigned level;
 166	unsigned nr_children;
 167	unsigned current_child;
 168};
 169
 170struct del_stack {
 171	struct dm_btree_info *info;
 172	struct dm_transaction_manager *tm;
 173	int top;
 174	struct frame spine[MAX_SPINE_DEPTH];
 175};
 176
 177static int top_frame(struct del_stack *s, struct frame **f)
 178{
 179	if (s->top < 0) {
 180		DMERR("btree deletion stack empty");
 181		return -EINVAL;
 182	}
 183
 184	*f = s->spine + s->top;
 185
 186	return 0;
 187}
 188
 189static int unprocessed_frames(struct del_stack *s)
 190{
 191	return s->top >= 0;
 192}
 193
 194static void prefetch_children(struct del_stack *s, struct frame *f)
 195{
 196	unsigned i;
 197	struct dm_block_manager *bm = dm_tm_get_bm(s->tm);
 198
 199	for (i = 0; i < f->nr_children; i++)
 200		dm_bm_prefetch(bm, value64(f->n, i));
 201}
 202
 203static bool is_internal_level(struct dm_btree_info *info, struct frame *f)
 204{
 205	return f->level < (info->levels - 1);
 206}
 207
 208static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
 209{
 210	int r;
 211	uint32_t ref_count;
 212
 213	if (s->top >= MAX_SPINE_DEPTH - 1) {
 214		DMERR("btree deletion stack out of memory");
 215		return -ENOMEM;
 216	}
 217
 218	r = dm_tm_ref(s->tm, b, &ref_count);
 219	if (r)
 220		return r;
 221
 222	if (ref_count > 1)
 223		/*
 224		 * This is a shared node, so we can just decrement it's
 225		 * reference counter and leave the children.
 226		 */
 227		dm_tm_dec(s->tm, b);
 228
 229	else {
 230		uint32_t flags;
 231		struct frame *f = s->spine + ++s->top;
 232
 233		r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
 234		if (r) {
 235			s->top--;
 236			return r;
 237		}
 238
 239		f->n = dm_block_data(f->b);
 240		f->level = level;
 241		f->nr_children = le32_to_cpu(f->n->header.nr_entries);
 242		f->current_child = 0;
 243
 244		flags = le32_to_cpu(f->n->header.flags);
 245		if (flags & INTERNAL_NODE || is_internal_level(s->info, f))
 246			prefetch_children(s, f);
 247	}
 248
 249	return 0;
 250}
 251
 252static void pop_frame(struct del_stack *s)
 253{
 254	struct frame *f = s->spine + s->top--;
 255
 256	dm_tm_dec(s->tm, dm_block_location(f->b));
 257	dm_tm_unlock(s->tm, f->b);
 258}
 259
 260static void unlock_all_frames(struct del_stack *s)
 261{
 262	struct frame *f;
 263
 264	while (unprocessed_frames(s)) {
 265		f = s->spine + s->top--;
 266		dm_tm_unlock(s->tm, f->b);
 267	}
 268}
 269
 270int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
 271{
 272	int r;
 273	struct del_stack *s;
 274
 275	/*
 276	 * dm_btree_del() is called via an ioctl, as such should be
 277	 * considered an FS op.  We can't recurse back into the FS, so we
 278	 * allocate GFP_NOFS.
 279	 */
 280	s = kmalloc(sizeof(*s), GFP_NOFS);
 281	if (!s)
 282		return -ENOMEM;
 283	s->info = info;
 284	s->tm = info->tm;
 285	s->top = -1;
 286
 287	r = push_frame(s, root, 0);
 288	if (r)
 289		goto out;
 290
 291	while (unprocessed_frames(s)) {
 292		uint32_t flags;
 293		struct frame *f;
 294		dm_block_t b;
 295
 296		r = top_frame(s, &f);
 297		if (r)
 298			goto out;
 299
 300		if (f->current_child >= f->nr_children) {
 301			pop_frame(s);
 302			continue;
 303		}
 304
 305		flags = le32_to_cpu(f->n->header.flags);
 306		if (flags & INTERNAL_NODE) {
 307			b = value64(f->n, f->current_child);
 308			f->current_child++;
 309			r = push_frame(s, b, f->level);
 310			if (r)
 311				goto out;
 312
 313		} else if (is_internal_level(info, f)) {
 314			b = value64(f->n, f->current_child);
 315			f->current_child++;
 316			r = push_frame(s, b, f->level + 1);
 317			if (r)
 318				goto out;
 319
 320		} else {
 321			if (info->value_type.dec) {
 322				unsigned i;
 323
 324				for (i = 0; i < f->nr_children; i++)
 325					info->value_type.dec(info->value_type.context,
 326							     value_ptr(f->n, i));
 327			}
 328			pop_frame(s);
 329		}
 330	}
 331out:
 332	if (r) {
 333		/* cleanup all frames of del_stack */
 334		unlock_all_frames(s);
 335	}
 336	kfree(s);
 337
 338	return r;
 339}
 340EXPORT_SYMBOL_GPL(dm_btree_del);
 341
 342/*----------------------------------------------------------------*/
 343
 344static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
 345			    int (*search_fn)(struct btree_node *, uint64_t),
 346			    uint64_t *result_key, void *v, size_t value_size)
 347{
 348	int i, r;
 349	uint32_t flags, nr_entries;
 350
 351	do {
 352		r = ro_step(s, block);
 353		if (r < 0)
 354			return r;
 355
 356		i = search_fn(ro_node(s), key);
 357
 358		flags = le32_to_cpu(ro_node(s)->header.flags);
 359		nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
 360		if (i < 0 || i >= nr_entries)
 361			return -ENODATA;
 362
 363		if (flags & INTERNAL_NODE)
 364			block = value64(ro_node(s), i);
 365
 366	} while (!(flags & LEAF_NODE));
 367
 368	*result_key = le64_to_cpu(ro_node(s)->keys[i]);
 369	memcpy(v, value_ptr(ro_node(s), i), value_size);
 370
 371	return 0;
 372}
 373
 374int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
 375		    uint64_t *keys, void *value_le)
 376{
 377	unsigned level, last_level = info->levels - 1;
 378	int r = -ENODATA;
 379	uint64_t rkey;
 380	__le64 internal_value_le;
 381	struct ro_spine spine;
 382
 383	init_ro_spine(&spine, info);
 384	for (level = 0; level < info->levels; level++) {
 385		size_t size;
 386		void *value_p;
 387
 388		if (level == last_level) {
 389			value_p = value_le;
 390			size = info->value_type.size;
 391
 392		} else {
 393			value_p = &internal_value_le;
 394			size = sizeof(uint64_t);
 395		}
 396
 397		r = btree_lookup_raw(&spine, root, keys[level],
 398				     lower_bound, &rkey,
 399				     value_p, size);
 400
 401		if (!r) {
 402			if (rkey != keys[level]) {
 403				exit_ro_spine(&spine);
 404				return -ENODATA;
 405			}
 406		} else {
 407			exit_ro_spine(&spine);
 408			return r;
 409		}
 410
 411		root = le64_to_cpu(internal_value_le);
 412	}
 413	exit_ro_spine(&spine);
 414
 415	return r;
 416}
 417EXPORT_SYMBOL_GPL(dm_btree_lookup);
 418
 419static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root,
 420				       uint64_t key, uint64_t *rkey, void *value_le)
 421{
 422	int r, i;
 423	uint32_t flags, nr_entries;
 424	struct dm_block *node;
 425	struct btree_node *n;
 426
 427	r = bn_read_lock(info, root, &node);
 428	if (r)
 429		return r;
 430
 431	n = dm_block_data(node);
 432	flags = le32_to_cpu(n->header.flags);
 433	nr_entries = le32_to_cpu(n->header.nr_entries);
 434
 435	if (flags & INTERNAL_NODE) {
 436		i = lower_bound(n, key);
 437		if (i < 0) {
 438			/*
 439			 * avoid early -ENODATA return when all entries are
 440			 * higher than the search @key.
 441			 */
 442			i = 0;
 443		}
 444		if (i >= nr_entries) {
 445			r = -ENODATA;
 446			goto out;
 447		}
 448
 449		r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
 450		if (r == -ENODATA && i < (nr_entries - 1)) {
 451			i++;
 452			r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le);
 453		}
 454
 455	} else {
 456		i = upper_bound(n, key);
 457		if (i < 0 || i >= nr_entries) {
 458			r = -ENODATA;
 459			goto out;
 460		}
 461
 462		*rkey = le64_to_cpu(n->keys[i]);
 463		memcpy(value_le, value_ptr(n, i), info->value_type.size);
 464	}
 465out:
 466	dm_tm_unlock(info->tm, node);
 467	return r;
 468}
 469
 470int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root,
 471			 uint64_t *keys, uint64_t *rkey, void *value_le)
 472{
 473	unsigned level;
 474	int r = -ENODATA;
 475	__le64 internal_value_le;
 476	struct ro_spine spine;
 477
 478	init_ro_spine(&spine, info);
 479	for (level = 0; level < info->levels - 1u; level++) {
 480		r = btree_lookup_raw(&spine, root, keys[level],
 481				     lower_bound, rkey,
 482				     &internal_value_le, sizeof(uint64_t));
 483		if (r)
 484			goto out;
 485
 486		if (*rkey != keys[level]) {
 487			r = -ENODATA;
 488			goto out;
 489		}
 490
 491		root = le64_to_cpu(internal_value_le);
 492	}
 493
 494	r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le);
 495out:
 496	exit_ro_spine(&spine);
 497	return r;
 498}
 499
 500EXPORT_SYMBOL_GPL(dm_btree_lookup_next);
 501
 502/*
 503 * Splits a node by creating a sibling node and shifting half the nodes
 504 * contents across.  Assumes there is a parent node, and it has room for
 505 * another child.
 506 *
 507 * Before:
 508 *	  +--------+
 509 *	  | Parent |
 510 *	  +--------+
 511 *	     |
 512 *	     v
 513 *	+----------+
 514 *	| A ++++++ |
 515 *	+----------+
 516 *
 517 *
 518 * After:
 519 *		+--------+
 520 *		| Parent |
 521 *		+--------+
 522 *		  |	|
 523 *		  v	+------+
 524 *	    +---------+	       |
 525 *	    | A* +++  |	       v
 526 *	    +---------+	  +-------+
 527 *			  | B +++ |
 528 *			  +-------+
 529 *
 530 * Where A* is a shadow of A.
 531 */
 532static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index,
 533			       uint64_t key)
 534{
 535	int r;
 536	size_t size;
 537	unsigned nr_left, nr_right;
 538	struct dm_block *left, *right, *parent;
 539	struct btree_node *ln, *rn, *pn;
 540	__le64 location;
 541
 542	left = shadow_current(s);
 543
 544	r = new_block(s->info, &right);
 545	if (r < 0)
 546		return r;
 547
 548	ln = dm_block_data(left);
 549	rn = dm_block_data(right);
 550
 551	nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
 552	nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
 553
 554	ln->header.nr_entries = cpu_to_le32(nr_left);
 555
 556	rn->header.flags = ln->header.flags;
 557	rn->header.nr_entries = cpu_to_le32(nr_right);
 558	rn->header.max_entries = ln->header.max_entries;
 559	rn->header.value_size = ln->header.value_size;
 560	memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
 561
 562	size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
 563		sizeof(uint64_t) : s->info->value_type.size;
 564	memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
 565	       size * nr_right);
 566
 567	/*
 568	 * Patch up the parent
 569	 */
 570	parent = shadow_parent(s);
 571
 572	pn = dm_block_data(parent);
 573	location = cpu_to_le64(dm_block_location(left));
 574	__dm_bless_for_disk(&location);
 575	memcpy_disk(value_ptr(pn, parent_index),
 576		    &location, sizeof(__le64));
 577
 578	location = cpu_to_le64(dm_block_location(right));
 579	__dm_bless_for_disk(&location);
 580
 581	r = insert_at(sizeof(__le64), pn, parent_index + 1,
 582		      le64_to_cpu(rn->keys[0]), &location);
 583	if (r) {
 584		unlock_block(s->info, right);
 585		return r;
 586	}
 587
 588	if (key < le64_to_cpu(rn->keys[0])) {
 589		unlock_block(s->info, right);
 590		s->nodes[1] = left;
 591	} else {
 592		unlock_block(s->info, left);
 593		s->nodes[1] = right;
 594	}
 595
 596	return 0;
 597}
 598
 599/*
 600 * Splits a node by creating two new children beneath the given node.
 601 *
 602 * Before:
 603 *	  +----------+
 604 *	  | A ++++++ |
 605 *	  +----------+
 606 *
 607 *
 608 * After:
 609 *	+------------+
 610 *	| A (shadow) |
 611 *	+------------+
 612 *	    |	|
 613 *   +------+	+----+
 614 *   |		     |
 615 *   v		     v
 616 * +-------+	 +-------+
 617 * | B +++ |	 | C +++ |
 618 * +-------+	 +-------+
 619 */
 620static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
 621{
 622	int r;
 623	size_t size;
 624	unsigned nr_left, nr_right;
 625	struct dm_block *left, *right, *new_parent;
 626	struct btree_node *pn, *ln, *rn;
 627	__le64 val;
 628
 629	new_parent = shadow_current(s);
 630
 631	pn = dm_block_data(new_parent);
 632	size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
 633		sizeof(__le64) : s->info->value_type.size;
 634
 635	/* create & init the left block */
 636	r = new_block(s->info, &left);
 637	if (r < 0)
 638		return r;
 639
 640	ln = dm_block_data(left);
 641	nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
 642
 643	ln->header.flags = pn->header.flags;
 644	ln->header.nr_entries = cpu_to_le32(nr_left);
 645	ln->header.max_entries = pn->header.max_entries;
 646	ln->header.value_size = pn->header.value_size;
 647	memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
 648	memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
 649
 650	/* create & init the right block */
 651	r = new_block(s->info, &right);
 652	if (r < 0) {
 653		unlock_block(s->info, left);
 654		return r;
 655	}
 656
 657	rn = dm_block_data(right);
 658	nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
 659
 660	rn->header.flags = pn->header.flags;
 661	rn->header.nr_entries = cpu_to_le32(nr_right);
 662	rn->header.max_entries = pn->header.max_entries;
 663	rn->header.value_size = pn->header.value_size;
 664	memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
 665	memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
 666	       nr_right * size);
 667
 668	/* new_parent should just point to l and r now */
 669	pn->header.flags = cpu_to_le32(INTERNAL_NODE);
 670	pn->header.nr_entries = cpu_to_le32(2);
 671	pn->header.max_entries = cpu_to_le32(
 672		calc_max_entries(sizeof(__le64),
 673				 dm_bm_block_size(
 674					 dm_tm_get_bm(s->info->tm))));
 675	pn->header.value_size = cpu_to_le32(sizeof(__le64));
 676
 677	val = cpu_to_le64(dm_block_location(left));
 678	__dm_bless_for_disk(&val);
 679	pn->keys[0] = ln->keys[0];
 680	memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
 681
 682	val = cpu_to_le64(dm_block_location(right));
 683	__dm_bless_for_disk(&val);
 684	pn->keys[1] = rn->keys[0];
 685	memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
 686
 687	unlock_block(s->info, left);
 688	unlock_block(s->info, right);
 689	return 0;
 690}
 691
 692static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
 693			    struct dm_btree_value_type *vt,
 694			    uint64_t key, unsigned *index)
 695{
 696	int r, i = *index, top = 1;
 697	struct btree_node *node;
 698
 699	for (;;) {
 700		r = shadow_step(s, root, vt);
 701		if (r < 0)
 702			return r;
 703
 704		node = dm_block_data(shadow_current(s));
 705
 706		/*
 707		 * We have to patch up the parent node, ugly, but I don't
 708		 * see a way to do this automatically as part of the spine
 709		 * op.
 710		 */
 711		if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
 712			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
 713
 714			__dm_bless_for_disk(&location);
 715			memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
 716				    &location, sizeof(__le64));
 717		}
 718
 719		node = dm_block_data(shadow_current(s));
 720
 721		if (node->header.nr_entries == node->header.max_entries) {
 722			if (top)
 723				r = btree_split_beneath(s, key);
 724			else
 725				r = btree_split_sibling(s, i, key);
 726
 727			if (r < 0)
 728				return r;
 729		}
 730
 731		node = dm_block_data(shadow_current(s));
 732
 733		i = lower_bound(node, key);
 734
 735		if (le32_to_cpu(node->header.flags) & LEAF_NODE)
 736			break;
 737
 738		if (i < 0) {
 739			/* change the bounds on the lowest key */
 740			node->keys[0] = cpu_to_le64(key);
 741			i = 0;
 742		}
 743
 744		root = value64(node, i);
 745		top = 0;
 746	}
 747
 748	if (i < 0 || le64_to_cpu(node->keys[i]) != key)
 749		i++;
 750
 751	*index = i;
 752	return 0;
 753}
 754
 755static bool need_insert(struct btree_node *node, uint64_t *keys,
 756			unsigned level, unsigned index)
 757{
 758        return ((index >= le32_to_cpu(node->header.nr_entries)) ||
 759		(le64_to_cpu(node->keys[index]) != keys[level]));
 760}
 761
 762static int insert(struct dm_btree_info *info, dm_block_t root,
 763		  uint64_t *keys, void *value, dm_block_t *new_root,
 764		  int *inserted)
 765		  __dm_written_to_disk(value)
 766{
 767	int r;
 768	unsigned level, index = -1, last_level = info->levels - 1;
 769	dm_block_t block = root;
 770	struct shadow_spine spine;
 771	struct btree_node *n;
 772	struct dm_btree_value_type le64_type;
 773
 774	init_le64_type(info->tm, &le64_type);
 775	init_shadow_spine(&spine, info);
 776
 777	for (level = 0; level < (info->levels - 1); level++) {
 778		r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
 779		if (r < 0)
 780			goto bad;
 781
 782		n = dm_block_data(shadow_current(&spine));
 783
 784		if (need_insert(n, keys, level, index)) {
 785			dm_block_t new_tree;
 786			__le64 new_le;
 787
 788			r = dm_btree_empty(info, &new_tree);
 789			if (r < 0)
 790				goto bad;
 791
 792			new_le = cpu_to_le64(new_tree);
 793			__dm_bless_for_disk(&new_le);
 794
 795			r = insert_at(sizeof(uint64_t), n, index,
 796				      keys[level], &new_le);
 797			if (r)
 798				goto bad;
 799		}
 800
 801		if (level < last_level)
 802			block = value64(n, index);
 803	}
 804
 805	r = btree_insert_raw(&spine, block, &info->value_type,
 806			     keys[level], &index);
 807	if (r < 0)
 808		goto bad;
 809
 810	n = dm_block_data(shadow_current(&spine));
 811
 812	if (need_insert(n, keys, level, index)) {
 813		if (inserted)
 814			*inserted = 1;
 815
 816		r = insert_at(info->value_type.size, n, index,
 817			      keys[level], value);
 818		if (r)
 819			goto bad_unblessed;
 820	} else {
 821		if (inserted)
 822			*inserted = 0;
 823
 824		if (info->value_type.dec &&
 825		    (!info->value_type.equal ||
 826		     !info->value_type.equal(
 827			     info->value_type.context,
 828			     value_ptr(n, index),
 829			     value))) {
 830			info->value_type.dec(info->value_type.context,
 831					     value_ptr(n, index));
 832		}
 833		memcpy_disk(value_ptr(n, index),
 834			    value, info->value_type.size);
 835	}
 836
 837	*new_root = shadow_root(&spine);
 838	exit_shadow_spine(&spine);
 839
 840	return 0;
 841
 842bad:
 843	__dm_unbless_for_disk(value);
 844bad_unblessed:
 845	exit_shadow_spine(&spine);
 846	return r;
 847}
 848
 849int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
 850		    uint64_t *keys, void *value, dm_block_t *new_root)
 851		    __dm_written_to_disk(value)
 852{
 853	return insert(info, root, keys, value, new_root, NULL);
 854}
 855EXPORT_SYMBOL_GPL(dm_btree_insert);
 856
 857int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
 858			   uint64_t *keys, void *value, dm_block_t *new_root,
 859			   int *inserted)
 860			   __dm_written_to_disk(value)
 861{
 862	return insert(info, root, keys, value, new_root, inserted);
 863}
 864EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
 865
 866/*----------------------------------------------------------------*/
 867
 868static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
 869		    uint64_t *result_key, dm_block_t *next_block)
 870{
 871	int i, r;
 872	uint32_t flags;
 873
 874	do {
 875		r = ro_step(s, block);
 876		if (r < 0)
 877			return r;
 878
 879		flags = le32_to_cpu(ro_node(s)->header.flags);
 880		i = le32_to_cpu(ro_node(s)->header.nr_entries);
 881		if (!i)
 882			return -ENODATA;
 883		else
 884			i--;
 885
 886		if (find_highest)
 887			*result_key = le64_to_cpu(ro_node(s)->keys[i]);
 888		else
 889			*result_key = le64_to_cpu(ro_node(s)->keys[0]);
 890
 891		if (next_block || flags & INTERNAL_NODE) {
 892			if (find_highest)
 893				block = value64(ro_node(s), i);
 894			else
 895				block = value64(ro_node(s), 0);
 896		}
 897
 898	} while (flags & INTERNAL_NODE);
 899
 900	if (next_block)
 901		*next_block = block;
 902	return 0;
 903}
 904
 905static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
 906			     bool find_highest, uint64_t *result_keys)
 907{
 908	int r = 0, count = 0, level;
 909	struct ro_spine spine;
 910
 911	init_ro_spine(&spine, info);
 912	for (level = 0; level < info->levels; level++) {
 913		r = find_key(&spine, root, find_highest, result_keys + level,
 914			     level == info->levels - 1 ? NULL : &root);
 915		if (r == -ENODATA) {
 916			r = 0;
 917			break;
 918
 919		} else if (r)
 920			break;
 921
 922		count++;
 923	}
 924	exit_ro_spine(&spine);
 925
 926	return r ? r : count;
 927}
 928
 929int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
 930			      uint64_t *result_keys)
 931{
 932	return dm_btree_find_key(info, root, true, result_keys);
 933}
 934EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
 935
 936int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
 937			     uint64_t *result_keys)
 938{
 939	return dm_btree_find_key(info, root, false, result_keys);
 940}
 941EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
 942
 943/*----------------------------------------------------------------*/
 944
 945/*
 946 * FIXME: We shouldn't use a recursive algorithm when we have limited stack
 947 * space.  Also this only works for single level trees.
 948 */
 949static int walk_node(struct dm_btree_info *info, dm_block_t block,
 950		     int (*fn)(void *context, uint64_t *keys, void *leaf),
 951		     void *context)
 952{
 953	int r;
 954	unsigned i, nr;
 955	struct dm_block *node;
 956	struct btree_node *n;
 957	uint64_t keys;
 958
 959	r = bn_read_lock(info, block, &node);
 960	if (r)
 961		return r;
 962
 963	n = dm_block_data(node);
 964
 965	nr = le32_to_cpu(n->header.nr_entries);
 966	for (i = 0; i < nr; i++) {
 967		if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) {
 968			r = walk_node(info, value64(n, i), fn, context);
 969			if (r)
 970				goto out;
 971		} else {
 972			keys = le64_to_cpu(*key_ptr(n, i));
 973			r = fn(context, &keys, value_ptr(n, i));
 974			if (r)
 975				goto out;
 976		}
 977	}
 978
 979out:
 980	dm_tm_unlock(info->tm, node);
 981	return r;
 982}
 983
 984int dm_btree_walk(struct dm_btree_info *info, dm_block_t root,
 985		  int (*fn)(void *context, uint64_t *keys, void *leaf),
 986		  void *context)
 987{
 988	BUG_ON(info->levels > 1);
 989	return walk_node(info, root, fn, context);
 990}
 991EXPORT_SYMBOL_GPL(dm_btree_walk);
 992
 993/*----------------------------------------------------------------*/
 994
 995static void prefetch_values(struct dm_btree_cursor *c)
 996{
 997	unsigned i, nr;
 998	__le64 value_le;
 999	struct cursor_node *n = c->nodes + c->depth - 1;
1000	struct btree_node *bn = dm_block_data(n->b);
1001	struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm);
1002
1003	BUG_ON(c->info->value_type.size != sizeof(value_le));
1004
1005	nr = le32_to_cpu(bn->header.nr_entries);
1006	for (i = 0; i < nr; i++) {
1007		memcpy(&value_le, value_ptr(bn, i), sizeof(value_le));
1008		dm_bm_prefetch(bm, le64_to_cpu(value_le));
1009	}
1010}
1011
1012static bool leaf_node(struct dm_btree_cursor *c)
1013{
1014	struct cursor_node *n = c->nodes + c->depth - 1;
1015	struct btree_node *bn = dm_block_data(n->b);
1016
1017	return le32_to_cpu(bn->header.flags) & LEAF_NODE;
1018}
1019
1020static int push_node(struct dm_btree_cursor *c, dm_block_t b)
1021{
1022	int r;
1023	struct cursor_node *n = c->nodes + c->depth;
1024
1025	if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) {
1026		DMERR("couldn't push cursor node, stack depth too high");
1027		return -EINVAL;
1028	}
1029
1030	r = bn_read_lock(c->info, b, &n->b);
1031	if (r)
1032		return r;
1033
1034	n->index = 0;
1035	c->depth++;
1036
1037	if (c->prefetch_leaves || !leaf_node(c))
1038		prefetch_values(c);
1039
1040	return 0;
1041}
1042
1043static void pop_node(struct dm_btree_cursor *c)
1044{
1045	c->depth--;
1046	unlock_block(c->info, c->nodes[c->depth].b);
1047}
1048
1049static int inc_or_backtrack(struct dm_btree_cursor *c)
1050{
1051	struct cursor_node *n;
1052	struct btree_node *bn;
1053
1054	for (;;) {
1055		if (!c->depth)
1056			return -ENODATA;
1057
1058		n = c->nodes + c->depth - 1;
1059		bn = dm_block_data(n->b);
1060
1061		n->index++;
1062		if (n->index < le32_to_cpu(bn->header.nr_entries))
1063			break;
1064
1065		pop_node(c);
1066	}
1067
1068	return 0;
1069}
1070
1071static int find_leaf(struct dm_btree_cursor *c)
1072{
1073	int r = 0;
1074	struct cursor_node *n;
1075	struct btree_node *bn;
1076	__le64 value_le;
1077
1078	for (;;) {
1079		n = c->nodes + c->depth - 1;
1080		bn = dm_block_data(n->b);
1081
1082		if (le32_to_cpu(bn->header.flags) & LEAF_NODE)
1083			break;
1084
1085		memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le));
1086		r = push_node(c, le64_to_cpu(value_le));
1087		if (r) {
1088			DMERR("push_node failed");
1089			break;
1090		}
1091	}
1092
1093	if (!r && (le32_to_cpu(bn->header.nr_entries) == 0))
1094		return -ENODATA;
1095
1096	return r;
1097}
1098
1099int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root,
1100			  bool prefetch_leaves, struct dm_btree_cursor *c)
1101{
1102	int r;
1103
1104	c->info = info;
1105	c->root = root;
1106	c->depth = 0;
1107	c->prefetch_leaves = prefetch_leaves;
1108
1109	r = push_node(c, root);
1110	if (r)
1111		return r;
1112
1113	return find_leaf(c);
1114}
1115EXPORT_SYMBOL_GPL(dm_btree_cursor_begin);
1116
1117void dm_btree_cursor_end(struct dm_btree_cursor *c)
1118{
1119	while (c->depth)
1120		pop_node(c);
1121}
1122EXPORT_SYMBOL_GPL(dm_btree_cursor_end);
1123
1124int dm_btree_cursor_next(struct dm_btree_cursor *c)
1125{
1126	int r = inc_or_backtrack(c);
1127	if (!r) {
1128		r = find_leaf(c);
1129		if (r)
1130			DMERR("find_leaf failed");
1131	}
1132
1133	return r;
1134}
1135EXPORT_SYMBOL_GPL(dm_btree_cursor_next);
1136
1137int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count)
1138{
1139	int r = 0;
1140
1141	while (count-- && !r)
1142		r = dm_btree_cursor_next(c);
1143
1144	return r;
1145}
1146EXPORT_SYMBOL_GPL(dm_btree_cursor_skip);
1147
1148int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le)
1149{
1150	if (c->depth) {
1151		struct cursor_node *n = c->nodes + c->depth - 1;
1152		struct btree_node *bn = dm_block_data(n->b);
1153
1154		if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE)
1155			return -EINVAL;
1156
1157		*key = le64_to_cpu(*key_ptr(bn, n->index));
1158		memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size);
1159		return 0;
1160
1161	} else
1162		return -ENODATA;
1163}
1164EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value);