Loading...
1/*
2 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 */
18
19#include <linux/bug.h>
20#include <linux/completion.h>
21#include <linux/crc-itu-t.h>
22#include <linux/device.h>
23#include <linux/errno.h>
24#include <linux/firewire.h>
25#include <linux/firewire-constants.h>
26#include <linux/jiffies.h>
27#include <linux/kernel.h>
28#include <linux/kref.h>
29#include <linux/list.h>
30#include <linux/module.h>
31#include <linux/mutex.h>
32#include <linux/spinlock.h>
33#include <linux/workqueue.h>
34
35#include <linux/atomic.h>
36#include <asm/byteorder.h>
37
38#include "core.h"
39
40int fw_compute_block_crc(__be32 *block)
41{
42 int length;
43 u16 crc;
44
45 length = (be32_to_cpu(block[0]) >> 16) & 0xff;
46 crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
47 *block |= cpu_to_be32(crc);
48
49 return length;
50}
51
52static DEFINE_MUTEX(card_mutex);
53static LIST_HEAD(card_list);
54
55static LIST_HEAD(descriptor_list);
56static int descriptor_count;
57
58static __be32 tmp_config_rom[256];
59/* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
60static size_t config_rom_length = 1 + 4 + 1 + 1;
61
62#define BIB_CRC(v) ((v) << 0)
63#define BIB_CRC_LENGTH(v) ((v) << 16)
64#define BIB_INFO_LENGTH(v) ((v) << 24)
65#define BIB_BUS_NAME 0x31333934 /* "1394" */
66#define BIB_LINK_SPEED(v) ((v) << 0)
67#define BIB_GENERATION(v) ((v) << 4)
68#define BIB_MAX_ROM(v) ((v) << 8)
69#define BIB_MAX_RECEIVE(v) ((v) << 12)
70#define BIB_CYC_CLK_ACC(v) ((v) << 16)
71#define BIB_PMC ((1) << 27)
72#define BIB_BMC ((1) << 28)
73#define BIB_ISC ((1) << 29)
74#define BIB_CMC ((1) << 30)
75#define BIB_IRMC ((1) << 31)
76#define NODE_CAPABILITIES 0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
77
78/*
79 * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
80 * but we have to make it longer because there are many devices whose firmware
81 * is just too slow for that.
82 */
83#define DEFAULT_SPLIT_TIMEOUT (2 * 8000)
84
85#define CANON_OUI 0x000085
86
87static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
88{
89 struct fw_descriptor *desc;
90 int i, j, k, length;
91
92 /*
93 * Initialize contents of config rom buffer. On the OHCI
94 * controller, block reads to the config rom accesses the host
95 * memory, but quadlet read access the hardware bus info block
96 * registers. That's just crack, but it means we should make
97 * sure the contents of bus info block in host memory matches
98 * the version stored in the OHCI registers.
99 */
100
101 config_rom[0] = cpu_to_be32(
102 BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
103 config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
104 config_rom[2] = cpu_to_be32(
105 BIB_LINK_SPEED(card->link_speed) |
106 BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
107 BIB_MAX_ROM(2) |
108 BIB_MAX_RECEIVE(card->max_receive) |
109 BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
110 config_rom[3] = cpu_to_be32(card->guid >> 32);
111 config_rom[4] = cpu_to_be32(card->guid);
112
113 /* Generate root directory. */
114 config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
115 i = 7;
116 j = 7 + descriptor_count;
117
118 /* Generate root directory entries for descriptors. */
119 list_for_each_entry (desc, &descriptor_list, link) {
120 if (desc->immediate > 0)
121 config_rom[i++] = cpu_to_be32(desc->immediate);
122 config_rom[i] = cpu_to_be32(desc->key | (j - i));
123 i++;
124 j += desc->length;
125 }
126
127 /* Update root directory length. */
128 config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
129
130 /* End of root directory, now copy in descriptors. */
131 list_for_each_entry (desc, &descriptor_list, link) {
132 for (k = 0; k < desc->length; k++)
133 config_rom[i + k] = cpu_to_be32(desc->data[k]);
134 i += desc->length;
135 }
136
137 /* Calculate CRCs for all blocks in the config rom. This
138 * assumes that CRC length and info length are identical for
139 * the bus info block, which is always the case for this
140 * implementation. */
141 for (i = 0; i < j; i += length + 1)
142 length = fw_compute_block_crc(config_rom + i);
143
144 WARN_ON(j != config_rom_length);
145}
146
147static void update_config_roms(void)
148{
149 struct fw_card *card;
150
151 list_for_each_entry (card, &card_list, link) {
152 generate_config_rom(card, tmp_config_rom);
153 card->driver->set_config_rom(card, tmp_config_rom,
154 config_rom_length);
155 }
156}
157
158static size_t required_space(struct fw_descriptor *desc)
159{
160 /* descriptor + entry into root dir + optional immediate entry */
161 return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
162}
163
164int fw_core_add_descriptor(struct fw_descriptor *desc)
165{
166 size_t i;
167 int ret;
168
169 /*
170 * Check descriptor is valid; the length of all blocks in the
171 * descriptor has to add up to exactly the length of the
172 * block.
173 */
174 i = 0;
175 while (i < desc->length)
176 i += (desc->data[i] >> 16) + 1;
177
178 if (i != desc->length)
179 return -EINVAL;
180
181 mutex_lock(&card_mutex);
182
183 if (config_rom_length + required_space(desc) > 256) {
184 ret = -EBUSY;
185 } else {
186 list_add_tail(&desc->link, &descriptor_list);
187 config_rom_length += required_space(desc);
188 descriptor_count++;
189 if (desc->immediate > 0)
190 descriptor_count++;
191 update_config_roms();
192 ret = 0;
193 }
194
195 mutex_unlock(&card_mutex);
196
197 return ret;
198}
199EXPORT_SYMBOL(fw_core_add_descriptor);
200
201void fw_core_remove_descriptor(struct fw_descriptor *desc)
202{
203 mutex_lock(&card_mutex);
204
205 list_del(&desc->link);
206 config_rom_length -= required_space(desc);
207 descriptor_count--;
208 if (desc->immediate > 0)
209 descriptor_count--;
210 update_config_roms();
211
212 mutex_unlock(&card_mutex);
213}
214EXPORT_SYMBOL(fw_core_remove_descriptor);
215
216static int reset_bus(struct fw_card *card, bool short_reset)
217{
218 int reg = short_reset ? 5 : 1;
219 int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
220
221 return card->driver->update_phy_reg(card, reg, 0, bit);
222}
223
224void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
225{
226 /* We don't try hard to sort out requests of long vs. short resets. */
227 card->br_short = short_reset;
228
229 /* Use an arbitrary short delay to combine multiple reset requests. */
230 fw_card_get(card);
231 if (!queue_delayed_work(fw_workqueue, &card->br_work,
232 delayed ? DIV_ROUND_UP(HZ, 100) : 0))
233 fw_card_put(card);
234}
235EXPORT_SYMBOL(fw_schedule_bus_reset);
236
237static void br_work(struct work_struct *work)
238{
239 struct fw_card *card = container_of(work, struct fw_card, br_work.work);
240
241 /* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
242 if (card->reset_jiffies != 0 &&
243 time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) {
244 if (!queue_delayed_work(fw_workqueue, &card->br_work, 2 * HZ))
245 fw_card_put(card);
246 return;
247 }
248
249 fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
250 FW_PHY_CONFIG_CURRENT_GAP_COUNT);
251 reset_bus(card, card->br_short);
252 fw_card_put(card);
253}
254
255static void allocate_broadcast_channel(struct fw_card *card, int generation)
256{
257 int channel, bandwidth = 0;
258
259 if (!card->broadcast_channel_allocated) {
260 fw_iso_resource_manage(card, generation, 1ULL << 31,
261 &channel, &bandwidth, true);
262 if (channel != 31) {
263 fw_notify("failed to allocate broadcast channel\n");
264 return;
265 }
266 card->broadcast_channel_allocated = true;
267 }
268
269 device_for_each_child(card->device, (void *)(long)generation,
270 fw_device_set_broadcast_channel);
271}
272
273static const char gap_count_table[] = {
274 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
275};
276
277void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
278{
279 fw_card_get(card);
280 if (!schedule_delayed_work(&card->bm_work, delay))
281 fw_card_put(card);
282}
283
284static void bm_work(struct work_struct *work)
285{
286 struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
287 struct fw_device *root_device, *irm_device;
288 struct fw_node *root_node;
289 int root_id, new_root_id, irm_id, bm_id, local_id;
290 int gap_count, generation, grace, rcode;
291 bool do_reset = false;
292 bool root_device_is_running;
293 bool root_device_is_cmc;
294 bool irm_is_1394_1995_only;
295 bool keep_this_irm;
296 __be32 transaction_data[2];
297
298 spin_lock_irq(&card->lock);
299
300 if (card->local_node == NULL) {
301 spin_unlock_irq(&card->lock);
302 goto out_put_card;
303 }
304
305 generation = card->generation;
306
307 root_node = card->root_node;
308 fw_node_get(root_node);
309 root_device = root_node->data;
310 root_device_is_running = root_device &&
311 atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
312 root_device_is_cmc = root_device && root_device->cmc;
313
314 irm_device = card->irm_node->data;
315 irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
316 (irm_device->config_rom[2] & 0x000000f0) == 0;
317
318 /* Canon MV5i works unreliably if it is not root node. */
319 keep_this_irm = irm_device && irm_device->config_rom &&
320 irm_device->config_rom[3] >> 8 == CANON_OUI;
321
322 root_id = root_node->node_id;
323 irm_id = card->irm_node->node_id;
324 local_id = card->local_node->node_id;
325
326 grace = time_after64(get_jiffies_64(),
327 card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
328
329 if ((is_next_generation(generation, card->bm_generation) &&
330 !card->bm_abdicate) ||
331 (card->bm_generation != generation && grace)) {
332 /*
333 * This first step is to figure out who is IRM and
334 * then try to become bus manager. If the IRM is not
335 * well defined (e.g. does not have an active link
336 * layer or does not responds to our lock request, we
337 * will have to do a little vigilante bus management.
338 * In that case, we do a goto into the gap count logic
339 * so that when we do the reset, we still optimize the
340 * gap count. That could well save a reset in the
341 * next generation.
342 */
343
344 if (!card->irm_node->link_on) {
345 new_root_id = local_id;
346 fw_notify("%s, making local node (%02x) root.\n",
347 "IRM has link off", new_root_id);
348 goto pick_me;
349 }
350
351 if (irm_is_1394_1995_only && !keep_this_irm) {
352 new_root_id = local_id;
353 fw_notify("%s, making local node (%02x) root.\n",
354 "IRM is not 1394a compliant", new_root_id);
355 goto pick_me;
356 }
357
358 transaction_data[0] = cpu_to_be32(0x3f);
359 transaction_data[1] = cpu_to_be32(local_id);
360
361 spin_unlock_irq(&card->lock);
362
363 rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
364 irm_id, generation, SCODE_100,
365 CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
366 transaction_data, 8);
367
368 if (rcode == RCODE_GENERATION)
369 /* Another bus reset, BM work has been rescheduled. */
370 goto out;
371
372 bm_id = be32_to_cpu(transaction_data[0]);
373
374 spin_lock_irq(&card->lock);
375 if (rcode == RCODE_COMPLETE && generation == card->generation)
376 card->bm_node_id =
377 bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
378 spin_unlock_irq(&card->lock);
379
380 if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
381 /* Somebody else is BM. Only act as IRM. */
382 if (local_id == irm_id)
383 allocate_broadcast_channel(card, generation);
384
385 goto out;
386 }
387
388 if (rcode == RCODE_SEND_ERROR) {
389 /*
390 * We have been unable to send the lock request due to
391 * some local problem. Let's try again later and hope
392 * that the problem has gone away by then.
393 */
394 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
395 goto out;
396 }
397
398 spin_lock_irq(&card->lock);
399
400 if (rcode != RCODE_COMPLETE && !keep_this_irm) {
401 /*
402 * The lock request failed, maybe the IRM
403 * isn't really IRM capable after all. Let's
404 * do a bus reset and pick the local node as
405 * root, and thus, IRM.
406 */
407 new_root_id = local_id;
408 fw_notify("%s, making local node (%02x) root.\n",
409 "BM lock failed", new_root_id);
410 goto pick_me;
411 }
412 } else if (card->bm_generation != generation) {
413 /*
414 * We weren't BM in the last generation, and the last
415 * bus reset is less than 125ms ago. Reschedule this job.
416 */
417 spin_unlock_irq(&card->lock);
418 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
419 goto out;
420 }
421
422 /*
423 * We're bus manager for this generation, so next step is to
424 * make sure we have an active cycle master and do gap count
425 * optimization.
426 */
427 card->bm_generation = generation;
428
429 if (root_device == NULL) {
430 /*
431 * Either link_on is false, or we failed to read the
432 * config rom. In either case, pick another root.
433 */
434 new_root_id = local_id;
435 } else if (!root_device_is_running) {
436 /*
437 * If we haven't probed this device yet, bail out now
438 * and let's try again once that's done.
439 */
440 spin_unlock_irq(&card->lock);
441 goto out;
442 } else if (root_device_is_cmc) {
443 /*
444 * We will send out a force root packet for this
445 * node as part of the gap count optimization.
446 */
447 new_root_id = root_id;
448 } else {
449 /*
450 * Current root has an active link layer and we
451 * successfully read the config rom, but it's not
452 * cycle master capable.
453 */
454 new_root_id = local_id;
455 }
456
457 pick_me:
458 /*
459 * Pick a gap count from 1394a table E-1. The table doesn't cover
460 * the typically much larger 1394b beta repeater delays though.
461 */
462 if (!card->beta_repeaters_present &&
463 root_node->max_hops < ARRAY_SIZE(gap_count_table))
464 gap_count = gap_count_table[root_node->max_hops];
465 else
466 gap_count = 63;
467
468 /*
469 * Finally, figure out if we should do a reset or not. If we have
470 * done less than 5 resets with the same physical topology and we
471 * have either a new root or a new gap count setting, let's do it.
472 */
473
474 if (card->bm_retries++ < 5 &&
475 (card->gap_count != gap_count || new_root_id != root_id))
476 do_reset = true;
477
478 spin_unlock_irq(&card->lock);
479
480 if (do_reset) {
481 fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
482 card->index, new_root_id, gap_count);
483 fw_send_phy_config(card, new_root_id, generation, gap_count);
484 reset_bus(card, true);
485 /* Will allocate broadcast channel after the reset. */
486 goto out;
487 }
488
489 if (root_device_is_cmc) {
490 /*
491 * Make sure that the cycle master sends cycle start packets.
492 */
493 transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
494 rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
495 root_id, generation, SCODE_100,
496 CSR_REGISTER_BASE + CSR_STATE_SET,
497 transaction_data, 4);
498 if (rcode == RCODE_GENERATION)
499 goto out;
500 }
501
502 if (local_id == irm_id)
503 allocate_broadcast_channel(card, generation);
504
505 out:
506 fw_node_put(root_node);
507 out_put_card:
508 fw_card_put(card);
509}
510
511void fw_card_initialize(struct fw_card *card,
512 const struct fw_card_driver *driver,
513 struct device *device)
514{
515 static atomic_t index = ATOMIC_INIT(-1);
516
517 card->index = atomic_inc_return(&index);
518 card->driver = driver;
519 card->device = device;
520 card->current_tlabel = 0;
521 card->tlabel_mask = 0;
522 card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000;
523 card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
524 card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT;
525 card->split_timeout_jiffies =
526 DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000);
527 card->color = 0;
528 card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
529
530 kref_init(&card->kref);
531 init_completion(&card->done);
532 INIT_LIST_HEAD(&card->transaction_list);
533 INIT_LIST_HEAD(&card->phy_receiver_list);
534 spin_lock_init(&card->lock);
535
536 card->local_node = NULL;
537
538 INIT_DELAYED_WORK(&card->br_work, br_work);
539 INIT_DELAYED_WORK(&card->bm_work, bm_work);
540}
541EXPORT_SYMBOL(fw_card_initialize);
542
543int fw_card_add(struct fw_card *card,
544 u32 max_receive, u32 link_speed, u64 guid)
545{
546 int ret;
547
548 card->max_receive = max_receive;
549 card->link_speed = link_speed;
550 card->guid = guid;
551
552 mutex_lock(&card_mutex);
553
554 generate_config_rom(card, tmp_config_rom);
555 ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
556 if (ret == 0)
557 list_add_tail(&card->link, &card_list);
558
559 mutex_unlock(&card_mutex);
560
561 return ret;
562}
563EXPORT_SYMBOL(fw_card_add);
564
565/*
566 * The next few functions implement a dummy driver that is used once a card
567 * driver shuts down an fw_card. This allows the driver to cleanly unload,
568 * as all IO to the card will be handled (and failed) by the dummy driver
569 * instead of calling into the module. Only functions for iso context
570 * shutdown still need to be provided by the card driver.
571 *
572 * .read/write_csr() should never be called anymore after the dummy driver
573 * was bound since they are only used within request handler context.
574 * .set_config_rom() is never called since the card is taken out of card_list
575 * before switching to the dummy driver.
576 */
577
578static int dummy_read_phy_reg(struct fw_card *card, int address)
579{
580 return -ENODEV;
581}
582
583static int dummy_update_phy_reg(struct fw_card *card, int address,
584 int clear_bits, int set_bits)
585{
586 return -ENODEV;
587}
588
589static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
590{
591 packet->callback(packet, card, RCODE_CANCELLED);
592}
593
594static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
595{
596 packet->callback(packet, card, RCODE_CANCELLED);
597}
598
599static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
600{
601 return -ENOENT;
602}
603
604static int dummy_enable_phys_dma(struct fw_card *card,
605 int node_id, int generation)
606{
607 return -ENODEV;
608}
609
610static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
611 int type, int channel, size_t header_size)
612{
613 return ERR_PTR(-ENODEV);
614}
615
616static int dummy_start_iso(struct fw_iso_context *ctx,
617 s32 cycle, u32 sync, u32 tags)
618{
619 return -ENODEV;
620}
621
622static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
623{
624 return -ENODEV;
625}
626
627static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
628 struct fw_iso_buffer *buffer, unsigned long payload)
629{
630 return -ENODEV;
631}
632
633static void dummy_flush_queue_iso(struct fw_iso_context *ctx)
634{
635}
636
637static const struct fw_card_driver dummy_driver_template = {
638 .read_phy_reg = dummy_read_phy_reg,
639 .update_phy_reg = dummy_update_phy_reg,
640 .send_request = dummy_send_request,
641 .send_response = dummy_send_response,
642 .cancel_packet = dummy_cancel_packet,
643 .enable_phys_dma = dummy_enable_phys_dma,
644 .allocate_iso_context = dummy_allocate_iso_context,
645 .start_iso = dummy_start_iso,
646 .set_iso_channels = dummy_set_iso_channels,
647 .queue_iso = dummy_queue_iso,
648 .flush_queue_iso = dummy_flush_queue_iso,
649};
650
651void fw_card_release(struct kref *kref)
652{
653 struct fw_card *card = container_of(kref, struct fw_card, kref);
654
655 complete(&card->done);
656}
657
658void fw_core_remove_card(struct fw_card *card)
659{
660 struct fw_card_driver dummy_driver = dummy_driver_template;
661
662 card->driver->update_phy_reg(card, 4,
663 PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
664 fw_schedule_bus_reset(card, false, true);
665
666 mutex_lock(&card_mutex);
667 list_del_init(&card->link);
668 mutex_unlock(&card_mutex);
669
670 /* Switch off most of the card driver interface. */
671 dummy_driver.free_iso_context = card->driver->free_iso_context;
672 dummy_driver.stop_iso = card->driver->stop_iso;
673 card->driver = &dummy_driver;
674
675 fw_destroy_nodes(card);
676
677 /* Wait for all users, especially device workqueue jobs, to finish. */
678 fw_card_put(card);
679 wait_for_completion(&card->done);
680
681 WARN_ON(!list_empty(&card->transaction_list));
682}
683EXPORT_SYMBOL(fw_core_remove_card);
1/*
2 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software Foundation,
16 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 */
18
19#include <linux/bug.h>
20#include <linux/completion.h>
21#include <linux/crc-itu-t.h>
22#include <linux/device.h>
23#include <linux/errno.h>
24#include <linux/firewire.h>
25#include <linux/firewire-constants.h>
26#include <linux/jiffies.h>
27#include <linux/kernel.h>
28#include <linux/kref.h>
29#include <linux/list.h>
30#include <linux/module.h>
31#include <linux/mutex.h>
32#include <linux/spinlock.h>
33#include <linux/workqueue.h>
34
35#include <linux/atomic.h>
36#include <asm/byteorder.h>
37
38#include "core.h"
39
40#define define_fw_printk_level(func, kern_level) \
41void func(const struct fw_card *card, const char *fmt, ...) \
42{ \
43 struct va_format vaf; \
44 va_list args; \
45 \
46 va_start(args, fmt); \
47 vaf.fmt = fmt; \
48 vaf.va = &args; \
49 printk(kern_level KBUILD_MODNAME " %s: %pV", \
50 dev_name(card->device), &vaf); \
51 va_end(args); \
52}
53define_fw_printk_level(fw_err, KERN_ERR);
54define_fw_printk_level(fw_notice, KERN_NOTICE);
55
56int fw_compute_block_crc(__be32 *block)
57{
58 int length;
59 u16 crc;
60
61 length = (be32_to_cpu(block[0]) >> 16) & 0xff;
62 crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
63 *block |= cpu_to_be32(crc);
64
65 return length;
66}
67
68static DEFINE_MUTEX(card_mutex);
69static LIST_HEAD(card_list);
70
71static LIST_HEAD(descriptor_list);
72static int descriptor_count;
73
74static __be32 tmp_config_rom[256];
75/* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
76static size_t config_rom_length = 1 + 4 + 1 + 1;
77
78#define BIB_CRC(v) ((v) << 0)
79#define BIB_CRC_LENGTH(v) ((v) << 16)
80#define BIB_INFO_LENGTH(v) ((v) << 24)
81#define BIB_BUS_NAME 0x31333934 /* "1394" */
82#define BIB_LINK_SPEED(v) ((v) << 0)
83#define BIB_GENERATION(v) ((v) << 4)
84#define BIB_MAX_ROM(v) ((v) << 8)
85#define BIB_MAX_RECEIVE(v) ((v) << 12)
86#define BIB_CYC_CLK_ACC(v) ((v) << 16)
87#define BIB_PMC ((1) << 27)
88#define BIB_BMC ((1) << 28)
89#define BIB_ISC ((1) << 29)
90#define BIB_CMC ((1) << 30)
91#define BIB_IRMC ((1) << 31)
92#define NODE_CAPABILITIES 0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
93
94/*
95 * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
96 * but we have to make it longer because there are many devices whose firmware
97 * is just too slow for that.
98 */
99#define DEFAULT_SPLIT_TIMEOUT (2 * 8000)
100
101#define CANON_OUI 0x000085
102
103static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
104{
105 struct fw_descriptor *desc;
106 int i, j, k, length;
107
108 /*
109 * Initialize contents of config rom buffer. On the OHCI
110 * controller, block reads to the config rom accesses the host
111 * memory, but quadlet read access the hardware bus info block
112 * registers. That's just crack, but it means we should make
113 * sure the contents of bus info block in host memory matches
114 * the version stored in the OHCI registers.
115 */
116
117 config_rom[0] = cpu_to_be32(
118 BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
119 config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
120 config_rom[2] = cpu_to_be32(
121 BIB_LINK_SPEED(card->link_speed) |
122 BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
123 BIB_MAX_ROM(2) |
124 BIB_MAX_RECEIVE(card->max_receive) |
125 BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
126 config_rom[3] = cpu_to_be32(card->guid >> 32);
127 config_rom[4] = cpu_to_be32(card->guid);
128
129 /* Generate root directory. */
130 config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
131 i = 7;
132 j = 7 + descriptor_count;
133
134 /* Generate root directory entries for descriptors. */
135 list_for_each_entry (desc, &descriptor_list, link) {
136 if (desc->immediate > 0)
137 config_rom[i++] = cpu_to_be32(desc->immediate);
138 config_rom[i] = cpu_to_be32(desc->key | (j - i));
139 i++;
140 j += desc->length;
141 }
142
143 /* Update root directory length. */
144 config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
145
146 /* End of root directory, now copy in descriptors. */
147 list_for_each_entry (desc, &descriptor_list, link) {
148 for (k = 0; k < desc->length; k++)
149 config_rom[i + k] = cpu_to_be32(desc->data[k]);
150 i += desc->length;
151 }
152
153 /* Calculate CRCs for all blocks in the config rom. This
154 * assumes that CRC length and info length are identical for
155 * the bus info block, which is always the case for this
156 * implementation. */
157 for (i = 0; i < j; i += length + 1)
158 length = fw_compute_block_crc(config_rom + i);
159
160 WARN_ON(j != config_rom_length);
161}
162
163static void update_config_roms(void)
164{
165 struct fw_card *card;
166
167 list_for_each_entry (card, &card_list, link) {
168 generate_config_rom(card, tmp_config_rom);
169 card->driver->set_config_rom(card, tmp_config_rom,
170 config_rom_length);
171 }
172}
173
174static size_t required_space(struct fw_descriptor *desc)
175{
176 /* descriptor + entry into root dir + optional immediate entry */
177 return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
178}
179
180int fw_core_add_descriptor(struct fw_descriptor *desc)
181{
182 size_t i;
183 int ret;
184
185 /*
186 * Check descriptor is valid; the length of all blocks in the
187 * descriptor has to add up to exactly the length of the
188 * block.
189 */
190 i = 0;
191 while (i < desc->length)
192 i += (desc->data[i] >> 16) + 1;
193
194 if (i != desc->length)
195 return -EINVAL;
196
197 mutex_lock(&card_mutex);
198
199 if (config_rom_length + required_space(desc) > 256) {
200 ret = -EBUSY;
201 } else {
202 list_add_tail(&desc->link, &descriptor_list);
203 config_rom_length += required_space(desc);
204 descriptor_count++;
205 if (desc->immediate > 0)
206 descriptor_count++;
207 update_config_roms();
208 ret = 0;
209 }
210
211 mutex_unlock(&card_mutex);
212
213 return ret;
214}
215EXPORT_SYMBOL(fw_core_add_descriptor);
216
217void fw_core_remove_descriptor(struct fw_descriptor *desc)
218{
219 mutex_lock(&card_mutex);
220
221 list_del(&desc->link);
222 config_rom_length -= required_space(desc);
223 descriptor_count--;
224 if (desc->immediate > 0)
225 descriptor_count--;
226 update_config_roms();
227
228 mutex_unlock(&card_mutex);
229}
230EXPORT_SYMBOL(fw_core_remove_descriptor);
231
232static int reset_bus(struct fw_card *card, bool short_reset)
233{
234 int reg = short_reset ? 5 : 1;
235 int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
236
237 return card->driver->update_phy_reg(card, reg, 0, bit);
238}
239
240void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
241{
242 /* We don't try hard to sort out requests of long vs. short resets. */
243 card->br_short = short_reset;
244
245 /* Use an arbitrary short delay to combine multiple reset requests. */
246 fw_card_get(card);
247 if (!queue_delayed_work(fw_workqueue, &card->br_work,
248 delayed ? DIV_ROUND_UP(HZ, 100) : 0))
249 fw_card_put(card);
250}
251EXPORT_SYMBOL(fw_schedule_bus_reset);
252
253static void br_work(struct work_struct *work)
254{
255 struct fw_card *card = container_of(work, struct fw_card, br_work.work);
256
257 /* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
258 if (card->reset_jiffies != 0 &&
259 time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) {
260 if (!queue_delayed_work(fw_workqueue, &card->br_work, 2 * HZ))
261 fw_card_put(card);
262 return;
263 }
264
265 fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
266 FW_PHY_CONFIG_CURRENT_GAP_COUNT);
267 reset_bus(card, card->br_short);
268 fw_card_put(card);
269}
270
271static void allocate_broadcast_channel(struct fw_card *card, int generation)
272{
273 int channel, bandwidth = 0;
274
275 if (!card->broadcast_channel_allocated) {
276 fw_iso_resource_manage(card, generation, 1ULL << 31,
277 &channel, &bandwidth, true);
278 if (channel != 31) {
279 fw_notice(card, "failed to allocate broadcast channel\n");
280 return;
281 }
282 card->broadcast_channel_allocated = true;
283 }
284
285 device_for_each_child(card->device, (void *)(long)generation,
286 fw_device_set_broadcast_channel);
287}
288
289static const char gap_count_table[] = {
290 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
291};
292
293void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
294{
295 fw_card_get(card);
296 if (!schedule_delayed_work(&card->bm_work, delay))
297 fw_card_put(card);
298}
299
300static void bm_work(struct work_struct *work)
301{
302 struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
303 struct fw_device *root_device, *irm_device;
304 struct fw_node *root_node;
305 int root_id, new_root_id, irm_id, bm_id, local_id;
306 int gap_count, generation, grace, rcode;
307 bool do_reset = false;
308 bool root_device_is_running;
309 bool root_device_is_cmc;
310 bool irm_is_1394_1995_only;
311 bool keep_this_irm;
312 __be32 transaction_data[2];
313
314 spin_lock_irq(&card->lock);
315
316 if (card->local_node == NULL) {
317 spin_unlock_irq(&card->lock);
318 goto out_put_card;
319 }
320
321 generation = card->generation;
322
323 root_node = card->root_node;
324 fw_node_get(root_node);
325 root_device = root_node->data;
326 root_device_is_running = root_device &&
327 atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
328 root_device_is_cmc = root_device && root_device->cmc;
329
330 irm_device = card->irm_node->data;
331 irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
332 (irm_device->config_rom[2] & 0x000000f0) == 0;
333
334 /* Canon MV5i works unreliably if it is not root node. */
335 keep_this_irm = irm_device && irm_device->config_rom &&
336 irm_device->config_rom[3] >> 8 == CANON_OUI;
337
338 root_id = root_node->node_id;
339 irm_id = card->irm_node->node_id;
340 local_id = card->local_node->node_id;
341
342 grace = time_after64(get_jiffies_64(),
343 card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
344
345 if ((is_next_generation(generation, card->bm_generation) &&
346 !card->bm_abdicate) ||
347 (card->bm_generation != generation && grace)) {
348 /*
349 * This first step is to figure out who is IRM and
350 * then try to become bus manager. If the IRM is not
351 * well defined (e.g. does not have an active link
352 * layer or does not responds to our lock request, we
353 * will have to do a little vigilante bus management.
354 * In that case, we do a goto into the gap count logic
355 * so that when we do the reset, we still optimize the
356 * gap count. That could well save a reset in the
357 * next generation.
358 */
359
360 if (!card->irm_node->link_on) {
361 new_root_id = local_id;
362 fw_notice(card, "%s, making local node (%02x) root\n",
363 "IRM has link off", new_root_id);
364 goto pick_me;
365 }
366
367 if (irm_is_1394_1995_only && !keep_this_irm) {
368 new_root_id = local_id;
369 fw_notice(card, "%s, making local node (%02x) root\n",
370 "IRM is not 1394a compliant", new_root_id);
371 goto pick_me;
372 }
373
374 transaction_data[0] = cpu_to_be32(0x3f);
375 transaction_data[1] = cpu_to_be32(local_id);
376
377 spin_unlock_irq(&card->lock);
378
379 rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
380 irm_id, generation, SCODE_100,
381 CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
382 transaction_data, 8);
383
384 if (rcode == RCODE_GENERATION)
385 /* Another bus reset, BM work has been rescheduled. */
386 goto out;
387
388 bm_id = be32_to_cpu(transaction_data[0]);
389
390 spin_lock_irq(&card->lock);
391 if (rcode == RCODE_COMPLETE && generation == card->generation)
392 card->bm_node_id =
393 bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
394 spin_unlock_irq(&card->lock);
395
396 if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
397 /* Somebody else is BM. Only act as IRM. */
398 if (local_id == irm_id)
399 allocate_broadcast_channel(card, generation);
400
401 goto out;
402 }
403
404 if (rcode == RCODE_SEND_ERROR) {
405 /*
406 * We have been unable to send the lock request due to
407 * some local problem. Let's try again later and hope
408 * that the problem has gone away by then.
409 */
410 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
411 goto out;
412 }
413
414 spin_lock_irq(&card->lock);
415
416 if (rcode != RCODE_COMPLETE && !keep_this_irm) {
417 /*
418 * The lock request failed, maybe the IRM
419 * isn't really IRM capable after all. Let's
420 * do a bus reset and pick the local node as
421 * root, and thus, IRM.
422 */
423 new_root_id = local_id;
424 fw_notice(card, "BM lock failed (%s), making local node (%02x) root\n",
425 fw_rcode_string(rcode), new_root_id);
426 goto pick_me;
427 }
428 } else if (card->bm_generation != generation) {
429 /*
430 * We weren't BM in the last generation, and the last
431 * bus reset is less than 125ms ago. Reschedule this job.
432 */
433 spin_unlock_irq(&card->lock);
434 fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
435 goto out;
436 }
437
438 /*
439 * We're bus manager for this generation, so next step is to
440 * make sure we have an active cycle master and do gap count
441 * optimization.
442 */
443 card->bm_generation = generation;
444
445 if (root_device == NULL) {
446 /*
447 * Either link_on is false, or we failed to read the
448 * config rom. In either case, pick another root.
449 */
450 new_root_id = local_id;
451 } else if (!root_device_is_running) {
452 /*
453 * If we haven't probed this device yet, bail out now
454 * and let's try again once that's done.
455 */
456 spin_unlock_irq(&card->lock);
457 goto out;
458 } else if (root_device_is_cmc) {
459 /*
460 * We will send out a force root packet for this
461 * node as part of the gap count optimization.
462 */
463 new_root_id = root_id;
464 } else {
465 /*
466 * Current root has an active link layer and we
467 * successfully read the config rom, but it's not
468 * cycle master capable.
469 */
470 new_root_id = local_id;
471 }
472
473 pick_me:
474 /*
475 * Pick a gap count from 1394a table E-1. The table doesn't cover
476 * the typically much larger 1394b beta repeater delays though.
477 */
478 if (!card->beta_repeaters_present &&
479 root_node->max_hops < ARRAY_SIZE(gap_count_table))
480 gap_count = gap_count_table[root_node->max_hops];
481 else
482 gap_count = 63;
483
484 /*
485 * Finally, figure out if we should do a reset or not. If we have
486 * done less than 5 resets with the same physical topology and we
487 * have either a new root or a new gap count setting, let's do it.
488 */
489
490 if (card->bm_retries++ < 5 &&
491 (card->gap_count != gap_count || new_root_id != root_id))
492 do_reset = true;
493
494 spin_unlock_irq(&card->lock);
495
496 if (do_reset) {
497 fw_notice(card, "phy config: new root=%x, gap_count=%d\n",
498 new_root_id, gap_count);
499 fw_send_phy_config(card, new_root_id, generation, gap_count);
500 reset_bus(card, true);
501 /* Will allocate broadcast channel after the reset. */
502 goto out;
503 }
504
505 if (root_device_is_cmc) {
506 /*
507 * Make sure that the cycle master sends cycle start packets.
508 */
509 transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
510 rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
511 root_id, generation, SCODE_100,
512 CSR_REGISTER_BASE + CSR_STATE_SET,
513 transaction_data, 4);
514 if (rcode == RCODE_GENERATION)
515 goto out;
516 }
517
518 if (local_id == irm_id)
519 allocate_broadcast_channel(card, generation);
520
521 out:
522 fw_node_put(root_node);
523 out_put_card:
524 fw_card_put(card);
525}
526
527void fw_card_initialize(struct fw_card *card,
528 const struct fw_card_driver *driver,
529 struct device *device)
530{
531 static atomic_t index = ATOMIC_INIT(-1);
532
533 card->index = atomic_inc_return(&index);
534 card->driver = driver;
535 card->device = device;
536 card->current_tlabel = 0;
537 card->tlabel_mask = 0;
538 card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000;
539 card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
540 card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT;
541 card->split_timeout_jiffies =
542 DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000);
543 card->color = 0;
544 card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
545
546 kref_init(&card->kref);
547 init_completion(&card->done);
548 INIT_LIST_HEAD(&card->transaction_list);
549 INIT_LIST_HEAD(&card->phy_receiver_list);
550 spin_lock_init(&card->lock);
551
552 card->local_node = NULL;
553
554 INIT_DELAYED_WORK(&card->br_work, br_work);
555 INIT_DELAYED_WORK(&card->bm_work, bm_work);
556}
557EXPORT_SYMBOL(fw_card_initialize);
558
559int fw_card_add(struct fw_card *card,
560 u32 max_receive, u32 link_speed, u64 guid)
561{
562 int ret;
563
564 card->max_receive = max_receive;
565 card->link_speed = link_speed;
566 card->guid = guid;
567
568 mutex_lock(&card_mutex);
569
570 generate_config_rom(card, tmp_config_rom);
571 ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
572 if (ret == 0)
573 list_add_tail(&card->link, &card_list);
574
575 mutex_unlock(&card_mutex);
576
577 return ret;
578}
579EXPORT_SYMBOL(fw_card_add);
580
581/*
582 * The next few functions implement a dummy driver that is used once a card
583 * driver shuts down an fw_card. This allows the driver to cleanly unload,
584 * as all IO to the card will be handled (and failed) by the dummy driver
585 * instead of calling into the module. Only functions for iso context
586 * shutdown still need to be provided by the card driver.
587 *
588 * .read/write_csr() should never be called anymore after the dummy driver
589 * was bound since they are only used within request handler context.
590 * .set_config_rom() is never called since the card is taken out of card_list
591 * before switching to the dummy driver.
592 */
593
594static int dummy_read_phy_reg(struct fw_card *card, int address)
595{
596 return -ENODEV;
597}
598
599static int dummy_update_phy_reg(struct fw_card *card, int address,
600 int clear_bits, int set_bits)
601{
602 return -ENODEV;
603}
604
605static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
606{
607 packet->callback(packet, card, RCODE_CANCELLED);
608}
609
610static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
611{
612 packet->callback(packet, card, RCODE_CANCELLED);
613}
614
615static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
616{
617 return -ENOENT;
618}
619
620static int dummy_enable_phys_dma(struct fw_card *card,
621 int node_id, int generation)
622{
623 return -ENODEV;
624}
625
626static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
627 int type, int channel, size_t header_size)
628{
629 return ERR_PTR(-ENODEV);
630}
631
632static int dummy_start_iso(struct fw_iso_context *ctx,
633 s32 cycle, u32 sync, u32 tags)
634{
635 return -ENODEV;
636}
637
638static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
639{
640 return -ENODEV;
641}
642
643static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
644 struct fw_iso_buffer *buffer, unsigned long payload)
645{
646 return -ENODEV;
647}
648
649static void dummy_flush_queue_iso(struct fw_iso_context *ctx)
650{
651}
652
653static int dummy_flush_iso_completions(struct fw_iso_context *ctx)
654{
655 return -ENODEV;
656}
657
658static const struct fw_card_driver dummy_driver_template = {
659 .read_phy_reg = dummy_read_phy_reg,
660 .update_phy_reg = dummy_update_phy_reg,
661 .send_request = dummy_send_request,
662 .send_response = dummy_send_response,
663 .cancel_packet = dummy_cancel_packet,
664 .enable_phys_dma = dummy_enable_phys_dma,
665 .allocate_iso_context = dummy_allocate_iso_context,
666 .start_iso = dummy_start_iso,
667 .set_iso_channels = dummy_set_iso_channels,
668 .queue_iso = dummy_queue_iso,
669 .flush_queue_iso = dummy_flush_queue_iso,
670 .flush_iso_completions = dummy_flush_iso_completions,
671};
672
673void fw_card_release(struct kref *kref)
674{
675 struct fw_card *card = container_of(kref, struct fw_card, kref);
676
677 complete(&card->done);
678}
679EXPORT_SYMBOL_GPL(fw_card_release);
680
681void fw_core_remove_card(struct fw_card *card)
682{
683 struct fw_card_driver dummy_driver = dummy_driver_template;
684
685 card->driver->update_phy_reg(card, 4,
686 PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
687 fw_schedule_bus_reset(card, false, true);
688
689 mutex_lock(&card_mutex);
690 list_del_init(&card->link);
691 mutex_unlock(&card_mutex);
692
693 /* Switch off most of the card driver interface. */
694 dummy_driver.free_iso_context = card->driver->free_iso_context;
695 dummy_driver.stop_iso = card->driver->stop_iso;
696 card->driver = &dummy_driver;
697
698 fw_destroy_nodes(card);
699
700 /* Wait for all users, especially device workqueue jobs, to finish. */
701 fw_card_put(card);
702 wait_for_completion(&card->done);
703
704 WARN_ON(!list_empty(&card->transaction_list));
705}
706EXPORT_SYMBOL(fw_core_remove_card);