Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software Foundation,
 16 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 */
 18
 19#include <linux/bug.h>
 20#include <linux/completion.h>
 21#include <linux/crc-itu-t.h>
 22#include <linux/device.h>
 23#include <linux/errno.h>
 24#include <linux/firewire.h>
 25#include <linux/firewire-constants.h>
 26#include <linux/jiffies.h>
 27#include <linux/kernel.h>
 28#include <linux/kref.h>
 29#include <linux/list.h>
 30#include <linux/module.h>
 31#include <linux/mutex.h>
 32#include <linux/spinlock.h>
 33#include <linux/workqueue.h>
 34
 35#include <linux/atomic.h>
 36#include <asm/byteorder.h>
 37
 38#include "core.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 39
 40int fw_compute_block_crc(__be32 *block)
 41{
 42	int length;
 43	u16 crc;
 44
 45	length = (be32_to_cpu(block[0]) >> 16) & 0xff;
 46	crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
 47	*block |= cpu_to_be32(crc);
 48
 49	return length;
 50}
 51
 52static DEFINE_MUTEX(card_mutex);
 53static LIST_HEAD(card_list);
 54
 55static LIST_HEAD(descriptor_list);
 56static int descriptor_count;
 57
 58static __be32 tmp_config_rom[256];
 59/* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
 60static size_t config_rom_length = 1 + 4 + 1 + 1;
 61
 62#define BIB_CRC(v)		((v) <<  0)
 63#define BIB_CRC_LENGTH(v)	((v) << 16)
 64#define BIB_INFO_LENGTH(v)	((v) << 24)
 65#define BIB_BUS_NAME		0x31333934 /* "1394" */
 66#define BIB_LINK_SPEED(v)	((v) <<  0)
 67#define BIB_GENERATION(v)	((v) <<  4)
 68#define BIB_MAX_ROM(v)		((v) <<  8)
 69#define BIB_MAX_RECEIVE(v)	((v) << 12)
 70#define BIB_CYC_CLK_ACC(v)	((v) << 16)
 71#define BIB_PMC			((1) << 27)
 72#define BIB_BMC			((1) << 28)
 73#define BIB_ISC			((1) << 29)
 74#define BIB_CMC			((1) << 30)
 75#define BIB_IRMC		((1) << 31)
 76#define NODE_CAPABILITIES	0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
 77
 78/*
 79 * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
 80 * but we have to make it longer because there are many devices whose firmware
 81 * is just too slow for that.
 82 */
 83#define DEFAULT_SPLIT_TIMEOUT	(2 * 8000)
 84
 85#define CANON_OUI		0x000085
 86
 87static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
 88{
 89	struct fw_descriptor *desc;
 90	int i, j, k, length;
 91
 92	/*
 93	 * Initialize contents of config rom buffer.  On the OHCI
 94	 * controller, block reads to the config rom accesses the host
 95	 * memory, but quadlet read access the hardware bus info block
 96	 * registers.  That's just crack, but it means we should make
 97	 * sure the contents of bus info block in host memory matches
 98	 * the version stored in the OHCI registers.
 99	 */
100
101	config_rom[0] = cpu_to_be32(
102		BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
103	config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
104	config_rom[2] = cpu_to_be32(
105		BIB_LINK_SPEED(card->link_speed) |
106		BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
107		BIB_MAX_ROM(2) |
108		BIB_MAX_RECEIVE(card->max_receive) |
109		BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
110	config_rom[3] = cpu_to_be32(card->guid >> 32);
111	config_rom[4] = cpu_to_be32(card->guid);
112
113	/* Generate root directory. */
114	config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
115	i = 7;
116	j = 7 + descriptor_count;
117
118	/* Generate root directory entries for descriptors. */
119	list_for_each_entry (desc, &descriptor_list, link) {
120		if (desc->immediate > 0)
121			config_rom[i++] = cpu_to_be32(desc->immediate);
122		config_rom[i] = cpu_to_be32(desc->key | (j - i));
123		i++;
124		j += desc->length;
125	}
126
127	/* Update root directory length. */
128	config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
129
130	/* End of root directory, now copy in descriptors. */
131	list_for_each_entry (desc, &descriptor_list, link) {
132		for (k = 0; k < desc->length; k++)
133			config_rom[i + k] = cpu_to_be32(desc->data[k]);
134		i += desc->length;
135	}
136
137	/* Calculate CRCs for all blocks in the config rom.  This
138	 * assumes that CRC length and info length are identical for
139	 * the bus info block, which is always the case for this
140	 * implementation. */
141	for (i = 0; i < j; i += length + 1)
142		length = fw_compute_block_crc(config_rom + i);
143
144	WARN_ON(j != config_rom_length);
145}
146
147static void update_config_roms(void)
148{
149	struct fw_card *card;
150
151	list_for_each_entry (card, &card_list, link) {
152		generate_config_rom(card, tmp_config_rom);
153		card->driver->set_config_rom(card, tmp_config_rom,
154					     config_rom_length);
155	}
156}
157
158static size_t required_space(struct fw_descriptor *desc)
159{
160	/* descriptor + entry into root dir + optional immediate entry */
161	return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
162}
163
164int fw_core_add_descriptor(struct fw_descriptor *desc)
165{
166	size_t i;
167	int ret;
168
169	/*
170	 * Check descriptor is valid; the length of all blocks in the
171	 * descriptor has to add up to exactly the length of the
172	 * block.
173	 */
174	i = 0;
175	while (i < desc->length)
176		i += (desc->data[i] >> 16) + 1;
177
178	if (i != desc->length)
179		return -EINVAL;
180
181	mutex_lock(&card_mutex);
182
183	if (config_rom_length + required_space(desc) > 256) {
184		ret = -EBUSY;
185	} else {
186		list_add_tail(&desc->link, &descriptor_list);
187		config_rom_length += required_space(desc);
188		descriptor_count++;
189		if (desc->immediate > 0)
190			descriptor_count++;
191		update_config_roms();
192		ret = 0;
193	}
194
195	mutex_unlock(&card_mutex);
 
 
 
 
 
196
197	return ret;
198}
199EXPORT_SYMBOL(fw_core_add_descriptor);
200
201void fw_core_remove_descriptor(struct fw_descriptor *desc)
202{
203	mutex_lock(&card_mutex);
204
205	list_del(&desc->link);
206	config_rom_length -= required_space(desc);
207	descriptor_count--;
208	if (desc->immediate > 0)
209		descriptor_count--;
210	update_config_roms();
211
212	mutex_unlock(&card_mutex);
213}
214EXPORT_SYMBOL(fw_core_remove_descriptor);
215
216static int reset_bus(struct fw_card *card, bool short_reset)
217{
218	int reg = short_reset ? 5 : 1;
219	int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
220
 
 
221	return card->driver->update_phy_reg(card, reg, 0, bit);
222}
223
224void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
225{
 
 
226	/* We don't try hard to sort out requests of long vs. short resets. */
227	card->br_short = short_reset;
228
229	/* Use an arbitrary short delay to combine multiple reset requests. */
230	fw_card_get(card);
231	if (!queue_delayed_work(fw_workqueue, &card->br_work,
232				delayed ? DIV_ROUND_UP(HZ, 100) : 0))
233		fw_card_put(card);
234}
235EXPORT_SYMBOL(fw_schedule_bus_reset);
236
237static void br_work(struct work_struct *work)
238{
239	struct fw_card *card = container_of(work, struct fw_card, br_work.work);
240
241	/* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
242	if (card->reset_jiffies != 0 &&
243	    time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) {
 
 
244		if (!queue_delayed_work(fw_workqueue, &card->br_work, 2 * HZ))
245			fw_card_put(card);
246		return;
247	}
248
249	fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
250			   FW_PHY_CONFIG_CURRENT_GAP_COUNT);
251	reset_bus(card, card->br_short);
252	fw_card_put(card);
253}
254
255static void allocate_broadcast_channel(struct fw_card *card, int generation)
256{
257	int channel, bandwidth = 0;
258
259	if (!card->broadcast_channel_allocated) {
260		fw_iso_resource_manage(card, generation, 1ULL << 31,
261				       &channel, &bandwidth, true);
262		if (channel != 31) {
263			fw_notify("failed to allocate broadcast channel\n");
264			return;
265		}
266		card->broadcast_channel_allocated = true;
267	}
268
269	device_for_each_child(card->device, (void *)(long)generation,
270			      fw_device_set_broadcast_channel);
271}
272
273static const char gap_count_table[] = {
274	63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
275};
276
277void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
278{
279	fw_card_get(card);
280	if (!schedule_delayed_work(&card->bm_work, delay))
281		fw_card_put(card);
282}
283
284static void bm_work(struct work_struct *work)
285{
286	struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
287	struct fw_device *root_device, *irm_device;
288	struct fw_node *root_node;
289	int root_id, new_root_id, irm_id, bm_id, local_id;
290	int gap_count, generation, grace, rcode;
291	bool do_reset = false;
292	bool root_device_is_running;
293	bool root_device_is_cmc;
294	bool irm_is_1394_1995_only;
295	bool keep_this_irm;
296	__be32 transaction_data[2];
297
298	spin_lock_irq(&card->lock);
299
300	if (card->local_node == NULL) {
301		spin_unlock_irq(&card->lock);
302		goto out_put_card;
303	}
304
305	generation = card->generation;
306
307	root_node = card->root_node;
308	fw_node_get(root_node);
309	root_device = root_node->data;
310	root_device_is_running = root_device &&
311			atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
312	root_device_is_cmc = root_device && root_device->cmc;
313
314	irm_device = card->irm_node->data;
315	irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
316			(irm_device->config_rom[2] & 0x000000f0) == 0;
317
318	/* Canon MV5i works unreliably if it is not root node. */
319	keep_this_irm = irm_device && irm_device->config_rom &&
320			irm_device->config_rom[3] >> 8 == CANON_OUI;
321
322	root_id  = root_node->node_id;
323	irm_id   = card->irm_node->node_id;
324	local_id = card->local_node->node_id;
325
326	grace = time_after64(get_jiffies_64(),
327			     card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
328
329	if ((is_next_generation(generation, card->bm_generation) &&
330	     !card->bm_abdicate) ||
331	    (card->bm_generation != generation && grace)) {
332		/*
333		 * This first step is to figure out who is IRM and
334		 * then try to become bus manager.  If the IRM is not
335		 * well defined (e.g. does not have an active link
336		 * layer or does not responds to our lock request, we
337		 * will have to do a little vigilante bus management.
338		 * In that case, we do a goto into the gap count logic
339		 * so that when we do the reset, we still optimize the
340		 * gap count.  That could well save a reset in the
341		 * next generation.
342		 */
343
344		if (!card->irm_node->link_on) {
345			new_root_id = local_id;
346			fw_notify("%s, making local node (%02x) root.\n",
347				  "IRM has link off", new_root_id);
348			goto pick_me;
349		}
350
351		if (irm_is_1394_1995_only && !keep_this_irm) {
352			new_root_id = local_id;
353			fw_notify("%s, making local node (%02x) root.\n",
354				  "IRM is not 1394a compliant", new_root_id);
355			goto pick_me;
356		}
357
358		transaction_data[0] = cpu_to_be32(0x3f);
359		transaction_data[1] = cpu_to_be32(local_id);
360
361		spin_unlock_irq(&card->lock);
362
363		rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
364				irm_id, generation, SCODE_100,
365				CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
366				transaction_data, 8);
367
368		if (rcode == RCODE_GENERATION)
369			/* Another bus reset, BM work has been rescheduled. */
370			goto out;
371
372		bm_id = be32_to_cpu(transaction_data[0]);
373
374		spin_lock_irq(&card->lock);
375		if (rcode == RCODE_COMPLETE && generation == card->generation)
376			card->bm_node_id =
377			    bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
378		spin_unlock_irq(&card->lock);
379
380		if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
381			/* Somebody else is BM.  Only act as IRM. */
382			if (local_id == irm_id)
383				allocate_broadcast_channel(card, generation);
384
385			goto out;
386		}
387
388		if (rcode == RCODE_SEND_ERROR) {
389			/*
390			 * We have been unable to send the lock request due to
391			 * some local problem.  Let's try again later and hope
392			 * that the problem has gone away by then.
393			 */
394			fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
395			goto out;
396		}
397
398		spin_lock_irq(&card->lock);
399
400		if (rcode != RCODE_COMPLETE && !keep_this_irm) {
401			/*
402			 * The lock request failed, maybe the IRM
403			 * isn't really IRM capable after all. Let's
404			 * do a bus reset and pick the local node as
405			 * root, and thus, IRM.
406			 */
407			new_root_id = local_id;
408			fw_notify("%s, making local node (%02x) root.\n",
409				  "BM lock failed", new_root_id);
410			goto pick_me;
411		}
412	} else if (card->bm_generation != generation) {
413		/*
414		 * We weren't BM in the last generation, and the last
415		 * bus reset is less than 125ms ago.  Reschedule this job.
416		 */
417		spin_unlock_irq(&card->lock);
418		fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
419		goto out;
420	}
421
422	/*
423	 * We're bus manager for this generation, so next step is to
424	 * make sure we have an active cycle master and do gap count
425	 * optimization.
426	 */
427	card->bm_generation = generation;
428
429	if (root_device == NULL) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
430		/*
431		 * Either link_on is false, or we failed to read the
432		 * config rom.  In either case, pick another root.
433		 */
434		new_root_id = local_id;
435	} else if (!root_device_is_running) {
436		/*
437		 * If we haven't probed this device yet, bail out now
438		 * and let's try again once that's done.
439		 */
440		spin_unlock_irq(&card->lock);
441		goto out;
442	} else if (root_device_is_cmc) {
443		/*
444		 * We will send out a force root packet for this
445		 * node as part of the gap count optimization.
446		 */
447		new_root_id = root_id;
448	} else {
449		/*
450		 * Current root has an active link layer and we
451		 * successfully read the config rom, but it's not
452		 * cycle master capable.
453		 */
454		new_root_id = local_id;
455	}
456
457 pick_me:
458	/*
459	 * Pick a gap count from 1394a table E-1.  The table doesn't cover
460	 * the typically much larger 1394b beta repeater delays though.
461	 */
462	if (!card->beta_repeaters_present &&
463	    root_node->max_hops < ARRAY_SIZE(gap_count_table))
464		gap_count = gap_count_table[root_node->max_hops];
465	else
466		gap_count = 63;
467
468	/*
469	 * Finally, figure out if we should do a reset or not.  If we have
470	 * done less than 5 resets with the same physical topology and we
471	 * have either a new root or a new gap count setting, let's do it.
472	 */
473
474	if (card->bm_retries++ < 5 &&
475	    (card->gap_count != gap_count || new_root_id != root_id))
476		do_reset = true;
477
478	spin_unlock_irq(&card->lock);
479
480	if (do_reset) {
481		fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
482			  card->index, new_root_id, gap_count);
483		fw_send_phy_config(card, new_root_id, generation, gap_count);
484		reset_bus(card, true);
 
 
 
 
 
 
 
 
 
 
 
 
485		/* Will allocate broadcast channel after the reset. */
486		goto out;
487	}
488
489	if (root_device_is_cmc) {
490		/*
491		 * Make sure that the cycle master sends cycle start packets.
492		 */
493		transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
494		rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
495				root_id, generation, SCODE_100,
496				CSR_REGISTER_BASE + CSR_STATE_SET,
497				transaction_data, 4);
498		if (rcode == RCODE_GENERATION)
499			goto out;
500	}
501
502	if (local_id == irm_id)
503		allocate_broadcast_channel(card, generation);
504
505 out:
506	fw_node_put(root_node);
507 out_put_card:
508	fw_card_put(card);
509}
510
511void fw_card_initialize(struct fw_card *card,
512			const struct fw_card_driver *driver,
513			struct device *device)
514{
515	static atomic_t index = ATOMIC_INIT(-1);
516
517	card->index = atomic_inc_return(&index);
518	card->driver = driver;
519	card->device = device;
520	card->current_tlabel = 0;
521	card->tlabel_mask = 0;
522	card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000;
523	card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
524	card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT;
525	card->split_timeout_jiffies =
526			DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000);
527	card->color = 0;
528	card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
529
530	kref_init(&card->kref);
531	init_completion(&card->done);
532	INIT_LIST_HEAD(&card->transaction_list);
533	INIT_LIST_HEAD(&card->phy_receiver_list);
534	spin_lock_init(&card->lock);
535
536	card->local_node = NULL;
537
538	INIT_DELAYED_WORK(&card->br_work, br_work);
539	INIT_DELAYED_WORK(&card->bm_work, bm_work);
540}
541EXPORT_SYMBOL(fw_card_initialize);
542
543int fw_card_add(struct fw_card *card,
544		u32 max_receive, u32 link_speed, u64 guid)
545{
 
546	int ret;
547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
548	card->max_receive = max_receive;
549	card->link_speed = link_speed;
550	card->guid = guid;
551
552	mutex_lock(&card_mutex);
553
554	generate_config_rom(card, tmp_config_rom);
555	ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
556	if (ret == 0)
557		list_add_tail(&card->link, &card_list);
 
 
558
559	mutex_unlock(&card_mutex);
 
560
561	return ret;
562}
563EXPORT_SYMBOL(fw_card_add);
564
565/*
566 * The next few functions implement a dummy driver that is used once a card
567 * driver shuts down an fw_card.  This allows the driver to cleanly unload,
568 * as all IO to the card will be handled (and failed) by the dummy driver
569 * instead of calling into the module.  Only functions for iso context
570 * shutdown still need to be provided by the card driver.
571 *
572 * .read/write_csr() should never be called anymore after the dummy driver
573 * was bound since they are only used within request handler context.
574 * .set_config_rom() is never called since the card is taken out of card_list
575 * before switching to the dummy driver.
576 */
577
578static int dummy_read_phy_reg(struct fw_card *card, int address)
579{
580	return -ENODEV;
581}
582
583static int dummy_update_phy_reg(struct fw_card *card, int address,
584				int clear_bits, int set_bits)
585{
586	return -ENODEV;
587}
588
589static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
590{
591	packet->callback(packet, card, RCODE_CANCELLED);
592}
593
594static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
595{
596	packet->callback(packet, card, RCODE_CANCELLED);
597}
598
599static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
600{
601	return -ENOENT;
602}
603
604static int dummy_enable_phys_dma(struct fw_card *card,
605				 int node_id, int generation)
606{
607	return -ENODEV;
608}
609
610static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
611				int type, int channel, size_t header_size)
612{
613	return ERR_PTR(-ENODEV);
614}
615
 
 
 
 
 
 
 
 
 
616static int dummy_start_iso(struct fw_iso_context *ctx,
617			   s32 cycle, u32 sync, u32 tags)
618{
619	return -ENODEV;
620}
621
622static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
623{
624	return -ENODEV;
625}
626
627static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
628			   struct fw_iso_buffer *buffer, unsigned long payload)
629{
630	return -ENODEV;
631}
632
633static void dummy_flush_queue_iso(struct fw_iso_context *ctx)
634{
635}
636
 
 
 
 
 
637static const struct fw_card_driver dummy_driver_template = {
638	.read_phy_reg		= dummy_read_phy_reg,
639	.update_phy_reg		= dummy_update_phy_reg,
640	.send_request		= dummy_send_request,
641	.send_response		= dummy_send_response,
642	.cancel_packet		= dummy_cancel_packet,
643	.enable_phys_dma	= dummy_enable_phys_dma,
 
 
644	.allocate_iso_context	= dummy_allocate_iso_context,
645	.start_iso		= dummy_start_iso,
646	.set_iso_channels	= dummy_set_iso_channels,
647	.queue_iso		= dummy_queue_iso,
648	.flush_queue_iso	= dummy_flush_queue_iso,
 
649};
650
651void fw_card_release(struct kref *kref)
652{
653	struct fw_card *card = container_of(kref, struct fw_card, kref);
654
655	complete(&card->done);
656}
 
657
658void fw_core_remove_card(struct fw_card *card)
659{
660	struct fw_card_driver dummy_driver = dummy_driver_template;
661
 
 
662	card->driver->update_phy_reg(card, 4,
663				     PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
664	fw_schedule_bus_reset(card, false, true);
665
666	mutex_lock(&card_mutex);
667	list_del_init(&card->link);
668	mutex_unlock(&card_mutex);
669
670	/* Switch off most of the card driver interface. */
671	dummy_driver.free_iso_context	= card->driver->free_iso_context;
672	dummy_driver.stop_iso		= card->driver->stop_iso;
673	card->driver = &dummy_driver;
 
674
675	fw_destroy_nodes(card);
 
676
677	/* Wait for all users, especially device workqueue jobs, to finish. */
678	fw_card_put(card);
679	wait_for_completion(&card->done);
680
 
 
681	WARN_ON(!list_empty(&card->transaction_list));
682}
683EXPORT_SYMBOL(fw_core_remove_card);
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#include <linux/bug.h>
  7#include <linux/completion.h>
  8#include <linux/crc-itu-t.h>
  9#include <linux/device.h>
 10#include <linux/errno.h>
 11#include <linux/firewire.h>
 12#include <linux/firewire-constants.h>
 13#include <linux/jiffies.h>
 14#include <linux/kernel.h>
 15#include <linux/kref.h>
 16#include <linux/list.h>
 17#include <linux/module.h>
 18#include <linux/mutex.h>
 19#include <linux/spinlock.h>
 20#include <linux/workqueue.h>
 21
 22#include <linux/atomic.h>
 23#include <asm/byteorder.h>
 24
 25#include "core.h"
 26#include <trace/events/firewire.h>
 27
 28#define define_fw_printk_level(func, kern_level)		\
 29void func(const struct fw_card *card, const char *fmt, ...)	\
 30{								\
 31	struct va_format vaf;					\
 32	va_list args;						\
 33								\
 34	va_start(args, fmt);					\
 35	vaf.fmt = fmt;						\
 36	vaf.va = &args;						\
 37	printk(kern_level KBUILD_MODNAME " %s: %pV",		\
 38	       dev_name(card->device), &vaf);			\
 39	va_end(args);						\
 40}
 41define_fw_printk_level(fw_err, KERN_ERR);
 42define_fw_printk_level(fw_notice, KERN_NOTICE);
 43
 44int fw_compute_block_crc(__be32 *block)
 45{
 46	int length;
 47	u16 crc;
 48
 49	length = (be32_to_cpu(block[0]) >> 16) & 0xff;
 50	crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
 51	*block |= cpu_to_be32(crc);
 52
 53	return length;
 54}
 55
 56static DEFINE_MUTEX(card_mutex);
 57static LIST_HEAD(card_list);
 58
 59static LIST_HEAD(descriptor_list);
 60static int descriptor_count;
 61
 62static __be32 tmp_config_rom[256];
 63/* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
 64static size_t config_rom_length = 1 + 4 + 1 + 1;
 65
 66#define BIB_CRC(v)		((v) <<  0)
 67#define BIB_CRC_LENGTH(v)	((v) << 16)
 68#define BIB_INFO_LENGTH(v)	((v) << 24)
 69#define BIB_BUS_NAME		0x31333934 /* "1394" */
 70#define BIB_LINK_SPEED(v)	((v) <<  0)
 71#define BIB_GENERATION(v)	((v) <<  4)
 72#define BIB_MAX_ROM(v)		((v) <<  8)
 73#define BIB_MAX_RECEIVE(v)	((v) << 12)
 74#define BIB_CYC_CLK_ACC(v)	((v) << 16)
 75#define BIB_PMC			((1) << 27)
 76#define BIB_BMC			((1) << 28)
 77#define BIB_ISC			((1) << 29)
 78#define BIB_CMC			((1) << 30)
 79#define BIB_IRMC		((1) << 31)
 80#define NODE_CAPABILITIES	0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
 81
 82/*
 83 * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
 84 * but we have to make it longer because there are many devices whose firmware
 85 * is just too slow for that.
 86 */
 87#define DEFAULT_SPLIT_TIMEOUT	(2 * 8000)
 88
 89#define CANON_OUI		0x000085
 90
 91static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
 92{
 93	struct fw_descriptor *desc;
 94	int i, j, k, length;
 95
 96	/*
 97	 * Initialize contents of config rom buffer.  On the OHCI
 98	 * controller, block reads to the config rom accesses the host
 99	 * memory, but quadlet read access the hardware bus info block
100	 * registers.  That's just crack, but it means we should make
101	 * sure the contents of bus info block in host memory matches
102	 * the version stored in the OHCI registers.
103	 */
104
105	config_rom[0] = cpu_to_be32(
106		BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
107	config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
108	config_rom[2] = cpu_to_be32(
109		BIB_LINK_SPEED(card->link_speed) |
110		BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
111		BIB_MAX_ROM(2) |
112		BIB_MAX_RECEIVE(card->max_receive) |
113		BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
114	config_rom[3] = cpu_to_be32(card->guid >> 32);
115	config_rom[4] = cpu_to_be32(card->guid);
116
117	/* Generate root directory. */
118	config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
119	i = 7;
120	j = 7 + descriptor_count;
121
122	/* Generate root directory entries for descriptors. */
123	list_for_each_entry (desc, &descriptor_list, link) {
124		if (desc->immediate > 0)
125			config_rom[i++] = cpu_to_be32(desc->immediate);
126		config_rom[i] = cpu_to_be32(desc->key | (j - i));
127		i++;
128		j += desc->length;
129	}
130
131	/* Update root directory length. */
132	config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
133
134	/* End of root directory, now copy in descriptors. */
135	list_for_each_entry (desc, &descriptor_list, link) {
136		for (k = 0; k < desc->length; k++)
137			config_rom[i + k] = cpu_to_be32(desc->data[k]);
138		i += desc->length;
139	}
140
141	/* Calculate CRCs for all blocks in the config rom.  This
142	 * assumes that CRC length and info length are identical for
143	 * the bus info block, which is always the case for this
144	 * implementation. */
145	for (i = 0; i < j; i += length + 1)
146		length = fw_compute_block_crc(config_rom + i);
147
148	WARN_ON(j != config_rom_length);
149}
150
151static void update_config_roms(void)
152{
153	struct fw_card *card;
154
155	list_for_each_entry (card, &card_list, link) {
156		generate_config_rom(card, tmp_config_rom);
157		card->driver->set_config_rom(card, tmp_config_rom,
158					     config_rom_length);
159	}
160}
161
162static size_t required_space(struct fw_descriptor *desc)
163{
164	/* descriptor + entry into root dir + optional immediate entry */
165	return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
166}
167
168int fw_core_add_descriptor(struct fw_descriptor *desc)
169{
170	size_t i;
 
171
172	/*
173	 * Check descriptor is valid; the length of all blocks in the
174	 * descriptor has to add up to exactly the length of the
175	 * block.
176	 */
177	i = 0;
178	while (i < desc->length)
179		i += (desc->data[i] >> 16) + 1;
180
181	if (i != desc->length)
182		return -EINVAL;
183
184	guard(mutex)(&card_mutex);
185
186	if (config_rom_length + required_space(desc) > 256)
187		return -EBUSY;
 
 
 
 
 
 
 
 
 
188
189	list_add_tail(&desc->link, &descriptor_list);
190	config_rom_length += required_space(desc);
191	descriptor_count++;
192	if (desc->immediate > 0)
193		descriptor_count++;
194	update_config_roms();
195
196	return 0;
197}
198EXPORT_SYMBOL(fw_core_add_descriptor);
199
200void fw_core_remove_descriptor(struct fw_descriptor *desc)
201{
202	guard(mutex)(&card_mutex);
203
204	list_del(&desc->link);
205	config_rom_length -= required_space(desc);
206	descriptor_count--;
207	if (desc->immediate > 0)
208		descriptor_count--;
209	update_config_roms();
 
 
210}
211EXPORT_SYMBOL(fw_core_remove_descriptor);
212
213static int reset_bus(struct fw_card *card, bool short_reset)
214{
215	int reg = short_reset ? 5 : 1;
216	int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
217
218	trace_bus_reset_initiate(card->index, card->generation, short_reset);
219
220	return card->driver->update_phy_reg(card, reg, 0, bit);
221}
222
223void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
224{
225	trace_bus_reset_schedule(card->index, card->generation, short_reset);
226
227	/* We don't try hard to sort out requests of long vs. short resets. */
228	card->br_short = short_reset;
229
230	/* Use an arbitrary short delay to combine multiple reset requests. */
231	fw_card_get(card);
232	if (!queue_delayed_work(fw_workqueue, &card->br_work,
233				delayed ? DIV_ROUND_UP(HZ, 100) : 0))
234		fw_card_put(card);
235}
236EXPORT_SYMBOL(fw_schedule_bus_reset);
237
238static void br_work(struct work_struct *work)
239{
240	struct fw_card *card = container_of(work, struct fw_card, br_work.work);
241
242	/* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
243	if (card->reset_jiffies != 0 &&
244	    time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) {
245		trace_bus_reset_postpone(card->index, card->generation, card->br_short);
246
247		if (!queue_delayed_work(fw_workqueue, &card->br_work, 2 * HZ))
248			fw_card_put(card);
249		return;
250	}
251
252	fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
253			   FW_PHY_CONFIG_CURRENT_GAP_COUNT);
254	reset_bus(card, card->br_short);
255	fw_card_put(card);
256}
257
258static void allocate_broadcast_channel(struct fw_card *card, int generation)
259{
260	int channel, bandwidth = 0;
261
262	if (!card->broadcast_channel_allocated) {
263		fw_iso_resource_manage(card, generation, 1ULL << 31,
264				       &channel, &bandwidth, true);
265		if (channel != 31) {
266			fw_notice(card, "failed to allocate broadcast channel\n");
267			return;
268		}
269		card->broadcast_channel_allocated = true;
270	}
271
272	device_for_each_child(card->device, (void *)(long)generation,
273			      fw_device_set_broadcast_channel);
274}
275
276static const char gap_count_table[] = {
277	63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
278};
279
280void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
281{
282	fw_card_get(card);
283	if (!schedule_delayed_work(&card->bm_work, delay))
284		fw_card_put(card);
285}
286
287static void bm_work(struct work_struct *work)
288{
289	struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
290	struct fw_device *root_device, *irm_device;
291	struct fw_node *root_node;
292	int root_id, new_root_id, irm_id, bm_id, local_id;
293	int gap_count, generation, grace, rcode;
294	bool do_reset = false;
295	bool root_device_is_running;
296	bool root_device_is_cmc;
297	bool irm_is_1394_1995_only;
298	bool keep_this_irm;
299	__be32 transaction_data[2];
300
301	spin_lock_irq(&card->lock);
302
303	if (card->local_node == NULL) {
304		spin_unlock_irq(&card->lock);
305		goto out_put_card;
306	}
307
308	generation = card->generation;
309
310	root_node = card->root_node;
311	fw_node_get(root_node);
312	root_device = root_node->data;
313	root_device_is_running = root_device &&
314			atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
315	root_device_is_cmc = root_device && root_device->cmc;
316
317	irm_device = card->irm_node->data;
318	irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
319			(irm_device->config_rom[2] & 0x000000f0) == 0;
320
321	/* Canon MV5i works unreliably if it is not root node. */
322	keep_this_irm = irm_device && irm_device->config_rom &&
323			irm_device->config_rom[3] >> 8 == CANON_OUI;
324
325	root_id  = root_node->node_id;
326	irm_id   = card->irm_node->node_id;
327	local_id = card->local_node->node_id;
328
329	grace = time_after64(get_jiffies_64(),
330			     card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
331
332	if ((is_next_generation(generation, card->bm_generation) &&
333	     !card->bm_abdicate) ||
334	    (card->bm_generation != generation && grace)) {
335		/*
336		 * This first step is to figure out who is IRM and
337		 * then try to become bus manager.  If the IRM is not
338		 * well defined (e.g. does not have an active link
339		 * layer or does not responds to our lock request, we
340		 * will have to do a little vigilante bus management.
341		 * In that case, we do a goto into the gap count logic
342		 * so that when we do the reset, we still optimize the
343		 * gap count.  That could well save a reset in the
344		 * next generation.
345		 */
346
347		if (!card->irm_node->link_on) {
348			new_root_id = local_id;
349			fw_notice(card, "%s, making local node (%02x) root\n",
350				  "IRM has link off", new_root_id);
351			goto pick_me;
352		}
353
354		if (irm_is_1394_1995_only && !keep_this_irm) {
355			new_root_id = local_id;
356			fw_notice(card, "%s, making local node (%02x) root\n",
357				  "IRM is not 1394a compliant", new_root_id);
358			goto pick_me;
359		}
360
361		transaction_data[0] = cpu_to_be32(0x3f);
362		transaction_data[1] = cpu_to_be32(local_id);
363
364		spin_unlock_irq(&card->lock);
365
366		rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
367				irm_id, generation, SCODE_100,
368				CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
369				transaction_data, 8);
370
371		if (rcode == RCODE_GENERATION)
372			/* Another bus reset, BM work has been rescheduled. */
373			goto out;
374
375		bm_id = be32_to_cpu(transaction_data[0]);
376
377		scoped_guard(spinlock_irq, &card->lock) {
378			if (rcode == RCODE_COMPLETE && generation == card->generation)
379				card->bm_node_id =
380				    bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
381		}
382
383		if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
384			/* Somebody else is BM.  Only act as IRM. */
385			if (local_id == irm_id)
386				allocate_broadcast_channel(card, generation);
387
388			goto out;
389		}
390
391		if (rcode == RCODE_SEND_ERROR) {
392			/*
393			 * We have been unable to send the lock request due to
394			 * some local problem.  Let's try again later and hope
395			 * that the problem has gone away by then.
396			 */
397			fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
398			goto out;
399		}
400
401		spin_lock_irq(&card->lock);
402
403		if (rcode != RCODE_COMPLETE && !keep_this_irm) {
404			/*
405			 * The lock request failed, maybe the IRM
406			 * isn't really IRM capable after all. Let's
407			 * do a bus reset and pick the local node as
408			 * root, and thus, IRM.
409			 */
410			new_root_id = local_id;
411			fw_notice(card, "BM lock failed (%s), making local node (%02x) root\n",
412				  fw_rcode_string(rcode), new_root_id);
413			goto pick_me;
414		}
415	} else if (card->bm_generation != generation) {
416		/*
417		 * We weren't BM in the last generation, and the last
418		 * bus reset is less than 125ms ago.  Reschedule this job.
419		 */
420		spin_unlock_irq(&card->lock);
421		fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
422		goto out;
423	}
424
425	/*
426	 * We're bus manager for this generation, so next step is to
427	 * make sure we have an active cycle master and do gap count
428	 * optimization.
429	 */
430	card->bm_generation = generation;
431
432	if (card->gap_count == 0) {
433		/*
434		 * If self IDs have inconsistent gap counts, do a
435		 * bus reset ASAP. The config rom read might never
436		 * complete, so don't wait for it. However, still
437		 * send a PHY configuration packet prior to the
438		 * bus reset. The PHY configuration packet might
439		 * fail, but 1394-2008 8.4.5.2 explicitly permits
440		 * it in this case, so it should be safe to try.
441		 */
442		new_root_id = local_id;
443		/*
444		 * We must always send a bus reset if the gap count
445		 * is inconsistent, so bypass the 5-reset limit.
446		 */
447		card->bm_retries = 0;
448	} else if (root_device == NULL) {
449		/*
450		 * Either link_on is false, or we failed to read the
451		 * config rom.  In either case, pick another root.
452		 */
453		new_root_id = local_id;
454	} else if (!root_device_is_running) {
455		/*
456		 * If we haven't probed this device yet, bail out now
457		 * and let's try again once that's done.
458		 */
459		spin_unlock_irq(&card->lock);
460		goto out;
461	} else if (root_device_is_cmc) {
462		/*
463		 * We will send out a force root packet for this
464		 * node as part of the gap count optimization.
465		 */
466		new_root_id = root_id;
467	} else {
468		/*
469		 * Current root has an active link layer and we
470		 * successfully read the config rom, but it's not
471		 * cycle master capable.
472		 */
473		new_root_id = local_id;
474	}
475
476 pick_me:
477	/*
478	 * Pick a gap count from 1394a table E-1.  The table doesn't cover
479	 * the typically much larger 1394b beta repeater delays though.
480	 */
481	if (!card->beta_repeaters_present &&
482	    root_node->max_hops < ARRAY_SIZE(gap_count_table))
483		gap_count = gap_count_table[root_node->max_hops];
484	else
485		gap_count = 63;
486
487	/*
488	 * Finally, figure out if we should do a reset or not.  If we have
489	 * done less than 5 resets with the same physical topology and we
490	 * have either a new root or a new gap count setting, let's do it.
491	 */
492
493	if (card->bm_retries++ < 5 &&
494	    (card->gap_count != gap_count || new_root_id != root_id))
495		do_reset = true;
496
497	spin_unlock_irq(&card->lock);
498
499	if (do_reset) {
500		fw_notice(card, "phy config: new root=%x, gap_count=%d\n",
501			  new_root_id, gap_count);
502		fw_send_phy_config(card, new_root_id, generation, gap_count);
503		/*
504		 * Where possible, use a short bus reset to minimize
505		 * disruption to isochronous transfers. But in the event
506		 * of a gap count inconsistency, use a long bus reset.
507		 *
508		 * As noted in 1394a 8.4.6.2, nodes on a mixed 1394/1394a bus
509		 * may set different gap counts after a bus reset. On a mixed
510		 * 1394/1394a bus, a short bus reset can get doubled. Some
511		 * nodes may treat the double reset as one bus reset and others
512		 * may treat it as two, causing a gap count inconsistency
513		 * again. Using a long bus reset prevents this.
514		 */
515		reset_bus(card, card->gap_count != 0);
516		/* Will allocate broadcast channel after the reset. */
517		goto out;
518	}
519
520	if (root_device_is_cmc) {
521		/*
522		 * Make sure that the cycle master sends cycle start packets.
523		 */
524		transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
525		rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
526				root_id, generation, SCODE_100,
527				CSR_REGISTER_BASE + CSR_STATE_SET,
528				transaction_data, 4);
529		if (rcode == RCODE_GENERATION)
530			goto out;
531	}
532
533	if (local_id == irm_id)
534		allocate_broadcast_channel(card, generation);
535
536 out:
537	fw_node_put(root_node);
538 out_put_card:
539	fw_card_put(card);
540}
541
542void fw_card_initialize(struct fw_card *card,
543			const struct fw_card_driver *driver,
544			struct device *device)
545{
546	static atomic_t index = ATOMIC_INIT(-1);
547
548	card->index = atomic_inc_return(&index);
549	card->driver = driver;
550	card->device = device;
551	card->current_tlabel = 0;
552	card->tlabel_mask = 0;
553	card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000;
554	card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
555	card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT;
556	card->split_timeout_jiffies =
557			DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000);
558	card->color = 0;
559	card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
560
561	kref_init(&card->kref);
562	init_completion(&card->done);
563	INIT_LIST_HEAD(&card->transaction_list);
564	INIT_LIST_HEAD(&card->phy_receiver_list);
565	spin_lock_init(&card->lock);
566
567	card->local_node = NULL;
568
569	INIT_DELAYED_WORK(&card->br_work, br_work);
570	INIT_DELAYED_WORK(&card->bm_work, bm_work);
571}
572EXPORT_SYMBOL(fw_card_initialize);
573
574int fw_card_add(struct fw_card *card, u32 max_receive, u32 link_speed, u64 guid,
575		unsigned int supported_isoc_contexts)
576{
577	struct workqueue_struct *isoc_wq;
578	int ret;
579
580	// This workqueue should be:
581	//  * != WQ_BH			Sleepable.
582	//  * == WQ_UNBOUND		Any core can process data for isoc context. The
583	//				implementation of unit protocol could consumes the core
584	//				longer somehow.
585	//  * != WQ_MEM_RECLAIM		Not used for any backend of block device.
586	//  * == WQ_FREEZABLE		Isochronous communication is at regular interval in real
587	//				time, thus should be drained if possible at freeze phase.
588	//  * == WQ_HIGHPRI		High priority to process semi-realtime timestamped data.
589	//  * == WQ_SYSFS		Parameters are available via sysfs.
590	//  * max_active == n_it + n_ir	A hardIRQ could notify events for multiple isochronous
591	//				contexts if they are scheduled to the same cycle.
592	isoc_wq = alloc_workqueue("firewire-isoc-card%u",
593				  WQ_UNBOUND | WQ_FREEZABLE | WQ_HIGHPRI | WQ_SYSFS,
594				  supported_isoc_contexts, card->index);
595	if (!isoc_wq)
596		return -ENOMEM;
597
598	card->max_receive = max_receive;
599	card->link_speed = link_speed;
600	card->guid = guid;
601
602	guard(mutex)(&card_mutex);
603
604	generate_config_rom(card, tmp_config_rom);
605	ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
606	if (ret < 0) {
607		destroy_workqueue(isoc_wq);
608		return ret;
609	}
610
611	card->isoc_wq = isoc_wq;
612	list_add_tail(&card->link, &card_list);
613
614	return 0;
615}
616EXPORT_SYMBOL(fw_card_add);
617
618/*
619 * The next few functions implement a dummy driver that is used once a card
620 * driver shuts down an fw_card.  This allows the driver to cleanly unload,
621 * as all IO to the card will be handled (and failed) by the dummy driver
622 * instead of calling into the module.  Only functions for iso context
623 * shutdown still need to be provided by the card driver.
624 *
625 * .read/write_csr() should never be called anymore after the dummy driver
626 * was bound since they are only used within request handler context.
627 * .set_config_rom() is never called since the card is taken out of card_list
628 * before switching to the dummy driver.
629 */
630
631static int dummy_read_phy_reg(struct fw_card *card, int address)
632{
633	return -ENODEV;
634}
635
636static int dummy_update_phy_reg(struct fw_card *card, int address,
637				int clear_bits, int set_bits)
638{
639	return -ENODEV;
640}
641
642static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
643{
644	packet->callback(packet, card, RCODE_CANCELLED);
645}
646
647static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
648{
649	packet->callback(packet, card, RCODE_CANCELLED);
650}
651
652static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
653{
654	return -ENOENT;
655}
656
657static int dummy_enable_phys_dma(struct fw_card *card,
658				 int node_id, int generation)
659{
660	return -ENODEV;
661}
662
663static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
664				int type, int channel, size_t header_size)
665{
666	return ERR_PTR(-ENODEV);
667}
668
669static u32 dummy_read_csr(struct fw_card *card, int csr_offset)
670{
671	return 0;
672}
673
674static void dummy_write_csr(struct fw_card *card, int csr_offset, u32 value)
675{
676}
677
678static int dummy_start_iso(struct fw_iso_context *ctx,
679			   s32 cycle, u32 sync, u32 tags)
680{
681	return -ENODEV;
682}
683
684static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
685{
686	return -ENODEV;
687}
688
689static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
690			   struct fw_iso_buffer *buffer, unsigned long payload)
691{
692	return -ENODEV;
693}
694
695static void dummy_flush_queue_iso(struct fw_iso_context *ctx)
696{
697}
698
699static int dummy_flush_iso_completions(struct fw_iso_context *ctx)
700{
701	return -ENODEV;
702}
703
704static const struct fw_card_driver dummy_driver_template = {
705	.read_phy_reg		= dummy_read_phy_reg,
706	.update_phy_reg		= dummy_update_phy_reg,
707	.send_request		= dummy_send_request,
708	.send_response		= dummy_send_response,
709	.cancel_packet		= dummy_cancel_packet,
710	.enable_phys_dma	= dummy_enable_phys_dma,
711	.read_csr		= dummy_read_csr,
712	.write_csr		= dummy_write_csr,
713	.allocate_iso_context	= dummy_allocate_iso_context,
714	.start_iso		= dummy_start_iso,
715	.set_iso_channels	= dummy_set_iso_channels,
716	.queue_iso		= dummy_queue_iso,
717	.flush_queue_iso	= dummy_flush_queue_iso,
718	.flush_iso_completions	= dummy_flush_iso_completions,
719};
720
721void fw_card_release(struct kref *kref)
722{
723	struct fw_card *card = container_of(kref, struct fw_card, kref);
724
725	complete(&card->done);
726}
727EXPORT_SYMBOL_GPL(fw_card_release);
728
729void fw_core_remove_card(struct fw_card *card)
730{
731	struct fw_card_driver dummy_driver = dummy_driver_template;
732
733	might_sleep();
734
735	card->driver->update_phy_reg(card, 4,
736				     PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
737	fw_schedule_bus_reset(card, false, true);
738
739	scoped_guard(mutex, &card_mutex)
740		list_del_init(&card->link);
 
741
742	/* Switch off most of the card driver interface. */
743	dummy_driver.free_iso_context	= card->driver->free_iso_context;
744	dummy_driver.stop_iso		= card->driver->stop_iso;
745	card->driver = &dummy_driver;
746	drain_workqueue(card->isoc_wq);
747
748	scoped_guard(spinlock_irqsave, &card->lock)
749		fw_destroy_nodes(card);
750
751	/* Wait for all users, especially device workqueue jobs, to finish. */
752	fw_card_put(card);
753	wait_for_completion(&card->done);
754
755	destroy_workqueue(card->isoc_wq);
756
757	WARN_ON(!list_empty(&card->transaction_list));
758}
759EXPORT_SYMBOL(fw_core_remove_card);
760
761/**
762 * fw_card_read_cycle_time: read from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region
763 *			    for controller card.
764 * @card: The instance of card for 1394 OHCI controller.
765 * @cycle_time: The mutual reference to value of cycle time for the read operation.
766 *
767 * Read value from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region for the given
768 * controller card. This function accesses the region without any lock primitives or IRQ mask.
769 * When returning successfully, the content of @value argument has value aligned to host endianness,
770 * formetted by CYCLE_TIME CSR Register of IEEE 1394 std.
771 *
772 * Context: Any context.
773 * Return:
774 * * 0 - Read successfully.
775 * * -ENODEV - The controller is unavailable due to being removed or unbound.
776 */
777int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time)
778{
779	if (card->driver->read_csr == dummy_read_csr)
780		return -ENODEV;
781
782	// It's possible to switch to dummy driver between the above and the below. This is the best
783	// effort to return -ENODEV.
784	*cycle_time = card->driver->read_csr(card, CSR_CYCLE_TIME);
785	return 0;
786}
787EXPORT_SYMBOL_GPL(fw_card_read_cycle_time);