Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
   7 * Copyright (C) 1995, 1996 Paul M. Antoine
   8 * Copyright (C) 1998 Ulf Carlsson
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
  12 * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
 
 
  13 */
 
  14#include <linux/bug.h>
  15#include <linux/compiler.h>
 
 
 
  16#include <linux/init.h>
  17#include <linux/kernel.h>
  18#include <linux/mm.h>
  19#include <linux/module.h>
 
  20#include <linux/sched.h>
  21#include <linux/smp.h>
  22#include <linux/spinlock.h>
  23#include <linux/kallsyms.h>
  24#include <linux/bootmem.h>
  25#include <linux/interrupt.h>
  26#include <linux/ptrace.h>
  27#include <linux/kgdb.h>
  28#include <linux/kdebug.h>
  29#include <linux/kprobes.h>
  30#include <linux/notifier.h>
  31#include <linux/kdb.h>
  32#include <linux/irq.h>
  33#include <linux/perf_event.h>
  34
 
  35#include <asm/bootinfo.h>
  36#include <asm/branch.h>
  37#include <asm/break.h>
  38#include <asm/cop2.h>
  39#include <asm/cpu.h>
 
  40#include <asm/dsp.h>
  41#include <asm/fpu.h>
  42#include <asm/fpu_emulator.h>
 
 
  43#include <asm/mipsregs.h>
  44#include <asm/mipsmtregs.h>
  45#include <asm/module.h>
 
  46#include <asm/pgtable.h>
  47#include <asm/ptrace.h>
  48#include <asm/sections.h>
  49#include <asm/system.h>
  50#include <asm/tlbdebug.h>
  51#include <asm/traps.h>
  52#include <asm/uaccess.h>
  53#include <asm/watch.h>
  54#include <asm/mmu_context.h>
  55#include <asm/types.h>
  56#include <asm/stacktrace.h>
  57#include <asm/uasm.h>
  58
  59extern void check_wait(void);
  60extern asmlinkage void r4k_wait(void);
  61extern asmlinkage void rollback_handle_int(void);
  62extern asmlinkage void handle_int(void);
  63extern asmlinkage void handle_tlbm(void);
  64extern asmlinkage void handle_tlbl(void);
  65extern asmlinkage void handle_tlbs(void);
  66extern asmlinkage void handle_adel(void);
  67extern asmlinkage void handle_ades(void);
  68extern asmlinkage void handle_ibe(void);
  69extern asmlinkage void handle_dbe(void);
  70extern asmlinkage void handle_sys(void);
  71extern asmlinkage void handle_bp(void);
  72extern asmlinkage void handle_ri(void);
  73extern asmlinkage void handle_ri_rdhwr_vivt(void);
  74extern asmlinkage void handle_ri_rdhwr(void);
  75extern asmlinkage void handle_cpu(void);
  76extern asmlinkage void handle_ov(void);
  77extern asmlinkage void handle_tr(void);
 
  78extern asmlinkage void handle_fpe(void);
 
 
  79extern asmlinkage void handle_mdmx(void);
  80extern asmlinkage void handle_watch(void);
  81extern asmlinkage void handle_mt(void);
  82extern asmlinkage void handle_dsp(void);
  83extern asmlinkage void handle_mcheck(void);
  84extern asmlinkage void handle_reserved(void);
  85
  86extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
  87				    struct mips_fpu_struct *ctx, int has_fpu,
  88				    void *__user *fault_addr);
  89
  90void (*board_be_init)(void);
  91int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
  92void (*board_nmi_handler_setup)(void);
  93void (*board_ejtag_handler_setup)(void);
  94void (*board_bind_eic_interrupt)(int irq, int regset);
  95
 
  96
  97static void show_raw_backtrace(unsigned long reg29)
  98{
  99	unsigned long *sp = (unsigned long *)(reg29 & ~3);
 100	unsigned long addr;
 101
 102	printk("Call Trace:");
 103#ifdef CONFIG_KALLSYMS
 104	printk("\n");
 105#endif
 106	while (!kstack_end(sp)) {
 107		unsigned long __user *p =
 108			(unsigned long __user *)(unsigned long)sp++;
 109		if (__get_user(addr, p)) {
 110			printk(" (Bad stack address)");
 111			break;
 112		}
 113		if (__kernel_text_address(addr))
 114			print_ip_sym(addr);
 115	}
 116	printk("\n");
 117}
 118
 119#ifdef CONFIG_KALLSYMS
 120int raw_show_trace;
 121static int __init set_raw_show_trace(char *str)
 122{
 123	raw_show_trace = 1;
 124	return 1;
 125}
 126__setup("raw_show_trace", set_raw_show_trace);
 127#endif
 128
 129static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
 130{
 131	unsigned long sp = regs->regs[29];
 132	unsigned long ra = regs->regs[31];
 133	unsigned long pc = regs->cp0_epc;
 134
 
 
 
 135	if (raw_show_trace || !__kernel_text_address(pc)) {
 136		show_raw_backtrace(sp);
 137		return;
 138	}
 139	printk("Call Trace:\n");
 140	do {
 141		print_ip_sym(pc);
 142		pc = unwind_stack(task, &sp, pc, &ra);
 143	} while (pc);
 144	printk("\n");
 145}
 146
 147/*
 148 * This routine abuses get_user()/put_user() to reference pointers
 149 * with at least a bit of error checking ...
 150 */
 151static void show_stacktrace(struct task_struct *task,
 152	const struct pt_regs *regs)
 153{
 154	const int field = 2 * sizeof(unsigned long);
 155	long stackdata;
 156	int i;
 157	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
 158
 159	printk("Stack :");
 160	i = 0;
 161	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
 162		if (i && ((i % (64 / field)) == 0))
 163			printk("\n       ");
 164		if (i > 39) {
 165			printk(" ...");
 166			break;
 167		}
 168
 169		if (__get_user(stackdata, sp++)) {
 170			printk(" (Bad stack address)");
 171			break;
 172		}
 173
 174		printk(" %0*lx", field, stackdata);
 175		i++;
 176	}
 177	printk("\n");
 178	show_backtrace(task, regs);
 179}
 180
 181void show_stack(struct task_struct *task, unsigned long *sp)
 182{
 183	struct pt_regs regs;
 
 184	if (sp) {
 185		regs.regs[29] = (unsigned long)sp;
 186		regs.regs[31] = 0;
 187		regs.cp0_epc = 0;
 188	} else {
 189		if (task && task != current) {
 190			regs.regs[29] = task->thread.reg29;
 191			regs.regs[31] = 0;
 192			regs.cp0_epc = task->thread.reg31;
 193#ifdef CONFIG_KGDB_KDB
 194		} else if (atomic_read(&kgdb_active) != -1 &&
 195			   kdb_current_regs) {
 196			memcpy(&regs, kdb_current_regs, sizeof(regs));
 197#endif /* CONFIG_KGDB_KDB */
 198		} else {
 199			prepare_frametrace(&regs);
 200		}
 201	}
 
 
 
 
 
 202	show_stacktrace(task, &regs);
 
 203}
 204
 205/*
 206 * The architecture-independent dump_stack generator
 207 */
 208void dump_stack(void)
 209{
 210	struct pt_regs regs;
 211
 212	prepare_frametrace(&regs);
 213	show_backtrace(current, &regs);
 214}
 215
 216EXPORT_SYMBOL(dump_stack);
 217
 218static void show_code(unsigned int __user *pc)
 219{
 220	long i;
 221	unsigned short __user *pc16 = NULL;
 222
 223	printk("\nCode:");
 224
 225	if ((unsigned long)pc & 1)
 226		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
 227	for(i = -3 ; i < 6 ; i++) {
 228		unsigned int insn;
 229		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
 230			printk(" (Bad address in epc)\n");
 231			break;
 232		}
 233		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
 234	}
 235}
 236
 237static void __show_regs(const struct pt_regs *regs)
 238{
 239	const int field = 2 * sizeof(unsigned long);
 240	unsigned int cause = regs->cp0_cause;
 
 241	int i;
 242
 243	printk("Cpu %d\n", smp_processor_id());
 244
 245	/*
 246	 * Saved main processor registers
 247	 */
 248	for (i = 0; i < 32; ) {
 249		if ((i % 4) == 0)
 250			printk("$%2d   :", i);
 251		if (i == 0)
 252			printk(" %0*lx", field, 0UL);
 253		else if (i == 26 || i == 27)
 254			printk(" %*s", field, "");
 255		else
 256			printk(" %0*lx", field, regs->regs[i]);
 257
 258		i++;
 259		if ((i % 4) == 0)
 260			printk("\n");
 261	}
 262
 263#ifdef CONFIG_CPU_HAS_SMARTMIPS
 264	printk("Acx    : %0*lx\n", field, regs->acx);
 265#endif
 266	printk("Hi    : %0*lx\n", field, regs->hi);
 267	printk("Lo    : %0*lx\n", field, regs->lo);
 268
 269	/*
 270	 * Saved cp0 registers
 271	 */
 272	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
 273	       (void *) regs->cp0_epc);
 274	printk("    %s\n", print_tainted());
 275	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
 276	       (void *) regs->regs[31]);
 277
 278	printk("Status: %08x    ", (uint32_t) regs->cp0_status);
 279
 280	if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
 281		if (regs->cp0_status & ST0_KUO)
 282			printk("KUo ");
 283		if (regs->cp0_status & ST0_IEO)
 284			printk("IEo ");
 285		if (regs->cp0_status & ST0_KUP)
 286			printk("KUp ");
 287		if (regs->cp0_status & ST0_IEP)
 288			printk("IEp ");
 289		if (regs->cp0_status & ST0_KUC)
 290			printk("KUc ");
 291		if (regs->cp0_status & ST0_IEC)
 292			printk("IEc ");
 293	} else {
 294		if (regs->cp0_status & ST0_KX)
 295			printk("KX ");
 296		if (regs->cp0_status & ST0_SX)
 297			printk("SX ");
 298		if (regs->cp0_status & ST0_UX)
 299			printk("UX ");
 300		switch (regs->cp0_status & ST0_KSU) {
 301		case KSU_USER:
 302			printk("USER ");
 303			break;
 304		case KSU_SUPERVISOR:
 305			printk("SUPERVISOR ");
 306			break;
 307		case KSU_KERNEL:
 308			printk("KERNEL ");
 309			break;
 310		default:
 311			printk("BAD_MODE ");
 312			break;
 313		}
 314		if (regs->cp0_status & ST0_ERL)
 315			printk("ERL ");
 316		if (regs->cp0_status & ST0_EXL)
 317			printk("EXL ");
 318		if (regs->cp0_status & ST0_IE)
 319			printk("IE ");
 320	}
 321	printk("\n");
 322
 323	printk("Cause : %08x\n", cause);
 
 324
 325	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 326	if (1 <= cause && cause <= 5)
 327		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
 328
 329	printk("PrId  : %08x (%s)\n", read_c0_prid(),
 330	       cpu_name_string());
 331}
 332
 333/*
 334 * FIXME: really the generic show_regs should take a const pointer argument.
 335 */
 336void show_regs(struct pt_regs *regs)
 337{
 338	__show_regs((struct pt_regs *)regs);
 339}
 340
 341void show_registers(struct pt_regs *regs)
 342{
 343	const int field = 2 * sizeof(unsigned long);
 
 344
 345	__show_regs(regs);
 346	print_modules();
 347	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
 348	       current->comm, current->pid, current_thread_info(), current,
 349	      field, current_thread_info()->tp_value);
 350	if (cpu_has_userlocal) {
 351		unsigned long tls;
 352
 353		tls = read_c0_userlocal();
 354		if (tls != current_thread_info()->tp_value)
 355			printk("*HwTLS: %0*lx\n", field, tls);
 356	}
 357
 
 
 
 358	show_stacktrace(current, regs);
 359	show_code((unsigned int __user *) regs->cp0_epc);
 360	printk("\n");
 361}
 362
 363static int regs_to_trapnr(struct pt_regs *regs)
 364{
 365	return (regs->cp0_cause >> 2) & 0x1f;
 366}
 367
 368static DEFINE_RAW_SPINLOCK(die_lock);
 369
 370void __noreturn die(const char *str, struct pt_regs *regs)
 371{
 372	static int die_counter;
 373	int sig = SIGSEGV;
 374#ifdef CONFIG_MIPS_MT_SMTC
 375	unsigned long dvpret;
 376#endif /* CONFIG_MIPS_MT_SMTC */
 377
 378	oops_enter();
 379
 380	if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP)
 
 381		sig = 0;
 382
 383	console_verbose();
 384	raw_spin_lock_irq(&die_lock);
 385#ifdef CONFIG_MIPS_MT_SMTC
 386	dvpret = dvpe();
 387#endif /* CONFIG_MIPS_MT_SMTC */
 388	bust_spinlocks(1);
 389#ifdef CONFIG_MIPS_MT_SMTC
 390	mips_mt_regdump(dvpret);
 391#endif /* CONFIG_MIPS_MT_SMTC */
 392
 393	printk("%s[#%d]:\n", str, ++die_counter);
 394	show_registers(regs);
 395	add_taint(TAINT_DIE);
 396	raw_spin_unlock_irq(&die_lock);
 397
 398	oops_exit();
 399
 400	if (in_interrupt())
 401		panic("Fatal exception in interrupt");
 402
 403	if (panic_on_oops) {
 404		printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
 405		ssleep(5);
 406		panic("Fatal exception");
 407	}
 408
 
 
 
 409	do_exit(sig);
 410}
 411
 412extern struct exception_table_entry __start___dbe_table[];
 413extern struct exception_table_entry __stop___dbe_table[];
 414
 415__asm__(
 416"	.section	__dbe_table, \"a\"\n"
 417"	.previous			\n");
 418
 419/* Given an address, look for it in the exception tables. */
 420static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
 421{
 422	const struct exception_table_entry *e;
 423
 424	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
 425	if (!e)
 426		e = search_module_dbetables(addr);
 427	return e;
 428}
 429
 430asmlinkage void do_be(struct pt_regs *regs)
 431{
 432	const int field = 2 * sizeof(unsigned long);
 433	const struct exception_table_entry *fixup = NULL;
 434	int data = regs->cp0_cause & 4;
 435	int action = MIPS_BE_FATAL;
 
 436
 437	/* XXX For now.  Fixme, this searches the wrong table ...  */
 
 438	if (data && !user_mode(regs))
 439		fixup = search_dbe_tables(exception_epc(regs));
 440
 441	if (fixup)
 442		action = MIPS_BE_FIXUP;
 443
 444	if (board_be_handler)
 445		action = board_be_handler(regs, fixup != NULL);
 446
 447	switch (action) {
 448	case MIPS_BE_DISCARD:
 449		return;
 450	case MIPS_BE_FIXUP:
 451		if (fixup) {
 452			regs->cp0_epc = fixup->nextinsn;
 453			return;
 454		}
 455		break;
 456	default:
 457		break;
 458	}
 459
 460	/*
 461	 * Assume it would be too dangerous to continue ...
 462	 */
 463	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
 464	       data ? "Data" : "Instruction",
 465	       field, regs->cp0_epc, field, regs->regs[31]);
 466	if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS)
 467	    == NOTIFY_STOP)
 468		return;
 469
 470	die_if_kernel("Oops", regs);
 471	force_sig(SIGBUS, current);
 
 
 
 472}
 473
 474/*
 475 * ll/sc, rdhwr, sync emulation
 476 */
 477
 478#define OPCODE 0xfc000000
 479#define BASE   0x03e00000
 480#define RT     0x001f0000
 481#define OFFSET 0x0000ffff
 482#define LL     0xc0000000
 483#define SC     0xe0000000
 484#define SPEC0  0x00000000
 485#define SPEC3  0x7c000000
 486#define RD     0x0000f800
 487#define FUNC   0x0000003f
 488#define SYNC   0x0000000f
 489#define RDHWR  0x0000003b
 490
 
 
 
 
 
 
 491/*
 492 * The ll_bit is cleared by r*_switch.S
 493 */
 494
 495unsigned int ll_bit;
 496struct task_struct *ll_task;
 497
 498static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
 499{
 500	unsigned long value, __user *vaddr;
 501	long offset;
 502
 503	/*
 504	 * analyse the ll instruction that just caused a ri exception
 505	 * and put the referenced address to addr.
 506	 */
 507
 508	/* sign extend offset */
 509	offset = opcode & OFFSET;
 510	offset <<= 16;
 511	offset >>= 16;
 512
 513	vaddr = (unsigned long __user *)
 514	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 515
 516	if ((unsigned long)vaddr & 3)
 517		return SIGBUS;
 518	if (get_user(value, vaddr))
 519		return SIGSEGV;
 520
 521	preempt_disable();
 522
 523	if (ll_task == NULL || ll_task == current) {
 524		ll_bit = 1;
 525	} else {
 526		ll_bit = 0;
 527	}
 528	ll_task = current;
 529
 530	preempt_enable();
 531
 532	regs->regs[(opcode & RT) >> 16] = value;
 533
 534	return 0;
 535}
 536
 537static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
 538{
 539	unsigned long __user *vaddr;
 540	unsigned long reg;
 541	long offset;
 542
 543	/*
 544	 * analyse the sc instruction that just caused a ri exception
 545	 * and put the referenced address to addr.
 546	 */
 547
 548	/* sign extend offset */
 549	offset = opcode & OFFSET;
 550	offset <<= 16;
 551	offset >>= 16;
 552
 553	vaddr = (unsigned long __user *)
 554	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 555	reg = (opcode & RT) >> 16;
 556
 557	if ((unsigned long)vaddr & 3)
 558		return SIGBUS;
 559
 560	preempt_disable();
 561
 562	if (ll_bit == 0 || ll_task != current) {
 563		regs->regs[reg] = 0;
 564		preempt_enable();
 565		return 0;
 566	}
 567
 568	preempt_enable();
 569
 570	if (put_user(regs->regs[reg], vaddr))
 571		return SIGSEGV;
 572
 573	regs->regs[reg] = 1;
 574
 575	return 0;
 576}
 577
 578/*
 579 * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
 580 * opcodes are supposed to result in coprocessor unusable exceptions if
 581 * executed on ll/sc-less processors.  That's the theory.  In practice a
 582 * few processors such as NEC's VR4100 throw reserved instruction exceptions
 583 * instead, so we're doing the emulation thing in both exception handlers.
 584 */
 585static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
 586{
 587	if ((opcode & OPCODE) == LL) {
 588		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 589				1, regs, 0);
 590		return simulate_ll(regs, opcode);
 591	}
 592	if ((opcode & OPCODE) == SC) {
 593		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 594				1, regs, 0);
 595		return simulate_sc(regs, opcode);
 596	}
 597
 598	return -1;			/* Must be something else ... */
 599}
 600
 601/*
 602 * Simulate trapping 'rdhwr' instructions to provide user accessible
 603 * registers not implemented in hardware.
 604 */
 605static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
 606{
 607	struct thread_info *ti = task_thread_info(current);
 608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 609	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
 610		int rd = (opcode & RD) >> 11;
 611		int rt = (opcode & RT) >> 16;
 612		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 613				1, regs, 0);
 614		switch (rd) {
 615		case 0:		/* CPU number */
 616			regs->regs[rt] = smp_processor_id();
 617			return 0;
 618		case 1:		/* SYNCI length */
 619			regs->regs[rt] = min(current_cpu_data.dcache.linesz,
 620					     current_cpu_data.icache.linesz);
 621			return 0;
 622		case 2:		/* Read count register */
 623			regs->regs[rt] = read_c0_count();
 624			return 0;
 625		case 3:		/* Count register resolution */
 626			switch (current_cpu_data.cputype) {
 627			case CPU_20KC:
 628			case CPU_25KF:
 629				regs->regs[rt] = 1;
 630				break;
 631			default:
 632				regs->regs[rt] = 2;
 633			}
 634			return 0;
 635		case 29:
 636			regs->regs[rt] = ti->tp_value;
 637			return 0;
 638		default:
 639			return -1;
 640		}
 641	}
 642
 643	/* Not ours.  */
 644	return -1;
 645}
 646
 647static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
 648{
 649	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
 650		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 651				1, regs, 0);
 652		return 0;
 653	}
 654
 655	return -1;			/* Must be something else ... */
 656}
 657
 658asmlinkage void do_ov(struct pt_regs *regs)
 659{
 660	siginfo_t info;
 
 
 
 
 
 661
 
 662	die_if_kernel("Integer overflow", regs);
 663
 664	info.si_code = FPE_INTOVF;
 665	info.si_signo = SIGFPE;
 666	info.si_errno = 0;
 667	info.si_addr = (void __user *) regs->cp0_epc;
 668	force_sig_info(SIGFPE, &info, current);
 
 669}
 670
 671static int process_fpemu_return(int sig, void __user *fault_addr)
 672{
 673	if (sig == SIGSEGV || sig == SIGBUS) {
 674		struct siginfo si = {0};
 
 
 
 
 
 675		si.si_addr = fault_addr;
 676		si.si_signo = sig;
 677		if (sig == SIGSEGV) {
 678			if (find_vma(current->mm, (unsigned long)fault_addr))
 679				si.si_code = SEGV_ACCERR;
 680			else
 681				si.si_code = SEGV_MAPERR;
 682		} else {
 683			si.si_code = BUS_ADRERR;
 684		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 685		force_sig_info(sig, &si, current);
 686		return 1;
 687	} else if (sig) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 688		force_sig(sig, current);
 689		return 1;
 690	} else {
 691		return 0;
 692	}
 693}
 694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 695/*
 696 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
 697 */
 698asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
 699{
 700	siginfo_t info = {0};
 
 
 
 
 
 
 
 
 
 
 
 701
 702	if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE)
 703	    == NOTIFY_STOP)
 704		return;
 705	die_if_kernel("FP exception in kernel code", regs);
 706
 707	if (fcr31 & FPU_CSR_UNI_X) {
 708		int sig;
 709		void __user *fault_addr = NULL;
 710
 711		/*
 712		 * Unimplemented operation exception.  If we've got the full
 713		 * software emulator on-board, let's use it...
 714		 *
 715		 * Force FPU to dump state into task/thread context.  We're
 716		 * moving a lot of data here for what is probably a single
 717		 * instruction, but the alternative is to pre-decode the FP
 718		 * register operands before invoking the emulator, which seems
 719		 * a bit extreme for what should be an infrequent event.
 720		 */
 721		/* Ensure 'resume' not overwrite saved fp context again. */
 722		lose_fpu(1);
 723
 724		/* Run the emulator */
 725		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 726					       &fault_addr);
 
 727
 728		/*
 729		 * We can't allow the emulated instruction to leave any of
 730		 * the cause bit set in $fcr31.
 731		 */
 732		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
 733
 734		/* Restore the hardware register state */
 735		own_fpu(1);	/* Using the FPU again.  */
 
 
 
 
 736
 737		/* If something went wrong, signal */
 738		process_fpemu_return(sig, fault_addr);
 739
 740		return;
 741	} else if (fcr31 & FPU_CSR_INV_X)
 742		info.si_code = FPE_FLTINV;
 743	else if (fcr31 & FPU_CSR_DIV_X)
 744		info.si_code = FPE_FLTDIV;
 745	else if (fcr31 & FPU_CSR_OVF_X)
 746		info.si_code = FPE_FLTOVF;
 747	else if (fcr31 & FPU_CSR_UDF_X)
 748		info.si_code = FPE_FLTUND;
 749	else if (fcr31 & FPU_CSR_INE_X)
 750		info.si_code = FPE_FLTRES;
 751	else
 752		info.si_code = __SI_FAULT;
 753	info.si_signo = SIGFPE;
 754	info.si_errno = 0;
 755	info.si_addr = (void __user *) regs->cp0_epc;
 756	force_sig_info(SIGFPE, &info, current);
 757}
 758
 759static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
 760	const char *str)
 761{
 762	siginfo_t info;
 763	char b[40];
 764
 765#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 766	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 
 767		return;
 768#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 769
 770	if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 
 771		return;
 772
 773	/*
 774	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
 775	 * insns, even for trap and break codes that indicate arithmetic
 776	 * failures.  Weird ...
 777	 * But should we continue the brokenness???  --macro
 778	 */
 779	switch (code) {
 780	case BRK_OVERFLOW:
 781	case BRK_DIVZERO:
 782		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 783		die_if_kernel(b, regs);
 784		if (code == BRK_DIVZERO)
 785			info.si_code = FPE_INTDIV;
 786		else
 787			info.si_code = FPE_INTOVF;
 788		info.si_signo = SIGFPE;
 789		info.si_errno = 0;
 790		info.si_addr = (void __user *) regs->cp0_epc;
 791		force_sig_info(SIGFPE, &info, current);
 792		break;
 793	case BRK_BUG:
 794		die_if_kernel("Kernel bug detected", regs);
 795		force_sig(SIGTRAP, current);
 796		break;
 797	case BRK_MEMU:
 798		/*
 799		 * Address errors may be deliberately induced by the FPU
 800		 * emulator to retake control of the CPU after executing the
 801		 * instruction in the delay slot of an emulated branch.
 802		 *
 803		 * Terminate if exception was recognized as a delay slot return
 804		 * otherwise handle as normal.
 805		 */
 806		if (do_dsemulret(regs))
 807			return;
 808
 809		die_if_kernel("Math emu break/trap", regs);
 810		force_sig(SIGTRAP, current);
 811		break;
 812	default:
 813		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 814		die_if_kernel(b, regs);
 815		force_sig(SIGTRAP, current);
 
 
 
 
 
 
 816	}
 817}
 818
 819asmlinkage void do_bp(struct pt_regs *regs)
 820{
 
 821	unsigned int opcode, bcode;
 
 
 822
 823	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
 824		goto out_sigsegv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 825
 826	/*
 827	 * There is the ancient bug in the MIPS assemblers that the break
 828	 * code starts left to bit 16 instead to bit 6 in the opcode.
 829	 * Gas is bug-compatible, but not always, grrr...
 830	 * We handle both cases with a simple heuristics.  --macro
 831	 */
 832	bcode = ((opcode >> 6) & ((1 << 20) - 1));
 833	if (bcode >= (1 << 10))
 834		bcode >>= 10;
 835
 836	/*
 837	 * notify the kprobe handlers, if instruction is likely to
 838	 * pertain to them.
 839	 */
 840	switch (bcode) {
 
 
 
 
 
 
 
 
 
 
 
 
 841	case BRK_KPROBE_BP:
 842		if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 843			return;
 
 844		else
 845			break;
 846	case BRK_KPROBE_SSTEPBP:
 847		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 848			return;
 
 849		else
 850			break;
 851	default:
 852		break;
 853	}
 854
 855	do_trap_or_bp(regs, bcode, "Break");
 
 
 
 
 856	return;
 857
 858out_sigsegv:
 859	force_sig(SIGSEGV, current);
 
 860}
 861
 862asmlinkage void do_tr(struct pt_regs *regs)
 863{
 864	unsigned int opcode, tcode = 0;
 865
 866	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
 867		goto out_sigsegv;
 868
 869	/* Immediate versions don't provide a code.  */
 870	if (!(opcode & OPCODE))
 871		tcode = ((opcode >> 6) & ((1 << 10) - 1));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 872
 873	do_trap_or_bp(regs, tcode, "Trap");
 
 
 
 
 874	return;
 875
 876out_sigsegv:
 877	force_sig(SIGSEGV, current);
 
 878}
 879
 880asmlinkage void do_ri(struct pt_regs *regs)
 881{
 882	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
 883	unsigned long old_epc = regs->cp0_epc;
 
 
 884	unsigned int opcode = 0;
 885	int status = -1;
 886
 887	if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL)
 888	    == NOTIFY_STOP)
 889		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 890
 891	die_if_kernel("Reserved instruction in kernel code", regs);
 892
 893	if (unlikely(compute_return_epc(regs) < 0))
 894		return;
 895
 896	if (unlikely(get_user(opcode, epc) < 0))
 897		status = SIGSEGV;
 
 898
 899	if (!cpu_has_llsc && status < 0)
 900		status = simulate_llsc(regs, opcode);
 901
 902	if (status < 0)
 903		status = simulate_rdhwr(regs, opcode);
 904
 905	if (status < 0)
 906		status = simulate_sync(regs, opcode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 907
 908	if (status < 0)
 909		status = SIGILL;
 910
 911	if (unlikely(status > 0)) {
 912		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
 
 913		force_sig(status, current);
 914	}
 
 
 
 915}
 916
 917/*
 918 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
 919 * emulated more than some threshold number of instructions, force migration to
 920 * a "CPU" that has FP support.
 921 */
 922static void mt_ase_fp_affinity(void)
 923{
 924#ifdef CONFIG_MIPS_MT_FPAFF
 925	if (mt_fpemul_threshold > 0 &&
 926	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
 927		/*
 928		 * If there's no FPU present, or if the application has already
 929		 * restricted the allowed set to exclude any CPUs with FPUs,
 930		 * we'll skip the procedure.
 931		 */
 932		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
 933			cpumask_t tmask;
 934
 935			current->thread.user_cpus_allowed
 936				= current->cpus_allowed;
 937			cpus_and(tmask, current->cpus_allowed,
 938				mt_fpu_cpumask);
 939			set_cpus_allowed_ptr(current, &tmask);
 940			set_thread_flag(TIF_FPUBOUND);
 941		}
 942	}
 943#endif /* CONFIG_MIPS_MT_FPAFF */
 944}
 945
 946/*
 947 * No lock; only written during early bootup by CPU 0.
 948 */
 949static RAW_NOTIFIER_HEAD(cu2_chain);
 950
 951int __ref register_cu2_notifier(struct notifier_block *nb)
 952{
 953	return raw_notifier_chain_register(&cu2_chain, nb);
 954}
 955
 956int cu2_notifier_call_chain(unsigned long val, void *v)
 957{
 958	return raw_notifier_call_chain(&cu2_chain, val, v);
 959}
 960
 961static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
 962        void *data)
 963{
 964	struct pt_regs *regs = data;
 965
 966	switch (action) {
 967	default:
 968		die_if_kernel("Unhandled kernel unaligned access or invalid "
 969			      "instruction", regs);
 970		/* Fall through  */
 971
 972	case CU2_EXCEPTION:
 973		force_sig(SIGILL, current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974	}
 975
 976	return NOTIFY_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 977}
 978
 979asmlinkage void do_cpu(struct pt_regs *regs)
 980{
 
 981	unsigned int __user *epc;
 982	unsigned long old_epc;
 
 983	unsigned int opcode;
 
 984	unsigned int cpid;
 985	int status;
 986	unsigned long __maybe_unused flags;
 
 987
 988	die_if_kernel("do_cpu invoked from kernel context!", regs);
 989
 990	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
 991
 
 
 
 992	switch (cpid) {
 993	case 0:
 994		epc = (unsigned int __user *)exception_epc(regs);
 995		old_epc = regs->cp0_epc;
 
 996		opcode = 0;
 997		status = -1;
 998
 999		if (unlikely(compute_return_epc(regs) < 0))
1000			return;
1001
1002		if (unlikely(get_user(opcode, epc) < 0))
1003			status = SIGSEGV;
1004
1005		if (!cpu_has_llsc && status < 0)
1006			status = simulate_llsc(regs, opcode);
 
1007
1008		if (status < 0)
1009			status = simulate_rdhwr(regs, opcode);
 
1010
1011		if (status < 0)
1012			status = SIGILL;
1013
1014		if (unlikely(status > 0)) {
1015			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
 
1016			force_sig(status, current);
1017		}
1018
1019		return;
1020
1021	case 1:
1022		if (used_math())	/* Using the FPU again.  */
1023			own_fpu(1);
1024		else {			/* First time FPU user.  */
1025			init_fpu();
1026			set_used_math();
 
 
 
 
 
 
 
 
 
 
1027		}
 
1028
1029		if (!raw_cpu_has_fpu) {
1030			int sig;
1031			void __user *fault_addr = NULL;
1032			sig = fpu_emulator_cop1Handler(regs,
1033						       &current->thread.fpu,
1034						       0, &fault_addr);
1035			if (!process_fpemu_return(sig, fault_addr))
1036				mt_ase_fp_affinity();
1037		}
1038
1039		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1040
1041	case 2:
1042		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1043		return;
1044
1045	case 3:
1046		break;
1047	}
1048
1049	force_sig(SIGILL, current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1050}
1051
1052asmlinkage void do_mdmx(struct pt_regs *regs)
1053{
 
 
 
1054	force_sig(SIGILL, current);
 
1055}
1056
1057/*
1058 * Called with interrupts disabled.
1059 */
1060asmlinkage void do_watch(struct pt_regs *regs)
1061{
 
 
1062	u32 cause;
1063
 
1064	/*
1065	 * Clear WP (bit 22) bit of cause register so we don't loop
1066	 * forever.
1067	 */
1068	cause = read_c0_cause();
1069	cause &= ~(1 << 22);
1070	write_c0_cause(cause);
1071
1072	/*
1073	 * If the current thread has the watch registers loaded, save
1074	 * their values and send SIGTRAP.  Otherwise another thread
1075	 * left the registers set, clear them and continue.
1076	 */
1077	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1078		mips_read_watch_registers();
1079		local_irq_enable();
1080		force_sig(SIGTRAP, current);
1081	} else {
1082		mips_clear_watch_registers();
1083		local_irq_enable();
1084	}
 
1085}
1086
1087asmlinkage void do_mcheck(struct pt_regs *regs)
1088{
1089	const int field = 2 * sizeof(unsigned long);
1090	int multi_match = regs->cp0_status & ST0_TS;
 
 
1091
 
1092	show_regs(regs);
1093
1094	if (multi_match) {
1095		printk("Index   : %0x\n", read_c0_index());
1096		printk("Pagemask: %0x\n", read_c0_pagemask());
1097		printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1098		printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1099		printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1100		printk("\n");
1101		dump_tlb_all();
1102	}
1103
 
 
 
1104	show_code((unsigned int __user *) regs->cp0_epc);
1105
 
 
1106	/*
1107	 * Some chips may have other causes of machine check (e.g. SB1
1108	 * graduation timer)
1109	 */
1110	panic("Caught Machine Check exception - %scaused by multiple "
1111	      "matching entries in the TLB.",
1112	      (multi_match) ? "" : "not ");
1113}
1114
1115asmlinkage void do_mt(struct pt_regs *regs)
1116{
1117	int subcode;
1118
1119	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1120			>> VPECONTROL_EXCPT_SHIFT;
1121	switch (subcode) {
1122	case 0:
1123		printk(KERN_DEBUG "Thread Underflow\n");
1124		break;
1125	case 1:
1126		printk(KERN_DEBUG "Thread Overflow\n");
1127		break;
1128	case 2:
1129		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1130		break;
1131	case 3:
1132		printk(KERN_DEBUG "Gating Storage Exception\n");
1133		break;
1134	case 4:
1135		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1136		break;
1137	case 5:
1138		printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
1139		break;
1140	default:
1141		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1142			subcode);
1143		break;
1144	}
1145	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1146
1147	force_sig(SIGILL, current);
1148}
1149
1150
1151asmlinkage void do_dsp(struct pt_regs *regs)
1152{
1153	if (cpu_has_dsp)
1154		panic("Unexpected DSP exception\n");
1155
1156	force_sig(SIGILL, current);
1157}
1158
1159asmlinkage void do_reserved(struct pt_regs *regs)
1160{
1161	/*
1162	 * Game over - no way to handle this if it ever occurs.  Most probably
1163	 * caused by a new unknown cpu type or after another deadly
1164	 * hard/software error.
1165	 */
1166	show_regs(regs);
1167	panic("Caught reserved exception %ld - should not happen.",
1168	      (regs->cp0_cause & 0x7f) >> 2);
1169}
1170
1171static int __initdata l1parity = 1;
1172static int __init nol1parity(char *s)
1173{
1174	l1parity = 0;
1175	return 1;
1176}
1177__setup("nol1par", nol1parity);
1178static int __initdata l2parity = 1;
1179static int __init nol2parity(char *s)
1180{
1181	l2parity = 0;
1182	return 1;
1183}
1184__setup("nol2par", nol2parity);
1185
1186/*
1187 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1188 * it different ways.
1189 */
1190static inline void parity_protection_init(void)
1191{
1192	switch (current_cpu_type()) {
1193	case CPU_24K:
1194	case CPU_34K:
1195	case CPU_74K:
1196	case CPU_1004K:
 
 
 
 
 
 
1197		{
1198#define ERRCTL_PE	0x80000000
1199#define ERRCTL_L2P	0x00800000
1200			unsigned long errctl;
1201			unsigned int l1parity_present, l2parity_present;
1202
1203			errctl = read_c0_ecc();
1204			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1205
1206			/* probe L1 parity support */
1207			write_c0_ecc(errctl | ERRCTL_PE);
1208			back_to_back_c0_hazard();
1209			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1210
1211			/* probe L2 parity support */
1212			write_c0_ecc(errctl|ERRCTL_L2P);
1213			back_to_back_c0_hazard();
1214			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1215
1216			if (l1parity_present && l2parity_present) {
1217				if (l1parity)
1218					errctl |= ERRCTL_PE;
1219				if (l1parity ^ l2parity)
1220					errctl |= ERRCTL_L2P;
1221			} else if (l1parity_present) {
1222				if (l1parity)
1223					errctl |= ERRCTL_PE;
1224			} else if (l2parity_present) {
1225				if (l2parity)
1226					errctl |= ERRCTL_L2P;
1227			} else {
1228				/* No parity available */
1229			}
1230
1231			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1232
1233			write_c0_ecc(errctl);
1234			back_to_back_c0_hazard();
1235			errctl = read_c0_ecc();
1236			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1237
1238			if (l1parity_present)
1239				printk(KERN_INFO "Cache parity protection %sabled\n",
1240				       (errctl & ERRCTL_PE) ? "en" : "dis");
1241
1242			if (l2parity_present) {
1243				if (l1parity_present && l1parity)
1244					errctl ^= ERRCTL_L2P;
1245				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1246				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1247			}
1248		}
1249		break;
1250
1251	case CPU_5KC:
 
 
1252		write_c0_ecc(0x80000000);
1253		back_to_back_c0_hazard();
1254		/* Set the PE bit (bit 31) in the c0_errctl register. */
1255		printk(KERN_INFO "Cache parity protection %sabled\n",
1256		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1257		break;
1258	case CPU_20KC:
1259	case CPU_25KF:
1260		/* Clear the DE bit (bit 16) in the c0_status register. */
1261		printk(KERN_INFO "Enable cache parity protection for "
1262		       "MIPS 20KC/25KF CPUs.\n");
1263		clear_c0_status(ST0_DE);
1264		break;
1265	default:
1266		break;
1267	}
1268}
1269
1270asmlinkage void cache_parity_error(void)
1271{
1272	const int field = 2 * sizeof(unsigned long);
1273	unsigned int reg_val;
1274
1275	/* For the moment, report the problem and hang. */
1276	printk("Cache error exception:\n");
1277	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1278	reg_val = read_c0_cacheerr();
1279	printk("c0_cacheerr == %08x\n", reg_val);
1280
1281	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1282	       reg_val & (1<<30) ? "secondary" : "primary",
1283	       reg_val & (1<<31) ? "data" : "insn");
1284	printk("Error bits: %s%s%s%s%s%s%s\n",
1285	       reg_val & (1<<29) ? "ED " : "",
1286	       reg_val & (1<<28) ? "ET " : "",
1287	       reg_val & (1<<26) ? "EE " : "",
1288	       reg_val & (1<<25) ? "EB " : "",
1289	       reg_val & (1<<24) ? "EI " : "",
1290	       reg_val & (1<<23) ? "E1 " : "",
1291	       reg_val & (1<<22) ? "E0 " : "");
 
 
 
 
 
 
 
 
 
 
 
 
 
1292	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1293
1294#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1295	if (reg_val & (1<<22))
1296		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1297
1298	if (reg_val & (1<<23))
1299		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1300#endif
1301
1302	panic("Can't handle the cache error!");
1303}
1304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1305/*
1306 * SDBBP EJTAG debug exception handler.
1307 * We skip the instruction and return to the next instruction.
1308 */
1309void ejtag_exception_handler(struct pt_regs *regs)
1310{
1311	const int field = 2 * sizeof(unsigned long);
1312	unsigned long depc, old_epc;
1313	unsigned int debug;
1314
1315	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1316	depc = read_c0_depc();
1317	debug = read_c0_debug();
1318	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1319	if (debug & 0x80000000) {
1320		/*
1321		 * In branch delay slot.
1322		 * We cheat a little bit here and use EPC to calculate the
1323		 * debug return address (DEPC). EPC is restored after the
1324		 * calculation.
1325		 */
1326		old_epc = regs->cp0_epc;
 
1327		regs->cp0_epc = depc;
1328		__compute_return_epc(regs);
1329		depc = regs->cp0_epc;
1330		regs->cp0_epc = old_epc;
 
1331	} else
1332		depc += 4;
1333	write_c0_depc(depc);
1334
1335#if 0
1336	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1337	write_c0_debug(debug | 0x100);
1338#endif
1339}
1340
1341/*
1342 * NMI exception handler.
 
1343 */
1344NORET_TYPE void ATTRIB_NORET nmi_exception_handler(struct pt_regs *regs)
 
 
 
 
 
 
 
1345{
 
 
 
 
1346	bust_spinlocks(1);
1347	printk("NMI taken!!!!\n");
1348	die("NMI", regs);
 
 
 
1349}
1350
1351#define VECTORSPACING 0x100	/* for EI/VI mode */
1352
1353unsigned long ebase;
1354unsigned long exception_handlers[32];
1355unsigned long vi_handlers[64];
1356
1357void __init *set_except_vector(int n, void *addr)
1358{
1359	unsigned long handler = (unsigned long) addr;
1360	unsigned long old_handler = exception_handlers[n];
 
 
 
 
 
 
 
 
 
 
 
 
 
1361
1362	exception_handlers[n] = handler;
1363	if (n == 0 && cpu_has_divec) {
 
 
 
1364		unsigned long jump_mask = ~((1 << 28) - 1);
 
1365		u32 *buf = (u32 *)(ebase + 0x200);
1366		unsigned int k0 = 26;
1367		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1368			uasm_i_j(&buf, handler & ~jump_mask);
1369			uasm_i_nop(&buf);
1370		} else {
1371			UASM_i_LA(&buf, k0, handler);
1372			uasm_i_jr(&buf, k0);
1373			uasm_i_nop(&buf);
1374		}
1375		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1376	}
1377	return (void *)old_handler;
1378}
1379
1380static asmlinkage void do_default_vi(void)
1381{
1382	show_regs(get_irq_regs());
1383	panic("Caught unexpected vectored interrupt.");
1384}
1385
1386static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1387{
1388	unsigned long handler;
1389	unsigned long old_handler = vi_handlers[n];
1390	int srssets = current_cpu_data.srsets;
1391	u32 *w;
1392	unsigned char *b;
1393
1394	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1395
1396	if (addr == NULL) {
1397		handler = (unsigned long) do_default_vi;
1398		srs = 0;
1399	} else
1400		handler = (unsigned long) addr;
1401	vi_handlers[n] = (unsigned long) addr;
1402
1403	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1404
1405	if (srs >= srssets)
1406		panic("Shadow register set %d not supported", srs);
1407
1408	if (cpu_has_veic) {
1409		if (board_bind_eic_interrupt)
1410			board_bind_eic_interrupt(n, srs);
1411	} else if (cpu_has_vint) {
1412		/* SRSMap is only defined if shadow sets are implemented */
1413		if (srssets > 1)
1414			change_c0_srsmap(0xf << n*4, srs << n*4);
1415	}
1416
1417	if (srs == 0) {
1418		/*
1419		 * If no shadow set is selected then use the default handler
1420		 * that does normal register saving and a standard interrupt exit
1421		 */
1422
1423		extern char except_vec_vi, except_vec_vi_lui;
1424		extern char except_vec_vi_ori, except_vec_vi_end;
1425		extern char rollback_except_vec_vi;
1426		char *vec_start = (cpu_wait == r4k_wait) ?
1427			&rollback_except_vec_vi : &except_vec_vi;
1428#ifdef CONFIG_MIPS_MT_SMTC
1429		/*
1430		 * We need to provide the SMTC vectored interrupt handler
1431		 * not only with the address of the handler, but with the
1432		 * Status.IM bit to be masked before going there.
1433		 */
1434		extern char except_vec_vi_mori;
1435		const int mori_offset = &except_vec_vi_mori - vec_start;
1436#endif /* CONFIG_MIPS_MT_SMTC */
1437		const int handler_len = &except_vec_vi_end - vec_start;
1438		const int lui_offset = &except_vec_vi_lui - vec_start;
1439		const int ori_offset = &except_vec_vi_ori - vec_start;
 
 
1440
1441		if (handler_len > VECTORSPACING) {
1442			/*
1443			 * Sigh... panicing won't help as the console
1444			 * is probably not configured :(
1445			 */
1446			panic("VECTORSPACING too small");
1447		}
1448
1449		memcpy(b, vec_start, handler_len);
1450#ifdef CONFIG_MIPS_MT_SMTC
1451		BUG_ON(n > 7);	/* Vector index %d exceeds SMTC maximum. */
1452
1453		w = (u32 *)(b + mori_offset);
1454		*w = (*w & 0xffff0000) | (0x100 << n);
1455#endif /* CONFIG_MIPS_MT_SMTC */
1456		w = (u32 *)(b + lui_offset);
1457		*w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1458		w = (u32 *)(b + ori_offset);
1459		*w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1460		local_flush_icache_range((unsigned long)b,
1461					 (unsigned long)(b+handler_len));
1462	}
1463	else {
1464		/*
1465		 * In other cases jump directly to the interrupt handler
1466		 *
1467		 * It is the handlers responsibility to save registers if required
1468		 * (eg hi/lo) and return from the exception using "eret"
1469		 */
1470		w = (u32 *)b;
1471		*w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1472		*w = 0;
 
 
 
 
 
 
 
 
 
 
1473		local_flush_icache_range((unsigned long)b,
1474					 (unsigned long)(b+8));
1475	}
1476
1477	return (void *)old_handler;
1478}
1479
1480void *set_vi_handler(int n, vi_handler_t addr)
1481{
1482	return set_vi_srs_handler(n, addr, 0);
1483}
1484
1485extern void cpu_cache_init(void);
1486extern void tlb_init(void);
1487extern void flush_tlb_handlers(void);
1488
1489/*
1490 * Timer interrupt
1491 */
1492int cp0_compare_irq;
 
1493int cp0_compare_irq_shift;
1494
1495/*
1496 * Performance counter IRQ or -1 if shared with timer
1497 */
1498int cp0_perfcount_irq;
1499EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1500
1501static int __cpuinitdata noulri;
 
 
 
 
 
 
1502
1503static int __init ulri_disable(char *s)
1504{
1505	pr_info("Disabling ulri\n");
1506	noulri = 1;
1507
1508	return 1;
1509}
1510__setup("noulri", ulri_disable);
1511
1512void __cpuinit per_cpu_trap_init(void)
 
1513{
1514	unsigned int cpu = smp_processor_id();
1515	unsigned int status_set = ST0_CU0;
1516	unsigned int hwrena = cpu_hwrena_impl_bits;
1517#ifdef CONFIG_MIPS_MT_SMTC
1518	int secondaryTC = 0;
1519	int bootTC = (cpu == 0);
1520
1521	/*
1522	 * Only do per_cpu_trap_init() for first TC of Each VPE.
1523	 * Note that this hack assumes that the SMTC init code
1524	 * assigns TCs consecutively and in ascending order.
1525	 */
1526
1527	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1528	    ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1529		secondaryTC = 1;
1530#endif /* CONFIG_MIPS_MT_SMTC */
1531
1532	/*
1533	 * Disable coprocessors and select 32-bit or 64-bit addressing
1534	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1535	 * flag that some firmware may have left set and the TS bit (for
1536	 * IP27).  Set XX for ISA IV code to work.
1537	 */
 
1538#ifdef CONFIG_64BIT
1539	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1540#endif
1541	if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1542		status_set |= ST0_XX;
1543	if (cpu_has_dsp)
1544		status_set |= ST0_MX;
1545
1546	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1547			 status_set);
 
1548
1549	if (cpu_has_mips_r2)
 
 
 
 
 
1550		hwrena |= 0x0000000f;
1551
1552	if (!noulri && cpu_has_userlocal)
1553		hwrena |= (1 << 29);
1554
1555	if (hwrena)
1556		write_c0_hwrena(hwrena);
 
1557
1558#ifdef CONFIG_MIPS_MT_SMTC
1559	if (!secondaryTC) {
1560#endif /* CONFIG_MIPS_MT_SMTC */
1561
1562	if (cpu_has_veic || cpu_has_vint) {
1563		unsigned long sr = set_c0_status(ST0_BEV);
1564		write_c0_ebase(ebase);
1565		write_c0_status(sr);
1566		/* Setting vector spacing enables EI/VI mode  */
1567		change_c0_intctl(0x3e0, VECTORSPACING);
1568	}
1569	if (cpu_has_divec) {
1570		if (cpu_has_mipsmt) {
1571			unsigned int vpflags = dvpe();
1572			set_c0_cause(CAUSEF_IV);
1573			evpe(vpflags);
1574		} else
1575			set_c0_cause(CAUSEF_IV);
1576	}
 
 
 
 
 
 
 
 
 
 
1577
1578	/*
1579	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1580	 *
1581	 *  o read IntCtl.IPTI to determine the timer interrupt
1582	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
 
1583	 */
1584	if (cpu_has_mips_r2) {
1585		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1586		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1587		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1588		if (cp0_perfcount_irq == cp0_compare_irq)
1589			cp0_perfcount_irq = -1;
 
 
1590	} else {
1591		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1592		cp0_compare_irq_shift = cp0_compare_irq;
1593		cp0_perfcount_irq = -1;
 
1594	}
1595
1596#ifdef CONFIG_MIPS_MT_SMTC
1597	}
1598#endif /* CONFIG_MIPS_MT_SMTC */
1599
1600	cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1601
1602	atomic_inc(&init_mm.mm_count);
1603	current->active_mm = &init_mm;
1604	BUG_ON(current->mm);
1605	enter_lazy_tlb(&init_mm, current);
1606
1607#ifdef CONFIG_MIPS_MT_SMTC
1608	if (bootTC) {
1609#endif /* CONFIG_MIPS_MT_SMTC */
1610		cpu_cache_init();
1611		tlb_init();
1612#ifdef CONFIG_MIPS_MT_SMTC
1613	} else if (!secondaryTC) {
1614		/*
1615		 * First TC in non-boot VPE must do subset of tlb_init()
1616		 * for MMU countrol registers.
1617		 */
1618		write_c0_pagemask(PM_DEFAULT_MASK);
1619		write_c0_wired(0);
1620	}
1621#endif /* CONFIG_MIPS_MT_SMTC */
1622	TLBMISS_HANDLER_SETUP();
1623}
1624
1625/* Install CPU exception handler */
1626void __init set_handler(unsigned long offset, void *addr, unsigned long size)
1627{
 
 
 
1628	memcpy((void *)(ebase + offset), addr, size);
 
1629	local_flush_icache_range(ebase + offset, ebase + offset + size);
1630}
1631
1632static char panic_null_cerr[] __cpuinitdata =
1633	"Trying to set NULL cache error exception handler";
1634
1635/*
1636 * Install uncached CPU exception handler.
1637 * This is suitable only for the cache error exception which is the only
1638 * exception handler that is being run uncached.
1639 */
1640void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1641	unsigned long size)
1642{
1643	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1644
1645	if (!addr)
1646		panic(panic_null_cerr);
1647
1648	memcpy((void *)(uncached_ebase + offset), addr, size);
1649}
1650
1651static int __initdata rdhwr_noopt;
1652static int __init set_rdhwr_noopt(char *str)
1653{
1654	rdhwr_noopt = 1;
1655	return 1;
1656}
1657
1658__setup("rdhwr_noopt", set_rdhwr_noopt);
1659
1660void __init trap_init(void)
1661{
1662	extern char except_vec3_generic, except_vec3_r4000;
1663	extern char except_vec4;
 
1664	unsigned long i;
1665	int rollback;
1666
1667	check_wait();
1668	rollback = (cpu_wait == r4k_wait);
1669
1670#if defined(CONFIG_KGDB)
1671	if (kgdb_early_setup)
1672		return;	/* Already done */
1673#endif
1674
1675	if (cpu_has_veic || cpu_has_vint) {
1676		unsigned long size = 0x200 + VECTORSPACING*64;
1677		ebase = (unsigned long)
1678			__alloc_bootmem(size, 1 << fls(size), 0);
1679	} else {
1680		ebase = CKSEG0;
1681		if (cpu_has_mips_r2)
 
1682			ebase += (read_c0_ebase() & 0x3ffff000);
1683	}
1684
1685	per_cpu_trap_init();
 
 
 
 
 
 
 
 
 
 
 
1686
1687	/*
1688	 * Copy the generic exception handlers to their final destination.
1689	 * This will be overriden later as suitable for a particular
1690	 * configuration.
1691	 */
1692	set_handler(0x180, &except_vec3_generic, 0x80);
1693
1694	/*
1695	 * Setup default vectors
1696	 */
1697	for (i = 0; i <= 31; i++)
1698		set_except_vector(i, handle_reserved);
1699
1700	/*
1701	 * Copy the EJTAG debug exception vector handler code to it's final
1702	 * destination.
1703	 */
1704	if (cpu_has_ejtag && board_ejtag_handler_setup)
1705		board_ejtag_handler_setup();
1706
1707	/*
1708	 * Only some CPUs have the watch exceptions.
1709	 */
1710	if (cpu_has_watch)
1711		set_except_vector(23, handle_watch);
1712
1713	/*
1714	 * Initialise interrupt handlers
1715	 */
1716	if (cpu_has_veic || cpu_has_vint) {
1717		int nvec = cpu_has_veic ? 64 : 8;
1718		for (i = 0; i < nvec; i++)
1719			set_vi_handler(i, NULL);
1720	}
1721	else if (cpu_has_divec)
1722		set_handler(0x200, &except_vec4, 0x8);
1723
1724	/*
1725	 * Some CPUs can enable/disable for cache parity detection, but does
1726	 * it different ways.
1727	 */
1728	parity_protection_init();
1729
1730	/*
1731	 * The Data Bus Errors / Instruction Bus Errors are signaled
1732	 * by external hardware.  Therefore these two exceptions
1733	 * may have board specific handlers.
1734	 */
1735	if (board_be_init)
1736		board_be_init();
1737
1738	set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1739	set_except_vector(1, handle_tlbm);
1740	set_except_vector(2, handle_tlbl);
1741	set_except_vector(3, handle_tlbs);
1742
1743	set_except_vector(4, handle_adel);
1744	set_except_vector(5, handle_ades);
1745
1746	set_except_vector(6, handle_ibe);
1747	set_except_vector(7, handle_dbe);
1748
1749	set_except_vector(8, handle_sys);
1750	set_except_vector(9, handle_bp);
1751	set_except_vector(10, rdhwr_noopt ? handle_ri :
 
1752			  (cpu_has_vtag_icache ?
1753			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1754	set_except_vector(11, handle_cpu);
1755	set_except_vector(12, handle_ov);
1756	set_except_vector(13, handle_tr);
 
1757
1758	if (current_cpu_type() == CPU_R6000 ||
1759	    current_cpu_type() == CPU_R6000A) {
1760		/*
1761		 * The R6000 is the only R-series CPU that features a machine
1762		 * check exception (similar to the R4000 cache error) and
1763		 * unaligned ldc1/sdc1 exception.  The handlers have not been
1764		 * written yet.  Well, anyway there is no R6000 machine on the
1765		 * current list of targets for Linux/MIPS.
1766		 * (Duh, crap, there is someone with a triple R6k machine)
1767		 */
1768		//set_except_vector(14, handle_mc);
1769		//set_except_vector(15, handle_ndc);
1770	}
1771
1772
1773	if (board_nmi_handler_setup)
1774		board_nmi_handler_setup();
1775
1776	if (cpu_has_fpu && !cpu_has_nofpuex)
1777		set_except_vector(15, handle_fpe);
 
 
1778
1779	set_except_vector(22, handle_mdmx);
 
 
 
 
 
 
1780
1781	if (cpu_has_mcheck)
1782		set_except_vector(24, handle_mcheck);
1783
1784	if (cpu_has_mipsmt)
1785		set_except_vector(25, handle_mt);
 
 
1786
1787	set_except_vector(26, handle_dsp);
 
1788
1789	if (cpu_has_vce)
1790		/* Special exception: R4[04]00 uses also the divec space. */
1791		memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1792	else if (cpu_has_4kex)
1793		memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1794	else
1795		memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1796
1797	local_flush_icache_range(ebase, ebase + 0x400);
1798	flush_tlb_handlers();
1799
1800	sort_extable(__start___dbe_table, __stop___dbe_table);
1801
1802	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
1803}
v4.6
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
   7 * Copyright (C) 1995, 1996 Paul M. Antoine
   8 * Copyright (C) 1998 Ulf Carlsson
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
 
  11 * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
  12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
  13 * Copyright (C) 2014, Imagination Technologies Ltd.
  14 */
  15#include <linux/bitops.h>
  16#include <linux/bug.h>
  17#include <linux/compiler.h>
  18#include <linux/context_tracking.h>
  19#include <linux/cpu_pm.h>
  20#include <linux/kexec.h>
  21#include <linux/init.h>
  22#include <linux/kernel.h>
 
  23#include <linux/module.h>
  24#include <linux/mm.h>
  25#include <linux/sched.h>
  26#include <linux/smp.h>
  27#include <linux/spinlock.h>
  28#include <linux/kallsyms.h>
  29#include <linux/bootmem.h>
  30#include <linux/interrupt.h>
  31#include <linux/ptrace.h>
  32#include <linux/kgdb.h>
  33#include <linux/kdebug.h>
  34#include <linux/kprobes.h>
  35#include <linux/notifier.h>
  36#include <linux/kdb.h>
  37#include <linux/irq.h>
  38#include <linux/perf_event.h>
  39
  40#include <asm/addrspace.h>
  41#include <asm/bootinfo.h>
  42#include <asm/branch.h>
  43#include <asm/break.h>
  44#include <asm/cop2.h>
  45#include <asm/cpu.h>
  46#include <asm/cpu-type.h>
  47#include <asm/dsp.h>
  48#include <asm/fpu.h>
  49#include <asm/fpu_emulator.h>
  50#include <asm/idle.h>
  51#include <asm/mips-r2-to-r6-emul.h>
  52#include <asm/mipsregs.h>
  53#include <asm/mipsmtregs.h>
  54#include <asm/module.h>
  55#include <asm/msa.h>
  56#include <asm/pgtable.h>
  57#include <asm/ptrace.h>
  58#include <asm/sections.h>
  59#include <asm/siginfo.h>
  60#include <asm/tlbdebug.h>
  61#include <asm/traps.h>
  62#include <asm/uaccess.h>
  63#include <asm/watch.h>
  64#include <asm/mmu_context.h>
  65#include <asm/types.h>
  66#include <asm/stacktrace.h>
  67#include <asm/uasm.h>
  68
  69extern void check_wait(void);
 
  70extern asmlinkage void rollback_handle_int(void);
  71extern asmlinkage void handle_int(void);
  72extern u32 handle_tlbl[];
  73extern u32 handle_tlbs[];
  74extern u32 handle_tlbm[];
  75extern asmlinkage void handle_adel(void);
  76extern asmlinkage void handle_ades(void);
  77extern asmlinkage void handle_ibe(void);
  78extern asmlinkage void handle_dbe(void);
  79extern asmlinkage void handle_sys(void);
  80extern asmlinkage void handle_bp(void);
  81extern asmlinkage void handle_ri(void);
  82extern asmlinkage void handle_ri_rdhwr_vivt(void);
  83extern asmlinkage void handle_ri_rdhwr(void);
  84extern asmlinkage void handle_cpu(void);
  85extern asmlinkage void handle_ov(void);
  86extern asmlinkage void handle_tr(void);
  87extern asmlinkage void handle_msa_fpe(void);
  88extern asmlinkage void handle_fpe(void);
  89extern asmlinkage void handle_ftlb(void);
  90extern asmlinkage void handle_msa(void);
  91extern asmlinkage void handle_mdmx(void);
  92extern asmlinkage void handle_watch(void);
  93extern asmlinkage void handle_mt(void);
  94extern asmlinkage void handle_dsp(void);
  95extern asmlinkage void handle_mcheck(void);
  96extern asmlinkage void handle_reserved(void);
  97extern void tlb_do_page_fault_0(void);
 
 
 
  98
  99void (*board_be_init)(void);
 100int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
 101void (*board_nmi_handler_setup)(void);
 102void (*board_ejtag_handler_setup)(void);
 103void (*board_bind_eic_interrupt)(int irq, int regset);
 104void (*board_ebase_setup)(void);
 105void(*board_cache_error_setup)(void);
 106
 107static void show_raw_backtrace(unsigned long reg29)
 108{
 109	unsigned long *sp = (unsigned long *)(reg29 & ~3);
 110	unsigned long addr;
 111
 112	printk("Call Trace:");
 113#ifdef CONFIG_KALLSYMS
 114	printk("\n");
 115#endif
 116	while (!kstack_end(sp)) {
 117		unsigned long __user *p =
 118			(unsigned long __user *)(unsigned long)sp++;
 119		if (__get_user(addr, p)) {
 120			printk(" (Bad stack address)");
 121			break;
 122		}
 123		if (__kernel_text_address(addr))
 124			print_ip_sym(addr);
 125	}
 126	printk("\n");
 127}
 128
 129#ifdef CONFIG_KALLSYMS
 130int raw_show_trace;
 131static int __init set_raw_show_trace(char *str)
 132{
 133	raw_show_trace = 1;
 134	return 1;
 135}
 136__setup("raw_show_trace", set_raw_show_trace);
 137#endif
 138
 139static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
 140{
 141	unsigned long sp = regs->regs[29];
 142	unsigned long ra = regs->regs[31];
 143	unsigned long pc = regs->cp0_epc;
 144
 145	if (!task)
 146		task = current;
 147
 148	if (raw_show_trace || !__kernel_text_address(pc)) {
 149		show_raw_backtrace(sp);
 150		return;
 151	}
 152	printk("Call Trace:\n");
 153	do {
 154		print_ip_sym(pc);
 155		pc = unwind_stack(task, &sp, pc, &ra);
 156	} while (pc);
 157	printk("\n");
 158}
 159
 160/*
 161 * This routine abuses get_user()/put_user() to reference pointers
 162 * with at least a bit of error checking ...
 163 */
 164static void show_stacktrace(struct task_struct *task,
 165	const struct pt_regs *regs)
 166{
 167	const int field = 2 * sizeof(unsigned long);
 168	long stackdata;
 169	int i;
 170	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
 171
 172	printk("Stack :");
 173	i = 0;
 174	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
 175		if (i && ((i % (64 / field)) == 0))
 176			printk("\n	 ");
 177		if (i > 39) {
 178			printk(" ...");
 179			break;
 180		}
 181
 182		if (__get_user(stackdata, sp++)) {
 183			printk(" (Bad stack address)");
 184			break;
 185		}
 186
 187		printk(" %0*lx", field, stackdata);
 188		i++;
 189	}
 190	printk("\n");
 191	show_backtrace(task, regs);
 192}
 193
 194void show_stack(struct task_struct *task, unsigned long *sp)
 195{
 196	struct pt_regs regs;
 197	mm_segment_t old_fs = get_fs();
 198	if (sp) {
 199		regs.regs[29] = (unsigned long)sp;
 200		regs.regs[31] = 0;
 201		regs.cp0_epc = 0;
 202	} else {
 203		if (task && task != current) {
 204			regs.regs[29] = task->thread.reg29;
 205			regs.regs[31] = 0;
 206			regs.cp0_epc = task->thread.reg31;
 207#ifdef CONFIG_KGDB_KDB
 208		} else if (atomic_read(&kgdb_active) != -1 &&
 209			   kdb_current_regs) {
 210			memcpy(&regs, kdb_current_regs, sizeof(regs));
 211#endif /* CONFIG_KGDB_KDB */
 212		} else {
 213			prepare_frametrace(&regs);
 214		}
 215	}
 216	/*
 217	 * show_stack() deals exclusively with kernel mode, so be sure to access
 218	 * the stack in the kernel (not user) address space.
 219	 */
 220	set_fs(KERNEL_DS);
 221	show_stacktrace(task, &regs);
 222	set_fs(old_fs);
 223}
 224
 
 
 
 
 
 
 
 
 
 
 
 
 
 225static void show_code(unsigned int __user *pc)
 226{
 227	long i;
 228	unsigned short __user *pc16 = NULL;
 229
 230	printk("\nCode:");
 231
 232	if ((unsigned long)pc & 1)
 233		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
 234	for(i = -3 ; i < 6 ; i++) {
 235		unsigned int insn;
 236		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
 237			printk(" (Bad address in epc)\n");
 238			break;
 239		}
 240		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
 241	}
 242}
 243
 244static void __show_regs(const struct pt_regs *regs)
 245{
 246	const int field = 2 * sizeof(unsigned long);
 247	unsigned int cause = regs->cp0_cause;
 248	unsigned int exccode;
 249	int i;
 250
 251	show_regs_print_info(KERN_DEFAULT);
 252
 253	/*
 254	 * Saved main processor registers
 255	 */
 256	for (i = 0; i < 32; ) {
 257		if ((i % 4) == 0)
 258			printk("$%2d   :", i);
 259		if (i == 0)
 260			printk(" %0*lx", field, 0UL);
 261		else if (i == 26 || i == 27)
 262			printk(" %*s", field, "");
 263		else
 264			printk(" %0*lx", field, regs->regs[i]);
 265
 266		i++;
 267		if ((i % 4) == 0)
 268			printk("\n");
 269	}
 270
 271#ifdef CONFIG_CPU_HAS_SMARTMIPS
 272	printk("Acx    : %0*lx\n", field, regs->acx);
 273#endif
 274	printk("Hi    : %0*lx\n", field, regs->hi);
 275	printk("Lo    : %0*lx\n", field, regs->lo);
 276
 277	/*
 278	 * Saved cp0 registers
 279	 */
 280	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
 281	       (void *) regs->cp0_epc);
 
 282	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
 283	       (void *) regs->regs[31]);
 284
 285	printk("Status: %08x	", (uint32_t) regs->cp0_status);
 286
 287	if (cpu_has_3kex) {
 288		if (regs->cp0_status & ST0_KUO)
 289			printk("KUo ");
 290		if (regs->cp0_status & ST0_IEO)
 291			printk("IEo ");
 292		if (regs->cp0_status & ST0_KUP)
 293			printk("KUp ");
 294		if (regs->cp0_status & ST0_IEP)
 295			printk("IEp ");
 296		if (regs->cp0_status & ST0_KUC)
 297			printk("KUc ");
 298		if (regs->cp0_status & ST0_IEC)
 299			printk("IEc ");
 300	} else if (cpu_has_4kex) {
 301		if (regs->cp0_status & ST0_KX)
 302			printk("KX ");
 303		if (regs->cp0_status & ST0_SX)
 304			printk("SX ");
 305		if (regs->cp0_status & ST0_UX)
 306			printk("UX ");
 307		switch (regs->cp0_status & ST0_KSU) {
 308		case KSU_USER:
 309			printk("USER ");
 310			break;
 311		case KSU_SUPERVISOR:
 312			printk("SUPERVISOR ");
 313			break;
 314		case KSU_KERNEL:
 315			printk("KERNEL ");
 316			break;
 317		default:
 318			printk("BAD_MODE ");
 319			break;
 320		}
 321		if (regs->cp0_status & ST0_ERL)
 322			printk("ERL ");
 323		if (regs->cp0_status & ST0_EXL)
 324			printk("EXL ");
 325		if (regs->cp0_status & ST0_IE)
 326			printk("IE ");
 327	}
 328	printk("\n");
 329
 330	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 331	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
 332
 333	if (1 <= exccode && exccode <= 5)
 
 334		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
 335
 336	printk("PrId  : %08x (%s)\n", read_c0_prid(),
 337	       cpu_name_string());
 338}
 339
 340/*
 341 * FIXME: really the generic show_regs should take a const pointer argument.
 342 */
 343void show_regs(struct pt_regs *regs)
 344{
 345	__show_regs((struct pt_regs *)regs);
 346}
 347
 348void show_registers(struct pt_regs *regs)
 349{
 350	const int field = 2 * sizeof(unsigned long);
 351	mm_segment_t old_fs = get_fs();
 352
 353	__show_regs(regs);
 354	print_modules();
 355	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
 356	       current->comm, current->pid, current_thread_info(), current,
 357	      field, current_thread_info()->tp_value);
 358	if (cpu_has_userlocal) {
 359		unsigned long tls;
 360
 361		tls = read_c0_userlocal();
 362		if (tls != current_thread_info()->tp_value)
 363			printk("*HwTLS: %0*lx\n", field, tls);
 364	}
 365
 366	if (!user_mode(regs))
 367		/* Necessary for getting the correct stack content */
 368		set_fs(KERNEL_DS);
 369	show_stacktrace(current, regs);
 370	show_code((unsigned int __user *) regs->cp0_epc);
 371	printk("\n");
 372	set_fs(old_fs);
 
 
 
 
 373}
 374
 375static DEFINE_RAW_SPINLOCK(die_lock);
 376
 377void __noreturn die(const char *str, struct pt_regs *regs)
 378{
 379	static int die_counter;
 380	int sig = SIGSEGV;
 
 
 
 381
 382	oops_enter();
 383
 384	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
 385		       SIGSEGV) == NOTIFY_STOP)
 386		sig = 0;
 387
 388	console_verbose();
 389	raw_spin_lock_irq(&die_lock);
 
 
 
 390	bust_spinlocks(1);
 
 
 
 391
 392	printk("%s[#%d]:\n", str, ++die_counter);
 393	show_registers(regs);
 394	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 395	raw_spin_unlock_irq(&die_lock);
 396
 397	oops_exit();
 398
 399	if (in_interrupt())
 400		panic("Fatal exception in interrupt");
 401
 402	if (panic_on_oops) {
 403		printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
 404		ssleep(5);
 405		panic("Fatal exception");
 406	}
 407
 408	if (regs && kexec_should_crash(current))
 409		crash_kexec(regs);
 410
 411	do_exit(sig);
 412}
 413
 414extern struct exception_table_entry __start___dbe_table[];
 415extern struct exception_table_entry __stop___dbe_table[];
 416
 417__asm__(
 418"	.section	__dbe_table, \"a\"\n"
 419"	.previous			\n");
 420
 421/* Given an address, look for it in the exception tables. */
 422static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
 423{
 424	const struct exception_table_entry *e;
 425
 426	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
 427	if (!e)
 428		e = search_module_dbetables(addr);
 429	return e;
 430}
 431
 432asmlinkage void do_be(struct pt_regs *regs)
 433{
 434	const int field = 2 * sizeof(unsigned long);
 435	const struct exception_table_entry *fixup = NULL;
 436	int data = regs->cp0_cause & 4;
 437	int action = MIPS_BE_FATAL;
 438	enum ctx_state prev_state;
 439
 440	prev_state = exception_enter();
 441	/* XXX For now.	 Fixme, this searches the wrong table ...  */
 442	if (data && !user_mode(regs))
 443		fixup = search_dbe_tables(exception_epc(regs));
 444
 445	if (fixup)
 446		action = MIPS_BE_FIXUP;
 447
 448	if (board_be_handler)
 449		action = board_be_handler(regs, fixup != NULL);
 450
 451	switch (action) {
 452	case MIPS_BE_DISCARD:
 453		goto out;
 454	case MIPS_BE_FIXUP:
 455		if (fixup) {
 456			regs->cp0_epc = fixup->nextinsn;
 457			goto out;
 458		}
 459		break;
 460	default:
 461		break;
 462	}
 463
 464	/*
 465	 * Assume it would be too dangerous to continue ...
 466	 */
 467	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
 468	       data ? "Data" : "Instruction",
 469	       field, regs->cp0_epc, field, regs->regs[31]);
 470	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
 471		       SIGBUS) == NOTIFY_STOP)
 472		goto out;
 473
 474	die_if_kernel("Oops", regs);
 475	force_sig(SIGBUS, current);
 476
 477out:
 478	exception_exit(prev_state);
 479}
 480
 481/*
 482 * ll/sc, rdhwr, sync emulation
 483 */
 484
 485#define OPCODE 0xfc000000
 486#define BASE   0x03e00000
 487#define RT     0x001f0000
 488#define OFFSET 0x0000ffff
 489#define LL     0xc0000000
 490#define SC     0xe0000000
 491#define SPEC0  0x00000000
 492#define SPEC3  0x7c000000
 493#define RD     0x0000f800
 494#define FUNC   0x0000003f
 495#define SYNC   0x0000000f
 496#define RDHWR  0x0000003b
 497
 498/*  microMIPS definitions   */
 499#define MM_POOL32A_FUNC 0xfc00ffff
 500#define MM_RDHWR        0x00006b3c
 501#define MM_RS           0x001f0000
 502#define MM_RT           0x03e00000
 503
 504/*
 505 * The ll_bit is cleared by r*_switch.S
 506 */
 507
 508unsigned int ll_bit;
 509struct task_struct *ll_task;
 510
 511static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
 512{
 513	unsigned long value, __user *vaddr;
 514	long offset;
 515
 516	/*
 517	 * analyse the ll instruction that just caused a ri exception
 518	 * and put the referenced address to addr.
 519	 */
 520
 521	/* sign extend offset */
 522	offset = opcode & OFFSET;
 523	offset <<= 16;
 524	offset >>= 16;
 525
 526	vaddr = (unsigned long __user *)
 527		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 528
 529	if ((unsigned long)vaddr & 3)
 530		return SIGBUS;
 531	if (get_user(value, vaddr))
 532		return SIGSEGV;
 533
 534	preempt_disable();
 535
 536	if (ll_task == NULL || ll_task == current) {
 537		ll_bit = 1;
 538	} else {
 539		ll_bit = 0;
 540	}
 541	ll_task = current;
 542
 543	preempt_enable();
 544
 545	regs->regs[(opcode & RT) >> 16] = value;
 546
 547	return 0;
 548}
 549
 550static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
 551{
 552	unsigned long __user *vaddr;
 553	unsigned long reg;
 554	long offset;
 555
 556	/*
 557	 * analyse the sc instruction that just caused a ri exception
 558	 * and put the referenced address to addr.
 559	 */
 560
 561	/* sign extend offset */
 562	offset = opcode & OFFSET;
 563	offset <<= 16;
 564	offset >>= 16;
 565
 566	vaddr = (unsigned long __user *)
 567		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 568	reg = (opcode & RT) >> 16;
 569
 570	if ((unsigned long)vaddr & 3)
 571		return SIGBUS;
 572
 573	preempt_disable();
 574
 575	if (ll_bit == 0 || ll_task != current) {
 576		regs->regs[reg] = 0;
 577		preempt_enable();
 578		return 0;
 579	}
 580
 581	preempt_enable();
 582
 583	if (put_user(regs->regs[reg], vaddr))
 584		return SIGSEGV;
 585
 586	regs->regs[reg] = 1;
 587
 588	return 0;
 589}
 590
 591/*
 592 * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
 593 * opcodes are supposed to result in coprocessor unusable exceptions if
 594 * executed on ll/sc-less processors.  That's the theory.  In practice a
 595 * few processors such as NEC's VR4100 throw reserved instruction exceptions
 596 * instead, so we're doing the emulation thing in both exception handlers.
 597 */
 598static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
 599{
 600	if ((opcode & OPCODE) == LL) {
 601		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 602				1, regs, 0);
 603		return simulate_ll(regs, opcode);
 604	}
 605	if ((opcode & OPCODE) == SC) {
 606		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 607				1, regs, 0);
 608		return simulate_sc(regs, opcode);
 609	}
 610
 611	return -1;			/* Must be something else ... */
 612}
 613
 614/*
 615 * Simulate trapping 'rdhwr' instructions to provide user accessible
 616 * registers not implemented in hardware.
 617 */
 618static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
 619{
 620	struct thread_info *ti = task_thread_info(current);
 621
 622	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 623			1, regs, 0);
 624	switch (rd) {
 625	case 0:		/* CPU number */
 626		regs->regs[rt] = smp_processor_id();
 627		return 0;
 628	case 1:		/* SYNCI length */
 629		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
 630				     current_cpu_data.icache.linesz);
 631		return 0;
 632	case 2:		/* Read count register */
 633		regs->regs[rt] = read_c0_count();
 634		return 0;
 635	case 3:		/* Count register resolution */
 636		switch (current_cpu_type()) {
 637		case CPU_20KC:
 638		case CPU_25KF:
 639			regs->regs[rt] = 1;
 640			break;
 641		default:
 642			regs->regs[rt] = 2;
 643		}
 644		return 0;
 645	case 29:
 646		regs->regs[rt] = ti->tp_value;
 647		return 0;
 648	default:
 649		return -1;
 650	}
 651}
 652
 653static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
 654{
 655	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
 656		int rd = (opcode & RD) >> 11;
 657		int rt = (opcode & RT) >> 16;
 658
 659		simulate_rdhwr(regs, rd, rt);
 660		return 0;
 661	}
 662
 663	/* Not ours.  */
 664	return -1;
 665}
 666
 667static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
 668{
 669	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
 670		int rd = (opcode & MM_RS) >> 16;
 671		int rt = (opcode & MM_RT) >> 21;
 672		simulate_rdhwr(regs, rd, rt);
 673		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 674	}
 675
 676	/* Not ours.  */
 677	return -1;
 678}
 679
 680static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
 681{
 682	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
 683		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 684				1, regs, 0);
 685		return 0;
 686	}
 687
 688	return -1;			/* Must be something else ... */
 689}
 690
 691asmlinkage void do_ov(struct pt_regs *regs)
 692{
 693	enum ctx_state prev_state;
 694	siginfo_t info = {
 695		.si_signo = SIGFPE,
 696		.si_code = FPE_INTOVF,
 697		.si_addr = (void __user *)regs->cp0_epc,
 698	};
 699
 700	prev_state = exception_enter();
 701	die_if_kernel("Integer overflow", regs);
 702
 
 
 
 
 703	force_sig_info(SIGFPE, &info, current);
 704	exception_exit(prev_state);
 705}
 706
 707int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
 708{
 709	struct siginfo si = { 0 };
 710
 711	switch (sig) {
 712	case 0:
 713		return 0;
 714
 715	case SIGFPE:
 716		si.si_addr = fault_addr;
 717		si.si_signo = sig;
 718		/*
 719		 * Inexact can happen together with Overflow or Underflow.
 720		 * Respect the mask to deliver the correct exception.
 721		 */
 722		fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
 723			 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
 724		if (fcr31 & FPU_CSR_INV_X)
 725			si.si_code = FPE_FLTINV;
 726		else if (fcr31 & FPU_CSR_DIV_X)
 727			si.si_code = FPE_FLTDIV;
 728		else if (fcr31 & FPU_CSR_OVF_X)
 729			si.si_code = FPE_FLTOVF;
 730		else if (fcr31 & FPU_CSR_UDF_X)
 731			si.si_code = FPE_FLTUND;
 732		else if (fcr31 & FPU_CSR_INE_X)
 733			si.si_code = FPE_FLTRES;
 734		else
 735			si.si_code = __SI_FAULT;
 736		force_sig_info(sig, &si, current);
 737		return 1;
 738
 739	case SIGBUS:
 740		si.si_addr = fault_addr;
 741		si.si_signo = sig;
 742		si.si_code = BUS_ADRERR;
 743		force_sig_info(sig, &si, current);
 744		return 1;
 745
 746	case SIGSEGV:
 747		si.si_addr = fault_addr;
 748		si.si_signo = sig;
 749		down_read(&current->mm->mmap_sem);
 750		if (find_vma(current->mm, (unsigned long)fault_addr))
 751			si.si_code = SEGV_ACCERR;
 752		else
 753			si.si_code = SEGV_MAPERR;
 754		up_read(&current->mm->mmap_sem);
 755		force_sig_info(sig, &si, current);
 756		return 1;
 757
 758	default:
 759		force_sig(sig, current);
 760		return 1;
 
 
 761	}
 762}
 763
 764static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
 765		       unsigned long old_epc, unsigned long old_ra)
 766{
 767	union mips_instruction inst = { .word = opcode };
 768	void __user *fault_addr;
 769	unsigned long fcr31;
 770	int sig;
 771
 772	/* If it's obviously not an FP instruction, skip it */
 773	switch (inst.i_format.opcode) {
 774	case cop1_op:
 775	case cop1x_op:
 776	case lwc1_op:
 777	case ldc1_op:
 778	case swc1_op:
 779	case sdc1_op:
 780		break;
 781
 782	default:
 783		return -1;
 784	}
 785
 786	/*
 787	 * do_ri skipped over the instruction via compute_return_epc, undo
 788	 * that for the FPU emulator.
 789	 */
 790	regs->cp0_epc = old_epc;
 791	regs->regs[31] = old_ra;
 792
 793	/* Save the FP context to struct thread_struct */
 794	lose_fpu(1);
 795
 796	/* Run the emulator */
 797	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 798				       &fault_addr);
 799	fcr31 = current->thread.fpu.fcr31;
 800
 801	/*
 802	 * We can't allow the emulated instruction to leave any of
 803	 * the cause bits set in $fcr31.
 804	 */
 805	current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
 806
 807	/* Restore the hardware register state */
 808	own_fpu(1);
 809
 810	/* Send a signal if required.  */
 811	process_fpemu_return(sig, fault_addr, fcr31);
 812
 813	return 0;
 814}
 815
 816/*
 817 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
 818 */
 819asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
 820{
 821	enum ctx_state prev_state;
 822	void __user *fault_addr;
 823	int sig;
 824
 825	prev_state = exception_enter();
 826	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
 827		       SIGFPE) == NOTIFY_STOP)
 828		goto out;
 829
 830	/* Clear FCSR.Cause before enabling interrupts */
 831	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
 832	local_irq_enable();
 833
 
 
 
 834	die_if_kernel("FP exception in kernel code", regs);
 835
 836	if (fcr31 & FPU_CSR_UNI_X) {
 
 
 
 837		/*
 838		 * Unimplemented operation exception.  If we've got the full
 839		 * software emulator on-board, let's use it...
 840		 *
 841		 * Force FPU to dump state into task/thread context.  We're
 842		 * moving a lot of data here for what is probably a single
 843		 * instruction, but the alternative is to pre-decode the FP
 844		 * register operands before invoking the emulator, which seems
 845		 * a bit extreme for what should be an infrequent event.
 846		 */
 847		/* Ensure 'resume' not overwrite saved fp context again. */
 848		lose_fpu(1);
 849
 850		/* Run the emulator */
 851		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 852					       &fault_addr);
 853		fcr31 = current->thread.fpu.fcr31;
 854
 855		/*
 856		 * We can't allow the emulated instruction to leave any of
 857		 * the cause bits set in $fcr31.
 858		 */
 859		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
 860
 861		/* Restore the hardware register state */
 862		own_fpu(1);	/* Using the FPU again.	 */
 863	} else {
 864		sig = SIGFPE;
 865		fault_addr = (void __user *) regs->cp0_epc;
 866	}
 867
 868	/* Send a signal if required.  */
 869	process_fpemu_return(sig, fault_addr, fcr31);
 870
 871out:
 872	exception_exit(prev_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 873}
 874
 875void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
 876	const char *str)
 877{
 878	siginfo_t info = { 0 };
 879	char b[40];
 880
 881#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 882	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
 883			 SIGTRAP) == NOTIFY_STOP)
 884		return;
 885#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 886
 887	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
 888		       SIGTRAP) == NOTIFY_STOP)
 889		return;
 890
 891	/*
 892	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
 893	 * insns, even for trap and break codes that indicate arithmetic
 894	 * failures.  Weird ...
 895	 * But should we continue the brokenness???  --macro
 896	 */
 897	switch (code) {
 898	case BRK_OVERFLOW:
 899	case BRK_DIVZERO:
 900		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 901		die_if_kernel(b, regs);
 902		if (code == BRK_DIVZERO)
 903			info.si_code = FPE_INTDIV;
 904		else
 905			info.si_code = FPE_INTOVF;
 906		info.si_signo = SIGFPE;
 
 907		info.si_addr = (void __user *) regs->cp0_epc;
 908		force_sig_info(SIGFPE, &info, current);
 909		break;
 910	case BRK_BUG:
 911		die_if_kernel("Kernel bug detected", regs);
 912		force_sig(SIGTRAP, current);
 913		break;
 914	case BRK_MEMU:
 915		/*
 916		 * This breakpoint code is used by the FPU emulator to retake
 917		 * control of the CPU after executing the instruction from the
 918		 * delay slot of an emulated branch.
 919		 *
 920		 * Terminate if exception was recognized as a delay slot return
 921		 * otherwise handle as normal.
 922		 */
 923		if (do_dsemulret(regs))
 924			return;
 925
 926		die_if_kernel("Math emu break/trap", regs);
 927		force_sig(SIGTRAP, current);
 928		break;
 929	default:
 930		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 931		die_if_kernel(b, regs);
 932		if (si_code) {
 933			info.si_signo = SIGTRAP;
 934			info.si_code = si_code;
 935			force_sig_info(SIGTRAP, &info, current);
 936		} else {
 937			force_sig(SIGTRAP, current);
 938		}
 939	}
 940}
 941
 942asmlinkage void do_bp(struct pt_regs *regs)
 943{
 944	unsigned long epc = msk_isa16_mode(exception_epc(regs));
 945	unsigned int opcode, bcode;
 946	enum ctx_state prev_state;
 947	mm_segment_t seg;
 948
 949	seg = get_fs();
 950	if (!user_mode(regs))
 951		set_fs(KERNEL_DS);
 952
 953	prev_state = exception_enter();
 954	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
 955	if (get_isa16_mode(regs->cp0_epc)) {
 956		u16 instr[2];
 957
 958		if (__get_user(instr[0], (u16 __user *)epc))
 959			goto out_sigsegv;
 960
 961		if (!cpu_has_mmips) {
 962			/* MIPS16e mode */
 963			bcode = (instr[0] >> 5) & 0x3f;
 964		} else if (mm_insn_16bit(instr[0])) {
 965			/* 16-bit microMIPS BREAK */
 966			bcode = instr[0] & 0xf;
 967		} else {
 968			/* 32-bit microMIPS BREAK */
 969			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
 970				goto out_sigsegv;
 971			opcode = (instr[0] << 16) | instr[1];
 972			bcode = (opcode >> 6) & ((1 << 20) - 1);
 973		}
 974	} else {
 975		if (__get_user(opcode, (unsigned int __user *)epc))
 976			goto out_sigsegv;
 977		bcode = (opcode >> 6) & ((1 << 20) - 1);
 978	}
 979
 980	/*
 981	 * There is the ancient bug in the MIPS assemblers that the break
 982	 * code starts left to bit 16 instead to bit 6 in the opcode.
 983	 * Gas is bug-compatible, but not always, grrr...
 984	 * We handle both cases with a simple heuristics.  --macro
 985	 */
 
 986	if (bcode >= (1 << 10))
 987		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
 988
 989	/*
 990	 * notify the kprobe handlers, if instruction is likely to
 991	 * pertain to them.
 992	 */
 993	switch (bcode) {
 994	case BRK_UPROBE:
 995		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
 996			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
 997			goto out;
 998		else
 999			break;
1000	case BRK_UPROBE_XOL:
1001		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1002			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1003			goto out;
1004		else
1005			break;
1006	case BRK_KPROBE_BP:
1007		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1008			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1009			goto out;
1010		else
1011			break;
1012	case BRK_KPROBE_SSTEPBP:
1013		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1014			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1015			goto out;
1016		else
1017			break;
1018	default:
1019		break;
1020	}
1021
1022	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1023
1024out:
1025	set_fs(seg);
1026	exception_exit(prev_state);
1027	return;
1028
1029out_sigsegv:
1030	force_sig(SIGSEGV, current);
1031	goto out;
1032}
1033
1034asmlinkage void do_tr(struct pt_regs *regs)
1035{
1036	u32 opcode, tcode = 0;
1037	enum ctx_state prev_state;
1038	u16 instr[2];
1039	mm_segment_t seg;
1040	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1041
1042	seg = get_fs();
1043	if (!user_mode(regs))
1044		set_fs(get_ds());
1045
1046	prev_state = exception_enter();
1047	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1048	if (get_isa16_mode(regs->cp0_epc)) {
1049		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1050		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1051			goto out_sigsegv;
1052		opcode = (instr[0] << 16) | instr[1];
1053		/* Immediate versions don't provide a code.  */
1054		if (!(opcode & OPCODE))
1055			tcode = (opcode >> 12) & ((1 << 4) - 1);
1056	} else {
1057		if (__get_user(opcode, (u32 __user *)epc))
1058			goto out_sigsegv;
1059		/* Immediate versions don't provide a code.  */
1060		if (!(opcode & OPCODE))
1061			tcode = (opcode >> 6) & ((1 << 10) - 1);
1062	}
1063
1064	do_trap_or_bp(regs, tcode, 0, "Trap");
1065
1066out:
1067	set_fs(seg);
1068	exception_exit(prev_state);
1069	return;
1070
1071out_sigsegv:
1072	force_sig(SIGSEGV, current);
1073	goto out;
1074}
1075
1076asmlinkage void do_ri(struct pt_regs *regs)
1077{
1078	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1079	unsigned long old_epc = regs->cp0_epc;
1080	unsigned long old31 = regs->regs[31];
1081	enum ctx_state prev_state;
1082	unsigned int opcode = 0;
1083	int status = -1;
1084
1085	/*
1086	 * Avoid any kernel code. Just emulate the R2 instruction
1087	 * as quickly as possible.
1088	 */
1089	if (mipsr2_emulation && cpu_has_mips_r6 &&
1090	    likely(user_mode(regs)) &&
1091	    likely(get_user(opcode, epc) >= 0)) {
1092		unsigned long fcr31 = 0;
1093
1094		status = mipsr2_decoder(regs, opcode, &fcr31);
1095		switch (status) {
1096		case 0:
1097		case SIGEMT:
1098			task_thread_info(current)->r2_emul_return = 1;
1099			return;
1100		case SIGILL:
1101			goto no_r2_instr;
1102		default:
1103			process_fpemu_return(status,
1104					     &current->thread.cp0_baduaddr,
1105					     fcr31);
1106			task_thread_info(current)->r2_emul_return = 1;
1107			return;
1108		}
1109	}
1110
1111no_r2_instr:
1112
1113	prev_state = exception_enter();
1114	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1115
1116	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1117		       SIGILL) == NOTIFY_STOP)
1118		goto out;
1119
1120	die_if_kernel("Reserved instruction in kernel code", regs);
1121
1122	if (unlikely(compute_return_epc(regs) < 0))
1123		goto out;
1124
1125	if (!get_isa16_mode(regs->cp0_epc)) {
1126		if (unlikely(get_user(opcode, epc) < 0))
1127			status = SIGSEGV;
1128
1129		if (!cpu_has_llsc && status < 0)
1130			status = simulate_llsc(regs, opcode);
1131
1132		if (status < 0)
1133			status = simulate_rdhwr_normal(regs, opcode);
1134
1135		if (status < 0)
1136			status = simulate_sync(regs, opcode);
1137
1138		if (status < 0)
1139			status = simulate_fp(regs, opcode, old_epc, old31);
1140	} else if (cpu_has_mmips) {
1141		unsigned short mmop[2] = { 0 };
1142
1143		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1144			status = SIGSEGV;
1145		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1146			status = SIGSEGV;
1147		opcode = mmop[0];
1148		opcode = (opcode << 16) | mmop[1];
1149
1150		if (status < 0)
1151			status = simulate_rdhwr_mm(regs, opcode);
1152	}
1153
1154	if (status < 0)
1155		status = SIGILL;
1156
1157	if (unlikely(status > 0)) {
1158		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1159		regs->regs[31] = old31;
1160		force_sig(status, current);
1161	}
1162
1163out:
1164	exception_exit(prev_state);
1165}
1166
1167/*
1168 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1169 * emulated more than some threshold number of instructions, force migration to
1170 * a "CPU" that has FP support.
1171 */
1172static void mt_ase_fp_affinity(void)
1173{
1174#ifdef CONFIG_MIPS_MT_FPAFF
1175	if (mt_fpemul_threshold > 0 &&
1176	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1177		/*
1178		 * If there's no FPU present, or if the application has already
1179		 * restricted the allowed set to exclude any CPUs with FPUs,
1180		 * we'll skip the procedure.
1181		 */
1182		if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1183			cpumask_t tmask;
1184
1185			current->thread.user_cpus_allowed
1186				= current->cpus_allowed;
1187			cpumask_and(&tmask, &current->cpus_allowed,
1188				    &mt_fpu_cpumask);
1189			set_cpus_allowed_ptr(current, &tmask);
1190			set_thread_flag(TIF_FPUBOUND);
1191		}
1192	}
1193#endif /* CONFIG_MIPS_MT_FPAFF */
1194}
1195
1196/*
1197 * No lock; only written during early bootup by CPU 0.
1198 */
1199static RAW_NOTIFIER_HEAD(cu2_chain);
1200
1201int __ref register_cu2_notifier(struct notifier_block *nb)
1202{
1203	return raw_notifier_chain_register(&cu2_chain, nb);
1204}
1205
1206int cu2_notifier_call_chain(unsigned long val, void *v)
1207{
1208	return raw_notifier_call_chain(&cu2_chain, val, v);
1209}
1210
1211static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1212	void *data)
1213{
1214	struct pt_regs *regs = data;
1215
1216	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
 
 
1217			      "instruction", regs);
1218	force_sig(SIGILL, current);
1219
1220	return NOTIFY_OK;
1221}
1222
1223static int wait_on_fp_mode_switch(atomic_t *p)
1224{
1225	/*
1226	 * The FP mode for this task is currently being switched. That may
1227	 * involve modifications to the format of this tasks FP context which
1228	 * make it unsafe to proceed with execution for the moment. Instead,
1229	 * schedule some other task.
1230	 */
1231	schedule();
1232	return 0;
1233}
1234
1235static int enable_restore_fp_context(int msa)
1236{
1237	int err, was_fpu_owner, prior_msa;
1238
1239	/*
1240	 * If an FP mode switch is currently underway, wait for it to
1241	 * complete before proceeding.
1242	 */
1243	wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1244			 wait_on_fp_mode_switch, TASK_KILLABLE);
1245
1246	if (!used_math()) {
1247		/* First time FP context user. */
1248		preempt_disable();
1249		err = init_fpu();
1250		if (msa && !err) {
1251			enable_msa();
1252			_init_msa_upper();
1253			set_thread_flag(TIF_USEDMSA);
1254			set_thread_flag(TIF_MSA_CTX_LIVE);
1255		}
1256		preempt_enable();
1257		if (!err)
1258			set_used_math();
1259		return err;
1260	}
1261
1262	/*
1263	 * This task has formerly used the FP context.
1264	 *
1265	 * If this thread has no live MSA vector context then we can simply
1266	 * restore the scalar FP context. If it has live MSA vector context
1267	 * (that is, it has or may have used MSA since last performing a
1268	 * function call) then we'll need to restore the vector context. This
1269	 * applies even if we're currently only executing a scalar FP
1270	 * instruction. This is because if we were to later execute an MSA
1271	 * instruction then we'd either have to:
1272	 *
1273	 *  - Restore the vector context & clobber any registers modified by
1274	 *    scalar FP instructions between now & then.
1275	 *
1276	 * or
1277	 *
1278	 *  - Not restore the vector context & lose the most significant bits
1279	 *    of all vector registers.
1280	 *
1281	 * Neither of those options is acceptable. We cannot restore the least
1282	 * significant bits of the registers now & only restore the most
1283	 * significant bits later because the most significant bits of any
1284	 * vector registers whose aliased FP register is modified now will have
1285	 * been zeroed. We'd have no way to know that when restoring the vector
1286	 * context & thus may load an outdated value for the most significant
1287	 * bits of a vector register.
1288	 */
1289	if (!msa && !thread_msa_context_live())
1290		return own_fpu(1);
1291
1292	/*
1293	 * This task is using or has previously used MSA. Thus we require
1294	 * that Status.FR == 1.
1295	 */
1296	preempt_disable();
1297	was_fpu_owner = is_fpu_owner();
1298	err = own_fpu_inatomic(0);
1299	if (err)
1300		goto out;
1301
1302	enable_msa();
1303	write_msa_csr(current->thread.fpu.msacsr);
1304	set_thread_flag(TIF_USEDMSA);
1305
1306	/*
1307	 * If this is the first time that the task is using MSA and it has
1308	 * previously used scalar FP in this time slice then we already nave
1309	 * FP context which we shouldn't clobber. We do however need to clear
1310	 * the upper 64b of each vector register so that this task has no
1311	 * opportunity to see data left behind by another.
1312	 */
1313	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1314	if (!prior_msa && was_fpu_owner) {
1315		_init_msa_upper();
1316
1317		goto out;
1318	}
1319
1320	if (!prior_msa) {
1321		/*
1322		 * Restore the least significant 64b of each vector register
1323		 * from the existing scalar FP context.
1324		 */
1325		_restore_fp(current);
1326
1327		/*
1328		 * The task has not formerly used MSA, so clear the upper 64b
1329		 * of each vector register such that it cannot see data left
1330		 * behind by another task.
1331		 */
1332		_init_msa_upper();
1333	} else {
1334		/* We need to restore the vector context. */
1335		restore_msa(current);
1336
1337		/* Restore the scalar FP control & status register */
1338		if (!was_fpu_owner)
1339			write_32bit_cp1_register(CP1_STATUS,
1340						 current->thread.fpu.fcr31);
1341	}
1342
1343out:
1344	preempt_enable();
1345
1346	return 0;
1347}
1348
1349asmlinkage void do_cpu(struct pt_regs *regs)
1350{
1351	enum ctx_state prev_state;
1352	unsigned int __user *epc;
1353	unsigned long old_epc, old31;
1354	void __user *fault_addr;
1355	unsigned int opcode;
1356	unsigned long fcr31;
1357	unsigned int cpid;
1358	int status, err;
1359	unsigned long __maybe_unused flags;
1360	int sig;
1361
1362	prev_state = exception_enter();
 
1363	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1364
1365	if (cpid != 2)
1366		die_if_kernel("do_cpu invoked from kernel context!", regs);
1367
1368	switch (cpid) {
1369	case 0:
1370		epc = (unsigned int __user *)exception_epc(regs);
1371		old_epc = regs->cp0_epc;
1372		old31 = regs->regs[31];
1373		opcode = 0;
1374		status = -1;
1375
1376		if (unlikely(compute_return_epc(regs) < 0))
1377			break;
 
 
 
1378
1379		if (!get_isa16_mode(regs->cp0_epc)) {
1380			if (unlikely(get_user(opcode, epc) < 0))
1381				status = SIGSEGV;
1382
1383			if (!cpu_has_llsc && status < 0)
1384				status = simulate_llsc(regs, opcode);
1385		}
1386
1387		if (status < 0)
1388			status = SIGILL;
1389
1390		if (unlikely(status > 0)) {
1391			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1392			regs->regs[31] = old31;
1393			force_sig(status, current);
1394		}
1395
1396		break;
1397
1398	case 3:
1399		/*
1400		 * The COP3 opcode space and consequently the CP0.Status.CU3
1401		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1402		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1403		 * up the space has been reused for COP1X instructions, that
1404		 * are enabled by the CP0.Status.CU1 bit and consequently
1405		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1406		 * exceptions.  Some FPU-less processors that implement one
1407		 * of these ISAs however use this code erroneously for COP1X
1408		 * instructions.  Therefore we redirect this trap to the FP
1409		 * emulator too.
1410		 */
1411		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1412			force_sig(SIGILL, current);
1413			break;
1414		}
1415		/* Fall through.  */
1416
1417	case 1:
1418		err = enable_restore_fp_context(0);
 
 
 
 
 
 
 
1419
1420		if (raw_cpu_has_fpu && !err)
1421			break;
1422
1423		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1424					       &fault_addr);
1425		fcr31 = current->thread.fpu.fcr31;
1426
1427		/*
1428		 * We can't allow the emulated instruction to leave
1429		 * any of the cause bits set in $fcr31.
1430		 */
1431		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1432
1433		/* Send a signal if required.  */
1434		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1435			mt_ase_fp_affinity();
1436
1437		break;
1438
1439	case 2:
1440		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
 
 
 
1441		break;
1442	}
1443
1444	exception_exit(prev_state);
1445}
1446
1447asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1448{
1449	enum ctx_state prev_state;
1450
1451	prev_state = exception_enter();
1452	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1453	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1454		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1455		goto out;
1456
1457	/* Clear MSACSR.Cause before enabling interrupts */
1458	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1459	local_irq_enable();
1460
1461	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1462	force_sig(SIGFPE, current);
1463out:
1464	exception_exit(prev_state);
1465}
1466
1467asmlinkage void do_msa(struct pt_regs *regs)
1468{
1469	enum ctx_state prev_state;
1470	int err;
1471
1472	prev_state = exception_enter();
1473
1474	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1475		force_sig(SIGILL, current);
1476		goto out;
1477	}
1478
1479	die_if_kernel("do_msa invoked from kernel context!", regs);
1480
1481	err = enable_restore_fp_context(1);
1482	if (err)
1483		force_sig(SIGILL, current);
1484out:
1485	exception_exit(prev_state);
1486}
1487
1488asmlinkage void do_mdmx(struct pt_regs *regs)
1489{
1490	enum ctx_state prev_state;
1491
1492	prev_state = exception_enter();
1493	force_sig(SIGILL, current);
1494	exception_exit(prev_state);
1495}
1496
1497/*
1498 * Called with interrupts disabled.
1499 */
1500asmlinkage void do_watch(struct pt_regs *regs)
1501{
1502	siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
1503	enum ctx_state prev_state;
1504	u32 cause;
1505
1506	prev_state = exception_enter();
1507	/*
1508	 * Clear WP (bit 22) bit of cause register so we don't loop
1509	 * forever.
1510	 */
1511	cause = read_c0_cause();
1512	cause &= ~(1 << 22);
1513	write_c0_cause(cause);
1514
1515	/*
1516	 * If the current thread has the watch registers loaded, save
1517	 * their values and send SIGTRAP.  Otherwise another thread
1518	 * left the registers set, clear them and continue.
1519	 */
1520	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1521		mips_read_watch_registers();
1522		local_irq_enable();
1523		force_sig_info(SIGTRAP, &info, current);
1524	} else {
1525		mips_clear_watch_registers();
1526		local_irq_enable();
1527	}
1528	exception_exit(prev_state);
1529}
1530
1531asmlinkage void do_mcheck(struct pt_regs *regs)
1532{
 
1533	int multi_match = regs->cp0_status & ST0_TS;
1534	enum ctx_state prev_state;
1535	mm_segment_t old_fs = get_fs();
1536
1537	prev_state = exception_enter();
1538	show_regs(regs);
1539
1540	if (multi_match) {
1541		dump_tlb_regs();
1542		pr_info("\n");
 
 
 
 
1543		dump_tlb_all();
1544	}
1545
1546	if (!user_mode(regs))
1547		set_fs(KERNEL_DS);
1548
1549	show_code((unsigned int __user *) regs->cp0_epc);
1550
1551	set_fs(old_fs);
1552
1553	/*
1554	 * Some chips may have other causes of machine check (e.g. SB1
1555	 * graduation timer)
1556	 */
1557	panic("Caught Machine Check exception - %scaused by multiple "
1558	      "matching entries in the TLB.",
1559	      (multi_match) ? "" : "not ");
1560}
1561
1562asmlinkage void do_mt(struct pt_regs *regs)
1563{
1564	int subcode;
1565
1566	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1567			>> VPECONTROL_EXCPT_SHIFT;
1568	switch (subcode) {
1569	case 0:
1570		printk(KERN_DEBUG "Thread Underflow\n");
1571		break;
1572	case 1:
1573		printk(KERN_DEBUG "Thread Overflow\n");
1574		break;
1575	case 2:
1576		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1577		break;
1578	case 3:
1579		printk(KERN_DEBUG "Gating Storage Exception\n");
1580		break;
1581	case 4:
1582		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1583		break;
1584	case 5:
1585		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1586		break;
1587	default:
1588		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1589			subcode);
1590		break;
1591	}
1592	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1593
1594	force_sig(SIGILL, current);
1595}
1596
1597
1598asmlinkage void do_dsp(struct pt_regs *regs)
1599{
1600	if (cpu_has_dsp)
1601		panic("Unexpected DSP exception");
1602
1603	force_sig(SIGILL, current);
1604}
1605
1606asmlinkage void do_reserved(struct pt_regs *regs)
1607{
1608	/*
1609	 * Game over - no way to handle this if it ever occurs.	 Most probably
1610	 * caused by a new unknown cpu type or after another deadly
1611	 * hard/software error.
1612	 */
1613	show_regs(regs);
1614	panic("Caught reserved exception %ld - should not happen.",
1615	      (regs->cp0_cause & 0x7f) >> 2);
1616}
1617
1618static int __initdata l1parity = 1;
1619static int __init nol1parity(char *s)
1620{
1621	l1parity = 0;
1622	return 1;
1623}
1624__setup("nol1par", nol1parity);
1625static int __initdata l2parity = 1;
1626static int __init nol2parity(char *s)
1627{
1628	l2parity = 0;
1629	return 1;
1630}
1631__setup("nol2par", nol2parity);
1632
1633/*
1634 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1635 * it different ways.
1636 */
1637static inline void parity_protection_init(void)
1638{
1639	switch (current_cpu_type()) {
1640	case CPU_24K:
1641	case CPU_34K:
1642	case CPU_74K:
1643	case CPU_1004K:
1644	case CPU_1074K:
1645	case CPU_INTERAPTIV:
1646	case CPU_PROAPTIV:
1647	case CPU_P5600:
1648	case CPU_QEMU_GENERIC:
1649	case CPU_I6400:
1650		{
1651#define ERRCTL_PE	0x80000000
1652#define ERRCTL_L2P	0x00800000
1653			unsigned long errctl;
1654			unsigned int l1parity_present, l2parity_present;
1655
1656			errctl = read_c0_ecc();
1657			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1658
1659			/* probe L1 parity support */
1660			write_c0_ecc(errctl | ERRCTL_PE);
1661			back_to_back_c0_hazard();
1662			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1663
1664			/* probe L2 parity support */
1665			write_c0_ecc(errctl|ERRCTL_L2P);
1666			back_to_back_c0_hazard();
1667			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1668
1669			if (l1parity_present && l2parity_present) {
1670				if (l1parity)
1671					errctl |= ERRCTL_PE;
1672				if (l1parity ^ l2parity)
1673					errctl |= ERRCTL_L2P;
1674			} else if (l1parity_present) {
1675				if (l1parity)
1676					errctl |= ERRCTL_PE;
1677			} else if (l2parity_present) {
1678				if (l2parity)
1679					errctl |= ERRCTL_L2P;
1680			} else {
1681				/* No parity available */
1682			}
1683
1684			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1685
1686			write_c0_ecc(errctl);
1687			back_to_back_c0_hazard();
1688			errctl = read_c0_ecc();
1689			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1690
1691			if (l1parity_present)
1692				printk(KERN_INFO "Cache parity protection %sabled\n",
1693				       (errctl & ERRCTL_PE) ? "en" : "dis");
1694
1695			if (l2parity_present) {
1696				if (l1parity_present && l1parity)
1697					errctl ^= ERRCTL_L2P;
1698				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1699				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1700			}
1701		}
1702		break;
1703
1704	case CPU_5KC:
1705	case CPU_5KE:
1706	case CPU_LOONGSON1:
1707		write_c0_ecc(0x80000000);
1708		back_to_back_c0_hazard();
1709		/* Set the PE bit (bit 31) in the c0_errctl register. */
1710		printk(KERN_INFO "Cache parity protection %sabled\n",
1711		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1712		break;
1713	case CPU_20KC:
1714	case CPU_25KF:
1715		/* Clear the DE bit (bit 16) in the c0_status register. */
1716		printk(KERN_INFO "Enable cache parity protection for "
1717		       "MIPS 20KC/25KF CPUs.\n");
1718		clear_c0_status(ST0_DE);
1719		break;
1720	default:
1721		break;
1722	}
1723}
1724
1725asmlinkage void cache_parity_error(void)
1726{
1727	const int field = 2 * sizeof(unsigned long);
1728	unsigned int reg_val;
1729
1730	/* For the moment, report the problem and hang. */
1731	printk("Cache error exception:\n");
1732	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1733	reg_val = read_c0_cacheerr();
1734	printk("c0_cacheerr == %08x\n", reg_val);
1735
1736	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1737	       reg_val & (1<<30) ? "secondary" : "primary",
1738	       reg_val & (1<<31) ? "data" : "insn");
1739	if ((cpu_has_mips_r2_r6) &&
1740	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1741		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1742			reg_val & (1<<29) ? "ED " : "",
1743			reg_val & (1<<28) ? "ET " : "",
1744			reg_val & (1<<27) ? "ES " : "",
1745			reg_val & (1<<26) ? "EE " : "",
1746			reg_val & (1<<25) ? "EB " : "",
1747			reg_val & (1<<24) ? "EI " : "",
1748			reg_val & (1<<23) ? "E1 " : "",
1749			reg_val & (1<<22) ? "E0 " : "");
1750	} else {
1751		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1752			reg_val & (1<<29) ? "ED " : "",
1753			reg_val & (1<<28) ? "ET " : "",
1754			reg_val & (1<<26) ? "EE " : "",
1755			reg_val & (1<<25) ? "EB " : "",
1756			reg_val & (1<<24) ? "EI " : "",
1757			reg_val & (1<<23) ? "E1 " : "",
1758			reg_val & (1<<22) ? "E0 " : "");
1759	}
1760	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1761
1762#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1763	if (reg_val & (1<<22))
1764		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1765
1766	if (reg_val & (1<<23))
1767		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1768#endif
1769
1770	panic("Can't handle the cache error!");
1771}
1772
1773asmlinkage void do_ftlb(void)
1774{
1775	const int field = 2 * sizeof(unsigned long);
1776	unsigned int reg_val;
1777
1778	/* For the moment, report the problem and hang. */
1779	if ((cpu_has_mips_r2_r6) &&
1780	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1781		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1782		       read_c0_ecc());
1783		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1784		reg_val = read_c0_cacheerr();
1785		pr_err("c0_cacheerr == %08x\n", reg_val);
1786
1787		if ((reg_val & 0xc0000000) == 0xc0000000) {
1788			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1789		} else {
1790			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1791			       reg_val & (1<<30) ? "secondary" : "primary",
1792			       reg_val & (1<<31) ? "data" : "insn");
1793		}
1794	} else {
1795		pr_err("FTLB error exception\n");
1796	}
1797	/* Just print the cacheerr bits for now */
1798	cache_parity_error();
1799}
1800
1801/*
1802 * SDBBP EJTAG debug exception handler.
1803 * We skip the instruction and return to the next instruction.
1804 */
1805void ejtag_exception_handler(struct pt_regs *regs)
1806{
1807	const int field = 2 * sizeof(unsigned long);
1808	unsigned long depc, old_epc, old_ra;
1809	unsigned int debug;
1810
1811	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1812	depc = read_c0_depc();
1813	debug = read_c0_debug();
1814	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1815	if (debug & 0x80000000) {
1816		/*
1817		 * In branch delay slot.
1818		 * We cheat a little bit here and use EPC to calculate the
1819		 * debug return address (DEPC). EPC is restored after the
1820		 * calculation.
1821		 */
1822		old_epc = regs->cp0_epc;
1823		old_ra = regs->regs[31];
1824		regs->cp0_epc = depc;
1825		compute_return_epc(regs);
1826		depc = regs->cp0_epc;
1827		regs->cp0_epc = old_epc;
1828		regs->regs[31] = old_ra;
1829	} else
1830		depc += 4;
1831	write_c0_depc(depc);
1832
1833#if 0
1834	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1835	write_c0_debug(debug | 0x100);
1836#endif
1837}
1838
1839/*
1840 * NMI exception handler.
1841 * No lock; only written during early bootup by CPU 0.
1842 */
1843static RAW_NOTIFIER_HEAD(nmi_chain);
1844
1845int register_nmi_notifier(struct notifier_block *nb)
1846{
1847	return raw_notifier_chain_register(&nmi_chain, nb);
1848}
1849
1850void __noreturn nmi_exception_handler(struct pt_regs *regs)
1851{
1852	char str[100];
1853
1854	nmi_enter();
1855	raw_notifier_call_chain(&nmi_chain, 0, regs);
1856	bust_spinlocks(1);
1857	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1858		 smp_processor_id(), regs->cp0_epc);
1859	regs->cp0_epc = read_c0_errorepc();
1860	die(str, regs);
1861	nmi_exit();
1862}
1863
1864#define VECTORSPACING 0x100	/* for EI/VI mode */
1865
1866unsigned long ebase;
1867unsigned long exception_handlers[32];
1868unsigned long vi_handlers[64];
1869
1870void __init *set_except_vector(int n, void *addr)
1871{
1872	unsigned long handler = (unsigned long) addr;
1873	unsigned long old_handler;
1874
1875#ifdef CONFIG_CPU_MICROMIPS
1876	/*
1877	 * Only the TLB handlers are cache aligned with an even
1878	 * address. All other handlers are on an odd address and
1879	 * require no modification. Otherwise, MIPS32 mode will
1880	 * be entered when handling any TLB exceptions. That
1881	 * would be bad...since we must stay in microMIPS mode.
1882	 */
1883	if (!(handler & 0x1))
1884		handler |= 1;
1885#endif
1886	old_handler = xchg(&exception_handlers[n], handler);
1887
 
1888	if (n == 0 && cpu_has_divec) {
1889#ifdef CONFIG_CPU_MICROMIPS
1890		unsigned long jump_mask = ~((1 << 27) - 1);
1891#else
1892		unsigned long jump_mask = ~((1 << 28) - 1);
1893#endif
1894		u32 *buf = (u32 *)(ebase + 0x200);
1895		unsigned int k0 = 26;
1896		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1897			uasm_i_j(&buf, handler & ~jump_mask);
1898			uasm_i_nop(&buf);
1899		} else {
1900			UASM_i_LA(&buf, k0, handler);
1901			uasm_i_jr(&buf, k0);
1902			uasm_i_nop(&buf);
1903		}
1904		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1905	}
1906	return (void *)old_handler;
1907}
1908
1909static void do_default_vi(void)
1910{
1911	show_regs(get_irq_regs());
1912	panic("Caught unexpected vectored interrupt.");
1913}
1914
1915static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1916{
1917	unsigned long handler;
1918	unsigned long old_handler = vi_handlers[n];
1919	int srssets = current_cpu_data.srsets;
1920	u16 *h;
1921	unsigned char *b;
1922
1923	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1924
1925	if (addr == NULL) {
1926		handler = (unsigned long) do_default_vi;
1927		srs = 0;
1928	} else
1929		handler = (unsigned long) addr;
1930	vi_handlers[n] = handler;
1931
1932	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1933
1934	if (srs >= srssets)
1935		panic("Shadow register set %d not supported", srs);
1936
1937	if (cpu_has_veic) {
1938		if (board_bind_eic_interrupt)
1939			board_bind_eic_interrupt(n, srs);
1940	} else if (cpu_has_vint) {
1941		/* SRSMap is only defined if shadow sets are implemented */
1942		if (srssets > 1)
1943			change_c0_srsmap(0xf << n*4, srs << n*4);
1944	}
1945
1946	if (srs == 0) {
1947		/*
1948		 * If no shadow set is selected then use the default handler
1949		 * that does normal register saving and standard interrupt exit
1950		 */
 
1951		extern char except_vec_vi, except_vec_vi_lui;
1952		extern char except_vec_vi_ori, except_vec_vi_end;
1953		extern char rollback_except_vec_vi;
1954		char *vec_start = using_rollback_handler() ?
1955			&rollback_except_vec_vi : &except_vec_vi;
1956#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1957		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1958		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1959#else
 
 
 
 
 
 
1960		const int lui_offset = &except_vec_vi_lui - vec_start;
1961		const int ori_offset = &except_vec_vi_ori - vec_start;
1962#endif
1963		const int handler_len = &except_vec_vi_end - vec_start;
1964
1965		if (handler_len > VECTORSPACING) {
1966			/*
1967			 * Sigh... panicing won't help as the console
1968			 * is probably not configured :(
1969			 */
1970			panic("VECTORSPACING too small");
1971		}
1972
1973		set_handler(((unsigned long)b - ebase), vec_start,
1974#ifdef CONFIG_CPU_MICROMIPS
1975				(handler_len - 1));
1976#else
1977				handler_len);
1978#endif
1979		h = (u16 *)(b + lui_offset);
1980		*h = (handler >> 16) & 0xffff;
1981		h = (u16 *)(b + ori_offset);
1982		*h = (handler & 0xffff);
 
1983		local_flush_icache_range((unsigned long)b,
1984					 (unsigned long)(b+handler_len));
1985	}
1986	else {
1987		/*
1988		 * In other cases jump directly to the interrupt handler. It
1989		 * is the handler's responsibility to save registers if required
1990		 * (eg hi/lo) and return from the exception using "eret".
 
1991		 */
1992		u32 insn;
1993
1994		h = (u16 *)b;
1995		/* j handler */
1996#ifdef CONFIG_CPU_MICROMIPS
1997		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1998#else
1999		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2000#endif
2001		h[0] = (insn >> 16) & 0xffff;
2002		h[1] = insn & 0xffff;
2003		h[2] = 0;
2004		h[3] = 0;
2005		local_flush_icache_range((unsigned long)b,
2006					 (unsigned long)(b+8));
2007	}
2008
2009	return (void *)old_handler;
2010}
2011
2012void *set_vi_handler(int n, vi_handler_t addr)
2013{
2014	return set_vi_srs_handler(n, addr, 0);
2015}
2016
 
2017extern void tlb_init(void);
 
2018
2019/*
2020 * Timer interrupt
2021 */
2022int cp0_compare_irq;
2023EXPORT_SYMBOL_GPL(cp0_compare_irq);
2024int cp0_compare_irq_shift;
2025
2026/*
2027 * Performance counter IRQ or -1 if shared with timer
2028 */
2029int cp0_perfcount_irq;
2030EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2031
2032/*
2033 * Fast debug channel IRQ or -1 if not present
2034 */
2035int cp0_fdc_irq;
2036EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2037
2038static int noulri;
2039
2040static int __init ulri_disable(char *s)
2041{
2042	pr_info("Disabling ulri\n");
2043	noulri = 1;
2044
2045	return 1;
2046}
2047__setup("noulri", ulri_disable);
2048
2049/* configure STATUS register */
2050static void configure_status(void)
2051{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2052	/*
2053	 * Disable coprocessors and select 32-bit or 64-bit addressing
2054	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2055	 * flag that some firmware may have left set and the TS bit (for
2056	 * IP27).  Set XX for ISA IV code to work.
2057	 */
2058	unsigned int status_set = ST0_CU0;
2059#ifdef CONFIG_64BIT
2060	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2061#endif
2062	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2063		status_set |= ST0_XX;
2064	if (cpu_has_dsp)
2065		status_set |= ST0_MX;
2066
2067	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2068			 status_set);
2069}
2070
2071/* configure HWRENA register */
2072static void configure_hwrena(void)
2073{
2074	unsigned int hwrena = cpu_hwrena_impl_bits;
2075
2076	if (cpu_has_mips_r2_r6)
2077		hwrena |= 0x0000000f;
2078
2079	if (!noulri && cpu_has_userlocal)
2080		hwrena |= (1 << 29);
2081
2082	if (hwrena)
2083		write_c0_hwrena(hwrena);
2084}
2085
2086static void configure_exception_vector(void)
2087{
 
 
2088	if (cpu_has_veic || cpu_has_vint) {
2089		unsigned long sr = set_c0_status(ST0_BEV);
2090		write_c0_ebase(ebase);
2091		write_c0_status(sr);
2092		/* Setting vector spacing enables EI/VI mode  */
2093		change_c0_intctl(0x3e0, VECTORSPACING);
2094	}
2095	if (cpu_has_divec) {
2096		if (cpu_has_mipsmt) {
2097			unsigned int vpflags = dvpe();
2098			set_c0_cause(CAUSEF_IV);
2099			evpe(vpflags);
2100		} else
2101			set_c0_cause(CAUSEF_IV);
2102	}
2103}
2104
2105void per_cpu_trap_init(bool is_boot_cpu)
2106{
2107	unsigned int cpu = smp_processor_id();
2108
2109	configure_status();
2110	configure_hwrena();
2111
2112	configure_exception_vector();
2113
2114	/*
2115	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2116	 *
2117	 *  o read IntCtl.IPTI to determine the timer interrupt
2118	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2119	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2120	 */
2121	if (cpu_has_mips_r2_r6) {
2122		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2123		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2124		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2125		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2126		if (!cp0_fdc_irq)
2127			cp0_fdc_irq = -1;
2128
2129	} else {
2130		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2131		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2132		cp0_perfcount_irq = -1;
2133		cp0_fdc_irq = -1;
2134	}
2135
2136	if (!cpu_data[cpu].asid_cache)
2137		cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
 
 
 
2138
2139	atomic_inc(&init_mm.mm_count);
2140	current->active_mm = &init_mm;
2141	BUG_ON(current->mm);
2142	enter_lazy_tlb(&init_mm, current);
2143
2144	/* Boot CPU's cache setup in setup_arch(). */
2145	if (!is_boot_cpu)
 
2146		cpu_cache_init();
2147	tlb_init();
 
 
 
 
 
 
 
 
 
 
2148	TLBMISS_HANDLER_SETUP();
2149}
2150
2151/* Install CPU exception handler */
2152void set_handler(unsigned long offset, void *addr, unsigned long size)
2153{
2154#ifdef CONFIG_CPU_MICROMIPS
2155	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2156#else
2157	memcpy((void *)(ebase + offset), addr, size);
2158#endif
2159	local_flush_icache_range(ebase + offset, ebase + offset + size);
2160}
2161
2162static char panic_null_cerr[] =
2163	"Trying to set NULL cache error exception handler";
2164
2165/*
2166 * Install uncached CPU exception handler.
2167 * This is suitable only for the cache error exception which is the only
2168 * exception handler that is being run uncached.
2169 */
2170void set_uncached_handler(unsigned long offset, void *addr,
2171	unsigned long size)
2172{
2173	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2174
2175	if (!addr)
2176		panic(panic_null_cerr);
2177
2178	memcpy((void *)(uncached_ebase + offset), addr, size);
2179}
2180
2181static int __initdata rdhwr_noopt;
2182static int __init set_rdhwr_noopt(char *str)
2183{
2184	rdhwr_noopt = 1;
2185	return 1;
2186}
2187
2188__setup("rdhwr_noopt", set_rdhwr_noopt);
2189
2190void __init trap_init(void)
2191{
2192	extern char except_vec3_generic;
2193	extern char except_vec4;
2194	extern char except_vec3_r4000;
2195	unsigned long i;
 
2196
2197	check_wait();
 
 
 
 
 
 
2198
2199	if (cpu_has_veic || cpu_has_vint) {
2200		unsigned long size = 0x200 + VECTORSPACING*64;
2201		ebase = (unsigned long)
2202			__alloc_bootmem(size, 1 << fls(size), 0);
2203	} else {
2204		ebase = CAC_BASE;
2205
2206		if (cpu_has_mips_r2_r6)
2207			ebase += (read_c0_ebase() & 0x3ffff000);
2208	}
2209
2210	if (cpu_has_mmips) {
2211		unsigned int config3 = read_c0_config3();
2212
2213		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2214			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2215		else
2216			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2217	}
2218
2219	if (board_ebase_setup)
2220		board_ebase_setup();
2221	per_cpu_trap_init(true);
2222
2223	/*
2224	 * Copy the generic exception handlers to their final destination.
2225	 * This will be overridden later as suitable for a particular
2226	 * configuration.
2227	 */
2228	set_handler(0x180, &except_vec3_generic, 0x80);
2229
2230	/*
2231	 * Setup default vectors
2232	 */
2233	for (i = 0; i <= 31; i++)
2234		set_except_vector(i, handle_reserved);
2235
2236	/*
2237	 * Copy the EJTAG debug exception vector handler code to it's final
2238	 * destination.
2239	 */
2240	if (cpu_has_ejtag && board_ejtag_handler_setup)
2241		board_ejtag_handler_setup();
2242
2243	/*
2244	 * Only some CPUs have the watch exceptions.
2245	 */
2246	if (cpu_has_watch)
2247		set_except_vector(EXCCODE_WATCH, handle_watch);
2248
2249	/*
2250	 * Initialise interrupt handlers
2251	 */
2252	if (cpu_has_veic || cpu_has_vint) {
2253		int nvec = cpu_has_veic ? 64 : 8;
2254		for (i = 0; i < nvec; i++)
2255			set_vi_handler(i, NULL);
2256	}
2257	else if (cpu_has_divec)
2258		set_handler(0x200, &except_vec4, 0x8);
2259
2260	/*
2261	 * Some CPUs can enable/disable for cache parity detection, but does
2262	 * it different ways.
2263	 */
2264	parity_protection_init();
2265
2266	/*
2267	 * The Data Bus Errors / Instruction Bus Errors are signaled
2268	 * by external hardware.  Therefore these two exceptions
2269	 * may have board specific handlers.
2270	 */
2271	if (board_be_init)
2272		board_be_init();
2273
2274	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2275					rollback_handle_int : handle_int);
2276	set_except_vector(EXCCODE_MOD, handle_tlbm);
2277	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2278	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2279
2280	set_except_vector(EXCCODE_ADEL, handle_adel);
2281	set_except_vector(EXCCODE_ADES, handle_ades);
2282
2283	set_except_vector(EXCCODE_IBE, handle_ibe);
2284	set_except_vector(EXCCODE_DBE, handle_dbe);
2285
2286	set_except_vector(EXCCODE_SYS, handle_sys);
2287	set_except_vector(EXCCODE_BP, handle_bp);
2288	set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri :
2289			  (cpu_has_vtag_icache ?
2290			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2291	set_except_vector(EXCCODE_CPU, handle_cpu);
2292	set_except_vector(EXCCODE_OV, handle_ov);
2293	set_except_vector(EXCCODE_TR, handle_tr);
2294	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2295
2296	if (current_cpu_type() == CPU_R6000 ||
2297	    current_cpu_type() == CPU_R6000A) {
2298		/*
2299		 * The R6000 is the only R-series CPU that features a machine
2300		 * check exception (similar to the R4000 cache error) and
2301		 * unaligned ldc1/sdc1 exception.  The handlers have not been
2302		 * written yet.	 Well, anyway there is no R6000 machine on the
2303		 * current list of targets for Linux/MIPS.
2304		 * (Duh, crap, there is someone with a triple R6k machine)
2305		 */
2306		//set_except_vector(14, handle_mc);
2307		//set_except_vector(15, handle_ndc);
2308	}
2309
2310
2311	if (board_nmi_handler_setup)
2312		board_nmi_handler_setup();
2313
2314	if (cpu_has_fpu && !cpu_has_nofpuex)
2315		set_except_vector(EXCCODE_FPE, handle_fpe);
2316
2317	set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2318
2319	if (cpu_has_rixiex) {
2320		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2321		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2322	}
2323
2324	set_except_vector(EXCCODE_MSADIS, handle_msa);
2325	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2326
2327	if (cpu_has_mcheck)
2328		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2329
2330	if (cpu_has_mipsmt)
2331		set_except_vector(EXCCODE_THREAD, handle_mt);
2332
2333	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2334
2335	if (board_cache_error_setup)
2336		board_cache_error_setup();
2337
2338	if (cpu_has_vce)
2339		/* Special exception: R4[04]00 uses also the divec space. */
2340		set_handler(0x180, &except_vec3_r4000, 0x100);
2341	else if (cpu_has_4kex)
2342		set_handler(0x180, &except_vec3_generic, 0x80);
2343	else
2344		set_handler(0x080, &except_vec3_generic, 0x80);
2345
2346	local_flush_icache_range(ebase, ebase + 0x400);
 
2347
2348	sort_extable(__start___dbe_table, __stop___dbe_table);
2349
2350	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2351}
2352
2353static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2354			    void *v)
2355{
2356	switch (cmd) {
2357	case CPU_PM_ENTER_FAILED:
2358	case CPU_PM_EXIT:
2359		configure_status();
2360		configure_hwrena();
2361		configure_exception_vector();
2362
2363		/* Restore register with CPU number for TLB handlers */
2364		TLBMISS_HANDLER_RESTORE();
2365
2366		break;
2367	}
2368
2369	return NOTIFY_OK;
2370}
2371
2372static struct notifier_block trap_pm_notifier_block = {
2373	.notifier_call = trap_pm_notifier,
2374};
2375
2376static int __init trap_pm_init(void)
2377{
2378	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2379}
2380arch_initcall(trap_pm_init);