Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
   7 * Copyright (C) 1995, 1996 Paul M. Antoine
   8 * Copyright (C) 1998 Ulf Carlsson
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
  12 * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
 
 
  13 */
 
  14#include <linux/bug.h>
  15#include <linux/compiler.h>
 
 
 
  16#include <linux/init.h>
  17#include <linux/kernel.h>
  18#include <linux/mm.h>
  19#include <linux/module.h>
  20#include <linux/sched.h>
 
 
 
  21#include <linux/smp.h>
  22#include <linux/spinlock.h>
  23#include <linux/kallsyms.h>
  24#include <linux/bootmem.h>
  25#include <linux/interrupt.h>
  26#include <linux/ptrace.h>
  27#include <linux/kgdb.h>
  28#include <linux/kdebug.h>
  29#include <linux/kprobes.h>
  30#include <linux/notifier.h>
  31#include <linux/kdb.h>
  32#include <linux/irq.h>
  33#include <linux/perf_event.h>
  34
 
  35#include <asm/bootinfo.h>
  36#include <asm/branch.h>
  37#include <asm/break.h>
  38#include <asm/cop2.h>
  39#include <asm/cpu.h>
 
  40#include <asm/dsp.h>
  41#include <asm/fpu.h>
  42#include <asm/fpu_emulator.h>
 
 
 
 
  43#include <asm/mipsregs.h>
  44#include <asm/mipsmtregs.h>
  45#include <asm/module.h>
  46#include <asm/pgtable.h>
  47#include <asm/ptrace.h>
 
  48#include <asm/sections.h>
  49#include <asm/system.h>
  50#include <asm/tlbdebug.h>
  51#include <asm/traps.h>
  52#include <asm/uaccess.h>
  53#include <asm/watch.h>
  54#include <asm/mmu_context.h>
  55#include <asm/types.h>
  56#include <asm/stacktrace.h>
 
  57#include <asm/uasm.h>
  58
 
 
 
 
  59extern void check_wait(void);
  60extern asmlinkage void r4k_wait(void);
  61extern asmlinkage void rollback_handle_int(void);
  62extern asmlinkage void handle_int(void);
  63extern asmlinkage void handle_tlbm(void);
  64extern asmlinkage void handle_tlbl(void);
  65extern asmlinkage void handle_tlbs(void);
  66extern asmlinkage void handle_adel(void);
  67extern asmlinkage void handle_ades(void);
  68extern asmlinkage void handle_ibe(void);
  69extern asmlinkage void handle_dbe(void);
  70extern asmlinkage void handle_sys(void);
  71extern asmlinkage void handle_bp(void);
  72extern asmlinkage void handle_ri(void);
  73extern asmlinkage void handle_ri_rdhwr_vivt(void);
  74extern asmlinkage void handle_ri_rdhwr(void);
  75extern asmlinkage void handle_cpu(void);
  76extern asmlinkage void handle_ov(void);
  77extern asmlinkage void handle_tr(void);
 
  78extern asmlinkage void handle_fpe(void);
 
 
 
  79extern asmlinkage void handle_mdmx(void);
  80extern asmlinkage void handle_watch(void);
  81extern asmlinkage void handle_mt(void);
  82extern asmlinkage void handle_dsp(void);
  83extern asmlinkage void handle_mcheck(void);
  84extern asmlinkage void handle_reserved(void);
  85
  86extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
  87				    struct mips_fpu_struct *ctx, int has_fpu,
  88				    void *__user *fault_addr);
  89
  90void (*board_be_init)(void);
  91int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
  92void (*board_nmi_handler_setup)(void);
  93void (*board_ejtag_handler_setup)(void);
  94void (*board_bind_eic_interrupt)(int irq, int regset);
 
 
  95
 
 
 
 
 
  96
  97static void show_raw_backtrace(unsigned long reg29)
 
  98{
  99	unsigned long *sp = (unsigned long *)(reg29 & ~3);
 100	unsigned long addr;
 101
 102	printk("Call Trace:");
 103#ifdef CONFIG_KALLSYMS
 104	printk("\n");
 105#endif
 106	while (!kstack_end(sp)) {
 107		unsigned long __user *p =
 108			(unsigned long __user *)(unsigned long)sp++;
 109		if (__get_user(addr, p)) {
 110			printk(" (Bad stack address)");
 111			break;
 112		}
 113		if (__kernel_text_address(addr))
 114			print_ip_sym(addr);
 115	}
 116	printk("\n");
 117}
 118
 119#ifdef CONFIG_KALLSYMS
 120int raw_show_trace;
 121static int __init set_raw_show_trace(char *str)
 122{
 123	raw_show_trace = 1;
 124	return 1;
 125}
 126__setup("raw_show_trace", set_raw_show_trace);
 127#endif
 128
 129static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
 
 130{
 131	unsigned long sp = regs->regs[29];
 132	unsigned long ra = regs->regs[31];
 133	unsigned long pc = regs->cp0_epc;
 134
 135	if (raw_show_trace || !__kernel_text_address(pc)) {
 136		show_raw_backtrace(sp);
 
 
 
 137		return;
 138	}
 139	printk("Call Trace:\n");
 140	do {
 141		print_ip_sym(pc);
 142		pc = unwind_stack(task, &sp, pc, &ra);
 143	} while (pc);
 144	printk("\n");
 145}
 146
 147/*
 148 * This routine abuses get_user()/put_user() to reference pointers
 149 * with at least a bit of error checking ...
 150 */
 151static void show_stacktrace(struct task_struct *task,
 152	const struct pt_regs *regs)
 153{
 154	const int field = 2 * sizeof(unsigned long);
 155	long stackdata;
 156	int i;
 157	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
 158
 159	printk("Stack :");
 160	i = 0;
 161	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
 162		if (i && ((i % (64 / field)) == 0))
 163			printk("\n       ");
 
 
 164		if (i > 39) {
 165			printk(" ...");
 166			break;
 167		}
 168
 169		if (__get_user(stackdata, sp++)) {
 170			printk(" (Bad stack address)");
 171			break;
 172		}
 173
 174		printk(" %0*lx", field, stackdata);
 175		i++;
 176	}
 177	printk("\n");
 178	show_backtrace(task, regs);
 179}
 180
 181void show_stack(struct task_struct *task, unsigned long *sp)
 182{
 183	struct pt_regs regs;
 
 
 184	if (sp) {
 185		regs.regs[29] = (unsigned long)sp;
 186		regs.regs[31] = 0;
 187		regs.cp0_epc = 0;
 188	} else {
 189		if (task && task != current) {
 190			regs.regs[29] = task->thread.reg29;
 191			regs.regs[31] = 0;
 192			regs.cp0_epc = task->thread.reg31;
 193#ifdef CONFIG_KGDB_KDB
 194		} else if (atomic_read(&kgdb_active) != -1 &&
 195			   kdb_current_regs) {
 196			memcpy(&regs, kdb_current_regs, sizeof(regs));
 197#endif /* CONFIG_KGDB_KDB */
 198		} else {
 199			prepare_frametrace(&regs);
 200		}
 201	}
 202	show_stacktrace(task, &regs);
 203}
 204
 205/*
 206 * The architecture-independent dump_stack generator
 207 */
 208void dump_stack(void)
 209{
 210	struct pt_regs regs;
 211
 212	prepare_frametrace(&regs);
 213	show_backtrace(current, &regs);
 214}
 215
 216EXPORT_SYMBOL(dump_stack);
 217
 218static void show_code(unsigned int __user *pc)
 219{
 220	long i;
 221	unsigned short __user *pc16 = NULL;
 222
 223	printk("\nCode:");
 224
 225	if ((unsigned long)pc & 1)
 226		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
 
 227	for(i = -3 ; i < 6 ; i++) {
 228		unsigned int insn;
 229		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
 230			printk(" (Bad address in epc)\n");
 231			break;
 
 
 
 
 
 
 
 
 
 
 232		}
 233		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
 234	}
 
 
 
 
 
 235}
 236
 237static void __show_regs(const struct pt_regs *regs)
 238{
 239	const int field = 2 * sizeof(unsigned long);
 240	unsigned int cause = regs->cp0_cause;
 
 241	int i;
 242
 243	printk("Cpu %d\n", smp_processor_id());
 244
 245	/*
 246	 * Saved main processor registers
 247	 */
 248	for (i = 0; i < 32; ) {
 249		if ((i % 4) == 0)
 250			printk("$%2d   :", i);
 251		if (i == 0)
 252			printk(" %0*lx", field, 0UL);
 253		else if (i == 26 || i == 27)
 254			printk(" %*s", field, "");
 255		else
 256			printk(" %0*lx", field, regs->regs[i]);
 257
 258		i++;
 259		if ((i % 4) == 0)
 260			printk("\n");
 261	}
 262
 263#ifdef CONFIG_CPU_HAS_SMARTMIPS
 264	printk("Acx    : %0*lx\n", field, regs->acx);
 265#endif
 266	printk("Hi    : %0*lx\n", field, regs->hi);
 267	printk("Lo    : %0*lx\n", field, regs->lo);
 
 
 268
 269	/*
 270	 * Saved cp0 registers
 271	 */
 272	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
 273	       (void *) regs->cp0_epc);
 274	printk("    %s\n", print_tainted());
 275	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
 276	       (void *) regs->regs[31]);
 277
 278	printk("Status: %08x    ", (uint32_t) regs->cp0_status);
 279
 280	if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
 281		if (regs->cp0_status & ST0_KUO)
 282			printk("KUo ");
 283		if (regs->cp0_status & ST0_IEO)
 284			printk("IEo ");
 285		if (regs->cp0_status & ST0_KUP)
 286			printk("KUp ");
 287		if (regs->cp0_status & ST0_IEP)
 288			printk("IEp ");
 289		if (regs->cp0_status & ST0_KUC)
 290			printk("KUc ");
 291		if (regs->cp0_status & ST0_IEC)
 292			printk("IEc ");
 293	} else {
 294		if (regs->cp0_status & ST0_KX)
 295			printk("KX ");
 296		if (regs->cp0_status & ST0_SX)
 297			printk("SX ");
 298		if (regs->cp0_status & ST0_UX)
 299			printk("UX ");
 300		switch (regs->cp0_status & ST0_KSU) {
 301		case KSU_USER:
 302			printk("USER ");
 303			break;
 304		case KSU_SUPERVISOR:
 305			printk("SUPERVISOR ");
 306			break;
 307		case KSU_KERNEL:
 308			printk("KERNEL ");
 309			break;
 310		default:
 311			printk("BAD_MODE ");
 312			break;
 313		}
 314		if (regs->cp0_status & ST0_ERL)
 315			printk("ERL ");
 316		if (regs->cp0_status & ST0_EXL)
 317			printk("EXL ");
 318		if (regs->cp0_status & ST0_IE)
 319			printk("IE ");
 320	}
 321	printk("\n");
 322
 323	printk("Cause : %08x\n", cause);
 
 324
 325	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 326	if (1 <= cause && cause <= 5)
 327		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
 328
 329	printk("PrId  : %08x (%s)\n", read_c0_prid(),
 330	       cpu_name_string());
 331}
 332
 333/*
 334 * FIXME: really the generic show_regs should take a const pointer argument.
 335 */
 336void show_regs(struct pt_regs *regs)
 337{
 338	__show_regs((struct pt_regs *)regs);
 
 339}
 340
 341void show_registers(struct pt_regs *regs)
 342{
 343	const int field = 2 * sizeof(unsigned long);
 344
 345	__show_regs(regs);
 346	print_modules();
 347	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
 348	       current->comm, current->pid, current_thread_info(), current,
 349	      field, current_thread_info()->tp_value);
 350	if (cpu_has_userlocal) {
 351		unsigned long tls;
 352
 353		tls = read_c0_userlocal();
 354		if (tls != current_thread_info()->tp_value)
 355			printk("*HwTLS: %0*lx\n", field, tls);
 356	}
 357
 358	show_stacktrace(current, regs);
 359	show_code((unsigned int __user *) regs->cp0_epc);
 360	printk("\n");
 361}
 362
 363static int regs_to_trapnr(struct pt_regs *regs)
 364{
 365	return (regs->cp0_cause >> 2) & 0x1f;
 366}
 367
 368static DEFINE_RAW_SPINLOCK(die_lock);
 369
 370void __noreturn die(const char *str, struct pt_regs *regs)
 371{
 372	static int die_counter;
 373	int sig = SIGSEGV;
 374#ifdef CONFIG_MIPS_MT_SMTC
 375	unsigned long dvpret;
 376#endif /* CONFIG_MIPS_MT_SMTC */
 377
 378	oops_enter();
 379
 380	if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP)
 
 381		sig = 0;
 382
 383	console_verbose();
 384	raw_spin_lock_irq(&die_lock);
 385#ifdef CONFIG_MIPS_MT_SMTC
 386	dvpret = dvpe();
 387#endif /* CONFIG_MIPS_MT_SMTC */
 388	bust_spinlocks(1);
 389#ifdef CONFIG_MIPS_MT_SMTC
 390	mips_mt_regdump(dvpret);
 391#endif /* CONFIG_MIPS_MT_SMTC */
 392
 393	printk("%s[#%d]:\n", str, ++die_counter);
 394	show_registers(regs);
 395	add_taint(TAINT_DIE);
 396	raw_spin_unlock_irq(&die_lock);
 397
 398	oops_exit();
 399
 400	if (in_interrupt())
 401		panic("Fatal exception in interrupt");
 402
 403	if (panic_on_oops) {
 404		printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
 405		ssleep(5);
 406		panic("Fatal exception");
 407	}
 408
 409	do_exit(sig);
 
 
 
 410}
 411
 412extern struct exception_table_entry __start___dbe_table[];
 413extern struct exception_table_entry __stop___dbe_table[];
 414
 415__asm__(
 416"	.section	__dbe_table, \"a\"\n"
 417"	.previous			\n");
 418
 419/* Given an address, look for it in the exception tables. */
 420static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
 421{
 422	const struct exception_table_entry *e;
 423
 424	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
 
 425	if (!e)
 426		e = search_module_dbetables(addr);
 427	return e;
 428}
 429
 430asmlinkage void do_be(struct pt_regs *regs)
 431{
 432	const int field = 2 * sizeof(unsigned long);
 433	const struct exception_table_entry *fixup = NULL;
 434	int data = regs->cp0_cause & 4;
 435	int action = MIPS_BE_FATAL;
 
 436
 437	/* XXX For now.  Fixme, this searches the wrong table ...  */
 
 438	if (data && !user_mode(regs))
 439		fixup = search_dbe_tables(exception_epc(regs));
 440
 441	if (fixup)
 442		action = MIPS_BE_FIXUP;
 443
 444	if (board_be_handler)
 445		action = board_be_handler(regs, fixup != NULL);
 
 
 446
 447	switch (action) {
 448	case MIPS_BE_DISCARD:
 449		return;
 450	case MIPS_BE_FIXUP:
 451		if (fixup) {
 452			regs->cp0_epc = fixup->nextinsn;
 453			return;
 454		}
 455		break;
 456	default:
 457		break;
 458	}
 459
 460	/*
 461	 * Assume it would be too dangerous to continue ...
 462	 */
 463	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
 464	       data ? "Data" : "Instruction",
 465	       field, regs->cp0_epc, field, regs->regs[31]);
 466	if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS)
 467	    == NOTIFY_STOP)
 468		return;
 469
 470	die_if_kernel("Oops", regs);
 471	force_sig(SIGBUS, current);
 
 
 
 472}
 473
 474/*
 475 * ll/sc, rdhwr, sync emulation
 476 */
 477
 478#define OPCODE 0xfc000000
 479#define BASE   0x03e00000
 480#define RT     0x001f0000
 481#define OFFSET 0x0000ffff
 482#define LL     0xc0000000
 483#define SC     0xe0000000
 484#define SPEC0  0x00000000
 485#define SPEC3  0x7c000000
 486#define RD     0x0000f800
 487#define FUNC   0x0000003f
 488#define SYNC   0x0000000f
 489#define RDHWR  0x0000003b
 490
 
 
 
 
 
 
 491/*
 492 * The ll_bit is cleared by r*_switch.S
 493 */
 494
 495unsigned int ll_bit;
 496struct task_struct *ll_task;
 497
 498static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
 499{
 500	unsigned long value, __user *vaddr;
 501	long offset;
 502
 503	/*
 504	 * analyse the ll instruction that just caused a ri exception
 505	 * and put the referenced address to addr.
 506	 */
 507
 508	/* sign extend offset */
 509	offset = opcode & OFFSET;
 510	offset <<= 16;
 511	offset >>= 16;
 512
 513	vaddr = (unsigned long __user *)
 514	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 515
 516	if ((unsigned long)vaddr & 3)
 517		return SIGBUS;
 518	if (get_user(value, vaddr))
 519		return SIGSEGV;
 520
 521	preempt_disable();
 522
 523	if (ll_task == NULL || ll_task == current) {
 524		ll_bit = 1;
 525	} else {
 526		ll_bit = 0;
 527	}
 528	ll_task = current;
 529
 530	preempt_enable();
 531
 532	regs->regs[(opcode & RT) >> 16] = value;
 533
 534	return 0;
 535}
 536
 537static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
 538{
 539	unsigned long __user *vaddr;
 540	unsigned long reg;
 541	long offset;
 542
 543	/*
 544	 * analyse the sc instruction that just caused a ri exception
 545	 * and put the referenced address to addr.
 546	 */
 547
 548	/* sign extend offset */
 549	offset = opcode & OFFSET;
 550	offset <<= 16;
 551	offset >>= 16;
 552
 553	vaddr = (unsigned long __user *)
 554	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 555	reg = (opcode & RT) >> 16;
 556
 557	if ((unsigned long)vaddr & 3)
 558		return SIGBUS;
 559
 560	preempt_disable();
 561
 562	if (ll_bit == 0 || ll_task != current) {
 563		regs->regs[reg] = 0;
 564		preempt_enable();
 565		return 0;
 566	}
 567
 568	preempt_enable();
 569
 570	if (put_user(regs->regs[reg], vaddr))
 571		return SIGSEGV;
 572
 573	regs->regs[reg] = 1;
 574
 575	return 0;
 576}
 577
 578/*
 579 * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
 580 * opcodes are supposed to result in coprocessor unusable exceptions if
 581 * executed on ll/sc-less processors.  That's the theory.  In practice a
 582 * few processors such as NEC's VR4100 throw reserved instruction exceptions
 583 * instead, so we're doing the emulation thing in both exception handlers.
 584 */
 585static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
 586{
 587	if ((opcode & OPCODE) == LL) {
 588		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 589				1, regs, 0);
 590		return simulate_ll(regs, opcode);
 591	}
 592	if ((opcode & OPCODE) == SC) {
 593		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 594				1, regs, 0);
 595		return simulate_sc(regs, opcode);
 596	}
 597
 598	return -1;			/* Must be something else ... */
 599}
 600
 601/*
 602 * Simulate trapping 'rdhwr' instructions to provide user accessible
 603 * registers not implemented in hardware.
 604 */
 605static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
 606{
 607	struct thread_info *ti = task_thread_info(current);
 608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 609	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
 610		int rd = (opcode & RD) >> 11;
 611		int rt = (opcode & RT) >> 16;
 612		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 613				1, regs, 0);
 614		switch (rd) {
 615		case 0:		/* CPU number */
 616			regs->regs[rt] = smp_processor_id();
 617			return 0;
 618		case 1:		/* SYNCI length */
 619			regs->regs[rt] = min(current_cpu_data.dcache.linesz,
 620					     current_cpu_data.icache.linesz);
 621			return 0;
 622		case 2:		/* Read count register */
 623			regs->regs[rt] = read_c0_count();
 624			return 0;
 625		case 3:		/* Count register resolution */
 626			switch (current_cpu_data.cputype) {
 627			case CPU_20KC:
 628			case CPU_25KF:
 629				regs->regs[rt] = 1;
 630				break;
 631			default:
 632				regs->regs[rt] = 2;
 633			}
 634			return 0;
 635		case 29:
 636			regs->regs[rt] = ti->tp_value;
 637			return 0;
 638		default:
 639			return -1;
 640		}
 641	}
 642
 643	/* Not ours.  */
 644	return -1;
 645}
 646
 647static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
 648{
 649	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
 650		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 651				1, regs, 0);
 652		return 0;
 653	}
 654
 655	return -1;			/* Must be something else ... */
 656}
 657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 658asmlinkage void do_ov(struct pt_regs *regs)
 659{
 660	siginfo_t info;
 661
 
 662	die_if_kernel("Integer overflow", regs);
 663
 664	info.si_code = FPE_INTOVF;
 665	info.si_signo = SIGFPE;
 666	info.si_errno = 0;
 667	info.si_addr = (void __user *) regs->cp0_epc;
 668	force_sig_info(SIGFPE, &info, current);
 669}
 670
 671static int process_fpemu_return(int sig, void __user *fault_addr)
 672{
 673	if (sig == SIGSEGV || sig == SIGBUS) {
 674		struct siginfo si = {0};
 675		si.si_addr = fault_addr;
 676		si.si_signo = sig;
 677		if (sig == SIGSEGV) {
 678			if (find_vma(current->mm, (unsigned long)fault_addr))
 679				si.si_code = SEGV_ACCERR;
 680			else
 681				si.si_code = SEGV_MAPERR;
 682		} else {
 683			si.si_code = BUS_ADRERR;
 684		}
 685		force_sig_info(sig, &si, current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 686		return 1;
 687	} else if (sig) {
 688		force_sig(sig, current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 689		return 1;
 690	} else {
 691		return 0;
 692	}
 693}
 694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 695/*
 696 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
 697 */
 698asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
 699{
 700	siginfo_t info = {0};
 
 
 
 
 
 
 
 
 
 
 
 701
 702	if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE)
 703	    == NOTIFY_STOP)
 704		return;
 705	die_if_kernel("FP exception in kernel code", regs);
 706
 707	if (fcr31 & FPU_CSR_UNI_X) {
 708		int sig;
 709		void __user *fault_addr = NULL;
 710
 711		/*
 712		 * Unimplemented operation exception.  If we've got the full
 713		 * software emulator on-board, let's use it...
 714		 *
 715		 * Force FPU to dump state into task/thread context.  We're
 716		 * moving a lot of data here for what is probably a single
 717		 * instruction, but the alternative is to pre-decode the FP
 718		 * register operands before invoking the emulator, which seems
 719		 * a bit extreme for what should be an infrequent event.
 720		 */
 721		/* Ensure 'resume' not overwrite saved fp context again. */
 722		lose_fpu(1);
 723
 724		/* Run the emulator */
 725		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 726					       &fault_addr);
 727
 728		/*
 729		 * We can't allow the emulated instruction to leave any of
 730		 * the cause bit set in $fcr31.
 731		 */
 732		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
 
 733
 734		/* Restore the hardware register state */
 735		own_fpu(1);	/* Using the FPU again.  */
 
 
 
 
 736
 737		/* If something went wrong, signal */
 738		process_fpemu_return(sig, fault_addr);
 739
 740		return;
 741	} else if (fcr31 & FPU_CSR_INV_X)
 742		info.si_code = FPE_FLTINV;
 743	else if (fcr31 & FPU_CSR_DIV_X)
 744		info.si_code = FPE_FLTDIV;
 745	else if (fcr31 & FPU_CSR_OVF_X)
 746		info.si_code = FPE_FLTOVF;
 747	else if (fcr31 & FPU_CSR_UDF_X)
 748		info.si_code = FPE_FLTUND;
 749	else if (fcr31 & FPU_CSR_INE_X)
 750		info.si_code = FPE_FLTRES;
 751	else
 752		info.si_code = __SI_FAULT;
 753	info.si_signo = SIGFPE;
 754	info.si_errno = 0;
 755	info.si_addr = (void __user *) regs->cp0_epc;
 756	force_sig_info(SIGFPE, &info, current);
 757}
 758
 759static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 760	const char *str)
 761{
 762	siginfo_t info;
 763	char b[40];
 764
 765#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 766	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 
 767		return;
 768#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 769
 770	if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 
 771		return;
 772
 773	/*
 774	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
 775	 * insns, even for trap and break codes that indicate arithmetic
 776	 * failures.  Weird ...
 777	 * But should we continue the brokenness???  --macro
 778	 */
 779	switch (code) {
 780	case BRK_OVERFLOW:
 781	case BRK_DIVZERO:
 782		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 783		die_if_kernel(b, regs);
 784		if (code == BRK_DIVZERO)
 785			info.si_code = FPE_INTDIV;
 786		else
 787			info.si_code = FPE_INTOVF;
 788		info.si_signo = SIGFPE;
 789		info.si_errno = 0;
 790		info.si_addr = (void __user *) regs->cp0_epc;
 791		force_sig_info(SIGFPE, &info, current);
 792		break;
 793	case BRK_BUG:
 794		die_if_kernel("Kernel bug detected", regs);
 795		force_sig(SIGTRAP, current);
 796		break;
 797	case BRK_MEMU:
 798		/*
 799		 * Address errors may be deliberately induced by the FPU
 800		 * emulator to retake control of the CPU after executing the
 801		 * instruction in the delay slot of an emulated branch.
 802		 *
 803		 * Terminate if exception was recognized as a delay slot return
 804		 * otherwise handle as normal.
 805		 */
 806		if (do_dsemulret(regs))
 807			return;
 808
 809		die_if_kernel("Math emu break/trap", regs);
 810		force_sig(SIGTRAP, current);
 811		break;
 812	default:
 813		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 814		die_if_kernel(b, regs);
 815		force_sig(SIGTRAP, current);
 
 
 
 
 816	}
 817}
 818
 819asmlinkage void do_bp(struct pt_regs *regs)
 820{
 
 821	unsigned int opcode, bcode;
 
 
 822
 823	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
 824		goto out_sigsegv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 825
 826	/*
 827	 * There is the ancient bug in the MIPS assemblers that the break
 828	 * code starts left to bit 16 instead to bit 6 in the opcode.
 829	 * Gas is bug-compatible, but not always, grrr...
 830	 * We handle both cases with a simple heuristics.  --macro
 831	 */
 832	bcode = ((opcode >> 6) & ((1 << 20) - 1));
 833	if (bcode >= (1 << 10))
 834		bcode >>= 10;
 835
 836	/*
 837	 * notify the kprobe handlers, if instruction is likely to
 838	 * pertain to them.
 839	 */
 840	switch (bcode) {
 
 
 
 
 
 
 
 
 
 
 
 
 841	case BRK_KPROBE_BP:
 842		if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 843			return;
 
 844		else
 845			break;
 846	case BRK_KPROBE_SSTEPBP:
 847		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 848			return;
 
 849		else
 850			break;
 851	default:
 852		break;
 853	}
 854
 855	do_trap_or_bp(regs, bcode, "Break");
 
 
 
 856	return;
 857
 858out_sigsegv:
 859	force_sig(SIGSEGV, current);
 
 860}
 861
 862asmlinkage void do_tr(struct pt_regs *regs)
 863{
 864	unsigned int opcode, tcode = 0;
 865
 866	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
 867		goto out_sigsegv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868
 869	/* Immediate versions don't provide a code.  */
 870	if (!(opcode & OPCODE))
 871		tcode = ((opcode >> 6) & ((1 << 10) - 1));
 872
 873	do_trap_or_bp(regs, tcode, "Trap");
 
 874	return;
 875
 876out_sigsegv:
 877	force_sig(SIGSEGV, current);
 
 878}
 879
 880asmlinkage void do_ri(struct pt_regs *regs)
 881{
 882	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
 883	unsigned long old_epc = regs->cp0_epc;
 
 
 884	unsigned int opcode = 0;
 885	int status = -1;
 886
 887	if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL)
 888	    == NOTIFY_STOP)
 889		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 890
 891	die_if_kernel("Reserved instruction in kernel code", regs);
 892
 893	if (unlikely(compute_return_epc(regs) < 0))
 894		return;
 895
 896	if (unlikely(get_user(opcode, epc) < 0))
 897		status = SIGSEGV;
 
 898
 899	if (!cpu_has_llsc && status < 0)
 900		status = simulate_llsc(regs, opcode);
 901
 902	if (status < 0)
 903		status = simulate_rdhwr(regs, opcode);
 904
 905	if (status < 0)
 906		status = simulate_sync(regs, opcode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 907
 908	if (status < 0)
 909		status = SIGILL;
 910
 911	if (unlikely(status > 0)) {
 912		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
 913		force_sig(status, current);
 
 914	}
 915}
 916
 917/*
 918 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
 919 * emulated more than some threshold number of instructions, force migration to
 920 * a "CPU" that has FP support.
 921 */
 922static void mt_ase_fp_affinity(void)
 923{
 924#ifdef CONFIG_MIPS_MT_FPAFF
 925	if (mt_fpemul_threshold > 0 &&
 926	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
 927		/*
 928		 * If there's no FPU present, or if the application has already
 929		 * restricted the allowed set to exclude any CPUs with FPUs,
 930		 * we'll skip the procedure.
 931		 */
 932		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
 933			cpumask_t tmask;
 934
 935			current->thread.user_cpus_allowed
 936				= current->cpus_allowed;
 937			cpus_and(tmask, current->cpus_allowed,
 938				mt_fpu_cpumask);
 939			set_cpus_allowed_ptr(current, &tmask);
 940			set_thread_flag(TIF_FPUBOUND);
 941		}
 942	}
 943#endif /* CONFIG_MIPS_MT_FPAFF */
 944}
 945
 946/*
 947 * No lock; only written during early bootup by CPU 0.
 948 */
 949static RAW_NOTIFIER_HEAD(cu2_chain);
 950
 951int __ref register_cu2_notifier(struct notifier_block *nb)
 952{
 953	return raw_notifier_chain_register(&cu2_chain, nb);
 954}
 955
 956int cu2_notifier_call_chain(unsigned long val, void *v)
 957{
 958	return raw_notifier_call_chain(&cu2_chain, val, v);
 959}
 960
 961static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
 962        void *data)
 963{
 964	struct pt_regs *regs = data;
 965
 966	switch (action) {
 967	default:
 968		die_if_kernel("Unhandled kernel unaligned access or invalid "
 969			      "instruction", regs);
 970		/* Fall through  */
 
 
 
 971
 972	case CU2_EXCEPTION:
 973		force_sig(SIGILL, current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974	}
 975
 976	return NOTIFY_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 977}
 978
 
 
 
 
 
 
 
 
 
 979asmlinkage void do_cpu(struct pt_regs *regs)
 980{
 
 981	unsigned int __user *epc;
 982	unsigned long old_epc;
 983	unsigned int opcode;
 984	unsigned int cpid;
 985	int status;
 986	unsigned long __maybe_unused flags;
 987
 988	die_if_kernel("do_cpu invoked from kernel context!", regs);
 989
 
 990	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
 991
 
 
 
 992	switch (cpid) {
 993	case 0:
 994		epc = (unsigned int __user *)exception_epc(regs);
 995		old_epc = regs->cp0_epc;
 
 996		opcode = 0;
 997		status = -1;
 998
 999		if (unlikely(compute_return_epc(regs) < 0))
1000			return;
1001
1002		if (unlikely(get_user(opcode, epc) < 0))
1003			status = SIGSEGV;
1004
1005		if (!cpu_has_llsc && status < 0)
1006			status = simulate_llsc(regs, opcode);
 
1007
1008		if (status < 0)
1009			status = simulate_rdhwr(regs, opcode);
 
1010
1011		if (status < 0)
1012			status = SIGILL;
1013
1014		if (unlikely(status > 0)) {
1015			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1016			force_sig(status, current);
 
1017		}
1018
1019		return;
1020
1021	case 1:
1022		if (used_math())	/* Using the FPU again.  */
1023			own_fpu(1);
1024		else {			/* First time FPU user.  */
1025			init_fpu();
1026			set_used_math();
 
 
 
 
 
 
 
 
 
 
 
1027		}
 
 
 
 
 
1028
1029		if (!raw_cpu_has_fpu) {
1030			int sig;
1031			void __user *fault_addr = NULL;
1032			sig = fpu_emulator_cop1Handler(regs,
1033						       &current->thread.fpu,
1034						       0, &fault_addr);
1035			if (!process_fpemu_return(sig, fault_addr))
1036				mt_ase_fp_affinity();
1037		}
1038
1039		return;
 
1040
1041	case 2:
1042		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1043		return;
 
 
 
 
 
 
 
 
 
 
1044
 
 
 
 
1045	case 3:
 
 
 
 
 
 
1046		break;
1047	}
1048
1049	force_sig(SIGILL, current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1050}
1051
1052asmlinkage void do_mdmx(struct pt_regs *regs)
1053{
1054	force_sig(SIGILL, current);
 
 
 
 
1055}
1056
1057/*
1058 * Called with interrupts disabled.
1059 */
1060asmlinkage void do_watch(struct pt_regs *regs)
1061{
1062	u32 cause;
1063
 
1064	/*
1065	 * Clear WP (bit 22) bit of cause register so we don't loop
1066	 * forever.
1067	 */
1068	cause = read_c0_cause();
1069	cause &= ~(1 << 22);
1070	write_c0_cause(cause);
1071
1072	/*
1073	 * If the current thread has the watch registers loaded, save
1074	 * their values and send SIGTRAP.  Otherwise another thread
1075	 * left the registers set, clear them and continue.
1076	 */
1077	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1078		mips_read_watch_registers();
1079		local_irq_enable();
1080		force_sig(SIGTRAP, current);
1081	} else {
1082		mips_clear_watch_registers();
1083		local_irq_enable();
1084	}
 
1085}
1086
1087asmlinkage void do_mcheck(struct pt_regs *regs)
1088{
1089	const int field = 2 * sizeof(unsigned long);
1090	int multi_match = regs->cp0_status & ST0_TS;
 
1091
 
1092	show_regs(regs);
1093
1094	if (multi_match) {
1095		printk("Index   : %0x\n", read_c0_index());
1096		printk("Pagemask: %0x\n", read_c0_pagemask());
1097		printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1098		printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1099		printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1100		printk("\n");
1101		dump_tlb_all();
1102	}
1103
1104	show_code((unsigned int __user *) regs->cp0_epc);
1105
1106	/*
1107	 * Some chips may have other causes of machine check (e.g. SB1
1108	 * graduation timer)
1109	 */
1110	panic("Caught Machine Check exception - %scaused by multiple "
1111	      "matching entries in the TLB.",
1112	      (multi_match) ? "" : "not ");
1113}
1114
1115asmlinkage void do_mt(struct pt_regs *regs)
1116{
1117	int subcode;
1118
1119	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1120			>> VPECONTROL_EXCPT_SHIFT;
1121	switch (subcode) {
1122	case 0:
1123		printk(KERN_DEBUG "Thread Underflow\n");
1124		break;
1125	case 1:
1126		printk(KERN_DEBUG "Thread Overflow\n");
1127		break;
1128	case 2:
1129		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1130		break;
1131	case 3:
1132		printk(KERN_DEBUG "Gating Storage Exception\n");
1133		break;
1134	case 4:
1135		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1136		break;
1137	case 5:
1138		printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
1139		break;
1140	default:
1141		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1142			subcode);
1143		break;
1144	}
1145	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1146
1147	force_sig(SIGILL, current);
1148}
1149
1150
1151asmlinkage void do_dsp(struct pt_regs *regs)
1152{
1153	if (cpu_has_dsp)
1154		panic("Unexpected DSP exception\n");
1155
1156	force_sig(SIGILL, current);
1157}
1158
1159asmlinkage void do_reserved(struct pt_regs *regs)
1160{
1161	/*
1162	 * Game over - no way to handle this if it ever occurs.  Most probably
1163	 * caused by a new unknown cpu type or after another deadly
1164	 * hard/software error.
1165	 */
1166	show_regs(regs);
1167	panic("Caught reserved exception %ld - should not happen.",
1168	      (regs->cp0_cause & 0x7f) >> 2);
1169}
1170
1171static int __initdata l1parity = 1;
1172static int __init nol1parity(char *s)
1173{
1174	l1parity = 0;
1175	return 1;
1176}
1177__setup("nol1par", nol1parity);
1178static int __initdata l2parity = 1;
1179static int __init nol2parity(char *s)
1180{
1181	l2parity = 0;
1182	return 1;
1183}
1184__setup("nol2par", nol2parity);
1185
1186/*
1187 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1188 * it different ways.
1189 */
1190static inline void parity_protection_init(void)
1191{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1192	switch (current_cpu_type()) {
1193	case CPU_24K:
1194	case CPU_34K:
1195	case CPU_74K:
1196	case CPU_1004K:
 
 
 
 
 
 
1197		{
1198#define ERRCTL_PE	0x80000000
1199#define ERRCTL_L2P	0x00800000
1200			unsigned long errctl;
1201			unsigned int l1parity_present, l2parity_present;
1202
1203			errctl = read_c0_ecc();
1204			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1205
1206			/* probe L1 parity support */
1207			write_c0_ecc(errctl | ERRCTL_PE);
1208			back_to_back_c0_hazard();
1209			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1210
1211			/* probe L2 parity support */
1212			write_c0_ecc(errctl|ERRCTL_L2P);
1213			back_to_back_c0_hazard();
1214			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1215
1216			if (l1parity_present && l2parity_present) {
1217				if (l1parity)
1218					errctl |= ERRCTL_PE;
1219				if (l1parity ^ l2parity)
1220					errctl |= ERRCTL_L2P;
1221			} else if (l1parity_present) {
1222				if (l1parity)
1223					errctl |= ERRCTL_PE;
1224			} else if (l2parity_present) {
1225				if (l2parity)
1226					errctl |= ERRCTL_L2P;
1227			} else {
1228				/* No parity available */
1229			}
1230
1231			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1232
1233			write_c0_ecc(errctl);
1234			back_to_back_c0_hazard();
1235			errctl = read_c0_ecc();
1236			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1237
1238			if (l1parity_present)
1239				printk(KERN_INFO "Cache parity protection %sabled\n",
1240				       (errctl & ERRCTL_PE) ? "en" : "dis");
1241
1242			if (l2parity_present) {
1243				if (l1parity_present && l1parity)
1244					errctl ^= ERRCTL_L2P;
1245				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1246				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1247			}
1248		}
1249		break;
1250
1251	case CPU_5KC:
 
 
1252		write_c0_ecc(0x80000000);
1253		back_to_back_c0_hazard();
1254		/* Set the PE bit (bit 31) in the c0_errctl register. */
1255		printk(KERN_INFO "Cache parity protection %sabled\n",
1256		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1257		break;
1258	case CPU_20KC:
1259	case CPU_25KF:
1260		/* Clear the DE bit (bit 16) in the c0_status register. */
1261		printk(KERN_INFO "Enable cache parity protection for "
1262		       "MIPS 20KC/25KF CPUs.\n");
1263		clear_c0_status(ST0_DE);
1264		break;
1265	default:
1266		break;
1267	}
1268}
1269
1270asmlinkage void cache_parity_error(void)
1271{
1272	const int field = 2 * sizeof(unsigned long);
1273	unsigned int reg_val;
1274
1275	/* For the moment, report the problem and hang. */
1276	printk("Cache error exception:\n");
1277	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1278	reg_val = read_c0_cacheerr();
1279	printk("c0_cacheerr == %08x\n", reg_val);
1280
1281	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1282	       reg_val & (1<<30) ? "secondary" : "primary",
1283	       reg_val & (1<<31) ? "data" : "insn");
1284	printk("Error bits: %s%s%s%s%s%s%s\n",
1285	       reg_val & (1<<29) ? "ED " : "",
1286	       reg_val & (1<<28) ? "ET " : "",
1287	       reg_val & (1<<26) ? "EE " : "",
1288	       reg_val & (1<<25) ? "EB " : "",
1289	       reg_val & (1<<24) ? "EI " : "",
1290	       reg_val & (1<<23) ? "E1 " : "",
1291	       reg_val & (1<<22) ? "E0 " : "");
 
 
 
 
 
 
 
 
 
 
 
 
 
1292	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1293
1294#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1295	if (reg_val & (1<<22))
1296		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1297
1298	if (reg_val & (1<<23))
1299		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1300#endif
1301
1302	panic("Can't handle the cache error!");
1303}
1304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1305/*
1306 * SDBBP EJTAG debug exception handler.
1307 * We skip the instruction and return to the next instruction.
1308 */
1309void ejtag_exception_handler(struct pt_regs *regs)
1310{
1311	const int field = 2 * sizeof(unsigned long);
1312	unsigned long depc, old_epc;
1313	unsigned int debug;
1314
1315	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1316	depc = read_c0_depc();
1317	debug = read_c0_debug();
1318	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1319	if (debug & 0x80000000) {
1320		/*
1321		 * In branch delay slot.
1322		 * We cheat a little bit here and use EPC to calculate the
1323		 * debug return address (DEPC). EPC is restored after the
1324		 * calculation.
1325		 */
1326		old_epc = regs->cp0_epc;
 
1327		regs->cp0_epc = depc;
1328		__compute_return_epc(regs);
1329		depc = regs->cp0_epc;
1330		regs->cp0_epc = old_epc;
 
1331	} else
1332		depc += 4;
1333	write_c0_depc(depc);
1334
1335#if 0
1336	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1337	write_c0_debug(debug | 0x100);
1338#endif
1339}
1340
1341/*
1342 * NMI exception handler.
 
1343 */
1344NORET_TYPE void ATTRIB_NORET nmi_exception_handler(struct pt_regs *regs)
 
 
1345{
1346	bust_spinlocks(1);
1347	printk("NMI taken!!!!\n");
1348	die("NMI", regs);
1349}
1350
1351#define VECTORSPACING 0x100	/* for EI/VI mode */
 
 
 
 
 
 
 
 
 
 
 
 
1352
1353unsigned long ebase;
 
1354unsigned long exception_handlers[32];
1355unsigned long vi_handlers[64];
1356
 
 
 
 
 
 
 
 
 
 
 
1357void __init *set_except_vector(int n, void *addr)
1358{
1359	unsigned long handler = (unsigned long) addr;
1360	unsigned long old_handler = exception_handlers[n];
 
 
 
 
 
 
 
 
 
 
 
 
 
1361
1362	exception_handlers[n] = handler;
1363	if (n == 0 && cpu_has_divec) {
 
 
 
1364		unsigned long jump_mask = ~((1 << 28) - 1);
 
1365		u32 *buf = (u32 *)(ebase + 0x200);
1366		unsigned int k0 = 26;
1367		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1368			uasm_i_j(&buf, handler & ~jump_mask);
1369			uasm_i_nop(&buf);
1370		} else {
1371			UASM_i_LA(&buf, k0, handler);
1372			uasm_i_jr(&buf, k0);
1373			uasm_i_nop(&buf);
1374		}
1375		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1376	}
1377	return (void *)old_handler;
1378}
1379
1380static asmlinkage void do_default_vi(void)
1381{
1382	show_regs(get_irq_regs());
1383	panic("Caught unexpected vectored interrupt.");
1384}
1385
1386static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1387{
 
 
 
1388	unsigned long handler;
1389	unsigned long old_handler = vi_handlers[n];
1390	int srssets = current_cpu_data.srsets;
1391	u32 *w;
1392	unsigned char *b;
 
 
 
1393
1394	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1395
1396	if (addr == NULL) {
1397		handler = (unsigned long) do_default_vi;
1398		srs = 0;
1399	} else
1400		handler = (unsigned long) addr;
1401	vi_handlers[n] = (unsigned long) addr;
1402
1403	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1404
1405	if (srs >= srssets)
1406		panic("Shadow register set %d not supported", srs);
1407
1408	if (cpu_has_veic) {
1409		if (board_bind_eic_interrupt)
1410			board_bind_eic_interrupt(n, srs);
1411	} else if (cpu_has_vint) {
1412		/* SRSMap is only defined if shadow sets are implemented */
1413		if (srssets > 1)
1414			change_c0_srsmap(0xf << n*4, srs << n*4);
1415	}
1416
1417	if (srs == 0) {
1418		/*
1419		 * If no shadow set is selected then use the default handler
1420		 * that does normal register saving and a standard interrupt exit
1421		 */
1422
1423		extern char except_vec_vi, except_vec_vi_lui;
1424		extern char except_vec_vi_ori, except_vec_vi_end;
1425		extern char rollback_except_vec_vi;
1426		char *vec_start = (cpu_wait == r4k_wait) ?
1427			&rollback_except_vec_vi : &except_vec_vi;
1428#ifdef CONFIG_MIPS_MT_SMTC
1429		/*
1430		 * We need to provide the SMTC vectored interrupt handler
1431		 * not only with the address of the handler, but with the
1432		 * Status.IM bit to be masked before going there.
1433		 */
1434		extern char except_vec_vi_mori;
1435		const int mori_offset = &except_vec_vi_mori - vec_start;
1436#endif /* CONFIG_MIPS_MT_SMTC */
1437		const int handler_len = &except_vec_vi_end - vec_start;
1438		const int lui_offset = &except_vec_vi_lui - vec_start;
1439		const int ori_offset = &except_vec_vi_ori - vec_start;
1440
1441		if (handler_len > VECTORSPACING) {
1442			/*
1443			 * Sigh... panicing won't help as the console
1444			 * is probably not configured :(
1445			 */
1446			panic("VECTORSPACING too small");
1447		}
1448
1449		memcpy(b, vec_start, handler_len);
1450#ifdef CONFIG_MIPS_MT_SMTC
1451		BUG_ON(n > 7);	/* Vector index %d exceeds SMTC maximum. */
1452
1453		w = (u32 *)(b + mori_offset);
1454		*w = (*w & 0xffff0000) | (0x100 << n);
1455#endif /* CONFIG_MIPS_MT_SMTC */
1456		w = (u32 *)(b + lui_offset);
1457		*w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1458		w = (u32 *)(b + ori_offset);
1459		*w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1460		local_flush_icache_range((unsigned long)b,
1461					 (unsigned long)(b+handler_len));
1462	}
1463	else {
1464		/*
1465		 * In other cases jump directly to the interrupt handler
1466		 *
1467		 * It is the handlers responsibility to save registers if required
1468		 * (eg hi/lo) and return from the exception using "eret"
1469		 */
1470		w = (u32 *)b;
1471		*w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1472		*w = 0;
1473		local_flush_icache_range((unsigned long)b,
1474					 (unsigned long)(b+8));
1475	}
1476
1477	return (void *)old_handler;
1478}
 
 
 
 
 
 
 
 
 
1479
1480void *set_vi_handler(int n, vi_handler_t addr)
1481{
1482	return set_vi_srs_handler(n, addr, 0);
1483}
1484
1485extern void cpu_cache_init(void);
1486extern void tlb_init(void);
1487extern void flush_tlb_handlers(void);
1488
1489/*
1490 * Timer interrupt
1491 */
1492int cp0_compare_irq;
 
1493int cp0_compare_irq_shift;
1494
1495/*
1496 * Performance counter IRQ or -1 if shared with timer
1497 */
1498int cp0_perfcount_irq;
1499EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1500
1501static int __cpuinitdata noulri;
 
 
 
 
 
 
1502
1503static int __init ulri_disable(char *s)
1504{
1505	pr_info("Disabling ulri\n");
1506	noulri = 1;
1507
1508	return 1;
1509}
1510__setup("noulri", ulri_disable);
1511
1512void __cpuinit per_cpu_trap_init(void)
 
1513{
1514	unsigned int cpu = smp_processor_id();
1515	unsigned int status_set = ST0_CU0;
1516	unsigned int hwrena = cpu_hwrena_impl_bits;
1517#ifdef CONFIG_MIPS_MT_SMTC
1518	int secondaryTC = 0;
1519	int bootTC = (cpu == 0);
1520
1521	/*
1522	 * Only do per_cpu_trap_init() for first TC of Each VPE.
1523	 * Note that this hack assumes that the SMTC init code
1524	 * assigns TCs consecutively and in ascending order.
1525	 */
1526
1527	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1528	    ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1529		secondaryTC = 1;
1530#endif /* CONFIG_MIPS_MT_SMTC */
1531
1532	/*
1533	 * Disable coprocessors and select 32-bit or 64-bit addressing
1534	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1535	 * flag that some firmware may have left set and the TS bit (for
1536	 * IP27).  Set XX for ISA IV code to work.
1537	 */
 
1538#ifdef CONFIG_64BIT
1539	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1540#endif
1541	if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1542		status_set |= ST0_XX;
1543	if (cpu_has_dsp)
1544		status_set |= ST0_MX;
1545
1546	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1547			 status_set);
 
 
1548
1549	if (cpu_has_mips_r2)
1550		hwrena |= 0x0000000f;
 
 
 
 
 
 
 
 
 
 
 
1551
1552	if (!noulri && cpu_has_userlocal)
1553		hwrena |= (1 << 29);
1554
1555	if (hwrena)
1556		write_c0_hwrena(hwrena);
 
1557
1558#ifdef CONFIG_MIPS_MT_SMTC
1559	if (!secondaryTC) {
1560#endif /* CONFIG_MIPS_MT_SMTC */
1561
1562	if (cpu_has_veic || cpu_has_vint) {
1563		unsigned long sr = set_c0_status(ST0_BEV);
 
 
 
 
 
 
 
 
1564		write_c0_ebase(ebase);
1565		write_c0_status(sr);
 
 
1566		/* Setting vector spacing enables EI/VI mode  */
1567		change_c0_intctl(0x3e0, VECTORSPACING);
1568	}
1569	if (cpu_has_divec) {
1570		if (cpu_has_mipsmt) {
1571			unsigned int vpflags = dvpe();
1572			set_c0_cause(CAUSEF_IV);
1573			evpe(vpflags);
1574		} else
1575			set_c0_cause(CAUSEF_IV);
1576	}
 
 
 
 
 
 
 
 
 
 
1577
1578	/*
1579	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1580	 *
1581	 *  o read IntCtl.IPTI to determine the timer interrupt
1582	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
 
1583	 */
1584	if (cpu_has_mips_r2) {
1585		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1586		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1587		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1588		if (cp0_perfcount_irq == cp0_compare_irq)
1589			cp0_perfcount_irq = -1;
 
 
1590	} else {
1591		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1592		cp0_compare_irq_shift = cp0_compare_irq;
1593		cp0_perfcount_irq = -1;
 
1594	}
1595
1596#ifdef CONFIG_MIPS_MT_SMTC
1597	}
1598#endif /* CONFIG_MIPS_MT_SMTC */
1599
1600	cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1601
1602	atomic_inc(&init_mm.mm_count);
1603	current->active_mm = &init_mm;
1604	BUG_ON(current->mm);
1605	enter_lazy_tlb(&init_mm, current);
1606
1607#ifdef CONFIG_MIPS_MT_SMTC
1608	if (bootTC) {
1609#endif /* CONFIG_MIPS_MT_SMTC */
1610		cpu_cache_init();
1611		tlb_init();
1612#ifdef CONFIG_MIPS_MT_SMTC
1613	} else if (!secondaryTC) {
1614		/*
1615		 * First TC in non-boot VPE must do subset of tlb_init()
1616		 * for MMU countrol registers.
1617		 */
1618		write_c0_pagemask(PM_DEFAULT_MASK);
1619		write_c0_wired(0);
1620	}
1621#endif /* CONFIG_MIPS_MT_SMTC */
1622	TLBMISS_HANDLER_SETUP();
1623}
1624
1625/* Install CPU exception handler */
1626void __init set_handler(unsigned long offset, void *addr, unsigned long size)
1627{
 
 
 
1628	memcpy((void *)(ebase + offset), addr, size);
 
1629	local_flush_icache_range(ebase + offset, ebase + offset + size);
1630}
1631
1632static char panic_null_cerr[] __cpuinitdata =
1633	"Trying to set NULL cache error exception handler";
1634
1635/*
1636 * Install uncached CPU exception handler.
1637 * This is suitable only for the cache error exception which is the only
1638 * exception handler that is being run uncached.
1639 */
1640void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1641	unsigned long size)
1642{
1643	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1644
1645	if (!addr)
1646		panic(panic_null_cerr);
1647
1648	memcpy((void *)(uncached_ebase + offset), addr, size);
1649}
1650
1651static int __initdata rdhwr_noopt;
1652static int __init set_rdhwr_noopt(char *str)
1653{
1654	rdhwr_noopt = 1;
1655	return 1;
1656}
1657
1658__setup("rdhwr_noopt", set_rdhwr_noopt);
1659
1660void __init trap_init(void)
1661{
1662	extern char except_vec3_generic, except_vec3_r4000;
1663	extern char except_vec4;
1664	unsigned long i;
1665	int rollback;
 
1666
1667	check_wait();
1668	rollback = (cpu_wait == r4k_wait);
1669
1670#if defined(CONFIG_KGDB)
1671	if (kgdb_early_setup)
1672		return;	/* Already done */
1673#endif
1674
1675	if (cpu_has_veic || cpu_has_vint) {
1676		unsigned long size = 0x200 + VECTORSPACING*64;
1677		ebase = (unsigned long)
1678			__alloc_bootmem(size, 1 << fls(size), 0);
1679	} else {
1680		ebase = CKSEG0;
1681		if (cpu_has_mips_r2)
1682			ebase += (read_c0_ebase() & 0x3ffff000);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1683	}
1684
1685	per_cpu_trap_init();
 
 
 
1686
1687	/*
1688	 * Copy the generic exception handlers to their final destination.
1689	 * This will be overriden later as suitable for a particular
1690	 * configuration.
1691	 */
1692	set_handler(0x180, &except_vec3_generic, 0x80);
1693
1694	/*
1695	 * Setup default vectors
1696	 */
1697	for (i = 0; i <= 31; i++)
1698		set_except_vector(i, handle_reserved);
1699
1700	/*
1701	 * Copy the EJTAG debug exception vector handler code to it's final
1702	 * destination.
1703	 */
1704	if (cpu_has_ejtag && board_ejtag_handler_setup)
1705		board_ejtag_handler_setup();
1706
1707	/*
1708	 * Only some CPUs have the watch exceptions.
1709	 */
1710	if (cpu_has_watch)
1711		set_except_vector(23, handle_watch);
1712
1713	/*
1714	 * Initialise interrupt handlers
1715	 */
1716	if (cpu_has_veic || cpu_has_vint) {
1717		int nvec = cpu_has_veic ? 64 : 8;
1718		for (i = 0; i < nvec; i++)
1719			set_vi_handler(i, NULL);
1720	}
1721	else if (cpu_has_divec)
1722		set_handler(0x200, &except_vec4, 0x8);
1723
1724	/*
1725	 * Some CPUs can enable/disable for cache parity detection, but does
1726	 * it different ways.
1727	 */
1728	parity_protection_init();
1729
1730	/*
1731	 * The Data Bus Errors / Instruction Bus Errors are signaled
1732	 * by external hardware.  Therefore these two exceptions
1733	 * may have board specific handlers.
1734	 */
1735	if (board_be_init)
1736		board_be_init();
1737
1738	set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1739	set_except_vector(1, handle_tlbm);
1740	set_except_vector(2, handle_tlbl);
1741	set_except_vector(3, handle_tlbs);
1742
1743	set_except_vector(4, handle_adel);
1744	set_except_vector(5, handle_ades);
1745
1746	set_except_vector(6, handle_ibe);
1747	set_except_vector(7, handle_dbe);
1748
1749	set_except_vector(8, handle_sys);
1750	set_except_vector(9, handle_bp);
1751	set_except_vector(10, rdhwr_noopt ? handle_ri :
1752			  (cpu_has_vtag_icache ?
1753			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1754	set_except_vector(11, handle_cpu);
1755	set_except_vector(12, handle_ov);
1756	set_except_vector(13, handle_tr);
1757
1758	if (current_cpu_type() == CPU_R6000 ||
1759	    current_cpu_type() == CPU_R6000A) {
1760		/*
1761		 * The R6000 is the only R-series CPU that features a machine
1762		 * check exception (similar to the R4000 cache error) and
1763		 * unaligned ldc1/sdc1 exception.  The handlers have not been
1764		 * written yet.  Well, anyway there is no R6000 machine on the
1765		 * current list of targets for Linux/MIPS.
1766		 * (Duh, crap, there is someone with a triple R6k machine)
1767		 */
1768		//set_except_vector(14, handle_mc);
1769		//set_except_vector(15, handle_ndc);
 
 
 
1770	}
1771
 
 
 
 
1772
1773	if (board_nmi_handler_setup)
1774		board_nmi_handler_setup();
1775
1776	if (cpu_has_fpu && !cpu_has_nofpuex)
1777		set_except_vector(15, handle_fpe);
 
 
 
 
 
 
1778
1779	set_except_vector(22, handle_mdmx);
 
 
 
 
 
 
1780
1781	if (cpu_has_mcheck)
1782		set_except_vector(24, handle_mcheck);
1783
1784	if (cpu_has_mipsmt)
1785		set_except_vector(25, handle_mt);
1786
1787	set_except_vector(26, handle_dsp);
 
 
 
1788
1789	if (cpu_has_vce)
1790		/* Special exception: R4[04]00 uses also the divec space. */
1791		memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1792	else if (cpu_has_4kex)
1793		memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1794	else
1795		memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1796
1797	local_flush_icache_range(ebase, ebase + 0x400);
1798	flush_tlb_handlers();
1799
1800	sort_extable(__start___dbe_table, __stop___dbe_table);
1801
1802	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
1803}
v6.9.4
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
   7 * Copyright (C) 1995, 1996 Paul M. Antoine
   8 * Copyright (C) 1998 Ulf Carlsson
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
 
  11 * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
  12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
  13 * Copyright (C) 2014, Imagination Technologies Ltd.
  14 */
  15#include <linux/bitops.h>
  16#include <linux/bug.h>
  17#include <linux/compiler.h>
  18#include <linux/context_tracking.h>
  19#include <linux/cpu_pm.h>
  20#include <linux/kexec.h>
  21#include <linux/init.h>
  22#include <linux/kernel.h>
 
  23#include <linux/module.h>
  24#include <linux/extable.h>
  25#include <linux/mm.h>
  26#include <linux/sched/mm.h>
  27#include <linux/sched/debug.h>
  28#include <linux/smp.h>
  29#include <linux/spinlock.h>
  30#include <linux/kallsyms.h>
  31#include <linux/memblock.h>
  32#include <linux/interrupt.h>
  33#include <linux/ptrace.h>
  34#include <linux/kgdb.h>
  35#include <linux/kdebug.h>
  36#include <linux/kprobes.h>
  37#include <linux/notifier.h>
  38#include <linux/kdb.h>
  39#include <linux/irq.h>
  40#include <linux/perf_event.h>
  41
  42#include <asm/addrspace.h>
  43#include <asm/bootinfo.h>
  44#include <asm/branch.h>
  45#include <asm/break.h>
  46#include <asm/cop2.h>
  47#include <asm/cpu.h>
  48#include <asm/cpu-type.h>
  49#include <asm/dsp.h>
  50#include <asm/fpu.h>
  51#include <asm/fpu_emulator.h>
  52#include <asm/idle.h>
  53#include <asm/isa-rev.h>
  54#include <asm/mips-cps.h>
  55#include <asm/mips-r2-to-r6-emul.h>
  56#include <asm/mipsregs.h>
  57#include <asm/mipsmtregs.h>
  58#include <asm/module.h>
  59#include <asm/msa.h>
  60#include <asm/ptrace.h>
  61#include <asm/regdef.h>
  62#include <asm/sections.h>
  63#include <asm/siginfo.h>
  64#include <asm/tlbdebug.h>
  65#include <asm/traps.h>
  66#include <linux/uaccess.h>
  67#include <asm/watch.h>
  68#include <asm/mmu_context.h>
  69#include <asm/types.h>
  70#include <asm/stacktrace.h>
  71#include <asm/tlbex.h>
  72#include <asm/uasm.h>
  73
  74#include <asm/mach-loongson64/cpucfg-emul.h>
  75
  76#include "access-helper.h"
  77
  78extern void check_wait(void);
 
  79extern asmlinkage void rollback_handle_int(void);
  80extern asmlinkage void handle_int(void);
 
 
 
  81extern asmlinkage void handle_adel(void);
  82extern asmlinkage void handle_ades(void);
  83extern asmlinkage void handle_ibe(void);
  84extern asmlinkage void handle_dbe(void);
  85extern asmlinkage void handle_sys(void);
  86extern asmlinkage void handle_bp(void);
  87extern asmlinkage void handle_ri(void);
  88extern asmlinkage void handle_ri_rdhwr_tlbp(void);
  89extern asmlinkage void handle_ri_rdhwr(void);
  90extern asmlinkage void handle_cpu(void);
  91extern asmlinkage void handle_ov(void);
  92extern asmlinkage void handle_tr(void);
  93extern asmlinkage void handle_msa_fpe(void);
  94extern asmlinkage void handle_fpe(void);
  95extern asmlinkage void handle_ftlb(void);
  96extern asmlinkage void handle_gsexc(void);
  97extern asmlinkage void handle_msa(void);
  98extern asmlinkage void handle_mdmx(void);
  99extern asmlinkage void handle_watch(void);
 100extern asmlinkage void handle_mt(void);
 101extern asmlinkage void handle_dsp(void);
 102extern asmlinkage void handle_mcheck(void);
 103extern asmlinkage void handle_reserved(void);
 104extern void tlb_do_page_fault_0(void);
 
 
 
 105
 106void (*board_be_init)(void);
 107static int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
 108void (*board_nmi_handler_setup)(void);
 109void (*board_ejtag_handler_setup)(void);
 110void (*board_bind_eic_interrupt)(int irq, int regset);
 111void (*board_ebase_setup)(void);
 112void(*board_cache_error_setup)(void);
 113
 114void mips_set_be_handler(int (*handler)(struct pt_regs *regs, int is_fixup))
 115{
 116	board_be_handler = handler;
 117}
 118EXPORT_SYMBOL_GPL(mips_set_be_handler);
 119
 120static void show_raw_backtrace(unsigned long reg29, const char *loglvl,
 121			       bool user)
 122{
 123	unsigned long *sp = (unsigned long *)(reg29 & ~3);
 124	unsigned long addr;
 125
 126	printk("%sCall Trace:", loglvl);
 127#ifdef CONFIG_KALLSYMS
 128	printk("%s\n", loglvl);
 129#endif
 130	while (!kstack_end(sp)) {
 131		if (__get_addr(&addr, sp++, user)) {
 132			printk("%s (Bad stack address)", loglvl);
 
 
 133			break;
 134		}
 135		if (__kernel_text_address(addr))
 136			print_ip_sym(loglvl, addr);
 137	}
 138	printk("%s\n", loglvl);
 139}
 140
 141#ifdef CONFIG_KALLSYMS
 142int raw_show_trace;
 143static int __init set_raw_show_trace(char *str)
 144{
 145	raw_show_trace = 1;
 146	return 1;
 147}
 148__setup("raw_show_trace", set_raw_show_trace);
 149#endif
 150
 151static void show_backtrace(struct task_struct *task, const struct pt_regs *regs,
 152			   const char *loglvl, bool user)
 153{
 154	unsigned long sp = regs->regs[29];
 155	unsigned long ra = regs->regs[31];
 156	unsigned long pc = regs->cp0_epc;
 157
 158	if (!task)
 159		task = current;
 160
 161	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
 162		show_raw_backtrace(sp, loglvl, user);
 163		return;
 164	}
 165	printk("%sCall Trace:\n", loglvl);
 166	do {
 167		print_ip_sym(loglvl, pc);
 168		pc = unwind_stack(task, &sp, pc, &ra);
 169	} while (pc);
 170	pr_cont("\n");
 171}
 172
 173/*
 174 * This routine abuses get_user()/put_user() to reference pointers
 175 * with at least a bit of error checking ...
 176 */
 177static void show_stacktrace(struct task_struct *task,
 178	const struct pt_regs *regs, const char *loglvl, bool user)
 179{
 180	const int field = 2 * sizeof(unsigned long);
 181	unsigned long stackdata;
 182	int i;
 183	unsigned long *sp = (unsigned long *)regs->regs[29];
 184
 185	printk("%sStack :", loglvl);
 186	i = 0;
 187	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
 188		if (i && ((i % (64 / field)) == 0)) {
 189			pr_cont("\n");
 190			printk("%s       ", loglvl);
 191		}
 192		if (i > 39) {
 193			pr_cont(" ...");
 194			break;
 195		}
 196
 197		if (__get_addr(&stackdata, sp++, user)) {
 198			pr_cont(" (Bad stack address)");
 199			break;
 200		}
 201
 202		pr_cont(" %0*lx", field, stackdata);
 203		i++;
 204	}
 205	pr_cont("\n");
 206	show_backtrace(task, regs, loglvl, user);
 207}
 208
 209void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
 210{
 211	struct pt_regs regs;
 212
 213	regs.cp0_status = KSU_KERNEL;
 214	if (sp) {
 215		regs.regs[29] = (unsigned long)sp;
 216		regs.regs[31] = 0;
 217		regs.cp0_epc = 0;
 218	} else {
 219		if (task && task != current) {
 220			regs.regs[29] = task->thread.reg29;
 221			regs.regs[31] = 0;
 222			regs.cp0_epc = task->thread.reg31;
 
 
 
 
 
 223		} else {
 224			prepare_frametrace(&regs);
 225		}
 226	}
 227	show_stacktrace(task, &regs, loglvl, false);
 228}
 229
 230static void show_code(void *pc, bool user)
 
 
 
 
 
 
 
 
 
 
 
 
 
 231{
 232	long i;
 233	unsigned short *pc16 = NULL;
 234
 235	printk("Code:");
 236
 237	if ((unsigned long)pc & 1)
 238		pc16 = (u16 *)((unsigned long)pc & ~1);
 239
 240	for(i = -3 ; i < 6 ; i++) {
 241		if (pc16) {
 242			u16 insn16;
 243
 244			if (__get_inst16(&insn16, pc16 + i, user))
 245				goto bad_address;
 246
 247			pr_cont("%c%04x%c", (i?' ':'<'), insn16, (i?' ':'>'));
 248		} else {
 249			u32 insn32;
 250
 251			if (__get_inst32(&insn32, (u32 *)pc + i, user))
 252				goto bad_address;
 253
 254			pr_cont("%c%08x%c", (i?' ':'<'), insn32, (i?' ':'>'));
 255		}
 
 256	}
 257	pr_cont("\n");
 258	return;
 259
 260bad_address:
 261	pr_cont(" (Bad address in epc)\n\n");
 262}
 263
 264static void __show_regs(const struct pt_regs *regs)
 265{
 266	const int field = 2 * sizeof(unsigned long);
 267	unsigned int cause = regs->cp0_cause;
 268	unsigned int exccode;
 269	int i;
 270
 271	show_regs_print_info(KERN_DEFAULT);
 272
 273	/*
 274	 * Saved main processor registers
 275	 */
 276	for (i = 0; i < 32; ) {
 277		if ((i % 4) == 0)
 278			printk("$%2d   :", i);
 279		if (i == 0)
 280			pr_cont(" %0*lx", field, 0UL);
 281		else if (i == 26 || i == 27)
 282			pr_cont(" %*s", field, "");
 283		else
 284			pr_cont(" %0*lx", field, regs->regs[i]);
 285
 286		i++;
 287		if ((i % 4) == 0)
 288			pr_cont("\n");
 289	}
 290
 291#ifdef CONFIG_CPU_HAS_SMARTMIPS
 292	printk("Acx    : %0*lx\n", field, regs->acx);
 293#endif
 294	if (MIPS_ISA_REV < 6) {
 295		printk("Hi    : %0*lx\n", field, regs->hi);
 296		printk("Lo    : %0*lx\n", field, regs->lo);
 297	}
 298
 299	/*
 300	 * Saved cp0 registers
 301	 */
 302	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
 303	       (void *) regs->cp0_epc);
 
 304	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
 305	       (void *) regs->regs[31]);
 306
 307	printk("Status: %08x	", (uint32_t) regs->cp0_status);
 308
 309	if (cpu_has_3kex) {
 310		if (regs->cp0_status & ST0_KUO)
 311			pr_cont("KUo ");
 312		if (regs->cp0_status & ST0_IEO)
 313			pr_cont("IEo ");
 314		if (regs->cp0_status & ST0_KUP)
 315			pr_cont("KUp ");
 316		if (regs->cp0_status & ST0_IEP)
 317			pr_cont("IEp ");
 318		if (regs->cp0_status & ST0_KUC)
 319			pr_cont("KUc ");
 320		if (regs->cp0_status & ST0_IEC)
 321			pr_cont("IEc ");
 322	} else if (cpu_has_4kex) {
 323		if (regs->cp0_status & ST0_KX)
 324			pr_cont("KX ");
 325		if (regs->cp0_status & ST0_SX)
 326			pr_cont("SX ");
 327		if (regs->cp0_status & ST0_UX)
 328			pr_cont("UX ");
 329		switch (regs->cp0_status & ST0_KSU) {
 330		case KSU_USER:
 331			pr_cont("USER ");
 332			break;
 333		case KSU_SUPERVISOR:
 334			pr_cont("SUPERVISOR ");
 335			break;
 336		case KSU_KERNEL:
 337			pr_cont("KERNEL ");
 338			break;
 339		default:
 340			pr_cont("BAD_MODE ");
 341			break;
 342		}
 343		if (regs->cp0_status & ST0_ERL)
 344			pr_cont("ERL ");
 345		if (regs->cp0_status & ST0_EXL)
 346			pr_cont("EXL ");
 347		if (regs->cp0_status & ST0_IE)
 348			pr_cont("IE ");
 349	}
 350	pr_cont("\n");
 351
 352	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 353	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
 354
 355	if (1 <= exccode && exccode <= 5)
 
 356		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
 357
 358	printk("PrId  : %08x (%s)\n", read_c0_prid(),
 359	       cpu_name_string());
 360}
 361
 362/*
 363 * FIXME: really the generic show_regs should take a const pointer argument.
 364 */
 365void show_regs(struct pt_regs *regs)
 366{
 367	__show_regs(regs);
 368	dump_stack();
 369}
 370
 371void show_registers(struct pt_regs *regs)
 372{
 373	const int field = 2 * sizeof(unsigned long);
 374
 375	__show_regs(regs);
 376	print_modules();
 377	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
 378	       current->comm, current->pid, current_thread_info(), current,
 379	      field, current_thread_info()->tp_value);
 380	if (cpu_has_userlocal) {
 381		unsigned long tls;
 382
 383		tls = read_c0_userlocal();
 384		if (tls != current_thread_info()->tp_value)
 385			printk("*HwTLS: %0*lx\n", field, tls);
 386	}
 387
 388	show_stacktrace(current, regs, KERN_DEFAULT, user_mode(regs));
 389	show_code((void *)regs->cp0_epc, user_mode(regs));
 390	printk("\n");
 391}
 392
 
 
 
 
 
 393static DEFINE_RAW_SPINLOCK(die_lock);
 394
 395void __noreturn die(const char *str, struct pt_regs *regs)
 396{
 397	static int die_counter;
 398	int sig = SIGSEGV;
 
 
 
 399
 400	oops_enter();
 401
 402	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
 403		       SIGSEGV) == NOTIFY_STOP)
 404		sig = 0;
 405
 406	console_verbose();
 407	raw_spin_lock_irq(&die_lock);
 
 
 
 408	bust_spinlocks(1);
 
 
 
 409
 410	printk("%s[#%d]:\n", str, ++die_counter);
 411	show_registers(regs);
 412	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 413	raw_spin_unlock_irq(&die_lock);
 414
 415	oops_exit();
 416
 417	if (in_interrupt())
 418		panic("Fatal exception in interrupt");
 419
 420	if (panic_on_oops)
 
 
 421		panic("Fatal exception");
 
 422
 423	if (regs && kexec_should_crash(current))
 424		crash_kexec(regs);
 425
 426	make_task_dead(sig);
 427}
 428
 429extern struct exception_table_entry __start___dbe_table[];
 430extern struct exception_table_entry __stop___dbe_table[];
 431
 432__asm__(
 433"	.section	__dbe_table, \"a\"\n"
 434"	.previous			\n");
 435
 436/* Given an address, look for it in the exception tables. */
 437static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
 438{
 439	const struct exception_table_entry *e;
 440
 441	e = search_extable(__start___dbe_table,
 442			   __stop___dbe_table - __start___dbe_table, addr);
 443	if (!e)
 444		e = search_module_dbetables(addr);
 445	return e;
 446}
 447
 448asmlinkage void do_be(struct pt_regs *regs)
 449{
 450	const int field = 2 * sizeof(unsigned long);
 451	const struct exception_table_entry *fixup = NULL;
 452	int data = regs->cp0_cause & 4;
 453	int action = MIPS_BE_FATAL;
 454	enum ctx_state prev_state;
 455
 456	prev_state = exception_enter();
 457	/* XXX For now.	 Fixme, this searches the wrong table ...  */
 458	if (data && !user_mode(regs))
 459		fixup = search_dbe_tables(exception_epc(regs));
 460
 461	if (fixup)
 462		action = MIPS_BE_FIXUP;
 463
 464	if (board_be_handler)
 465		action = board_be_handler(regs, fixup != NULL);
 466	else
 467		mips_cm_error_report();
 468
 469	switch (action) {
 470	case MIPS_BE_DISCARD:
 471		goto out;
 472	case MIPS_BE_FIXUP:
 473		if (fixup) {
 474			regs->cp0_epc = fixup->nextinsn;
 475			goto out;
 476		}
 477		break;
 478	default:
 479		break;
 480	}
 481
 482	/*
 483	 * Assume it would be too dangerous to continue ...
 484	 */
 485	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
 486	       data ? "Data" : "Instruction",
 487	       field, regs->cp0_epc, field, regs->regs[31]);
 488	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
 489		       SIGBUS) == NOTIFY_STOP)
 490		goto out;
 491
 492	die_if_kernel("Oops", regs);
 493	force_sig(SIGBUS);
 494
 495out:
 496	exception_exit(prev_state);
 497}
 498
 499/*
 500 * ll/sc, rdhwr, sync emulation
 501 */
 502
 503#define OPCODE 0xfc000000
 504#define BASE   0x03e00000
 505#define RT     0x001f0000
 506#define OFFSET 0x0000ffff
 507#define LL     0xc0000000
 508#define SC     0xe0000000
 509#define SPEC0  0x00000000
 510#define SPEC3  0x7c000000
 511#define RD     0x0000f800
 512#define FUNC   0x0000003f
 513#define SYNC   0x0000000f
 514#define RDHWR  0x0000003b
 515
 516/*  microMIPS definitions   */
 517#define MM_POOL32A_FUNC 0xfc00ffff
 518#define MM_RDHWR        0x00006b3c
 519#define MM_RS           0x001f0000
 520#define MM_RT           0x03e00000
 521
 522/*
 523 * The ll_bit is cleared by r*_switch.S
 524 */
 525
 526unsigned int ll_bit;
 527struct task_struct *ll_task;
 528
 529static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
 530{
 531	unsigned long value, __user *vaddr;
 532	long offset;
 533
 534	/*
 535	 * analyse the ll instruction that just caused a ri exception
 536	 * and put the referenced address to addr.
 537	 */
 538
 539	/* sign extend offset */
 540	offset = opcode & OFFSET;
 541	offset <<= 16;
 542	offset >>= 16;
 543
 544	vaddr = (unsigned long __user *)
 545		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 546
 547	if ((unsigned long)vaddr & 3)
 548		return SIGBUS;
 549	if (get_user(value, vaddr))
 550		return SIGSEGV;
 551
 552	preempt_disable();
 553
 554	if (ll_task == NULL || ll_task == current) {
 555		ll_bit = 1;
 556	} else {
 557		ll_bit = 0;
 558	}
 559	ll_task = current;
 560
 561	preempt_enable();
 562
 563	regs->regs[(opcode & RT) >> 16] = value;
 564
 565	return 0;
 566}
 567
 568static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
 569{
 570	unsigned long __user *vaddr;
 571	unsigned long reg;
 572	long offset;
 573
 574	/*
 575	 * analyse the sc instruction that just caused a ri exception
 576	 * and put the referenced address to addr.
 577	 */
 578
 579	/* sign extend offset */
 580	offset = opcode & OFFSET;
 581	offset <<= 16;
 582	offset >>= 16;
 583
 584	vaddr = (unsigned long __user *)
 585		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 586	reg = (opcode & RT) >> 16;
 587
 588	if ((unsigned long)vaddr & 3)
 589		return SIGBUS;
 590
 591	preempt_disable();
 592
 593	if (ll_bit == 0 || ll_task != current) {
 594		regs->regs[reg] = 0;
 595		preempt_enable();
 596		return 0;
 597	}
 598
 599	preempt_enable();
 600
 601	if (put_user(regs->regs[reg], vaddr))
 602		return SIGSEGV;
 603
 604	regs->regs[reg] = 1;
 605
 606	return 0;
 607}
 608
 609/*
 610 * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
 611 * opcodes are supposed to result in coprocessor unusable exceptions if
 612 * executed on ll/sc-less processors.  That's the theory.  In practice a
 613 * few processors such as NEC's VR4100 throw reserved instruction exceptions
 614 * instead, so we're doing the emulation thing in both exception handlers.
 615 */
 616static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
 617{
 618	if ((opcode & OPCODE) == LL) {
 619		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 620				1, regs, 0);
 621		return simulate_ll(regs, opcode);
 622	}
 623	if ((opcode & OPCODE) == SC) {
 624		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 625				1, regs, 0);
 626		return simulate_sc(regs, opcode);
 627	}
 628
 629	return -1;			/* Must be something else ... */
 630}
 631
 632/*
 633 * Simulate trapping 'rdhwr' instructions to provide user accessible
 634 * registers not implemented in hardware.
 635 */
 636static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
 637{
 638	struct thread_info *ti = task_thread_info(current);
 639
 640	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 641			1, regs, 0);
 642	switch (rd) {
 643	case MIPS_HWR_CPUNUM:		/* CPU number */
 644		regs->regs[rt] = smp_processor_id();
 645		return 0;
 646	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
 647		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
 648				     current_cpu_data.icache.linesz);
 649		return 0;
 650	case MIPS_HWR_CC:		/* Read count register */
 651		regs->regs[rt] = read_c0_count();
 652		return 0;
 653	case MIPS_HWR_CCRES:		/* Count register resolution */
 654		switch (current_cpu_type()) {
 655		case CPU_20KC:
 656		case CPU_25KF:
 657			regs->regs[rt] = 1;
 658			break;
 659		default:
 660			regs->regs[rt] = 2;
 661		}
 662		return 0;
 663	case MIPS_HWR_ULR:		/* Read UserLocal register */
 664		regs->regs[rt] = ti->tp_value;
 665		return 0;
 666	default:
 667		return -1;
 668	}
 669}
 670
 671static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
 672{
 673	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
 674		int rd = (opcode & RD) >> 11;
 675		int rt = (opcode & RT) >> 16;
 676
 677		simulate_rdhwr(regs, rd, rt);
 678		return 0;
 679	}
 680
 681	/* Not ours.  */
 682	return -1;
 683}
 684
 685static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
 686{
 687	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
 688		int rd = (opcode & MM_RS) >> 16;
 689		int rt = (opcode & MM_RT) >> 21;
 690		simulate_rdhwr(regs, rd, rt);
 691		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 692	}
 693
 694	/* Not ours.  */
 695	return -1;
 696}
 697
 698static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
 699{
 700	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
 701		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 702				1, regs, 0);
 703		return 0;
 704	}
 705
 706	return -1;			/* Must be something else ... */
 707}
 708
 709/*
 710 * Loongson-3 CSR instructions emulation
 711 */
 712
 713#ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
 714
 715#define LWC2             0xc8000000
 716#define RS               BASE
 717#define CSR_OPCODE2      0x00000118
 718#define CSR_OPCODE2_MASK 0x000007ff
 719#define CSR_FUNC_MASK    RT
 720#define CSR_FUNC_CPUCFG  0x8
 721
 722static int simulate_loongson3_cpucfg(struct pt_regs *regs,
 723				     unsigned int opcode)
 724{
 725	int op = opcode & OPCODE;
 726	int op2 = opcode & CSR_OPCODE2_MASK;
 727	int csr_func = (opcode & CSR_FUNC_MASK) >> 16;
 728
 729	if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) {
 730		int rd = (opcode & RD) >> 11;
 731		int rs = (opcode & RS) >> 21;
 732		__u64 sel = regs->regs[rs];
 733
 734		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
 735
 736		/* Do not emulate on unsupported core models. */
 737		preempt_disable();
 738		if (!loongson3_cpucfg_emulation_enabled(&current_cpu_data)) {
 739			preempt_enable();
 740			return -1;
 741		}
 742		regs->regs[rd] = loongson3_cpucfg_read_synthesized(
 743			&current_cpu_data, sel);
 744		preempt_enable();
 745		return 0;
 746	}
 747
 748	/* Not ours.  */
 749	return -1;
 750}
 751#endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
 752
 753asmlinkage void do_ov(struct pt_regs *regs)
 754{
 755	enum ctx_state prev_state;
 756
 757	prev_state = exception_enter();
 758	die_if_kernel("Integer overflow", regs);
 759
 760	force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
 761	exception_exit(prev_state);
 762}
 763
 764#ifdef CONFIG_MIPS_FP_SUPPORT
 765
 766/*
 767 * Send SIGFPE according to FCSR Cause bits, which must have already
 768 * been masked against Enable bits.  This is impotant as Inexact can
 769 * happen together with Overflow or Underflow, and `ptrace' can set
 770 * any bits.
 771 */
 772void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
 773		     struct task_struct *tsk)
 774{
 775	int si_code = FPE_FLTUNK;
 776
 777	if (fcr31 & FPU_CSR_INV_X)
 778		si_code = FPE_FLTINV;
 779	else if (fcr31 & FPU_CSR_DIV_X)
 780		si_code = FPE_FLTDIV;
 781	else if (fcr31 & FPU_CSR_OVF_X)
 782		si_code = FPE_FLTOVF;
 783	else if (fcr31 & FPU_CSR_UDF_X)
 784		si_code = FPE_FLTUND;
 785	else if (fcr31 & FPU_CSR_INE_X)
 786		si_code = FPE_FLTRES;
 787
 788	force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
 789}
 790
 791int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
 792{
 793	int si_code;
 794
 795	switch (sig) {
 796	case 0:
 797		return 0;
 798
 799	case SIGFPE:
 800		force_fcr31_sig(fcr31, fault_addr, current);
 801		return 1;
 802
 803	case SIGBUS:
 804		force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
 805		return 1;
 806
 807	case SIGSEGV:
 808		mmap_read_lock(current->mm);
 809		if (vma_lookup(current->mm, (unsigned long)fault_addr))
 810			si_code = SEGV_ACCERR;
 811		else
 812			si_code = SEGV_MAPERR;
 813		mmap_read_unlock(current->mm);
 814		force_sig_fault(SIGSEGV, si_code, fault_addr);
 815		return 1;
 816
 817	default:
 818		force_sig(sig);
 819		return 1;
 
 
 820	}
 821}
 822
 823static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
 824		       unsigned long old_epc, unsigned long old_ra)
 825{
 826	union mips_instruction inst = { .word = opcode };
 827	void __user *fault_addr;
 828	unsigned long fcr31;
 829	int sig;
 830
 831	/* If it's obviously not an FP instruction, skip it */
 832	switch (inst.i_format.opcode) {
 833	case cop1_op:
 834	case cop1x_op:
 835	case lwc1_op:
 836	case ldc1_op:
 837	case swc1_op:
 838	case sdc1_op:
 839		break;
 840
 841	default:
 842		return -1;
 843	}
 844
 845	/*
 846	 * do_ri skipped over the instruction via compute_return_epc, undo
 847	 * that for the FPU emulator.
 848	 */
 849	regs->cp0_epc = old_epc;
 850	regs->regs[31] = old_ra;
 851
 852	/* Run the emulator */
 853	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 854				       &fault_addr);
 855
 856	/*
 857	 * We can't allow the emulated instruction to leave any
 858	 * enabled Cause bits set in $fcr31.
 859	 */
 860	fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
 861	current->thread.fpu.fcr31 &= ~fcr31;
 862
 863	/* Restore the hardware register state */
 864	own_fpu(1);
 865
 866	/* Send a signal if required.  */
 867	process_fpemu_return(sig, fault_addr, fcr31);
 868
 869	return 0;
 870}
 871
 872/*
 873 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
 874 */
 875asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
 876{
 877	enum ctx_state prev_state;
 878	void __user *fault_addr;
 879	int sig;
 880
 881	prev_state = exception_enter();
 882	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
 883		       SIGFPE) == NOTIFY_STOP)
 884		goto out;
 885
 886	/* Clear FCSR.Cause before enabling interrupts */
 887	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
 888	local_irq_enable();
 889
 
 
 
 890	die_if_kernel("FP exception in kernel code", regs);
 891
 892	if (fcr31 & FPU_CSR_UNI_X) {
 
 
 
 893		/*
 894		 * Unimplemented operation exception.  If we've got the full
 895		 * software emulator on-board, let's use it...
 896		 *
 897		 * Force FPU to dump state into task/thread context.  We're
 898		 * moving a lot of data here for what is probably a single
 899		 * instruction, but the alternative is to pre-decode the FP
 900		 * register operands before invoking the emulator, which seems
 901		 * a bit extreme for what should be an infrequent event.
 902		 */
 
 
 903
 904		/* Run the emulator */
 905		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 906					       &fault_addr);
 907
 908		/*
 909		 * We can't allow the emulated instruction to leave any
 910		 * enabled Cause bits set in $fcr31.
 911		 */
 912		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
 913		current->thread.fpu.fcr31 &= ~fcr31;
 914
 915		/* Restore the hardware register state */
 916		own_fpu(1);	/* Using the FPU again.	 */
 917	} else {
 918		sig = SIGFPE;
 919		fault_addr = (void __user *) regs->cp0_epc;
 920	}
 921
 922	/* Send a signal if required.  */
 923	process_fpemu_return(sig, fault_addr, fcr31);
 924
 925out:
 926	exception_exit(prev_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 927}
 928
 929/*
 930 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
 931 * emulated more than some threshold number of instructions, force migration to
 932 * a "CPU" that has FP support.
 933 */
 934static void mt_ase_fp_affinity(void)
 935{
 936#ifdef CONFIG_MIPS_MT_FPAFF
 937	if (mt_fpemul_threshold > 0 &&
 938	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
 939		/*
 940		 * If there's no FPU present, or if the application has already
 941		 * restricted the allowed set to exclude any CPUs with FPUs,
 942		 * we'll skip the procedure.
 943		 */
 944		if (cpumask_intersects(&current->cpus_mask, &mt_fpu_cpumask)) {
 945			cpumask_t tmask;
 946
 947			current->thread.user_cpus_allowed
 948				= current->cpus_mask;
 949			cpumask_and(&tmask, &current->cpus_mask,
 950				    &mt_fpu_cpumask);
 951			set_cpus_allowed_ptr(current, &tmask);
 952			set_thread_flag(TIF_FPUBOUND);
 953		}
 954	}
 955#endif /* CONFIG_MIPS_MT_FPAFF */
 956}
 957
 958#else /* !CONFIG_MIPS_FP_SUPPORT */
 959
 960static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
 961		       unsigned long old_epc, unsigned long old_ra)
 962{
 963	return -1;
 964}
 965
 966#endif /* !CONFIG_MIPS_FP_SUPPORT */
 967
 968void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
 969	const char *str)
 970{
 
 971	char b[40];
 972
 973#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 974	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
 975			 SIGTRAP) == NOTIFY_STOP)
 976		return;
 977#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 978
 979	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
 980		       SIGTRAP) == NOTIFY_STOP)
 981		return;
 982
 983	/*
 984	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
 985	 * insns, even for trap and break codes that indicate arithmetic
 986	 * failures.  Weird ...
 987	 * But should we continue the brokenness???  --macro
 988	 */
 989	switch (code) {
 990	case BRK_OVERFLOW:
 991	case BRK_DIVZERO:
 992		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 993		die_if_kernel(b, regs);
 994		force_sig_fault(SIGFPE,
 995				code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
 996				(void __user *) regs->cp0_epc);
 
 
 
 
 
 997		break;
 998	case BRK_BUG:
 999		die_if_kernel("Kernel bug detected", regs);
1000		force_sig(SIGTRAP);
1001		break;
1002	case BRK_MEMU:
1003		/*
1004		 * This breakpoint code is used by the FPU emulator to retake
1005		 * control of the CPU after executing the instruction from the
1006		 * delay slot of an emulated branch.
1007		 *
1008		 * Terminate if exception was recognized as a delay slot return
1009		 * otherwise handle as normal.
1010		 */
1011		if (do_dsemulret(regs))
1012			return;
1013
1014		die_if_kernel("Math emu break/trap", regs);
1015		force_sig(SIGTRAP);
1016		break;
1017	default:
1018		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
1019		die_if_kernel(b, regs);
1020		if (si_code) {
1021			force_sig_fault(SIGTRAP, si_code, NULL);
1022		} else {
1023			force_sig(SIGTRAP);
1024		}
1025	}
1026}
1027
1028asmlinkage void do_bp(struct pt_regs *regs)
1029{
1030	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1031	unsigned int opcode, bcode;
1032	enum ctx_state prev_state;
1033	bool user = user_mode(regs);
1034
1035	prev_state = exception_enter();
1036	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1037	if (get_isa16_mode(regs->cp0_epc)) {
1038		u16 instr[2];
1039
1040		if (__get_inst16(&instr[0], (u16 *)epc, user))
1041			goto out_sigsegv;
1042
1043		if (!cpu_has_mmips) {
1044			/* MIPS16e mode */
1045			bcode = (instr[0] >> 5) & 0x3f;
1046		} else if (mm_insn_16bit(instr[0])) {
1047			/* 16-bit microMIPS BREAK */
1048			bcode = instr[0] & 0xf;
1049		} else {
1050			/* 32-bit microMIPS BREAK */
1051			if (__get_inst16(&instr[1], (u16 *)(epc + 2), user))
1052				goto out_sigsegv;
1053			opcode = (instr[0] << 16) | instr[1];
1054			bcode = (opcode >> 6) & ((1 << 20) - 1);
1055		}
1056	} else {
1057		if (__get_inst32(&opcode, (u32 *)epc, user))
1058			goto out_sigsegv;
1059		bcode = (opcode >> 6) & ((1 << 20) - 1);
1060	}
1061
1062	/*
1063	 * There is the ancient bug in the MIPS assemblers that the break
1064	 * code starts left to bit 16 instead to bit 6 in the opcode.
1065	 * Gas is bug-compatible, but not always, grrr...
1066	 * We handle both cases with a simple heuristics.  --macro
1067	 */
 
1068	if (bcode >= (1 << 10))
1069		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1070
1071	/*
1072	 * notify the kprobe handlers, if instruction is likely to
1073	 * pertain to them.
1074	 */
1075	switch (bcode) {
1076	case BRK_UPROBE:
1077		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1078			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1079			goto out;
1080		else
1081			break;
1082	case BRK_UPROBE_XOL:
1083		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1084			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1085			goto out;
1086		else
1087			break;
1088	case BRK_KPROBE_BP:
1089		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1090			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1091			goto out;
1092		else
1093			break;
1094	case BRK_KPROBE_SSTEPBP:
1095		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1096			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1097			goto out;
1098		else
1099			break;
1100	default:
1101		break;
1102	}
1103
1104	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1105
1106out:
1107	exception_exit(prev_state);
1108	return;
1109
1110out_sigsegv:
1111	force_sig(SIGSEGV);
1112	goto out;
1113}
1114
1115asmlinkage void do_tr(struct pt_regs *regs)
1116{
1117	u32 opcode, tcode = 0;
1118	enum ctx_state prev_state;
1119	u16 instr[2];
1120	bool user = user_mode(regs);
1121	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1122
1123	prev_state = exception_enter();
1124	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1125	if (get_isa16_mode(regs->cp0_epc)) {
1126		if (__get_inst16(&instr[0], (u16 *)(epc + 0), user) ||
1127		    __get_inst16(&instr[1], (u16 *)(epc + 2), user))
1128			goto out_sigsegv;
1129		opcode = (instr[0] << 16) | instr[1];
1130		/* Immediate versions don't provide a code.  */
1131		if (!(opcode & OPCODE))
1132			tcode = (opcode >> 12) & ((1 << 4) - 1);
1133	} else {
1134		if (__get_inst32(&opcode, (u32 *)epc, user))
1135			goto out_sigsegv;
1136		/* Immediate versions don't provide a code.  */
1137		if (!(opcode & OPCODE))
1138			tcode = (opcode >> 6) & ((1 << 10) - 1);
1139	}
1140
1141	do_trap_or_bp(regs, tcode, 0, "Trap");
 
 
1142
1143out:
1144	exception_exit(prev_state);
1145	return;
1146
1147out_sigsegv:
1148	force_sig(SIGSEGV);
1149	goto out;
1150}
1151
1152asmlinkage void do_ri(struct pt_regs *regs)
1153{
1154	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1155	unsigned long old_epc = regs->cp0_epc;
1156	unsigned long old31 = regs->regs[31];
1157	enum ctx_state prev_state;
1158	unsigned int opcode = 0;
1159	int status = -1;
1160
1161	/*
1162	 * Avoid any kernel code. Just emulate the R2 instruction
1163	 * as quickly as possible.
1164	 */
1165	if (mipsr2_emulation && cpu_has_mips_r6 &&
1166	    likely(user_mode(regs)) &&
1167	    likely(get_user(opcode, epc) >= 0)) {
1168		unsigned long fcr31 = 0;
1169
1170		status = mipsr2_decoder(regs, opcode, &fcr31);
1171		switch (status) {
1172		case 0:
1173		case SIGEMT:
1174			return;
1175		case SIGILL:
1176			goto no_r2_instr;
1177		default:
1178			process_fpemu_return(status,
1179					     &current->thread.cp0_baduaddr,
1180					     fcr31);
1181			return;
1182		}
1183	}
1184
1185no_r2_instr:
1186
1187	prev_state = exception_enter();
1188	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1189
1190	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1191		       SIGILL) == NOTIFY_STOP)
1192		goto out;
1193
1194	die_if_kernel("Reserved instruction in kernel code", regs);
1195
1196	if (unlikely(compute_return_epc(regs) < 0))
1197		goto out;
1198
1199	if (!get_isa16_mode(regs->cp0_epc)) {
1200		if (unlikely(get_user(opcode, epc) < 0))
1201			status = SIGSEGV;
1202
1203		if (!cpu_has_llsc && status < 0)
1204			status = simulate_llsc(regs, opcode);
1205
1206		if (status < 0)
1207			status = simulate_rdhwr_normal(regs, opcode);
1208
1209		if (status < 0)
1210			status = simulate_sync(regs, opcode);
1211
1212		if (status < 0)
1213			status = simulate_fp(regs, opcode, old_epc, old31);
1214
1215#ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
1216		if (status < 0)
1217			status = simulate_loongson3_cpucfg(regs, opcode);
1218#endif
1219	} else if (cpu_has_mmips) {
1220		unsigned short mmop[2] = { 0 };
1221
1222		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1223			status = SIGSEGV;
1224		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1225			status = SIGSEGV;
1226		opcode = mmop[0];
1227		opcode = (opcode << 16) | mmop[1];
1228
1229		if (status < 0)
1230			status = simulate_rdhwr_mm(regs, opcode);
1231	}
1232
1233	if (status < 0)
1234		status = SIGILL;
1235
1236	if (unlikely(status > 0)) {
1237		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1238		regs->regs[31] = old31;
1239		force_sig(status);
1240	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1241
1242out:
1243	exception_exit(prev_state);
 
 
 
 
 
 
 
1244}
1245
1246/*
1247 * No lock; only written during early bootup by CPU 0.
1248 */
1249static RAW_NOTIFIER_HEAD(cu2_chain);
1250
1251int __ref register_cu2_notifier(struct notifier_block *nb)
1252{
1253	return raw_notifier_chain_register(&cu2_chain, nb);
1254}
1255
1256int cu2_notifier_call_chain(unsigned long val, void *v)
1257{
1258	return raw_notifier_call_chain(&cu2_chain, val, v);
1259}
1260
1261static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1262	void *data)
1263{
1264	struct pt_regs *regs = data;
1265
1266	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
 
 
1267			      "instruction", regs);
1268	force_sig(SIGILL);
1269
1270	return NOTIFY_OK;
1271}
1272
1273#ifdef CONFIG_MIPS_FP_SUPPORT
1274
1275static int enable_restore_fp_context(int msa)
1276{
1277	int err, was_fpu_owner, prior_msa;
1278	bool first_fp;
1279
1280	/* Initialize context if it hasn't been used already */
1281	first_fp = init_fp_ctx(current);
1282
1283	if (first_fp) {
1284		preempt_disable();
1285		err = own_fpu_inatomic(1);
1286		if (msa && !err) {
1287			enable_msa();
1288			/*
1289			 * with MSA enabled, userspace can see MSACSR
1290			 * and MSA regs, but the values in them are from
1291			 * other task before current task, restore them
1292			 * from saved fp/msa context
1293			 */
1294			write_msa_csr(current->thread.fpu.msacsr);
1295			/*
1296			 * own_fpu_inatomic(1) just restore low 64bit,
1297			 * fix the high 64bit
1298			 */
1299			init_msa_upper();
1300			set_thread_flag(TIF_USEDMSA);
1301			set_thread_flag(TIF_MSA_CTX_LIVE);
1302		}
1303		preempt_enable();
1304		return err;
1305	}
1306
1307	/*
1308	 * This task has formerly used the FP context.
1309	 *
1310	 * If this thread has no live MSA vector context then we can simply
1311	 * restore the scalar FP context. If it has live MSA vector context
1312	 * (that is, it has or may have used MSA since last performing a
1313	 * function call) then we'll need to restore the vector context. This
1314	 * applies even if we're currently only executing a scalar FP
1315	 * instruction. This is because if we were to later execute an MSA
1316	 * instruction then we'd either have to:
1317	 *
1318	 *  - Restore the vector context & clobber any registers modified by
1319	 *    scalar FP instructions between now & then.
1320	 *
1321	 * or
1322	 *
1323	 *  - Not restore the vector context & lose the most significant bits
1324	 *    of all vector registers.
1325	 *
1326	 * Neither of those options is acceptable. We cannot restore the least
1327	 * significant bits of the registers now & only restore the most
1328	 * significant bits later because the most significant bits of any
1329	 * vector registers whose aliased FP register is modified now will have
1330	 * been zeroed. We'd have no way to know that when restoring the vector
1331	 * context & thus may load an outdated value for the most significant
1332	 * bits of a vector register.
1333	 */
1334	if (!msa && !thread_msa_context_live())
1335		return own_fpu(1);
1336
1337	/*
1338	 * This task is using or has previously used MSA. Thus we require
1339	 * that Status.FR == 1.
1340	 */
1341	preempt_disable();
1342	was_fpu_owner = is_fpu_owner();
1343	err = own_fpu_inatomic(0);
1344	if (err)
1345		goto out;
1346
1347	enable_msa();
1348	write_msa_csr(current->thread.fpu.msacsr);
1349	set_thread_flag(TIF_USEDMSA);
1350
1351	/*
1352	 * If this is the first time that the task is using MSA and it has
1353	 * previously used scalar FP in this time slice then we already nave
1354	 * FP context which we shouldn't clobber. We do however need to clear
1355	 * the upper 64b of each vector register so that this task has no
1356	 * opportunity to see data left behind by another.
1357	 */
1358	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1359	if (!prior_msa && was_fpu_owner) {
1360		init_msa_upper();
1361
1362		goto out;
1363	}
1364
1365	if (!prior_msa) {
1366		/*
1367		 * Restore the least significant 64b of each vector register
1368		 * from the existing scalar FP context.
1369		 */
1370		_restore_fp(current);
1371
1372		/*
1373		 * The task has not formerly used MSA, so clear the upper 64b
1374		 * of each vector register such that it cannot see data left
1375		 * behind by another task.
1376		 */
1377		init_msa_upper();
1378	} else {
1379		/* We need to restore the vector context. */
1380		restore_msa(current);
1381
1382		/* Restore the scalar FP control & status register */
1383		if (!was_fpu_owner)
1384			write_32bit_cp1_register(CP1_STATUS,
1385						 current->thread.fpu.fcr31);
1386	}
1387
1388out:
1389	preempt_enable();
1390
1391	return 0;
1392}
1393
1394#else /* !CONFIG_MIPS_FP_SUPPORT */
1395
1396static int enable_restore_fp_context(int msa)
1397{
1398	return SIGILL;
1399}
1400
1401#endif /* CONFIG_MIPS_FP_SUPPORT */
1402
1403asmlinkage void do_cpu(struct pt_regs *regs)
1404{
1405	enum ctx_state prev_state;
1406	unsigned int __user *epc;
1407	unsigned long old_epc, old31;
1408	unsigned int opcode;
1409	unsigned int cpid;
1410	int status;
 
 
 
1411
1412	prev_state = exception_enter();
1413	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1414
1415	if (cpid != 2)
1416		die_if_kernel("do_cpu invoked from kernel context!", regs);
1417
1418	switch (cpid) {
1419	case 0:
1420		epc = (unsigned int __user *)exception_epc(regs);
1421		old_epc = regs->cp0_epc;
1422		old31 = regs->regs[31];
1423		opcode = 0;
1424		status = -1;
1425
1426		if (unlikely(compute_return_epc(regs) < 0))
1427			break;
 
 
 
1428
1429		if (!get_isa16_mode(regs->cp0_epc)) {
1430			if (unlikely(get_user(opcode, epc) < 0))
1431				status = SIGSEGV;
1432
1433			if (!cpu_has_llsc && status < 0)
1434				status = simulate_llsc(regs, opcode);
1435		}
1436
1437		if (status < 0)
1438			status = SIGILL;
1439
1440		if (unlikely(status > 0)) {
1441			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1442			regs->regs[31] = old31;
1443			force_sig(status);
1444		}
1445
1446		break;
1447
1448#ifdef CONFIG_MIPS_FP_SUPPORT
1449	case 3:
1450		/*
1451		 * The COP3 opcode space and consequently the CP0.Status.CU3
1452		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1453		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1454		 * up the space has been reused for COP1X instructions, that
1455		 * are enabled by the CP0.Status.CU1 bit and consequently
1456		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1457		 * exceptions.  Some FPU-less processors that implement one
1458		 * of these ISAs however use this code erroneously for COP1X
1459		 * instructions.  Therefore we redirect this trap to the FP
1460		 * emulator too.
1461		 */
1462		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1463			force_sig(SIGILL);
1464			break;
1465		}
1466		fallthrough;
1467	case 1: {
1468		void __user *fault_addr;
1469		unsigned long fcr31;
1470		int err, sig;
1471
1472		err = enable_restore_fp_context(0);
 
 
 
 
 
 
 
 
1473
1474		if (raw_cpu_has_fpu && !err)
1475			break;
1476
1477		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1478					       &fault_addr);
1479
1480		/*
1481		 * We can't allow the emulated instruction to leave
1482		 * any enabled Cause bits set in $fcr31.
1483		 */
1484		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1485		current->thread.fpu.fcr31 &= ~fcr31;
1486
1487		/* Send a signal if required.  */
1488		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1489			mt_ase_fp_affinity();
1490
1491		break;
1492	}
1493#else /* CONFIG_MIPS_FP_SUPPORT */
1494	case 1:
1495	case 3:
1496		force_sig(SIGILL);
1497		break;
1498#endif /* CONFIG_MIPS_FP_SUPPORT */
1499
1500	case 2:
1501		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1502		break;
1503	}
1504
1505	exception_exit(prev_state);
1506}
1507
1508asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1509{
1510	enum ctx_state prev_state;
1511
1512	prev_state = exception_enter();
1513	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1514	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1515		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1516		goto out;
1517
1518	/* Clear MSACSR.Cause before enabling interrupts */
1519	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1520	local_irq_enable();
1521
1522	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1523	force_sig(SIGFPE);
1524out:
1525	exception_exit(prev_state);
1526}
1527
1528asmlinkage void do_msa(struct pt_regs *regs)
1529{
1530	enum ctx_state prev_state;
1531	int err;
1532
1533	prev_state = exception_enter();
1534
1535	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1536		force_sig(SIGILL);
1537		goto out;
1538	}
1539
1540	die_if_kernel("do_msa invoked from kernel context!", regs);
1541
1542	err = enable_restore_fp_context(1);
1543	if (err)
1544		force_sig(SIGILL);
1545out:
1546	exception_exit(prev_state);
1547}
1548
1549asmlinkage void do_mdmx(struct pt_regs *regs)
1550{
1551	enum ctx_state prev_state;
1552
1553	prev_state = exception_enter();
1554	force_sig(SIGILL);
1555	exception_exit(prev_state);
1556}
1557
1558/*
1559 * Called with interrupts disabled.
1560 */
1561asmlinkage void do_watch(struct pt_regs *regs)
1562{
1563	enum ctx_state prev_state;
1564
1565	prev_state = exception_enter();
1566	/*
1567	 * Clear WP (bit 22) bit of cause register so we don't loop
1568	 * forever.
1569	 */
1570	clear_c0_cause(CAUSEF_WP);
 
 
1571
1572	/*
1573	 * If the current thread has the watch registers loaded, save
1574	 * their values and send SIGTRAP.  Otherwise another thread
1575	 * left the registers set, clear them and continue.
1576	 */
1577	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1578		mips_read_watch_registers();
1579		local_irq_enable();
1580		force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1581	} else {
1582		mips_clear_watch_registers();
1583		local_irq_enable();
1584	}
1585	exception_exit(prev_state);
1586}
1587
1588asmlinkage void do_mcheck(struct pt_regs *regs)
1589{
 
1590	int multi_match = regs->cp0_status & ST0_TS;
1591	enum ctx_state prev_state;
1592
1593	prev_state = exception_enter();
1594	show_regs(regs);
1595
1596	if (multi_match) {
1597		dump_tlb_regs();
1598		pr_info("\n");
 
 
 
 
1599		dump_tlb_all();
1600	}
1601
1602	show_code((void *)regs->cp0_epc, user_mode(regs));
1603
1604	/*
1605	 * Some chips may have other causes of machine check (e.g. SB1
1606	 * graduation timer)
1607	 */
1608	panic("Caught Machine Check exception - %scaused by multiple "
1609	      "matching entries in the TLB.",
1610	      (multi_match) ? "" : "not ");
1611}
1612
1613asmlinkage void do_mt(struct pt_regs *regs)
1614{
1615	int subcode;
1616
1617	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1618			>> VPECONTROL_EXCPT_SHIFT;
1619	switch (subcode) {
1620	case 0:
1621		printk(KERN_DEBUG "Thread Underflow\n");
1622		break;
1623	case 1:
1624		printk(KERN_DEBUG "Thread Overflow\n");
1625		break;
1626	case 2:
1627		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1628		break;
1629	case 3:
1630		printk(KERN_DEBUG "Gating Storage Exception\n");
1631		break;
1632	case 4:
1633		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1634		break;
1635	case 5:
1636		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1637		break;
1638	default:
1639		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1640			subcode);
1641		break;
1642	}
1643	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1644
1645	force_sig(SIGILL);
1646}
1647
1648
1649asmlinkage void do_dsp(struct pt_regs *regs)
1650{
1651	if (cpu_has_dsp)
1652		panic("Unexpected DSP exception");
1653
1654	force_sig(SIGILL);
1655}
1656
1657asmlinkage void do_reserved(struct pt_regs *regs)
1658{
1659	/*
1660	 * Game over - no way to handle this if it ever occurs.	 Most probably
1661	 * caused by a new unknown cpu type or after another deadly
1662	 * hard/software error.
1663	 */
1664	show_regs(regs);
1665	panic("Caught reserved exception %ld - should not happen.",
1666	      (regs->cp0_cause & 0x7f) >> 2);
1667}
1668
1669static int __initdata l1parity = 1;
1670static int __init nol1parity(char *s)
1671{
1672	l1parity = 0;
1673	return 1;
1674}
1675__setup("nol1par", nol1parity);
1676static int __initdata l2parity = 1;
1677static int __init nol2parity(char *s)
1678{
1679	l2parity = 0;
1680	return 1;
1681}
1682__setup("nol2par", nol2parity);
1683
1684/*
1685 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1686 * it different ways.
1687 */
1688static inline __init void parity_protection_init(void)
1689{
1690#define ERRCTL_PE	0x80000000
1691#define ERRCTL_L2P	0x00800000
1692
1693	if (mips_cm_revision() >= CM_REV_CM3) {
1694		ulong gcr_ectl, cp0_ectl;
1695
1696		/*
1697		 * With CM3 systems we need to ensure that the L1 & L2
1698		 * parity enables are set to the same value, since this
1699		 * is presumed by the hardware engineers.
1700		 *
1701		 * If the user disabled either of L1 or L2 ECC checking,
1702		 * disable both.
1703		 */
1704		l1parity &= l2parity;
1705		l2parity &= l1parity;
1706
1707		/* Probe L1 ECC support */
1708		cp0_ectl = read_c0_ecc();
1709		write_c0_ecc(cp0_ectl | ERRCTL_PE);
1710		back_to_back_c0_hazard();
1711		cp0_ectl = read_c0_ecc();
1712
1713		/* Probe L2 ECC support */
1714		gcr_ectl = read_gcr_err_control();
1715
1716		if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1717		    !(cp0_ectl & ERRCTL_PE)) {
1718			/*
1719			 * One of L1 or L2 ECC checking isn't supported,
1720			 * so we cannot enable either.
1721			 */
1722			l1parity = l2parity = 0;
1723		}
1724
1725		/* Configure L1 ECC checking */
1726		if (l1parity)
1727			cp0_ectl |= ERRCTL_PE;
1728		else
1729			cp0_ectl &= ~ERRCTL_PE;
1730		write_c0_ecc(cp0_ectl);
1731		back_to_back_c0_hazard();
1732		WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1733
1734		/* Configure L2 ECC checking */
1735		if (l2parity)
1736			gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1737		else
1738			gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1739		write_gcr_err_control(gcr_ectl);
1740		gcr_ectl = read_gcr_err_control();
1741		gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1742		WARN_ON(!!gcr_ectl != l2parity);
1743
1744		pr_info("Cache parity protection %sabled\n",
1745			l1parity ? "en" : "dis");
1746		return;
1747	}
1748
1749	switch (current_cpu_type()) {
1750	case CPU_24K:
1751	case CPU_34K:
1752	case CPU_74K:
1753	case CPU_1004K:
1754	case CPU_1074K:
1755	case CPU_INTERAPTIV:
1756	case CPU_PROAPTIV:
1757	case CPU_P5600:
1758	case CPU_QEMU_GENERIC:
1759	case CPU_P6600:
1760		{
 
 
1761			unsigned long errctl;
1762			unsigned int l1parity_present, l2parity_present;
1763
1764			errctl = read_c0_ecc();
1765			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1766
1767			/* probe L1 parity support */
1768			write_c0_ecc(errctl | ERRCTL_PE);
1769			back_to_back_c0_hazard();
1770			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1771
1772			/* probe L2 parity support */
1773			write_c0_ecc(errctl|ERRCTL_L2P);
1774			back_to_back_c0_hazard();
1775			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1776
1777			if (l1parity_present && l2parity_present) {
1778				if (l1parity)
1779					errctl |= ERRCTL_PE;
1780				if (l1parity ^ l2parity)
1781					errctl |= ERRCTL_L2P;
1782			} else if (l1parity_present) {
1783				if (l1parity)
1784					errctl |= ERRCTL_PE;
1785			} else if (l2parity_present) {
1786				if (l2parity)
1787					errctl |= ERRCTL_L2P;
1788			} else {
1789				/* No parity available */
1790			}
1791
1792			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1793
1794			write_c0_ecc(errctl);
1795			back_to_back_c0_hazard();
1796			errctl = read_c0_ecc();
1797			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1798
1799			if (l1parity_present)
1800				printk(KERN_INFO "Cache parity protection %sabled\n",
1801				       (errctl & ERRCTL_PE) ? "en" : "dis");
1802
1803			if (l2parity_present) {
1804				if (l1parity_present && l1parity)
1805					errctl ^= ERRCTL_L2P;
1806				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1807				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1808			}
1809		}
1810		break;
1811
1812	case CPU_5KC:
1813	case CPU_5KE:
1814	case CPU_LOONGSON32:
1815		write_c0_ecc(0x80000000);
1816		back_to_back_c0_hazard();
1817		/* Set the PE bit (bit 31) in the c0_errctl register. */
1818		printk(KERN_INFO "Cache parity protection %sabled\n",
1819		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1820		break;
1821	case CPU_20KC:
1822	case CPU_25KF:
1823		/* Clear the DE bit (bit 16) in the c0_status register. */
1824		printk(KERN_INFO "Enable cache parity protection for "
1825		       "MIPS 20KC/25KF CPUs.\n");
1826		clear_c0_status(ST0_DE);
1827		break;
1828	default:
1829		break;
1830	}
1831}
1832
1833asmlinkage void cache_parity_error(void)
1834{
1835	const int field = 2 * sizeof(unsigned long);
1836	unsigned int reg_val;
1837
1838	/* For the moment, report the problem and hang. */
1839	printk("Cache error exception:\n");
1840	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1841	reg_val = read_c0_cacheerr();
1842	printk("c0_cacheerr == %08x\n", reg_val);
1843
1844	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1845	       reg_val & (1<<30) ? "secondary" : "primary",
1846	       reg_val & (1<<31) ? "data" : "insn");
1847	if ((cpu_has_mips_r2_r6) &&
1848	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1849		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1850			reg_val & (1<<29) ? "ED " : "",
1851			reg_val & (1<<28) ? "ET " : "",
1852			reg_val & (1<<27) ? "ES " : "",
1853			reg_val & (1<<26) ? "EE " : "",
1854			reg_val & (1<<25) ? "EB " : "",
1855			reg_val & (1<<24) ? "EI " : "",
1856			reg_val & (1<<23) ? "E1 " : "",
1857			reg_val & (1<<22) ? "E0 " : "");
1858	} else {
1859		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1860			reg_val & (1<<29) ? "ED " : "",
1861			reg_val & (1<<28) ? "ET " : "",
1862			reg_val & (1<<26) ? "EE " : "",
1863			reg_val & (1<<25) ? "EB " : "",
1864			reg_val & (1<<24) ? "EI " : "",
1865			reg_val & (1<<23) ? "E1 " : "",
1866			reg_val & (1<<22) ? "E0 " : "");
1867	}
1868	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1869
1870#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1871	if (reg_val & (1<<22))
1872		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1873
1874	if (reg_val & (1<<23))
1875		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1876#endif
1877
1878	panic("Can't handle the cache error!");
1879}
1880
1881asmlinkage void do_ftlb(void)
1882{
1883	const int field = 2 * sizeof(unsigned long);
1884	unsigned int reg_val;
1885
1886	/* For the moment, report the problem and hang. */
1887	if ((cpu_has_mips_r2_r6) &&
1888	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1889	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1890		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1891		       read_c0_ecc());
1892		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1893		reg_val = read_c0_cacheerr();
1894		pr_err("c0_cacheerr == %08x\n", reg_val);
1895
1896		if ((reg_val & 0xc0000000) == 0xc0000000) {
1897			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1898		} else {
1899			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1900			       reg_val & (1<<30) ? "secondary" : "primary",
1901			       reg_val & (1<<31) ? "data" : "insn");
1902		}
1903	} else {
1904		pr_err("FTLB error exception\n");
1905	}
1906	/* Just print the cacheerr bits for now */
1907	cache_parity_error();
1908}
1909
1910asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1)
1911{
1912	u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >>
1913			LOONGSON_DIAG1_EXCCODE_SHIFT;
1914	enum ctx_state prev_state;
1915
1916	prev_state = exception_enter();
1917
1918	switch (exccode) {
1919	case 0x08:
1920		/* Undocumented exception, will trigger on certain
1921		 * also-undocumented instructions accessible from userspace.
1922		 * Processor state is not otherwise corrupted, but currently
1923		 * we don't know how to proceed. Maybe there is some
1924		 * undocumented control flag to enable the instructions?
1925		 */
1926		force_sig(SIGILL);
1927		break;
1928
1929	default:
1930		/* None of the other exceptions, documented or not, have
1931		 * further details given; none are encountered in the wild
1932		 * either. Panic in case some of them turn out to be fatal.
1933		 */
1934		show_regs(regs);
1935		panic("Unhandled Loongson exception - GSCause = %08x", diag1);
1936	}
1937
1938	exception_exit(prev_state);
1939}
1940
1941/*
1942 * SDBBP EJTAG debug exception handler.
1943 * We skip the instruction and return to the next instruction.
1944 */
1945void ejtag_exception_handler(struct pt_regs *regs)
1946{
1947	const int field = 2 * sizeof(unsigned long);
1948	unsigned long depc, old_epc, old_ra;
1949	unsigned int debug;
1950
1951	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1952	depc = read_c0_depc();
1953	debug = read_c0_debug();
1954	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1955	if (debug & 0x80000000) {
1956		/*
1957		 * In branch delay slot.
1958		 * We cheat a little bit here and use EPC to calculate the
1959		 * debug return address (DEPC). EPC is restored after the
1960		 * calculation.
1961		 */
1962		old_epc = regs->cp0_epc;
1963		old_ra = regs->regs[31];
1964		regs->cp0_epc = depc;
1965		compute_return_epc(regs);
1966		depc = regs->cp0_epc;
1967		regs->cp0_epc = old_epc;
1968		regs->regs[31] = old_ra;
1969	} else
1970		depc += 4;
1971	write_c0_depc(depc);
1972
1973#if 0
1974	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1975	write_c0_debug(debug | 0x100);
1976#endif
1977}
1978
1979/*
1980 * NMI exception handler.
1981 * No lock; only written during early bootup by CPU 0.
1982 */
1983static RAW_NOTIFIER_HEAD(nmi_chain);
1984
1985int register_nmi_notifier(struct notifier_block *nb)
1986{
1987	return raw_notifier_chain_register(&nmi_chain, nb);
 
 
1988}
1989
1990void __noreturn nmi_exception_handler(struct pt_regs *regs)
1991{
1992	char str[100];
1993
1994	nmi_enter();
1995	raw_notifier_call_chain(&nmi_chain, 0, regs);
1996	bust_spinlocks(1);
1997	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1998		 smp_processor_id(), regs->cp0_epc);
1999	regs->cp0_epc = read_c0_errorepc();
2000	die(str, regs);
2001	nmi_exit();
2002}
2003
2004unsigned long ebase;
2005EXPORT_SYMBOL_GPL(ebase);
2006unsigned long exception_handlers[32];
2007unsigned long vi_handlers[64];
2008
2009void reserve_exception_space(phys_addr_t addr, unsigned long size)
2010{
2011	/*
2012	 * reserve exception space on CPUs other than CPU0
2013	 * is too late, since memblock is unavailable when APs
2014	 * up
2015	 */
2016	if (smp_processor_id() == 0)
2017		memblock_reserve(addr, size);
2018}
2019
2020void __init *set_except_vector(int n, void *addr)
2021{
2022	unsigned long handler = (unsigned long) addr;
2023	unsigned long old_handler;
2024
2025#ifdef CONFIG_CPU_MICROMIPS
2026	/*
2027	 * Only the TLB handlers are cache aligned with an even
2028	 * address. All other handlers are on an odd address and
2029	 * require no modification. Otherwise, MIPS32 mode will
2030	 * be entered when handling any TLB exceptions. That
2031	 * would be bad...since we must stay in microMIPS mode.
2032	 */
2033	if (!(handler & 0x1))
2034		handler |= 1;
2035#endif
2036	old_handler = xchg(&exception_handlers[n], handler);
2037
 
2038	if (n == 0 && cpu_has_divec) {
2039#ifdef CONFIG_CPU_MICROMIPS
2040		unsigned long jump_mask = ~((1 << 27) - 1);
2041#else
2042		unsigned long jump_mask = ~((1 << 28) - 1);
2043#endif
2044		u32 *buf = (u32 *)(ebase + 0x200);
 
2045		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
2046			uasm_i_j(&buf, handler & ~jump_mask);
2047			uasm_i_nop(&buf);
2048		} else {
2049			UASM_i_LA(&buf, GPR_K0, handler);
2050			uasm_i_jr(&buf, GPR_K0);
2051			uasm_i_nop(&buf);
2052		}
2053		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
2054	}
2055	return (void *)old_handler;
2056}
2057
2058static void do_default_vi(void)
2059{
2060	show_regs(get_irq_regs());
2061	panic("Caught unexpected vectored interrupt.");
2062}
2063
2064void *set_vi_handler(int n, vi_handler_t addr)
2065{
2066	extern const u8 except_vec_vi[];
2067	extern const u8 except_vec_vi_ori[], except_vec_vi_end[];
2068	extern const u8 rollback_except_vec_vi[];
2069	unsigned long handler;
2070	unsigned long old_handler = vi_handlers[n];
2071	int srssets = current_cpu_data.srsets;
2072	u16 *h;
2073	unsigned char *b;
2074	const u8 *vec_start;
2075	int ori_offset;
2076	int handler_len;
2077
2078	BUG_ON(!cpu_has_veic && !cpu_has_vint);
2079
2080	if (addr == NULL) {
2081		handler = (unsigned long) do_default_vi;
 
2082	} else
2083		handler = (unsigned long) addr;
2084	vi_handlers[n] = handler;
2085
2086	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2087
 
 
 
2088	if (cpu_has_veic) {
2089		if (board_bind_eic_interrupt)
2090			board_bind_eic_interrupt(n, 0);
2091	} else if (cpu_has_vint) {
2092		/* SRSMap is only defined if shadow sets are implemented */
2093		if (srssets > 1)
2094			change_c0_srsmap(0xf << n*4, 0 << n*4);
2095	}
2096
2097	vec_start = using_rollback_handler() ? rollback_except_vec_vi :
2098					       except_vec_vi;
2099#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2100	ori_offset = except_vec_vi_ori - vec_start + 2;
2101#else
2102	ori_offset = except_vec_vi_ori - vec_start;
2103#endif
2104	handler_len = except_vec_vi_end - vec_start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2105
2106	if (handler_len > VECTORSPACING) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2107		/*
2108		 * Sigh... panicing won't help as the console
2109		 * is probably not configured :(
 
 
2110		 */
2111		panic("VECTORSPACING too small");
 
 
 
 
2112	}
2113
2114	set_handler(((unsigned long)b - ebase), vec_start,
2115#ifdef CONFIG_CPU_MICROMIPS
2116			(handler_len - 1));
2117#else
2118			handler_len);
2119#endif
2120	/* insert offset into vi_handlers[] */
2121	h = (u16 *)(b + ori_offset);
2122	*h = n * sizeof(handler);
2123	local_flush_icache_range((unsigned long)b,
2124				 (unsigned long)(b+handler_len));
2125
2126	return (void *)old_handler;
 
 
2127}
2128
 
 
 
 
2129/*
2130 * Timer interrupt
2131 */
2132int cp0_compare_irq;
2133EXPORT_SYMBOL_GPL(cp0_compare_irq);
2134int cp0_compare_irq_shift;
2135
2136/*
2137 * Performance counter IRQ or -1 if shared with timer
2138 */
2139int cp0_perfcount_irq;
2140EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2141
2142/*
2143 * Fast debug channel IRQ or -1 if not present
2144 */
2145int cp0_fdc_irq;
2146EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2147
2148static int noulri;
2149
2150static int __init ulri_disable(char *s)
2151{
2152	pr_info("Disabling ulri\n");
2153	noulri = 1;
2154
2155	return 1;
2156}
2157__setup("noulri", ulri_disable);
2158
2159/* configure STATUS register */
2160static void configure_status(void)
2161{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2162	/*
2163	 * Disable coprocessors and select 32-bit or 64-bit addressing
2164	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2165	 * flag that some firmware may have left set and the TS bit (for
2166	 * IP27).  Set XX for ISA IV code to work.
2167	 */
2168	unsigned int status_set = ST0_KERNEL_CUMASK;
2169#ifdef CONFIG_64BIT
2170	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2171#endif
2172	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2173		status_set |= ST0_XX;
2174	if (cpu_has_dsp)
2175		status_set |= ST0_MX;
2176
2177	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2178			 status_set);
2179	back_to_back_c0_hazard();
2180}
2181
2182unsigned int hwrena;
2183EXPORT_SYMBOL_GPL(hwrena);
2184
2185/* configure HWRENA register */
2186static void configure_hwrena(void)
2187{
2188	hwrena = cpu_hwrena_impl_bits;
2189
2190	if (cpu_has_mips_r2_r6)
2191		hwrena |= MIPS_HWRENA_CPUNUM |
2192			  MIPS_HWRENA_SYNCISTEP |
2193			  MIPS_HWRENA_CC |
2194			  MIPS_HWRENA_CCRES;
2195
2196	if (!noulri && cpu_has_userlocal)
2197		hwrena |= MIPS_HWRENA_ULR;
2198
2199	if (hwrena)
2200		write_c0_hwrena(hwrena);
2201}
2202
2203static void configure_exception_vector(void)
2204{
2205	if (cpu_has_mips_r2_r6) {
 
 
2206		unsigned long sr = set_c0_status(ST0_BEV);
2207		/* If available, use WG to set top bits of EBASE */
2208		if (cpu_has_ebase_wg) {
2209#ifdef CONFIG_64BIT
2210			write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2211#else
2212			write_c0_ebase(ebase | MIPS_EBASE_WG);
2213#endif
2214		}
2215		write_c0_ebase(ebase);
2216		write_c0_status(sr);
2217	}
2218	if (cpu_has_veic || cpu_has_vint) {
2219		/* Setting vector spacing enables EI/VI mode  */
2220		change_c0_intctl(0x3e0, VECTORSPACING);
2221	}
2222	if (cpu_has_divec) {
2223		if (cpu_has_mipsmt) {
2224			unsigned int vpflags = dvpe();
2225			set_c0_cause(CAUSEF_IV);
2226			evpe(vpflags);
2227		} else
2228			set_c0_cause(CAUSEF_IV);
2229	}
2230}
2231
2232void per_cpu_trap_init(bool is_boot_cpu)
2233{
2234	unsigned int cpu = smp_processor_id();
2235
2236	configure_status();
2237	configure_hwrena();
2238
2239	configure_exception_vector();
2240
2241	/*
2242	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2243	 *
2244	 *  o read IntCtl.IPTI to determine the timer interrupt
2245	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2246	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2247	 */
2248	if (cpu_has_mips_r2_r6) {
2249		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2250		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2251		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2252		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2253		if (!cp0_fdc_irq)
2254			cp0_fdc_irq = -1;
2255
2256	} else {
2257		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2258		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2259		cp0_perfcount_irq = -1;
2260		cp0_fdc_irq = -1;
2261	}
2262
2263	if (cpu_has_mmid)
2264		cpu_data[cpu].asid_cache = 0;
2265	else if (!cpu_data[cpu].asid_cache)
2266		cpu_data[cpu].asid_cache = asid_first_version(cpu);
 
2267
2268	mmgrab(&init_mm);
2269	current->active_mm = &init_mm;
2270	BUG_ON(current->mm);
2271	enter_lazy_tlb(&init_mm, current);
2272
2273	/* Boot CPU's cache setup in setup_arch(). */
2274	if (!is_boot_cpu)
 
2275		cpu_cache_init();
2276	tlb_init();
 
 
 
 
 
 
 
 
 
 
2277	TLBMISS_HANDLER_SETUP();
2278}
2279
2280/* Install CPU exception handler */
2281void set_handler(unsigned long offset, const void *addr, unsigned long size)
2282{
2283#ifdef CONFIG_CPU_MICROMIPS
2284	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2285#else
2286	memcpy((void *)(ebase + offset), addr, size);
2287#endif
2288	local_flush_icache_range(ebase + offset, ebase + offset + size);
2289}
2290
2291static const char panic_null_cerr[] =
2292	"Trying to set NULL cache error exception handler\n";
2293
2294/*
2295 * Install uncached CPU exception handler.
2296 * This is suitable only for the cache error exception which is the only
2297 * exception handler that is being run uncached.
2298 */
2299void set_uncached_handler(unsigned long offset, void *addr,
2300	unsigned long size)
2301{
2302	unsigned long uncached_ebase = CKSEG1ADDR_OR_64BIT(__pa(ebase));
2303
2304	if (!addr)
2305		panic(panic_null_cerr);
2306
2307	memcpy((void *)(uncached_ebase + offset), addr, size);
2308}
2309
2310static int __initdata rdhwr_noopt;
2311static int __init set_rdhwr_noopt(char *str)
2312{
2313	rdhwr_noopt = 1;
2314	return 1;
2315}
2316
2317__setup("rdhwr_noopt", set_rdhwr_noopt);
2318
2319void __init trap_init(void)
2320{
2321	extern char except_vec3_generic;
2322	extern char except_vec4;
2323	extern char except_vec3_r4000;
2324	unsigned long i, vec_size;
2325	phys_addr_t ebase_pa;
2326
2327	check_wait();
 
 
 
 
 
 
2328
2329	if (!cpu_has_mips_r2_r6) {
2330		ebase = CAC_BASE;
2331		vec_size = 0x400;
 
2332	} else {
2333		if (cpu_has_veic || cpu_has_vint)
2334			vec_size = 0x200 + VECTORSPACING*64;
2335		else
2336			vec_size = PAGE_SIZE;
2337
2338		ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2339		if (!ebase_pa)
2340			panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2341			      __func__, vec_size, 1 << fls(vec_size));
2342
2343		/*
2344		 * Try to ensure ebase resides in KSeg0 if possible.
2345		 *
2346		 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2347		 * hitting a poorly defined exception base for Cache Errors.
2348		 * The allocation is likely to be in the low 512MB of physical,
2349		 * in which case we should be able to convert to KSeg0.
2350		 *
2351		 * EVA is special though as it allows segments to be rearranged
2352		 * and to become uncached during cache error handling.
2353		 */
2354		if (!IS_ENABLED(CONFIG_EVA) && ebase_pa < 0x20000000)
2355			ebase = CKSEG0ADDR(ebase_pa);
2356		else
2357			ebase = (unsigned long)phys_to_virt(ebase_pa);
2358		if (ebase_pa >= 0x20000000)
2359			pr_warn("ebase(%pa) should better be in KSeg0",
2360				&ebase_pa);
2361	}
2362
2363	if (cpu_has_mmips) {
2364		unsigned int config3 = read_c0_config3();
2365
2366		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2367			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2368		else
2369			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2370	}
2371
2372	if (board_ebase_setup)
2373		board_ebase_setup();
2374	per_cpu_trap_init(true);
2375	memblock_set_bottom_up(false);
2376
2377	/*
2378	 * Copy the generic exception handlers to their final destination.
2379	 * This will be overridden later as suitable for a particular
2380	 * configuration.
2381	 */
2382	set_handler(0x180, &except_vec3_generic, 0x80);
2383
2384	/*
2385	 * Setup default vectors
2386	 */
2387	for (i = 0; i <= 31; i++)
2388		set_except_vector(i, handle_reserved);
2389
2390	/*
2391	 * Copy the EJTAG debug exception vector handler code to its final
2392	 * destination.
2393	 */
2394	if (cpu_has_ejtag && board_ejtag_handler_setup)
2395		board_ejtag_handler_setup();
2396
2397	/*
2398	 * Only some CPUs have the watch exceptions.
2399	 */
2400	if (cpu_has_watch)
2401		set_except_vector(EXCCODE_WATCH, handle_watch);
2402
2403	/*
2404	 * Initialise interrupt handlers
2405	 */
2406	if (cpu_has_veic || cpu_has_vint) {
2407		int nvec = cpu_has_veic ? 64 : 8;
2408		for (i = 0; i < nvec; i++)
2409			set_vi_handler(i, NULL);
2410	}
2411	else if (cpu_has_divec)
2412		set_handler(0x200, &except_vec4, 0x8);
2413
2414	/*
2415	 * Some CPUs can enable/disable for cache parity detection, but does
2416	 * it different ways.
2417	 */
2418	parity_protection_init();
2419
2420	/*
2421	 * The Data Bus Errors / Instruction Bus Errors are signaled
2422	 * by external hardware.  Therefore these two exceptions
2423	 * may have board specific handlers.
2424	 */
2425	if (board_be_init)
2426		board_be_init();
2427
2428	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2429					rollback_handle_int : handle_int);
2430	set_except_vector(EXCCODE_MOD, handle_tlbm);
2431	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2432	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2433
2434	set_except_vector(EXCCODE_ADEL, handle_adel);
2435	set_except_vector(EXCCODE_ADES, handle_ades);
 
 
 
 
 
 
 
 
 
 
 
2436
2437	set_except_vector(EXCCODE_IBE, handle_ibe);
2438	set_except_vector(EXCCODE_DBE, handle_dbe);
2439
2440	set_except_vector(EXCCODE_SYS, handle_sys);
2441	set_except_vector(EXCCODE_BP, handle_bp);
2442
2443	if (rdhwr_noopt)
2444		set_except_vector(EXCCODE_RI, handle_ri);
2445	else {
2446		if (cpu_has_vtag_icache)
2447			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2448		else if (current_cpu_type() == CPU_LOONGSON64)
2449			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2450		else
2451			set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2452	}
2453
2454	set_except_vector(EXCCODE_CPU, handle_cpu);
2455	set_except_vector(EXCCODE_OV, handle_ov);
2456	set_except_vector(EXCCODE_TR, handle_tr);
2457	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2458
2459	if (board_nmi_handler_setup)
2460		board_nmi_handler_setup();
2461
2462	if (cpu_has_fpu && !cpu_has_nofpuex)
2463		set_except_vector(EXCCODE_FPE, handle_fpe);
2464
2465	if (cpu_has_ftlbparex)
2466		set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2467
2468	if (cpu_has_gsexcex)
2469		set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc);
2470
2471	if (cpu_has_rixiex) {
2472		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2473		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2474	}
2475
2476	set_except_vector(EXCCODE_MSADIS, handle_msa);
2477	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2478
2479	if (cpu_has_mcheck)
2480		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2481
2482	if (cpu_has_mipsmt)
2483		set_except_vector(EXCCODE_THREAD, handle_mt);
2484
2485	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2486
2487	if (board_cache_error_setup)
2488		board_cache_error_setup();
2489
2490	if (cpu_has_vce)
2491		/* Special exception: R4[04]00 uses also the divec space. */
2492		set_handler(0x180, &except_vec3_r4000, 0x100);
2493	else if (cpu_has_4kex)
2494		set_handler(0x180, &except_vec3_generic, 0x80);
2495	else
2496		set_handler(0x080, &except_vec3_generic, 0x80);
2497
2498	local_flush_icache_range(ebase, ebase + vec_size);
 
2499
2500	sort_extable(__start___dbe_table, __stop___dbe_table);
2501
2502	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2503}
2504
2505static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2506			    void *v)
2507{
2508	switch (cmd) {
2509	case CPU_PM_ENTER_FAILED:
2510	case CPU_PM_EXIT:
2511		configure_status();
2512		configure_hwrena();
2513		configure_exception_vector();
2514
2515		/* Restore register with CPU number for TLB handlers */
2516		TLBMISS_HANDLER_RESTORE();
2517
2518		break;
2519	}
2520
2521	return NOTIFY_OK;
2522}
2523
2524static struct notifier_block trap_pm_notifier_block = {
2525	.notifier_call = trap_pm_notifier,
2526};
2527
2528static int __init trap_pm_init(void)
2529{
2530	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2531}
2532arch_initcall(trap_pm_init);