Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Architecture-specific setup.
   3 *
   4 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
   5 *	David Mosberger-Tang <davidm@hpl.hp.com>
   6 *	Stephane Eranian <eranian@hpl.hp.com>
   7 * Copyright (C) 2000, 2004 Intel Corp
   8 * 	Rohit Seth <rohit.seth@intel.com>
   9 * 	Suresh Siddha <suresh.b.siddha@intel.com>
  10 * 	Gordon Jin <gordon.jin@intel.com>
  11 * Copyright (C) 1999 VA Linux Systems
  12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  13 *
  14 * 12/26/04 S.Siddha, G.Jin, R.Seth
  15 *			Add multi-threading and multi-core detection
  16 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
  17 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
  18 * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
  19 * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
  20 * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
  21 * 01/07/99 S.Eranian	added the support for command line argument
  22 * 06/24/99 W.Drummond	added boot_cpu_data.
  23 * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
  24 */
  25#include <linux/module.h>
  26#include <linux/init.h>
  27
  28#include <linux/acpi.h>
  29#include <linux/bootmem.h>
  30#include <linux/console.h>
  31#include <linux/delay.h>
  32#include <linux/kernel.h>
  33#include <linux/reboot.h>
  34#include <linux/sched.h>
  35#include <linux/seq_file.h>
  36#include <linux/string.h>
  37#include <linux/threads.h>
  38#include <linux/screen_info.h>
  39#include <linux/dmi.h>
  40#include <linux/serial.h>
  41#include <linux/serial_core.h>
  42#include <linux/efi.h>
  43#include <linux/initrd.h>
  44#include <linux/pm.h>
  45#include <linux/cpufreq.h>
  46#include <linux/kexec.h>
  47#include <linux/crash_dump.h>
  48
  49#include <asm/machvec.h>
  50#include <asm/mca.h>
  51#include <asm/meminit.h>
  52#include <asm/page.h>
  53#include <asm/paravirt.h>
  54#include <asm/paravirt_patch.h>
  55#include <asm/patch.h>
  56#include <asm/pgtable.h>
  57#include <asm/processor.h>
  58#include <asm/sal.h>
  59#include <asm/sections.h>
  60#include <asm/setup.h>
  61#include <asm/smp.h>
  62#include <asm/system.h>
  63#include <asm/tlbflush.h>
  64#include <asm/unistd.h>
  65#include <asm/hpsim.h>
  66
  67#if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
  68# error "struct cpuinfo_ia64 too big!"
  69#endif
  70
  71#ifdef CONFIG_SMP
  72unsigned long __per_cpu_offset[NR_CPUS];
  73EXPORT_SYMBOL(__per_cpu_offset);
  74#endif
  75
  76DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
  77DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
  78unsigned long ia64_cycles_per_usec;
  79struct ia64_boot_param *ia64_boot_param;
  80struct screen_info screen_info;
  81unsigned long vga_console_iobase;
  82unsigned long vga_console_membase;
  83
  84static struct resource data_resource = {
  85	.name	= "Kernel data",
  86	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
  87};
  88
  89static struct resource code_resource = {
  90	.name	= "Kernel code",
  91	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
  92};
  93
  94static struct resource bss_resource = {
  95	.name	= "Kernel bss",
  96	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
  97};
  98
  99unsigned long ia64_max_cacheline_size;
 100
 101unsigned long ia64_iobase;	/* virtual address for I/O accesses */
 102EXPORT_SYMBOL(ia64_iobase);
 103struct io_space io_space[MAX_IO_SPACES];
 104EXPORT_SYMBOL(io_space);
 105unsigned int num_io_spaces;
 106
 107/*
 108 * "flush_icache_range()" needs to know what processor dependent stride size to use
 109 * when it makes i-cache(s) coherent with d-caches.
 110 */
 111#define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
 112unsigned long ia64_i_cache_stride_shift = ~0;
 113/*
 114 * "clflush_cache_range()" needs to know what processor dependent stride size to
 115 * use when it flushes cache lines including both d-cache and i-cache.
 116 */
 117/* Safest way to go: 32 bytes by 32 bytes */
 118#define	CACHE_STRIDE_SHIFT	5
 119unsigned long ia64_cache_stride_shift = ~0;
 120
 121/*
 122 * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
 123 * mask specifies a mask of address bits that must be 0 in order for two buffers to be
 124 * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
 125 * address of the second buffer must be aligned to (merge_mask+1) in order to be
 126 * mergeable).  By default, we assume there is no I/O MMU which can merge physically
 127 * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
 128 * page-size of 2^64.
 129 */
 130unsigned long ia64_max_iommu_merge_mask = ~0UL;
 131EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
 132
 133/*
 134 * We use a special marker for the end of memory and it uses the extra (+1) slot
 135 */
 136struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
 137int num_rsvd_regions __initdata;
 138
 139
 140/*
 141 * Filter incoming memory segments based on the primitive map created from the boot
 142 * parameters. Segments contained in the map are removed from the memory ranges. A
 143 * caller-specified function is called with the memory ranges that remain after filtering.
 144 * This routine does not assume the incoming segments are sorted.
 145 */
 146int __init
 147filter_rsvd_memory (u64 start, u64 end, void *arg)
 148{
 149	u64 range_start, range_end, prev_start;
 150	void (*func)(unsigned long, unsigned long, int);
 151	int i;
 152
 153#if IGNORE_PFN0
 154	if (start == PAGE_OFFSET) {
 155		printk(KERN_WARNING "warning: skipping physical page 0\n");
 156		start += PAGE_SIZE;
 157		if (start >= end) return 0;
 158	}
 159#endif
 160	/*
 161	 * lowest possible address(walker uses virtual)
 162	 */
 163	prev_start = PAGE_OFFSET;
 164	func = arg;
 165
 166	for (i = 0; i < num_rsvd_regions; ++i) {
 167		range_start = max(start, prev_start);
 168		range_end   = min(end, rsvd_region[i].start);
 169
 170		if (range_start < range_end)
 171			call_pernode_memory(__pa(range_start), range_end - range_start, func);
 172
 173		/* nothing more available in this segment */
 174		if (range_end == end) return 0;
 175
 176		prev_start = rsvd_region[i].end;
 177	}
 178	/* end of memory marker allows full processing inside loop body */
 179	return 0;
 180}
 181
 182/*
 183 * Similar to "filter_rsvd_memory()", but the reserved memory ranges
 184 * are not filtered out.
 185 */
 186int __init
 187filter_memory(u64 start, u64 end, void *arg)
 188{
 189	void (*func)(unsigned long, unsigned long, int);
 190
 191#if IGNORE_PFN0
 192	if (start == PAGE_OFFSET) {
 193		printk(KERN_WARNING "warning: skipping physical page 0\n");
 194		start += PAGE_SIZE;
 195		if (start >= end)
 196			return 0;
 197	}
 198#endif
 199	func = arg;
 200	if (start < end)
 201		call_pernode_memory(__pa(start), end - start, func);
 202	return 0;
 203}
 204
 205static void __init
 206sort_regions (struct rsvd_region *rsvd_region, int max)
 207{
 208	int j;
 209
 210	/* simple bubble sorting */
 211	while (max--) {
 212		for (j = 0; j < max; ++j) {
 213			if (rsvd_region[j].start > rsvd_region[j+1].start) {
 214				struct rsvd_region tmp;
 215				tmp = rsvd_region[j];
 216				rsvd_region[j] = rsvd_region[j + 1];
 217				rsvd_region[j + 1] = tmp;
 218			}
 219		}
 220	}
 221}
 222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223/*
 224 * Request address space for all standard resources
 225 */
 226static int __init register_memory(void)
 227{
 228	code_resource.start = ia64_tpa(_text);
 229	code_resource.end   = ia64_tpa(_etext) - 1;
 230	data_resource.start = ia64_tpa(_etext);
 231	data_resource.end   = ia64_tpa(_edata) - 1;
 232	bss_resource.start  = ia64_tpa(__bss_start);
 233	bss_resource.end    = ia64_tpa(_end) - 1;
 234	efi_initialize_iomem_resources(&code_resource, &data_resource,
 235			&bss_resource);
 236
 237	return 0;
 238}
 239
 240__initcall(register_memory);
 241
 242
 243#ifdef CONFIG_KEXEC
 244
 245/*
 246 * This function checks if the reserved crashkernel is allowed on the specific
 247 * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
 248 * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
 249 * lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
 250 * in kdump case. See the comment in sba_init() in sba_iommu.c.
 251 *
 252 * So, the only machvec that really supports loading the kdump kernel
 253 * over 4 GB is "sn2".
 254 */
 255static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
 256{
 257	if (ia64_platform_is("sn2") || ia64_platform_is("uv"))
 258		return 1;
 259	else
 260		return pbase < (1UL << 32);
 261}
 262
 263static void __init setup_crashkernel(unsigned long total, int *n)
 264{
 265	unsigned long long base = 0, size = 0;
 266	int ret;
 267
 268	ret = parse_crashkernel(boot_command_line, total,
 269			&size, &base);
 270	if (ret == 0 && size > 0) {
 271		if (!base) {
 272			sort_regions(rsvd_region, *n);
 
 273			base = kdump_find_rsvd_region(size,
 274					rsvd_region, *n);
 275		}
 276
 277		if (!check_crashkernel_memory(base, size)) {
 278			pr_warning("crashkernel: There would be kdump memory "
 279				"at %ld GB but this is unusable because it "
 280				"must\nbe below 4 GB. Change the memory "
 281				"configuration of the machine.\n",
 282				(unsigned long)(base >> 30));
 283			return;
 284		}
 285
 286		if (base != ~0UL) {
 287			printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
 288					"for crashkernel (System RAM: %ldMB)\n",
 289					(unsigned long)(size >> 20),
 290					(unsigned long)(base >> 20),
 291					(unsigned long)(total >> 20));
 292			rsvd_region[*n].start =
 293				(unsigned long)__va(base);
 294			rsvd_region[*n].end =
 295				(unsigned long)__va(base + size);
 296			(*n)++;
 297			crashk_res.start = base;
 298			crashk_res.end = base + size - 1;
 299		}
 300	}
 301	efi_memmap_res.start = ia64_boot_param->efi_memmap;
 302	efi_memmap_res.end = efi_memmap_res.start +
 303		ia64_boot_param->efi_memmap_size;
 304	boot_param_res.start = __pa(ia64_boot_param);
 305	boot_param_res.end = boot_param_res.start +
 306		sizeof(*ia64_boot_param);
 307}
 308#else
 309static inline void __init setup_crashkernel(unsigned long total, int *n)
 310{}
 311#endif
 312
 313/**
 314 * reserve_memory - setup reserved memory areas
 315 *
 316 * Setup the reserved memory areas set aside for the boot parameters,
 317 * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
 318 * see arch/ia64/include/asm/meminit.h if you need to define more.
 319 */
 320void __init
 321reserve_memory (void)
 322{
 323	int n = 0;
 324	unsigned long total_memory;
 325
 326	/*
 327	 * none of the entries in this table overlap
 328	 */
 329	rsvd_region[n].start = (unsigned long) ia64_boot_param;
 330	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
 331	n++;
 332
 333	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
 334	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
 335	n++;
 336
 337	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
 338	rsvd_region[n].end   = (rsvd_region[n].start
 339				+ strlen(__va(ia64_boot_param->command_line)) + 1);
 340	n++;
 341
 342	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
 343	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
 344	n++;
 345
 346	n += paravirt_reserve_memory(&rsvd_region[n]);
 347
 348#ifdef CONFIG_BLK_DEV_INITRD
 349	if (ia64_boot_param->initrd_start) {
 350		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
 351		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
 352		n++;
 353	}
 354#endif
 355
 356#ifdef CONFIG_CRASH_DUMP
 357	if (reserve_elfcorehdr(&rsvd_region[n].start,
 358			       &rsvd_region[n].end) == 0)
 359		n++;
 360#endif
 361
 362	total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
 363	n++;
 364
 365	setup_crashkernel(total_memory, &n);
 366
 367	/* end of memory marker */
 368	rsvd_region[n].start = ~0UL;
 369	rsvd_region[n].end   = ~0UL;
 370	n++;
 371
 372	num_rsvd_regions = n;
 373	BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
 374
 375	sort_regions(rsvd_region, num_rsvd_regions);
 
 376}
 377
 378
 379/**
 380 * find_initrd - get initrd parameters from the boot parameter structure
 381 *
 382 * Grab the initrd start and end from the boot parameter struct given us by
 383 * the boot loader.
 384 */
 385void __init
 386find_initrd (void)
 387{
 388#ifdef CONFIG_BLK_DEV_INITRD
 389	if (ia64_boot_param->initrd_start) {
 390		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
 391		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
 392
 393		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n",
 394		       initrd_start, ia64_boot_param->initrd_size);
 395	}
 396#endif
 397}
 398
 399static void __init
 400io_port_init (void)
 401{
 402	unsigned long phys_iobase;
 403
 404	/*
 405	 * Set `iobase' based on the EFI memory map or, failing that, the
 406	 * value firmware left in ar.k0.
 407	 *
 408	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
 409	 * the port's virtual address, so ia32_load_state() loads it with a
 410	 * user virtual address.  But in ia64 mode, glibc uses the
 411	 * *physical* address in ar.k0 to mmap the appropriate area from
 412	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
 413	 * cases, user-mode can only use the legacy 0-64K I/O port space.
 414	 *
 415	 * ar.k0 is not involved in kernel I/O port accesses, which can use
 416	 * any of the I/O port spaces and are done via MMIO using the
 417	 * virtual mmio_base from the appropriate io_space[].
 418	 */
 419	phys_iobase = efi_get_iobase();
 420	if (!phys_iobase) {
 421		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
 422		printk(KERN_INFO "No I/O port range found in EFI memory map, "
 423			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
 424	}
 425	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
 426	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
 427
 428	/* setup legacy IO port space */
 429	io_space[0].mmio_base = ia64_iobase;
 430	io_space[0].sparse = 1;
 431	num_io_spaces = 1;
 432}
 433
 434/**
 435 * early_console_setup - setup debugging console
 436 *
 437 * Consoles started here require little enough setup that we can start using
 438 * them very early in the boot process, either right after the machine
 439 * vector initialization, or even before if the drivers can detect their hw.
 440 *
 441 * Returns non-zero if a console couldn't be setup.
 442 */
 443static inline int __init
 444early_console_setup (char *cmdline)
 445{
 446	int earlycons = 0;
 447
 448#ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
 449	{
 450		extern int sn_serial_console_early_setup(void);
 451		if (!sn_serial_console_early_setup())
 452			earlycons++;
 453	}
 454#endif
 455#ifdef CONFIG_EFI_PCDP
 456	if (!efi_setup_pcdp_console(cmdline))
 457		earlycons++;
 458#endif
 459	if (!simcons_register())
 460		earlycons++;
 461
 462	return (earlycons) ? 0 : -1;
 463}
 464
 465static inline void
 466mark_bsp_online (void)
 467{
 468#ifdef CONFIG_SMP
 469	/* If we register an early console, allow CPU 0 to printk */
 470	cpu_set(smp_processor_id(), cpu_online_map);
 471#endif
 472}
 473
 474static __initdata int nomca;
 475static __init int setup_nomca(char *s)
 476{
 477	nomca = 1;
 478	return 0;
 479}
 480early_param("nomca", setup_nomca);
 481
 482#ifdef CONFIG_CRASH_DUMP
 483int __init reserve_elfcorehdr(u64 *start, u64 *end)
 484{
 485	u64 length;
 486
 487	/* We get the address using the kernel command line,
 488	 * but the size is extracted from the EFI tables.
 489	 * Both address and size are required for reservation
 490	 * to work properly.
 491	 */
 492
 493	if (!is_vmcore_usable())
 494		return -EINVAL;
 495
 496	if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
 497		vmcore_unusable();
 498		return -EINVAL;
 499	}
 500
 501	*start = (unsigned long)__va(elfcorehdr_addr);
 502	*end = *start + length;
 503	return 0;
 504}
 505
 506#endif /* CONFIG_PROC_VMCORE */
 507
 508void __init
 509setup_arch (char **cmdline_p)
 510{
 511	unw_init();
 512
 513	paravirt_arch_setup_early();
 514
 515	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
 516	paravirt_patch_apply();
 517
 518	*cmdline_p = __va(ia64_boot_param->command_line);
 519	strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
 520
 521	efi_init();
 522	io_port_init();
 523
 524#ifdef CONFIG_IA64_GENERIC
 525	/* machvec needs to be parsed from the command line
 526	 * before parse_early_param() is called to ensure
 527	 * that ia64_mv is initialised before any command line
 528	 * settings may cause console setup to occur
 529	 */
 530	machvec_init_from_cmdline(*cmdline_p);
 531#endif
 532
 533	parse_early_param();
 534
 535	if (early_console_setup(*cmdline_p) == 0)
 536		mark_bsp_online();
 537
 538#ifdef CONFIG_ACPI
 539	/* Initialize the ACPI boot-time table parser */
 540	acpi_table_init();
 541	early_acpi_boot_init();
 542# ifdef CONFIG_ACPI_NUMA
 543	acpi_numa_init();
 544#  ifdef CONFIG_ACPI_HOTPLUG_CPU
 545	prefill_possible_map();
 546#  endif
 547	per_cpu_scan_finalize((cpus_weight(early_cpu_possible_map) == 0 ?
 548		32 : cpus_weight(early_cpu_possible_map)),
 549		additional_cpus > 0 ? additional_cpus : 0);
 550# endif
 551#endif /* CONFIG_APCI_BOOT */
 552
 553#ifdef CONFIG_SMP
 554	smp_build_cpu_map();
 555#endif
 556	find_memory();
 557
 558	/* process SAL system table: */
 559	ia64_sal_init(__va(efi.sal_systab));
 560
 561#ifdef CONFIG_ITANIUM
 562	ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
 563#else
 564	{
 565		unsigned long num_phys_stacked;
 566
 567		if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
 568			ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
 569	}
 570#endif
 571
 572#ifdef CONFIG_SMP
 573	cpu_physical_id(0) = hard_smp_processor_id();
 574#endif
 575
 576	cpu_init();	/* initialize the bootstrap CPU */
 577	mmu_context_init();	/* initialize context_id bitmap */
 578
 579	paravirt_banner();
 580	paravirt_arch_setup_console(cmdline_p);
 581
 582#ifdef CONFIG_VT
 583	if (!conswitchp) {
 584# if defined(CONFIG_DUMMY_CONSOLE)
 585		conswitchp = &dummy_con;
 586# endif
 587# if defined(CONFIG_VGA_CONSOLE)
 588		/*
 589		 * Non-legacy systems may route legacy VGA MMIO range to system
 590		 * memory.  vga_con probes the MMIO hole, so memory looks like
 591		 * a VGA device to it.  The EFI memory map can tell us if it's
 592		 * memory so we can avoid this problem.
 593		 */
 594		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
 595			conswitchp = &vga_con;
 596# endif
 597	}
 598#endif
 599
 600	/* enable IA-64 Machine Check Abort Handling unless disabled */
 601	if (paravirt_arch_setup_nomca())
 602		nomca = 1;
 603	if (!nomca)
 604		ia64_mca_init();
 605
 606	platform_setup(cmdline_p);
 607#ifndef CONFIG_IA64_HP_SIM
 608	check_sal_cache_flush();
 609#endif
 610	paging_init();
 611}
 612
 613/*
 614 * Display cpu info for all CPUs.
 615 */
 616static int
 617show_cpuinfo (struct seq_file *m, void *v)
 618{
 619#ifdef CONFIG_SMP
 620#	define lpj	c->loops_per_jiffy
 621#	define cpunum	c->cpu
 622#else
 623#	define lpj	loops_per_jiffy
 624#	define cpunum	0
 625#endif
 626	static struct {
 627		unsigned long mask;
 628		const char *feature_name;
 629	} feature_bits[] = {
 630		{ 1UL << 0, "branchlong" },
 631		{ 1UL << 1, "spontaneous deferral"},
 632		{ 1UL << 2, "16-byte atomic ops" }
 633	};
 634	char features[128], *cp, *sep;
 635	struct cpuinfo_ia64 *c = v;
 636	unsigned long mask;
 637	unsigned long proc_freq;
 638	int i, size;
 639
 640	mask = c->features;
 641
 642	/* build the feature string: */
 643	memcpy(features, "standard", 9);
 644	cp = features;
 645	size = sizeof(features);
 646	sep = "";
 647	for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
 648		if (mask & feature_bits[i].mask) {
 649			cp += snprintf(cp, size, "%s%s", sep,
 650				       feature_bits[i].feature_name),
 651			sep = ", ";
 652			mask &= ~feature_bits[i].mask;
 653			size = sizeof(features) - (cp - features);
 654		}
 655	}
 656	if (mask && size > 1) {
 657		/* print unknown features as a hex value */
 658		snprintf(cp, size, "%s0x%lx", sep, mask);
 659	}
 660
 661	proc_freq = cpufreq_quick_get(cpunum);
 662	if (!proc_freq)
 663		proc_freq = c->proc_freq / 1000;
 664
 665	seq_printf(m,
 666		   "processor  : %d\n"
 667		   "vendor     : %s\n"
 668		   "arch       : IA-64\n"
 669		   "family     : %u\n"
 670		   "model      : %u\n"
 671		   "model name : %s\n"
 672		   "revision   : %u\n"
 673		   "archrev    : %u\n"
 674		   "features   : %s\n"
 675		   "cpu number : %lu\n"
 676		   "cpu regs   : %u\n"
 677		   "cpu MHz    : %lu.%03lu\n"
 678		   "itc MHz    : %lu.%06lu\n"
 679		   "BogoMIPS   : %lu.%02lu\n",
 680		   cpunum, c->vendor, c->family, c->model,
 681		   c->model_name, c->revision, c->archrev,
 682		   features, c->ppn, c->number,
 683		   proc_freq / 1000, proc_freq % 1000,
 684		   c->itc_freq / 1000000, c->itc_freq % 1000000,
 685		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
 686#ifdef CONFIG_SMP
 687	seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
 
 688	if (c->socket_id != -1)
 689		seq_printf(m, "physical id: %u\n", c->socket_id);
 690	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
 691		seq_printf(m,
 692			   "core id    : %u\n"
 693			   "thread id  : %u\n",
 694			   c->core_id, c->thread_id);
 695#endif
 696	seq_printf(m,"\n");
 697
 698	return 0;
 699}
 700
 701static void *
 702c_start (struct seq_file *m, loff_t *pos)
 703{
 704#ifdef CONFIG_SMP
 705	while (*pos < nr_cpu_ids && !cpu_online(*pos))
 706		++*pos;
 707#endif
 708	return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL;
 709}
 710
 711static void *
 712c_next (struct seq_file *m, void *v, loff_t *pos)
 713{
 714	++*pos;
 715	return c_start(m, pos);
 716}
 717
 718static void
 719c_stop (struct seq_file *m, void *v)
 720{
 721}
 722
 723const struct seq_operations cpuinfo_op = {
 724	.start =	c_start,
 725	.next =		c_next,
 726	.stop =		c_stop,
 727	.show =		show_cpuinfo
 728};
 729
 730#define MAX_BRANDS	8
 731static char brandname[MAX_BRANDS][128];
 732
 733static char * __cpuinit
 734get_model_name(__u8 family, __u8 model)
 735{
 736	static int overflow;
 737	char brand[128];
 738	int i;
 739
 740	memcpy(brand, "Unknown", 8);
 741	if (ia64_pal_get_brand_info(brand)) {
 742		if (family == 0x7)
 743			memcpy(brand, "Merced", 7);
 744		else if (family == 0x1f) switch (model) {
 745			case 0: memcpy(brand, "McKinley", 9); break;
 746			case 1: memcpy(brand, "Madison", 8); break;
 747			case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
 748		}
 749	}
 750	for (i = 0; i < MAX_BRANDS; i++)
 751		if (strcmp(brandname[i], brand) == 0)
 752			return brandname[i];
 753	for (i = 0; i < MAX_BRANDS; i++)
 754		if (brandname[i][0] == '\0')
 755			return strcpy(brandname[i], brand);
 756	if (overflow++ == 0)
 757		printk(KERN_ERR
 758		       "%s: Table overflow. Some processor model information will be missing\n",
 759		       __func__);
 760	return "Unknown";
 761}
 762
 763static void __cpuinit
 764identify_cpu (struct cpuinfo_ia64 *c)
 765{
 766	union {
 767		unsigned long bits[5];
 768		struct {
 769			/* id 0 & 1: */
 770			char vendor[16];
 771
 772			/* id 2 */
 773			u64 ppn;		/* processor serial number */
 774
 775			/* id 3: */
 776			unsigned number		:  8;
 777			unsigned revision	:  8;
 778			unsigned model		:  8;
 779			unsigned family		:  8;
 780			unsigned archrev	:  8;
 781			unsigned reserved	: 24;
 782
 783			/* id 4: */
 784			u64 features;
 785		} field;
 786	} cpuid;
 787	pal_vm_info_1_u_t vm1;
 788	pal_vm_info_2_u_t vm2;
 789	pal_status_t status;
 790	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
 791	int i;
 792	for (i = 0; i < 5; ++i)
 793		cpuid.bits[i] = ia64_get_cpuid(i);
 794
 795	memcpy(c->vendor, cpuid.field.vendor, 16);
 796#ifdef CONFIG_SMP
 797	c->cpu = smp_processor_id();
 798
 799	/* below default values will be overwritten  by identify_siblings() 
 800	 * for Multi-Threading/Multi-Core capable CPUs
 801	 */
 802	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
 803	c->socket_id = -1;
 804
 805	identify_siblings(c);
 806
 807	if (c->threads_per_core > smp_num_siblings)
 808		smp_num_siblings = c->threads_per_core;
 809#endif
 810	c->ppn = cpuid.field.ppn;
 811	c->number = cpuid.field.number;
 812	c->revision = cpuid.field.revision;
 813	c->model = cpuid.field.model;
 814	c->family = cpuid.field.family;
 815	c->archrev = cpuid.field.archrev;
 816	c->features = cpuid.field.features;
 817	c->model_name = get_model_name(c->family, c->model);
 818
 819	status = ia64_pal_vm_summary(&vm1, &vm2);
 820	if (status == PAL_STATUS_SUCCESS) {
 821		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
 822		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
 823	}
 824	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
 825	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
 826}
 827
 828/*
 829 * Do the following calculations:
 830 *
 831 * 1. the max. cache line size.
 832 * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
 833 * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
 834 */
 835static void __cpuinit
 836get_cache_info(void)
 837{
 838	unsigned long line_size, max = 1;
 839	unsigned long l, levels, unique_caches;
 840	pal_cache_config_info_t cci;
 841	long status;
 842
 843        status = ia64_pal_cache_summary(&levels, &unique_caches);
 844        if (status != 0) {
 845                printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
 846                       __func__, status);
 847                max = SMP_CACHE_BYTES;
 848		/* Safest setup for "flush_icache_range()" */
 849		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
 850		/* Safest setup for "clflush_cache_range()" */
 851		ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
 852		goto out;
 853        }
 854
 855	for (l = 0; l < levels; ++l) {
 856		/* cache_type (data_or_unified)=2 */
 857		status = ia64_pal_cache_config_info(l, 2, &cci);
 858		if (status != 0) {
 859			printk(KERN_ERR "%s: ia64_pal_cache_config_info"
 860				"(l=%lu, 2) failed (status=%ld)\n",
 861				__func__, l, status);
 862			max = SMP_CACHE_BYTES;
 863			/* The safest setup for "flush_icache_range()" */
 864			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
 865			/* The safest setup for "clflush_cache_range()" */
 866			ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
 867			cci.pcci_unified = 1;
 868		} else {
 869			if (cci.pcci_stride < ia64_cache_stride_shift)
 870				ia64_cache_stride_shift = cci.pcci_stride;
 871
 872			line_size = 1 << cci.pcci_line_size;
 873			if (line_size > max)
 874				max = line_size;
 875		}
 876
 877		if (!cci.pcci_unified) {
 878			/* cache_type (instruction)=1*/
 879			status = ia64_pal_cache_config_info(l, 1, &cci);
 880			if (status != 0) {
 881				printk(KERN_ERR "%s: ia64_pal_cache_config_info"
 882					"(l=%lu, 1) failed (status=%ld)\n",
 883					__func__, l, status);
 884				/* The safest setup for flush_icache_range() */
 885				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
 886			}
 887		}
 888		if (cci.pcci_stride < ia64_i_cache_stride_shift)
 889			ia64_i_cache_stride_shift = cci.pcci_stride;
 890	}
 891  out:
 892	if (max > ia64_max_cacheline_size)
 893		ia64_max_cacheline_size = max;
 894}
 895
 896/*
 897 * cpu_init() initializes state that is per-CPU.  This function acts
 898 * as a 'CPU state barrier', nothing should get across.
 899 */
 900void __cpuinit
 901cpu_init (void)
 902{
 903	extern void __cpuinit ia64_mmu_init (void *);
 904	static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
 905	unsigned long num_phys_stacked;
 906	pal_vm_info_2_u_t vmi;
 907	unsigned int max_ctx;
 908	struct cpuinfo_ia64 *cpu_info;
 909	void *cpu_data;
 910
 911	cpu_data = per_cpu_init();
 912#ifdef CONFIG_SMP
 913	/*
 914	 * insert boot cpu into sibling and core mapes
 915	 * (must be done after per_cpu area is setup)
 916	 */
 917	if (smp_processor_id() == 0) {
 918		cpu_set(0, per_cpu(cpu_sibling_map, 0));
 919		cpu_set(0, cpu_core_map[0]);
 920	} else {
 921		/*
 922		 * Set ar.k3 so that assembly code in MCA handler can compute
 923		 * physical addresses of per cpu variables with a simple:
 924		 *   phys = ar.k3 + &per_cpu_var
 925		 * and the alt-dtlb-miss handler can set per-cpu mapping into
 926		 * the TLB when needed. head.S already did this for cpu0.
 927		 */
 928		ia64_set_kr(IA64_KR_PER_CPU_DATA,
 929			    ia64_tpa(cpu_data) - (long) __per_cpu_start);
 930	}
 931#endif
 932
 933	get_cache_info();
 934
 935	/*
 936	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
 937	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
 938	 * depends on the data returned by identify_cpu().  We break the dependency by
 939	 * accessing cpu_data() through the canonical per-CPU address.
 940	 */
 941	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start);
 942	identify_cpu(cpu_info);
 943
 944#ifdef CONFIG_MCKINLEY
 945	{
 946#		define FEATURE_SET 16
 947		struct ia64_pal_retval iprv;
 948
 949		if (cpu_info->family == 0x1f) {
 950			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
 951			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
 952				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
 953				              (iprv.v1 | 0x80), FEATURE_SET, 0);
 954		}
 955	}
 956#endif
 957
 958	/* Clear the stack memory reserved for pt_regs: */
 959	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
 960
 961	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
 962
 963	/*
 964	 * Initialize the page-table base register to a global
 965	 * directory with all zeroes.  This ensure that we can handle
 966	 * TLB-misses to user address-space even before we created the
 967	 * first user address-space.  This may happen, e.g., due to
 968	 * aggressive use of lfetch.fault.
 969	 */
 970	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
 971
 972	/*
 973	 * Initialize default control register to defer speculative faults except
 974	 * for those arising from TLB misses, which are not deferred.  The
 975	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
 976	 * the kernel must have recovery code for all speculative accesses).  Turn on
 977	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
 978	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
 979	 * be fine).
 980	 */
 981	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
 982					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
 983	atomic_inc(&init_mm.mm_count);
 984	current->active_mm = &init_mm;
 985	BUG_ON(current->mm);
 986
 987	ia64_mmu_init(ia64_imva(cpu_data));
 988	ia64_mca_cpu_init(ia64_imva(cpu_data));
 989
 990	/* Clear ITC to eliminate sched_clock() overflows in human time.  */
 991	ia64_set_itc(0);
 992
 993	/* disable all local interrupt sources: */
 994	ia64_set_itv(1 << 16);
 995	ia64_set_lrr0(1 << 16);
 996	ia64_set_lrr1(1 << 16);
 997	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
 998	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
 999
1000	/* clear TPR & XTP to enable all interrupt classes: */
1001	ia64_setreg(_IA64_REG_CR_TPR, 0);
1002
1003	/* Clear any pending interrupts left by SAL/EFI */
1004	while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
1005		ia64_eoi();
1006
1007#ifdef CONFIG_SMP
1008	normal_xtp();
1009#endif
1010
1011	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
1012	if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
1013		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
1014		setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
1015	} else {
1016		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
1017		max_ctx = (1U << 15) - 1;	/* use architected minimum */
1018	}
1019	while (max_ctx < ia64_ctx.max_ctx) {
1020		unsigned int old = ia64_ctx.max_ctx;
1021		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
1022			break;
1023	}
1024
1025	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1026		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1027		       "stacked regs\n");
1028		num_phys_stacked = 96;
1029	}
1030	/* size of physical stacked register partition plus 8 bytes: */
1031	if (num_phys_stacked > max_num_phys_stacked) {
1032		ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
1033		max_num_phys_stacked = num_phys_stacked;
1034	}
1035	platform_cpu_init();
1036	pm_idle = default_idle;
1037}
1038
1039void __init
1040check_bugs (void)
1041{
1042	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1043			       (unsigned long) __end___mckinley_e9_bundles);
1044}
1045
1046static int __init run_dmi_scan(void)
1047{
1048	dmi_scan_machine();
 
 
1049	return 0;
1050}
1051core_initcall(run_dmi_scan);
v4.6
   1/*
   2 * Architecture-specific setup.
   3 *
   4 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
   5 *	David Mosberger-Tang <davidm@hpl.hp.com>
   6 *	Stephane Eranian <eranian@hpl.hp.com>
   7 * Copyright (C) 2000, 2004 Intel Corp
   8 * 	Rohit Seth <rohit.seth@intel.com>
   9 * 	Suresh Siddha <suresh.b.siddha@intel.com>
  10 * 	Gordon Jin <gordon.jin@intel.com>
  11 * Copyright (C) 1999 VA Linux Systems
  12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  13 *
  14 * 12/26/04 S.Siddha, G.Jin, R.Seth
  15 *			Add multi-threading and multi-core detection
  16 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
  17 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
  18 * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
  19 * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
  20 * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
  21 * 01/07/99 S.Eranian	added the support for command line argument
  22 * 06/24/99 W.Drummond	added boot_cpu_data.
  23 * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
  24 */
  25#include <linux/module.h>
  26#include <linux/init.h>
  27
  28#include <linux/acpi.h>
  29#include <linux/bootmem.h>
  30#include <linux/console.h>
  31#include <linux/delay.h>
  32#include <linux/kernel.h>
  33#include <linux/reboot.h>
  34#include <linux/sched.h>
  35#include <linux/seq_file.h>
  36#include <linux/string.h>
  37#include <linux/threads.h>
  38#include <linux/screen_info.h>
  39#include <linux/dmi.h>
  40#include <linux/serial.h>
  41#include <linux/serial_core.h>
  42#include <linux/efi.h>
  43#include <linux/initrd.h>
  44#include <linux/pm.h>
  45#include <linux/cpufreq.h>
  46#include <linux/kexec.h>
  47#include <linux/crash_dump.h>
  48
  49#include <asm/machvec.h>
  50#include <asm/mca.h>
  51#include <asm/meminit.h>
  52#include <asm/page.h>
 
 
  53#include <asm/patch.h>
  54#include <asm/pgtable.h>
  55#include <asm/processor.h>
  56#include <asm/sal.h>
  57#include <asm/sections.h>
  58#include <asm/setup.h>
  59#include <asm/smp.h>
 
  60#include <asm/tlbflush.h>
  61#include <asm/unistd.h>
  62#include <asm/hpsim.h>
  63
  64#if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
  65# error "struct cpuinfo_ia64 too big!"
  66#endif
  67
  68#ifdef CONFIG_SMP
  69unsigned long __per_cpu_offset[NR_CPUS];
  70EXPORT_SYMBOL(__per_cpu_offset);
  71#endif
  72
  73DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
  74DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
  75unsigned long ia64_cycles_per_usec;
  76struct ia64_boot_param *ia64_boot_param;
  77struct screen_info screen_info;
  78unsigned long vga_console_iobase;
  79unsigned long vga_console_membase;
  80
  81static struct resource data_resource = {
  82	.name	= "Kernel data",
  83	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  84};
  85
  86static struct resource code_resource = {
  87	.name	= "Kernel code",
  88	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  89};
  90
  91static struct resource bss_resource = {
  92	.name	= "Kernel bss",
  93	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  94};
  95
  96unsigned long ia64_max_cacheline_size;
  97
  98unsigned long ia64_iobase;	/* virtual address for I/O accesses */
  99EXPORT_SYMBOL(ia64_iobase);
 100struct io_space io_space[MAX_IO_SPACES];
 101EXPORT_SYMBOL(io_space);
 102unsigned int num_io_spaces;
 103
 104/*
 105 * "flush_icache_range()" needs to know what processor dependent stride size to use
 106 * when it makes i-cache(s) coherent with d-caches.
 107 */
 108#define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
 109unsigned long ia64_i_cache_stride_shift = ~0;
 110/*
 111 * "clflush_cache_range()" needs to know what processor dependent stride size to
 112 * use when it flushes cache lines including both d-cache and i-cache.
 113 */
 114/* Safest way to go: 32 bytes by 32 bytes */
 115#define	CACHE_STRIDE_SHIFT	5
 116unsigned long ia64_cache_stride_shift = ~0;
 117
 118/*
 119 * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
 120 * mask specifies a mask of address bits that must be 0 in order for two buffers to be
 121 * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
 122 * address of the second buffer must be aligned to (merge_mask+1) in order to be
 123 * mergeable).  By default, we assume there is no I/O MMU which can merge physically
 124 * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
 125 * page-size of 2^64.
 126 */
 127unsigned long ia64_max_iommu_merge_mask = ~0UL;
 128EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
 129
 130/*
 131 * We use a special marker for the end of memory and it uses the extra (+1) slot
 132 */
 133struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
 134int num_rsvd_regions __initdata;
 135
 136
 137/*
 138 * Filter incoming memory segments based on the primitive map created from the boot
 139 * parameters. Segments contained in the map are removed from the memory ranges. A
 140 * caller-specified function is called with the memory ranges that remain after filtering.
 141 * This routine does not assume the incoming segments are sorted.
 142 */
 143int __init
 144filter_rsvd_memory (u64 start, u64 end, void *arg)
 145{
 146	u64 range_start, range_end, prev_start;
 147	void (*func)(unsigned long, unsigned long, int);
 148	int i;
 149
 150#if IGNORE_PFN0
 151	if (start == PAGE_OFFSET) {
 152		printk(KERN_WARNING "warning: skipping physical page 0\n");
 153		start += PAGE_SIZE;
 154		if (start >= end) return 0;
 155	}
 156#endif
 157	/*
 158	 * lowest possible address(walker uses virtual)
 159	 */
 160	prev_start = PAGE_OFFSET;
 161	func = arg;
 162
 163	for (i = 0; i < num_rsvd_regions; ++i) {
 164		range_start = max(start, prev_start);
 165		range_end   = min(end, rsvd_region[i].start);
 166
 167		if (range_start < range_end)
 168			call_pernode_memory(__pa(range_start), range_end - range_start, func);
 169
 170		/* nothing more available in this segment */
 171		if (range_end == end) return 0;
 172
 173		prev_start = rsvd_region[i].end;
 174	}
 175	/* end of memory marker allows full processing inside loop body */
 176	return 0;
 177}
 178
 179/*
 180 * Similar to "filter_rsvd_memory()", but the reserved memory ranges
 181 * are not filtered out.
 182 */
 183int __init
 184filter_memory(u64 start, u64 end, void *arg)
 185{
 186	void (*func)(unsigned long, unsigned long, int);
 187
 188#if IGNORE_PFN0
 189	if (start == PAGE_OFFSET) {
 190		printk(KERN_WARNING "warning: skipping physical page 0\n");
 191		start += PAGE_SIZE;
 192		if (start >= end)
 193			return 0;
 194	}
 195#endif
 196	func = arg;
 197	if (start < end)
 198		call_pernode_memory(__pa(start), end - start, func);
 199	return 0;
 200}
 201
 202static void __init
 203sort_regions (struct rsvd_region *rsvd_region, int max)
 204{
 205	int j;
 206
 207	/* simple bubble sorting */
 208	while (max--) {
 209		for (j = 0; j < max; ++j) {
 210			if (rsvd_region[j].start > rsvd_region[j+1].start) {
 211				struct rsvd_region tmp;
 212				tmp = rsvd_region[j];
 213				rsvd_region[j] = rsvd_region[j + 1];
 214				rsvd_region[j + 1] = tmp;
 215			}
 216		}
 217	}
 218}
 219
 220/* merge overlaps */
 221static int __init
 222merge_regions (struct rsvd_region *rsvd_region, int max)
 223{
 224	int i;
 225	for (i = 1; i < max; ++i) {
 226		if (rsvd_region[i].start >= rsvd_region[i-1].end)
 227			continue;
 228		if (rsvd_region[i].end > rsvd_region[i-1].end)
 229			rsvd_region[i-1].end = rsvd_region[i].end;
 230		--max;
 231		memmove(&rsvd_region[i], &rsvd_region[i+1],
 232			(max - i) * sizeof(struct rsvd_region));
 233	}
 234	return max;
 235}
 236
 237/*
 238 * Request address space for all standard resources
 239 */
 240static int __init register_memory(void)
 241{
 242	code_resource.start = ia64_tpa(_text);
 243	code_resource.end   = ia64_tpa(_etext) - 1;
 244	data_resource.start = ia64_tpa(_etext);
 245	data_resource.end   = ia64_tpa(_edata) - 1;
 246	bss_resource.start  = ia64_tpa(__bss_start);
 247	bss_resource.end    = ia64_tpa(_end) - 1;
 248	efi_initialize_iomem_resources(&code_resource, &data_resource,
 249			&bss_resource);
 250
 251	return 0;
 252}
 253
 254__initcall(register_memory);
 255
 256
 257#ifdef CONFIG_KEXEC
 258
 259/*
 260 * This function checks if the reserved crashkernel is allowed on the specific
 261 * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
 262 * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
 263 * lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
 264 * in kdump case. See the comment in sba_init() in sba_iommu.c.
 265 *
 266 * So, the only machvec that really supports loading the kdump kernel
 267 * over 4 GB is "sn2".
 268 */
 269static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
 270{
 271	if (ia64_platform_is("sn2") || ia64_platform_is("uv"))
 272		return 1;
 273	else
 274		return pbase < (1UL << 32);
 275}
 276
 277static void __init setup_crashkernel(unsigned long total, int *n)
 278{
 279	unsigned long long base = 0, size = 0;
 280	int ret;
 281
 282	ret = parse_crashkernel(boot_command_line, total,
 283			&size, &base);
 284	if (ret == 0 && size > 0) {
 285		if (!base) {
 286			sort_regions(rsvd_region, *n);
 287			*n = merge_regions(rsvd_region, *n);
 288			base = kdump_find_rsvd_region(size,
 289					rsvd_region, *n);
 290		}
 291
 292		if (!check_crashkernel_memory(base, size)) {
 293			pr_warning("crashkernel: There would be kdump memory "
 294				"at %ld GB but this is unusable because it "
 295				"must\nbe below 4 GB. Change the memory "
 296				"configuration of the machine.\n",
 297				(unsigned long)(base >> 30));
 298			return;
 299		}
 300
 301		if (base != ~0UL) {
 302			printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
 303					"for crashkernel (System RAM: %ldMB)\n",
 304					(unsigned long)(size >> 20),
 305					(unsigned long)(base >> 20),
 306					(unsigned long)(total >> 20));
 307			rsvd_region[*n].start =
 308				(unsigned long)__va(base);
 309			rsvd_region[*n].end =
 310				(unsigned long)__va(base + size);
 311			(*n)++;
 312			crashk_res.start = base;
 313			crashk_res.end = base + size - 1;
 314		}
 315	}
 316	efi_memmap_res.start = ia64_boot_param->efi_memmap;
 317	efi_memmap_res.end = efi_memmap_res.start +
 318		ia64_boot_param->efi_memmap_size;
 319	boot_param_res.start = __pa(ia64_boot_param);
 320	boot_param_res.end = boot_param_res.start +
 321		sizeof(*ia64_boot_param);
 322}
 323#else
 324static inline void __init setup_crashkernel(unsigned long total, int *n)
 325{}
 326#endif
 327
 328/**
 329 * reserve_memory - setup reserved memory areas
 330 *
 331 * Setup the reserved memory areas set aside for the boot parameters,
 332 * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
 333 * see arch/ia64/include/asm/meminit.h if you need to define more.
 334 */
 335void __init
 336reserve_memory (void)
 337{
 338	int n = 0;
 339	unsigned long total_memory;
 340
 341	/*
 342	 * none of the entries in this table overlap
 343	 */
 344	rsvd_region[n].start = (unsigned long) ia64_boot_param;
 345	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
 346	n++;
 347
 348	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
 349	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
 350	n++;
 351
 352	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
 353	rsvd_region[n].end   = (rsvd_region[n].start
 354				+ strlen(__va(ia64_boot_param->command_line)) + 1);
 355	n++;
 356
 357	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
 358	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
 359	n++;
 360
 
 
 361#ifdef CONFIG_BLK_DEV_INITRD
 362	if (ia64_boot_param->initrd_start) {
 363		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
 364		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
 365		n++;
 366	}
 367#endif
 368
 369#ifdef CONFIG_CRASH_DUMP
 370	if (reserve_elfcorehdr(&rsvd_region[n].start,
 371			       &rsvd_region[n].end) == 0)
 372		n++;
 373#endif
 374
 375	total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
 376	n++;
 377
 378	setup_crashkernel(total_memory, &n);
 379
 380	/* end of memory marker */
 381	rsvd_region[n].start = ~0UL;
 382	rsvd_region[n].end   = ~0UL;
 383	n++;
 384
 385	num_rsvd_regions = n;
 386	BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
 387
 388	sort_regions(rsvd_region, num_rsvd_regions);
 389	num_rsvd_regions = merge_regions(rsvd_region, num_rsvd_regions);
 390}
 391
 392
 393/**
 394 * find_initrd - get initrd parameters from the boot parameter structure
 395 *
 396 * Grab the initrd start and end from the boot parameter struct given us by
 397 * the boot loader.
 398 */
 399void __init
 400find_initrd (void)
 401{
 402#ifdef CONFIG_BLK_DEV_INITRD
 403	if (ia64_boot_param->initrd_start) {
 404		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
 405		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
 406
 407		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n",
 408		       initrd_start, ia64_boot_param->initrd_size);
 409	}
 410#endif
 411}
 412
 413static void __init
 414io_port_init (void)
 415{
 416	unsigned long phys_iobase;
 417
 418	/*
 419	 * Set `iobase' based on the EFI memory map or, failing that, the
 420	 * value firmware left in ar.k0.
 421	 *
 422	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
 423	 * the port's virtual address, so ia32_load_state() loads it with a
 424	 * user virtual address.  But in ia64 mode, glibc uses the
 425	 * *physical* address in ar.k0 to mmap the appropriate area from
 426	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
 427	 * cases, user-mode can only use the legacy 0-64K I/O port space.
 428	 *
 429	 * ar.k0 is not involved in kernel I/O port accesses, which can use
 430	 * any of the I/O port spaces and are done via MMIO using the
 431	 * virtual mmio_base from the appropriate io_space[].
 432	 */
 433	phys_iobase = efi_get_iobase();
 434	if (!phys_iobase) {
 435		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
 436		printk(KERN_INFO "No I/O port range found in EFI memory map, "
 437			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
 438	}
 439	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
 440	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
 441
 442	/* setup legacy IO port space */
 443	io_space[0].mmio_base = ia64_iobase;
 444	io_space[0].sparse = 1;
 445	num_io_spaces = 1;
 446}
 447
 448/**
 449 * early_console_setup - setup debugging console
 450 *
 451 * Consoles started here require little enough setup that we can start using
 452 * them very early in the boot process, either right after the machine
 453 * vector initialization, or even before if the drivers can detect their hw.
 454 *
 455 * Returns non-zero if a console couldn't be setup.
 456 */
 457static inline int __init
 458early_console_setup (char *cmdline)
 459{
 460	int earlycons = 0;
 461
 462#ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
 463	{
 464		extern int sn_serial_console_early_setup(void);
 465		if (!sn_serial_console_early_setup())
 466			earlycons++;
 467	}
 468#endif
 469#ifdef CONFIG_EFI_PCDP
 470	if (!efi_setup_pcdp_console(cmdline))
 471		earlycons++;
 472#endif
 473	if (!simcons_register())
 474		earlycons++;
 475
 476	return (earlycons) ? 0 : -1;
 477}
 478
 479static inline void
 480mark_bsp_online (void)
 481{
 482#ifdef CONFIG_SMP
 483	/* If we register an early console, allow CPU 0 to printk */
 484	set_cpu_online(smp_processor_id(), true);
 485#endif
 486}
 487
 488static __initdata int nomca;
 489static __init int setup_nomca(char *s)
 490{
 491	nomca = 1;
 492	return 0;
 493}
 494early_param("nomca", setup_nomca);
 495
 496#ifdef CONFIG_CRASH_DUMP
 497int __init reserve_elfcorehdr(u64 *start, u64 *end)
 498{
 499	u64 length;
 500
 501	/* We get the address using the kernel command line,
 502	 * but the size is extracted from the EFI tables.
 503	 * Both address and size are required for reservation
 504	 * to work properly.
 505	 */
 506
 507	if (!is_vmcore_usable())
 508		return -EINVAL;
 509
 510	if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
 511		vmcore_unusable();
 512		return -EINVAL;
 513	}
 514
 515	*start = (unsigned long)__va(elfcorehdr_addr);
 516	*end = *start + length;
 517	return 0;
 518}
 519
 520#endif /* CONFIG_PROC_VMCORE */
 521
 522void __init
 523setup_arch (char **cmdline_p)
 524{
 525	unw_init();
 526
 
 
 527	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
 
 528
 529	*cmdline_p = __va(ia64_boot_param->command_line);
 530	strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
 531
 532	efi_init();
 533	io_port_init();
 534
 535#ifdef CONFIG_IA64_GENERIC
 536	/* machvec needs to be parsed from the command line
 537	 * before parse_early_param() is called to ensure
 538	 * that ia64_mv is initialised before any command line
 539	 * settings may cause console setup to occur
 540	 */
 541	machvec_init_from_cmdline(*cmdline_p);
 542#endif
 543
 544	parse_early_param();
 545
 546	if (early_console_setup(*cmdline_p) == 0)
 547		mark_bsp_online();
 548
 549#ifdef CONFIG_ACPI
 550	/* Initialize the ACPI boot-time table parser */
 551	acpi_table_init();
 552	early_acpi_boot_init();
 553# ifdef CONFIG_ACPI_NUMA
 554	acpi_numa_init();
 555#  ifdef CONFIG_ACPI_HOTPLUG_CPU
 556	prefill_possible_map();
 557#  endif
 558	per_cpu_scan_finalize((cpumask_weight(&early_cpu_possible_map) == 0 ?
 559		32 : cpumask_weight(&early_cpu_possible_map)),
 560		additional_cpus > 0 ? additional_cpus : 0);
 561# endif
 562#endif /* CONFIG_APCI_BOOT */
 563
 564#ifdef CONFIG_SMP
 565	smp_build_cpu_map();
 566#endif
 567	find_memory();
 568
 569	/* process SAL system table: */
 570	ia64_sal_init(__va(efi.sal_systab));
 571
 572#ifdef CONFIG_ITANIUM
 573	ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
 574#else
 575	{
 576		unsigned long num_phys_stacked;
 577
 578		if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
 579			ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
 580	}
 581#endif
 582
 583#ifdef CONFIG_SMP
 584	cpu_physical_id(0) = hard_smp_processor_id();
 585#endif
 586
 587	cpu_init();	/* initialize the bootstrap CPU */
 588	mmu_context_init();	/* initialize context_id bitmap */
 589
 
 
 
 590#ifdef CONFIG_VT
 591	if (!conswitchp) {
 592# if defined(CONFIG_DUMMY_CONSOLE)
 593		conswitchp = &dummy_con;
 594# endif
 595# if defined(CONFIG_VGA_CONSOLE)
 596		/*
 597		 * Non-legacy systems may route legacy VGA MMIO range to system
 598		 * memory.  vga_con probes the MMIO hole, so memory looks like
 599		 * a VGA device to it.  The EFI memory map can tell us if it's
 600		 * memory so we can avoid this problem.
 601		 */
 602		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
 603			conswitchp = &vga_con;
 604# endif
 605	}
 606#endif
 607
 608	/* enable IA-64 Machine Check Abort Handling unless disabled */
 
 
 609	if (!nomca)
 610		ia64_mca_init();
 611
 612	platform_setup(cmdline_p);
 613#ifndef CONFIG_IA64_HP_SIM
 614	check_sal_cache_flush();
 615#endif
 616	paging_init();
 617}
 618
 619/*
 620 * Display cpu info for all CPUs.
 621 */
 622static int
 623show_cpuinfo (struct seq_file *m, void *v)
 624{
 625#ifdef CONFIG_SMP
 626#	define lpj	c->loops_per_jiffy
 627#	define cpunum	c->cpu
 628#else
 629#	define lpj	loops_per_jiffy
 630#	define cpunum	0
 631#endif
 632	static struct {
 633		unsigned long mask;
 634		const char *feature_name;
 635	} feature_bits[] = {
 636		{ 1UL << 0, "branchlong" },
 637		{ 1UL << 1, "spontaneous deferral"},
 638		{ 1UL << 2, "16-byte atomic ops" }
 639	};
 640	char features[128], *cp, *sep;
 641	struct cpuinfo_ia64 *c = v;
 642	unsigned long mask;
 643	unsigned long proc_freq;
 644	int i, size;
 645
 646	mask = c->features;
 647
 648	/* build the feature string: */
 649	memcpy(features, "standard", 9);
 650	cp = features;
 651	size = sizeof(features);
 652	sep = "";
 653	for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
 654		if (mask & feature_bits[i].mask) {
 655			cp += snprintf(cp, size, "%s%s", sep,
 656				       feature_bits[i].feature_name),
 657			sep = ", ";
 658			mask &= ~feature_bits[i].mask;
 659			size = sizeof(features) - (cp - features);
 660		}
 661	}
 662	if (mask && size > 1) {
 663		/* print unknown features as a hex value */
 664		snprintf(cp, size, "%s0x%lx", sep, mask);
 665	}
 666
 667	proc_freq = cpufreq_quick_get(cpunum);
 668	if (!proc_freq)
 669		proc_freq = c->proc_freq / 1000;
 670
 671	seq_printf(m,
 672		   "processor  : %d\n"
 673		   "vendor     : %s\n"
 674		   "arch       : IA-64\n"
 675		   "family     : %u\n"
 676		   "model      : %u\n"
 677		   "model name : %s\n"
 678		   "revision   : %u\n"
 679		   "archrev    : %u\n"
 680		   "features   : %s\n"
 681		   "cpu number : %lu\n"
 682		   "cpu regs   : %u\n"
 683		   "cpu MHz    : %lu.%03lu\n"
 684		   "itc MHz    : %lu.%06lu\n"
 685		   "BogoMIPS   : %lu.%02lu\n",
 686		   cpunum, c->vendor, c->family, c->model,
 687		   c->model_name, c->revision, c->archrev,
 688		   features, c->ppn, c->number,
 689		   proc_freq / 1000, proc_freq % 1000,
 690		   c->itc_freq / 1000000, c->itc_freq % 1000000,
 691		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
 692#ifdef CONFIG_SMP
 693	seq_printf(m, "siblings   : %u\n",
 694		   cpumask_weight(&cpu_core_map[cpunum]));
 695	if (c->socket_id != -1)
 696		seq_printf(m, "physical id: %u\n", c->socket_id);
 697	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
 698		seq_printf(m,
 699			   "core id    : %u\n"
 700			   "thread id  : %u\n",
 701			   c->core_id, c->thread_id);
 702#endif
 703	seq_printf(m,"\n");
 704
 705	return 0;
 706}
 707
 708static void *
 709c_start (struct seq_file *m, loff_t *pos)
 710{
 711#ifdef CONFIG_SMP
 712	while (*pos < nr_cpu_ids && !cpu_online(*pos))
 713		++*pos;
 714#endif
 715	return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL;
 716}
 717
 718static void *
 719c_next (struct seq_file *m, void *v, loff_t *pos)
 720{
 721	++*pos;
 722	return c_start(m, pos);
 723}
 724
 725static void
 726c_stop (struct seq_file *m, void *v)
 727{
 728}
 729
 730const struct seq_operations cpuinfo_op = {
 731	.start =	c_start,
 732	.next =		c_next,
 733	.stop =		c_stop,
 734	.show =		show_cpuinfo
 735};
 736
 737#define MAX_BRANDS	8
 738static char brandname[MAX_BRANDS][128];
 739
 740static char *
 741get_model_name(__u8 family, __u8 model)
 742{
 743	static int overflow;
 744	char brand[128];
 745	int i;
 746
 747	memcpy(brand, "Unknown", 8);
 748	if (ia64_pal_get_brand_info(brand)) {
 749		if (family == 0x7)
 750			memcpy(brand, "Merced", 7);
 751		else if (family == 0x1f) switch (model) {
 752			case 0: memcpy(brand, "McKinley", 9); break;
 753			case 1: memcpy(brand, "Madison", 8); break;
 754			case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
 755		}
 756	}
 757	for (i = 0; i < MAX_BRANDS; i++)
 758		if (strcmp(brandname[i], brand) == 0)
 759			return brandname[i];
 760	for (i = 0; i < MAX_BRANDS; i++)
 761		if (brandname[i][0] == '\0')
 762			return strcpy(brandname[i], brand);
 763	if (overflow++ == 0)
 764		printk(KERN_ERR
 765		       "%s: Table overflow. Some processor model information will be missing\n",
 766		       __func__);
 767	return "Unknown";
 768}
 769
 770static void
 771identify_cpu (struct cpuinfo_ia64 *c)
 772{
 773	union {
 774		unsigned long bits[5];
 775		struct {
 776			/* id 0 & 1: */
 777			char vendor[16];
 778
 779			/* id 2 */
 780			u64 ppn;		/* processor serial number */
 781
 782			/* id 3: */
 783			unsigned number		:  8;
 784			unsigned revision	:  8;
 785			unsigned model		:  8;
 786			unsigned family		:  8;
 787			unsigned archrev	:  8;
 788			unsigned reserved	: 24;
 789
 790			/* id 4: */
 791			u64 features;
 792		} field;
 793	} cpuid;
 794	pal_vm_info_1_u_t vm1;
 795	pal_vm_info_2_u_t vm2;
 796	pal_status_t status;
 797	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
 798	int i;
 799	for (i = 0; i < 5; ++i)
 800		cpuid.bits[i] = ia64_get_cpuid(i);
 801
 802	memcpy(c->vendor, cpuid.field.vendor, 16);
 803#ifdef CONFIG_SMP
 804	c->cpu = smp_processor_id();
 805
 806	/* below default values will be overwritten  by identify_siblings() 
 807	 * for Multi-Threading/Multi-Core capable CPUs
 808	 */
 809	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
 810	c->socket_id = -1;
 811
 812	identify_siblings(c);
 813
 814	if (c->threads_per_core > smp_num_siblings)
 815		smp_num_siblings = c->threads_per_core;
 816#endif
 817	c->ppn = cpuid.field.ppn;
 818	c->number = cpuid.field.number;
 819	c->revision = cpuid.field.revision;
 820	c->model = cpuid.field.model;
 821	c->family = cpuid.field.family;
 822	c->archrev = cpuid.field.archrev;
 823	c->features = cpuid.field.features;
 824	c->model_name = get_model_name(c->family, c->model);
 825
 826	status = ia64_pal_vm_summary(&vm1, &vm2);
 827	if (status == PAL_STATUS_SUCCESS) {
 828		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
 829		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
 830	}
 831	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
 832	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
 833}
 834
 835/*
 836 * Do the following calculations:
 837 *
 838 * 1. the max. cache line size.
 839 * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
 840 * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
 841 */
 842static void
 843get_cache_info(void)
 844{
 845	unsigned long line_size, max = 1;
 846	unsigned long l, levels, unique_caches;
 847	pal_cache_config_info_t cci;
 848	long status;
 849
 850        status = ia64_pal_cache_summary(&levels, &unique_caches);
 851        if (status != 0) {
 852                printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
 853                       __func__, status);
 854                max = SMP_CACHE_BYTES;
 855		/* Safest setup for "flush_icache_range()" */
 856		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
 857		/* Safest setup for "clflush_cache_range()" */
 858		ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
 859		goto out;
 860        }
 861
 862	for (l = 0; l < levels; ++l) {
 863		/* cache_type (data_or_unified)=2 */
 864		status = ia64_pal_cache_config_info(l, 2, &cci);
 865		if (status != 0) {
 866			printk(KERN_ERR "%s: ia64_pal_cache_config_info"
 867				"(l=%lu, 2) failed (status=%ld)\n",
 868				__func__, l, status);
 869			max = SMP_CACHE_BYTES;
 870			/* The safest setup for "flush_icache_range()" */
 871			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
 872			/* The safest setup for "clflush_cache_range()" */
 873			ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
 874			cci.pcci_unified = 1;
 875		} else {
 876			if (cci.pcci_stride < ia64_cache_stride_shift)
 877				ia64_cache_stride_shift = cci.pcci_stride;
 878
 879			line_size = 1 << cci.pcci_line_size;
 880			if (line_size > max)
 881				max = line_size;
 882		}
 883
 884		if (!cci.pcci_unified) {
 885			/* cache_type (instruction)=1*/
 886			status = ia64_pal_cache_config_info(l, 1, &cci);
 887			if (status != 0) {
 888				printk(KERN_ERR "%s: ia64_pal_cache_config_info"
 889					"(l=%lu, 1) failed (status=%ld)\n",
 890					__func__, l, status);
 891				/* The safest setup for flush_icache_range() */
 892				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
 893			}
 894		}
 895		if (cci.pcci_stride < ia64_i_cache_stride_shift)
 896			ia64_i_cache_stride_shift = cci.pcci_stride;
 897	}
 898  out:
 899	if (max > ia64_max_cacheline_size)
 900		ia64_max_cacheline_size = max;
 901}
 902
 903/*
 904 * cpu_init() initializes state that is per-CPU.  This function acts
 905 * as a 'CPU state barrier', nothing should get across.
 906 */
 907void
 908cpu_init (void)
 909{
 910	extern void ia64_mmu_init(void *);
 911	static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
 912	unsigned long num_phys_stacked;
 913	pal_vm_info_2_u_t vmi;
 914	unsigned int max_ctx;
 915	struct cpuinfo_ia64 *cpu_info;
 916	void *cpu_data;
 917
 918	cpu_data = per_cpu_init();
 919#ifdef CONFIG_SMP
 920	/*
 921	 * insert boot cpu into sibling and core mapes
 922	 * (must be done after per_cpu area is setup)
 923	 */
 924	if (smp_processor_id() == 0) {
 925		cpumask_set_cpu(0, &per_cpu(cpu_sibling_map, 0));
 926		cpumask_set_cpu(0, &cpu_core_map[0]);
 927	} else {
 928		/*
 929		 * Set ar.k3 so that assembly code in MCA handler can compute
 930		 * physical addresses of per cpu variables with a simple:
 931		 *   phys = ar.k3 + &per_cpu_var
 932		 * and the alt-dtlb-miss handler can set per-cpu mapping into
 933		 * the TLB when needed. head.S already did this for cpu0.
 934		 */
 935		ia64_set_kr(IA64_KR_PER_CPU_DATA,
 936			    ia64_tpa(cpu_data) - (long) __per_cpu_start);
 937	}
 938#endif
 939
 940	get_cache_info();
 941
 942	/*
 943	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
 944	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
 945	 * depends on the data returned by identify_cpu().  We break the dependency by
 946	 * accessing cpu_data() through the canonical per-CPU address.
 947	 */
 948	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start);
 949	identify_cpu(cpu_info);
 950
 951#ifdef CONFIG_MCKINLEY
 952	{
 953#		define FEATURE_SET 16
 954		struct ia64_pal_retval iprv;
 955
 956		if (cpu_info->family == 0x1f) {
 957			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
 958			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
 959				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
 960				              (iprv.v1 | 0x80), FEATURE_SET, 0);
 961		}
 962	}
 963#endif
 964
 965	/* Clear the stack memory reserved for pt_regs: */
 966	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
 967
 968	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
 969
 970	/*
 971	 * Initialize the page-table base register to a global
 972	 * directory with all zeroes.  This ensure that we can handle
 973	 * TLB-misses to user address-space even before we created the
 974	 * first user address-space.  This may happen, e.g., due to
 975	 * aggressive use of lfetch.fault.
 976	 */
 977	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
 978
 979	/*
 980	 * Initialize default control register to defer speculative faults except
 981	 * for those arising from TLB misses, which are not deferred.  The
 982	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
 983	 * the kernel must have recovery code for all speculative accesses).  Turn on
 984	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
 985	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
 986	 * be fine).
 987	 */
 988	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
 989					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
 990	atomic_inc(&init_mm.mm_count);
 991	current->active_mm = &init_mm;
 992	BUG_ON(current->mm);
 993
 994	ia64_mmu_init(ia64_imva(cpu_data));
 995	ia64_mca_cpu_init(ia64_imva(cpu_data));
 996
 997	/* Clear ITC to eliminate sched_clock() overflows in human time.  */
 998	ia64_set_itc(0);
 999
1000	/* disable all local interrupt sources: */
1001	ia64_set_itv(1 << 16);
1002	ia64_set_lrr0(1 << 16);
1003	ia64_set_lrr1(1 << 16);
1004	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
1005	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
1006
1007	/* clear TPR & XTP to enable all interrupt classes: */
1008	ia64_setreg(_IA64_REG_CR_TPR, 0);
1009
1010	/* Clear any pending interrupts left by SAL/EFI */
1011	while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
1012		ia64_eoi();
1013
1014#ifdef CONFIG_SMP
1015	normal_xtp();
1016#endif
1017
1018	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
1019	if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
1020		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
1021		setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
1022	} else {
1023		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
1024		max_ctx = (1U << 15) - 1;	/* use architected minimum */
1025	}
1026	while (max_ctx < ia64_ctx.max_ctx) {
1027		unsigned int old = ia64_ctx.max_ctx;
1028		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
1029			break;
1030	}
1031
1032	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1033		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1034		       "stacked regs\n");
1035		num_phys_stacked = 96;
1036	}
1037	/* size of physical stacked register partition plus 8 bytes: */
1038	if (num_phys_stacked > max_num_phys_stacked) {
1039		ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
1040		max_num_phys_stacked = num_phys_stacked;
1041	}
1042	platform_cpu_init();
 
1043}
1044
1045void __init
1046check_bugs (void)
1047{
1048	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1049			       (unsigned long) __end___mckinley_e9_bundles);
1050}
1051
1052static int __init run_dmi_scan(void)
1053{
1054	dmi_scan_machine();
1055	dmi_memdev_walk();
1056	dmi_set_dump_stack_arch_desc();
1057	return 0;
1058}
1059core_initcall(run_dmi_scan);