Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Architecture-specific setup.
   3 *
   4 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
   5 *	David Mosberger-Tang <davidm@hpl.hp.com>
   6 *	Stephane Eranian <eranian@hpl.hp.com>
   7 * Copyright (C) 2000, 2004 Intel Corp
   8 * 	Rohit Seth <rohit.seth@intel.com>
   9 * 	Suresh Siddha <suresh.b.siddha@intel.com>
  10 * 	Gordon Jin <gordon.jin@intel.com>
  11 * Copyright (C) 1999 VA Linux Systems
  12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  13 *
  14 * 12/26/04 S.Siddha, G.Jin, R.Seth
  15 *			Add multi-threading and multi-core detection
  16 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
  17 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
  18 * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
  19 * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
  20 * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
  21 * 01/07/99 S.Eranian	added the support for command line argument
  22 * 06/24/99 W.Drummond	added boot_cpu_data.
  23 * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
  24 */
  25#include <linux/module.h>
  26#include <linux/init.h>
  27
  28#include <linux/acpi.h>
  29#include <linux/bootmem.h>
  30#include <linux/console.h>
  31#include <linux/delay.h>
  32#include <linux/kernel.h>
  33#include <linux/reboot.h>
  34#include <linux/sched.h>
  35#include <linux/seq_file.h>
  36#include <linux/string.h>
  37#include <linux/threads.h>
  38#include <linux/screen_info.h>
  39#include <linux/dmi.h>
  40#include <linux/serial.h>
  41#include <linux/serial_core.h>
  42#include <linux/efi.h>
  43#include <linux/initrd.h>
  44#include <linux/pm.h>
  45#include <linux/cpufreq.h>
  46#include <linux/kexec.h>
  47#include <linux/crash_dump.h>
  48
  49#include <asm/machvec.h>
  50#include <asm/mca.h>
  51#include <asm/meminit.h>
  52#include <asm/page.h>
  53#include <asm/paravirt.h>
  54#include <asm/paravirt_patch.h>
  55#include <asm/patch.h>
  56#include <asm/pgtable.h>
  57#include <asm/processor.h>
  58#include <asm/sal.h>
  59#include <asm/sections.h>
  60#include <asm/setup.h>
  61#include <asm/smp.h>
  62#include <asm/system.h>
  63#include <asm/tlbflush.h>
  64#include <asm/unistd.h>
  65#include <asm/hpsim.h>
  66
  67#if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
  68# error "struct cpuinfo_ia64 too big!"
  69#endif
  70
  71#ifdef CONFIG_SMP
  72unsigned long __per_cpu_offset[NR_CPUS];
  73EXPORT_SYMBOL(__per_cpu_offset);
  74#endif
  75
  76DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
  77DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
  78unsigned long ia64_cycles_per_usec;
  79struct ia64_boot_param *ia64_boot_param;
  80struct screen_info screen_info;
  81unsigned long vga_console_iobase;
  82unsigned long vga_console_membase;
  83
  84static struct resource data_resource = {
  85	.name	= "Kernel data",
  86	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
  87};
  88
  89static struct resource code_resource = {
  90	.name	= "Kernel code",
  91	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
  92};
  93
  94static struct resource bss_resource = {
  95	.name	= "Kernel bss",
  96	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
  97};
  98
  99unsigned long ia64_max_cacheline_size;
 100
 101unsigned long ia64_iobase;	/* virtual address for I/O accesses */
 102EXPORT_SYMBOL(ia64_iobase);
 103struct io_space io_space[MAX_IO_SPACES];
 104EXPORT_SYMBOL(io_space);
 105unsigned int num_io_spaces;
 106
 107/*
 108 * "flush_icache_range()" needs to know what processor dependent stride size to use
 109 * when it makes i-cache(s) coherent with d-caches.
 110 */
 111#define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
 112unsigned long ia64_i_cache_stride_shift = ~0;
 113/*
 114 * "clflush_cache_range()" needs to know what processor dependent stride size to
 115 * use when it flushes cache lines including both d-cache and i-cache.
 116 */
 117/* Safest way to go: 32 bytes by 32 bytes */
 118#define	CACHE_STRIDE_SHIFT	5
 119unsigned long ia64_cache_stride_shift = ~0;
 120
 121/*
 122 * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
 123 * mask specifies a mask of address bits that must be 0 in order for two buffers to be
 124 * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
 125 * address of the second buffer must be aligned to (merge_mask+1) in order to be
 126 * mergeable).  By default, we assume there is no I/O MMU which can merge physically
 127 * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
 128 * page-size of 2^64.
 129 */
 130unsigned long ia64_max_iommu_merge_mask = ~0UL;
 131EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
 132
 133/*
 134 * We use a special marker for the end of memory and it uses the extra (+1) slot
 135 */
 136struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
 137int num_rsvd_regions __initdata;
 138
 139
 140/*
 141 * Filter incoming memory segments based on the primitive map created from the boot
 142 * parameters. Segments contained in the map are removed from the memory ranges. A
 143 * caller-specified function is called with the memory ranges that remain after filtering.
 144 * This routine does not assume the incoming segments are sorted.
 145 */
 146int __init
 147filter_rsvd_memory (u64 start, u64 end, void *arg)
 148{
 149	u64 range_start, range_end, prev_start;
 150	void (*func)(unsigned long, unsigned long, int);
 151	int i;
 152
 153#if IGNORE_PFN0
 154	if (start == PAGE_OFFSET) {
 155		printk(KERN_WARNING "warning: skipping physical page 0\n");
 156		start += PAGE_SIZE;
 157		if (start >= end) return 0;
 158	}
 159#endif
 160	/*
 161	 * lowest possible address(walker uses virtual)
 162	 */
 163	prev_start = PAGE_OFFSET;
 164	func = arg;
 165
 166	for (i = 0; i < num_rsvd_regions; ++i) {
 167		range_start = max(start, prev_start);
 168		range_end   = min(end, rsvd_region[i].start);
 169
 170		if (range_start < range_end)
 171			call_pernode_memory(__pa(range_start), range_end - range_start, func);
 172
 173		/* nothing more available in this segment */
 174		if (range_end == end) return 0;
 175
 176		prev_start = rsvd_region[i].end;
 177	}
 178	/* end of memory marker allows full processing inside loop body */
 179	return 0;
 180}
 181
 182/*
 183 * Similar to "filter_rsvd_memory()", but the reserved memory ranges
 184 * are not filtered out.
 185 */
 186int __init
 187filter_memory(u64 start, u64 end, void *arg)
 188{
 189	void (*func)(unsigned long, unsigned long, int);
 190
 191#if IGNORE_PFN0
 192	if (start == PAGE_OFFSET) {
 193		printk(KERN_WARNING "warning: skipping physical page 0\n");
 194		start += PAGE_SIZE;
 195		if (start >= end)
 196			return 0;
 197	}
 198#endif
 199	func = arg;
 200	if (start < end)
 201		call_pernode_memory(__pa(start), end - start, func);
 202	return 0;
 203}
 204
 205static void __init
 206sort_regions (struct rsvd_region *rsvd_region, int max)
 207{
 208	int j;
 209
 210	/* simple bubble sorting */
 211	while (max--) {
 212		for (j = 0; j < max; ++j) {
 213			if (rsvd_region[j].start > rsvd_region[j+1].start) {
 214				struct rsvd_region tmp;
 215				tmp = rsvd_region[j];
 216				rsvd_region[j] = rsvd_region[j + 1];
 217				rsvd_region[j + 1] = tmp;
 218			}
 219		}
 220	}
 221}
 222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223/*
 224 * Request address space for all standard resources
 225 */
 226static int __init register_memory(void)
 227{
 228	code_resource.start = ia64_tpa(_text);
 229	code_resource.end   = ia64_tpa(_etext) - 1;
 230	data_resource.start = ia64_tpa(_etext);
 231	data_resource.end   = ia64_tpa(_edata) - 1;
 232	bss_resource.start  = ia64_tpa(__bss_start);
 233	bss_resource.end    = ia64_tpa(_end) - 1;
 234	efi_initialize_iomem_resources(&code_resource, &data_resource,
 235			&bss_resource);
 236
 237	return 0;
 238}
 239
 240__initcall(register_memory);
 241
 242
 243#ifdef CONFIG_KEXEC
 244
 245/*
 246 * This function checks if the reserved crashkernel is allowed on the specific
 247 * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
 248 * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
 249 * lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
 250 * in kdump case. See the comment in sba_init() in sba_iommu.c.
 251 *
 252 * So, the only machvec that really supports loading the kdump kernel
 253 * over 4 GB is "sn2".
 254 */
 255static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
 256{
 257	if (ia64_platform_is("sn2") || ia64_platform_is("uv"))
 258		return 1;
 259	else
 260		return pbase < (1UL << 32);
 261}
 262
 263static void __init setup_crashkernel(unsigned long total, int *n)
 264{
 265	unsigned long long base = 0, size = 0;
 266	int ret;
 267
 268	ret = parse_crashkernel(boot_command_line, total,
 269			&size, &base);
 270	if (ret == 0 && size > 0) {
 271		if (!base) {
 272			sort_regions(rsvd_region, *n);
 
 273			base = kdump_find_rsvd_region(size,
 274					rsvd_region, *n);
 275		}
 276
 277		if (!check_crashkernel_memory(base, size)) {
 278			pr_warning("crashkernel: There would be kdump memory "
 279				"at %ld GB but this is unusable because it "
 280				"must\nbe below 4 GB. Change the memory "
 281				"configuration of the machine.\n",
 282				(unsigned long)(base >> 30));
 283			return;
 284		}
 285
 286		if (base != ~0UL) {
 287			printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
 288					"for crashkernel (System RAM: %ldMB)\n",
 289					(unsigned long)(size >> 20),
 290					(unsigned long)(base >> 20),
 291					(unsigned long)(total >> 20));
 292			rsvd_region[*n].start =
 293				(unsigned long)__va(base);
 294			rsvd_region[*n].end =
 295				(unsigned long)__va(base + size);
 296			(*n)++;
 297			crashk_res.start = base;
 298			crashk_res.end = base + size - 1;
 299		}
 300	}
 301	efi_memmap_res.start = ia64_boot_param->efi_memmap;
 302	efi_memmap_res.end = efi_memmap_res.start +
 303		ia64_boot_param->efi_memmap_size;
 304	boot_param_res.start = __pa(ia64_boot_param);
 305	boot_param_res.end = boot_param_res.start +
 306		sizeof(*ia64_boot_param);
 307}
 308#else
 309static inline void __init setup_crashkernel(unsigned long total, int *n)
 310{}
 311#endif
 312
 313/**
 314 * reserve_memory - setup reserved memory areas
 315 *
 316 * Setup the reserved memory areas set aside for the boot parameters,
 317 * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
 318 * see arch/ia64/include/asm/meminit.h if you need to define more.
 319 */
 320void __init
 321reserve_memory (void)
 322{
 323	int n = 0;
 324	unsigned long total_memory;
 325
 326	/*
 327	 * none of the entries in this table overlap
 328	 */
 329	rsvd_region[n].start = (unsigned long) ia64_boot_param;
 330	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
 331	n++;
 332
 333	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
 334	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
 335	n++;
 336
 337	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
 338	rsvd_region[n].end   = (rsvd_region[n].start
 339				+ strlen(__va(ia64_boot_param->command_line)) + 1);
 340	n++;
 341
 342	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
 343	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
 344	n++;
 345
 346	n += paravirt_reserve_memory(&rsvd_region[n]);
 347
 348#ifdef CONFIG_BLK_DEV_INITRD
 349	if (ia64_boot_param->initrd_start) {
 350		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
 351		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
 352		n++;
 353	}
 354#endif
 355
 356#ifdef CONFIG_CRASH_DUMP
 357	if (reserve_elfcorehdr(&rsvd_region[n].start,
 358			       &rsvd_region[n].end) == 0)
 359		n++;
 360#endif
 361
 362	total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
 363	n++;
 364
 365	setup_crashkernel(total_memory, &n);
 366
 367	/* end of memory marker */
 368	rsvd_region[n].start = ~0UL;
 369	rsvd_region[n].end   = ~0UL;
 370	n++;
 371
 372	num_rsvd_regions = n;
 373	BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
 374
 375	sort_regions(rsvd_region, num_rsvd_regions);
 
 376}
 377
 378
 379/**
 380 * find_initrd - get initrd parameters from the boot parameter structure
 381 *
 382 * Grab the initrd start and end from the boot parameter struct given us by
 383 * the boot loader.
 384 */
 385void __init
 386find_initrd (void)
 387{
 388#ifdef CONFIG_BLK_DEV_INITRD
 389	if (ia64_boot_param->initrd_start) {
 390		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
 391		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
 392
 393		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n",
 394		       initrd_start, ia64_boot_param->initrd_size);
 395	}
 396#endif
 397}
 398
 399static void __init
 400io_port_init (void)
 401{
 402	unsigned long phys_iobase;
 403
 404	/*
 405	 * Set `iobase' based on the EFI memory map or, failing that, the
 406	 * value firmware left in ar.k0.
 407	 *
 408	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
 409	 * the port's virtual address, so ia32_load_state() loads it with a
 410	 * user virtual address.  But in ia64 mode, glibc uses the
 411	 * *physical* address in ar.k0 to mmap the appropriate area from
 412	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
 413	 * cases, user-mode can only use the legacy 0-64K I/O port space.
 414	 *
 415	 * ar.k0 is not involved in kernel I/O port accesses, which can use
 416	 * any of the I/O port spaces and are done via MMIO using the
 417	 * virtual mmio_base from the appropriate io_space[].
 418	 */
 419	phys_iobase = efi_get_iobase();
 420	if (!phys_iobase) {
 421		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
 422		printk(KERN_INFO "No I/O port range found in EFI memory map, "
 423			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
 424	}
 425	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
 426	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
 427
 428	/* setup legacy IO port space */
 429	io_space[0].mmio_base = ia64_iobase;
 430	io_space[0].sparse = 1;
 431	num_io_spaces = 1;
 432}
 433
 434/**
 435 * early_console_setup - setup debugging console
 436 *
 437 * Consoles started here require little enough setup that we can start using
 438 * them very early in the boot process, either right after the machine
 439 * vector initialization, or even before if the drivers can detect their hw.
 440 *
 441 * Returns non-zero if a console couldn't be setup.
 442 */
 443static inline int __init
 444early_console_setup (char *cmdline)
 445{
 446	int earlycons = 0;
 447
 448#ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
 449	{
 450		extern int sn_serial_console_early_setup(void);
 451		if (!sn_serial_console_early_setup())
 452			earlycons++;
 453	}
 454#endif
 455#ifdef CONFIG_EFI_PCDP
 456	if (!efi_setup_pcdp_console(cmdline))
 457		earlycons++;
 458#endif
 459	if (!simcons_register())
 460		earlycons++;
 461
 462	return (earlycons) ? 0 : -1;
 463}
 464
 465static inline void
 466mark_bsp_online (void)
 467{
 468#ifdef CONFIG_SMP
 469	/* If we register an early console, allow CPU 0 to printk */
 470	cpu_set(smp_processor_id(), cpu_online_map);
 471#endif
 472}
 473
 474static __initdata int nomca;
 475static __init int setup_nomca(char *s)
 476{
 477	nomca = 1;
 478	return 0;
 479}
 480early_param("nomca", setup_nomca);
 481
 482#ifdef CONFIG_CRASH_DUMP
 483int __init reserve_elfcorehdr(u64 *start, u64 *end)
 484{
 485	u64 length;
 486
 487	/* We get the address using the kernel command line,
 488	 * but the size is extracted from the EFI tables.
 489	 * Both address and size are required for reservation
 490	 * to work properly.
 491	 */
 492
 493	if (!is_vmcore_usable())
 494		return -EINVAL;
 495
 496	if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
 497		vmcore_unusable();
 498		return -EINVAL;
 499	}
 500
 501	*start = (unsigned long)__va(elfcorehdr_addr);
 502	*end = *start + length;
 503	return 0;
 504}
 505
 506#endif /* CONFIG_PROC_VMCORE */
 507
 508void __init
 509setup_arch (char **cmdline_p)
 510{
 511	unw_init();
 512
 513	paravirt_arch_setup_early();
 514
 515	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
 516	paravirt_patch_apply();
 517
 518	*cmdline_p = __va(ia64_boot_param->command_line);
 519	strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
 520
 521	efi_init();
 522	io_port_init();
 523
 524#ifdef CONFIG_IA64_GENERIC
 525	/* machvec needs to be parsed from the command line
 526	 * before parse_early_param() is called to ensure
 527	 * that ia64_mv is initialised before any command line
 528	 * settings may cause console setup to occur
 529	 */
 530	machvec_init_from_cmdline(*cmdline_p);
 531#endif
 532
 533	parse_early_param();
 534
 535	if (early_console_setup(*cmdline_p) == 0)
 536		mark_bsp_online();
 537
 538#ifdef CONFIG_ACPI
 539	/* Initialize the ACPI boot-time table parser */
 540	acpi_table_init();
 541	early_acpi_boot_init();
 542# ifdef CONFIG_ACPI_NUMA
 543	acpi_numa_init();
 544#  ifdef CONFIG_ACPI_HOTPLUG_CPU
 545	prefill_possible_map();
 546#  endif
 547	per_cpu_scan_finalize((cpus_weight(early_cpu_possible_map) == 0 ?
 548		32 : cpus_weight(early_cpu_possible_map)),
 549		additional_cpus > 0 ? additional_cpus : 0);
 550# endif
 551#endif /* CONFIG_APCI_BOOT */
 552
 553#ifdef CONFIG_SMP
 554	smp_build_cpu_map();
 555#endif
 556	find_memory();
 557
 558	/* process SAL system table: */
 559	ia64_sal_init(__va(efi.sal_systab));
 560
 561#ifdef CONFIG_ITANIUM
 562	ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
 563#else
 564	{
 565		unsigned long num_phys_stacked;
 566
 567		if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
 568			ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
 569	}
 570#endif
 571
 572#ifdef CONFIG_SMP
 573	cpu_physical_id(0) = hard_smp_processor_id();
 574#endif
 575
 576	cpu_init();	/* initialize the bootstrap CPU */
 577	mmu_context_init();	/* initialize context_id bitmap */
 578
 579	paravirt_banner();
 580	paravirt_arch_setup_console(cmdline_p);
 581
 582#ifdef CONFIG_VT
 583	if (!conswitchp) {
 584# if defined(CONFIG_DUMMY_CONSOLE)
 585		conswitchp = &dummy_con;
 586# endif
 587# if defined(CONFIG_VGA_CONSOLE)
 588		/*
 589		 * Non-legacy systems may route legacy VGA MMIO range to system
 590		 * memory.  vga_con probes the MMIO hole, so memory looks like
 591		 * a VGA device to it.  The EFI memory map can tell us if it's
 592		 * memory so we can avoid this problem.
 593		 */
 594		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
 595			conswitchp = &vga_con;
 596# endif
 597	}
 598#endif
 599
 600	/* enable IA-64 Machine Check Abort Handling unless disabled */
 601	if (paravirt_arch_setup_nomca())
 602		nomca = 1;
 603	if (!nomca)
 604		ia64_mca_init();
 605
 606	platform_setup(cmdline_p);
 607#ifndef CONFIG_IA64_HP_SIM
 608	check_sal_cache_flush();
 609#endif
 610	paging_init();
 611}
 612
 613/*
 614 * Display cpu info for all CPUs.
 615 */
 616static int
 617show_cpuinfo (struct seq_file *m, void *v)
 618{
 619#ifdef CONFIG_SMP
 620#	define lpj	c->loops_per_jiffy
 621#	define cpunum	c->cpu
 622#else
 623#	define lpj	loops_per_jiffy
 624#	define cpunum	0
 625#endif
 626	static struct {
 627		unsigned long mask;
 628		const char *feature_name;
 629	} feature_bits[] = {
 630		{ 1UL << 0, "branchlong" },
 631		{ 1UL << 1, "spontaneous deferral"},
 632		{ 1UL << 2, "16-byte atomic ops" }
 633	};
 634	char features[128], *cp, *sep;
 635	struct cpuinfo_ia64 *c = v;
 636	unsigned long mask;
 637	unsigned long proc_freq;
 638	int i, size;
 639
 640	mask = c->features;
 641
 642	/* build the feature string: */
 643	memcpy(features, "standard", 9);
 644	cp = features;
 645	size = sizeof(features);
 646	sep = "";
 647	for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
 648		if (mask & feature_bits[i].mask) {
 649			cp += snprintf(cp, size, "%s%s", sep,
 650				       feature_bits[i].feature_name),
 651			sep = ", ";
 652			mask &= ~feature_bits[i].mask;
 653			size = sizeof(features) - (cp - features);
 654		}
 655	}
 656	if (mask && size > 1) {
 657		/* print unknown features as a hex value */
 658		snprintf(cp, size, "%s0x%lx", sep, mask);
 659	}
 660
 661	proc_freq = cpufreq_quick_get(cpunum);
 662	if (!proc_freq)
 663		proc_freq = c->proc_freq / 1000;
 664
 665	seq_printf(m,
 666		   "processor  : %d\n"
 667		   "vendor     : %s\n"
 668		   "arch       : IA-64\n"
 669		   "family     : %u\n"
 670		   "model      : %u\n"
 671		   "model name : %s\n"
 672		   "revision   : %u\n"
 673		   "archrev    : %u\n"
 674		   "features   : %s\n"
 675		   "cpu number : %lu\n"
 676		   "cpu regs   : %u\n"
 677		   "cpu MHz    : %lu.%03lu\n"
 678		   "itc MHz    : %lu.%06lu\n"
 679		   "BogoMIPS   : %lu.%02lu\n",
 680		   cpunum, c->vendor, c->family, c->model,
 681		   c->model_name, c->revision, c->archrev,
 682		   features, c->ppn, c->number,
 683		   proc_freq / 1000, proc_freq % 1000,
 684		   c->itc_freq / 1000000, c->itc_freq % 1000000,
 685		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
 686#ifdef CONFIG_SMP
 687	seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
 688	if (c->socket_id != -1)
 689		seq_printf(m, "physical id: %u\n", c->socket_id);
 690	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
 691		seq_printf(m,
 692			   "core id    : %u\n"
 693			   "thread id  : %u\n",
 694			   c->core_id, c->thread_id);
 695#endif
 696	seq_printf(m,"\n");
 697
 698	return 0;
 699}
 700
 701static void *
 702c_start (struct seq_file *m, loff_t *pos)
 703{
 704#ifdef CONFIG_SMP
 705	while (*pos < nr_cpu_ids && !cpu_online(*pos))
 706		++*pos;
 707#endif
 708	return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL;
 709}
 710
 711static void *
 712c_next (struct seq_file *m, void *v, loff_t *pos)
 713{
 714	++*pos;
 715	return c_start(m, pos);
 716}
 717
 718static void
 719c_stop (struct seq_file *m, void *v)
 720{
 721}
 722
 723const struct seq_operations cpuinfo_op = {
 724	.start =	c_start,
 725	.next =		c_next,
 726	.stop =		c_stop,
 727	.show =		show_cpuinfo
 728};
 729
 730#define MAX_BRANDS	8
 731static char brandname[MAX_BRANDS][128];
 732
 733static char * __cpuinit
 734get_model_name(__u8 family, __u8 model)
 735{
 736	static int overflow;
 737	char brand[128];
 738	int i;
 739
 740	memcpy(brand, "Unknown", 8);
 741	if (ia64_pal_get_brand_info(brand)) {
 742		if (family == 0x7)
 743			memcpy(brand, "Merced", 7);
 744		else if (family == 0x1f) switch (model) {
 745			case 0: memcpy(brand, "McKinley", 9); break;
 746			case 1: memcpy(brand, "Madison", 8); break;
 747			case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
 748		}
 749	}
 750	for (i = 0; i < MAX_BRANDS; i++)
 751		if (strcmp(brandname[i], brand) == 0)
 752			return brandname[i];
 753	for (i = 0; i < MAX_BRANDS; i++)
 754		if (brandname[i][0] == '\0')
 755			return strcpy(brandname[i], brand);
 756	if (overflow++ == 0)
 757		printk(KERN_ERR
 758		       "%s: Table overflow. Some processor model information will be missing\n",
 759		       __func__);
 760	return "Unknown";
 761}
 762
 763static void __cpuinit
 764identify_cpu (struct cpuinfo_ia64 *c)
 765{
 766	union {
 767		unsigned long bits[5];
 768		struct {
 769			/* id 0 & 1: */
 770			char vendor[16];
 771
 772			/* id 2 */
 773			u64 ppn;		/* processor serial number */
 774
 775			/* id 3: */
 776			unsigned number		:  8;
 777			unsigned revision	:  8;
 778			unsigned model		:  8;
 779			unsigned family		:  8;
 780			unsigned archrev	:  8;
 781			unsigned reserved	: 24;
 782
 783			/* id 4: */
 784			u64 features;
 785		} field;
 786	} cpuid;
 787	pal_vm_info_1_u_t vm1;
 788	pal_vm_info_2_u_t vm2;
 789	pal_status_t status;
 790	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
 791	int i;
 792	for (i = 0; i < 5; ++i)
 793		cpuid.bits[i] = ia64_get_cpuid(i);
 794
 795	memcpy(c->vendor, cpuid.field.vendor, 16);
 796#ifdef CONFIG_SMP
 797	c->cpu = smp_processor_id();
 798
 799	/* below default values will be overwritten  by identify_siblings() 
 800	 * for Multi-Threading/Multi-Core capable CPUs
 801	 */
 802	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
 803	c->socket_id = -1;
 804
 805	identify_siblings(c);
 806
 807	if (c->threads_per_core > smp_num_siblings)
 808		smp_num_siblings = c->threads_per_core;
 809#endif
 810	c->ppn = cpuid.field.ppn;
 811	c->number = cpuid.field.number;
 812	c->revision = cpuid.field.revision;
 813	c->model = cpuid.field.model;
 814	c->family = cpuid.field.family;
 815	c->archrev = cpuid.field.archrev;
 816	c->features = cpuid.field.features;
 817	c->model_name = get_model_name(c->family, c->model);
 818
 819	status = ia64_pal_vm_summary(&vm1, &vm2);
 820	if (status == PAL_STATUS_SUCCESS) {
 821		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
 822		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
 823	}
 824	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
 825	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
 826}
 827
 828/*
 829 * Do the following calculations:
 830 *
 831 * 1. the max. cache line size.
 832 * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
 833 * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
 834 */
 835static void __cpuinit
 836get_cache_info(void)
 837{
 838	unsigned long line_size, max = 1;
 839	unsigned long l, levels, unique_caches;
 840	pal_cache_config_info_t cci;
 841	long status;
 842
 843        status = ia64_pal_cache_summary(&levels, &unique_caches);
 844        if (status != 0) {
 845                printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
 846                       __func__, status);
 847                max = SMP_CACHE_BYTES;
 848		/* Safest setup for "flush_icache_range()" */
 849		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
 850		/* Safest setup for "clflush_cache_range()" */
 851		ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
 852		goto out;
 853        }
 854
 855	for (l = 0; l < levels; ++l) {
 856		/* cache_type (data_or_unified)=2 */
 857		status = ia64_pal_cache_config_info(l, 2, &cci);
 858		if (status != 0) {
 859			printk(KERN_ERR "%s: ia64_pal_cache_config_info"
 860				"(l=%lu, 2) failed (status=%ld)\n",
 861				__func__, l, status);
 862			max = SMP_CACHE_BYTES;
 863			/* The safest setup for "flush_icache_range()" */
 864			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
 865			/* The safest setup for "clflush_cache_range()" */
 866			ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
 867			cci.pcci_unified = 1;
 868		} else {
 869			if (cci.pcci_stride < ia64_cache_stride_shift)
 870				ia64_cache_stride_shift = cci.pcci_stride;
 871
 872			line_size = 1 << cci.pcci_line_size;
 873			if (line_size > max)
 874				max = line_size;
 875		}
 876
 877		if (!cci.pcci_unified) {
 878			/* cache_type (instruction)=1*/
 879			status = ia64_pal_cache_config_info(l, 1, &cci);
 880			if (status != 0) {
 881				printk(KERN_ERR "%s: ia64_pal_cache_config_info"
 882					"(l=%lu, 1) failed (status=%ld)\n",
 883					__func__, l, status);
 884				/* The safest setup for flush_icache_range() */
 885				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
 886			}
 887		}
 888		if (cci.pcci_stride < ia64_i_cache_stride_shift)
 889			ia64_i_cache_stride_shift = cci.pcci_stride;
 890	}
 891  out:
 892	if (max > ia64_max_cacheline_size)
 893		ia64_max_cacheline_size = max;
 894}
 895
 896/*
 897 * cpu_init() initializes state that is per-CPU.  This function acts
 898 * as a 'CPU state barrier', nothing should get across.
 899 */
 900void __cpuinit
 901cpu_init (void)
 902{
 903	extern void __cpuinit ia64_mmu_init (void *);
 904	static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
 905	unsigned long num_phys_stacked;
 906	pal_vm_info_2_u_t vmi;
 907	unsigned int max_ctx;
 908	struct cpuinfo_ia64 *cpu_info;
 909	void *cpu_data;
 910
 911	cpu_data = per_cpu_init();
 912#ifdef CONFIG_SMP
 913	/*
 914	 * insert boot cpu into sibling and core mapes
 915	 * (must be done after per_cpu area is setup)
 916	 */
 917	if (smp_processor_id() == 0) {
 918		cpu_set(0, per_cpu(cpu_sibling_map, 0));
 919		cpu_set(0, cpu_core_map[0]);
 920	} else {
 921		/*
 922		 * Set ar.k3 so that assembly code in MCA handler can compute
 923		 * physical addresses of per cpu variables with a simple:
 924		 *   phys = ar.k3 + &per_cpu_var
 925		 * and the alt-dtlb-miss handler can set per-cpu mapping into
 926		 * the TLB when needed. head.S already did this for cpu0.
 927		 */
 928		ia64_set_kr(IA64_KR_PER_CPU_DATA,
 929			    ia64_tpa(cpu_data) - (long) __per_cpu_start);
 930	}
 931#endif
 932
 933	get_cache_info();
 934
 935	/*
 936	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
 937	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
 938	 * depends on the data returned by identify_cpu().  We break the dependency by
 939	 * accessing cpu_data() through the canonical per-CPU address.
 940	 */
 941	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start);
 942	identify_cpu(cpu_info);
 943
 944#ifdef CONFIG_MCKINLEY
 945	{
 946#		define FEATURE_SET 16
 947		struct ia64_pal_retval iprv;
 948
 949		if (cpu_info->family == 0x1f) {
 950			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
 951			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
 952				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
 953				              (iprv.v1 | 0x80), FEATURE_SET, 0);
 954		}
 955	}
 956#endif
 957
 958	/* Clear the stack memory reserved for pt_regs: */
 959	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
 960
 961	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
 962
 963	/*
 964	 * Initialize the page-table base register to a global
 965	 * directory with all zeroes.  This ensure that we can handle
 966	 * TLB-misses to user address-space even before we created the
 967	 * first user address-space.  This may happen, e.g., due to
 968	 * aggressive use of lfetch.fault.
 969	 */
 970	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
 971
 972	/*
 973	 * Initialize default control register to defer speculative faults except
 974	 * for those arising from TLB misses, which are not deferred.  The
 975	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
 976	 * the kernel must have recovery code for all speculative accesses).  Turn on
 977	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
 978	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
 979	 * be fine).
 980	 */
 981	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
 982					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
 983	atomic_inc(&init_mm.mm_count);
 984	current->active_mm = &init_mm;
 985	BUG_ON(current->mm);
 986
 987	ia64_mmu_init(ia64_imva(cpu_data));
 988	ia64_mca_cpu_init(ia64_imva(cpu_data));
 989
 990	/* Clear ITC to eliminate sched_clock() overflows in human time.  */
 991	ia64_set_itc(0);
 992
 993	/* disable all local interrupt sources: */
 994	ia64_set_itv(1 << 16);
 995	ia64_set_lrr0(1 << 16);
 996	ia64_set_lrr1(1 << 16);
 997	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
 998	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
 999
1000	/* clear TPR & XTP to enable all interrupt classes: */
1001	ia64_setreg(_IA64_REG_CR_TPR, 0);
1002
1003	/* Clear any pending interrupts left by SAL/EFI */
1004	while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
1005		ia64_eoi();
1006
1007#ifdef CONFIG_SMP
1008	normal_xtp();
1009#endif
1010
1011	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
1012	if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
1013		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
1014		setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
1015	} else {
1016		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
1017		max_ctx = (1U << 15) - 1;	/* use architected minimum */
1018	}
1019	while (max_ctx < ia64_ctx.max_ctx) {
1020		unsigned int old = ia64_ctx.max_ctx;
1021		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
1022			break;
1023	}
1024
1025	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1026		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1027		       "stacked regs\n");
1028		num_phys_stacked = 96;
1029	}
1030	/* size of physical stacked register partition plus 8 bytes: */
1031	if (num_phys_stacked > max_num_phys_stacked) {
1032		ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
1033		max_num_phys_stacked = num_phys_stacked;
1034	}
1035	platform_cpu_init();
1036	pm_idle = default_idle;
1037}
1038
1039void __init
1040check_bugs (void)
1041{
1042	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1043			       (unsigned long) __end___mckinley_e9_bundles);
1044}
1045
1046static int __init run_dmi_scan(void)
1047{
1048	dmi_scan_machine();
1049	return 0;
1050}
1051core_initcall(run_dmi_scan);
v3.5.6
   1/*
   2 * Architecture-specific setup.
   3 *
   4 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
   5 *	David Mosberger-Tang <davidm@hpl.hp.com>
   6 *	Stephane Eranian <eranian@hpl.hp.com>
   7 * Copyright (C) 2000, 2004 Intel Corp
   8 * 	Rohit Seth <rohit.seth@intel.com>
   9 * 	Suresh Siddha <suresh.b.siddha@intel.com>
  10 * 	Gordon Jin <gordon.jin@intel.com>
  11 * Copyright (C) 1999 VA Linux Systems
  12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  13 *
  14 * 12/26/04 S.Siddha, G.Jin, R.Seth
  15 *			Add multi-threading and multi-core detection
  16 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
  17 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
  18 * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
  19 * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
  20 * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
  21 * 01/07/99 S.Eranian	added the support for command line argument
  22 * 06/24/99 W.Drummond	added boot_cpu_data.
  23 * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
  24 */
  25#include <linux/module.h>
  26#include <linux/init.h>
  27
  28#include <linux/acpi.h>
  29#include <linux/bootmem.h>
  30#include <linux/console.h>
  31#include <linux/delay.h>
  32#include <linux/kernel.h>
  33#include <linux/reboot.h>
  34#include <linux/sched.h>
  35#include <linux/seq_file.h>
  36#include <linux/string.h>
  37#include <linux/threads.h>
  38#include <linux/screen_info.h>
  39#include <linux/dmi.h>
  40#include <linux/serial.h>
  41#include <linux/serial_core.h>
  42#include <linux/efi.h>
  43#include <linux/initrd.h>
  44#include <linux/pm.h>
  45#include <linux/cpufreq.h>
  46#include <linux/kexec.h>
  47#include <linux/crash_dump.h>
  48
  49#include <asm/machvec.h>
  50#include <asm/mca.h>
  51#include <asm/meminit.h>
  52#include <asm/page.h>
  53#include <asm/paravirt.h>
  54#include <asm/paravirt_patch.h>
  55#include <asm/patch.h>
  56#include <asm/pgtable.h>
  57#include <asm/processor.h>
  58#include <asm/sal.h>
  59#include <asm/sections.h>
  60#include <asm/setup.h>
  61#include <asm/smp.h>
 
  62#include <asm/tlbflush.h>
  63#include <asm/unistd.h>
  64#include <asm/hpsim.h>
  65
  66#if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
  67# error "struct cpuinfo_ia64 too big!"
  68#endif
  69
  70#ifdef CONFIG_SMP
  71unsigned long __per_cpu_offset[NR_CPUS];
  72EXPORT_SYMBOL(__per_cpu_offset);
  73#endif
  74
  75DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
  76DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
  77unsigned long ia64_cycles_per_usec;
  78struct ia64_boot_param *ia64_boot_param;
  79struct screen_info screen_info;
  80unsigned long vga_console_iobase;
  81unsigned long vga_console_membase;
  82
  83static struct resource data_resource = {
  84	.name	= "Kernel data",
  85	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
  86};
  87
  88static struct resource code_resource = {
  89	.name	= "Kernel code",
  90	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
  91};
  92
  93static struct resource bss_resource = {
  94	.name	= "Kernel bss",
  95	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
  96};
  97
  98unsigned long ia64_max_cacheline_size;
  99
 100unsigned long ia64_iobase;	/* virtual address for I/O accesses */
 101EXPORT_SYMBOL(ia64_iobase);
 102struct io_space io_space[MAX_IO_SPACES];
 103EXPORT_SYMBOL(io_space);
 104unsigned int num_io_spaces;
 105
 106/*
 107 * "flush_icache_range()" needs to know what processor dependent stride size to use
 108 * when it makes i-cache(s) coherent with d-caches.
 109 */
 110#define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
 111unsigned long ia64_i_cache_stride_shift = ~0;
 112/*
 113 * "clflush_cache_range()" needs to know what processor dependent stride size to
 114 * use when it flushes cache lines including both d-cache and i-cache.
 115 */
 116/* Safest way to go: 32 bytes by 32 bytes */
 117#define	CACHE_STRIDE_SHIFT	5
 118unsigned long ia64_cache_stride_shift = ~0;
 119
 120/*
 121 * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
 122 * mask specifies a mask of address bits that must be 0 in order for two buffers to be
 123 * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
 124 * address of the second buffer must be aligned to (merge_mask+1) in order to be
 125 * mergeable).  By default, we assume there is no I/O MMU which can merge physically
 126 * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
 127 * page-size of 2^64.
 128 */
 129unsigned long ia64_max_iommu_merge_mask = ~0UL;
 130EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
 131
 132/*
 133 * We use a special marker for the end of memory and it uses the extra (+1) slot
 134 */
 135struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
 136int num_rsvd_regions __initdata;
 137
 138
 139/*
 140 * Filter incoming memory segments based on the primitive map created from the boot
 141 * parameters. Segments contained in the map are removed from the memory ranges. A
 142 * caller-specified function is called with the memory ranges that remain after filtering.
 143 * This routine does not assume the incoming segments are sorted.
 144 */
 145int __init
 146filter_rsvd_memory (u64 start, u64 end, void *arg)
 147{
 148	u64 range_start, range_end, prev_start;
 149	void (*func)(unsigned long, unsigned long, int);
 150	int i;
 151
 152#if IGNORE_PFN0
 153	if (start == PAGE_OFFSET) {
 154		printk(KERN_WARNING "warning: skipping physical page 0\n");
 155		start += PAGE_SIZE;
 156		if (start >= end) return 0;
 157	}
 158#endif
 159	/*
 160	 * lowest possible address(walker uses virtual)
 161	 */
 162	prev_start = PAGE_OFFSET;
 163	func = arg;
 164
 165	for (i = 0; i < num_rsvd_regions; ++i) {
 166		range_start = max(start, prev_start);
 167		range_end   = min(end, rsvd_region[i].start);
 168
 169		if (range_start < range_end)
 170			call_pernode_memory(__pa(range_start), range_end - range_start, func);
 171
 172		/* nothing more available in this segment */
 173		if (range_end == end) return 0;
 174
 175		prev_start = rsvd_region[i].end;
 176	}
 177	/* end of memory marker allows full processing inside loop body */
 178	return 0;
 179}
 180
 181/*
 182 * Similar to "filter_rsvd_memory()", but the reserved memory ranges
 183 * are not filtered out.
 184 */
 185int __init
 186filter_memory(u64 start, u64 end, void *arg)
 187{
 188	void (*func)(unsigned long, unsigned long, int);
 189
 190#if IGNORE_PFN0
 191	if (start == PAGE_OFFSET) {
 192		printk(KERN_WARNING "warning: skipping physical page 0\n");
 193		start += PAGE_SIZE;
 194		if (start >= end)
 195			return 0;
 196	}
 197#endif
 198	func = arg;
 199	if (start < end)
 200		call_pernode_memory(__pa(start), end - start, func);
 201	return 0;
 202}
 203
 204static void __init
 205sort_regions (struct rsvd_region *rsvd_region, int max)
 206{
 207	int j;
 208
 209	/* simple bubble sorting */
 210	while (max--) {
 211		for (j = 0; j < max; ++j) {
 212			if (rsvd_region[j].start > rsvd_region[j+1].start) {
 213				struct rsvd_region tmp;
 214				tmp = rsvd_region[j];
 215				rsvd_region[j] = rsvd_region[j + 1];
 216				rsvd_region[j + 1] = tmp;
 217			}
 218		}
 219	}
 220}
 221
 222/* merge overlaps */
 223static int __init
 224merge_regions (struct rsvd_region *rsvd_region, int max)
 225{
 226	int i;
 227	for (i = 1; i < max; ++i) {
 228		if (rsvd_region[i].start >= rsvd_region[i-1].end)
 229			continue;
 230		if (rsvd_region[i].end > rsvd_region[i-1].end)
 231			rsvd_region[i-1].end = rsvd_region[i].end;
 232		--max;
 233		memmove(&rsvd_region[i], &rsvd_region[i+1],
 234			(max - i) * sizeof(struct rsvd_region));
 235	}
 236	return max;
 237}
 238
 239/*
 240 * Request address space for all standard resources
 241 */
 242static int __init register_memory(void)
 243{
 244	code_resource.start = ia64_tpa(_text);
 245	code_resource.end   = ia64_tpa(_etext) - 1;
 246	data_resource.start = ia64_tpa(_etext);
 247	data_resource.end   = ia64_tpa(_edata) - 1;
 248	bss_resource.start  = ia64_tpa(__bss_start);
 249	bss_resource.end    = ia64_tpa(_end) - 1;
 250	efi_initialize_iomem_resources(&code_resource, &data_resource,
 251			&bss_resource);
 252
 253	return 0;
 254}
 255
 256__initcall(register_memory);
 257
 258
 259#ifdef CONFIG_KEXEC
 260
 261/*
 262 * This function checks if the reserved crashkernel is allowed on the specific
 263 * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
 264 * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
 265 * lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
 266 * in kdump case. See the comment in sba_init() in sba_iommu.c.
 267 *
 268 * So, the only machvec that really supports loading the kdump kernel
 269 * over 4 GB is "sn2".
 270 */
 271static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
 272{
 273	if (ia64_platform_is("sn2") || ia64_platform_is("uv"))
 274		return 1;
 275	else
 276		return pbase < (1UL << 32);
 277}
 278
 279static void __init setup_crashkernel(unsigned long total, int *n)
 280{
 281	unsigned long long base = 0, size = 0;
 282	int ret;
 283
 284	ret = parse_crashkernel(boot_command_line, total,
 285			&size, &base);
 286	if (ret == 0 && size > 0) {
 287		if (!base) {
 288			sort_regions(rsvd_region, *n);
 289			*n = merge_regions(rsvd_region, *n);
 290			base = kdump_find_rsvd_region(size,
 291					rsvd_region, *n);
 292		}
 293
 294		if (!check_crashkernel_memory(base, size)) {
 295			pr_warning("crashkernel: There would be kdump memory "
 296				"at %ld GB but this is unusable because it "
 297				"must\nbe below 4 GB. Change the memory "
 298				"configuration of the machine.\n",
 299				(unsigned long)(base >> 30));
 300			return;
 301		}
 302
 303		if (base != ~0UL) {
 304			printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
 305					"for crashkernel (System RAM: %ldMB)\n",
 306					(unsigned long)(size >> 20),
 307					(unsigned long)(base >> 20),
 308					(unsigned long)(total >> 20));
 309			rsvd_region[*n].start =
 310				(unsigned long)__va(base);
 311			rsvd_region[*n].end =
 312				(unsigned long)__va(base + size);
 313			(*n)++;
 314			crashk_res.start = base;
 315			crashk_res.end = base + size - 1;
 316		}
 317	}
 318	efi_memmap_res.start = ia64_boot_param->efi_memmap;
 319	efi_memmap_res.end = efi_memmap_res.start +
 320		ia64_boot_param->efi_memmap_size;
 321	boot_param_res.start = __pa(ia64_boot_param);
 322	boot_param_res.end = boot_param_res.start +
 323		sizeof(*ia64_boot_param);
 324}
 325#else
 326static inline void __init setup_crashkernel(unsigned long total, int *n)
 327{}
 328#endif
 329
 330/**
 331 * reserve_memory - setup reserved memory areas
 332 *
 333 * Setup the reserved memory areas set aside for the boot parameters,
 334 * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
 335 * see arch/ia64/include/asm/meminit.h if you need to define more.
 336 */
 337void __init
 338reserve_memory (void)
 339{
 340	int n = 0;
 341	unsigned long total_memory;
 342
 343	/*
 344	 * none of the entries in this table overlap
 345	 */
 346	rsvd_region[n].start = (unsigned long) ia64_boot_param;
 347	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
 348	n++;
 349
 350	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
 351	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
 352	n++;
 353
 354	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
 355	rsvd_region[n].end   = (rsvd_region[n].start
 356				+ strlen(__va(ia64_boot_param->command_line)) + 1);
 357	n++;
 358
 359	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
 360	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
 361	n++;
 362
 363	n += paravirt_reserve_memory(&rsvd_region[n]);
 364
 365#ifdef CONFIG_BLK_DEV_INITRD
 366	if (ia64_boot_param->initrd_start) {
 367		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
 368		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
 369		n++;
 370	}
 371#endif
 372
 373#ifdef CONFIG_CRASH_DUMP
 374	if (reserve_elfcorehdr(&rsvd_region[n].start,
 375			       &rsvd_region[n].end) == 0)
 376		n++;
 377#endif
 378
 379	total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
 380	n++;
 381
 382	setup_crashkernel(total_memory, &n);
 383
 384	/* end of memory marker */
 385	rsvd_region[n].start = ~0UL;
 386	rsvd_region[n].end   = ~0UL;
 387	n++;
 388
 389	num_rsvd_regions = n;
 390	BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
 391
 392	sort_regions(rsvd_region, num_rsvd_regions);
 393	num_rsvd_regions = merge_regions(rsvd_region, num_rsvd_regions);
 394}
 395
 396
 397/**
 398 * find_initrd - get initrd parameters from the boot parameter structure
 399 *
 400 * Grab the initrd start and end from the boot parameter struct given us by
 401 * the boot loader.
 402 */
 403void __init
 404find_initrd (void)
 405{
 406#ifdef CONFIG_BLK_DEV_INITRD
 407	if (ia64_boot_param->initrd_start) {
 408		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
 409		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
 410
 411		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n",
 412		       initrd_start, ia64_boot_param->initrd_size);
 413	}
 414#endif
 415}
 416
 417static void __init
 418io_port_init (void)
 419{
 420	unsigned long phys_iobase;
 421
 422	/*
 423	 * Set `iobase' based on the EFI memory map or, failing that, the
 424	 * value firmware left in ar.k0.
 425	 *
 426	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
 427	 * the port's virtual address, so ia32_load_state() loads it with a
 428	 * user virtual address.  But in ia64 mode, glibc uses the
 429	 * *physical* address in ar.k0 to mmap the appropriate area from
 430	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
 431	 * cases, user-mode can only use the legacy 0-64K I/O port space.
 432	 *
 433	 * ar.k0 is not involved in kernel I/O port accesses, which can use
 434	 * any of the I/O port spaces and are done via MMIO using the
 435	 * virtual mmio_base from the appropriate io_space[].
 436	 */
 437	phys_iobase = efi_get_iobase();
 438	if (!phys_iobase) {
 439		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
 440		printk(KERN_INFO "No I/O port range found in EFI memory map, "
 441			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
 442	}
 443	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
 444	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
 445
 446	/* setup legacy IO port space */
 447	io_space[0].mmio_base = ia64_iobase;
 448	io_space[0].sparse = 1;
 449	num_io_spaces = 1;
 450}
 451
 452/**
 453 * early_console_setup - setup debugging console
 454 *
 455 * Consoles started here require little enough setup that we can start using
 456 * them very early in the boot process, either right after the machine
 457 * vector initialization, or even before if the drivers can detect their hw.
 458 *
 459 * Returns non-zero if a console couldn't be setup.
 460 */
 461static inline int __init
 462early_console_setup (char *cmdline)
 463{
 464	int earlycons = 0;
 465
 466#ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
 467	{
 468		extern int sn_serial_console_early_setup(void);
 469		if (!sn_serial_console_early_setup())
 470			earlycons++;
 471	}
 472#endif
 473#ifdef CONFIG_EFI_PCDP
 474	if (!efi_setup_pcdp_console(cmdline))
 475		earlycons++;
 476#endif
 477	if (!simcons_register())
 478		earlycons++;
 479
 480	return (earlycons) ? 0 : -1;
 481}
 482
 483static inline void
 484mark_bsp_online (void)
 485{
 486#ifdef CONFIG_SMP
 487	/* If we register an early console, allow CPU 0 to printk */
 488	set_cpu_online(smp_processor_id(), true);
 489#endif
 490}
 491
 492static __initdata int nomca;
 493static __init int setup_nomca(char *s)
 494{
 495	nomca = 1;
 496	return 0;
 497}
 498early_param("nomca", setup_nomca);
 499
 500#ifdef CONFIG_CRASH_DUMP
 501int __init reserve_elfcorehdr(u64 *start, u64 *end)
 502{
 503	u64 length;
 504
 505	/* We get the address using the kernel command line,
 506	 * but the size is extracted from the EFI tables.
 507	 * Both address and size are required for reservation
 508	 * to work properly.
 509	 */
 510
 511	if (!is_vmcore_usable())
 512		return -EINVAL;
 513
 514	if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
 515		vmcore_unusable();
 516		return -EINVAL;
 517	}
 518
 519	*start = (unsigned long)__va(elfcorehdr_addr);
 520	*end = *start + length;
 521	return 0;
 522}
 523
 524#endif /* CONFIG_PROC_VMCORE */
 525
 526void __init
 527setup_arch (char **cmdline_p)
 528{
 529	unw_init();
 530
 531	paravirt_arch_setup_early();
 532
 533	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
 534	paravirt_patch_apply();
 535
 536	*cmdline_p = __va(ia64_boot_param->command_line);
 537	strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
 538
 539	efi_init();
 540	io_port_init();
 541
 542#ifdef CONFIG_IA64_GENERIC
 543	/* machvec needs to be parsed from the command line
 544	 * before parse_early_param() is called to ensure
 545	 * that ia64_mv is initialised before any command line
 546	 * settings may cause console setup to occur
 547	 */
 548	machvec_init_from_cmdline(*cmdline_p);
 549#endif
 550
 551	parse_early_param();
 552
 553	if (early_console_setup(*cmdline_p) == 0)
 554		mark_bsp_online();
 555
 556#ifdef CONFIG_ACPI
 557	/* Initialize the ACPI boot-time table parser */
 558	acpi_table_init();
 559	early_acpi_boot_init();
 560# ifdef CONFIG_ACPI_NUMA
 561	acpi_numa_init();
 562#  ifdef CONFIG_ACPI_HOTPLUG_CPU
 563	prefill_possible_map();
 564#  endif
 565	per_cpu_scan_finalize((cpus_weight(early_cpu_possible_map) == 0 ?
 566		32 : cpus_weight(early_cpu_possible_map)),
 567		additional_cpus > 0 ? additional_cpus : 0);
 568# endif
 569#endif /* CONFIG_APCI_BOOT */
 570
 571#ifdef CONFIG_SMP
 572	smp_build_cpu_map();
 573#endif
 574	find_memory();
 575
 576	/* process SAL system table: */
 577	ia64_sal_init(__va(efi.sal_systab));
 578
 579#ifdef CONFIG_ITANIUM
 580	ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
 581#else
 582	{
 583		unsigned long num_phys_stacked;
 584
 585		if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
 586			ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
 587	}
 588#endif
 589
 590#ifdef CONFIG_SMP
 591	cpu_physical_id(0) = hard_smp_processor_id();
 592#endif
 593
 594	cpu_init();	/* initialize the bootstrap CPU */
 595	mmu_context_init();	/* initialize context_id bitmap */
 596
 597	paravirt_banner();
 598	paravirt_arch_setup_console(cmdline_p);
 599
 600#ifdef CONFIG_VT
 601	if (!conswitchp) {
 602# if defined(CONFIG_DUMMY_CONSOLE)
 603		conswitchp = &dummy_con;
 604# endif
 605# if defined(CONFIG_VGA_CONSOLE)
 606		/*
 607		 * Non-legacy systems may route legacy VGA MMIO range to system
 608		 * memory.  vga_con probes the MMIO hole, so memory looks like
 609		 * a VGA device to it.  The EFI memory map can tell us if it's
 610		 * memory so we can avoid this problem.
 611		 */
 612		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
 613			conswitchp = &vga_con;
 614# endif
 615	}
 616#endif
 617
 618	/* enable IA-64 Machine Check Abort Handling unless disabled */
 619	if (paravirt_arch_setup_nomca())
 620		nomca = 1;
 621	if (!nomca)
 622		ia64_mca_init();
 623
 624	platform_setup(cmdline_p);
 625#ifndef CONFIG_IA64_HP_SIM
 626	check_sal_cache_flush();
 627#endif
 628	paging_init();
 629}
 630
 631/*
 632 * Display cpu info for all CPUs.
 633 */
 634static int
 635show_cpuinfo (struct seq_file *m, void *v)
 636{
 637#ifdef CONFIG_SMP
 638#	define lpj	c->loops_per_jiffy
 639#	define cpunum	c->cpu
 640#else
 641#	define lpj	loops_per_jiffy
 642#	define cpunum	0
 643#endif
 644	static struct {
 645		unsigned long mask;
 646		const char *feature_name;
 647	} feature_bits[] = {
 648		{ 1UL << 0, "branchlong" },
 649		{ 1UL << 1, "spontaneous deferral"},
 650		{ 1UL << 2, "16-byte atomic ops" }
 651	};
 652	char features[128], *cp, *sep;
 653	struct cpuinfo_ia64 *c = v;
 654	unsigned long mask;
 655	unsigned long proc_freq;
 656	int i, size;
 657
 658	mask = c->features;
 659
 660	/* build the feature string: */
 661	memcpy(features, "standard", 9);
 662	cp = features;
 663	size = sizeof(features);
 664	sep = "";
 665	for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
 666		if (mask & feature_bits[i].mask) {
 667			cp += snprintf(cp, size, "%s%s", sep,
 668				       feature_bits[i].feature_name),
 669			sep = ", ";
 670			mask &= ~feature_bits[i].mask;
 671			size = sizeof(features) - (cp - features);
 672		}
 673	}
 674	if (mask && size > 1) {
 675		/* print unknown features as a hex value */
 676		snprintf(cp, size, "%s0x%lx", sep, mask);
 677	}
 678
 679	proc_freq = cpufreq_quick_get(cpunum);
 680	if (!proc_freq)
 681		proc_freq = c->proc_freq / 1000;
 682
 683	seq_printf(m,
 684		   "processor  : %d\n"
 685		   "vendor     : %s\n"
 686		   "arch       : IA-64\n"
 687		   "family     : %u\n"
 688		   "model      : %u\n"
 689		   "model name : %s\n"
 690		   "revision   : %u\n"
 691		   "archrev    : %u\n"
 692		   "features   : %s\n"
 693		   "cpu number : %lu\n"
 694		   "cpu regs   : %u\n"
 695		   "cpu MHz    : %lu.%03lu\n"
 696		   "itc MHz    : %lu.%06lu\n"
 697		   "BogoMIPS   : %lu.%02lu\n",
 698		   cpunum, c->vendor, c->family, c->model,
 699		   c->model_name, c->revision, c->archrev,
 700		   features, c->ppn, c->number,
 701		   proc_freq / 1000, proc_freq % 1000,
 702		   c->itc_freq / 1000000, c->itc_freq % 1000000,
 703		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
 704#ifdef CONFIG_SMP
 705	seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
 706	if (c->socket_id != -1)
 707		seq_printf(m, "physical id: %u\n", c->socket_id);
 708	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
 709		seq_printf(m,
 710			   "core id    : %u\n"
 711			   "thread id  : %u\n",
 712			   c->core_id, c->thread_id);
 713#endif
 714	seq_printf(m,"\n");
 715
 716	return 0;
 717}
 718
 719static void *
 720c_start (struct seq_file *m, loff_t *pos)
 721{
 722#ifdef CONFIG_SMP
 723	while (*pos < nr_cpu_ids && !cpu_online(*pos))
 724		++*pos;
 725#endif
 726	return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL;
 727}
 728
 729static void *
 730c_next (struct seq_file *m, void *v, loff_t *pos)
 731{
 732	++*pos;
 733	return c_start(m, pos);
 734}
 735
 736static void
 737c_stop (struct seq_file *m, void *v)
 738{
 739}
 740
 741const struct seq_operations cpuinfo_op = {
 742	.start =	c_start,
 743	.next =		c_next,
 744	.stop =		c_stop,
 745	.show =		show_cpuinfo
 746};
 747
 748#define MAX_BRANDS	8
 749static char brandname[MAX_BRANDS][128];
 750
 751static char * __cpuinit
 752get_model_name(__u8 family, __u8 model)
 753{
 754	static int overflow;
 755	char brand[128];
 756	int i;
 757
 758	memcpy(brand, "Unknown", 8);
 759	if (ia64_pal_get_brand_info(brand)) {
 760		if (family == 0x7)
 761			memcpy(brand, "Merced", 7);
 762		else if (family == 0x1f) switch (model) {
 763			case 0: memcpy(brand, "McKinley", 9); break;
 764			case 1: memcpy(brand, "Madison", 8); break;
 765			case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
 766		}
 767	}
 768	for (i = 0; i < MAX_BRANDS; i++)
 769		if (strcmp(brandname[i], brand) == 0)
 770			return brandname[i];
 771	for (i = 0; i < MAX_BRANDS; i++)
 772		if (brandname[i][0] == '\0')
 773			return strcpy(brandname[i], brand);
 774	if (overflow++ == 0)
 775		printk(KERN_ERR
 776		       "%s: Table overflow. Some processor model information will be missing\n",
 777		       __func__);
 778	return "Unknown";
 779}
 780
 781static void __cpuinit
 782identify_cpu (struct cpuinfo_ia64 *c)
 783{
 784	union {
 785		unsigned long bits[5];
 786		struct {
 787			/* id 0 & 1: */
 788			char vendor[16];
 789
 790			/* id 2 */
 791			u64 ppn;		/* processor serial number */
 792
 793			/* id 3: */
 794			unsigned number		:  8;
 795			unsigned revision	:  8;
 796			unsigned model		:  8;
 797			unsigned family		:  8;
 798			unsigned archrev	:  8;
 799			unsigned reserved	: 24;
 800
 801			/* id 4: */
 802			u64 features;
 803		} field;
 804	} cpuid;
 805	pal_vm_info_1_u_t vm1;
 806	pal_vm_info_2_u_t vm2;
 807	pal_status_t status;
 808	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
 809	int i;
 810	for (i = 0; i < 5; ++i)
 811		cpuid.bits[i] = ia64_get_cpuid(i);
 812
 813	memcpy(c->vendor, cpuid.field.vendor, 16);
 814#ifdef CONFIG_SMP
 815	c->cpu = smp_processor_id();
 816
 817	/* below default values will be overwritten  by identify_siblings() 
 818	 * for Multi-Threading/Multi-Core capable CPUs
 819	 */
 820	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
 821	c->socket_id = -1;
 822
 823	identify_siblings(c);
 824
 825	if (c->threads_per_core > smp_num_siblings)
 826		smp_num_siblings = c->threads_per_core;
 827#endif
 828	c->ppn = cpuid.field.ppn;
 829	c->number = cpuid.field.number;
 830	c->revision = cpuid.field.revision;
 831	c->model = cpuid.field.model;
 832	c->family = cpuid.field.family;
 833	c->archrev = cpuid.field.archrev;
 834	c->features = cpuid.field.features;
 835	c->model_name = get_model_name(c->family, c->model);
 836
 837	status = ia64_pal_vm_summary(&vm1, &vm2);
 838	if (status == PAL_STATUS_SUCCESS) {
 839		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
 840		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
 841	}
 842	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
 843	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
 844}
 845
 846/*
 847 * Do the following calculations:
 848 *
 849 * 1. the max. cache line size.
 850 * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
 851 * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
 852 */
 853static void __cpuinit
 854get_cache_info(void)
 855{
 856	unsigned long line_size, max = 1;
 857	unsigned long l, levels, unique_caches;
 858	pal_cache_config_info_t cci;
 859	long status;
 860
 861        status = ia64_pal_cache_summary(&levels, &unique_caches);
 862        if (status != 0) {
 863                printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
 864                       __func__, status);
 865                max = SMP_CACHE_BYTES;
 866		/* Safest setup for "flush_icache_range()" */
 867		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
 868		/* Safest setup for "clflush_cache_range()" */
 869		ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
 870		goto out;
 871        }
 872
 873	for (l = 0; l < levels; ++l) {
 874		/* cache_type (data_or_unified)=2 */
 875		status = ia64_pal_cache_config_info(l, 2, &cci);
 876		if (status != 0) {
 877			printk(KERN_ERR "%s: ia64_pal_cache_config_info"
 878				"(l=%lu, 2) failed (status=%ld)\n",
 879				__func__, l, status);
 880			max = SMP_CACHE_BYTES;
 881			/* The safest setup for "flush_icache_range()" */
 882			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
 883			/* The safest setup for "clflush_cache_range()" */
 884			ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
 885			cci.pcci_unified = 1;
 886		} else {
 887			if (cci.pcci_stride < ia64_cache_stride_shift)
 888				ia64_cache_stride_shift = cci.pcci_stride;
 889
 890			line_size = 1 << cci.pcci_line_size;
 891			if (line_size > max)
 892				max = line_size;
 893		}
 894
 895		if (!cci.pcci_unified) {
 896			/* cache_type (instruction)=1*/
 897			status = ia64_pal_cache_config_info(l, 1, &cci);
 898			if (status != 0) {
 899				printk(KERN_ERR "%s: ia64_pal_cache_config_info"
 900					"(l=%lu, 1) failed (status=%ld)\n",
 901					__func__, l, status);
 902				/* The safest setup for flush_icache_range() */
 903				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
 904			}
 905		}
 906		if (cci.pcci_stride < ia64_i_cache_stride_shift)
 907			ia64_i_cache_stride_shift = cci.pcci_stride;
 908	}
 909  out:
 910	if (max > ia64_max_cacheline_size)
 911		ia64_max_cacheline_size = max;
 912}
 913
 914/*
 915 * cpu_init() initializes state that is per-CPU.  This function acts
 916 * as a 'CPU state barrier', nothing should get across.
 917 */
 918void __cpuinit
 919cpu_init (void)
 920{
 921	extern void __cpuinit ia64_mmu_init (void *);
 922	static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
 923	unsigned long num_phys_stacked;
 924	pal_vm_info_2_u_t vmi;
 925	unsigned int max_ctx;
 926	struct cpuinfo_ia64 *cpu_info;
 927	void *cpu_data;
 928
 929	cpu_data = per_cpu_init();
 930#ifdef CONFIG_SMP
 931	/*
 932	 * insert boot cpu into sibling and core mapes
 933	 * (must be done after per_cpu area is setup)
 934	 */
 935	if (smp_processor_id() == 0) {
 936		cpu_set(0, per_cpu(cpu_sibling_map, 0));
 937		cpu_set(0, cpu_core_map[0]);
 938	} else {
 939		/*
 940		 * Set ar.k3 so that assembly code in MCA handler can compute
 941		 * physical addresses of per cpu variables with a simple:
 942		 *   phys = ar.k3 + &per_cpu_var
 943		 * and the alt-dtlb-miss handler can set per-cpu mapping into
 944		 * the TLB when needed. head.S already did this for cpu0.
 945		 */
 946		ia64_set_kr(IA64_KR_PER_CPU_DATA,
 947			    ia64_tpa(cpu_data) - (long) __per_cpu_start);
 948	}
 949#endif
 950
 951	get_cache_info();
 952
 953	/*
 954	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
 955	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
 956	 * depends on the data returned by identify_cpu().  We break the dependency by
 957	 * accessing cpu_data() through the canonical per-CPU address.
 958	 */
 959	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start);
 960	identify_cpu(cpu_info);
 961
 962#ifdef CONFIG_MCKINLEY
 963	{
 964#		define FEATURE_SET 16
 965		struct ia64_pal_retval iprv;
 966
 967		if (cpu_info->family == 0x1f) {
 968			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
 969			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
 970				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
 971				              (iprv.v1 | 0x80), FEATURE_SET, 0);
 972		}
 973	}
 974#endif
 975
 976	/* Clear the stack memory reserved for pt_regs: */
 977	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
 978
 979	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
 980
 981	/*
 982	 * Initialize the page-table base register to a global
 983	 * directory with all zeroes.  This ensure that we can handle
 984	 * TLB-misses to user address-space even before we created the
 985	 * first user address-space.  This may happen, e.g., due to
 986	 * aggressive use of lfetch.fault.
 987	 */
 988	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
 989
 990	/*
 991	 * Initialize default control register to defer speculative faults except
 992	 * for those arising from TLB misses, which are not deferred.  The
 993	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
 994	 * the kernel must have recovery code for all speculative accesses).  Turn on
 995	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
 996	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
 997	 * be fine).
 998	 */
 999	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
1000					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
1001	atomic_inc(&init_mm.mm_count);
1002	current->active_mm = &init_mm;
1003	BUG_ON(current->mm);
1004
1005	ia64_mmu_init(ia64_imva(cpu_data));
1006	ia64_mca_cpu_init(ia64_imva(cpu_data));
1007
1008	/* Clear ITC to eliminate sched_clock() overflows in human time.  */
1009	ia64_set_itc(0);
1010
1011	/* disable all local interrupt sources: */
1012	ia64_set_itv(1 << 16);
1013	ia64_set_lrr0(1 << 16);
1014	ia64_set_lrr1(1 << 16);
1015	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
1016	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
1017
1018	/* clear TPR & XTP to enable all interrupt classes: */
1019	ia64_setreg(_IA64_REG_CR_TPR, 0);
1020
1021	/* Clear any pending interrupts left by SAL/EFI */
1022	while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
1023		ia64_eoi();
1024
1025#ifdef CONFIG_SMP
1026	normal_xtp();
1027#endif
1028
1029	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
1030	if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
1031		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
1032		setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
1033	} else {
1034		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
1035		max_ctx = (1U << 15) - 1;	/* use architected minimum */
1036	}
1037	while (max_ctx < ia64_ctx.max_ctx) {
1038		unsigned int old = ia64_ctx.max_ctx;
1039		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
1040			break;
1041	}
1042
1043	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1044		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1045		       "stacked regs\n");
1046		num_phys_stacked = 96;
1047	}
1048	/* size of physical stacked register partition plus 8 bytes: */
1049	if (num_phys_stacked > max_num_phys_stacked) {
1050		ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
1051		max_num_phys_stacked = num_phys_stacked;
1052	}
1053	platform_cpu_init();
1054	pm_idle = default_idle;
1055}
1056
1057void __init
1058check_bugs (void)
1059{
1060	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1061			       (unsigned long) __end___mckinley_e9_bundles);
1062}
1063
1064static int __init run_dmi_scan(void)
1065{
1066	dmi_scan_machine();
1067	return 0;
1068}
1069core_initcall(run_dmi_scan);