Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *	IP multicast routing support for mrouted 3.6/3.8
   3 *
   4 *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
   5 *	  Linux Consultancy and Custom Driver Development
   6 *
   7 *	This program is free software; you can redistribute it and/or
   8 *	modify it under the terms of the GNU General Public License
   9 *	as published by the Free Software Foundation; either version
  10 *	2 of the License, or (at your option) any later version.
  11 *
  12 *	Fixes:
  13 *	Michael Chastain	:	Incorrect size of copying.
  14 *	Alan Cox		:	Added the cache manager code
  15 *	Alan Cox		:	Fixed the clone/copy bug and device race.
  16 *	Mike McLagan		:	Routing by source
  17 *	Malcolm Beattie		:	Buffer handling fixes.
  18 *	Alexey Kuznetsov	:	Double buffer free and other fixes.
  19 *	SVR Anand		:	Fixed several multicast bugs and problems.
  20 *	Alexey Kuznetsov	:	Status, optimisations and more.
  21 *	Brad Parker		:	Better behaviour on mrouted upcall
  22 *					overflow.
  23 *      Carlos Picoto           :       PIMv1 Support
  24 *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
  25 *					Relax this requirement to work with older peers.
  26 *
  27 */
  28
  29#include <asm/system.h>
  30#include <asm/uaccess.h>
  31#include <linux/types.h>
  32#include <linux/capability.h>
  33#include <linux/errno.h>
  34#include <linux/timer.h>
  35#include <linux/mm.h>
  36#include <linux/kernel.h>
  37#include <linux/fcntl.h>
  38#include <linux/stat.h>
  39#include <linux/socket.h>
  40#include <linux/in.h>
  41#include <linux/inet.h>
  42#include <linux/netdevice.h>
  43#include <linux/inetdevice.h>
  44#include <linux/igmp.h>
  45#include <linux/proc_fs.h>
  46#include <linux/seq_file.h>
  47#include <linux/mroute.h>
  48#include <linux/init.h>
  49#include <linux/if_ether.h>
  50#include <linux/slab.h>
  51#include <net/net_namespace.h>
  52#include <net/ip.h>
  53#include <net/protocol.h>
  54#include <linux/skbuff.h>
  55#include <net/route.h>
  56#include <net/sock.h>
  57#include <net/icmp.h>
  58#include <net/udp.h>
  59#include <net/raw.h>
  60#include <linux/notifier.h>
  61#include <linux/if_arp.h>
  62#include <linux/netfilter_ipv4.h>
  63#include <linux/compat.h>
  64#include <net/ipip.h>
 
  65#include <net/checksum.h>
  66#include <net/netlink.h>
  67#include <net/fib_rules.h>
  68
  69#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  70#define CONFIG_IP_PIMSM	1
  71#endif
  72
  73struct mr_table {
  74	struct list_head	list;
  75#ifdef CONFIG_NET_NS
  76	struct net		*net;
  77#endif
  78	u32			id;
  79	struct sock __rcu	*mroute_sk;
  80	struct timer_list	ipmr_expire_timer;
  81	struct list_head	mfc_unres_queue;
  82	struct list_head	mfc_cache_array[MFC_LINES];
  83	struct vif_device	vif_table[MAXVIFS];
  84	int			maxvif;
  85	atomic_t		cache_resolve_queue_len;
  86	int			mroute_do_assert;
  87	int			mroute_do_pim;
  88#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  89	int			mroute_reg_vif_num;
  90#endif
  91};
  92
  93struct ipmr_rule {
  94	struct fib_rule		common;
  95};
  96
  97struct ipmr_result {
  98	struct mr_table		*mrt;
  99};
 100
 101/* Big lock, protecting vif table, mrt cache and mroute socket state.
 102 * Note that the changes are semaphored via rtnl_lock.
 103 */
 104
 105static DEFINE_RWLOCK(mrt_lock);
 106
 107/*
 108 *	Multicast router control variables
 109 */
 110
 111#define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
 112
 113/* Special spinlock for queue of unresolved entries */
 114static DEFINE_SPINLOCK(mfc_unres_lock);
 115
 116/* We return to original Alan's scheme. Hash table of resolved
 117 * entries is changed only in process context and protected
 118 * with weak lock mrt_lock. Queue of unresolved entries is protected
 119 * with strong spinlock mfc_unres_lock.
 120 *
 121 * In this case data path is free of exclusive locks at all.
 122 */
 123
 124static struct kmem_cache *mrt_cachep __read_mostly;
 125
 126static struct mr_table *ipmr_new_table(struct net *net, u32 id);
 127static int ip_mr_forward(struct net *net, struct mr_table *mrt,
 128			 struct sk_buff *skb, struct mfc_cache *cache,
 129			 int local);
 
 
 130static int ipmr_cache_report(struct mr_table *mrt,
 131			     struct sk_buff *pkt, vifi_t vifi, int assert);
 132static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
 133			      struct mfc_cache *c, struct rtmsg *rtm);
 
 
 
 134static void ipmr_expire_process(unsigned long arg);
 135
 136#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 137#define ipmr_for_each_table(mrt, net) \
 138	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
 139
 140static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 141{
 142	struct mr_table *mrt;
 143
 144	ipmr_for_each_table(mrt, net) {
 145		if (mrt->id == id)
 146			return mrt;
 147	}
 148	return NULL;
 149}
 150
 151static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 152			   struct mr_table **mrt)
 153{
 154	struct ipmr_result res;
 155	struct fib_lookup_arg arg = { .result = &res, };
 156	int err;
 
 
 
 
 
 157
 158	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
 159			       flowi4_to_flowi(flp4), 0, &arg);
 160	if (err < 0)
 161		return err;
 162	*mrt = res.mrt;
 163	return 0;
 164}
 165
 166static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
 167			    int flags, struct fib_lookup_arg *arg)
 168{
 169	struct ipmr_result *res = arg->result;
 170	struct mr_table *mrt;
 171
 172	switch (rule->action) {
 173	case FR_ACT_TO_TBL:
 174		break;
 175	case FR_ACT_UNREACHABLE:
 176		return -ENETUNREACH;
 177	case FR_ACT_PROHIBIT:
 178		return -EACCES;
 179	case FR_ACT_BLACKHOLE:
 180	default:
 181		return -EINVAL;
 182	}
 183
 184	mrt = ipmr_get_table(rule->fr_net, rule->table);
 185	if (mrt == NULL)
 186		return -EAGAIN;
 187	res->mrt = mrt;
 188	return 0;
 189}
 190
 191static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
 192{
 193	return 1;
 194}
 195
 196static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
 197	FRA_GENERIC_POLICY,
 198};
 199
 200static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
 201			       struct fib_rule_hdr *frh, struct nlattr **tb)
 202{
 203	return 0;
 204}
 205
 206static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
 207			     struct nlattr **tb)
 208{
 209	return 1;
 210}
 211
 212static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
 213			  struct fib_rule_hdr *frh)
 214{
 215	frh->dst_len = 0;
 216	frh->src_len = 0;
 217	frh->tos     = 0;
 218	return 0;
 219}
 220
 221static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = {
 222	.family		= RTNL_FAMILY_IPMR,
 223	.rule_size	= sizeof(struct ipmr_rule),
 224	.addr_size	= sizeof(u32),
 225	.action		= ipmr_rule_action,
 226	.match		= ipmr_rule_match,
 227	.configure	= ipmr_rule_configure,
 228	.compare	= ipmr_rule_compare,
 229	.default_pref	= fib_default_rule_pref,
 230	.fill		= ipmr_rule_fill,
 231	.nlgroup	= RTNLGRP_IPV4_RULE,
 232	.policy		= ipmr_rule_policy,
 233	.owner		= THIS_MODULE,
 234};
 235
 236static int __net_init ipmr_rules_init(struct net *net)
 237{
 238	struct fib_rules_ops *ops;
 239	struct mr_table *mrt;
 240	int err;
 241
 242	ops = fib_rules_register(&ipmr_rules_ops_template, net);
 243	if (IS_ERR(ops))
 244		return PTR_ERR(ops);
 245
 246	INIT_LIST_HEAD(&net->ipv4.mr_tables);
 247
 248	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 249	if (mrt == NULL) {
 250		err = -ENOMEM;
 251		goto err1;
 252	}
 253
 254	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
 255	if (err < 0)
 256		goto err2;
 257
 258	net->ipv4.mr_rules_ops = ops;
 259	return 0;
 260
 261err2:
 262	kfree(mrt);
 263err1:
 264	fib_rules_unregister(ops);
 265	return err;
 266}
 267
 268static void __net_exit ipmr_rules_exit(struct net *net)
 269{
 270	struct mr_table *mrt, *next;
 271
 
 272	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
 273		list_del(&mrt->list);
 274		kfree(mrt);
 275	}
 276	fib_rules_unregister(net->ipv4.mr_rules_ops);
 
 277}
 278#else
 279#define ipmr_for_each_table(mrt, net) \
 280	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
 281
 282static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 283{
 284	return net->ipv4.mrt;
 285}
 286
 287static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 288			   struct mr_table **mrt)
 289{
 290	*mrt = net->ipv4.mrt;
 291	return 0;
 292}
 293
 294static int __net_init ipmr_rules_init(struct net *net)
 295{
 296	net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 297	return net->ipv4.mrt ? 0 : -ENOMEM;
 
 
 
 
 
 298}
 299
 300static void __net_exit ipmr_rules_exit(struct net *net)
 301{
 302	kfree(net->ipv4.mrt);
 
 
 
 303}
 304#endif
 305
 306static struct mr_table *ipmr_new_table(struct net *net, u32 id)
 307{
 308	struct mr_table *mrt;
 309	unsigned int i;
 310
 
 
 
 
 311	mrt = ipmr_get_table(net, id);
 312	if (mrt != NULL)
 313		return mrt;
 314
 315	mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
 316	if (mrt == NULL)
 317		return NULL;
 318	write_pnet(&mrt->net, net);
 319	mrt->id = id;
 320
 321	/* Forwarding cache */
 322	for (i = 0; i < MFC_LINES; i++)
 323		INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
 324
 325	INIT_LIST_HEAD(&mrt->mfc_unres_queue);
 326
 327	setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
 328		    (unsigned long)mrt);
 329
 330#ifdef CONFIG_IP_PIMSM
 331	mrt->mroute_reg_vif_num = -1;
 332#endif
 333#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 334	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
 335#endif
 336	return mrt;
 337}
 338
 
 
 
 
 
 
 
 339/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
 340
 341static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
 342{
 343	struct net *net = dev_net(dev);
 344
 345	dev_close(dev);
 346
 347	dev = __dev_get_by_name(net, "tunl0");
 348	if (dev) {
 349		const struct net_device_ops *ops = dev->netdev_ops;
 350		struct ifreq ifr;
 351		struct ip_tunnel_parm p;
 352
 353		memset(&p, 0, sizeof(p));
 354		p.iph.daddr = v->vifc_rmt_addr.s_addr;
 355		p.iph.saddr = v->vifc_lcl_addr.s_addr;
 356		p.iph.version = 4;
 357		p.iph.ihl = 5;
 358		p.iph.protocol = IPPROTO_IPIP;
 359		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 360		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 361
 362		if (ops->ndo_do_ioctl) {
 363			mm_segment_t oldfs = get_fs();
 364
 365			set_fs(KERNEL_DS);
 366			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
 367			set_fs(oldfs);
 368		}
 369	}
 370}
 371
 372static
 373struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 374{
 375	struct net_device  *dev;
 376
 377	dev = __dev_get_by_name(net, "tunl0");
 378
 379	if (dev) {
 380		const struct net_device_ops *ops = dev->netdev_ops;
 381		int err;
 382		struct ifreq ifr;
 383		struct ip_tunnel_parm p;
 384		struct in_device  *in_dev;
 385
 386		memset(&p, 0, sizeof(p));
 387		p.iph.daddr = v->vifc_rmt_addr.s_addr;
 388		p.iph.saddr = v->vifc_lcl_addr.s_addr;
 389		p.iph.version = 4;
 390		p.iph.ihl = 5;
 391		p.iph.protocol = IPPROTO_IPIP;
 392		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 393		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 394
 395		if (ops->ndo_do_ioctl) {
 396			mm_segment_t oldfs = get_fs();
 397
 398			set_fs(KERNEL_DS);
 399			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
 400			set_fs(oldfs);
 401		} else {
 402			err = -EOPNOTSUPP;
 403		}
 404		dev = NULL;
 405
 406		if (err == 0 &&
 407		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
 408			dev->flags |= IFF_MULTICAST;
 409
 410			in_dev = __in_dev_get_rtnl(dev);
 411			if (in_dev == NULL)
 412				goto failure;
 413
 414			ipv4_devconf_setall(in_dev);
 415			IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 416
 417			if (dev_open(dev))
 418				goto failure;
 419			dev_hold(dev);
 420		}
 421	}
 422	return dev;
 423
 424failure:
 425	/* allow the register to be completed before unregistering. */
 426	rtnl_unlock();
 427	rtnl_lock();
 428
 429	unregister_netdevice(dev);
 430	return NULL;
 431}
 432
 433#ifdef CONFIG_IP_PIMSM
 434
 435static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
 436{
 437	struct net *net = dev_net(dev);
 438	struct mr_table *mrt;
 439	struct flowi4 fl4 = {
 440		.flowi4_oif	= dev->ifindex,
 441		.flowi4_iif	= skb->skb_iif,
 442		.flowi4_mark	= skb->mark,
 443	};
 444	int err;
 445
 446	err = ipmr_fib_lookup(net, &fl4, &mrt);
 447	if (err < 0) {
 448		kfree_skb(skb);
 449		return err;
 450	}
 451
 452	read_lock(&mrt_lock);
 453	dev->stats.tx_bytes += skb->len;
 454	dev->stats.tx_packets++;
 455	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
 456	read_unlock(&mrt_lock);
 457	kfree_skb(skb);
 458	return NETDEV_TX_OK;
 459}
 460
 
 
 
 
 
 461static const struct net_device_ops reg_vif_netdev_ops = {
 462	.ndo_start_xmit	= reg_vif_xmit,
 
 463};
 464
 465static void reg_vif_setup(struct net_device *dev)
 466{
 467	dev->type		= ARPHRD_PIMREG;
 468	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
 469	dev->flags		= IFF_NOARP;
 470	dev->netdev_ops		= &reg_vif_netdev_ops,
 471	dev->destructor		= free_netdev;
 472	dev->features		|= NETIF_F_NETNS_LOCAL;
 473}
 474
 475static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 476{
 477	struct net_device *dev;
 478	struct in_device *in_dev;
 479	char name[IFNAMSIZ];
 480
 481	if (mrt->id == RT_TABLE_DEFAULT)
 482		sprintf(name, "pimreg");
 483	else
 484		sprintf(name, "pimreg%u", mrt->id);
 485
 486	dev = alloc_netdev(0, name, reg_vif_setup);
 487
 488	if (dev == NULL)
 489		return NULL;
 490
 491	dev_net_set(dev, net);
 492
 493	if (register_netdevice(dev)) {
 494		free_netdev(dev);
 495		return NULL;
 496	}
 497	dev->iflink = 0;
 498
 499	rcu_read_lock();
 500	in_dev = __in_dev_get_rcu(dev);
 501	if (!in_dev) {
 502		rcu_read_unlock();
 503		goto failure;
 504	}
 505
 506	ipv4_devconf_setall(in_dev);
 507	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 508	rcu_read_unlock();
 509
 510	if (dev_open(dev))
 511		goto failure;
 512
 513	dev_hold(dev);
 514
 515	return dev;
 516
 517failure:
 518	/* allow the register to be completed before unregistering. */
 519	rtnl_unlock();
 520	rtnl_lock();
 521
 522	unregister_netdevice(dev);
 523	return NULL;
 524}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 525#endif
 526
 527/*
 528 *	Delete a VIF entry
 529 *	@notify: Set to 1, if the caller is a notifier_call
 530 */
 531
 532static int vif_delete(struct mr_table *mrt, int vifi, int notify,
 533		      struct list_head *head)
 534{
 535	struct vif_device *v;
 536	struct net_device *dev;
 537	struct in_device *in_dev;
 538
 539	if (vifi < 0 || vifi >= mrt->maxvif)
 540		return -EADDRNOTAVAIL;
 541
 542	v = &mrt->vif_table[vifi];
 543
 544	write_lock_bh(&mrt_lock);
 545	dev = v->dev;
 546	v->dev = NULL;
 547
 548	if (!dev) {
 549		write_unlock_bh(&mrt_lock);
 550		return -EADDRNOTAVAIL;
 551	}
 552
 553#ifdef CONFIG_IP_PIMSM
 554	if (vifi == mrt->mroute_reg_vif_num)
 555		mrt->mroute_reg_vif_num = -1;
 556#endif
 557
 558	if (vifi + 1 == mrt->maxvif) {
 559		int tmp;
 560
 561		for (tmp = vifi - 1; tmp >= 0; tmp--) {
 562			if (VIF_EXISTS(mrt, tmp))
 563				break;
 564		}
 565		mrt->maxvif = tmp+1;
 566	}
 567
 568	write_unlock_bh(&mrt_lock);
 569
 570	dev_set_allmulti(dev, -1);
 571
 572	in_dev = __in_dev_get_rtnl(dev);
 573	if (in_dev) {
 574		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
 
 
 
 575		ip_rt_multicast_event(in_dev);
 576	}
 577
 578	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
 579		unregister_netdevice_queue(dev, head);
 580
 581	dev_put(dev);
 582	return 0;
 583}
 584
 585static void ipmr_cache_free_rcu(struct rcu_head *head)
 586{
 587	struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
 588
 589	kmem_cache_free(mrt_cachep, c);
 590}
 591
 592static inline void ipmr_cache_free(struct mfc_cache *c)
 593{
 594	call_rcu(&c->rcu, ipmr_cache_free_rcu);
 595}
 596
 597/* Destroy an unresolved cache entry, killing queued skbs
 598 * and reporting error to netlink readers.
 599 */
 600
 601static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
 602{
 603	struct net *net = read_pnet(&mrt->net);
 604	struct sk_buff *skb;
 605	struct nlmsgerr *e;
 606
 607	atomic_dec(&mrt->cache_resolve_queue_len);
 608
 609	while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
 610		if (ip_hdr(skb)->version == 0) {
 611			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 612			nlh->nlmsg_type = NLMSG_ERROR;
 613			nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
 614			skb_trim(skb, nlh->nlmsg_len);
 615			e = NLMSG_DATA(nlh);
 616			e->error = -ETIMEDOUT;
 617			memset(&e->msg, 0, sizeof(e->msg));
 618
 619			rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
 620		} else {
 621			kfree_skb(skb);
 622		}
 623	}
 624
 625	ipmr_cache_free(c);
 626}
 627
 628
 629/* Timer process for the unresolved queue. */
 630
 631static void ipmr_expire_process(unsigned long arg)
 632{
 633	struct mr_table *mrt = (struct mr_table *)arg;
 634	unsigned long now;
 635	unsigned long expires;
 636	struct mfc_cache *c, *next;
 637
 638	if (!spin_trylock(&mfc_unres_lock)) {
 639		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
 640		return;
 641	}
 642
 643	if (list_empty(&mrt->mfc_unres_queue))
 644		goto out;
 645
 646	now = jiffies;
 647	expires = 10*HZ;
 648
 649	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
 650		if (time_after(c->mfc_un.unres.expires, now)) {
 651			unsigned long interval = c->mfc_un.unres.expires - now;
 652			if (interval < expires)
 653				expires = interval;
 654			continue;
 655		}
 656
 657		list_del(&c->list);
 
 658		ipmr_destroy_unres(mrt, c);
 659	}
 660
 661	if (!list_empty(&mrt->mfc_unres_queue))
 662		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
 663
 664out:
 665	spin_unlock(&mfc_unres_lock);
 666}
 667
 668/* Fill oifs list. It is called under write locked mrt_lock. */
 669
 670static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
 671				   unsigned char *ttls)
 672{
 673	int vifi;
 674
 675	cache->mfc_un.res.minvif = MAXVIFS;
 676	cache->mfc_un.res.maxvif = 0;
 677	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
 678
 679	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
 680		if (VIF_EXISTS(mrt, vifi) &&
 681		    ttls[vifi] && ttls[vifi] < 255) {
 682			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
 683			if (cache->mfc_un.res.minvif > vifi)
 684				cache->mfc_un.res.minvif = vifi;
 685			if (cache->mfc_un.res.maxvif <= vifi)
 686				cache->mfc_un.res.maxvif = vifi + 1;
 687		}
 688	}
 689}
 690
 691static int vif_add(struct net *net, struct mr_table *mrt,
 692		   struct vifctl *vifc, int mrtsock)
 693{
 694	int vifi = vifc->vifc_vifi;
 695	struct vif_device *v = &mrt->vif_table[vifi];
 696	struct net_device *dev;
 697	struct in_device *in_dev;
 698	int err;
 699
 700	/* Is vif busy ? */
 701	if (VIF_EXISTS(mrt, vifi))
 702		return -EADDRINUSE;
 703
 704	switch (vifc->vifc_flags) {
 705#ifdef CONFIG_IP_PIMSM
 706	case VIFF_REGISTER:
 707		/*
 708		 * Special Purpose VIF in PIM
 
 709		 * All the packets will be sent to the daemon
 710		 */
 711		if (mrt->mroute_reg_vif_num >= 0)
 712			return -EADDRINUSE;
 713		dev = ipmr_reg_vif(net, mrt);
 714		if (!dev)
 715			return -ENOBUFS;
 716		err = dev_set_allmulti(dev, 1);
 717		if (err) {
 718			unregister_netdevice(dev);
 719			dev_put(dev);
 720			return err;
 721		}
 722		break;
 723#endif
 724	case VIFF_TUNNEL:
 725		dev = ipmr_new_tunnel(net, vifc);
 726		if (!dev)
 727			return -ENOBUFS;
 728		err = dev_set_allmulti(dev, 1);
 729		if (err) {
 730			ipmr_del_tunnel(dev, vifc);
 731			dev_put(dev);
 732			return err;
 733		}
 734		break;
 735
 736	case VIFF_USE_IFINDEX:
 737	case 0:
 738		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
 739			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
 740			if (dev && __in_dev_get_rtnl(dev) == NULL) {
 741				dev_put(dev);
 742				return -EADDRNOTAVAIL;
 743			}
 744		} else {
 745			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
 746		}
 747		if (!dev)
 748			return -EADDRNOTAVAIL;
 749		err = dev_set_allmulti(dev, 1);
 750		if (err) {
 751			dev_put(dev);
 752			return err;
 753		}
 754		break;
 755	default:
 756		return -EINVAL;
 757	}
 758
 759	in_dev = __in_dev_get_rtnl(dev);
 760	if (!in_dev) {
 761		dev_put(dev);
 762		return -EADDRNOTAVAIL;
 763	}
 764	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
 
 
 765	ip_rt_multicast_event(in_dev);
 766
 767	/* Fill in the VIF structures */
 768
 769	v->rate_limit = vifc->vifc_rate_limit;
 770	v->local = vifc->vifc_lcl_addr.s_addr;
 771	v->remote = vifc->vifc_rmt_addr.s_addr;
 772	v->flags = vifc->vifc_flags;
 773	if (!mrtsock)
 774		v->flags |= VIFF_STATIC;
 775	v->threshold = vifc->vifc_threshold;
 776	v->bytes_in = 0;
 777	v->bytes_out = 0;
 778	v->pkt_in = 0;
 779	v->pkt_out = 0;
 780	v->link = dev->ifindex;
 781	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
 782		v->link = dev->iflink;
 783
 784	/* And finish update writing critical data */
 785	write_lock_bh(&mrt_lock);
 786	v->dev = dev;
 787#ifdef CONFIG_IP_PIMSM
 788	if (v->flags & VIFF_REGISTER)
 789		mrt->mroute_reg_vif_num = vifi;
 790#endif
 791	if (vifi+1 > mrt->maxvif)
 792		mrt->maxvif = vifi+1;
 793	write_unlock_bh(&mrt_lock);
 794	return 0;
 795}
 796
 797/* called with rcu_read_lock() */
 798static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
 799					 __be32 origin,
 800					 __be32 mcastgrp)
 801{
 802	int line = MFC_HASH(mcastgrp, origin);
 803	struct mfc_cache *c;
 804
 805	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
 806		if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
 807			return c;
 808	}
 809	return NULL;
 810}
 811
 812/*
 813 *	Allocate a multicast cache entry
 814 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 815static struct mfc_cache *ipmr_cache_alloc(void)
 816{
 817	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
 818
 819	if (c)
 820		c->mfc_un.res.minvif = MAXVIFS;
 821	return c;
 822}
 823
 824static struct mfc_cache *ipmr_cache_alloc_unres(void)
 825{
 826	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
 827
 828	if (c) {
 829		skb_queue_head_init(&c->mfc_un.unres.unresolved);
 830		c->mfc_un.unres.expires = jiffies + 10*HZ;
 831	}
 832	return c;
 833}
 834
 835/*
 836 *	A cache entry has gone into a resolved state from queued
 837 */
 838
 839static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
 840			       struct mfc_cache *uc, struct mfc_cache *c)
 841{
 842	struct sk_buff *skb;
 843	struct nlmsgerr *e;
 844
 845	/* Play the pending entries through our router */
 846
 847	while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
 848		if (ip_hdr(skb)->version == 0) {
 849			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 850
 851			if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
 852				nlh->nlmsg_len = skb_tail_pointer(skb) -
 853						 (u8 *)nlh;
 854			} else {
 855				nlh->nlmsg_type = NLMSG_ERROR;
 856				nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
 857				skb_trim(skb, nlh->nlmsg_len);
 858				e = NLMSG_DATA(nlh);
 859				e->error = -EMSGSIZE;
 860				memset(&e->msg, 0, sizeof(e->msg));
 861			}
 862
 863			rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
 864		} else {
 865			ip_mr_forward(net, mrt, skb, c, 0);
 866		}
 867	}
 868}
 869
 870/*
 871 *	Bounce a cache query up to mrouted. We could use netlink for this but mrouted
 872 *	expects the following bizarre scheme.
 873 *
 874 *	Called under mrt_lock.
 875 */
 876
 877static int ipmr_cache_report(struct mr_table *mrt,
 878			     struct sk_buff *pkt, vifi_t vifi, int assert)
 879{
 880	struct sk_buff *skb;
 881	const int ihl = ip_hdrlen(pkt);
 
 882	struct igmphdr *igmp;
 883	struct igmpmsg *msg;
 884	struct sock *mroute_sk;
 885	int ret;
 886
 887#ifdef CONFIG_IP_PIMSM
 888	if (assert == IGMPMSG_WHOLEPKT)
 889		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
 890	else
 891#endif
 892		skb = alloc_skb(128, GFP_ATOMIC);
 893
 894	if (!skb)
 895		return -ENOBUFS;
 896
 897#ifdef CONFIG_IP_PIMSM
 898	if (assert == IGMPMSG_WHOLEPKT) {
 899		/* Ugly, but we have no choice with this interface.
 900		 * Duplicate old header, fix ihl, length etc.
 901		 * And all this only to mangle msg->im_msgtype and
 902		 * to set msg->im_mbz to "mbz" :-)
 903		 */
 904		skb_push(skb, sizeof(struct iphdr));
 905		skb_reset_network_header(skb);
 906		skb_reset_transport_header(skb);
 907		msg = (struct igmpmsg *)skb_network_header(skb);
 908		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
 909		msg->im_msgtype = IGMPMSG_WHOLEPKT;
 910		msg->im_mbz = 0;
 911		msg->im_vif = mrt->mroute_reg_vif_num;
 912		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
 913		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
 914					     sizeof(struct iphdr));
 915	} else
 916#endif
 917	{
 918
 919	/* Copy the IP header */
 920
 921	skb->network_header = skb->tail;
 922	skb_put(skb, ihl);
 923	skb_copy_to_linear_data(skb, pkt->data, ihl);
 924	ip_hdr(skb)->protocol = 0;	/* Flag to the kernel this is a route add */
 925	msg = (struct igmpmsg *)skb_network_header(skb);
 926	msg->im_vif = vifi;
 927	skb_dst_set(skb, dst_clone(skb_dst(pkt)));
 928
 929	/* Add our header */
 930
 931	igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
 932	igmp->type	=
 933	msg->im_msgtype = assert;
 934	igmp->code	= 0;
 935	ip_hdr(skb)->tot_len = htons(skb->len);		/* Fix the length */
 936	skb->transport_header = skb->network_header;
 937	}
 938
 939	rcu_read_lock();
 940	mroute_sk = rcu_dereference(mrt->mroute_sk);
 941	if (mroute_sk == NULL) {
 942		rcu_read_unlock();
 943		kfree_skb(skb);
 944		return -EINVAL;
 945	}
 946
 947	/* Deliver to mrouted */
 948
 949	ret = sock_queue_rcv_skb(mroute_sk, skb);
 950	rcu_read_unlock();
 951	if (ret < 0) {
 952		if (net_ratelimit())
 953			printk(KERN_WARNING "mroute: pending queue full, dropping entries.\n");
 954		kfree_skb(skb);
 955	}
 956
 957	return ret;
 958}
 959
 960/*
 961 *	Queue a packet for resolution. It gets locked cache entry!
 962 */
 963
 964static int
 965ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
 966{
 967	bool found = false;
 968	int err;
 969	struct mfc_cache *c;
 970	const struct iphdr *iph = ip_hdr(skb);
 971
 972	spin_lock_bh(&mfc_unres_lock);
 973	list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
 974		if (c->mfc_mcastgrp == iph->daddr &&
 975		    c->mfc_origin == iph->saddr) {
 976			found = true;
 977			break;
 978		}
 979	}
 980
 981	if (!found) {
 982		/* Create a new entry if allowable */
 983
 984		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
 985		    (c = ipmr_cache_alloc_unres()) == NULL) {
 986			spin_unlock_bh(&mfc_unres_lock);
 987
 988			kfree_skb(skb);
 989			return -ENOBUFS;
 990		}
 991
 992		/* Fill in the new cache entry */
 993
 994		c->mfc_parent	= -1;
 995		c->mfc_origin	= iph->saddr;
 996		c->mfc_mcastgrp	= iph->daddr;
 997
 998		/* Reflect first query at mrouted. */
 999
1000		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1001		if (err < 0) {
1002			/* If the report failed throw the cache entry
1003			   out - Brad Parker
1004			 */
1005			spin_unlock_bh(&mfc_unres_lock);
1006
1007			ipmr_cache_free(c);
1008			kfree_skb(skb);
1009			return err;
1010		}
1011
1012		atomic_inc(&mrt->cache_resolve_queue_len);
1013		list_add(&c->list, &mrt->mfc_unres_queue);
 
1014
1015		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1016			mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1017	}
1018
1019	/* See if we can append the packet */
1020
1021	if (c->mfc_un.unres.unresolved.qlen > 3) {
1022		kfree_skb(skb);
1023		err = -ENOBUFS;
1024	} else {
1025		skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1026		err = 0;
1027	}
1028
1029	spin_unlock_bh(&mfc_unres_lock);
1030	return err;
1031}
1032
1033/*
1034 *	MFC cache manipulation by user space mroute daemon
1035 */
1036
1037static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc)
1038{
1039	int line;
1040	struct mfc_cache *c, *next;
1041
1042	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1043
1044	list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1045		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1046		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
 
1047			list_del_rcu(&c->list);
1048
1049			ipmr_cache_free(c);
1050			return 0;
1051		}
1052	}
1053	return -ENOENT;
1054}
1055
1056static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1057			struct mfcctl *mfc, int mrtsock)
1058{
1059	bool found = false;
1060	int line;
1061	struct mfc_cache *uc, *c;
1062
1063	if (mfc->mfcc_parent >= MAXVIFS)
1064		return -ENFILE;
1065
1066	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1067
1068	list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1069		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1070		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
 
1071			found = true;
1072			break;
1073		}
1074	}
1075
1076	if (found) {
1077		write_lock_bh(&mrt_lock);
1078		c->mfc_parent = mfc->mfcc_parent;
1079		ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1080		if (!mrtsock)
1081			c->mfc_flags |= MFC_STATIC;
1082		write_unlock_bh(&mrt_lock);
 
1083		return 0;
1084	}
1085
1086	if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
 
1087		return -EINVAL;
1088
1089	c = ipmr_cache_alloc();
1090	if (c == NULL)
1091		return -ENOMEM;
1092
1093	c->mfc_origin = mfc->mfcc_origin.s_addr;
1094	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1095	c->mfc_parent = mfc->mfcc_parent;
1096	ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1097	if (!mrtsock)
1098		c->mfc_flags |= MFC_STATIC;
1099
1100	list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1101
1102	/*
1103	 *	Check to see if we resolved a queued list. If so we
1104	 *	need to send on the frames and tidy up.
1105	 */
1106	found = false;
1107	spin_lock_bh(&mfc_unres_lock);
1108	list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1109		if (uc->mfc_origin == c->mfc_origin &&
1110		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1111			list_del(&uc->list);
1112			atomic_dec(&mrt->cache_resolve_queue_len);
1113			found = true;
1114			break;
1115		}
1116	}
1117	if (list_empty(&mrt->mfc_unres_queue))
1118		del_timer(&mrt->ipmr_expire_timer);
1119	spin_unlock_bh(&mfc_unres_lock);
1120
1121	if (found) {
1122		ipmr_cache_resolve(net, mrt, uc, c);
1123		ipmr_cache_free(uc);
1124	}
 
1125	return 0;
1126}
1127
1128/*
1129 *	Close the multicast socket, and clear the vif tables etc
1130 */
1131
1132static void mroute_clean_tables(struct mr_table *mrt)
1133{
1134	int i;
1135	LIST_HEAD(list);
1136	struct mfc_cache *c, *next;
1137
1138	/* Shut down all active vif entries */
1139
1140	for (i = 0; i < mrt->maxvif; i++) {
1141		if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1142			vif_delete(mrt, i, 0, &list);
 
1143	}
1144	unregister_netdevice_many(&list);
1145
1146	/* Wipe the cache */
1147
1148	for (i = 0; i < MFC_LINES; i++) {
1149		list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1150			if (c->mfc_flags & MFC_STATIC)
1151				continue;
1152			list_del_rcu(&c->list);
 
1153			ipmr_cache_free(c);
1154		}
1155	}
1156
1157	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1158		spin_lock_bh(&mfc_unres_lock);
1159		list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1160			list_del(&c->list);
 
1161			ipmr_destroy_unres(mrt, c);
1162		}
1163		spin_unlock_bh(&mfc_unres_lock);
1164	}
1165}
1166
1167/* called from ip_ra_control(), before an RCU grace period,
1168 * we dont need to call synchronize_rcu() here
1169 */
1170static void mrtsock_destruct(struct sock *sk)
1171{
1172	struct net *net = sock_net(sk);
1173	struct mr_table *mrt;
1174
1175	rtnl_lock();
1176	ipmr_for_each_table(mrt, net) {
1177		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1178			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1179			rcu_assign_pointer(mrt->mroute_sk, NULL);
1180			mroute_clean_tables(mrt);
 
 
 
1181		}
1182	}
1183	rtnl_unlock();
1184}
1185
1186/*
1187 *	Socket options and virtual interface manipulation. The whole
1188 *	virtual interface system is a complete heap, but unfortunately
1189 *	that's how BSD mrouted happens to think. Maybe one day with a proper
1190 *	MOSPF/PIM router set up we can clean this up.
1191 */
1192
1193int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
 
1194{
1195	int ret;
1196	struct vifctl vif;
1197	struct mfcctl mfc;
1198	struct net *net = sock_net(sk);
 
1199	struct mr_table *mrt;
 
 
 
1200
1201	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1202	if (mrt == NULL)
1203		return -ENOENT;
 
 
 
 
1204
 
 
 
 
 
1205	if (optname != MRT_INIT) {
1206		if (sk != rcu_dereference_raw(mrt->mroute_sk) &&
1207		    !capable(CAP_NET_ADMIN))
1208			return -EACCES;
 
 
1209	}
1210
1211	switch (optname) {
1212	case MRT_INIT:
1213		if (sk->sk_type != SOCK_RAW ||
1214		    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1215			return -EOPNOTSUPP;
1216		if (optlen != sizeof(int))
1217			return -ENOPROTOOPT;
1218
1219		rtnl_lock();
1220		if (rtnl_dereference(mrt->mroute_sk)) {
1221			rtnl_unlock();
1222			return -EADDRINUSE;
1223		}
1224
1225		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1226		if (ret == 0) {
1227			rcu_assign_pointer(mrt->mroute_sk, sk);
1228			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
 
 
 
1229		}
1230		rtnl_unlock();
1231		return ret;
1232	case MRT_DONE:
1233		if (sk != rcu_dereference_raw(mrt->mroute_sk))
1234			return -EACCES;
1235		return ip_ra_control(sk, 0, NULL);
 
 
 
 
 
 
 
 
 
1236	case MRT_ADD_VIF:
1237	case MRT_DEL_VIF:
1238		if (optlen != sizeof(vif))
1239			return -EINVAL;
1240		if (copy_from_user(&vif, optval, sizeof(vif)))
1241			return -EFAULT;
1242		if (vif.vifc_vifi >= MAXVIFS)
1243			return -ENFILE;
1244		rtnl_lock();
 
 
 
 
 
1245		if (optname == MRT_ADD_VIF) {
1246			ret = vif_add(net, mrt, &vif,
1247				      sk == rtnl_dereference(mrt->mroute_sk));
1248		} else {
1249			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1250		}
1251		rtnl_unlock();
1252		return ret;
1253
1254		/*
1255		 *	Manipulate the forwarding caches. These live
1256		 *	in a sort of kernel/user symbiosis.
1257		 */
1258	case MRT_ADD_MFC:
1259	case MRT_DEL_MFC:
1260		if (optlen != sizeof(mfc))
1261			return -EINVAL;
1262		if (copy_from_user(&mfc, optval, sizeof(mfc)))
1263			return -EFAULT;
1264		rtnl_lock();
1265		if (optname == MRT_DEL_MFC)
1266			ret = ipmr_mfc_delete(mrt, &mfc);
 
 
 
 
 
 
 
 
1267		else
1268			ret = ipmr_mfc_add(net, mrt, &mfc,
1269					   sk == rtnl_dereference(mrt->mroute_sk));
1270		rtnl_unlock();
1271		return ret;
1272		/*
1273		 *	Control PIM assert.
1274		 */
1275	case MRT_ASSERT:
1276	{
1277		int v;
1278		if (get_user(v, (int __user *)optval))
1279			return -EFAULT;
1280		mrt->mroute_do_assert = (v) ? 1 : 0;
1281		return 0;
1282	}
1283#ifdef CONFIG_IP_PIMSM
 
 
1284	case MRT_PIM:
1285	{
1286		int v;
1287
1288		if (get_user(v, (int __user *)optval))
1289			return -EFAULT;
1290		v = (v) ? 1 : 0;
 
 
 
 
 
 
1291
1292		rtnl_lock();
1293		ret = 0;
1294		if (v != mrt->mroute_do_pim) {
1295			mrt->mroute_do_pim = v;
1296			mrt->mroute_do_assert = v;
1297		}
1298		rtnl_unlock();
1299		return ret;
1300	}
1301#endif
1302#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1303	case MRT_TABLE:
1304	{
1305		u32 v;
1306
1307		if (optlen != sizeof(u32))
1308			return -EINVAL;
1309		if (get_user(v, (u32 __user *)optval))
1310			return -EFAULT;
 
 
 
 
 
1311
1312		rtnl_lock();
1313		ret = 0;
1314		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1315			ret = -EBUSY;
1316		} else {
1317			if (!ipmr_new_table(net, v))
1318				ret = -ENOMEM;
1319			raw_sk(sk)->ipmr_table = v;
 
 
1320		}
1321		rtnl_unlock();
1322		return ret;
1323	}
1324#endif
1325	/*
1326	 *	Spurious command, or MRT_VERSION which you cannot
1327	 *	set.
1328	 */
1329	default:
1330		return -ENOPROTOOPT;
1331	}
 
 
 
 
1332}
1333
1334/*
1335 *	Getsock opt support for the multicast routing system.
1336 */
1337
1338int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1339{
1340	int olr;
1341	int val;
1342	struct net *net = sock_net(sk);
1343	struct mr_table *mrt;
1344
 
 
 
 
1345	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1346	if (mrt == NULL)
1347		return -ENOENT;
1348
1349	if (optname != MRT_VERSION &&
1350#ifdef CONFIG_IP_PIMSM
1351	   optname != MRT_PIM &&
1352#endif
1353	   optname != MRT_ASSERT)
 
 
 
 
 
 
 
 
1354		return -ENOPROTOOPT;
 
1355
1356	if (get_user(olr, optlen))
1357		return -EFAULT;
1358
1359	olr = min_t(unsigned int, olr, sizeof(int));
1360	if (olr < 0)
1361		return -EINVAL;
1362
1363	if (put_user(olr, optlen))
1364		return -EFAULT;
1365	if (optname == MRT_VERSION)
1366		val = 0x0305;
1367#ifdef CONFIG_IP_PIMSM
1368	else if (optname == MRT_PIM)
1369		val = mrt->mroute_do_pim;
1370#endif
1371	else
1372		val = mrt->mroute_do_assert;
1373	if (copy_to_user(optval, &val, olr))
1374		return -EFAULT;
1375	return 0;
1376}
1377
1378/*
1379 *	The IP multicast ioctl support routines.
1380 */
1381
1382int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1383{
1384	struct sioc_sg_req sr;
1385	struct sioc_vif_req vr;
1386	struct vif_device *vif;
1387	struct mfc_cache *c;
1388	struct net *net = sock_net(sk);
1389	struct mr_table *mrt;
1390
1391	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1392	if (mrt == NULL)
1393		return -ENOENT;
1394
1395	switch (cmd) {
1396	case SIOCGETVIFCNT:
1397		if (copy_from_user(&vr, arg, sizeof(vr)))
1398			return -EFAULT;
1399		if (vr.vifi >= mrt->maxvif)
1400			return -EINVAL;
1401		read_lock(&mrt_lock);
1402		vif = &mrt->vif_table[vr.vifi];
1403		if (VIF_EXISTS(mrt, vr.vifi)) {
1404			vr.icount = vif->pkt_in;
1405			vr.ocount = vif->pkt_out;
1406			vr.ibytes = vif->bytes_in;
1407			vr.obytes = vif->bytes_out;
1408			read_unlock(&mrt_lock);
1409
1410			if (copy_to_user(arg, &vr, sizeof(vr)))
1411				return -EFAULT;
1412			return 0;
1413		}
1414		read_unlock(&mrt_lock);
1415		return -EADDRNOTAVAIL;
1416	case SIOCGETSGCNT:
1417		if (copy_from_user(&sr, arg, sizeof(sr)))
1418			return -EFAULT;
1419
1420		rcu_read_lock();
1421		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1422		if (c) {
1423			sr.pktcnt = c->mfc_un.res.pkt;
1424			sr.bytecnt = c->mfc_un.res.bytes;
1425			sr.wrong_if = c->mfc_un.res.wrong_if;
1426			rcu_read_unlock();
1427
1428			if (copy_to_user(arg, &sr, sizeof(sr)))
1429				return -EFAULT;
1430			return 0;
1431		}
1432		rcu_read_unlock();
1433		return -EADDRNOTAVAIL;
1434	default:
1435		return -ENOIOCTLCMD;
1436	}
1437}
1438
1439#ifdef CONFIG_COMPAT
1440struct compat_sioc_sg_req {
1441	struct in_addr src;
1442	struct in_addr grp;
1443	compat_ulong_t pktcnt;
1444	compat_ulong_t bytecnt;
1445	compat_ulong_t wrong_if;
1446};
1447
1448struct compat_sioc_vif_req {
1449	vifi_t	vifi;		/* Which iface */
1450	compat_ulong_t icount;
1451	compat_ulong_t ocount;
1452	compat_ulong_t ibytes;
1453	compat_ulong_t obytes;
1454};
1455
1456int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1457{
1458	struct compat_sioc_sg_req sr;
1459	struct compat_sioc_vif_req vr;
1460	struct vif_device *vif;
1461	struct mfc_cache *c;
1462	struct net *net = sock_net(sk);
1463	struct mr_table *mrt;
1464
1465	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1466	if (mrt == NULL)
1467		return -ENOENT;
1468
1469	switch (cmd) {
1470	case SIOCGETVIFCNT:
1471		if (copy_from_user(&vr, arg, sizeof(vr)))
1472			return -EFAULT;
1473		if (vr.vifi >= mrt->maxvif)
1474			return -EINVAL;
1475		read_lock(&mrt_lock);
1476		vif = &mrt->vif_table[vr.vifi];
1477		if (VIF_EXISTS(mrt, vr.vifi)) {
1478			vr.icount = vif->pkt_in;
1479			vr.ocount = vif->pkt_out;
1480			vr.ibytes = vif->bytes_in;
1481			vr.obytes = vif->bytes_out;
1482			read_unlock(&mrt_lock);
1483
1484			if (copy_to_user(arg, &vr, sizeof(vr)))
1485				return -EFAULT;
1486			return 0;
1487		}
1488		read_unlock(&mrt_lock);
1489		return -EADDRNOTAVAIL;
1490	case SIOCGETSGCNT:
1491		if (copy_from_user(&sr, arg, sizeof(sr)))
1492			return -EFAULT;
1493
1494		rcu_read_lock();
1495		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1496		if (c) {
1497			sr.pktcnt = c->mfc_un.res.pkt;
1498			sr.bytecnt = c->mfc_un.res.bytes;
1499			sr.wrong_if = c->mfc_un.res.wrong_if;
1500			rcu_read_unlock();
1501
1502			if (copy_to_user(arg, &sr, sizeof(sr)))
1503				return -EFAULT;
1504			return 0;
1505		}
1506		rcu_read_unlock();
1507		return -EADDRNOTAVAIL;
1508	default:
1509		return -ENOIOCTLCMD;
1510	}
1511}
1512#endif
1513
1514
1515static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1516{
1517	struct net_device *dev = ptr;
1518	struct net *net = dev_net(dev);
1519	struct mr_table *mrt;
1520	struct vif_device *v;
1521	int ct;
1522	LIST_HEAD(list);
1523
1524	if (event != NETDEV_UNREGISTER)
1525		return NOTIFY_DONE;
1526
1527	ipmr_for_each_table(mrt, net) {
1528		v = &mrt->vif_table[0];
1529		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1530			if (v->dev == dev)
1531				vif_delete(mrt, ct, 1, &list);
1532		}
1533	}
1534	unregister_netdevice_many(&list);
1535	return NOTIFY_DONE;
1536}
1537
1538
1539static struct notifier_block ip_mr_notifier = {
1540	.notifier_call = ipmr_device_event,
1541};
1542
1543/*
1544 *	Encapsulate a packet by attaching a valid IPIP header to it.
1545 *	This avoids tunnel drivers and other mess and gives us the speed so
1546 *	important for multicast video.
1547 */
1548
1549static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1550{
1551	struct iphdr *iph;
1552	const struct iphdr *old_iph = ip_hdr(skb);
1553
1554	skb_push(skb, sizeof(struct iphdr));
1555	skb->transport_header = skb->network_header;
1556	skb_reset_network_header(skb);
1557	iph = ip_hdr(skb);
1558
1559	iph->version	=	4;
1560	iph->tos	=	old_iph->tos;
1561	iph->ttl	=	old_iph->ttl;
1562	iph->frag_off	=	0;
1563	iph->daddr	=	daddr;
1564	iph->saddr	=	saddr;
1565	iph->protocol	=	IPPROTO_IPIP;
1566	iph->ihl	=	5;
1567	iph->tot_len	=	htons(skb->len);
1568	ip_select_ident(iph, skb_dst(skb), NULL);
1569	ip_send_check(iph);
1570
1571	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1572	nf_reset(skb);
1573}
1574
1575static inline int ipmr_forward_finish(struct sk_buff *skb)
 
1576{
1577	struct ip_options *opt = &(IPCB(skb)->opt);
1578
1579	IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
 
1580
1581	if (unlikely(opt->optlen))
1582		ip_forward_options(skb);
1583
1584	return dst_output(skb);
1585}
1586
1587/*
1588 *	Processing handlers for ipmr_forward
1589 */
1590
1591static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1592			    struct sk_buff *skb, struct mfc_cache *c, int vifi)
1593{
1594	const struct iphdr *iph = ip_hdr(skb);
1595	struct vif_device *vif = &mrt->vif_table[vifi];
1596	struct net_device *dev;
1597	struct rtable *rt;
1598	struct flowi4 fl4;
1599	int    encap = 0;
1600
1601	if (vif->dev == NULL)
1602		goto out_free;
1603
1604#ifdef CONFIG_IP_PIMSM
1605	if (vif->flags & VIFF_REGISTER) {
1606		vif->pkt_out++;
1607		vif->bytes_out += skb->len;
1608		vif->dev->stats.tx_bytes += skb->len;
1609		vif->dev->stats.tx_packets++;
1610		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1611		goto out_free;
1612	}
1613#endif
1614
1615	if (vif->flags & VIFF_TUNNEL) {
1616		rt = ip_route_output_ports(net, &fl4, NULL,
1617					   vif->remote, vif->local,
1618					   0, 0,
1619					   IPPROTO_IPIP,
1620					   RT_TOS(iph->tos), vif->link);
1621		if (IS_ERR(rt))
1622			goto out_free;
1623		encap = sizeof(struct iphdr);
1624	} else {
1625		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1626					   0, 0,
1627					   IPPROTO_IPIP,
1628					   RT_TOS(iph->tos), vif->link);
1629		if (IS_ERR(rt))
1630			goto out_free;
1631	}
1632
1633	dev = rt->dst.dev;
1634
1635	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1636		/* Do not fragment multicasts. Alas, IPv4 does not
1637		 * allow to send ICMP, so that packets will disappear
1638		 * to blackhole.
1639		 */
1640
1641		IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1642		ip_rt_put(rt);
1643		goto out_free;
1644	}
1645
1646	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1647
1648	if (skb_cow(skb, encap)) {
1649		ip_rt_put(rt);
1650		goto out_free;
1651	}
1652
1653	vif->pkt_out++;
1654	vif->bytes_out += skb->len;
1655
1656	skb_dst_drop(skb);
1657	skb_dst_set(skb, &rt->dst);
1658	ip_decrease_ttl(ip_hdr(skb));
1659
1660	/* FIXME: forward and output firewalls used to be called here.
1661	 * What do we do with netfilter? -- RR
1662	 */
1663	if (vif->flags & VIFF_TUNNEL) {
1664		ip_encap(skb, vif->local, vif->remote);
1665		/* FIXME: extra output firewall step used to be here. --RR */
1666		vif->dev->stats.tx_packets++;
1667		vif->dev->stats.tx_bytes += skb->len;
1668	}
1669
1670	IPCB(skb)->flags |= IPSKB_FORWARDED;
1671
1672	/*
1673	 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1674	 * not only before forwarding, but after forwarding on all output
1675	 * interfaces. It is clear, if mrouter runs a multicasting
1676	 * program, it should receive packets not depending to what interface
1677	 * program is joined.
1678	 * If we will not make it, the program will have to join on all
1679	 * interfaces. On the other hand, multihoming host (or router, but
1680	 * not mrouter) cannot join to more than one interface - it will
1681	 * result in receiving multiple packets.
1682	 */
1683	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
 
1684		ipmr_forward_finish);
1685	return;
1686
1687out_free:
1688	kfree_skb(skb);
1689}
1690
1691static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1692{
1693	int ct;
1694
1695	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1696		if (mrt->vif_table[ct].dev == dev)
1697			break;
1698	}
1699	return ct;
1700}
1701
1702/* "local" means that we should preserve one skb (for local delivery) */
1703
1704static int ip_mr_forward(struct net *net, struct mr_table *mrt,
1705			 struct sk_buff *skb, struct mfc_cache *cache,
1706			 int local)
1707{
1708	int psend = -1;
1709	int vif, ct;
 
1710
1711	vif = cache->mfc_parent;
1712	cache->mfc_un.res.pkt++;
1713	cache->mfc_un.res.bytes += skb->len;
1714
1715	/*
1716	 * Wrong interface: drop packet and (maybe) send PIM assert.
1717	 */
1718	if (mrt->vif_table[vif].dev != skb->dev) {
1719		int true_vifi;
1720
 
 
 
 
 
 
 
 
 
 
 
1721		if (rt_is_output_route(skb_rtable(skb))) {
1722			/* It is our own packet, looped back.
1723			 * Very complicated situation...
1724			 *
1725			 * The best workaround until routing daemons will be
1726			 * fixed is not to redistribute packet, if it was
1727			 * send through wrong interface. It means, that
1728			 * multicast applications WILL NOT work for
1729			 * (S,G), which have default multicast route pointing
1730			 * to wrong oif. In any case, it is not a good
1731			 * idea to use multicasting applications on router.
1732			 */
1733			goto dont_forward;
1734		}
1735
1736		cache->mfc_un.res.wrong_if++;
1737		true_vifi = ipmr_find_vif(mrt, skb->dev);
1738
1739		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1740		    /* pimsm uses asserts, when switching from RPT to SPT,
1741		     * so that we cannot check that packet arrived on an oif.
1742		     * It is bad, but otherwise we would need to move pretty
1743		     * large chunk of pimd to kernel. Ough... --ANK
1744		     */
1745		    (mrt->mroute_do_pim ||
1746		     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1747		    time_after(jiffies,
1748			       cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1749			cache->mfc_un.res.last_assert = jiffies;
1750			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1751		}
1752		goto dont_forward;
1753	}
1754
 
1755	mrt->vif_table[vif].pkt_in++;
1756	mrt->vif_table[vif].bytes_in += skb->len;
1757
1758	/*
1759	 *	Forward the frame
1760	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
1761	for (ct = cache->mfc_un.res.maxvif - 1;
1762	     ct >= cache->mfc_un.res.minvif; ct--) {
1763		if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
 
 
 
1764			if (psend != -1) {
1765				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1766
1767				if (skb2)
1768					ipmr_queue_xmit(net, mrt, skb2, cache,
1769							psend);
1770			}
1771			psend = ct;
1772		}
1773	}
 
1774	if (psend != -1) {
1775		if (local) {
1776			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1777
1778			if (skb2)
1779				ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1780		} else {
1781			ipmr_queue_xmit(net, mrt, skb, cache, psend);
1782			return 0;
1783		}
1784	}
1785
1786dont_forward:
1787	if (!local)
1788		kfree_skb(skb);
1789	return 0;
1790}
1791
1792static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1793{
1794	struct rtable *rt = skb_rtable(skb);
1795	struct iphdr *iph = ip_hdr(skb);
1796	struct flowi4 fl4 = {
1797		.daddr = iph->daddr,
1798		.saddr = iph->saddr,
1799		.flowi4_tos = RT_TOS(iph->tos),
1800		.flowi4_oif = rt->rt_oif,
1801		.flowi4_iif = rt->rt_iif,
1802		.flowi4_mark = rt->rt_mark,
 
 
 
1803	};
1804	struct mr_table *mrt;
1805	int err;
1806
1807	err = ipmr_fib_lookup(net, &fl4, &mrt);
1808	if (err)
1809		return ERR_PTR(err);
1810	return mrt;
1811}
1812
1813/*
1814 *	Multicast packets for forwarding arrive here
1815 *	Called with rcu_read_lock();
1816 */
1817
1818int ip_mr_input(struct sk_buff *skb)
1819{
1820	struct mfc_cache *cache;
1821	struct net *net = dev_net(skb->dev);
1822	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1823	struct mr_table *mrt;
1824
1825	/* Packet is looped back after forward, it should not be
1826	 * forwarded second time, but still can be delivered locally.
1827	 */
1828	if (IPCB(skb)->flags & IPSKB_FORWARDED)
1829		goto dont_forward;
1830
1831	mrt = ipmr_rt_fib_lookup(net, skb);
1832	if (IS_ERR(mrt)) {
1833		kfree_skb(skb);
1834		return PTR_ERR(mrt);
1835	}
1836	if (!local) {
1837		if (IPCB(skb)->opt.router_alert) {
1838			if (ip_call_ra_chain(skb))
1839				return 0;
1840		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1841			/* IGMPv1 (and broken IGMPv2 implementations sort of
1842			 * Cisco IOS <= 11.2(8)) do not put router alert
1843			 * option to IGMP packets destined to routable
1844			 * groups. It is very bad, because it means
1845			 * that we can forward NO IGMP messages.
1846			 */
1847			struct sock *mroute_sk;
1848
1849			mroute_sk = rcu_dereference(mrt->mroute_sk);
1850			if (mroute_sk) {
1851				nf_reset(skb);
1852				raw_rcv(mroute_sk, skb);
1853				return 0;
1854			}
1855		    }
1856	}
1857
1858	/* already under rcu_read_lock() */
1859	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
 
 
1860
1861	/*
1862	 *	No usable cache entry
1863	 */
1864	if (cache == NULL) {
 
 
 
1865		int vif;
1866
1867		if (local) {
1868			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1869			ip_local_deliver(skb);
1870			if (skb2 == NULL)
1871				return -ENOBUFS;
1872			skb = skb2;
1873		}
1874
1875		read_lock(&mrt_lock);
1876		vif = ipmr_find_vif(mrt, skb->dev);
1877		if (vif >= 0) {
1878			int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1879			read_unlock(&mrt_lock);
1880
1881			return err2;
1882		}
1883		read_unlock(&mrt_lock);
1884		kfree_skb(skb);
1885		return -ENODEV;
1886	}
1887
1888	read_lock(&mrt_lock);
1889	ip_mr_forward(net, mrt, skb, cache, local);
1890	read_unlock(&mrt_lock);
1891
1892	if (local)
1893		return ip_local_deliver(skb);
1894
1895	return 0;
1896
1897dont_forward:
1898	if (local)
1899		return ip_local_deliver(skb);
1900	kfree_skb(skb);
1901	return 0;
1902}
1903
1904#ifdef CONFIG_IP_PIMSM
1905/* called with rcu_read_lock() */
1906static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
1907		     unsigned int pimlen)
1908{
1909	struct net_device *reg_dev = NULL;
1910	struct iphdr *encap;
1911
1912	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
1913	/*
1914	 * Check that:
1915	 * a. packet is really sent to a multicast group
1916	 * b. packet is not a NULL-REGISTER
1917	 * c. packet is not truncated
1918	 */
1919	if (!ipv4_is_multicast(encap->daddr) ||
1920	    encap->tot_len == 0 ||
1921	    ntohs(encap->tot_len) + pimlen > skb->len)
1922		return 1;
1923
1924	read_lock(&mrt_lock);
1925	if (mrt->mroute_reg_vif_num >= 0)
1926		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
1927	read_unlock(&mrt_lock);
1928
1929	if (reg_dev == NULL)
1930		return 1;
1931
1932	skb->mac_header = skb->network_header;
1933	skb_pull(skb, (u8 *)encap - skb->data);
1934	skb_reset_network_header(skb);
1935	skb->protocol = htons(ETH_P_IP);
1936	skb->ip_summed = CHECKSUM_NONE;
1937	skb->pkt_type = PACKET_HOST;
1938
1939	skb_tunnel_rx(skb, reg_dev);
1940
1941	netif_rx(skb);
1942
1943	return NET_RX_SUCCESS;
1944}
1945#endif
1946
1947#ifdef CONFIG_IP_PIMSM_V1
1948/*
1949 * Handle IGMP messages of PIMv1
1950 */
1951
1952int pim_rcv_v1(struct sk_buff *skb)
1953{
1954	struct igmphdr *pim;
1955	struct net *net = dev_net(skb->dev);
1956	struct mr_table *mrt;
1957
1958	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1959		goto drop;
1960
1961	pim = igmp_hdr(skb);
1962
1963	mrt = ipmr_rt_fib_lookup(net, skb);
1964	if (IS_ERR(mrt))
1965		goto drop;
1966	if (!mrt->mroute_do_pim ||
1967	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1968		goto drop;
1969
1970	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1971drop:
1972		kfree_skb(skb);
1973	}
1974	return 0;
1975}
1976#endif
1977
1978#ifdef CONFIG_IP_PIMSM_V2
1979static int pim_rcv(struct sk_buff *skb)
1980{
1981	struct pimreghdr *pim;
1982	struct net *net = dev_net(skb->dev);
1983	struct mr_table *mrt;
1984
1985	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1986		goto drop;
1987
1988	pim = (struct pimreghdr *)skb_transport_header(skb);
1989	if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
1990	    (pim->flags & PIM_NULL_REGISTER) ||
1991	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
1992	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
1993		goto drop;
1994
1995	mrt = ipmr_rt_fib_lookup(net, skb);
1996	if (IS_ERR(mrt))
1997		goto drop;
1998	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1999drop:
2000		kfree_skb(skb);
2001	}
2002	return 0;
2003}
2004#endif
2005
2006static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2007			      struct mfc_cache *c, struct rtmsg *rtm)
2008{
2009	int ct;
2010	struct rtnexthop *nhp;
2011	u8 *b = skb_tail_pointer(skb);
2012	struct rtattr *mp_head;
2013
2014	/* If cache is unresolved, don't try to parse IIF and OIF */
2015	if (c->mfc_parent >= MAXVIFS)
2016		return -ENOENT;
2017
2018	if (VIF_EXISTS(mrt, c->mfc_parent))
2019		RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex);
 
2020
2021	mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
 
2022
2023	for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2024		if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2025			if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
2026				goto rtattr_failure;
2027			nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
 
 
2028			nhp->rtnh_flags = 0;
2029			nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2030			nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2031			nhp->rtnh_len = sizeof(*nhp);
2032		}
2033	}
2034	mp_head->rta_type = RTA_MULTIPATH;
2035	mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
 
 
 
 
 
 
 
2036	rtm->rtm_type = RTN_MULTICAST;
2037	return 1;
2038
2039rtattr_failure:
2040	nlmsg_trim(skb, b);
2041	return -EMSGSIZE;
2042}
2043
2044int ipmr_get_route(struct net *net, struct sk_buff *skb,
2045		   __be32 saddr, __be32 daddr,
2046		   struct rtmsg *rtm, int nowait)
2047{
2048	struct mfc_cache *cache;
2049	struct mr_table *mrt;
2050	int err;
2051
2052	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2053	if (mrt == NULL)
2054		return -ENOENT;
2055
2056	rcu_read_lock();
2057	cache = ipmr_cache_find(mrt, saddr, daddr);
 
 
2058
2059	if (cache == NULL) {
 
 
 
2060		struct sk_buff *skb2;
2061		struct iphdr *iph;
2062		struct net_device *dev;
2063		int vif = -1;
2064
2065		if (nowait) {
2066			rcu_read_unlock();
2067			return -EAGAIN;
2068		}
2069
2070		dev = skb->dev;
2071		read_lock(&mrt_lock);
2072		if (dev)
2073			vif = ipmr_find_vif(mrt, dev);
2074		if (vif < 0) {
2075			read_unlock(&mrt_lock);
2076			rcu_read_unlock();
2077			return -ENODEV;
2078		}
2079		skb2 = skb_clone(skb, GFP_ATOMIC);
2080		if (!skb2) {
2081			read_unlock(&mrt_lock);
2082			rcu_read_unlock();
2083			return -ENOMEM;
2084		}
2085
2086		skb_push(skb2, sizeof(struct iphdr));
2087		skb_reset_network_header(skb2);
2088		iph = ip_hdr(skb2);
2089		iph->ihl = sizeof(struct iphdr) >> 2;
2090		iph->saddr = saddr;
2091		iph->daddr = daddr;
2092		iph->version = 0;
2093		err = ipmr_cache_unresolved(mrt, vif, skb2);
2094		read_unlock(&mrt_lock);
2095		rcu_read_unlock();
2096		return err;
2097	}
2098
2099	read_lock(&mrt_lock);
2100	if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2101		cache->mfc_flags |= MFC_NOTIFY;
2102	err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2103	read_unlock(&mrt_lock);
2104	rcu_read_unlock();
2105	return err;
2106}
2107
2108static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2109			    u32 pid, u32 seq, struct mfc_cache *c)
 
2110{
2111	struct nlmsghdr *nlh;
2112	struct rtmsg *rtm;
 
2113
2114	nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
2115	if (nlh == NULL)
2116		return -EMSGSIZE;
2117
2118	rtm = nlmsg_data(nlh);
2119	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2120	rtm->rtm_dst_len  = 32;
2121	rtm->rtm_src_len  = 32;
2122	rtm->rtm_tos      = 0;
2123	rtm->rtm_table    = mrt->id;
2124	NLA_PUT_U32(skb, RTA_TABLE, mrt->id);
 
2125	rtm->rtm_type     = RTN_MULTICAST;
2126	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2127	rtm->rtm_protocol = RTPROT_UNSPEC;
 
 
 
2128	rtm->rtm_flags    = 0;
2129
2130	NLA_PUT_BE32(skb, RTA_SRC, c->mfc_origin);
2131	NLA_PUT_BE32(skb, RTA_DST, c->mfc_mcastgrp);
2132
2133	if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0)
 
 
2134		goto nla_put_failure;
2135
2136	return nlmsg_end(skb, nlh);
 
2137
2138nla_put_failure:
2139	nlmsg_cancel(skb, nlh);
2140	return -EMSGSIZE;
2141}
2142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2143static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2144{
2145	struct net *net = sock_net(skb->sk);
2146	struct mr_table *mrt;
2147	struct mfc_cache *mfc;
2148	unsigned int t = 0, s_t;
2149	unsigned int h = 0, s_h;
2150	unsigned int e = 0, s_e;
2151
2152	s_t = cb->args[0];
2153	s_h = cb->args[1];
2154	s_e = cb->args[2];
2155
2156	rcu_read_lock();
2157	ipmr_for_each_table(mrt, net) {
2158		if (t < s_t)
2159			goto next_table;
2160		if (t > s_t)
2161			s_h = 0;
2162		for (h = s_h; h < MFC_LINES; h++) {
2163			list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2164				if (e < s_e)
2165					goto next_entry;
2166				if (ipmr_fill_mroute(mrt, skb,
2167						     NETLINK_CB(cb->skb).pid,
2168						     cb->nlh->nlmsg_seq,
2169						     mfc) < 0)
 
2170					goto done;
2171next_entry:
2172				e++;
2173			}
2174			e = s_e = 0;
2175		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2176		s_h = 0;
2177next_table:
2178		t++;
2179	}
2180done:
2181	rcu_read_unlock();
2182
2183	cb->args[2] = e;
2184	cb->args[1] = h;
2185	cb->args[0] = t;
2186
2187	return skb->len;
2188}
2189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2190#ifdef CONFIG_PROC_FS
2191/*
2192 *	The /proc interfaces to multicast routing :
2193 *	/proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2194 */
2195struct ipmr_vif_iter {
2196	struct seq_net_private p;
2197	struct mr_table *mrt;
2198	int ct;
2199};
2200
2201static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2202					   struct ipmr_vif_iter *iter,
2203					   loff_t pos)
2204{
2205	struct mr_table *mrt = iter->mrt;
2206
2207	for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2208		if (!VIF_EXISTS(mrt, iter->ct))
2209			continue;
2210		if (pos-- == 0)
2211			return &mrt->vif_table[iter->ct];
2212	}
2213	return NULL;
2214}
2215
2216static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2217	__acquires(mrt_lock)
2218{
2219	struct ipmr_vif_iter *iter = seq->private;
2220	struct net *net = seq_file_net(seq);
2221	struct mr_table *mrt;
2222
2223	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2224	if (mrt == NULL)
2225		return ERR_PTR(-ENOENT);
2226
2227	iter->mrt = mrt;
2228
2229	read_lock(&mrt_lock);
2230	return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2231		: SEQ_START_TOKEN;
2232}
2233
2234static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2235{
2236	struct ipmr_vif_iter *iter = seq->private;
2237	struct net *net = seq_file_net(seq);
2238	struct mr_table *mrt = iter->mrt;
2239
2240	++*pos;
2241	if (v == SEQ_START_TOKEN)
2242		return ipmr_vif_seq_idx(net, iter, 0);
2243
2244	while (++iter->ct < mrt->maxvif) {
2245		if (!VIF_EXISTS(mrt, iter->ct))
2246			continue;
2247		return &mrt->vif_table[iter->ct];
2248	}
2249	return NULL;
2250}
2251
2252static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2253	__releases(mrt_lock)
2254{
2255	read_unlock(&mrt_lock);
2256}
2257
2258static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2259{
2260	struct ipmr_vif_iter *iter = seq->private;
2261	struct mr_table *mrt = iter->mrt;
2262
2263	if (v == SEQ_START_TOKEN) {
2264		seq_puts(seq,
2265			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2266	} else {
2267		const struct vif_device *vif = v;
2268		const char *name =  vif->dev ? vif->dev->name : "none";
2269
2270		seq_printf(seq,
2271			   "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2272			   vif - mrt->vif_table,
2273			   name, vif->bytes_in, vif->pkt_in,
2274			   vif->bytes_out, vif->pkt_out,
2275			   vif->flags, vif->local, vif->remote);
2276	}
2277	return 0;
2278}
2279
2280static const struct seq_operations ipmr_vif_seq_ops = {
2281	.start = ipmr_vif_seq_start,
2282	.next  = ipmr_vif_seq_next,
2283	.stop  = ipmr_vif_seq_stop,
2284	.show  = ipmr_vif_seq_show,
2285};
2286
2287static int ipmr_vif_open(struct inode *inode, struct file *file)
2288{
2289	return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2290			    sizeof(struct ipmr_vif_iter));
2291}
2292
2293static const struct file_operations ipmr_vif_fops = {
2294	.owner	 = THIS_MODULE,
2295	.open    = ipmr_vif_open,
2296	.read    = seq_read,
2297	.llseek  = seq_lseek,
2298	.release = seq_release_net,
2299};
2300
2301struct ipmr_mfc_iter {
2302	struct seq_net_private p;
2303	struct mr_table *mrt;
2304	struct list_head *cache;
2305	int ct;
2306};
2307
2308
2309static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2310					  struct ipmr_mfc_iter *it, loff_t pos)
2311{
2312	struct mr_table *mrt = it->mrt;
2313	struct mfc_cache *mfc;
2314
2315	rcu_read_lock();
2316	for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2317		it->cache = &mrt->mfc_cache_array[it->ct];
2318		list_for_each_entry_rcu(mfc, it->cache, list)
2319			if (pos-- == 0)
2320				return mfc;
2321	}
2322	rcu_read_unlock();
2323
2324	spin_lock_bh(&mfc_unres_lock);
2325	it->cache = &mrt->mfc_unres_queue;
2326	list_for_each_entry(mfc, it->cache, list)
2327		if (pos-- == 0)
2328			return mfc;
2329	spin_unlock_bh(&mfc_unres_lock);
2330
2331	it->cache = NULL;
2332	return NULL;
2333}
2334
2335
2336static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2337{
2338	struct ipmr_mfc_iter *it = seq->private;
2339	struct net *net = seq_file_net(seq);
2340	struct mr_table *mrt;
2341
2342	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2343	if (mrt == NULL)
2344		return ERR_PTR(-ENOENT);
2345
2346	it->mrt = mrt;
2347	it->cache = NULL;
2348	it->ct = 0;
2349	return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2350		: SEQ_START_TOKEN;
2351}
2352
2353static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2354{
2355	struct mfc_cache *mfc = v;
2356	struct ipmr_mfc_iter *it = seq->private;
2357	struct net *net = seq_file_net(seq);
2358	struct mr_table *mrt = it->mrt;
2359
2360	++*pos;
2361
2362	if (v == SEQ_START_TOKEN)
2363		return ipmr_mfc_seq_idx(net, seq->private, 0);
2364
2365	if (mfc->list.next != it->cache)
2366		return list_entry(mfc->list.next, struct mfc_cache, list);
2367
2368	if (it->cache == &mrt->mfc_unres_queue)
2369		goto end_of_list;
2370
2371	BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2372
2373	while (++it->ct < MFC_LINES) {
2374		it->cache = &mrt->mfc_cache_array[it->ct];
2375		if (list_empty(it->cache))
2376			continue;
2377		return list_first_entry(it->cache, struct mfc_cache, list);
2378	}
2379
2380	/* exhausted cache_array, show unresolved */
2381	rcu_read_unlock();
2382	it->cache = &mrt->mfc_unres_queue;
2383	it->ct = 0;
2384
2385	spin_lock_bh(&mfc_unres_lock);
2386	if (!list_empty(it->cache))
2387		return list_first_entry(it->cache, struct mfc_cache, list);
2388
2389end_of_list:
2390	spin_unlock_bh(&mfc_unres_lock);
2391	it->cache = NULL;
2392
2393	return NULL;
2394}
2395
2396static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2397{
2398	struct ipmr_mfc_iter *it = seq->private;
2399	struct mr_table *mrt = it->mrt;
2400
2401	if (it->cache == &mrt->mfc_unres_queue)
2402		spin_unlock_bh(&mfc_unres_lock);
2403	else if (it->cache == &mrt->mfc_cache_array[it->ct])
2404		rcu_read_unlock();
2405}
2406
2407static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2408{
2409	int n;
2410
2411	if (v == SEQ_START_TOKEN) {
2412		seq_puts(seq,
2413		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2414	} else {
2415		const struct mfc_cache *mfc = v;
2416		const struct ipmr_mfc_iter *it = seq->private;
2417		const struct mr_table *mrt = it->mrt;
2418
2419		seq_printf(seq, "%08X %08X %-3hd",
2420			   (__force u32) mfc->mfc_mcastgrp,
2421			   (__force u32) mfc->mfc_origin,
2422			   mfc->mfc_parent);
2423
2424		if (it->cache != &mrt->mfc_unres_queue) {
2425			seq_printf(seq, " %8lu %8lu %8lu",
2426				   mfc->mfc_un.res.pkt,
2427				   mfc->mfc_un.res.bytes,
2428				   mfc->mfc_un.res.wrong_if);
2429			for (n = mfc->mfc_un.res.minvif;
2430			     n < mfc->mfc_un.res.maxvif; n++) {
2431				if (VIF_EXISTS(mrt, n) &&
2432				    mfc->mfc_un.res.ttls[n] < 255)
2433					seq_printf(seq,
2434					   " %2d:%-3d",
2435					   n, mfc->mfc_un.res.ttls[n]);
2436			}
2437		} else {
2438			/* unresolved mfc_caches don't contain
2439			 * pkt, bytes and wrong_if values
2440			 */
2441			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2442		}
2443		seq_putc(seq, '\n');
2444	}
2445	return 0;
2446}
2447
2448static const struct seq_operations ipmr_mfc_seq_ops = {
2449	.start = ipmr_mfc_seq_start,
2450	.next  = ipmr_mfc_seq_next,
2451	.stop  = ipmr_mfc_seq_stop,
2452	.show  = ipmr_mfc_seq_show,
2453};
2454
2455static int ipmr_mfc_open(struct inode *inode, struct file *file)
2456{
2457	return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2458			    sizeof(struct ipmr_mfc_iter));
2459}
2460
2461static const struct file_operations ipmr_mfc_fops = {
2462	.owner	 = THIS_MODULE,
2463	.open    = ipmr_mfc_open,
2464	.read    = seq_read,
2465	.llseek  = seq_lseek,
2466	.release = seq_release_net,
2467};
2468#endif
2469
2470#ifdef CONFIG_IP_PIMSM_V2
2471static const struct net_protocol pim_protocol = {
2472	.handler	=	pim_rcv,
2473	.netns_ok	=	1,
2474};
2475#endif
2476
2477
2478/*
2479 *	Setup for IP multicast routing
2480 */
2481static int __net_init ipmr_net_init(struct net *net)
2482{
2483	int err;
2484
2485	err = ipmr_rules_init(net);
2486	if (err < 0)
2487		goto fail;
2488
2489#ifdef CONFIG_PROC_FS
2490	err = -ENOMEM;
2491	if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
2492		goto proc_vif_fail;
2493	if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
2494		goto proc_cache_fail;
2495#endif
2496	return 0;
2497
2498#ifdef CONFIG_PROC_FS
2499proc_cache_fail:
2500	proc_net_remove(net, "ip_mr_vif");
2501proc_vif_fail:
2502	ipmr_rules_exit(net);
2503#endif
2504fail:
2505	return err;
2506}
2507
2508static void __net_exit ipmr_net_exit(struct net *net)
2509{
2510#ifdef CONFIG_PROC_FS
2511	proc_net_remove(net, "ip_mr_cache");
2512	proc_net_remove(net, "ip_mr_vif");
2513#endif
2514	ipmr_rules_exit(net);
2515}
2516
2517static struct pernet_operations ipmr_net_ops = {
2518	.init = ipmr_net_init,
2519	.exit = ipmr_net_exit,
2520};
2521
2522int __init ip_mr_init(void)
2523{
2524	int err;
2525
2526	mrt_cachep = kmem_cache_create("ip_mrt_cache",
2527				       sizeof(struct mfc_cache),
2528				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2529				       NULL);
2530	if (!mrt_cachep)
2531		return -ENOMEM;
2532
2533	err = register_pernet_subsys(&ipmr_net_ops);
2534	if (err)
2535		goto reg_pernet_fail;
2536
2537	err = register_netdevice_notifier(&ip_mr_notifier);
2538	if (err)
2539		goto reg_notif_fail;
2540#ifdef CONFIG_IP_PIMSM_V2
2541	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2542		printk(KERN_ERR "ip_mr_init: can't add PIM protocol\n");
2543		err = -EAGAIN;
2544		goto add_proto_fail;
2545	}
2546#endif
2547	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2548		      NULL, ipmr_rtm_dumproute, NULL);
 
 
 
 
2549	return 0;
2550
2551#ifdef CONFIG_IP_PIMSM_V2
2552add_proto_fail:
2553	unregister_netdevice_notifier(&ip_mr_notifier);
2554#endif
2555reg_notif_fail:
2556	unregister_pernet_subsys(&ipmr_net_ops);
2557reg_pernet_fail:
2558	kmem_cache_destroy(mrt_cachep);
2559	return err;
2560}
v4.6
   1/*
   2 *	IP multicast routing support for mrouted 3.6/3.8
   3 *
   4 *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
   5 *	  Linux Consultancy and Custom Driver Development
   6 *
   7 *	This program is free software; you can redistribute it and/or
   8 *	modify it under the terms of the GNU General Public License
   9 *	as published by the Free Software Foundation; either version
  10 *	2 of the License, or (at your option) any later version.
  11 *
  12 *	Fixes:
  13 *	Michael Chastain	:	Incorrect size of copying.
  14 *	Alan Cox		:	Added the cache manager code
  15 *	Alan Cox		:	Fixed the clone/copy bug and device race.
  16 *	Mike McLagan		:	Routing by source
  17 *	Malcolm Beattie		:	Buffer handling fixes.
  18 *	Alexey Kuznetsov	:	Double buffer free and other fixes.
  19 *	SVR Anand		:	Fixed several multicast bugs and problems.
  20 *	Alexey Kuznetsov	:	Status, optimisations and more.
  21 *	Brad Parker		:	Better behaviour on mrouted upcall
  22 *					overflow.
  23 *      Carlos Picoto           :       PIMv1 Support
  24 *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
  25 *					Relax this requirement to work with older peers.
  26 *
  27 */
  28
 
  29#include <asm/uaccess.h>
  30#include <linux/types.h>
  31#include <linux/capability.h>
  32#include <linux/errno.h>
  33#include <linux/timer.h>
  34#include <linux/mm.h>
  35#include <linux/kernel.h>
  36#include <linux/fcntl.h>
  37#include <linux/stat.h>
  38#include <linux/socket.h>
  39#include <linux/in.h>
  40#include <linux/inet.h>
  41#include <linux/netdevice.h>
  42#include <linux/inetdevice.h>
  43#include <linux/igmp.h>
  44#include <linux/proc_fs.h>
  45#include <linux/seq_file.h>
  46#include <linux/mroute.h>
  47#include <linux/init.h>
  48#include <linux/if_ether.h>
  49#include <linux/slab.h>
  50#include <net/net_namespace.h>
  51#include <net/ip.h>
  52#include <net/protocol.h>
  53#include <linux/skbuff.h>
  54#include <net/route.h>
  55#include <net/sock.h>
  56#include <net/icmp.h>
  57#include <net/udp.h>
  58#include <net/raw.h>
  59#include <linux/notifier.h>
  60#include <linux/if_arp.h>
  61#include <linux/netfilter_ipv4.h>
  62#include <linux/compat.h>
  63#include <linux/export.h>
  64#include <net/ip_tunnels.h>
  65#include <net/checksum.h>
  66#include <net/netlink.h>
  67#include <net/fib_rules.h>
  68#include <linux/netconf.h>
  69#include <net/nexthop.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70
  71struct ipmr_rule {
  72	struct fib_rule		common;
  73};
  74
  75struct ipmr_result {
  76	struct mr_table		*mrt;
  77};
  78
  79/* Big lock, protecting vif table, mrt cache and mroute socket state.
  80 * Note that the changes are semaphored via rtnl_lock.
  81 */
  82
  83static DEFINE_RWLOCK(mrt_lock);
  84
  85/* Multicast router control variables */
 
 
 
 
  86
  87/* Special spinlock for queue of unresolved entries */
  88static DEFINE_SPINLOCK(mfc_unres_lock);
  89
  90/* We return to original Alan's scheme. Hash table of resolved
  91 * entries is changed only in process context and protected
  92 * with weak lock mrt_lock. Queue of unresolved entries is protected
  93 * with strong spinlock mfc_unres_lock.
  94 *
  95 * In this case data path is free of exclusive locks at all.
  96 */
  97
  98static struct kmem_cache *mrt_cachep __read_mostly;
  99
 100static struct mr_table *ipmr_new_table(struct net *net, u32 id);
 101static void ipmr_free_table(struct mr_table *mrt);
 102
 103static void ip_mr_forward(struct net *net, struct mr_table *mrt,
 104			  struct sk_buff *skb, struct mfc_cache *cache,
 105			  int local);
 106static int ipmr_cache_report(struct mr_table *mrt,
 107			     struct sk_buff *pkt, vifi_t vifi, int assert);
 108static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
 109			      struct mfc_cache *c, struct rtmsg *rtm);
 110static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
 111				 int cmd);
 112static void mroute_clean_tables(struct mr_table *mrt, bool all);
 113static void ipmr_expire_process(unsigned long arg);
 114
 115#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 116#define ipmr_for_each_table(mrt, net) \
 117	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
 118
 119static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 120{
 121	struct mr_table *mrt;
 122
 123	ipmr_for_each_table(mrt, net) {
 124		if (mrt->id == id)
 125			return mrt;
 126	}
 127	return NULL;
 128}
 129
 130static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 131			   struct mr_table **mrt)
 132{
 
 
 133	int err;
 134	struct ipmr_result res;
 135	struct fib_lookup_arg arg = {
 136		.result = &res,
 137		.flags = FIB_LOOKUP_NOREF,
 138	};
 139
 140	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
 141			       flowi4_to_flowi(flp4), 0, &arg);
 142	if (err < 0)
 143		return err;
 144	*mrt = res.mrt;
 145	return 0;
 146}
 147
 148static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
 149			    int flags, struct fib_lookup_arg *arg)
 150{
 151	struct ipmr_result *res = arg->result;
 152	struct mr_table *mrt;
 153
 154	switch (rule->action) {
 155	case FR_ACT_TO_TBL:
 156		break;
 157	case FR_ACT_UNREACHABLE:
 158		return -ENETUNREACH;
 159	case FR_ACT_PROHIBIT:
 160		return -EACCES;
 161	case FR_ACT_BLACKHOLE:
 162	default:
 163		return -EINVAL;
 164	}
 165
 166	mrt = ipmr_get_table(rule->fr_net, rule->table);
 167	if (!mrt)
 168		return -EAGAIN;
 169	res->mrt = mrt;
 170	return 0;
 171}
 172
 173static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
 174{
 175	return 1;
 176}
 177
 178static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
 179	FRA_GENERIC_POLICY,
 180};
 181
 182static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
 183			       struct fib_rule_hdr *frh, struct nlattr **tb)
 184{
 185	return 0;
 186}
 187
 188static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
 189			     struct nlattr **tb)
 190{
 191	return 1;
 192}
 193
 194static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
 195			  struct fib_rule_hdr *frh)
 196{
 197	frh->dst_len = 0;
 198	frh->src_len = 0;
 199	frh->tos     = 0;
 200	return 0;
 201}
 202
 203static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
 204	.family		= RTNL_FAMILY_IPMR,
 205	.rule_size	= sizeof(struct ipmr_rule),
 206	.addr_size	= sizeof(u32),
 207	.action		= ipmr_rule_action,
 208	.match		= ipmr_rule_match,
 209	.configure	= ipmr_rule_configure,
 210	.compare	= ipmr_rule_compare,
 
 211	.fill		= ipmr_rule_fill,
 212	.nlgroup	= RTNLGRP_IPV4_RULE,
 213	.policy		= ipmr_rule_policy,
 214	.owner		= THIS_MODULE,
 215};
 216
 217static int __net_init ipmr_rules_init(struct net *net)
 218{
 219	struct fib_rules_ops *ops;
 220	struct mr_table *mrt;
 221	int err;
 222
 223	ops = fib_rules_register(&ipmr_rules_ops_template, net);
 224	if (IS_ERR(ops))
 225		return PTR_ERR(ops);
 226
 227	INIT_LIST_HEAD(&net->ipv4.mr_tables);
 228
 229	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 230	if (IS_ERR(mrt)) {
 231		err = PTR_ERR(mrt);
 232		goto err1;
 233	}
 234
 235	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
 236	if (err < 0)
 237		goto err2;
 238
 239	net->ipv4.mr_rules_ops = ops;
 240	return 0;
 241
 242err2:
 243	ipmr_free_table(mrt);
 244err1:
 245	fib_rules_unregister(ops);
 246	return err;
 247}
 248
 249static void __net_exit ipmr_rules_exit(struct net *net)
 250{
 251	struct mr_table *mrt, *next;
 252
 253	rtnl_lock();
 254	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
 255		list_del(&mrt->list);
 256		ipmr_free_table(mrt);
 257	}
 258	fib_rules_unregister(net->ipv4.mr_rules_ops);
 259	rtnl_unlock();
 260}
 261#else
 262#define ipmr_for_each_table(mrt, net) \
 263	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
 264
 265static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 266{
 267	return net->ipv4.mrt;
 268}
 269
 270static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 271			   struct mr_table **mrt)
 272{
 273	*mrt = net->ipv4.mrt;
 274	return 0;
 275}
 276
 277static int __net_init ipmr_rules_init(struct net *net)
 278{
 279	struct mr_table *mrt;
 280
 281	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 282	if (IS_ERR(mrt))
 283		return PTR_ERR(mrt);
 284	net->ipv4.mrt = mrt;
 285	return 0;
 286}
 287
 288static void __net_exit ipmr_rules_exit(struct net *net)
 289{
 290	rtnl_lock();
 291	ipmr_free_table(net->ipv4.mrt);
 292	net->ipv4.mrt = NULL;
 293	rtnl_unlock();
 294}
 295#endif
 296
 297static struct mr_table *ipmr_new_table(struct net *net, u32 id)
 298{
 299	struct mr_table *mrt;
 300	unsigned int i;
 301
 302	/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
 303	if (id != RT_TABLE_DEFAULT && id >= 1000000000)
 304		return ERR_PTR(-EINVAL);
 305
 306	mrt = ipmr_get_table(net, id);
 307	if (mrt)
 308		return mrt;
 309
 310	mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
 311	if (!mrt)
 312		return ERR_PTR(-ENOMEM);
 313	write_pnet(&mrt->net, net);
 314	mrt->id = id;
 315
 316	/* Forwarding cache */
 317	for (i = 0; i < MFC_LINES; i++)
 318		INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
 319
 320	INIT_LIST_HEAD(&mrt->mfc_unres_queue);
 321
 322	setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
 323		    (unsigned long)mrt);
 324
 
 325	mrt->mroute_reg_vif_num = -1;
 
 326#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 327	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
 328#endif
 329	return mrt;
 330}
 331
 332static void ipmr_free_table(struct mr_table *mrt)
 333{
 334	del_timer_sync(&mrt->ipmr_expire_timer);
 335	mroute_clean_tables(mrt, true);
 336	kfree(mrt);
 337}
 338
 339/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
 340
 341static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
 342{
 343	struct net *net = dev_net(dev);
 344
 345	dev_close(dev);
 346
 347	dev = __dev_get_by_name(net, "tunl0");
 348	if (dev) {
 349		const struct net_device_ops *ops = dev->netdev_ops;
 350		struct ifreq ifr;
 351		struct ip_tunnel_parm p;
 352
 353		memset(&p, 0, sizeof(p));
 354		p.iph.daddr = v->vifc_rmt_addr.s_addr;
 355		p.iph.saddr = v->vifc_lcl_addr.s_addr;
 356		p.iph.version = 4;
 357		p.iph.ihl = 5;
 358		p.iph.protocol = IPPROTO_IPIP;
 359		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 360		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 361
 362		if (ops->ndo_do_ioctl) {
 363			mm_segment_t oldfs = get_fs();
 364
 365			set_fs(KERNEL_DS);
 366			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
 367			set_fs(oldfs);
 368		}
 369	}
 370}
 371
 372/* Initialize ipmr pimreg/tunnel in_device */
 373static bool ipmr_init_vif_indev(const struct net_device *dev)
 374{
 375	struct in_device *in_dev;
 376
 377	ASSERT_RTNL();
 378
 379	in_dev = __in_dev_get_rtnl(dev);
 380	if (!in_dev)
 381		return false;
 382	ipv4_devconf_setall(in_dev);
 383	neigh_parms_data_state_setall(in_dev->arp_parms);
 384	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 385
 386	return true;
 387}
 388
 389static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
 390{
 391	struct net_device  *dev;
 392
 393	dev = __dev_get_by_name(net, "tunl0");
 394
 395	if (dev) {
 396		const struct net_device_ops *ops = dev->netdev_ops;
 397		int err;
 398		struct ifreq ifr;
 399		struct ip_tunnel_parm p;
 
 400
 401		memset(&p, 0, sizeof(p));
 402		p.iph.daddr = v->vifc_rmt_addr.s_addr;
 403		p.iph.saddr = v->vifc_lcl_addr.s_addr;
 404		p.iph.version = 4;
 405		p.iph.ihl = 5;
 406		p.iph.protocol = IPPROTO_IPIP;
 407		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 408		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 409
 410		if (ops->ndo_do_ioctl) {
 411			mm_segment_t oldfs = get_fs();
 412
 413			set_fs(KERNEL_DS);
 414			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
 415			set_fs(oldfs);
 416		} else {
 417			err = -EOPNOTSUPP;
 418		}
 419		dev = NULL;
 420
 421		if (err == 0 &&
 422		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
 423			dev->flags |= IFF_MULTICAST;
 424			if (!ipmr_init_vif_indev(dev))
 
 
 425				goto failure;
 
 
 
 
 426			if (dev_open(dev))
 427				goto failure;
 428			dev_hold(dev);
 429		}
 430	}
 431	return dev;
 432
 433failure:
 
 
 
 
 434	unregister_netdevice(dev);
 435	return NULL;
 436}
 437
 438#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
 
 439static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
 440{
 441	struct net *net = dev_net(dev);
 442	struct mr_table *mrt;
 443	struct flowi4 fl4 = {
 444		.flowi4_oif	= dev->ifindex,
 445		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
 446		.flowi4_mark	= skb->mark,
 447	};
 448	int err;
 449
 450	err = ipmr_fib_lookup(net, &fl4, &mrt);
 451	if (err < 0) {
 452		kfree_skb(skb);
 453		return err;
 454	}
 455
 456	read_lock(&mrt_lock);
 457	dev->stats.tx_bytes += skb->len;
 458	dev->stats.tx_packets++;
 459	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
 460	read_unlock(&mrt_lock);
 461	kfree_skb(skb);
 462	return NETDEV_TX_OK;
 463}
 464
 465static int reg_vif_get_iflink(const struct net_device *dev)
 466{
 467	return 0;
 468}
 469
 470static const struct net_device_ops reg_vif_netdev_ops = {
 471	.ndo_start_xmit	= reg_vif_xmit,
 472	.ndo_get_iflink = reg_vif_get_iflink,
 473};
 474
 475static void reg_vif_setup(struct net_device *dev)
 476{
 477	dev->type		= ARPHRD_PIMREG;
 478	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
 479	dev->flags		= IFF_NOARP;
 480	dev->netdev_ops		= &reg_vif_netdev_ops;
 481	dev->destructor		= free_netdev;
 482	dev->features		|= NETIF_F_NETNS_LOCAL;
 483}
 484
 485static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 486{
 487	struct net_device *dev;
 
 488	char name[IFNAMSIZ];
 489
 490	if (mrt->id == RT_TABLE_DEFAULT)
 491		sprintf(name, "pimreg");
 492	else
 493		sprintf(name, "pimreg%u", mrt->id);
 494
 495	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
 496
 497	if (!dev)
 498		return NULL;
 499
 500	dev_net_set(dev, net);
 501
 502	if (register_netdevice(dev)) {
 503		free_netdev(dev);
 504		return NULL;
 505	}
 
 506
 507	if (!ipmr_init_vif_indev(dev))
 
 
 
 508		goto failure;
 
 
 
 
 
 
 509	if (dev_open(dev))
 510		goto failure;
 511
 512	dev_hold(dev);
 513
 514	return dev;
 515
 516failure:
 
 
 
 
 517	unregister_netdevice(dev);
 518	return NULL;
 519}
 520
 521/* called with rcu_read_lock() */
 522static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
 523		     unsigned int pimlen)
 524{
 525	struct net_device *reg_dev = NULL;
 526	struct iphdr *encap;
 527
 528	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
 529	/* Check that:
 530	 * a. packet is really sent to a multicast group
 531	 * b. packet is not a NULL-REGISTER
 532	 * c. packet is not truncated
 533	 */
 534	if (!ipv4_is_multicast(encap->daddr) ||
 535	    encap->tot_len == 0 ||
 536	    ntohs(encap->tot_len) + pimlen > skb->len)
 537		return 1;
 538
 539	read_lock(&mrt_lock);
 540	if (mrt->mroute_reg_vif_num >= 0)
 541		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
 542	read_unlock(&mrt_lock);
 543
 544	if (!reg_dev)
 545		return 1;
 546
 547	skb->mac_header = skb->network_header;
 548	skb_pull(skb, (u8 *)encap - skb->data);
 549	skb_reset_network_header(skb);
 550	skb->protocol = htons(ETH_P_IP);
 551	skb->ip_summed = CHECKSUM_NONE;
 552
 553	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
 554
 555	netif_rx(skb);
 556
 557	return NET_RX_SUCCESS;
 558}
 559#else
 560static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 561{
 562	return NULL;
 563}
 564#endif
 565
 566/**
 567 *	vif_delete - Delete a VIF entry
 568 *	@notify: Set to 1, if the caller is a notifier_call
 569 */
 
 570static int vif_delete(struct mr_table *mrt, int vifi, int notify,
 571		      struct list_head *head)
 572{
 573	struct vif_device *v;
 574	struct net_device *dev;
 575	struct in_device *in_dev;
 576
 577	if (vifi < 0 || vifi >= mrt->maxvif)
 578		return -EADDRNOTAVAIL;
 579
 580	v = &mrt->vif_table[vifi];
 581
 582	write_lock_bh(&mrt_lock);
 583	dev = v->dev;
 584	v->dev = NULL;
 585
 586	if (!dev) {
 587		write_unlock_bh(&mrt_lock);
 588		return -EADDRNOTAVAIL;
 589	}
 590
 
 591	if (vifi == mrt->mroute_reg_vif_num)
 592		mrt->mroute_reg_vif_num = -1;
 
 593
 594	if (vifi + 1 == mrt->maxvif) {
 595		int tmp;
 596
 597		for (tmp = vifi - 1; tmp >= 0; tmp--) {
 598			if (VIF_EXISTS(mrt, tmp))
 599				break;
 600		}
 601		mrt->maxvif = tmp+1;
 602	}
 603
 604	write_unlock_bh(&mrt_lock);
 605
 606	dev_set_allmulti(dev, -1);
 607
 608	in_dev = __in_dev_get_rtnl(dev);
 609	if (in_dev) {
 610		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
 611		inet_netconf_notify_devconf(dev_net(dev),
 612					    NETCONFA_MC_FORWARDING,
 613					    dev->ifindex, &in_dev->cnf);
 614		ip_rt_multicast_event(in_dev);
 615	}
 616
 617	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
 618		unregister_netdevice_queue(dev, head);
 619
 620	dev_put(dev);
 621	return 0;
 622}
 623
 624static void ipmr_cache_free_rcu(struct rcu_head *head)
 625{
 626	struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
 627
 628	kmem_cache_free(mrt_cachep, c);
 629}
 630
 631static inline void ipmr_cache_free(struct mfc_cache *c)
 632{
 633	call_rcu(&c->rcu, ipmr_cache_free_rcu);
 634}
 635
 636/* Destroy an unresolved cache entry, killing queued skbs
 637 * and reporting error to netlink readers.
 638 */
 
 639static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
 640{
 641	struct net *net = read_pnet(&mrt->net);
 642	struct sk_buff *skb;
 643	struct nlmsgerr *e;
 644
 645	atomic_dec(&mrt->cache_resolve_queue_len);
 646
 647	while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
 648		if (ip_hdr(skb)->version == 0) {
 649			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 650			nlh->nlmsg_type = NLMSG_ERROR;
 651			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
 652			skb_trim(skb, nlh->nlmsg_len);
 653			e = nlmsg_data(nlh);
 654			e->error = -ETIMEDOUT;
 655			memset(&e->msg, 0, sizeof(e->msg));
 656
 657			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
 658		} else {
 659			kfree_skb(skb);
 660		}
 661	}
 662
 663	ipmr_cache_free(c);
 664}
 665
 
 666/* Timer process for the unresolved queue. */
 
 667static void ipmr_expire_process(unsigned long arg)
 668{
 669	struct mr_table *mrt = (struct mr_table *)arg;
 670	unsigned long now;
 671	unsigned long expires;
 672	struct mfc_cache *c, *next;
 673
 674	if (!spin_trylock(&mfc_unres_lock)) {
 675		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
 676		return;
 677	}
 678
 679	if (list_empty(&mrt->mfc_unres_queue))
 680		goto out;
 681
 682	now = jiffies;
 683	expires = 10*HZ;
 684
 685	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
 686		if (time_after(c->mfc_un.unres.expires, now)) {
 687			unsigned long interval = c->mfc_un.unres.expires - now;
 688			if (interval < expires)
 689				expires = interval;
 690			continue;
 691		}
 692
 693		list_del(&c->list);
 694		mroute_netlink_event(mrt, c, RTM_DELROUTE);
 695		ipmr_destroy_unres(mrt, c);
 696	}
 697
 698	if (!list_empty(&mrt->mfc_unres_queue))
 699		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
 700
 701out:
 702	spin_unlock(&mfc_unres_lock);
 703}
 704
 705/* Fill oifs list. It is called under write locked mrt_lock. */
 
 706static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
 707				   unsigned char *ttls)
 708{
 709	int vifi;
 710
 711	cache->mfc_un.res.minvif = MAXVIFS;
 712	cache->mfc_un.res.maxvif = 0;
 713	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
 714
 715	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
 716		if (VIF_EXISTS(mrt, vifi) &&
 717		    ttls[vifi] && ttls[vifi] < 255) {
 718			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
 719			if (cache->mfc_un.res.minvif > vifi)
 720				cache->mfc_un.res.minvif = vifi;
 721			if (cache->mfc_un.res.maxvif <= vifi)
 722				cache->mfc_un.res.maxvif = vifi + 1;
 723		}
 724	}
 725}
 726
 727static int vif_add(struct net *net, struct mr_table *mrt,
 728		   struct vifctl *vifc, int mrtsock)
 729{
 730	int vifi = vifc->vifc_vifi;
 731	struct vif_device *v = &mrt->vif_table[vifi];
 732	struct net_device *dev;
 733	struct in_device *in_dev;
 734	int err;
 735
 736	/* Is vif busy ? */
 737	if (VIF_EXISTS(mrt, vifi))
 738		return -EADDRINUSE;
 739
 740	switch (vifc->vifc_flags) {
 
 741	case VIFF_REGISTER:
 742		if (!ipmr_pimsm_enabled())
 743			return -EINVAL;
 744		/* Special Purpose VIF in PIM
 745		 * All the packets will be sent to the daemon
 746		 */
 747		if (mrt->mroute_reg_vif_num >= 0)
 748			return -EADDRINUSE;
 749		dev = ipmr_reg_vif(net, mrt);
 750		if (!dev)
 751			return -ENOBUFS;
 752		err = dev_set_allmulti(dev, 1);
 753		if (err) {
 754			unregister_netdevice(dev);
 755			dev_put(dev);
 756			return err;
 757		}
 758		break;
 
 759	case VIFF_TUNNEL:
 760		dev = ipmr_new_tunnel(net, vifc);
 761		if (!dev)
 762			return -ENOBUFS;
 763		err = dev_set_allmulti(dev, 1);
 764		if (err) {
 765			ipmr_del_tunnel(dev, vifc);
 766			dev_put(dev);
 767			return err;
 768		}
 769		break;
 
 770	case VIFF_USE_IFINDEX:
 771	case 0:
 772		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
 773			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
 774			if (dev && !__in_dev_get_rtnl(dev)) {
 775				dev_put(dev);
 776				return -EADDRNOTAVAIL;
 777			}
 778		} else {
 779			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
 780		}
 781		if (!dev)
 782			return -EADDRNOTAVAIL;
 783		err = dev_set_allmulti(dev, 1);
 784		if (err) {
 785			dev_put(dev);
 786			return err;
 787		}
 788		break;
 789	default:
 790		return -EINVAL;
 791	}
 792
 793	in_dev = __in_dev_get_rtnl(dev);
 794	if (!in_dev) {
 795		dev_put(dev);
 796		return -EADDRNOTAVAIL;
 797	}
 798	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
 799	inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
 800				    &in_dev->cnf);
 801	ip_rt_multicast_event(in_dev);
 802
 803	/* Fill in the VIF structures */
 804
 805	v->rate_limit = vifc->vifc_rate_limit;
 806	v->local = vifc->vifc_lcl_addr.s_addr;
 807	v->remote = vifc->vifc_rmt_addr.s_addr;
 808	v->flags = vifc->vifc_flags;
 809	if (!mrtsock)
 810		v->flags |= VIFF_STATIC;
 811	v->threshold = vifc->vifc_threshold;
 812	v->bytes_in = 0;
 813	v->bytes_out = 0;
 814	v->pkt_in = 0;
 815	v->pkt_out = 0;
 816	v->link = dev->ifindex;
 817	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
 818		v->link = dev_get_iflink(dev);
 819
 820	/* And finish update writing critical data */
 821	write_lock_bh(&mrt_lock);
 822	v->dev = dev;
 
 823	if (v->flags & VIFF_REGISTER)
 824		mrt->mroute_reg_vif_num = vifi;
 
 825	if (vifi+1 > mrt->maxvif)
 826		mrt->maxvif = vifi+1;
 827	write_unlock_bh(&mrt_lock);
 828	return 0;
 829}
 830
 831/* called with rcu_read_lock() */
 832static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
 833					 __be32 origin,
 834					 __be32 mcastgrp)
 835{
 836	int line = MFC_HASH(mcastgrp, origin);
 837	struct mfc_cache *c;
 838
 839	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
 840		if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
 841			return c;
 842	}
 843	return NULL;
 844}
 845
 846/* Look for a (*,*,oif) entry */
 847static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
 848						    int vifi)
 849{
 850	int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
 851	struct mfc_cache *c;
 852
 853	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
 854		if (c->mfc_origin == htonl(INADDR_ANY) &&
 855		    c->mfc_mcastgrp == htonl(INADDR_ANY) &&
 856		    c->mfc_un.res.ttls[vifi] < 255)
 857			return c;
 858
 859	return NULL;
 860}
 861
 862/* Look for a (*,G) entry */
 863static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
 864					     __be32 mcastgrp, int vifi)
 865{
 866	int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
 867	struct mfc_cache *c, *proxy;
 868
 869	if (mcastgrp == htonl(INADDR_ANY))
 870		goto skip;
 871
 872	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
 873		if (c->mfc_origin == htonl(INADDR_ANY) &&
 874		    c->mfc_mcastgrp == mcastgrp) {
 875			if (c->mfc_un.res.ttls[vifi] < 255)
 876				return c;
 877
 878			/* It's ok if the vifi is part of the static tree */
 879			proxy = ipmr_cache_find_any_parent(mrt,
 880							   c->mfc_parent);
 881			if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
 882				return c;
 883		}
 884
 885skip:
 886	return ipmr_cache_find_any_parent(mrt, vifi);
 887}
 888
 889/* Allocate a multicast cache entry */
 890static struct mfc_cache *ipmr_cache_alloc(void)
 891{
 892	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
 893
 894	if (c)
 895		c->mfc_un.res.minvif = MAXVIFS;
 896	return c;
 897}
 898
 899static struct mfc_cache *ipmr_cache_alloc_unres(void)
 900{
 901	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
 902
 903	if (c) {
 904		skb_queue_head_init(&c->mfc_un.unres.unresolved);
 905		c->mfc_un.unres.expires = jiffies + 10*HZ;
 906	}
 907	return c;
 908}
 909
 910/* A cache entry has gone into a resolved state from queued */
 
 
 
 911static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
 912			       struct mfc_cache *uc, struct mfc_cache *c)
 913{
 914	struct sk_buff *skb;
 915	struct nlmsgerr *e;
 916
 917	/* Play the pending entries through our router */
 
 918	while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
 919		if (ip_hdr(skb)->version == 0) {
 920			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 921
 922			if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
 923				nlh->nlmsg_len = skb_tail_pointer(skb) -
 924						 (u8 *)nlh;
 925			} else {
 926				nlh->nlmsg_type = NLMSG_ERROR;
 927				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
 928				skb_trim(skb, nlh->nlmsg_len);
 929				e = nlmsg_data(nlh);
 930				e->error = -EMSGSIZE;
 931				memset(&e->msg, 0, sizeof(e->msg));
 932			}
 933
 934			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
 935		} else {
 936			ip_mr_forward(net, mrt, skb, c, 0);
 937		}
 938	}
 939}
 940
 941/* Bounce a cache query up to mrouted. We could use netlink for this but mrouted
 942 * expects the following bizarre scheme.
 
 943 *
 944 * Called under mrt_lock.
 945 */
 
 946static int ipmr_cache_report(struct mr_table *mrt,
 947			     struct sk_buff *pkt, vifi_t vifi, int assert)
 948{
 
 949	const int ihl = ip_hdrlen(pkt);
 950	struct sock *mroute_sk;
 951	struct igmphdr *igmp;
 952	struct igmpmsg *msg;
 953	struct sk_buff *skb;
 954	int ret;
 955
 
 956	if (assert == IGMPMSG_WHOLEPKT)
 957		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
 958	else
 
 959		skb = alloc_skb(128, GFP_ATOMIC);
 960
 961	if (!skb)
 962		return -ENOBUFS;
 963
 
 964	if (assert == IGMPMSG_WHOLEPKT) {
 965		/* Ugly, but we have no choice with this interface.
 966		 * Duplicate old header, fix ihl, length etc.
 967		 * And all this only to mangle msg->im_msgtype and
 968		 * to set msg->im_mbz to "mbz" :-)
 969		 */
 970		skb_push(skb, sizeof(struct iphdr));
 971		skb_reset_network_header(skb);
 972		skb_reset_transport_header(skb);
 973		msg = (struct igmpmsg *)skb_network_header(skb);
 974		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
 975		msg->im_msgtype = IGMPMSG_WHOLEPKT;
 976		msg->im_mbz = 0;
 977		msg->im_vif = mrt->mroute_reg_vif_num;
 978		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
 979		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
 980					     sizeof(struct iphdr));
 981	} else {
 982		/* Copy the IP header */
 983		skb_set_network_header(skb, skb->len);
 984		skb_put(skb, ihl);
 985		skb_copy_to_linear_data(skb, pkt->data, ihl);
 986		/* Flag to the kernel this is a route add */
 987		ip_hdr(skb)->protocol = 0;
 988		msg = (struct igmpmsg *)skb_network_header(skb);
 989		msg->im_vif = vifi;
 990		skb_dst_set(skb, dst_clone(skb_dst(pkt)));
 991		/* Add our header */
 992		igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
 993		igmp->type = assert;
 994		msg->im_msgtype = assert;
 995		igmp->code = 0;
 996		ip_hdr(skb)->tot_len = htons(skb->len);	/* Fix the length */
 997		skb->transport_header = skb->network_header;
 
 
 
 
 
 998	}
 999
1000	rcu_read_lock();
1001	mroute_sk = rcu_dereference(mrt->mroute_sk);
1002	if (!mroute_sk) {
1003		rcu_read_unlock();
1004		kfree_skb(skb);
1005		return -EINVAL;
1006	}
1007
1008	/* Deliver to mrouted */
 
1009	ret = sock_queue_rcv_skb(mroute_sk, skb);
1010	rcu_read_unlock();
1011	if (ret < 0) {
1012		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
 
1013		kfree_skb(skb);
1014	}
1015
1016	return ret;
1017}
1018
1019/* Queue a packet for resolution. It gets locked cache entry! */
1020static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1021				 struct sk_buff *skb)
 
 
 
1022{
1023	bool found = false;
1024	int err;
1025	struct mfc_cache *c;
1026	const struct iphdr *iph = ip_hdr(skb);
1027
1028	spin_lock_bh(&mfc_unres_lock);
1029	list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1030		if (c->mfc_mcastgrp == iph->daddr &&
1031		    c->mfc_origin == iph->saddr) {
1032			found = true;
1033			break;
1034		}
1035	}
1036
1037	if (!found) {
1038		/* Create a new entry if allowable */
 
1039		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1040		    (c = ipmr_cache_alloc_unres()) == NULL) {
1041			spin_unlock_bh(&mfc_unres_lock);
1042
1043			kfree_skb(skb);
1044			return -ENOBUFS;
1045		}
1046
1047		/* Fill in the new cache entry */
 
1048		c->mfc_parent	= -1;
1049		c->mfc_origin	= iph->saddr;
1050		c->mfc_mcastgrp	= iph->daddr;
1051
1052		/* Reflect first query at mrouted. */
 
1053		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1054		if (err < 0) {
1055			/* If the report failed throw the cache entry
1056			   out - Brad Parker
1057			 */
1058			spin_unlock_bh(&mfc_unres_lock);
1059
1060			ipmr_cache_free(c);
1061			kfree_skb(skb);
1062			return err;
1063		}
1064
1065		atomic_inc(&mrt->cache_resolve_queue_len);
1066		list_add(&c->list, &mrt->mfc_unres_queue);
1067		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1068
1069		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1070			mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1071	}
1072
1073	/* See if we can append the packet */
 
1074	if (c->mfc_un.unres.unresolved.qlen > 3) {
1075		kfree_skb(skb);
1076		err = -ENOBUFS;
1077	} else {
1078		skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1079		err = 0;
1080	}
1081
1082	spin_unlock_bh(&mfc_unres_lock);
1083	return err;
1084}
1085
1086/* MFC cache manipulation by user space mroute daemon */
 
 
1087
1088static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1089{
1090	int line;
1091	struct mfc_cache *c, *next;
1092
1093	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1094
1095	list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1096		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1097		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1098		    (parent == -1 || parent == c->mfc_parent)) {
1099			list_del_rcu(&c->list);
1100			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1101			ipmr_cache_free(c);
1102			return 0;
1103		}
1104	}
1105	return -ENOENT;
1106}
1107
1108static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1109			struct mfcctl *mfc, int mrtsock, int parent)
1110{
1111	bool found = false;
1112	int line;
1113	struct mfc_cache *uc, *c;
1114
1115	if (mfc->mfcc_parent >= MAXVIFS)
1116		return -ENFILE;
1117
1118	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1119
1120	list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1121		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1122		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1123		    (parent == -1 || parent == c->mfc_parent)) {
1124			found = true;
1125			break;
1126		}
1127	}
1128
1129	if (found) {
1130		write_lock_bh(&mrt_lock);
1131		c->mfc_parent = mfc->mfcc_parent;
1132		ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1133		if (!mrtsock)
1134			c->mfc_flags |= MFC_STATIC;
1135		write_unlock_bh(&mrt_lock);
1136		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1137		return 0;
1138	}
1139
1140	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1141	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1142		return -EINVAL;
1143
1144	c = ipmr_cache_alloc();
1145	if (!c)
1146		return -ENOMEM;
1147
1148	c->mfc_origin = mfc->mfcc_origin.s_addr;
1149	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1150	c->mfc_parent = mfc->mfcc_parent;
1151	ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1152	if (!mrtsock)
1153		c->mfc_flags |= MFC_STATIC;
1154
1155	list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1156
1157	/* Check to see if we resolved a queued list. If so we
1158	 * need to send on the frames and tidy up.
 
1159	 */
1160	found = false;
1161	spin_lock_bh(&mfc_unres_lock);
1162	list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1163		if (uc->mfc_origin == c->mfc_origin &&
1164		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1165			list_del(&uc->list);
1166			atomic_dec(&mrt->cache_resolve_queue_len);
1167			found = true;
1168			break;
1169		}
1170	}
1171	if (list_empty(&mrt->mfc_unres_queue))
1172		del_timer(&mrt->ipmr_expire_timer);
1173	spin_unlock_bh(&mfc_unres_lock);
1174
1175	if (found) {
1176		ipmr_cache_resolve(net, mrt, uc, c);
1177		ipmr_cache_free(uc);
1178	}
1179	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1180	return 0;
1181}
1182
1183/* Close the multicast socket, and clear the vif tables etc */
1184static void mroute_clean_tables(struct mr_table *mrt, bool all)
 
 
 
1185{
1186	int i;
1187	LIST_HEAD(list);
1188	struct mfc_cache *c, *next;
1189
1190	/* Shut down all active vif entries */
 
1191	for (i = 0; i < mrt->maxvif; i++) {
1192		if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1193			continue;
1194		vif_delete(mrt, i, 0, &list);
1195	}
1196	unregister_netdevice_many(&list);
1197
1198	/* Wipe the cache */
 
1199	for (i = 0; i < MFC_LINES; i++) {
1200		list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1201			if (!all && (c->mfc_flags & MFC_STATIC))
1202				continue;
1203			list_del_rcu(&c->list);
1204			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1205			ipmr_cache_free(c);
1206		}
1207	}
1208
1209	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1210		spin_lock_bh(&mfc_unres_lock);
1211		list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1212			list_del(&c->list);
1213			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1214			ipmr_destroy_unres(mrt, c);
1215		}
1216		spin_unlock_bh(&mfc_unres_lock);
1217	}
1218}
1219
1220/* called from ip_ra_control(), before an RCU grace period,
1221 * we dont need to call synchronize_rcu() here
1222 */
1223static void mrtsock_destruct(struct sock *sk)
1224{
1225	struct net *net = sock_net(sk);
1226	struct mr_table *mrt;
1227
1228	rtnl_lock();
1229	ipmr_for_each_table(mrt, net) {
1230		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1231			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1232			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1233						    NETCONFA_IFINDEX_ALL,
1234						    net->ipv4.devconf_all);
1235			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1236			mroute_clean_tables(mrt, false);
1237		}
1238	}
1239	rtnl_unlock();
1240}
1241
1242/* Socket options and virtual interface manipulation. The whole
1243 * virtual interface system is a complete heap, but unfortunately
1244 * that's how BSD mrouted happens to think. Maybe one day with a proper
1245 * MOSPF/PIM router set up we can clean this up.
 
1246 */
1247
1248int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1249			 unsigned int optlen)
1250{
 
 
 
1251	struct net *net = sock_net(sk);
1252	int val, ret = 0, parent = 0;
1253	struct mr_table *mrt;
1254	struct vifctl vif;
1255	struct mfcctl mfc;
1256	u32 uval;
1257
1258	/* There's one exception to the lock - MRT_DONE which needs to unlock */
1259	rtnl_lock();
1260	if (sk->sk_type != SOCK_RAW ||
1261	    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1262		ret = -EOPNOTSUPP;
1263		goto out_unlock;
1264	}
1265
1266	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1267	if (!mrt) {
1268		ret = -ENOENT;
1269		goto out_unlock;
1270	}
1271	if (optname != MRT_INIT) {
1272		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1273		    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1274			ret = -EACCES;
1275			goto out_unlock;
1276		}
1277	}
1278
1279	switch (optname) {
1280	case MRT_INIT:
1281		if (optlen != sizeof(int)) {
1282			ret = -EINVAL;
1283			break;
1284		}
 
 
 
1285		if (rtnl_dereference(mrt->mroute_sk)) {
1286			ret = -EADDRINUSE;
1287			break;
1288		}
1289
1290		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1291		if (ret == 0) {
1292			rcu_assign_pointer(mrt->mroute_sk, sk);
1293			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1294			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1295						    NETCONFA_IFINDEX_ALL,
1296						    net->ipv4.devconf_all);
1297		}
1298		break;
 
1299	case MRT_DONE:
1300		if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1301			ret = -EACCES;
1302		} else {
1303			/* We need to unlock here because mrtsock_destruct takes
1304			 * care of rtnl itself and we can't change that due to
1305			 * the IP_ROUTER_ALERT setsockopt which runs without it.
1306			 */
1307			rtnl_unlock();
1308			ret = ip_ra_control(sk, 0, NULL);
1309			goto out;
1310		}
1311		break;
1312	case MRT_ADD_VIF:
1313	case MRT_DEL_VIF:
1314		if (optlen != sizeof(vif)) {
1315			ret = -EINVAL;
1316			break;
1317		}
1318		if (copy_from_user(&vif, optval, sizeof(vif))) {
1319			ret = -EFAULT;
1320			break;
1321		}
1322		if (vif.vifc_vifi >= MAXVIFS) {
1323			ret = -ENFILE;
1324			break;
1325		}
1326		if (optname == MRT_ADD_VIF) {
1327			ret = vif_add(net, mrt, &vif,
1328				      sk == rtnl_dereference(mrt->mroute_sk));
1329		} else {
1330			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1331		}
1332		break;
1333	/* Manipulate the forwarding caches. These live
1334	 * in a sort of kernel/user symbiosis.
1335	 */
 
 
 
1336	case MRT_ADD_MFC:
1337	case MRT_DEL_MFC:
1338		parent = -1;
1339	case MRT_ADD_MFC_PROXY:
1340	case MRT_DEL_MFC_PROXY:
1341		if (optlen != sizeof(mfc)) {
1342			ret = -EINVAL;
1343			break;
1344		}
1345		if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1346			ret = -EFAULT;
1347			break;
1348		}
1349		if (parent == 0)
1350			parent = mfc.mfcc_parent;
1351		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1352			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1353		else
1354			ret = ipmr_mfc_add(net, mrt, &mfc,
1355					   sk == rtnl_dereference(mrt->mroute_sk),
1356					   parent);
1357		break;
1358	/* Control PIM assert. */
 
 
1359	case MRT_ASSERT:
1360		if (optlen != sizeof(val)) {
1361			ret = -EINVAL;
1362			break;
1363		}
1364		if (get_user(val, (int __user *)optval)) {
1365			ret = -EFAULT;
1366			break;
1367		}
1368		mrt->mroute_do_assert = val;
1369		break;
1370	case MRT_PIM:
1371		if (!ipmr_pimsm_enabled()) {
1372			ret = -ENOPROTOOPT;
1373			break;
1374		}
1375		if (optlen != sizeof(val)) {
1376			ret = -EINVAL;
1377			break;
1378		}
1379		if (get_user(val, (int __user *)optval)) {
1380			ret = -EFAULT;
1381			break;
1382		}
1383
1384		val = !!val;
1385		if (val != mrt->mroute_do_pim) {
1386			mrt->mroute_do_pim = val;
1387			mrt->mroute_do_assert = val;
 
1388		}
1389		break;
 
 
 
 
1390	case MRT_TABLE:
1391		if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1392			ret = -ENOPROTOOPT;
1393			break;
1394		}
1395		if (optlen != sizeof(uval)) {
1396			ret = -EINVAL;
1397			break;
1398		}
1399		if (get_user(uval, (u32 __user *)optval)) {
1400			ret = -EFAULT;
1401			break;
1402		}
1403
 
 
1404		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1405			ret = -EBUSY;
1406		} else {
1407			mrt = ipmr_new_table(net, uval);
1408			if (IS_ERR(mrt))
1409				ret = PTR_ERR(mrt);
1410			else
1411				raw_sk(sk)->ipmr_table = uval;
1412		}
1413		break;
1414	/* Spurious command, or MRT_VERSION which you cannot set. */
 
 
 
 
 
 
1415	default:
1416		ret = -ENOPROTOOPT;
1417	}
1418out_unlock:
1419	rtnl_unlock();
1420out:
1421	return ret;
1422}
1423
1424/* Getsock opt support for the multicast routing system. */
 
 
 
1425int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1426{
1427	int olr;
1428	int val;
1429	struct net *net = sock_net(sk);
1430	struct mr_table *mrt;
1431
1432	if (sk->sk_type != SOCK_RAW ||
1433	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1434		return -EOPNOTSUPP;
1435
1436	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1437	if (!mrt)
1438		return -ENOENT;
1439
1440	switch (optname) {
1441	case MRT_VERSION:
1442		val = 0x0305;
1443		break;
1444	case MRT_PIM:
1445		if (!ipmr_pimsm_enabled())
1446			return -ENOPROTOOPT;
1447		val = mrt->mroute_do_pim;
1448		break;
1449	case MRT_ASSERT:
1450		val = mrt->mroute_do_assert;
1451		break;
1452	default:
1453		return -ENOPROTOOPT;
1454	}
1455
1456	if (get_user(olr, optlen))
1457		return -EFAULT;
 
1458	olr = min_t(unsigned int, olr, sizeof(int));
1459	if (olr < 0)
1460		return -EINVAL;
 
1461	if (put_user(olr, optlen))
1462		return -EFAULT;
 
 
 
 
 
 
 
 
1463	if (copy_to_user(optval, &val, olr))
1464		return -EFAULT;
1465	return 0;
1466}
1467
1468/* The IP multicast ioctl support routines. */
 
 
 
1469int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1470{
1471	struct sioc_sg_req sr;
1472	struct sioc_vif_req vr;
1473	struct vif_device *vif;
1474	struct mfc_cache *c;
1475	struct net *net = sock_net(sk);
1476	struct mr_table *mrt;
1477
1478	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1479	if (!mrt)
1480		return -ENOENT;
1481
1482	switch (cmd) {
1483	case SIOCGETVIFCNT:
1484		if (copy_from_user(&vr, arg, sizeof(vr)))
1485			return -EFAULT;
1486		if (vr.vifi >= mrt->maxvif)
1487			return -EINVAL;
1488		read_lock(&mrt_lock);
1489		vif = &mrt->vif_table[vr.vifi];
1490		if (VIF_EXISTS(mrt, vr.vifi)) {
1491			vr.icount = vif->pkt_in;
1492			vr.ocount = vif->pkt_out;
1493			vr.ibytes = vif->bytes_in;
1494			vr.obytes = vif->bytes_out;
1495			read_unlock(&mrt_lock);
1496
1497			if (copy_to_user(arg, &vr, sizeof(vr)))
1498				return -EFAULT;
1499			return 0;
1500		}
1501		read_unlock(&mrt_lock);
1502		return -EADDRNOTAVAIL;
1503	case SIOCGETSGCNT:
1504		if (copy_from_user(&sr, arg, sizeof(sr)))
1505			return -EFAULT;
1506
1507		rcu_read_lock();
1508		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1509		if (c) {
1510			sr.pktcnt = c->mfc_un.res.pkt;
1511			sr.bytecnt = c->mfc_un.res.bytes;
1512			sr.wrong_if = c->mfc_un.res.wrong_if;
1513			rcu_read_unlock();
1514
1515			if (copy_to_user(arg, &sr, sizeof(sr)))
1516				return -EFAULT;
1517			return 0;
1518		}
1519		rcu_read_unlock();
1520		return -EADDRNOTAVAIL;
1521	default:
1522		return -ENOIOCTLCMD;
1523	}
1524}
1525
1526#ifdef CONFIG_COMPAT
1527struct compat_sioc_sg_req {
1528	struct in_addr src;
1529	struct in_addr grp;
1530	compat_ulong_t pktcnt;
1531	compat_ulong_t bytecnt;
1532	compat_ulong_t wrong_if;
1533};
1534
1535struct compat_sioc_vif_req {
1536	vifi_t	vifi;		/* Which iface */
1537	compat_ulong_t icount;
1538	compat_ulong_t ocount;
1539	compat_ulong_t ibytes;
1540	compat_ulong_t obytes;
1541};
1542
1543int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1544{
1545	struct compat_sioc_sg_req sr;
1546	struct compat_sioc_vif_req vr;
1547	struct vif_device *vif;
1548	struct mfc_cache *c;
1549	struct net *net = sock_net(sk);
1550	struct mr_table *mrt;
1551
1552	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1553	if (!mrt)
1554		return -ENOENT;
1555
1556	switch (cmd) {
1557	case SIOCGETVIFCNT:
1558		if (copy_from_user(&vr, arg, sizeof(vr)))
1559			return -EFAULT;
1560		if (vr.vifi >= mrt->maxvif)
1561			return -EINVAL;
1562		read_lock(&mrt_lock);
1563		vif = &mrt->vif_table[vr.vifi];
1564		if (VIF_EXISTS(mrt, vr.vifi)) {
1565			vr.icount = vif->pkt_in;
1566			vr.ocount = vif->pkt_out;
1567			vr.ibytes = vif->bytes_in;
1568			vr.obytes = vif->bytes_out;
1569			read_unlock(&mrt_lock);
1570
1571			if (copy_to_user(arg, &vr, sizeof(vr)))
1572				return -EFAULT;
1573			return 0;
1574		}
1575		read_unlock(&mrt_lock);
1576		return -EADDRNOTAVAIL;
1577	case SIOCGETSGCNT:
1578		if (copy_from_user(&sr, arg, sizeof(sr)))
1579			return -EFAULT;
1580
1581		rcu_read_lock();
1582		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1583		if (c) {
1584			sr.pktcnt = c->mfc_un.res.pkt;
1585			sr.bytecnt = c->mfc_un.res.bytes;
1586			sr.wrong_if = c->mfc_un.res.wrong_if;
1587			rcu_read_unlock();
1588
1589			if (copy_to_user(arg, &sr, sizeof(sr)))
1590				return -EFAULT;
1591			return 0;
1592		}
1593		rcu_read_unlock();
1594		return -EADDRNOTAVAIL;
1595	default:
1596		return -ENOIOCTLCMD;
1597	}
1598}
1599#endif
1600
 
1601static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1602{
1603	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1604	struct net *net = dev_net(dev);
1605	struct mr_table *mrt;
1606	struct vif_device *v;
1607	int ct;
 
1608
1609	if (event != NETDEV_UNREGISTER)
1610		return NOTIFY_DONE;
1611
1612	ipmr_for_each_table(mrt, net) {
1613		v = &mrt->vif_table[0];
1614		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1615			if (v->dev == dev)
1616				vif_delete(mrt, ct, 1, NULL);
1617		}
1618	}
 
1619	return NOTIFY_DONE;
1620}
1621
 
1622static struct notifier_block ip_mr_notifier = {
1623	.notifier_call = ipmr_device_event,
1624};
1625
1626/* Encapsulate a packet by attaching a valid IPIP header to it.
1627 * This avoids tunnel drivers and other mess and gives us the speed so
1628 * important for multicast video.
 
1629 */
1630static void ip_encap(struct net *net, struct sk_buff *skb,
1631		     __be32 saddr, __be32 daddr)
1632{
1633	struct iphdr *iph;
1634	const struct iphdr *old_iph = ip_hdr(skb);
1635
1636	skb_push(skb, sizeof(struct iphdr));
1637	skb->transport_header = skb->network_header;
1638	skb_reset_network_header(skb);
1639	iph = ip_hdr(skb);
1640
1641	iph->version	=	4;
1642	iph->tos	=	old_iph->tos;
1643	iph->ttl	=	old_iph->ttl;
1644	iph->frag_off	=	0;
1645	iph->daddr	=	daddr;
1646	iph->saddr	=	saddr;
1647	iph->protocol	=	IPPROTO_IPIP;
1648	iph->ihl	=	5;
1649	iph->tot_len	=	htons(skb->len);
1650	ip_select_ident(net, skb, NULL);
1651	ip_send_check(iph);
1652
1653	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1654	nf_reset(skb);
1655}
1656
1657static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1658				      struct sk_buff *skb)
1659{
1660	struct ip_options *opt = &(IPCB(skb)->opt);
1661
1662	IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1663	IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1664
1665	if (unlikely(opt->optlen))
1666		ip_forward_options(skb);
1667
1668	return dst_output(net, sk, skb);
1669}
1670
1671/* Processing handlers for ipmr_forward */
 
 
1672
1673static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1674			    struct sk_buff *skb, struct mfc_cache *c, int vifi)
1675{
1676	const struct iphdr *iph = ip_hdr(skb);
1677	struct vif_device *vif = &mrt->vif_table[vifi];
1678	struct net_device *dev;
1679	struct rtable *rt;
1680	struct flowi4 fl4;
1681	int    encap = 0;
1682
1683	if (!vif->dev)
1684		goto out_free;
1685
 
1686	if (vif->flags & VIFF_REGISTER) {
1687		vif->pkt_out++;
1688		vif->bytes_out += skb->len;
1689		vif->dev->stats.tx_bytes += skb->len;
1690		vif->dev->stats.tx_packets++;
1691		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1692		goto out_free;
1693	}
 
1694
1695	if (vif->flags & VIFF_TUNNEL) {
1696		rt = ip_route_output_ports(net, &fl4, NULL,
1697					   vif->remote, vif->local,
1698					   0, 0,
1699					   IPPROTO_IPIP,
1700					   RT_TOS(iph->tos), vif->link);
1701		if (IS_ERR(rt))
1702			goto out_free;
1703		encap = sizeof(struct iphdr);
1704	} else {
1705		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1706					   0, 0,
1707					   IPPROTO_IPIP,
1708					   RT_TOS(iph->tos), vif->link);
1709		if (IS_ERR(rt))
1710			goto out_free;
1711	}
1712
1713	dev = rt->dst.dev;
1714
1715	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1716		/* Do not fragment multicasts. Alas, IPv4 does not
1717		 * allow to send ICMP, so that packets will disappear
1718		 * to blackhole.
1719		 */
1720		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
 
1721		ip_rt_put(rt);
1722		goto out_free;
1723	}
1724
1725	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1726
1727	if (skb_cow(skb, encap)) {
1728		ip_rt_put(rt);
1729		goto out_free;
1730	}
1731
1732	vif->pkt_out++;
1733	vif->bytes_out += skb->len;
1734
1735	skb_dst_drop(skb);
1736	skb_dst_set(skb, &rt->dst);
1737	ip_decrease_ttl(ip_hdr(skb));
1738
1739	/* FIXME: forward and output firewalls used to be called here.
1740	 * What do we do with netfilter? -- RR
1741	 */
1742	if (vif->flags & VIFF_TUNNEL) {
1743		ip_encap(net, skb, vif->local, vif->remote);
1744		/* FIXME: extra output firewall step used to be here. --RR */
1745		vif->dev->stats.tx_packets++;
1746		vif->dev->stats.tx_bytes += skb->len;
1747	}
1748
1749	IPCB(skb)->flags |= IPSKB_FORWARDED;
1750
1751	/* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
 
1752	 * not only before forwarding, but after forwarding on all output
1753	 * interfaces. It is clear, if mrouter runs a multicasting
1754	 * program, it should receive packets not depending to what interface
1755	 * program is joined.
1756	 * If we will not make it, the program will have to join on all
1757	 * interfaces. On the other hand, multihoming host (or router, but
1758	 * not mrouter) cannot join to more than one interface - it will
1759	 * result in receiving multiple packets.
1760	 */
1761	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1762		net, NULL, skb, skb->dev, dev,
1763		ipmr_forward_finish);
1764	return;
1765
1766out_free:
1767	kfree_skb(skb);
1768}
1769
1770static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1771{
1772	int ct;
1773
1774	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1775		if (mrt->vif_table[ct].dev == dev)
1776			break;
1777	}
1778	return ct;
1779}
1780
1781/* "local" means that we should preserve one skb (for local delivery) */
1782static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1783			  struct sk_buff *skb, struct mfc_cache *cache,
1784			  int local)
 
1785{
1786	int psend = -1;
1787	int vif, ct;
1788	int true_vifi = ipmr_find_vif(mrt, skb->dev);
1789
1790	vif = cache->mfc_parent;
1791	cache->mfc_un.res.pkt++;
1792	cache->mfc_un.res.bytes += skb->len;
1793
1794	if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1795		struct mfc_cache *cache_proxy;
 
 
 
1796
1797		/* For an (*,G) entry, we only check that the incomming
1798		 * interface is part of the static tree.
1799		 */
1800		cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1801		if (cache_proxy &&
1802		    cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1803			goto forward;
1804	}
1805
1806	/* Wrong interface: drop packet and (maybe) send PIM assert. */
1807	if (mrt->vif_table[vif].dev != skb->dev) {
1808		if (rt_is_output_route(skb_rtable(skb))) {
1809			/* It is our own packet, looped back.
1810			 * Very complicated situation...
1811			 *
1812			 * The best workaround until routing daemons will be
1813			 * fixed is not to redistribute packet, if it was
1814			 * send through wrong interface. It means, that
1815			 * multicast applications WILL NOT work for
1816			 * (S,G), which have default multicast route pointing
1817			 * to wrong oif. In any case, it is not a good
1818			 * idea to use multicasting applications on router.
1819			 */
1820			goto dont_forward;
1821		}
1822
1823		cache->mfc_un.res.wrong_if++;
 
1824
1825		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1826		    /* pimsm uses asserts, when switching from RPT to SPT,
1827		     * so that we cannot check that packet arrived on an oif.
1828		     * It is bad, but otherwise we would need to move pretty
1829		     * large chunk of pimd to kernel. Ough... --ANK
1830		     */
1831		    (mrt->mroute_do_pim ||
1832		     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1833		    time_after(jiffies,
1834			       cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1835			cache->mfc_un.res.last_assert = jiffies;
1836			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1837		}
1838		goto dont_forward;
1839	}
1840
1841forward:
1842	mrt->vif_table[vif].pkt_in++;
1843	mrt->vif_table[vif].bytes_in += skb->len;
1844
1845	/* Forward the frame */
1846	if (cache->mfc_origin == htonl(INADDR_ANY) &&
1847	    cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1848		if (true_vifi >= 0 &&
1849		    true_vifi != cache->mfc_parent &&
1850		    ip_hdr(skb)->ttl >
1851				cache->mfc_un.res.ttls[cache->mfc_parent]) {
1852			/* It's an (*,*) entry and the packet is not coming from
1853			 * the upstream: forward the packet to the upstream
1854			 * only.
1855			 */
1856			psend = cache->mfc_parent;
1857			goto last_forward;
1858		}
1859		goto dont_forward;
1860	}
1861	for (ct = cache->mfc_un.res.maxvif - 1;
1862	     ct >= cache->mfc_un.res.minvif; ct--) {
1863		/* For (*,G) entry, don't forward to the incoming interface */
1864		if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1865		     ct != true_vifi) &&
1866		    ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1867			if (psend != -1) {
1868				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1869
1870				if (skb2)
1871					ipmr_queue_xmit(net, mrt, skb2, cache,
1872							psend);
1873			}
1874			psend = ct;
1875		}
1876	}
1877last_forward:
1878	if (psend != -1) {
1879		if (local) {
1880			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1881
1882			if (skb2)
1883				ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1884		} else {
1885			ipmr_queue_xmit(net, mrt, skb, cache, psend);
1886			return;
1887		}
1888	}
1889
1890dont_forward:
1891	if (!local)
1892		kfree_skb(skb);
 
1893}
1894
1895static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1896{
1897	struct rtable *rt = skb_rtable(skb);
1898	struct iphdr *iph = ip_hdr(skb);
1899	struct flowi4 fl4 = {
1900		.daddr = iph->daddr,
1901		.saddr = iph->saddr,
1902		.flowi4_tos = RT_TOS(iph->tos),
1903		.flowi4_oif = (rt_is_output_route(rt) ?
1904			       skb->dev->ifindex : 0),
1905		.flowi4_iif = (rt_is_output_route(rt) ?
1906			       LOOPBACK_IFINDEX :
1907			       skb->dev->ifindex),
1908		.flowi4_mark = skb->mark,
1909	};
1910	struct mr_table *mrt;
1911	int err;
1912
1913	err = ipmr_fib_lookup(net, &fl4, &mrt);
1914	if (err)
1915		return ERR_PTR(err);
1916	return mrt;
1917}
1918
1919/* Multicast packets for forwarding arrive here
1920 * Called with rcu_read_lock();
 
1921 */
 
1922int ip_mr_input(struct sk_buff *skb)
1923{
1924	struct mfc_cache *cache;
1925	struct net *net = dev_net(skb->dev);
1926	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1927	struct mr_table *mrt;
1928
1929	/* Packet is looped back after forward, it should not be
1930	 * forwarded second time, but still can be delivered locally.
1931	 */
1932	if (IPCB(skb)->flags & IPSKB_FORWARDED)
1933		goto dont_forward;
1934
1935	mrt = ipmr_rt_fib_lookup(net, skb);
1936	if (IS_ERR(mrt)) {
1937		kfree_skb(skb);
1938		return PTR_ERR(mrt);
1939	}
1940	if (!local) {
1941		if (IPCB(skb)->opt.router_alert) {
1942			if (ip_call_ra_chain(skb))
1943				return 0;
1944		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1945			/* IGMPv1 (and broken IGMPv2 implementations sort of
1946			 * Cisco IOS <= 11.2(8)) do not put router alert
1947			 * option to IGMP packets destined to routable
1948			 * groups. It is very bad, because it means
1949			 * that we can forward NO IGMP messages.
1950			 */
1951			struct sock *mroute_sk;
1952
1953			mroute_sk = rcu_dereference(mrt->mroute_sk);
1954			if (mroute_sk) {
1955				nf_reset(skb);
1956				raw_rcv(mroute_sk, skb);
1957				return 0;
1958			}
1959		    }
1960	}
1961
1962	/* already under rcu_read_lock() */
1963	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1964	if (!cache) {
1965		int vif = ipmr_find_vif(mrt, skb->dev);
1966
1967		if (vif >= 0)
1968			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
1969						    vif);
1970	}
1971
1972	/* No usable cache entry */
1973	if (!cache) {
1974		int vif;
1975
1976		if (local) {
1977			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1978			ip_local_deliver(skb);
1979			if (!skb2)
1980				return -ENOBUFS;
1981			skb = skb2;
1982		}
1983
1984		read_lock(&mrt_lock);
1985		vif = ipmr_find_vif(mrt, skb->dev);
1986		if (vif >= 0) {
1987			int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1988			read_unlock(&mrt_lock);
1989
1990			return err2;
1991		}
1992		read_unlock(&mrt_lock);
1993		kfree_skb(skb);
1994		return -ENODEV;
1995	}
1996
1997	read_lock(&mrt_lock);
1998	ip_mr_forward(net, mrt, skb, cache, local);
1999	read_unlock(&mrt_lock);
2000
2001	if (local)
2002		return ip_local_deliver(skb);
2003
2004	return 0;
2005
2006dont_forward:
2007	if (local)
2008		return ip_local_deliver(skb);
2009	kfree_skb(skb);
2010	return 0;
2011}
2012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2013#ifdef CONFIG_IP_PIMSM_V1
2014/* Handle IGMP messages of PIMv1 */
 
 
 
2015int pim_rcv_v1(struct sk_buff *skb)
2016{
2017	struct igmphdr *pim;
2018	struct net *net = dev_net(skb->dev);
2019	struct mr_table *mrt;
2020
2021	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2022		goto drop;
2023
2024	pim = igmp_hdr(skb);
2025
2026	mrt = ipmr_rt_fib_lookup(net, skb);
2027	if (IS_ERR(mrt))
2028		goto drop;
2029	if (!mrt->mroute_do_pim ||
2030	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2031		goto drop;
2032
2033	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2034drop:
2035		kfree_skb(skb);
2036	}
2037	return 0;
2038}
2039#endif
2040
2041#ifdef CONFIG_IP_PIMSM_V2
2042static int pim_rcv(struct sk_buff *skb)
2043{
2044	struct pimreghdr *pim;
2045	struct net *net = dev_net(skb->dev);
2046	struct mr_table *mrt;
2047
2048	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2049		goto drop;
2050
2051	pim = (struct pimreghdr *)skb_transport_header(skb);
2052	if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2053	    (pim->flags & PIM_NULL_REGISTER) ||
2054	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2055	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2056		goto drop;
2057
2058	mrt = ipmr_rt_fib_lookup(net, skb);
2059	if (IS_ERR(mrt))
2060		goto drop;
2061	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2062drop:
2063		kfree_skb(skb);
2064	}
2065	return 0;
2066}
2067#endif
2068
2069static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2070			      struct mfc_cache *c, struct rtmsg *rtm)
2071{
2072	int ct;
2073	struct rtnexthop *nhp;
2074	struct nlattr *mp_attr;
2075	struct rta_mfc_stats mfcs;
2076
2077	/* If cache is unresolved, don't try to parse IIF and OIF */
2078	if (c->mfc_parent >= MAXVIFS)
2079		return -ENOENT;
2080
2081	if (VIF_EXISTS(mrt, c->mfc_parent) &&
2082	    nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2083		return -EMSGSIZE;
2084
2085	if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2086		return -EMSGSIZE;
2087
2088	for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2089		if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2090			if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2091				nla_nest_cancel(skb, mp_attr);
2092				return -EMSGSIZE;
2093			}
2094
2095			nhp->rtnh_flags = 0;
2096			nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2097			nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2098			nhp->rtnh_len = sizeof(*nhp);
2099		}
2100	}
2101
2102	nla_nest_end(skb, mp_attr);
2103
2104	mfcs.mfcs_packets = c->mfc_un.res.pkt;
2105	mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2106	mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2107	if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
2108		return -EMSGSIZE;
2109
2110	rtm->rtm_type = RTN_MULTICAST;
2111	return 1;
 
 
 
 
2112}
2113
2114int ipmr_get_route(struct net *net, struct sk_buff *skb,
2115		   __be32 saddr, __be32 daddr,
2116		   struct rtmsg *rtm, int nowait)
2117{
2118	struct mfc_cache *cache;
2119	struct mr_table *mrt;
2120	int err;
2121
2122	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2123	if (!mrt)
2124		return -ENOENT;
2125
2126	rcu_read_lock();
2127	cache = ipmr_cache_find(mrt, saddr, daddr);
2128	if (!cache && skb->dev) {
2129		int vif = ipmr_find_vif(mrt, skb->dev);
2130
2131		if (vif >= 0)
2132			cache = ipmr_cache_find_any(mrt, daddr, vif);
2133	}
2134	if (!cache) {
2135		struct sk_buff *skb2;
2136		struct iphdr *iph;
2137		struct net_device *dev;
2138		int vif = -1;
2139
2140		if (nowait) {
2141			rcu_read_unlock();
2142			return -EAGAIN;
2143		}
2144
2145		dev = skb->dev;
2146		read_lock(&mrt_lock);
2147		if (dev)
2148			vif = ipmr_find_vif(mrt, dev);
2149		if (vif < 0) {
2150			read_unlock(&mrt_lock);
2151			rcu_read_unlock();
2152			return -ENODEV;
2153		}
2154		skb2 = skb_clone(skb, GFP_ATOMIC);
2155		if (!skb2) {
2156			read_unlock(&mrt_lock);
2157			rcu_read_unlock();
2158			return -ENOMEM;
2159		}
2160
2161		skb_push(skb2, sizeof(struct iphdr));
2162		skb_reset_network_header(skb2);
2163		iph = ip_hdr(skb2);
2164		iph->ihl = sizeof(struct iphdr) >> 2;
2165		iph->saddr = saddr;
2166		iph->daddr = daddr;
2167		iph->version = 0;
2168		err = ipmr_cache_unresolved(mrt, vif, skb2);
2169		read_unlock(&mrt_lock);
2170		rcu_read_unlock();
2171		return err;
2172	}
2173
2174	read_lock(&mrt_lock);
 
 
2175	err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2176	read_unlock(&mrt_lock);
2177	rcu_read_unlock();
2178	return err;
2179}
2180
2181static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2182			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2183			    int flags)
2184{
2185	struct nlmsghdr *nlh;
2186	struct rtmsg *rtm;
2187	int err;
2188
2189	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2190	if (!nlh)
2191		return -EMSGSIZE;
2192
2193	rtm = nlmsg_data(nlh);
2194	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2195	rtm->rtm_dst_len  = 32;
2196	rtm->rtm_src_len  = 32;
2197	rtm->rtm_tos      = 0;
2198	rtm->rtm_table    = mrt->id;
2199	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2200		goto nla_put_failure;
2201	rtm->rtm_type     = RTN_MULTICAST;
2202	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2203	if (c->mfc_flags & MFC_STATIC)
2204		rtm->rtm_protocol = RTPROT_STATIC;
2205	else
2206		rtm->rtm_protocol = RTPROT_MROUTED;
2207	rtm->rtm_flags    = 0;
2208
2209	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2210	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2211		goto nla_put_failure;
2212	err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2213	/* do not break the dump if cache is unresolved */
2214	if (err < 0 && err != -ENOENT)
2215		goto nla_put_failure;
2216
2217	nlmsg_end(skb, nlh);
2218	return 0;
2219
2220nla_put_failure:
2221	nlmsg_cancel(skb, nlh);
2222	return -EMSGSIZE;
2223}
2224
2225static size_t mroute_msgsize(bool unresolved, int maxvif)
2226{
2227	size_t len =
2228		NLMSG_ALIGN(sizeof(struct rtmsg))
2229		+ nla_total_size(4)	/* RTA_TABLE */
2230		+ nla_total_size(4)	/* RTA_SRC */
2231		+ nla_total_size(4)	/* RTA_DST */
2232		;
2233
2234	if (!unresolved)
2235		len = len
2236		      + nla_total_size(4)	/* RTA_IIF */
2237		      + nla_total_size(0)	/* RTA_MULTIPATH */
2238		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2239						/* RTA_MFC_STATS */
2240		      + nla_total_size(sizeof(struct rta_mfc_stats))
2241		;
2242
2243	return len;
2244}
2245
2246static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2247				 int cmd)
2248{
2249	struct net *net = read_pnet(&mrt->net);
2250	struct sk_buff *skb;
2251	int err = -ENOBUFS;
2252
2253	skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2254			GFP_ATOMIC);
2255	if (!skb)
2256		goto errout;
2257
2258	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2259	if (err < 0)
2260		goto errout;
2261
2262	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2263	return;
2264
2265errout:
2266	kfree_skb(skb);
2267	if (err < 0)
2268		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2269}
2270
2271static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2272{
2273	struct net *net = sock_net(skb->sk);
2274	struct mr_table *mrt;
2275	struct mfc_cache *mfc;
2276	unsigned int t = 0, s_t;
2277	unsigned int h = 0, s_h;
2278	unsigned int e = 0, s_e;
2279
2280	s_t = cb->args[0];
2281	s_h = cb->args[1];
2282	s_e = cb->args[2];
2283
2284	rcu_read_lock();
2285	ipmr_for_each_table(mrt, net) {
2286		if (t < s_t)
2287			goto next_table;
2288		if (t > s_t)
2289			s_h = 0;
2290		for (h = s_h; h < MFC_LINES; h++) {
2291			list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2292				if (e < s_e)
2293					goto next_entry;
2294				if (ipmr_fill_mroute(mrt, skb,
2295						     NETLINK_CB(cb->skb).portid,
2296						     cb->nlh->nlmsg_seq,
2297						     mfc, RTM_NEWROUTE,
2298						     NLM_F_MULTI) < 0)
2299					goto done;
2300next_entry:
2301				e++;
2302			}
2303			e = s_e = 0;
2304		}
2305		spin_lock_bh(&mfc_unres_lock);
2306		list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2307			if (e < s_e)
2308				goto next_entry2;
2309			if (ipmr_fill_mroute(mrt, skb,
2310					     NETLINK_CB(cb->skb).portid,
2311					     cb->nlh->nlmsg_seq,
2312					     mfc, RTM_NEWROUTE,
2313					     NLM_F_MULTI) < 0) {
2314				spin_unlock_bh(&mfc_unres_lock);
2315				goto done;
2316			}
2317next_entry2:
2318			e++;
2319		}
2320		spin_unlock_bh(&mfc_unres_lock);
2321		e = s_e = 0;
2322		s_h = 0;
2323next_table:
2324		t++;
2325	}
2326done:
2327	rcu_read_unlock();
2328
2329	cb->args[2] = e;
2330	cb->args[1] = h;
2331	cb->args[0] = t;
2332
2333	return skb->len;
2334}
2335
2336static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2337	[RTA_SRC]	= { .type = NLA_U32 },
2338	[RTA_DST]	= { .type = NLA_U32 },
2339	[RTA_IIF]	= { .type = NLA_U32 },
2340	[RTA_TABLE]	= { .type = NLA_U32 },
2341	[RTA_MULTIPATH]	= { .len = sizeof(struct rtnexthop) },
2342};
2343
2344static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2345{
2346	switch (rtm_protocol) {
2347	case RTPROT_STATIC:
2348	case RTPROT_MROUTED:
2349		return true;
2350	}
2351	return false;
2352}
2353
2354static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2355{
2356	struct rtnexthop *rtnh = nla_data(nla);
2357	int remaining = nla_len(nla), vifi = 0;
2358
2359	while (rtnh_ok(rtnh, remaining)) {
2360		mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2361		if (++vifi == MAXVIFS)
2362			break;
2363		rtnh = rtnh_next(rtnh, &remaining);
2364	}
2365
2366	return remaining > 0 ? -EINVAL : vifi;
2367}
2368
2369/* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2370static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2371			    struct mfcctl *mfcc, int *mrtsock,
2372			    struct mr_table **mrtret)
2373{
2374	struct net_device *dev = NULL;
2375	u32 tblid = RT_TABLE_DEFAULT;
2376	struct mr_table *mrt;
2377	struct nlattr *attr;
2378	struct rtmsg *rtm;
2379	int ret, rem;
2380
2381	ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy);
2382	if (ret < 0)
2383		goto out;
2384	rtm = nlmsg_data(nlh);
2385
2386	ret = -EINVAL;
2387	if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2388	    rtm->rtm_type != RTN_MULTICAST ||
2389	    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2390	    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2391		goto out;
2392
2393	memset(mfcc, 0, sizeof(*mfcc));
2394	mfcc->mfcc_parent = -1;
2395	ret = 0;
2396	nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2397		switch (nla_type(attr)) {
2398		case RTA_SRC:
2399			mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2400			break;
2401		case RTA_DST:
2402			mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2403			break;
2404		case RTA_IIF:
2405			dev = __dev_get_by_index(net, nla_get_u32(attr));
2406			if (!dev) {
2407				ret = -ENODEV;
2408				goto out;
2409			}
2410			break;
2411		case RTA_MULTIPATH:
2412			if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2413				ret = -EINVAL;
2414				goto out;
2415			}
2416			break;
2417		case RTA_PREFSRC:
2418			ret = 1;
2419			break;
2420		case RTA_TABLE:
2421			tblid = nla_get_u32(attr);
2422			break;
2423		}
2424	}
2425	mrt = ipmr_get_table(net, tblid);
2426	if (!mrt) {
2427		ret = -ENOENT;
2428		goto out;
2429	}
2430	*mrtret = mrt;
2431	*mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2432	if (dev)
2433		mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2434
2435out:
2436	return ret;
2437}
2438
2439/* takes care of both newroute and delroute */
2440static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh)
2441{
2442	struct net *net = sock_net(skb->sk);
2443	int ret, mrtsock, parent;
2444	struct mr_table *tbl;
2445	struct mfcctl mfcc;
2446
2447	mrtsock = 0;
2448	tbl = NULL;
2449	ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl);
2450	if (ret < 0)
2451		return ret;
2452
2453	parent = ret ? mfcc.mfcc_parent : -1;
2454	if (nlh->nlmsg_type == RTM_NEWROUTE)
2455		return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2456	else
2457		return ipmr_mfc_delete(tbl, &mfcc, parent);
2458}
2459
2460#ifdef CONFIG_PROC_FS
2461/* The /proc interfaces to multicast routing :
2462 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
 
2463 */
2464struct ipmr_vif_iter {
2465	struct seq_net_private p;
2466	struct mr_table *mrt;
2467	int ct;
2468};
2469
2470static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2471					   struct ipmr_vif_iter *iter,
2472					   loff_t pos)
2473{
2474	struct mr_table *mrt = iter->mrt;
2475
2476	for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2477		if (!VIF_EXISTS(mrt, iter->ct))
2478			continue;
2479		if (pos-- == 0)
2480			return &mrt->vif_table[iter->ct];
2481	}
2482	return NULL;
2483}
2484
2485static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2486	__acquires(mrt_lock)
2487{
2488	struct ipmr_vif_iter *iter = seq->private;
2489	struct net *net = seq_file_net(seq);
2490	struct mr_table *mrt;
2491
2492	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2493	if (!mrt)
2494		return ERR_PTR(-ENOENT);
2495
2496	iter->mrt = mrt;
2497
2498	read_lock(&mrt_lock);
2499	return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2500		: SEQ_START_TOKEN;
2501}
2502
2503static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2504{
2505	struct ipmr_vif_iter *iter = seq->private;
2506	struct net *net = seq_file_net(seq);
2507	struct mr_table *mrt = iter->mrt;
2508
2509	++*pos;
2510	if (v == SEQ_START_TOKEN)
2511		return ipmr_vif_seq_idx(net, iter, 0);
2512
2513	while (++iter->ct < mrt->maxvif) {
2514		if (!VIF_EXISTS(mrt, iter->ct))
2515			continue;
2516		return &mrt->vif_table[iter->ct];
2517	}
2518	return NULL;
2519}
2520
2521static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2522	__releases(mrt_lock)
2523{
2524	read_unlock(&mrt_lock);
2525}
2526
2527static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2528{
2529	struct ipmr_vif_iter *iter = seq->private;
2530	struct mr_table *mrt = iter->mrt;
2531
2532	if (v == SEQ_START_TOKEN) {
2533		seq_puts(seq,
2534			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2535	} else {
2536		const struct vif_device *vif = v;
2537		const char *name =  vif->dev ? vif->dev->name : "none";
2538
2539		seq_printf(seq,
2540			   "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2541			   vif - mrt->vif_table,
2542			   name, vif->bytes_in, vif->pkt_in,
2543			   vif->bytes_out, vif->pkt_out,
2544			   vif->flags, vif->local, vif->remote);
2545	}
2546	return 0;
2547}
2548
2549static const struct seq_operations ipmr_vif_seq_ops = {
2550	.start = ipmr_vif_seq_start,
2551	.next  = ipmr_vif_seq_next,
2552	.stop  = ipmr_vif_seq_stop,
2553	.show  = ipmr_vif_seq_show,
2554};
2555
2556static int ipmr_vif_open(struct inode *inode, struct file *file)
2557{
2558	return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2559			    sizeof(struct ipmr_vif_iter));
2560}
2561
2562static const struct file_operations ipmr_vif_fops = {
2563	.owner	 = THIS_MODULE,
2564	.open    = ipmr_vif_open,
2565	.read    = seq_read,
2566	.llseek  = seq_lseek,
2567	.release = seq_release_net,
2568};
2569
2570struct ipmr_mfc_iter {
2571	struct seq_net_private p;
2572	struct mr_table *mrt;
2573	struct list_head *cache;
2574	int ct;
2575};
2576
2577
2578static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2579					  struct ipmr_mfc_iter *it, loff_t pos)
2580{
2581	struct mr_table *mrt = it->mrt;
2582	struct mfc_cache *mfc;
2583
2584	rcu_read_lock();
2585	for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2586		it->cache = &mrt->mfc_cache_array[it->ct];
2587		list_for_each_entry_rcu(mfc, it->cache, list)
2588			if (pos-- == 0)
2589				return mfc;
2590	}
2591	rcu_read_unlock();
2592
2593	spin_lock_bh(&mfc_unres_lock);
2594	it->cache = &mrt->mfc_unres_queue;
2595	list_for_each_entry(mfc, it->cache, list)
2596		if (pos-- == 0)
2597			return mfc;
2598	spin_unlock_bh(&mfc_unres_lock);
2599
2600	it->cache = NULL;
2601	return NULL;
2602}
2603
2604
2605static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2606{
2607	struct ipmr_mfc_iter *it = seq->private;
2608	struct net *net = seq_file_net(seq);
2609	struct mr_table *mrt;
2610
2611	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2612	if (!mrt)
2613		return ERR_PTR(-ENOENT);
2614
2615	it->mrt = mrt;
2616	it->cache = NULL;
2617	it->ct = 0;
2618	return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2619		: SEQ_START_TOKEN;
2620}
2621
2622static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2623{
2624	struct mfc_cache *mfc = v;
2625	struct ipmr_mfc_iter *it = seq->private;
2626	struct net *net = seq_file_net(seq);
2627	struct mr_table *mrt = it->mrt;
2628
2629	++*pos;
2630
2631	if (v == SEQ_START_TOKEN)
2632		return ipmr_mfc_seq_idx(net, seq->private, 0);
2633
2634	if (mfc->list.next != it->cache)
2635		return list_entry(mfc->list.next, struct mfc_cache, list);
2636
2637	if (it->cache == &mrt->mfc_unres_queue)
2638		goto end_of_list;
2639
2640	BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2641
2642	while (++it->ct < MFC_LINES) {
2643		it->cache = &mrt->mfc_cache_array[it->ct];
2644		if (list_empty(it->cache))
2645			continue;
2646		return list_first_entry(it->cache, struct mfc_cache, list);
2647	}
2648
2649	/* exhausted cache_array, show unresolved */
2650	rcu_read_unlock();
2651	it->cache = &mrt->mfc_unres_queue;
2652	it->ct = 0;
2653
2654	spin_lock_bh(&mfc_unres_lock);
2655	if (!list_empty(it->cache))
2656		return list_first_entry(it->cache, struct mfc_cache, list);
2657
2658end_of_list:
2659	spin_unlock_bh(&mfc_unres_lock);
2660	it->cache = NULL;
2661
2662	return NULL;
2663}
2664
2665static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2666{
2667	struct ipmr_mfc_iter *it = seq->private;
2668	struct mr_table *mrt = it->mrt;
2669
2670	if (it->cache == &mrt->mfc_unres_queue)
2671		spin_unlock_bh(&mfc_unres_lock);
2672	else if (it->cache == &mrt->mfc_cache_array[it->ct])
2673		rcu_read_unlock();
2674}
2675
2676static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2677{
2678	int n;
2679
2680	if (v == SEQ_START_TOKEN) {
2681		seq_puts(seq,
2682		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2683	} else {
2684		const struct mfc_cache *mfc = v;
2685		const struct ipmr_mfc_iter *it = seq->private;
2686		const struct mr_table *mrt = it->mrt;
2687
2688		seq_printf(seq, "%08X %08X %-3hd",
2689			   (__force u32) mfc->mfc_mcastgrp,
2690			   (__force u32) mfc->mfc_origin,
2691			   mfc->mfc_parent);
2692
2693		if (it->cache != &mrt->mfc_unres_queue) {
2694			seq_printf(seq, " %8lu %8lu %8lu",
2695				   mfc->mfc_un.res.pkt,
2696				   mfc->mfc_un.res.bytes,
2697				   mfc->mfc_un.res.wrong_if);
2698			for (n = mfc->mfc_un.res.minvif;
2699			     n < mfc->mfc_un.res.maxvif; n++) {
2700				if (VIF_EXISTS(mrt, n) &&
2701				    mfc->mfc_un.res.ttls[n] < 255)
2702					seq_printf(seq,
2703					   " %2d:%-3d",
2704					   n, mfc->mfc_un.res.ttls[n]);
2705			}
2706		} else {
2707			/* unresolved mfc_caches don't contain
2708			 * pkt, bytes and wrong_if values
2709			 */
2710			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2711		}
2712		seq_putc(seq, '\n');
2713	}
2714	return 0;
2715}
2716
2717static const struct seq_operations ipmr_mfc_seq_ops = {
2718	.start = ipmr_mfc_seq_start,
2719	.next  = ipmr_mfc_seq_next,
2720	.stop  = ipmr_mfc_seq_stop,
2721	.show  = ipmr_mfc_seq_show,
2722};
2723
2724static int ipmr_mfc_open(struct inode *inode, struct file *file)
2725{
2726	return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2727			    sizeof(struct ipmr_mfc_iter));
2728}
2729
2730static const struct file_operations ipmr_mfc_fops = {
2731	.owner	 = THIS_MODULE,
2732	.open    = ipmr_mfc_open,
2733	.read    = seq_read,
2734	.llseek  = seq_lseek,
2735	.release = seq_release_net,
2736};
2737#endif
2738
2739#ifdef CONFIG_IP_PIMSM_V2
2740static const struct net_protocol pim_protocol = {
2741	.handler	=	pim_rcv,
2742	.netns_ok	=	1,
2743};
2744#endif
2745
2746/* Setup for IP multicast routing */
 
 
 
2747static int __net_init ipmr_net_init(struct net *net)
2748{
2749	int err;
2750
2751	err = ipmr_rules_init(net);
2752	if (err < 0)
2753		goto fail;
2754
2755#ifdef CONFIG_PROC_FS
2756	err = -ENOMEM;
2757	if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2758		goto proc_vif_fail;
2759	if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2760		goto proc_cache_fail;
2761#endif
2762	return 0;
2763
2764#ifdef CONFIG_PROC_FS
2765proc_cache_fail:
2766	remove_proc_entry("ip_mr_vif", net->proc_net);
2767proc_vif_fail:
2768	ipmr_rules_exit(net);
2769#endif
2770fail:
2771	return err;
2772}
2773
2774static void __net_exit ipmr_net_exit(struct net *net)
2775{
2776#ifdef CONFIG_PROC_FS
2777	remove_proc_entry("ip_mr_cache", net->proc_net);
2778	remove_proc_entry("ip_mr_vif", net->proc_net);
2779#endif
2780	ipmr_rules_exit(net);
2781}
2782
2783static struct pernet_operations ipmr_net_ops = {
2784	.init = ipmr_net_init,
2785	.exit = ipmr_net_exit,
2786};
2787
2788int __init ip_mr_init(void)
2789{
2790	int err;
2791
2792	mrt_cachep = kmem_cache_create("ip_mrt_cache",
2793				       sizeof(struct mfc_cache),
2794				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2795				       NULL);
 
 
2796
2797	err = register_pernet_subsys(&ipmr_net_ops);
2798	if (err)
2799		goto reg_pernet_fail;
2800
2801	err = register_netdevice_notifier(&ip_mr_notifier);
2802	if (err)
2803		goto reg_notif_fail;
2804#ifdef CONFIG_IP_PIMSM_V2
2805	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2806		pr_err("%s: can't add PIM protocol\n", __func__);
2807		err = -EAGAIN;
2808		goto add_proto_fail;
2809	}
2810#endif
2811	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2812		      NULL, ipmr_rtm_dumproute, NULL);
2813	rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
2814		      ipmr_rtm_route, NULL, NULL);
2815	rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
2816		      ipmr_rtm_route, NULL, NULL);
2817	return 0;
2818
2819#ifdef CONFIG_IP_PIMSM_V2
2820add_proto_fail:
2821	unregister_netdevice_notifier(&ip_mr_notifier);
2822#endif
2823reg_notif_fail:
2824	unregister_pernet_subsys(&ipmr_net_ops);
2825reg_pernet_fail:
2826	kmem_cache_destroy(mrt_cachep);
2827	return err;
2828}