Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *	IP multicast routing support for mrouted 3.6/3.8
   3 *
   4 *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
   5 *	  Linux Consultancy and Custom Driver Development
   6 *
   7 *	This program is free software; you can redistribute it and/or
   8 *	modify it under the terms of the GNU General Public License
   9 *	as published by the Free Software Foundation; either version
  10 *	2 of the License, or (at your option) any later version.
  11 *
  12 *	Fixes:
  13 *	Michael Chastain	:	Incorrect size of copying.
  14 *	Alan Cox		:	Added the cache manager code
  15 *	Alan Cox		:	Fixed the clone/copy bug and device race.
  16 *	Mike McLagan		:	Routing by source
  17 *	Malcolm Beattie		:	Buffer handling fixes.
  18 *	Alexey Kuznetsov	:	Double buffer free and other fixes.
  19 *	SVR Anand		:	Fixed several multicast bugs and problems.
  20 *	Alexey Kuznetsov	:	Status, optimisations and more.
  21 *	Brad Parker		:	Better behaviour on mrouted upcall
  22 *					overflow.
  23 *      Carlos Picoto           :       PIMv1 Support
  24 *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
  25 *					Relax this requirement to work with older peers.
  26 *
  27 */
  28
  29#include <asm/system.h>
  30#include <asm/uaccess.h>
  31#include <linux/types.h>
  32#include <linux/capability.h>
  33#include <linux/errno.h>
  34#include <linux/timer.h>
  35#include <linux/mm.h>
  36#include <linux/kernel.h>
  37#include <linux/fcntl.h>
  38#include <linux/stat.h>
  39#include <linux/socket.h>
  40#include <linux/in.h>
  41#include <linux/inet.h>
  42#include <linux/netdevice.h>
  43#include <linux/inetdevice.h>
  44#include <linux/igmp.h>
  45#include <linux/proc_fs.h>
  46#include <linux/seq_file.h>
  47#include <linux/mroute.h>
  48#include <linux/init.h>
  49#include <linux/if_ether.h>
  50#include <linux/slab.h>
  51#include <net/net_namespace.h>
  52#include <net/ip.h>
  53#include <net/protocol.h>
  54#include <linux/skbuff.h>
  55#include <net/route.h>
  56#include <net/sock.h>
  57#include <net/icmp.h>
  58#include <net/udp.h>
  59#include <net/raw.h>
  60#include <linux/notifier.h>
  61#include <linux/if_arp.h>
  62#include <linux/netfilter_ipv4.h>
  63#include <linux/compat.h>
  64#include <net/ipip.h>
 
  65#include <net/checksum.h>
  66#include <net/netlink.h>
  67#include <net/fib_rules.h>
 
  68
  69#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  70#define CONFIG_IP_PIMSM	1
  71#endif
  72
  73struct mr_table {
  74	struct list_head	list;
  75#ifdef CONFIG_NET_NS
  76	struct net		*net;
  77#endif
  78	u32			id;
  79	struct sock __rcu	*mroute_sk;
  80	struct timer_list	ipmr_expire_timer;
  81	struct list_head	mfc_unres_queue;
  82	struct list_head	mfc_cache_array[MFC_LINES];
  83	struct vif_device	vif_table[MAXVIFS];
  84	int			maxvif;
  85	atomic_t		cache_resolve_queue_len;
  86	int			mroute_do_assert;
  87	int			mroute_do_pim;
  88#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  89	int			mroute_reg_vif_num;
  90#endif
  91};
  92
  93struct ipmr_rule {
  94	struct fib_rule		common;
  95};
  96
  97struct ipmr_result {
  98	struct mr_table		*mrt;
  99};
 100
 101/* Big lock, protecting vif table, mrt cache and mroute socket state.
 102 * Note that the changes are semaphored via rtnl_lock.
 103 */
 104
 105static DEFINE_RWLOCK(mrt_lock);
 106
 107/*
 108 *	Multicast router control variables
 109 */
 110
 111#define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
 112
 113/* Special spinlock for queue of unresolved entries */
 114static DEFINE_SPINLOCK(mfc_unres_lock);
 115
 116/* We return to original Alan's scheme. Hash table of resolved
 117 * entries is changed only in process context and protected
 118 * with weak lock mrt_lock. Queue of unresolved entries is protected
 119 * with strong spinlock mfc_unres_lock.
 120 *
 121 * In this case data path is free of exclusive locks at all.
 122 */
 123
 124static struct kmem_cache *mrt_cachep __read_mostly;
 125
 126static struct mr_table *ipmr_new_table(struct net *net, u32 id);
 127static int ip_mr_forward(struct net *net, struct mr_table *mrt,
 128			 struct sk_buff *skb, struct mfc_cache *cache,
 129			 int local);
 
 
 130static int ipmr_cache_report(struct mr_table *mrt,
 131			     struct sk_buff *pkt, vifi_t vifi, int assert);
 132static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
 133			      struct mfc_cache *c, struct rtmsg *rtm);
 
 
 
 134static void ipmr_expire_process(unsigned long arg);
 135
 136#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 137#define ipmr_for_each_table(mrt, net) \
 138	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
 139
 140static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 141{
 142	struct mr_table *mrt;
 143
 144	ipmr_for_each_table(mrt, net) {
 145		if (mrt->id == id)
 146			return mrt;
 147	}
 148	return NULL;
 149}
 150
 151static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 152			   struct mr_table **mrt)
 153{
 154	struct ipmr_result res;
 155	struct fib_lookup_arg arg = { .result = &res, };
 156	int err;
 
 
 
 
 
 157
 158	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
 159			       flowi4_to_flowi(flp4), 0, &arg);
 160	if (err < 0)
 161		return err;
 162	*mrt = res.mrt;
 163	return 0;
 164}
 165
 166static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
 167			    int flags, struct fib_lookup_arg *arg)
 168{
 169	struct ipmr_result *res = arg->result;
 170	struct mr_table *mrt;
 171
 172	switch (rule->action) {
 173	case FR_ACT_TO_TBL:
 174		break;
 175	case FR_ACT_UNREACHABLE:
 176		return -ENETUNREACH;
 177	case FR_ACT_PROHIBIT:
 178		return -EACCES;
 179	case FR_ACT_BLACKHOLE:
 180	default:
 181		return -EINVAL;
 182	}
 183
 184	mrt = ipmr_get_table(rule->fr_net, rule->table);
 185	if (mrt == NULL)
 186		return -EAGAIN;
 187	res->mrt = mrt;
 188	return 0;
 189}
 190
 191static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
 192{
 193	return 1;
 194}
 195
 196static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
 197	FRA_GENERIC_POLICY,
 198};
 199
 200static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
 201			       struct fib_rule_hdr *frh, struct nlattr **tb)
 202{
 203	return 0;
 204}
 205
 206static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
 207			     struct nlattr **tb)
 208{
 209	return 1;
 210}
 211
 212static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
 213			  struct fib_rule_hdr *frh)
 214{
 215	frh->dst_len = 0;
 216	frh->src_len = 0;
 217	frh->tos     = 0;
 218	return 0;
 219}
 220
 221static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = {
 222	.family		= RTNL_FAMILY_IPMR,
 223	.rule_size	= sizeof(struct ipmr_rule),
 224	.addr_size	= sizeof(u32),
 225	.action		= ipmr_rule_action,
 226	.match		= ipmr_rule_match,
 227	.configure	= ipmr_rule_configure,
 228	.compare	= ipmr_rule_compare,
 229	.default_pref	= fib_default_rule_pref,
 230	.fill		= ipmr_rule_fill,
 231	.nlgroup	= RTNLGRP_IPV4_RULE,
 232	.policy		= ipmr_rule_policy,
 233	.owner		= THIS_MODULE,
 234};
 235
 236static int __net_init ipmr_rules_init(struct net *net)
 237{
 238	struct fib_rules_ops *ops;
 239	struct mr_table *mrt;
 240	int err;
 241
 242	ops = fib_rules_register(&ipmr_rules_ops_template, net);
 243	if (IS_ERR(ops))
 244		return PTR_ERR(ops);
 245
 246	INIT_LIST_HEAD(&net->ipv4.mr_tables);
 247
 248	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 249	if (mrt == NULL) {
 250		err = -ENOMEM;
 251		goto err1;
 252	}
 253
 254	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
 255	if (err < 0)
 256		goto err2;
 257
 258	net->ipv4.mr_rules_ops = ops;
 259	return 0;
 260
 261err2:
 262	kfree(mrt);
 263err1:
 264	fib_rules_unregister(ops);
 265	return err;
 266}
 267
 268static void __net_exit ipmr_rules_exit(struct net *net)
 269{
 270	struct mr_table *mrt, *next;
 271
 272	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
 273		list_del(&mrt->list);
 274		kfree(mrt);
 275	}
 276	fib_rules_unregister(net->ipv4.mr_rules_ops);
 277}
 278#else
 279#define ipmr_for_each_table(mrt, net) \
 280	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
 281
 282static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 283{
 284	return net->ipv4.mrt;
 285}
 286
 287static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 288			   struct mr_table **mrt)
 289{
 290	*mrt = net->ipv4.mrt;
 291	return 0;
 292}
 293
 294static int __net_init ipmr_rules_init(struct net *net)
 295{
 296	net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 297	return net->ipv4.mrt ? 0 : -ENOMEM;
 298}
 299
 300static void __net_exit ipmr_rules_exit(struct net *net)
 301{
 302	kfree(net->ipv4.mrt);
 303}
 304#endif
 305
 306static struct mr_table *ipmr_new_table(struct net *net, u32 id)
 307{
 308	struct mr_table *mrt;
 309	unsigned int i;
 310
 311	mrt = ipmr_get_table(net, id);
 312	if (mrt != NULL)
 313		return mrt;
 314
 315	mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
 316	if (mrt == NULL)
 317		return NULL;
 318	write_pnet(&mrt->net, net);
 319	mrt->id = id;
 320
 321	/* Forwarding cache */
 322	for (i = 0; i < MFC_LINES; i++)
 323		INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
 324
 325	INIT_LIST_HEAD(&mrt->mfc_unres_queue);
 326
 327	setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
 328		    (unsigned long)mrt);
 329
 330#ifdef CONFIG_IP_PIMSM
 331	mrt->mroute_reg_vif_num = -1;
 332#endif
 333#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 334	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
 335#endif
 336	return mrt;
 337}
 338
 
 
 
 
 
 
 
 339/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
 340
 341static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
 342{
 343	struct net *net = dev_net(dev);
 344
 345	dev_close(dev);
 346
 347	dev = __dev_get_by_name(net, "tunl0");
 348	if (dev) {
 349		const struct net_device_ops *ops = dev->netdev_ops;
 350		struct ifreq ifr;
 351		struct ip_tunnel_parm p;
 352
 353		memset(&p, 0, sizeof(p));
 354		p.iph.daddr = v->vifc_rmt_addr.s_addr;
 355		p.iph.saddr = v->vifc_lcl_addr.s_addr;
 356		p.iph.version = 4;
 357		p.iph.ihl = 5;
 358		p.iph.protocol = IPPROTO_IPIP;
 359		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 360		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 361
 362		if (ops->ndo_do_ioctl) {
 363			mm_segment_t oldfs = get_fs();
 364
 365			set_fs(KERNEL_DS);
 366			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
 367			set_fs(oldfs);
 368		}
 369	}
 370}
 371
 372static
 373struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
 374{
 375	struct net_device  *dev;
 376
 377	dev = __dev_get_by_name(net, "tunl0");
 378
 379	if (dev) {
 380		const struct net_device_ops *ops = dev->netdev_ops;
 381		int err;
 382		struct ifreq ifr;
 383		struct ip_tunnel_parm p;
 384		struct in_device  *in_dev;
 385
 386		memset(&p, 0, sizeof(p));
 387		p.iph.daddr = v->vifc_rmt_addr.s_addr;
 388		p.iph.saddr = v->vifc_lcl_addr.s_addr;
 389		p.iph.version = 4;
 390		p.iph.ihl = 5;
 391		p.iph.protocol = IPPROTO_IPIP;
 392		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 393		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 394
 395		if (ops->ndo_do_ioctl) {
 396			mm_segment_t oldfs = get_fs();
 397
 398			set_fs(KERNEL_DS);
 399			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
 400			set_fs(oldfs);
 401		} else {
 402			err = -EOPNOTSUPP;
 403		}
 404		dev = NULL;
 405
 406		if (err == 0 &&
 407		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
 408			dev->flags |= IFF_MULTICAST;
 409
 410			in_dev = __in_dev_get_rtnl(dev);
 411			if (in_dev == NULL)
 412				goto failure;
 413
 414			ipv4_devconf_setall(in_dev);
 
 415			IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 416
 417			if (dev_open(dev))
 418				goto failure;
 419			dev_hold(dev);
 420		}
 421	}
 422	return dev;
 423
 424failure:
 425	/* allow the register to be completed before unregistering. */
 426	rtnl_unlock();
 427	rtnl_lock();
 428
 429	unregister_netdevice(dev);
 430	return NULL;
 431}
 432
 433#ifdef CONFIG_IP_PIMSM
 434
 435static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
 436{
 437	struct net *net = dev_net(dev);
 438	struct mr_table *mrt;
 439	struct flowi4 fl4 = {
 440		.flowi4_oif	= dev->ifindex,
 441		.flowi4_iif	= skb->skb_iif,
 442		.flowi4_mark	= skb->mark,
 443	};
 444	int err;
 445
 446	err = ipmr_fib_lookup(net, &fl4, &mrt);
 447	if (err < 0) {
 448		kfree_skb(skb);
 449		return err;
 450	}
 451
 452	read_lock(&mrt_lock);
 453	dev->stats.tx_bytes += skb->len;
 454	dev->stats.tx_packets++;
 455	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
 456	read_unlock(&mrt_lock);
 457	kfree_skb(skb);
 458	return NETDEV_TX_OK;
 459}
 460
 461static const struct net_device_ops reg_vif_netdev_ops = {
 462	.ndo_start_xmit	= reg_vif_xmit,
 463};
 464
 465static void reg_vif_setup(struct net_device *dev)
 466{
 467	dev->type		= ARPHRD_PIMREG;
 468	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
 469	dev->flags		= IFF_NOARP;
 470	dev->netdev_ops		= &reg_vif_netdev_ops,
 471	dev->destructor		= free_netdev;
 472	dev->features		|= NETIF_F_NETNS_LOCAL;
 473}
 474
 475static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 476{
 477	struct net_device *dev;
 478	struct in_device *in_dev;
 479	char name[IFNAMSIZ];
 480
 481	if (mrt->id == RT_TABLE_DEFAULT)
 482		sprintf(name, "pimreg");
 483	else
 484		sprintf(name, "pimreg%u", mrt->id);
 485
 486	dev = alloc_netdev(0, name, reg_vif_setup);
 487
 488	if (dev == NULL)
 489		return NULL;
 490
 491	dev_net_set(dev, net);
 492
 493	if (register_netdevice(dev)) {
 494		free_netdev(dev);
 495		return NULL;
 496	}
 497	dev->iflink = 0;
 498
 499	rcu_read_lock();
 500	in_dev = __in_dev_get_rcu(dev);
 501	if (!in_dev) {
 502		rcu_read_unlock();
 503		goto failure;
 504	}
 505
 506	ipv4_devconf_setall(in_dev);
 
 507	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 508	rcu_read_unlock();
 509
 510	if (dev_open(dev))
 511		goto failure;
 512
 513	dev_hold(dev);
 514
 515	return dev;
 516
 517failure:
 518	/* allow the register to be completed before unregistering. */
 519	rtnl_unlock();
 520	rtnl_lock();
 521
 522	unregister_netdevice(dev);
 523	return NULL;
 524}
 525#endif
 526
 527/*
 528 *	Delete a VIF entry
 529 *	@notify: Set to 1, if the caller is a notifier_call
 530 */
 531
 532static int vif_delete(struct mr_table *mrt, int vifi, int notify,
 533		      struct list_head *head)
 534{
 535	struct vif_device *v;
 536	struct net_device *dev;
 537	struct in_device *in_dev;
 538
 539	if (vifi < 0 || vifi >= mrt->maxvif)
 540		return -EADDRNOTAVAIL;
 541
 542	v = &mrt->vif_table[vifi];
 543
 544	write_lock_bh(&mrt_lock);
 545	dev = v->dev;
 546	v->dev = NULL;
 547
 548	if (!dev) {
 549		write_unlock_bh(&mrt_lock);
 550		return -EADDRNOTAVAIL;
 551	}
 552
 553#ifdef CONFIG_IP_PIMSM
 554	if (vifi == mrt->mroute_reg_vif_num)
 555		mrt->mroute_reg_vif_num = -1;
 556#endif
 557
 558	if (vifi + 1 == mrt->maxvif) {
 559		int tmp;
 560
 561		for (tmp = vifi - 1; tmp >= 0; tmp--) {
 562			if (VIF_EXISTS(mrt, tmp))
 563				break;
 564		}
 565		mrt->maxvif = tmp+1;
 566	}
 567
 568	write_unlock_bh(&mrt_lock);
 569
 570	dev_set_allmulti(dev, -1);
 571
 572	in_dev = __in_dev_get_rtnl(dev);
 573	if (in_dev) {
 574		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
 
 
 
 575		ip_rt_multicast_event(in_dev);
 576	}
 577
 578	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
 579		unregister_netdevice_queue(dev, head);
 580
 581	dev_put(dev);
 582	return 0;
 583}
 584
 585static void ipmr_cache_free_rcu(struct rcu_head *head)
 586{
 587	struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
 588
 589	kmem_cache_free(mrt_cachep, c);
 590}
 591
 592static inline void ipmr_cache_free(struct mfc_cache *c)
 593{
 594	call_rcu(&c->rcu, ipmr_cache_free_rcu);
 595}
 596
 597/* Destroy an unresolved cache entry, killing queued skbs
 598 * and reporting error to netlink readers.
 599 */
 600
 601static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
 602{
 603	struct net *net = read_pnet(&mrt->net);
 604	struct sk_buff *skb;
 605	struct nlmsgerr *e;
 606
 607	atomic_dec(&mrt->cache_resolve_queue_len);
 608
 609	while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
 610		if (ip_hdr(skb)->version == 0) {
 611			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 612			nlh->nlmsg_type = NLMSG_ERROR;
 613			nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
 614			skb_trim(skb, nlh->nlmsg_len);
 615			e = NLMSG_DATA(nlh);
 616			e->error = -ETIMEDOUT;
 617			memset(&e->msg, 0, sizeof(e->msg));
 618
 619			rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
 620		} else {
 621			kfree_skb(skb);
 622		}
 623	}
 624
 625	ipmr_cache_free(c);
 626}
 627
 628
 629/* Timer process for the unresolved queue. */
 630
 631static void ipmr_expire_process(unsigned long arg)
 632{
 633	struct mr_table *mrt = (struct mr_table *)arg;
 634	unsigned long now;
 635	unsigned long expires;
 636	struct mfc_cache *c, *next;
 637
 638	if (!spin_trylock(&mfc_unres_lock)) {
 639		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
 640		return;
 641	}
 642
 643	if (list_empty(&mrt->mfc_unres_queue))
 644		goto out;
 645
 646	now = jiffies;
 647	expires = 10*HZ;
 648
 649	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
 650		if (time_after(c->mfc_un.unres.expires, now)) {
 651			unsigned long interval = c->mfc_un.unres.expires - now;
 652			if (interval < expires)
 653				expires = interval;
 654			continue;
 655		}
 656
 657		list_del(&c->list);
 
 658		ipmr_destroy_unres(mrt, c);
 659	}
 660
 661	if (!list_empty(&mrt->mfc_unres_queue))
 662		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
 663
 664out:
 665	spin_unlock(&mfc_unres_lock);
 666}
 667
 668/* Fill oifs list. It is called under write locked mrt_lock. */
 669
 670static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
 671				   unsigned char *ttls)
 672{
 673	int vifi;
 674
 675	cache->mfc_un.res.minvif = MAXVIFS;
 676	cache->mfc_un.res.maxvif = 0;
 677	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
 678
 679	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
 680		if (VIF_EXISTS(mrt, vifi) &&
 681		    ttls[vifi] && ttls[vifi] < 255) {
 682			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
 683			if (cache->mfc_un.res.minvif > vifi)
 684				cache->mfc_un.res.minvif = vifi;
 685			if (cache->mfc_un.res.maxvif <= vifi)
 686				cache->mfc_un.res.maxvif = vifi + 1;
 687		}
 688	}
 689}
 690
 691static int vif_add(struct net *net, struct mr_table *mrt,
 692		   struct vifctl *vifc, int mrtsock)
 693{
 694	int vifi = vifc->vifc_vifi;
 695	struct vif_device *v = &mrt->vif_table[vifi];
 696	struct net_device *dev;
 697	struct in_device *in_dev;
 698	int err;
 699
 700	/* Is vif busy ? */
 701	if (VIF_EXISTS(mrt, vifi))
 702		return -EADDRINUSE;
 703
 704	switch (vifc->vifc_flags) {
 705#ifdef CONFIG_IP_PIMSM
 706	case VIFF_REGISTER:
 707		/*
 708		 * Special Purpose VIF in PIM
 709		 * All the packets will be sent to the daemon
 710		 */
 711		if (mrt->mroute_reg_vif_num >= 0)
 712			return -EADDRINUSE;
 713		dev = ipmr_reg_vif(net, mrt);
 714		if (!dev)
 715			return -ENOBUFS;
 716		err = dev_set_allmulti(dev, 1);
 717		if (err) {
 718			unregister_netdevice(dev);
 719			dev_put(dev);
 720			return err;
 721		}
 722		break;
 723#endif
 724	case VIFF_TUNNEL:
 725		dev = ipmr_new_tunnel(net, vifc);
 726		if (!dev)
 727			return -ENOBUFS;
 728		err = dev_set_allmulti(dev, 1);
 729		if (err) {
 730			ipmr_del_tunnel(dev, vifc);
 731			dev_put(dev);
 732			return err;
 733		}
 734		break;
 735
 736	case VIFF_USE_IFINDEX:
 737	case 0:
 738		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
 739			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
 740			if (dev && __in_dev_get_rtnl(dev) == NULL) {
 741				dev_put(dev);
 742				return -EADDRNOTAVAIL;
 743			}
 744		} else {
 745			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
 746		}
 747		if (!dev)
 748			return -EADDRNOTAVAIL;
 749		err = dev_set_allmulti(dev, 1);
 750		if (err) {
 751			dev_put(dev);
 752			return err;
 753		}
 754		break;
 755	default:
 756		return -EINVAL;
 757	}
 758
 759	in_dev = __in_dev_get_rtnl(dev);
 760	if (!in_dev) {
 761		dev_put(dev);
 762		return -EADDRNOTAVAIL;
 763	}
 764	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
 
 
 765	ip_rt_multicast_event(in_dev);
 766
 767	/* Fill in the VIF structures */
 768
 769	v->rate_limit = vifc->vifc_rate_limit;
 770	v->local = vifc->vifc_lcl_addr.s_addr;
 771	v->remote = vifc->vifc_rmt_addr.s_addr;
 772	v->flags = vifc->vifc_flags;
 773	if (!mrtsock)
 774		v->flags |= VIFF_STATIC;
 775	v->threshold = vifc->vifc_threshold;
 776	v->bytes_in = 0;
 777	v->bytes_out = 0;
 778	v->pkt_in = 0;
 779	v->pkt_out = 0;
 780	v->link = dev->ifindex;
 781	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
 782		v->link = dev->iflink;
 783
 784	/* And finish update writing critical data */
 785	write_lock_bh(&mrt_lock);
 786	v->dev = dev;
 787#ifdef CONFIG_IP_PIMSM
 788	if (v->flags & VIFF_REGISTER)
 789		mrt->mroute_reg_vif_num = vifi;
 790#endif
 791	if (vifi+1 > mrt->maxvif)
 792		mrt->maxvif = vifi+1;
 793	write_unlock_bh(&mrt_lock);
 794	return 0;
 795}
 796
 797/* called with rcu_read_lock() */
 798static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
 799					 __be32 origin,
 800					 __be32 mcastgrp)
 801{
 802	int line = MFC_HASH(mcastgrp, origin);
 803	struct mfc_cache *c;
 804
 805	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
 806		if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
 807			return c;
 808	}
 809	return NULL;
 810}
 811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 812/*
 813 *	Allocate a multicast cache entry
 814 */
 815static struct mfc_cache *ipmr_cache_alloc(void)
 816{
 817	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
 818
 819	if (c)
 820		c->mfc_un.res.minvif = MAXVIFS;
 821	return c;
 822}
 823
 824static struct mfc_cache *ipmr_cache_alloc_unres(void)
 825{
 826	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
 827
 828	if (c) {
 829		skb_queue_head_init(&c->mfc_un.unres.unresolved);
 830		c->mfc_un.unres.expires = jiffies + 10*HZ;
 831	}
 832	return c;
 833}
 834
 835/*
 836 *	A cache entry has gone into a resolved state from queued
 837 */
 838
 839static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
 840			       struct mfc_cache *uc, struct mfc_cache *c)
 841{
 842	struct sk_buff *skb;
 843	struct nlmsgerr *e;
 844
 845	/* Play the pending entries through our router */
 846
 847	while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
 848		if (ip_hdr(skb)->version == 0) {
 849			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 850
 851			if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
 852				nlh->nlmsg_len = skb_tail_pointer(skb) -
 853						 (u8 *)nlh;
 854			} else {
 855				nlh->nlmsg_type = NLMSG_ERROR;
 856				nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
 857				skb_trim(skb, nlh->nlmsg_len);
 858				e = NLMSG_DATA(nlh);
 859				e->error = -EMSGSIZE;
 860				memset(&e->msg, 0, sizeof(e->msg));
 861			}
 862
 863			rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
 864		} else {
 865			ip_mr_forward(net, mrt, skb, c, 0);
 866		}
 867	}
 868}
 869
 870/*
 871 *	Bounce a cache query up to mrouted. We could use netlink for this but mrouted
 872 *	expects the following bizarre scheme.
 873 *
 874 *	Called under mrt_lock.
 875 */
 876
 877static int ipmr_cache_report(struct mr_table *mrt,
 878			     struct sk_buff *pkt, vifi_t vifi, int assert)
 879{
 880	struct sk_buff *skb;
 881	const int ihl = ip_hdrlen(pkt);
 882	struct igmphdr *igmp;
 883	struct igmpmsg *msg;
 884	struct sock *mroute_sk;
 885	int ret;
 886
 887#ifdef CONFIG_IP_PIMSM
 888	if (assert == IGMPMSG_WHOLEPKT)
 889		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
 890	else
 891#endif
 892		skb = alloc_skb(128, GFP_ATOMIC);
 893
 894	if (!skb)
 895		return -ENOBUFS;
 896
 897#ifdef CONFIG_IP_PIMSM
 898	if (assert == IGMPMSG_WHOLEPKT) {
 899		/* Ugly, but we have no choice with this interface.
 900		 * Duplicate old header, fix ihl, length etc.
 901		 * And all this only to mangle msg->im_msgtype and
 902		 * to set msg->im_mbz to "mbz" :-)
 903		 */
 904		skb_push(skb, sizeof(struct iphdr));
 905		skb_reset_network_header(skb);
 906		skb_reset_transport_header(skb);
 907		msg = (struct igmpmsg *)skb_network_header(skb);
 908		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
 909		msg->im_msgtype = IGMPMSG_WHOLEPKT;
 910		msg->im_mbz = 0;
 911		msg->im_vif = mrt->mroute_reg_vif_num;
 912		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
 913		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
 914					     sizeof(struct iphdr));
 915	} else
 916#endif
 917	{
 918
 919	/* Copy the IP header */
 920
 921	skb->network_header = skb->tail;
 922	skb_put(skb, ihl);
 923	skb_copy_to_linear_data(skb, pkt->data, ihl);
 924	ip_hdr(skb)->protocol = 0;	/* Flag to the kernel this is a route add */
 925	msg = (struct igmpmsg *)skb_network_header(skb);
 926	msg->im_vif = vifi;
 927	skb_dst_set(skb, dst_clone(skb_dst(pkt)));
 928
 929	/* Add our header */
 930
 931	igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
 932	igmp->type	=
 933	msg->im_msgtype = assert;
 934	igmp->code	= 0;
 935	ip_hdr(skb)->tot_len = htons(skb->len);		/* Fix the length */
 936	skb->transport_header = skb->network_header;
 937	}
 938
 939	rcu_read_lock();
 940	mroute_sk = rcu_dereference(mrt->mroute_sk);
 941	if (mroute_sk == NULL) {
 942		rcu_read_unlock();
 943		kfree_skb(skb);
 944		return -EINVAL;
 945	}
 946
 947	/* Deliver to mrouted */
 948
 949	ret = sock_queue_rcv_skb(mroute_sk, skb);
 950	rcu_read_unlock();
 951	if (ret < 0) {
 952		if (net_ratelimit())
 953			printk(KERN_WARNING "mroute: pending queue full, dropping entries.\n");
 954		kfree_skb(skb);
 955	}
 956
 957	return ret;
 958}
 959
 960/*
 961 *	Queue a packet for resolution. It gets locked cache entry!
 962 */
 963
 964static int
 965ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
 966{
 967	bool found = false;
 968	int err;
 969	struct mfc_cache *c;
 970	const struct iphdr *iph = ip_hdr(skb);
 971
 972	spin_lock_bh(&mfc_unres_lock);
 973	list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
 974		if (c->mfc_mcastgrp == iph->daddr &&
 975		    c->mfc_origin == iph->saddr) {
 976			found = true;
 977			break;
 978		}
 979	}
 980
 981	if (!found) {
 982		/* Create a new entry if allowable */
 983
 984		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
 985		    (c = ipmr_cache_alloc_unres()) == NULL) {
 986			spin_unlock_bh(&mfc_unres_lock);
 987
 988			kfree_skb(skb);
 989			return -ENOBUFS;
 990		}
 991
 992		/* Fill in the new cache entry */
 993
 994		c->mfc_parent	= -1;
 995		c->mfc_origin	= iph->saddr;
 996		c->mfc_mcastgrp	= iph->daddr;
 997
 998		/* Reflect first query at mrouted. */
 999
1000		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1001		if (err < 0) {
1002			/* If the report failed throw the cache entry
1003			   out - Brad Parker
1004			 */
1005			spin_unlock_bh(&mfc_unres_lock);
1006
1007			ipmr_cache_free(c);
1008			kfree_skb(skb);
1009			return err;
1010		}
1011
1012		atomic_inc(&mrt->cache_resolve_queue_len);
1013		list_add(&c->list, &mrt->mfc_unres_queue);
 
1014
1015		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1016			mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1017	}
1018
1019	/* See if we can append the packet */
1020
1021	if (c->mfc_un.unres.unresolved.qlen > 3) {
1022		kfree_skb(skb);
1023		err = -ENOBUFS;
1024	} else {
1025		skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1026		err = 0;
1027	}
1028
1029	spin_unlock_bh(&mfc_unres_lock);
1030	return err;
1031}
1032
1033/*
1034 *	MFC cache manipulation by user space mroute daemon
1035 */
1036
1037static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc)
1038{
1039	int line;
1040	struct mfc_cache *c, *next;
1041
1042	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1043
1044	list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1045		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1046		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
 
1047			list_del_rcu(&c->list);
1048
1049			ipmr_cache_free(c);
1050			return 0;
1051		}
1052	}
1053	return -ENOENT;
1054}
1055
1056static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1057			struct mfcctl *mfc, int mrtsock)
1058{
1059	bool found = false;
1060	int line;
1061	struct mfc_cache *uc, *c;
1062
1063	if (mfc->mfcc_parent >= MAXVIFS)
1064		return -ENFILE;
1065
1066	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1067
1068	list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1069		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1070		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
 
1071			found = true;
1072			break;
1073		}
1074	}
1075
1076	if (found) {
1077		write_lock_bh(&mrt_lock);
1078		c->mfc_parent = mfc->mfcc_parent;
1079		ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1080		if (!mrtsock)
1081			c->mfc_flags |= MFC_STATIC;
1082		write_unlock_bh(&mrt_lock);
 
1083		return 0;
1084	}
1085
1086	if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
 
1087		return -EINVAL;
1088
1089	c = ipmr_cache_alloc();
1090	if (c == NULL)
1091		return -ENOMEM;
1092
1093	c->mfc_origin = mfc->mfcc_origin.s_addr;
1094	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1095	c->mfc_parent = mfc->mfcc_parent;
1096	ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1097	if (!mrtsock)
1098		c->mfc_flags |= MFC_STATIC;
1099
1100	list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1101
1102	/*
1103	 *	Check to see if we resolved a queued list. If so we
1104	 *	need to send on the frames and tidy up.
1105	 */
1106	found = false;
1107	spin_lock_bh(&mfc_unres_lock);
1108	list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1109		if (uc->mfc_origin == c->mfc_origin &&
1110		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1111			list_del(&uc->list);
1112			atomic_dec(&mrt->cache_resolve_queue_len);
1113			found = true;
1114			break;
1115		}
1116	}
1117	if (list_empty(&mrt->mfc_unres_queue))
1118		del_timer(&mrt->ipmr_expire_timer);
1119	spin_unlock_bh(&mfc_unres_lock);
1120
1121	if (found) {
1122		ipmr_cache_resolve(net, mrt, uc, c);
1123		ipmr_cache_free(uc);
1124	}
 
1125	return 0;
1126}
1127
1128/*
1129 *	Close the multicast socket, and clear the vif tables etc
1130 */
1131
1132static void mroute_clean_tables(struct mr_table *mrt)
1133{
1134	int i;
1135	LIST_HEAD(list);
1136	struct mfc_cache *c, *next;
1137
1138	/* Shut down all active vif entries */
1139
1140	for (i = 0; i < mrt->maxvif; i++) {
1141		if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1142			vif_delete(mrt, i, 0, &list);
1143	}
1144	unregister_netdevice_many(&list);
1145
1146	/* Wipe the cache */
1147
1148	for (i = 0; i < MFC_LINES; i++) {
1149		list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1150			if (c->mfc_flags & MFC_STATIC)
1151				continue;
1152			list_del_rcu(&c->list);
 
1153			ipmr_cache_free(c);
1154		}
1155	}
1156
1157	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1158		spin_lock_bh(&mfc_unres_lock);
1159		list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1160			list_del(&c->list);
 
1161			ipmr_destroy_unres(mrt, c);
1162		}
1163		spin_unlock_bh(&mfc_unres_lock);
1164	}
1165}
1166
1167/* called from ip_ra_control(), before an RCU grace period,
1168 * we dont need to call synchronize_rcu() here
1169 */
1170static void mrtsock_destruct(struct sock *sk)
1171{
1172	struct net *net = sock_net(sk);
1173	struct mr_table *mrt;
1174
1175	rtnl_lock();
1176	ipmr_for_each_table(mrt, net) {
1177		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1178			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1179			rcu_assign_pointer(mrt->mroute_sk, NULL);
 
 
 
1180			mroute_clean_tables(mrt);
1181		}
1182	}
1183	rtnl_unlock();
1184}
1185
1186/*
1187 *	Socket options and virtual interface manipulation. The whole
1188 *	virtual interface system is a complete heap, but unfortunately
1189 *	that's how BSD mrouted happens to think. Maybe one day with a proper
1190 *	MOSPF/PIM router set up we can clean this up.
1191 */
1192
1193int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1194{
1195	int ret;
1196	struct vifctl vif;
1197	struct mfcctl mfc;
1198	struct net *net = sock_net(sk);
1199	struct mr_table *mrt;
1200
 
 
 
 
1201	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1202	if (mrt == NULL)
1203		return -ENOENT;
1204
1205	if (optname != MRT_INIT) {
1206		if (sk != rcu_dereference_raw(mrt->mroute_sk) &&
1207		    !capable(CAP_NET_ADMIN))
1208			return -EACCES;
1209	}
1210
1211	switch (optname) {
1212	case MRT_INIT:
1213		if (sk->sk_type != SOCK_RAW ||
1214		    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1215			return -EOPNOTSUPP;
1216		if (optlen != sizeof(int))
1217			return -ENOPROTOOPT;
1218
1219		rtnl_lock();
1220		if (rtnl_dereference(mrt->mroute_sk)) {
1221			rtnl_unlock();
1222			return -EADDRINUSE;
1223		}
1224
1225		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1226		if (ret == 0) {
1227			rcu_assign_pointer(mrt->mroute_sk, sk);
1228			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
 
 
 
1229		}
1230		rtnl_unlock();
1231		return ret;
1232	case MRT_DONE:
1233		if (sk != rcu_dereference_raw(mrt->mroute_sk))
1234			return -EACCES;
1235		return ip_ra_control(sk, 0, NULL);
1236	case MRT_ADD_VIF:
1237	case MRT_DEL_VIF:
1238		if (optlen != sizeof(vif))
1239			return -EINVAL;
1240		if (copy_from_user(&vif, optval, sizeof(vif)))
1241			return -EFAULT;
1242		if (vif.vifc_vifi >= MAXVIFS)
1243			return -ENFILE;
1244		rtnl_lock();
1245		if (optname == MRT_ADD_VIF) {
1246			ret = vif_add(net, mrt, &vif,
1247				      sk == rtnl_dereference(mrt->mroute_sk));
1248		} else {
1249			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1250		}
1251		rtnl_unlock();
1252		return ret;
1253
1254		/*
1255		 *	Manipulate the forwarding caches. These live
1256		 *	in a sort of kernel/user symbiosis.
1257		 */
1258	case MRT_ADD_MFC:
1259	case MRT_DEL_MFC:
 
 
 
1260		if (optlen != sizeof(mfc))
1261			return -EINVAL;
1262		if (copy_from_user(&mfc, optval, sizeof(mfc)))
1263			return -EFAULT;
 
 
1264		rtnl_lock();
1265		if (optname == MRT_DEL_MFC)
1266			ret = ipmr_mfc_delete(mrt, &mfc);
1267		else
1268			ret = ipmr_mfc_add(net, mrt, &mfc,
1269					   sk == rtnl_dereference(mrt->mroute_sk));
 
1270		rtnl_unlock();
1271		return ret;
1272		/*
1273		 *	Control PIM assert.
1274		 */
1275	case MRT_ASSERT:
1276	{
1277		int v;
 
 
1278		if (get_user(v, (int __user *)optval))
1279			return -EFAULT;
1280		mrt->mroute_do_assert = (v) ? 1 : 0;
1281		return 0;
1282	}
1283#ifdef CONFIG_IP_PIMSM
1284	case MRT_PIM:
1285	{
1286		int v;
1287
 
 
1288		if (get_user(v, (int __user *)optval))
1289			return -EFAULT;
1290		v = (v) ? 1 : 0;
1291
1292		rtnl_lock();
1293		ret = 0;
1294		if (v != mrt->mroute_do_pim) {
1295			mrt->mroute_do_pim = v;
1296			mrt->mroute_do_assert = v;
1297		}
1298		rtnl_unlock();
1299		return ret;
1300	}
1301#endif
1302#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1303	case MRT_TABLE:
1304	{
1305		u32 v;
1306
1307		if (optlen != sizeof(u32))
1308			return -EINVAL;
1309		if (get_user(v, (u32 __user *)optval))
1310			return -EFAULT;
1311
 
 
 
 
1312		rtnl_lock();
1313		ret = 0;
1314		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1315			ret = -EBUSY;
1316		} else {
1317			if (!ipmr_new_table(net, v))
1318				ret = -ENOMEM;
1319			raw_sk(sk)->ipmr_table = v;
 
1320		}
1321		rtnl_unlock();
1322		return ret;
1323	}
1324#endif
1325	/*
1326	 *	Spurious command, or MRT_VERSION which you cannot
1327	 *	set.
1328	 */
1329	default:
1330		return -ENOPROTOOPT;
1331	}
1332}
1333
1334/*
1335 *	Getsock opt support for the multicast routing system.
1336 */
1337
1338int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1339{
1340	int olr;
1341	int val;
1342	struct net *net = sock_net(sk);
1343	struct mr_table *mrt;
1344
 
 
 
 
1345	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1346	if (mrt == NULL)
1347		return -ENOENT;
1348
1349	if (optname != MRT_VERSION &&
1350#ifdef CONFIG_IP_PIMSM
1351	   optname != MRT_PIM &&
1352#endif
1353	   optname != MRT_ASSERT)
1354		return -ENOPROTOOPT;
1355
1356	if (get_user(olr, optlen))
1357		return -EFAULT;
1358
1359	olr = min_t(unsigned int, olr, sizeof(int));
1360	if (olr < 0)
1361		return -EINVAL;
1362
1363	if (put_user(olr, optlen))
1364		return -EFAULT;
1365	if (optname == MRT_VERSION)
1366		val = 0x0305;
1367#ifdef CONFIG_IP_PIMSM
1368	else if (optname == MRT_PIM)
1369		val = mrt->mroute_do_pim;
1370#endif
1371	else
1372		val = mrt->mroute_do_assert;
1373	if (copy_to_user(optval, &val, olr))
1374		return -EFAULT;
1375	return 0;
1376}
1377
1378/*
1379 *	The IP multicast ioctl support routines.
1380 */
1381
1382int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1383{
1384	struct sioc_sg_req sr;
1385	struct sioc_vif_req vr;
1386	struct vif_device *vif;
1387	struct mfc_cache *c;
1388	struct net *net = sock_net(sk);
1389	struct mr_table *mrt;
1390
1391	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1392	if (mrt == NULL)
1393		return -ENOENT;
1394
1395	switch (cmd) {
1396	case SIOCGETVIFCNT:
1397		if (copy_from_user(&vr, arg, sizeof(vr)))
1398			return -EFAULT;
1399		if (vr.vifi >= mrt->maxvif)
1400			return -EINVAL;
1401		read_lock(&mrt_lock);
1402		vif = &mrt->vif_table[vr.vifi];
1403		if (VIF_EXISTS(mrt, vr.vifi)) {
1404			vr.icount = vif->pkt_in;
1405			vr.ocount = vif->pkt_out;
1406			vr.ibytes = vif->bytes_in;
1407			vr.obytes = vif->bytes_out;
1408			read_unlock(&mrt_lock);
1409
1410			if (copy_to_user(arg, &vr, sizeof(vr)))
1411				return -EFAULT;
1412			return 0;
1413		}
1414		read_unlock(&mrt_lock);
1415		return -EADDRNOTAVAIL;
1416	case SIOCGETSGCNT:
1417		if (copy_from_user(&sr, arg, sizeof(sr)))
1418			return -EFAULT;
1419
1420		rcu_read_lock();
1421		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1422		if (c) {
1423			sr.pktcnt = c->mfc_un.res.pkt;
1424			sr.bytecnt = c->mfc_un.res.bytes;
1425			sr.wrong_if = c->mfc_un.res.wrong_if;
1426			rcu_read_unlock();
1427
1428			if (copy_to_user(arg, &sr, sizeof(sr)))
1429				return -EFAULT;
1430			return 0;
1431		}
1432		rcu_read_unlock();
1433		return -EADDRNOTAVAIL;
1434	default:
1435		return -ENOIOCTLCMD;
1436	}
1437}
1438
1439#ifdef CONFIG_COMPAT
1440struct compat_sioc_sg_req {
1441	struct in_addr src;
1442	struct in_addr grp;
1443	compat_ulong_t pktcnt;
1444	compat_ulong_t bytecnt;
1445	compat_ulong_t wrong_if;
1446};
1447
1448struct compat_sioc_vif_req {
1449	vifi_t	vifi;		/* Which iface */
1450	compat_ulong_t icount;
1451	compat_ulong_t ocount;
1452	compat_ulong_t ibytes;
1453	compat_ulong_t obytes;
1454};
1455
1456int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1457{
1458	struct compat_sioc_sg_req sr;
1459	struct compat_sioc_vif_req vr;
1460	struct vif_device *vif;
1461	struct mfc_cache *c;
1462	struct net *net = sock_net(sk);
1463	struct mr_table *mrt;
1464
1465	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1466	if (mrt == NULL)
1467		return -ENOENT;
1468
1469	switch (cmd) {
1470	case SIOCGETVIFCNT:
1471		if (copy_from_user(&vr, arg, sizeof(vr)))
1472			return -EFAULT;
1473		if (vr.vifi >= mrt->maxvif)
1474			return -EINVAL;
1475		read_lock(&mrt_lock);
1476		vif = &mrt->vif_table[vr.vifi];
1477		if (VIF_EXISTS(mrt, vr.vifi)) {
1478			vr.icount = vif->pkt_in;
1479			vr.ocount = vif->pkt_out;
1480			vr.ibytes = vif->bytes_in;
1481			vr.obytes = vif->bytes_out;
1482			read_unlock(&mrt_lock);
1483
1484			if (copy_to_user(arg, &vr, sizeof(vr)))
1485				return -EFAULT;
1486			return 0;
1487		}
1488		read_unlock(&mrt_lock);
1489		return -EADDRNOTAVAIL;
1490	case SIOCGETSGCNT:
1491		if (copy_from_user(&sr, arg, sizeof(sr)))
1492			return -EFAULT;
1493
1494		rcu_read_lock();
1495		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1496		if (c) {
1497			sr.pktcnt = c->mfc_un.res.pkt;
1498			sr.bytecnt = c->mfc_un.res.bytes;
1499			sr.wrong_if = c->mfc_un.res.wrong_if;
1500			rcu_read_unlock();
1501
1502			if (copy_to_user(arg, &sr, sizeof(sr)))
1503				return -EFAULT;
1504			return 0;
1505		}
1506		rcu_read_unlock();
1507		return -EADDRNOTAVAIL;
1508	default:
1509		return -ENOIOCTLCMD;
1510	}
1511}
1512#endif
1513
1514
1515static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1516{
1517	struct net_device *dev = ptr;
1518	struct net *net = dev_net(dev);
1519	struct mr_table *mrt;
1520	struct vif_device *v;
1521	int ct;
1522	LIST_HEAD(list);
1523
1524	if (event != NETDEV_UNREGISTER)
1525		return NOTIFY_DONE;
1526
1527	ipmr_for_each_table(mrt, net) {
1528		v = &mrt->vif_table[0];
1529		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1530			if (v->dev == dev)
1531				vif_delete(mrt, ct, 1, &list);
1532		}
1533	}
1534	unregister_netdevice_many(&list);
1535	return NOTIFY_DONE;
1536}
1537
1538
1539static struct notifier_block ip_mr_notifier = {
1540	.notifier_call = ipmr_device_event,
1541};
1542
1543/*
1544 *	Encapsulate a packet by attaching a valid IPIP header to it.
1545 *	This avoids tunnel drivers and other mess and gives us the speed so
1546 *	important for multicast video.
1547 */
1548
1549static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1550{
1551	struct iphdr *iph;
1552	const struct iphdr *old_iph = ip_hdr(skb);
1553
1554	skb_push(skb, sizeof(struct iphdr));
1555	skb->transport_header = skb->network_header;
1556	skb_reset_network_header(skb);
1557	iph = ip_hdr(skb);
1558
1559	iph->version	=	4;
1560	iph->tos	=	old_iph->tos;
1561	iph->ttl	=	old_iph->ttl;
1562	iph->frag_off	=	0;
1563	iph->daddr	=	daddr;
1564	iph->saddr	=	saddr;
1565	iph->protocol	=	IPPROTO_IPIP;
1566	iph->ihl	=	5;
1567	iph->tot_len	=	htons(skb->len);
1568	ip_select_ident(iph, skb_dst(skb), NULL);
1569	ip_send_check(iph);
1570
1571	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1572	nf_reset(skb);
1573}
1574
1575static inline int ipmr_forward_finish(struct sk_buff *skb)
1576{
1577	struct ip_options *opt = &(IPCB(skb)->opt);
1578
1579	IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
 
1580
1581	if (unlikely(opt->optlen))
1582		ip_forward_options(skb);
1583
1584	return dst_output(skb);
1585}
1586
1587/*
1588 *	Processing handlers for ipmr_forward
1589 */
1590
1591static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1592			    struct sk_buff *skb, struct mfc_cache *c, int vifi)
1593{
1594	const struct iphdr *iph = ip_hdr(skb);
1595	struct vif_device *vif = &mrt->vif_table[vifi];
1596	struct net_device *dev;
1597	struct rtable *rt;
1598	struct flowi4 fl4;
1599	int    encap = 0;
1600
1601	if (vif->dev == NULL)
1602		goto out_free;
1603
1604#ifdef CONFIG_IP_PIMSM
1605	if (vif->flags & VIFF_REGISTER) {
1606		vif->pkt_out++;
1607		vif->bytes_out += skb->len;
1608		vif->dev->stats.tx_bytes += skb->len;
1609		vif->dev->stats.tx_packets++;
1610		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1611		goto out_free;
1612	}
1613#endif
1614
1615	if (vif->flags & VIFF_TUNNEL) {
1616		rt = ip_route_output_ports(net, &fl4, NULL,
1617					   vif->remote, vif->local,
1618					   0, 0,
1619					   IPPROTO_IPIP,
1620					   RT_TOS(iph->tos), vif->link);
1621		if (IS_ERR(rt))
1622			goto out_free;
1623		encap = sizeof(struct iphdr);
1624	} else {
1625		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1626					   0, 0,
1627					   IPPROTO_IPIP,
1628					   RT_TOS(iph->tos), vif->link);
1629		if (IS_ERR(rt))
1630			goto out_free;
1631	}
1632
1633	dev = rt->dst.dev;
1634
1635	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1636		/* Do not fragment multicasts. Alas, IPv4 does not
1637		 * allow to send ICMP, so that packets will disappear
1638		 * to blackhole.
1639		 */
1640
1641		IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1642		ip_rt_put(rt);
1643		goto out_free;
1644	}
1645
1646	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1647
1648	if (skb_cow(skb, encap)) {
1649		ip_rt_put(rt);
1650		goto out_free;
1651	}
1652
1653	vif->pkt_out++;
1654	vif->bytes_out += skb->len;
1655
1656	skb_dst_drop(skb);
1657	skb_dst_set(skb, &rt->dst);
1658	ip_decrease_ttl(ip_hdr(skb));
1659
1660	/* FIXME: forward and output firewalls used to be called here.
1661	 * What do we do with netfilter? -- RR
1662	 */
1663	if (vif->flags & VIFF_TUNNEL) {
1664		ip_encap(skb, vif->local, vif->remote);
1665		/* FIXME: extra output firewall step used to be here. --RR */
1666		vif->dev->stats.tx_packets++;
1667		vif->dev->stats.tx_bytes += skb->len;
1668	}
1669
1670	IPCB(skb)->flags |= IPSKB_FORWARDED;
1671
1672	/*
1673	 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1674	 * not only before forwarding, but after forwarding on all output
1675	 * interfaces. It is clear, if mrouter runs a multicasting
1676	 * program, it should receive packets not depending to what interface
1677	 * program is joined.
1678	 * If we will not make it, the program will have to join on all
1679	 * interfaces. On the other hand, multihoming host (or router, but
1680	 * not mrouter) cannot join to more than one interface - it will
1681	 * result in receiving multiple packets.
1682	 */
1683	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1684		ipmr_forward_finish);
1685	return;
1686
1687out_free:
1688	kfree_skb(skb);
1689}
1690
1691static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1692{
1693	int ct;
1694
1695	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1696		if (mrt->vif_table[ct].dev == dev)
1697			break;
1698	}
1699	return ct;
1700}
1701
1702/* "local" means that we should preserve one skb (for local delivery) */
1703
1704static int ip_mr_forward(struct net *net, struct mr_table *mrt,
1705			 struct sk_buff *skb, struct mfc_cache *cache,
1706			 int local)
1707{
1708	int psend = -1;
1709	int vif, ct;
 
1710
1711	vif = cache->mfc_parent;
1712	cache->mfc_un.res.pkt++;
1713	cache->mfc_un.res.bytes += skb->len;
1714
 
 
 
 
 
 
 
 
 
 
 
 
1715	/*
1716	 * Wrong interface: drop packet and (maybe) send PIM assert.
1717	 */
1718	if (mrt->vif_table[vif].dev != skb->dev) {
1719		int true_vifi;
1720
1721		if (rt_is_output_route(skb_rtable(skb))) {
1722			/* It is our own packet, looped back.
1723			 * Very complicated situation...
1724			 *
1725			 * The best workaround until routing daemons will be
1726			 * fixed is not to redistribute packet, if it was
1727			 * send through wrong interface. It means, that
1728			 * multicast applications WILL NOT work for
1729			 * (S,G), which have default multicast route pointing
1730			 * to wrong oif. In any case, it is not a good
1731			 * idea to use multicasting applications on router.
1732			 */
1733			goto dont_forward;
1734		}
1735
1736		cache->mfc_un.res.wrong_if++;
1737		true_vifi = ipmr_find_vif(mrt, skb->dev);
1738
1739		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1740		    /* pimsm uses asserts, when switching from RPT to SPT,
1741		     * so that we cannot check that packet arrived on an oif.
1742		     * It is bad, but otherwise we would need to move pretty
1743		     * large chunk of pimd to kernel. Ough... --ANK
1744		     */
1745		    (mrt->mroute_do_pim ||
1746		     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1747		    time_after(jiffies,
1748			       cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1749			cache->mfc_un.res.last_assert = jiffies;
1750			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1751		}
1752		goto dont_forward;
1753	}
1754
 
1755	mrt->vif_table[vif].pkt_in++;
1756	mrt->vif_table[vif].bytes_in += skb->len;
1757
1758	/*
1759	 *	Forward the frame
1760	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1761	for (ct = cache->mfc_un.res.maxvif - 1;
1762	     ct >= cache->mfc_un.res.minvif; ct--) {
1763		if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
 
 
 
1764			if (psend != -1) {
1765				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1766
1767				if (skb2)
1768					ipmr_queue_xmit(net, mrt, skb2, cache,
1769							psend);
1770			}
1771			psend = ct;
1772		}
1773	}
 
1774	if (psend != -1) {
1775		if (local) {
1776			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1777
1778			if (skb2)
1779				ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1780		} else {
1781			ipmr_queue_xmit(net, mrt, skb, cache, psend);
1782			return 0;
1783		}
1784	}
1785
1786dont_forward:
1787	if (!local)
1788		kfree_skb(skb);
1789	return 0;
1790}
1791
1792static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1793{
1794	struct rtable *rt = skb_rtable(skb);
1795	struct iphdr *iph = ip_hdr(skb);
1796	struct flowi4 fl4 = {
1797		.daddr = iph->daddr,
1798		.saddr = iph->saddr,
1799		.flowi4_tos = RT_TOS(iph->tos),
1800		.flowi4_oif = rt->rt_oif,
1801		.flowi4_iif = rt->rt_iif,
1802		.flowi4_mark = rt->rt_mark,
 
 
 
1803	};
1804	struct mr_table *mrt;
1805	int err;
1806
1807	err = ipmr_fib_lookup(net, &fl4, &mrt);
1808	if (err)
1809		return ERR_PTR(err);
1810	return mrt;
1811}
1812
1813/*
1814 *	Multicast packets for forwarding arrive here
1815 *	Called with rcu_read_lock();
1816 */
1817
1818int ip_mr_input(struct sk_buff *skb)
1819{
1820	struct mfc_cache *cache;
1821	struct net *net = dev_net(skb->dev);
1822	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1823	struct mr_table *mrt;
1824
1825	/* Packet is looped back after forward, it should not be
1826	 * forwarded second time, but still can be delivered locally.
1827	 */
1828	if (IPCB(skb)->flags & IPSKB_FORWARDED)
1829		goto dont_forward;
1830
1831	mrt = ipmr_rt_fib_lookup(net, skb);
1832	if (IS_ERR(mrt)) {
1833		kfree_skb(skb);
1834		return PTR_ERR(mrt);
1835	}
1836	if (!local) {
1837		if (IPCB(skb)->opt.router_alert) {
1838			if (ip_call_ra_chain(skb))
1839				return 0;
1840		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1841			/* IGMPv1 (and broken IGMPv2 implementations sort of
1842			 * Cisco IOS <= 11.2(8)) do not put router alert
1843			 * option to IGMP packets destined to routable
1844			 * groups. It is very bad, because it means
1845			 * that we can forward NO IGMP messages.
1846			 */
1847			struct sock *mroute_sk;
1848
1849			mroute_sk = rcu_dereference(mrt->mroute_sk);
1850			if (mroute_sk) {
1851				nf_reset(skb);
1852				raw_rcv(mroute_sk, skb);
1853				return 0;
1854			}
1855		    }
1856	}
1857
1858	/* already under rcu_read_lock() */
1859	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
 
 
 
 
 
 
 
1860
1861	/*
1862	 *	No usable cache entry
1863	 */
1864	if (cache == NULL) {
1865		int vif;
1866
1867		if (local) {
1868			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1869			ip_local_deliver(skb);
1870			if (skb2 == NULL)
1871				return -ENOBUFS;
1872			skb = skb2;
1873		}
1874
1875		read_lock(&mrt_lock);
1876		vif = ipmr_find_vif(mrt, skb->dev);
1877		if (vif >= 0) {
1878			int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1879			read_unlock(&mrt_lock);
1880
1881			return err2;
1882		}
1883		read_unlock(&mrt_lock);
1884		kfree_skb(skb);
1885		return -ENODEV;
1886	}
1887
1888	read_lock(&mrt_lock);
1889	ip_mr_forward(net, mrt, skb, cache, local);
1890	read_unlock(&mrt_lock);
1891
1892	if (local)
1893		return ip_local_deliver(skb);
1894
1895	return 0;
1896
1897dont_forward:
1898	if (local)
1899		return ip_local_deliver(skb);
1900	kfree_skb(skb);
1901	return 0;
1902}
1903
1904#ifdef CONFIG_IP_PIMSM
1905/* called with rcu_read_lock() */
1906static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
1907		     unsigned int pimlen)
1908{
1909	struct net_device *reg_dev = NULL;
1910	struct iphdr *encap;
1911
1912	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
1913	/*
1914	 * Check that:
1915	 * a. packet is really sent to a multicast group
1916	 * b. packet is not a NULL-REGISTER
1917	 * c. packet is not truncated
1918	 */
1919	if (!ipv4_is_multicast(encap->daddr) ||
1920	    encap->tot_len == 0 ||
1921	    ntohs(encap->tot_len) + pimlen > skb->len)
1922		return 1;
1923
1924	read_lock(&mrt_lock);
1925	if (mrt->mroute_reg_vif_num >= 0)
1926		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
1927	read_unlock(&mrt_lock);
1928
1929	if (reg_dev == NULL)
1930		return 1;
1931
1932	skb->mac_header = skb->network_header;
1933	skb_pull(skb, (u8 *)encap - skb->data);
1934	skb_reset_network_header(skb);
1935	skb->protocol = htons(ETH_P_IP);
1936	skb->ip_summed = CHECKSUM_NONE;
1937	skb->pkt_type = PACKET_HOST;
1938
1939	skb_tunnel_rx(skb, reg_dev);
1940
1941	netif_rx(skb);
1942
1943	return NET_RX_SUCCESS;
1944}
1945#endif
1946
1947#ifdef CONFIG_IP_PIMSM_V1
1948/*
1949 * Handle IGMP messages of PIMv1
1950 */
1951
1952int pim_rcv_v1(struct sk_buff *skb)
1953{
1954	struct igmphdr *pim;
1955	struct net *net = dev_net(skb->dev);
1956	struct mr_table *mrt;
1957
1958	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1959		goto drop;
1960
1961	pim = igmp_hdr(skb);
1962
1963	mrt = ipmr_rt_fib_lookup(net, skb);
1964	if (IS_ERR(mrt))
1965		goto drop;
1966	if (!mrt->mroute_do_pim ||
1967	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1968		goto drop;
1969
1970	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1971drop:
1972		kfree_skb(skb);
1973	}
1974	return 0;
1975}
1976#endif
1977
1978#ifdef CONFIG_IP_PIMSM_V2
1979static int pim_rcv(struct sk_buff *skb)
1980{
1981	struct pimreghdr *pim;
1982	struct net *net = dev_net(skb->dev);
1983	struct mr_table *mrt;
1984
1985	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1986		goto drop;
1987
1988	pim = (struct pimreghdr *)skb_transport_header(skb);
1989	if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
1990	    (pim->flags & PIM_NULL_REGISTER) ||
1991	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
1992	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
1993		goto drop;
1994
1995	mrt = ipmr_rt_fib_lookup(net, skb);
1996	if (IS_ERR(mrt))
1997		goto drop;
1998	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1999drop:
2000		kfree_skb(skb);
2001	}
2002	return 0;
2003}
2004#endif
2005
2006static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2007			      struct mfc_cache *c, struct rtmsg *rtm)
2008{
2009	int ct;
2010	struct rtnexthop *nhp;
2011	u8 *b = skb_tail_pointer(skb);
2012	struct rtattr *mp_head;
2013
2014	/* If cache is unresolved, don't try to parse IIF and OIF */
2015	if (c->mfc_parent >= MAXVIFS)
2016		return -ENOENT;
2017
2018	if (VIF_EXISTS(mrt, c->mfc_parent))
2019		RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex);
 
2020
2021	mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
 
2022
2023	for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2024		if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2025			if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
2026				goto rtattr_failure;
2027			nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
 
 
2028			nhp->rtnh_flags = 0;
2029			nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2030			nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2031			nhp->rtnh_len = sizeof(*nhp);
2032		}
2033	}
2034	mp_head->rta_type = RTA_MULTIPATH;
2035	mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
 
 
 
 
 
 
 
2036	rtm->rtm_type = RTN_MULTICAST;
2037	return 1;
2038
2039rtattr_failure:
2040	nlmsg_trim(skb, b);
2041	return -EMSGSIZE;
2042}
2043
2044int ipmr_get_route(struct net *net, struct sk_buff *skb,
2045		   __be32 saddr, __be32 daddr,
2046		   struct rtmsg *rtm, int nowait)
2047{
2048	struct mfc_cache *cache;
2049	struct mr_table *mrt;
2050	int err;
2051
2052	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2053	if (mrt == NULL)
2054		return -ENOENT;
2055
2056	rcu_read_lock();
2057	cache = ipmr_cache_find(mrt, saddr, daddr);
 
 
2058
 
 
 
2059	if (cache == NULL) {
2060		struct sk_buff *skb2;
2061		struct iphdr *iph;
2062		struct net_device *dev;
2063		int vif = -1;
2064
2065		if (nowait) {
2066			rcu_read_unlock();
2067			return -EAGAIN;
2068		}
2069
2070		dev = skb->dev;
2071		read_lock(&mrt_lock);
2072		if (dev)
2073			vif = ipmr_find_vif(mrt, dev);
2074		if (vif < 0) {
2075			read_unlock(&mrt_lock);
2076			rcu_read_unlock();
2077			return -ENODEV;
2078		}
2079		skb2 = skb_clone(skb, GFP_ATOMIC);
2080		if (!skb2) {
2081			read_unlock(&mrt_lock);
2082			rcu_read_unlock();
2083			return -ENOMEM;
2084		}
2085
2086		skb_push(skb2, sizeof(struct iphdr));
2087		skb_reset_network_header(skb2);
2088		iph = ip_hdr(skb2);
2089		iph->ihl = sizeof(struct iphdr) >> 2;
2090		iph->saddr = saddr;
2091		iph->daddr = daddr;
2092		iph->version = 0;
2093		err = ipmr_cache_unresolved(mrt, vif, skb2);
2094		read_unlock(&mrt_lock);
2095		rcu_read_unlock();
2096		return err;
2097	}
2098
2099	read_lock(&mrt_lock);
2100	if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2101		cache->mfc_flags |= MFC_NOTIFY;
2102	err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2103	read_unlock(&mrt_lock);
2104	rcu_read_unlock();
2105	return err;
2106}
2107
2108static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2109			    u32 pid, u32 seq, struct mfc_cache *c)
 
2110{
2111	struct nlmsghdr *nlh;
2112	struct rtmsg *rtm;
 
2113
2114	nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
2115	if (nlh == NULL)
2116		return -EMSGSIZE;
2117
2118	rtm = nlmsg_data(nlh);
2119	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2120	rtm->rtm_dst_len  = 32;
2121	rtm->rtm_src_len  = 32;
2122	rtm->rtm_tos      = 0;
2123	rtm->rtm_table    = mrt->id;
2124	NLA_PUT_U32(skb, RTA_TABLE, mrt->id);
 
2125	rtm->rtm_type     = RTN_MULTICAST;
2126	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2127	rtm->rtm_protocol = RTPROT_UNSPEC;
 
 
 
2128	rtm->rtm_flags    = 0;
2129
2130	NLA_PUT_BE32(skb, RTA_SRC, c->mfc_origin);
2131	NLA_PUT_BE32(skb, RTA_DST, c->mfc_mcastgrp);
2132
2133	if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0)
 
 
2134		goto nla_put_failure;
2135
2136	return nlmsg_end(skb, nlh);
2137
2138nla_put_failure:
2139	nlmsg_cancel(skb, nlh);
2140	return -EMSGSIZE;
2141}
2142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2143static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2144{
2145	struct net *net = sock_net(skb->sk);
2146	struct mr_table *mrt;
2147	struct mfc_cache *mfc;
2148	unsigned int t = 0, s_t;
2149	unsigned int h = 0, s_h;
2150	unsigned int e = 0, s_e;
2151
2152	s_t = cb->args[0];
2153	s_h = cb->args[1];
2154	s_e = cb->args[2];
2155
2156	rcu_read_lock();
2157	ipmr_for_each_table(mrt, net) {
2158		if (t < s_t)
2159			goto next_table;
2160		if (t > s_t)
2161			s_h = 0;
2162		for (h = s_h; h < MFC_LINES; h++) {
2163			list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2164				if (e < s_e)
2165					goto next_entry;
2166				if (ipmr_fill_mroute(mrt, skb,
2167						     NETLINK_CB(cb->skb).pid,
2168						     cb->nlh->nlmsg_seq,
2169						     mfc) < 0)
 
2170					goto done;
2171next_entry:
2172				e++;
2173			}
2174			e = s_e = 0;
2175		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2176		s_h = 0;
2177next_table:
2178		t++;
2179	}
2180done:
2181	rcu_read_unlock();
2182
2183	cb->args[2] = e;
2184	cb->args[1] = h;
2185	cb->args[0] = t;
2186
2187	return skb->len;
2188}
2189
2190#ifdef CONFIG_PROC_FS
2191/*
2192 *	The /proc interfaces to multicast routing :
2193 *	/proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2194 */
2195struct ipmr_vif_iter {
2196	struct seq_net_private p;
2197	struct mr_table *mrt;
2198	int ct;
2199};
2200
2201static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2202					   struct ipmr_vif_iter *iter,
2203					   loff_t pos)
2204{
2205	struct mr_table *mrt = iter->mrt;
2206
2207	for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2208		if (!VIF_EXISTS(mrt, iter->ct))
2209			continue;
2210		if (pos-- == 0)
2211			return &mrt->vif_table[iter->ct];
2212	}
2213	return NULL;
2214}
2215
2216static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2217	__acquires(mrt_lock)
2218{
2219	struct ipmr_vif_iter *iter = seq->private;
2220	struct net *net = seq_file_net(seq);
2221	struct mr_table *mrt;
2222
2223	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2224	if (mrt == NULL)
2225		return ERR_PTR(-ENOENT);
2226
2227	iter->mrt = mrt;
2228
2229	read_lock(&mrt_lock);
2230	return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2231		: SEQ_START_TOKEN;
2232}
2233
2234static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2235{
2236	struct ipmr_vif_iter *iter = seq->private;
2237	struct net *net = seq_file_net(seq);
2238	struct mr_table *mrt = iter->mrt;
2239
2240	++*pos;
2241	if (v == SEQ_START_TOKEN)
2242		return ipmr_vif_seq_idx(net, iter, 0);
2243
2244	while (++iter->ct < mrt->maxvif) {
2245		if (!VIF_EXISTS(mrt, iter->ct))
2246			continue;
2247		return &mrt->vif_table[iter->ct];
2248	}
2249	return NULL;
2250}
2251
2252static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2253	__releases(mrt_lock)
2254{
2255	read_unlock(&mrt_lock);
2256}
2257
2258static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2259{
2260	struct ipmr_vif_iter *iter = seq->private;
2261	struct mr_table *mrt = iter->mrt;
2262
2263	if (v == SEQ_START_TOKEN) {
2264		seq_puts(seq,
2265			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2266	} else {
2267		const struct vif_device *vif = v;
2268		const char *name =  vif->dev ? vif->dev->name : "none";
2269
2270		seq_printf(seq,
2271			   "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2272			   vif - mrt->vif_table,
2273			   name, vif->bytes_in, vif->pkt_in,
2274			   vif->bytes_out, vif->pkt_out,
2275			   vif->flags, vif->local, vif->remote);
2276	}
2277	return 0;
2278}
2279
2280static const struct seq_operations ipmr_vif_seq_ops = {
2281	.start = ipmr_vif_seq_start,
2282	.next  = ipmr_vif_seq_next,
2283	.stop  = ipmr_vif_seq_stop,
2284	.show  = ipmr_vif_seq_show,
2285};
2286
2287static int ipmr_vif_open(struct inode *inode, struct file *file)
2288{
2289	return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2290			    sizeof(struct ipmr_vif_iter));
2291}
2292
2293static const struct file_operations ipmr_vif_fops = {
2294	.owner	 = THIS_MODULE,
2295	.open    = ipmr_vif_open,
2296	.read    = seq_read,
2297	.llseek  = seq_lseek,
2298	.release = seq_release_net,
2299};
2300
2301struct ipmr_mfc_iter {
2302	struct seq_net_private p;
2303	struct mr_table *mrt;
2304	struct list_head *cache;
2305	int ct;
2306};
2307
2308
2309static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2310					  struct ipmr_mfc_iter *it, loff_t pos)
2311{
2312	struct mr_table *mrt = it->mrt;
2313	struct mfc_cache *mfc;
2314
2315	rcu_read_lock();
2316	for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2317		it->cache = &mrt->mfc_cache_array[it->ct];
2318		list_for_each_entry_rcu(mfc, it->cache, list)
2319			if (pos-- == 0)
2320				return mfc;
2321	}
2322	rcu_read_unlock();
2323
2324	spin_lock_bh(&mfc_unres_lock);
2325	it->cache = &mrt->mfc_unres_queue;
2326	list_for_each_entry(mfc, it->cache, list)
2327		if (pos-- == 0)
2328			return mfc;
2329	spin_unlock_bh(&mfc_unres_lock);
2330
2331	it->cache = NULL;
2332	return NULL;
2333}
2334
2335
2336static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2337{
2338	struct ipmr_mfc_iter *it = seq->private;
2339	struct net *net = seq_file_net(seq);
2340	struct mr_table *mrt;
2341
2342	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2343	if (mrt == NULL)
2344		return ERR_PTR(-ENOENT);
2345
2346	it->mrt = mrt;
2347	it->cache = NULL;
2348	it->ct = 0;
2349	return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2350		: SEQ_START_TOKEN;
2351}
2352
2353static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2354{
2355	struct mfc_cache *mfc = v;
2356	struct ipmr_mfc_iter *it = seq->private;
2357	struct net *net = seq_file_net(seq);
2358	struct mr_table *mrt = it->mrt;
2359
2360	++*pos;
2361
2362	if (v == SEQ_START_TOKEN)
2363		return ipmr_mfc_seq_idx(net, seq->private, 0);
2364
2365	if (mfc->list.next != it->cache)
2366		return list_entry(mfc->list.next, struct mfc_cache, list);
2367
2368	if (it->cache == &mrt->mfc_unres_queue)
2369		goto end_of_list;
2370
2371	BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2372
2373	while (++it->ct < MFC_LINES) {
2374		it->cache = &mrt->mfc_cache_array[it->ct];
2375		if (list_empty(it->cache))
2376			continue;
2377		return list_first_entry(it->cache, struct mfc_cache, list);
2378	}
2379
2380	/* exhausted cache_array, show unresolved */
2381	rcu_read_unlock();
2382	it->cache = &mrt->mfc_unres_queue;
2383	it->ct = 0;
2384
2385	spin_lock_bh(&mfc_unres_lock);
2386	if (!list_empty(it->cache))
2387		return list_first_entry(it->cache, struct mfc_cache, list);
2388
2389end_of_list:
2390	spin_unlock_bh(&mfc_unres_lock);
2391	it->cache = NULL;
2392
2393	return NULL;
2394}
2395
2396static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2397{
2398	struct ipmr_mfc_iter *it = seq->private;
2399	struct mr_table *mrt = it->mrt;
2400
2401	if (it->cache == &mrt->mfc_unres_queue)
2402		spin_unlock_bh(&mfc_unres_lock);
2403	else if (it->cache == &mrt->mfc_cache_array[it->ct])
2404		rcu_read_unlock();
2405}
2406
2407static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2408{
2409	int n;
2410
2411	if (v == SEQ_START_TOKEN) {
2412		seq_puts(seq,
2413		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2414	} else {
2415		const struct mfc_cache *mfc = v;
2416		const struct ipmr_mfc_iter *it = seq->private;
2417		const struct mr_table *mrt = it->mrt;
2418
2419		seq_printf(seq, "%08X %08X %-3hd",
2420			   (__force u32) mfc->mfc_mcastgrp,
2421			   (__force u32) mfc->mfc_origin,
2422			   mfc->mfc_parent);
2423
2424		if (it->cache != &mrt->mfc_unres_queue) {
2425			seq_printf(seq, " %8lu %8lu %8lu",
2426				   mfc->mfc_un.res.pkt,
2427				   mfc->mfc_un.res.bytes,
2428				   mfc->mfc_un.res.wrong_if);
2429			for (n = mfc->mfc_un.res.minvif;
2430			     n < mfc->mfc_un.res.maxvif; n++) {
2431				if (VIF_EXISTS(mrt, n) &&
2432				    mfc->mfc_un.res.ttls[n] < 255)
2433					seq_printf(seq,
2434					   " %2d:%-3d",
2435					   n, mfc->mfc_un.res.ttls[n]);
2436			}
2437		} else {
2438			/* unresolved mfc_caches don't contain
2439			 * pkt, bytes and wrong_if values
2440			 */
2441			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2442		}
2443		seq_putc(seq, '\n');
2444	}
2445	return 0;
2446}
2447
2448static const struct seq_operations ipmr_mfc_seq_ops = {
2449	.start = ipmr_mfc_seq_start,
2450	.next  = ipmr_mfc_seq_next,
2451	.stop  = ipmr_mfc_seq_stop,
2452	.show  = ipmr_mfc_seq_show,
2453};
2454
2455static int ipmr_mfc_open(struct inode *inode, struct file *file)
2456{
2457	return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2458			    sizeof(struct ipmr_mfc_iter));
2459}
2460
2461static const struct file_operations ipmr_mfc_fops = {
2462	.owner	 = THIS_MODULE,
2463	.open    = ipmr_mfc_open,
2464	.read    = seq_read,
2465	.llseek  = seq_lseek,
2466	.release = seq_release_net,
2467};
2468#endif
2469
2470#ifdef CONFIG_IP_PIMSM_V2
2471static const struct net_protocol pim_protocol = {
2472	.handler	=	pim_rcv,
2473	.netns_ok	=	1,
2474};
2475#endif
2476
2477
2478/*
2479 *	Setup for IP multicast routing
2480 */
2481static int __net_init ipmr_net_init(struct net *net)
2482{
2483	int err;
2484
2485	err = ipmr_rules_init(net);
2486	if (err < 0)
2487		goto fail;
2488
2489#ifdef CONFIG_PROC_FS
2490	err = -ENOMEM;
2491	if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
2492		goto proc_vif_fail;
2493	if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
2494		goto proc_cache_fail;
2495#endif
2496	return 0;
2497
2498#ifdef CONFIG_PROC_FS
2499proc_cache_fail:
2500	proc_net_remove(net, "ip_mr_vif");
2501proc_vif_fail:
2502	ipmr_rules_exit(net);
2503#endif
2504fail:
2505	return err;
2506}
2507
2508static void __net_exit ipmr_net_exit(struct net *net)
2509{
2510#ifdef CONFIG_PROC_FS
2511	proc_net_remove(net, "ip_mr_cache");
2512	proc_net_remove(net, "ip_mr_vif");
2513#endif
2514	ipmr_rules_exit(net);
2515}
2516
2517static struct pernet_operations ipmr_net_ops = {
2518	.init = ipmr_net_init,
2519	.exit = ipmr_net_exit,
2520};
2521
2522int __init ip_mr_init(void)
2523{
2524	int err;
2525
2526	mrt_cachep = kmem_cache_create("ip_mrt_cache",
2527				       sizeof(struct mfc_cache),
2528				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2529				       NULL);
2530	if (!mrt_cachep)
2531		return -ENOMEM;
2532
2533	err = register_pernet_subsys(&ipmr_net_ops);
2534	if (err)
2535		goto reg_pernet_fail;
2536
2537	err = register_netdevice_notifier(&ip_mr_notifier);
2538	if (err)
2539		goto reg_notif_fail;
2540#ifdef CONFIG_IP_PIMSM_V2
2541	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2542		printk(KERN_ERR "ip_mr_init: can't add PIM protocol\n");
2543		err = -EAGAIN;
2544		goto add_proto_fail;
2545	}
2546#endif
2547	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2548		      NULL, ipmr_rtm_dumproute, NULL);
2549	return 0;
2550
2551#ifdef CONFIG_IP_PIMSM_V2
2552add_proto_fail:
2553	unregister_netdevice_notifier(&ip_mr_notifier);
2554#endif
2555reg_notif_fail:
2556	unregister_pernet_subsys(&ipmr_net_ops);
2557reg_pernet_fail:
2558	kmem_cache_destroy(mrt_cachep);
2559	return err;
2560}
v3.15
   1/*
   2 *	IP multicast routing support for mrouted 3.6/3.8
   3 *
   4 *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
   5 *	  Linux Consultancy and Custom Driver Development
   6 *
   7 *	This program is free software; you can redistribute it and/or
   8 *	modify it under the terms of the GNU General Public License
   9 *	as published by the Free Software Foundation; either version
  10 *	2 of the License, or (at your option) any later version.
  11 *
  12 *	Fixes:
  13 *	Michael Chastain	:	Incorrect size of copying.
  14 *	Alan Cox		:	Added the cache manager code
  15 *	Alan Cox		:	Fixed the clone/copy bug and device race.
  16 *	Mike McLagan		:	Routing by source
  17 *	Malcolm Beattie		:	Buffer handling fixes.
  18 *	Alexey Kuznetsov	:	Double buffer free and other fixes.
  19 *	SVR Anand		:	Fixed several multicast bugs and problems.
  20 *	Alexey Kuznetsov	:	Status, optimisations and more.
  21 *	Brad Parker		:	Better behaviour on mrouted upcall
  22 *					overflow.
  23 *      Carlos Picoto           :       PIMv1 Support
  24 *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
  25 *					Relax this requirement to work with older peers.
  26 *
  27 */
  28
 
  29#include <asm/uaccess.h>
  30#include <linux/types.h>
  31#include <linux/capability.h>
  32#include <linux/errno.h>
  33#include <linux/timer.h>
  34#include <linux/mm.h>
  35#include <linux/kernel.h>
  36#include <linux/fcntl.h>
  37#include <linux/stat.h>
  38#include <linux/socket.h>
  39#include <linux/in.h>
  40#include <linux/inet.h>
  41#include <linux/netdevice.h>
  42#include <linux/inetdevice.h>
  43#include <linux/igmp.h>
  44#include <linux/proc_fs.h>
  45#include <linux/seq_file.h>
  46#include <linux/mroute.h>
  47#include <linux/init.h>
  48#include <linux/if_ether.h>
  49#include <linux/slab.h>
  50#include <net/net_namespace.h>
  51#include <net/ip.h>
  52#include <net/protocol.h>
  53#include <linux/skbuff.h>
  54#include <net/route.h>
  55#include <net/sock.h>
  56#include <net/icmp.h>
  57#include <net/udp.h>
  58#include <net/raw.h>
  59#include <linux/notifier.h>
  60#include <linux/if_arp.h>
  61#include <linux/netfilter_ipv4.h>
  62#include <linux/compat.h>
  63#include <linux/export.h>
  64#include <net/ip_tunnels.h>
  65#include <net/checksum.h>
  66#include <net/netlink.h>
  67#include <net/fib_rules.h>
  68#include <linux/netconf.h>
  69
  70#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  71#define CONFIG_IP_PIMSM	1
  72#endif
  73
  74struct mr_table {
  75	struct list_head	list;
  76#ifdef CONFIG_NET_NS
  77	struct net		*net;
  78#endif
  79	u32			id;
  80	struct sock __rcu	*mroute_sk;
  81	struct timer_list	ipmr_expire_timer;
  82	struct list_head	mfc_unres_queue;
  83	struct list_head	mfc_cache_array[MFC_LINES];
  84	struct vif_device	vif_table[MAXVIFS];
  85	int			maxvif;
  86	atomic_t		cache_resolve_queue_len;
  87	bool			mroute_do_assert;
  88	bool			mroute_do_pim;
  89#if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  90	int			mroute_reg_vif_num;
  91#endif
  92};
  93
  94struct ipmr_rule {
  95	struct fib_rule		common;
  96};
  97
  98struct ipmr_result {
  99	struct mr_table		*mrt;
 100};
 101
 102/* Big lock, protecting vif table, mrt cache and mroute socket state.
 103 * Note that the changes are semaphored via rtnl_lock.
 104 */
 105
 106static DEFINE_RWLOCK(mrt_lock);
 107
 108/*
 109 *	Multicast router control variables
 110 */
 111
 112#define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
 113
 114/* Special spinlock for queue of unresolved entries */
 115static DEFINE_SPINLOCK(mfc_unres_lock);
 116
 117/* We return to original Alan's scheme. Hash table of resolved
 118 * entries is changed only in process context and protected
 119 * with weak lock mrt_lock. Queue of unresolved entries is protected
 120 * with strong spinlock mfc_unres_lock.
 121 *
 122 * In this case data path is free of exclusive locks at all.
 123 */
 124
 125static struct kmem_cache *mrt_cachep __read_mostly;
 126
 127static struct mr_table *ipmr_new_table(struct net *net, u32 id);
 128static void ipmr_free_table(struct mr_table *mrt);
 129
 130static void ip_mr_forward(struct net *net, struct mr_table *mrt,
 131			  struct sk_buff *skb, struct mfc_cache *cache,
 132			  int local);
 133static int ipmr_cache_report(struct mr_table *mrt,
 134			     struct sk_buff *pkt, vifi_t vifi, int assert);
 135static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
 136			      struct mfc_cache *c, struct rtmsg *rtm);
 137static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
 138				 int cmd);
 139static void mroute_clean_tables(struct mr_table *mrt);
 140static void ipmr_expire_process(unsigned long arg);
 141
 142#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 143#define ipmr_for_each_table(mrt, net) \
 144	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
 145
 146static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 147{
 148	struct mr_table *mrt;
 149
 150	ipmr_for_each_table(mrt, net) {
 151		if (mrt->id == id)
 152			return mrt;
 153	}
 154	return NULL;
 155}
 156
 157static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 158			   struct mr_table **mrt)
 159{
 
 
 160	int err;
 161	struct ipmr_result res;
 162	struct fib_lookup_arg arg = {
 163		.result = &res,
 164		.flags = FIB_LOOKUP_NOREF,
 165	};
 166
 167	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
 168			       flowi4_to_flowi(flp4), 0, &arg);
 169	if (err < 0)
 170		return err;
 171	*mrt = res.mrt;
 172	return 0;
 173}
 174
 175static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
 176			    int flags, struct fib_lookup_arg *arg)
 177{
 178	struct ipmr_result *res = arg->result;
 179	struct mr_table *mrt;
 180
 181	switch (rule->action) {
 182	case FR_ACT_TO_TBL:
 183		break;
 184	case FR_ACT_UNREACHABLE:
 185		return -ENETUNREACH;
 186	case FR_ACT_PROHIBIT:
 187		return -EACCES;
 188	case FR_ACT_BLACKHOLE:
 189	default:
 190		return -EINVAL;
 191	}
 192
 193	mrt = ipmr_get_table(rule->fr_net, rule->table);
 194	if (mrt == NULL)
 195		return -EAGAIN;
 196	res->mrt = mrt;
 197	return 0;
 198}
 199
 200static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
 201{
 202	return 1;
 203}
 204
 205static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
 206	FRA_GENERIC_POLICY,
 207};
 208
 209static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
 210			       struct fib_rule_hdr *frh, struct nlattr **tb)
 211{
 212	return 0;
 213}
 214
 215static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
 216			     struct nlattr **tb)
 217{
 218	return 1;
 219}
 220
 221static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
 222			  struct fib_rule_hdr *frh)
 223{
 224	frh->dst_len = 0;
 225	frh->src_len = 0;
 226	frh->tos     = 0;
 227	return 0;
 228}
 229
 230static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
 231	.family		= RTNL_FAMILY_IPMR,
 232	.rule_size	= sizeof(struct ipmr_rule),
 233	.addr_size	= sizeof(u32),
 234	.action		= ipmr_rule_action,
 235	.match		= ipmr_rule_match,
 236	.configure	= ipmr_rule_configure,
 237	.compare	= ipmr_rule_compare,
 238	.default_pref	= fib_default_rule_pref,
 239	.fill		= ipmr_rule_fill,
 240	.nlgroup	= RTNLGRP_IPV4_RULE,
 241	.policy		= ipmr_rule_policy,
 242	.owner		= THIS_MODULE,
 243};
 244
 245static int __net_init ipmr_rules_init(struct net *net)
 246{
 247	struct fib_rules_ops *ops;
 248	struct mr_table *mrt;
 249	int err;
 250
 251	ops = fib_rules_register(&ipmr_rules_ops_template, net);
 252	if (IS_ERR(ops))
 253		return PTR_ERR(ops);
 254
 255	INIT_LIST_HEAD(&net->ipv4.mr_tables);
 256
 257	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 258	if (mrt == NULL) {
 259		err = -ENOMEM;
 260		goto err1;
 261	}
 262
 263	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
 264	if (err < 0)
 265		goto err2;
 266
 267	net->ipv4.mr_rules_ops = ops;
 268	return 0;
 269
 270err2:
 271	kfree(mrt);
 272err1:
 273	fib_rules_unregister(ops);
 274	return err;
 275}
 276
 277static void __net_exit ipmr_rules_exit(struct net *net)
 278{
 279	struct mr_table *mrt, *next;
 280
 281	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
 282		list_del(&mrt->list);
 283		ipmr_free_table(mrt);
 284	}
 285	fib_rules_unregister(net->ipv4.mr_rules_ops);
 286}
 287#else
 288#define ipmr_for_each_table(mrt, net) \
 289	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
 290
 291static struct mr_table *ipmr_get_table(struct net *net, u32 id)
 292{
 293	return net->ipv4.mrt;
 294}
 295
 296static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
 297			   struct mr_table **mrt)
 298{
 299	*mrt = net->ipv4.mrt;
 300	return 0;
 301}
 302
 303static int __net_init ipmr_rules_init(struct net *net)
 304{
 305	net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
 306	return net->ipv4.mrt ? 0 : -ENOMEM;
 307}
 308
 309static void __net_exit ipmr_rules_exit(struct net *net)
 310{
 311	ipmr_free_table(net->ipv4.mrt);
 312}
 313#endif
 314
 315static struct mr_table *ipmr_new_table(struct net *net, u32 id)
 316{
 317	struct mr_table *mrt;
 318	unsigned int i;
 319
 320	mrt = ipmr_get_table(net, id);
 321	if (mrt != NULL)
 322		return mrt;
 323
 324	mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
 325	if (mrt == NULL)
 326		return NULL;
 327	write_pnet(&mrt->net, net);
 328	mrt->id = id;
 329
 330	/* Forwarding cache */
 331	for (i = 0; i < MFC_LINES; i++)
 332		INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
 333
 334	INIT_LIST_HEAD(&mrt->mfc_unres_queue);
 335
 336	setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
 337		    (unsigned long)mrt);
 338
 339#ifdef CONFIG_IP_PIMSM
 340	mrt->mroute_reg_vif_num = -1;
 341#endif
 342#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
 343	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
 344#endif
 345	return mrt;
 346}
 347
 348static void ipmr_free_table(struct mr_table *mrt)
 349{
 350	del_timer_sync(&mrt->ipmr_expire_timer);
 351	mroute_clean_tables(mrt);
 352	kfree(mrt);
 353}
 354
 355/* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
 356
 357static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
 358{
 359	struct net *net = dev_net(dev);
 360
 361	dev_close(dev);
 362
 363	dev = __dev_get_by_name(net, "tunl0");
 364	if (dev) {
 365		const struct net_device_ops *ops = dev->netdev_ops;
 366		struct ifreq ifr;
 367		struct ip_tunnel_parm p;
 368
 369		memset(&p, 0, sizeof(p));
 370		p.iph.daddr = v->vifc_rmt_addr.s_addr;
 371		p.iph.saddr = v->vifc_lcl_addr.s_addr;
 372		p.iph.version = 4;
 373		p.iph.ihl = 5;
 374		p.iph.protocol = IPPROTO_IPIP;
 375		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 376		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 377
 378		if (ops->ndo_do_ioctl) {
 379			mm_segment_t oldfs = get_fs();
 380
 381			set_fs(KERNEL_DS);
 382			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
 383			set_fs(oldfs);
 384		}
 385	}
 386}
 387
 388static
 389struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
 390{
 391	struct net_device  *dev;
 392
 393	dev = __dev_get_by_name(net, "tunl0");
 394
 395	if (dev) {
 396		const struct net_device_ops *ops = dev->netdev_ops;
 397		int err;
 398		struct ifreq ifr;
 399		struct ip_tunnel_parm p;
 400		struct in_device  *in_dev;
 401
 402		memset(&p, 0, sizeof(p));
 403		p.iph.daddr = v->vifc_rmt_addr.s_addr;
 404		p.iph.saddr = v->vifc_lcl_addr.s_addr;
 405		p.iph.version = 4;
 406		p.iph.ihl = 5;
 407		p.iph.protocol = IPPROTO_IPIP;
 408		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
 409		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
 410
 411		if (ops->ndo_do_ioctl) {
 412			mm_segment_t oldfs = get_fs();
 413
 414			set_fs(KERNEL_DS);
 415			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
 416			set_fs(oldfs);
 417		} else {
 418			err = -EOPNOTSUPP;
 419		}
 420		dev = NULL;
 421
 422		if (err == 0 &&
 423		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
 424			dev->flags |= IFF_MULTICAST;
 425
 426			in_dev = __in_dev_get_rtnl(dev);
 427			if (in_dev == NULL)
 428				goto failure;
 429
 430			ipv4_devconf_setall(in_dev);
 431			neigh_parms_data_state_setall(in_dev->arp_parms);
 432			IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 433
 434			if (dev_open(dev))
 435				goto failure;
 436			dev_hold(dev);
 437		}
 438	}
 439	return dev;
 440
 441failure:
 442	/* allow the register to be completed before unregistering. */
 443	rtnl_unlock();
 444	rtnl_lock();
 445
 446	unregister_netdevice(dev);
 447	return NULL;
 448}
 449
 450#ifdef CONFIG_IP_PIMSM
 451
 452static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
 453{
 454	struct net *net = dev_net(dev);
 455	struct mr_table *mrt;
 456	struct flowi4 fl4 = {
 457		.flowi4_oif	= dev->ifindex,
 458		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
 459		.flowi4_mark	= skb->mark,
 460	};
 461	int err;
 462
 463	err = ipmr_fib_lookup(net, &fl4, &mrt);
 464	if (err < 0) {
 465		kfree_skb(skb);
 466		return err;
 467	}
 468
 469	read_lock(&mrt_lock);
 470	dev->stats.tx_bytes += skb->len;
 471	dev->stats.tx_packets++;
 472	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
 473	read_unlock(&mrt_lock);
 474	kfree_skb(skb);
 475	return NETDEV_TX_OK;
 476}
 477
 478static const struct net_device_ops reg_vif_netdev_ops = {
 479	.ndo_start_xmit	= reg_vif_xmit,
 480};
 481
 482static void reg_vif_setup(struct net_device *dev)
 483{
 484	dev->type		= ARPHRD_PIMREG;
 485	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
 486	dev->flags		= IFF_NOARP;
 487	dev->netdev_ops		= &reg_vif_netdev_ops,
 488	dev->destructor		= free_netdev;
 489	dev->features		|= NETIF_F_NETNS_LOCAL;
 490}
 491
 492static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
 493{
 494	struct net_device *dev;
 495	struct in_device *in_dev;
 496	char name[IFNAMSIZ];
 497
 498	if (mrt->id == RT_TABLE_DEFAULT)
 499		sprintf(name, "pimreg");
 500	else
 501		sprintf(name, "pimreg%u", mrt->id);
 502
 503	dev = alloc_netdev(0, name, reg_vif_setup);
 504
 505	if (dev == NULL)
 506		return NULL;
 507
 508	dev_net_set(dev, net);
 509
 510	if (register_netdevice(dev)) {
 511		free_netdev(dev);
 512		return NULL;
 513	}
 514	dev->iflink = 0;
 515
 516	rcu_read_lock();
 517	in_dev = __in_dev_get_rcu(dev);
 518	if (!in_dev) {
 519		rcu_read_unlock();
 520		goto failure;
 521	}
 522
 523	ipv4_devconf_setall(in_dev);
 524	neigh_parms_data_state_setall(in_dev->arp_parms);
 525	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
 526	rcu_read_unlock();
 527
 528	if (dev_open(dev))
 529		goto failure;
 530
 531	dev_hold(dev);
 532
 533	return dev;
 534
 535failure:
 536	/* allow the register to be completed before unregistering. */
 537	rtnl_unlock();
 538	rtnl_lock();
 539
 540	unregister_netdevice(dev);
 541	return NULL;
 542}
 543#endif
 544
 545/**
 546 *	vif_delete - Delete a VIF entry
 547 *	@notify: Set to 1, if the caller is a notifier_call
 548 */
 549
 550static int vif_delete(struct mr_table *mrt, int vifi, int notify,
 551		      struct list_head *head)
 552{
 553	struct vif_device *v;
 554	struct net_device *dev;
 555	struct in_device *in_dev;
 556
 557	if (vifi < 0 || vifi >= mrt->maxvif)
 558		return -EADDRNOTAVAIL;
 559
 560	v = &mrt->vif_table[vifi];
 561
 562	write_lock_bh(&mrt_lock);
 563	dev = v->dev;
 564	v->dev = NULL;
 565
 566	if (!dev) {
 567		write_unlock_bh(&mrt_lock);
 568		return -EADDRNOTAVAIL;
 569	}
 570
 571#ifdef CONFIG_IP_PIMSM
 572	if (vifi == mrt->mroute_reg_vif_num)
 573		mrt->mroute_reg_vif_num = -1;
 574#endif
 575
 576	if (vifi + 1 == mrt->maxvif) {
 577		int tmp;
 578
 579		for (tmp = vifi - 1; tmp >= 0; tmp--) {
 580			if (VIF_EXISTS(mrt, tmp))
 581				break;
 582		}
 583		mrt->maxvif = tmp+1;
 584	}
 585
 586	write_unlock_bh(&mrt_lock);
 587
 588	dev_set_allmulti(dev, -1);
 589
 590	in_dev = __in_dev_get_rtnl(dev);
 591	if (in_dev) {
 592		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
 593		inet_netconf_notify_devconf(dev_net(dev),
 594					    NETCONFA_MC_FORWARDING,
 595					    dev->ifindex, &in_dev->cnf);
 596		ip_rt_multicast_event(in_dev);
 597	}
 598
 599	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
 600		unregister_netdevice_queue(dev, head);
 601
 602	dev_put(dev);
 603	return 0;
 604}
 605
 606static void ipmr_cache_free_rcu(struct rcu_head *head)
 607{
 608	struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
 609
 610	kmem_cache_free(mrt_cachep, c);
 611}
 612
 613static inline void ipmr_cache_free(struct mfc_cache *c)
 614{
 615	call_rcu(&c->rcu, ipmr_cache_free_rcu);
 616}
 617
 618/* Destroy an unresolved cache entry, killing queued skbs
 619 * and reporting error to netlink readers.
 620 */
 621
 622static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
 623{
 624	struct net *net = read_pnet(&mrt->net);
 625	struct sk_buff *skb;
 626	struct nlmsgerr *e;
 627
 628	atomic_dec(&mrt->cache_resolve_queue_len);
 629
 630	while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
 631		if (ip_hdr(skb)->version == 0) {
 632			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 633			nlh->nlmsg_type = NLMSG_ERROR;
 634			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
 635			skb_trim(skb, nlh->nlmsg_len);
 636			e = nlmsg_data(nlh);
 637			e->error = -ETIMEDOUT;
 638			memset(&e->msg, 0, sizeof(e->msg));
 639
 640			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
 641		} else {
 642			kfree_skb(skb);
 643		}
 644	}
 645
 646	ipmr_cache_free(c);
 647}
 648
 649
 650/* Timer process for the unresolved queue. */
 651
 652static void ipmr_expire_process(unsigned long arg)
 653{
 654	struct mr_table *mrt = (struct mr_table *)arg;
 655	unsigned long now;
 656	unsigned long expires;
 657	struct mfc_cache *c, *next;
 658
 659	if (!spin_trylock(&mfc_unres_lock)) {
 660		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
 661		return;
 662	}
 663
 664	if (list_empty(&mrt->mfc_unres_queue))
 665		goto out;
 666
 667	now = jiffies;
 668	expires = 10*HZ;
 669
 670	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
 671		if (time_after(c->mfc_un.unres.expires, now)) {
 672			unsigned long interval = c->mfc_un.unres.expires - now;
 673			if (interval < expires)
 674				expires = interval;
 675			continue;
 676		}
 677
 678		list_del(&c->list);
 679		mroute_netlink_event(mrt, c, RTM_DELROUTE);
 680		ipmr_destroy_unres(mrt, c);
 681	}
 682
 683	if (!list_empty(&mrt->mfc_unres_queue))
 684		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
 685
 686out:
 687	spin_unlock(&mfc_unres_lock);
 688}
 689
 690/* Fill oifs list. It is called under write locked mrt_lock. */
 691
 692static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
 693				   unsigned char *ttls)
 694{
 695	int vifi;
 696
 697	cache->mfc_un.res.minvif = MAXVIFS;
 698	cache->mfc_un.res.maxvif = 0;
 699	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
 700
 701	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
 702		if (VIF_EXISTS(mrt, vifi) &&
 703		    ttls[vifi] && ttls[vifi] < 255) {
 704			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
 705			if (cache->mfc_un.res.minvif > vifi)
 706				cache->mfc_un.res.minvif = vifi;
 707			if (cache->mfc_un.res.maxvif <= vifi)
 708				cache->mfc_un.res.maxvif = vifi + 1;
 709		}
 710	}
 711}
 712
 713static int vif_add(struct net *net, struct mr_table *mrt,
 714		   struct vifctl *vifc, int mrtsock)
 715{
 716	int vifi = vifc->vifc_vifi;
 717	struct vif_device *v = &mrt->vif_table[vifi];
 718	struct net_device *dev;
 719	struct in_device *in_dev;
 720	int err;
 721
 722	/* Is vif busy ? */
 723	if (VIF_EXISTS(mrt, vifi))
 724		return -EADDRINUSE;
 725
 726	switch (vifc->vifc_flags) {
 727#ifdef CONFIG_IP_PIMSM
 728	case VIFF_REGISTER:
 729		/*
 730		 * Special Purpose VIF in PIM
 731		 * All the packets will be sent to the daemon
 732		 */
 733		if (mrt->mroute_reg_vif_num >= 0)
 734			return -EADDRINUSE;
 735		dev = ipmr_reg_vif(net, mrt);
 736		if (!dev)
 737			return -ENOBUFS;
 738		err = dev_set_allmulti(dev, 1);
 739		if (err) {
 740			unregister_netdevice(dev);
 741			dev_put(dev);
 742			return err;
 743		}
 744		break;
 745#endif
 746	case VIFF_TUNNEL:
 747		dev = ipmr_new_tunnel(net, vifc);
 748		if (!dev)
 749			return -ENOBUFS;
 750		err = dev_set_allmulti(dev, 1);
 751		if (err) {
 752			ipmr_del_tunnel(dev, vifc);
 753			dev_put(dev);
 754			return err;
 755		}
 756		break;
 757
 758	case VIFF_USE_IFINDEX:
 759	case 0:
 760		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
 761			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
 762			if (dev && __in_dev_get_rtnl(dev) == NULL) {
 763				dev_put(dev);
 764				return -EADDRNOTAVAIL;
 765			}
 766		} else {
 767			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
 768		}
 769		if (!dev)
 770			return -EADDRNOTAVAIL;
 771		err = dev_set_allmulti(dev, 1);
 772		if (err) {
 773			dev_put(dev);
 774			return err;
 775		}
 776		break;
 777	default:
 778		return -EINVAL;
 779	}
 780
 781	in_dev = __in_dev_get_rtnl(dev);
 782	if (!in_dev) {
 783		dev_put(dev);
 784		return -EADDRNOTAVAIL;
 785	}
 786	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
 787	inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
 788				    &in_dev->cnf);
 789	ip_rt_multicast_event(in_dev);
 790
 791	/* Fill in the VIF structures */
 792
 793	v->rate_limit = vifc->vifc_rate_limit;
 794	v->local = vifc->vifc_lcl_addr.s_addr;
 795	v->remote = vifc->vifc_rmt_addr.s_addr;
 796	v->flags = vifc->vifc_flags;
 797	if (!mrtsock)
 798		v->flags |= VIFF_STATIC;
 799	v->threshold = vifc->vifc_threshold;
 800	v->bytes_in = 0;
 801	v->bytes_out = 0;
 802	v->pkt_in = 0;
 803	v->pkt_out = 0;
 804	v->link = dev->ifindex;
 805	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
 806		v->link = dev->iflink;
 807
 808	/* And finish update writing critical data */
 809	write_lock_bh(&mrt_lock);
 810	v->dev = dev;
 811#ifdef CONFIG_IP_PIMSM
 812	if (v->flags & VIFF_REGISTER)
 813		mrt->mroute_reg_vif_num = vifi;
 814#endif
 815	if (vifi+1 > mrt->maxvif)
 816		mrt->maxvif = vifi+1;
 817	write_unlock_bh(&mrt_lock);
 818	return 0;
 819}
 820
 821/* called with rcu_read_lock() */
 822static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
 823					 __be32 origin,
 824					 __be32 mcastgrp)
 825{
 826	int line = MFC_HASH(mcastgrp, origin);
 827	struct mfc_cache *c;
 828
 829	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
 830		if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
 831			return c;
 832	}
 833	return NULL;
 834}
 835
 836/* Look for a (*,*,oif) entry */
 837static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
 838						    int vifi)
 839{
 840	int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
 841	struct mfc_cache *c;
 842
 843	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
 844		if (c->mfc_origin == htonl(INADDR_ANY) &&
 845		    c->mfc_mcastgrp == htonl(INADDR_ANY) &&
 846		    c->mfc_un.res.ttls[vifi] < 255)
 847			return c;
 848
 849	return NULL;
 850}
 851
 852/* Look for a (*,G) entry */
 853static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
 854					     __be32 mcastgrp, int vifi)
 855{
 856	int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
 857	struct mfc_cache *c, *proxy;
 858
 859	if (mcastgrp == htonl(INADDR_ANY))
 860		goto skip;
 861
 862	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
 863		if (c->mfc_origin == htonl(INADDR_ANY) &&
 864		    c->mfc_mcastgrp == mcastgrp) {
 865			if (c->mfc_un.res.ttls[vifi] < 255)
 866				return c;
 867
 868			/* It's ok if the vifi is part of the static tree */
 869			proxy = ipmr_cache_find_any_parent(mrt,
 870							   c->mfc_parent);
 871			if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
 872				return c;
 873		}
 874
 875skip:
 876	return ipmr_cache_find_any_parent(mrt, vifi);
 877}
 878
 879/*
 880 *	Allocate a multicast cache entry
 881 */
 882static struct mfc_cache *ipmr_cache_alloc(void)
 883{
 884	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
 885
 886	if (c)
 887		c->mfc_un.res.minvif = MAXVIFS;
 888	return c;
 889}
 890
 891static struct mfc_cache *ipmr_cache_alloc_unres(void)
 892{
 893	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
 894
 895	if (c) {
 896		skb_queue_head_init(&c->mfc_un.unres.unresolved);
 897		c->mfc_un.unres.expires = jiffies + 10*HZ;
 898	}
 899	return c;
 900}
 901
 902/*
 903 *	A cache entry has gone into a resolved state from queued
 904 */
 905
 906static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
 907			       struct mfc_cache *uc, struct mfc_cache *c)
 908{
 909	struct sk_buff *skb;
 910	struct nlmsgerr *e;
 911
 912	/* Play the pending entries through our router */
 913
 914	while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
 915		if (ip_hdr(skb)->version == 0) {
 916			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
 917
 918			if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
 919				nlh->nlmsg_len = skb_tail_pointer(skb) -
 920						 (u8 *)nlh;
 921			} else {
 922				nlh->nlmsg_type = NLMSG_ERROR;
 923				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
 924				skb_trim(skb, nlh->nlmsg_len);
 925				e = nlmsg_data(nlh);
 926				e->error = -EMSGSIZE;
 927				memset(&e->msg, 0, sizeof(e->msg));
 928			}
 929
 930			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
 931		} else {
 932			ip_mr_forward(net, mrt, skb, c, 0);
 933		}
 934	}
 935}
 936
 937/*
 938 *	Bounce a cache query up to mrouted. We could use netlink for this but mrouted
 939 *	expects the following bizarre scheme.
 940 *
 941 *	Called under mrt_lock.
 942 */
 943
 944static int ipmr_cache_report(struct mr_table *mrt,
 945			     struct sk_buff *pkt, vifi_t vifi, int assert)
 946{
 947	struct sk_buff *skb;
 948	const int ihl = ip_hdrlen(pkt);
 949	struct igmphdr *igmp;
 950	struct igmpmsg *msg;
 951	struct sock *mroute_sk;
 952	int ret;
 953
 954#ifdef CONFIG_IP_PIMSM
 955	if (assert == IGMPMSG_WHOLEPKT)
 956		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
 957	else
 958#endif
 959		skb = alloc_skb(128, GFP_ATOMIC);
 960
 961	if (!skb)
 962		return -ENOBUFS;
 963
 964#ifdef CONFIG_IP_PIMSM
 965	if (assert == IGMPMSG_WHOLEPKT) {
 966		/* Ugly, but we have no choice with this interface.
 967		 * Duplicate old header, fix ihl, length etc.
 968		 * And all this only to mangle msg->im_msgtype and
 969		 * to set msg->im_mbz to "mbz" :-)
 970		 */
 971		skb_push(skb, sizeof(struct iphdr));
 972		skb_reset_network_header(skb);
 973		skb_reset_transport_header(skb);
 974		msg = (struct igmpmsg *)skb_network_header(skb);
 975		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
 976		msg->im_msgtype = IGMPMSG_WHOLEPKT;
 977		msg->im_mbz = 0;
 978		msg->im_vif = mrt->mroute_reg_vif_num;
 979		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
 980		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
 981					     sizeof(struct iphdr));
 982	} else
 983#endif
 984	{
 985
 986	/* Copy the IP header */
 987
 988	skb_set_network_header(skb, skb->len);
 989	skb_put(skb, ihl);
 990	skb_copy_to_linear_data(skb, pkt->data, ihl);
 991	ip_hdr(skb)->protocol = 0;	/* Flag to the kernel this is a route add */
 992	msg = (struct igmpmsg *)skb_network_header(skb);
 993	msg->im_vif = vifi;
 994	skb_dst_set(skb, dst_clone(skb_dst(pkt)));
 995
 996	/* Add our header */
 997
 998	igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
 999	igmp->type	=
1000	msg->im_msgtype = assert;
1001	igmp->code	= 0;
1002	ip_hdr(skb)->tot_len = htons(skb->len);		/* Fix the length */
1003	skb->transport_header = skb->network_header;
1004	}
1005
1006	rcu_read_lock();
1007	mroute_sk = rcu_dereference(mrt->mroute_sk);
1008	if (mroute_sk == NULL) {
1009		rcu_read_unlock();
1010		kfree_skb(skb);
1011		return -EINVAL;
1012	}
1013
1014	/* Deliver to mrouted */
1015
1016	ret = sock_queue_rcv_skb(mroute_sk, skb);
1017	rcu_read_unlock();
1018	if (ret < 0) {
1019		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
 
1020		kfree_skb(skb);
1021	}
1022
1023	return ret;
1024}
1025
1026/*
1027 *	Queue a packet for resolution. It gets locked cache entry!
1028 */
1029
1030static int
1031ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
1032{
1033	bool found = false;
1034	int err;
1035	struct mfc_cache *c;
1036	const struct iphdr *iph = ip_hdr(skb);
1037
1038	spin_lock_bh(&mfc_unres_lock);
1039	list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1040		if (c->mfc_mcastgrp == iph->daddr &&
1041		    c->mfc_origin == iph->saddr) {
1042			found = true;
1043			break;
1044		}
1045	}
1046
1047	if (!found) {
1048		/* Create a new entry if allowable */
1049
1050		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1051		    (c = ipmr_cache_alloc_unres()) == NULL) {
1052			spin_unlock_bh(&mfc_unres_lock);
1053
1054			kfree_skb(skb);
1055			return -ENOBUFS;
1056		}
1057
1058		/* Fill in the new cache entry */
1059
1060		c->mfc_parent	= -1;
1061		c->mfc_origin	= iph->saddr;
1062		c->mfc_mcastgrp	= iph->daddr;
1063
1064		/* Reflect first query at mrouted. */
1065
1066		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1067		if (err < 0) {
1068			/* If the report failed throw the cache entry
1069			   out - Brad Parker
1070			 */
1071			spin_unlock_bh(&mfc_unres_lock);
1072
1073			ipmr_cache_free(c);
1074			kfree_skb(skb);
1075			return err;
1076		}
1077
1078		atomic_inc(&mrt->cache_resolve_queue_len);
1079		list_add(&c->list, &mrt->mfc_unres_queue);
1080		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1081
1082		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1083			mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1084	}
1085
1086	/* See if we can append the packet */
1087
1088	if (c->mfc_un.unres.unresolved.qlen > 3) {
1089		kfree_skb(skb);
1090		err = -ENOBUFS;
1091	} else {
1092		skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1093		err = 0;
1094	}
1095
1096	spin_unlock_bh(&mfc_unres_lock);
1097	return err;
1098}
1099
1100/*
1101 *	MFC cache manipulation by user space mroute daemon
1102 */
1103
1104static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1105{
1106	int line;
1107	struct mfc_cache *c, *next;
1108
1109	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1110
1111	list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1112		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1113		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1114		    (parent == -1 || parent == c->mfc_parent)) {
1115			list_del_rcu(&c->list);
1116			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1117			ipmr_cache_free(c);
1118			return 0;
1119		}
1120	}
1121	return -ENOENT;
1122}
1123
1124static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1125			struct mfcctl *mfc, int mrtsock, int parent)
1126{
1127	bool found = false;
1128	int line;
1129	struct mfc_cache *uc, *c;
1130
1131	if (mfc->mfcc_parent >= MAXVIFS)
1132		return -ENFILE;
1133
1134	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1135
1136	list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1137		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1138		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1139		    (parent == -1 || parent == c->mfc_parent)) {
1140			found = true;
1141			break;
1142		}
1143	}
1144
1145	if (found) {
1146		write_lock_bh(&mrt_lock);
1147		c->mfc_parent = mfc->mfcc_parent;
1148		ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1149		if (!mrtsock)
1150			c->mfc_flags |= MFC_STATIC;
1151		write_unlock_bh(&mrt_lock);
1152		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1153		return 0;
1154	}
1155
1156	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1157	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1158		return -EINVAL;
1159
1160	c = ipmr_cache_alloc();
1161	if (c == NULL)
1162		return -ENOMEM;
1163
1164	c->mfc_origin = mfc->mfcc_origin.s_addr;
1165	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1166	c->mfc_parent = mfc->mfcc_parent;
1167	ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1168	if (!mrtsock)
1169		c->mfc_flags |= MFC_STATIC;
1170
1171	list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1172
1173	/*
1174	 *	Check to see if we resolved a queued list. If so we
1175	 *	need to send on the frames and tidy up.
1176	 */
1177	found = false;
1178	spin_lock_bh(&mfc_unres_lock);
1179	list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1180		if (uc->mfc_origin == c->mfc_origin &&
1181		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1182			list_del(&uc->list);
1183			atomic_dec(&mrt->cache_resolve_queue_len);
1184			found = true;
1185			break;
1186		}
1187	}
1188	if (list_empty(&mrt->mfc_unres_queue))
1189		del_timer(&mrt->ipmr_expire_timer);
1190	spin_unlock_bh(&mfc_unres_lock);
1191
1192	if (found) {
1193		ipmr_cache_resolve(net, mrt, uc, c);
1194		ipmr_cache_free(uc);
1195	}
1196	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1197	return 0;
1198}
1199
1200/*
1201 *	Close the multicast socket, and clear the vif tables etc
1202 */
1203
1204static void mroute_clean_tables(struct mr_table *mrt)
1205{
1206	int i;
1207	LIST_HEAD(list);
1208	struct mfc_cache *c, *next;
1209
1210	/* Shut down all active vif entries */
1211
1212	for (i = 0; i < mrt->maxvif; i++) {
1213		if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1214			vif_delete(mrt, i, 0, &list);
1215	}
1216	unregister_netdevice_many(&list);
1217
1218	/* Wipe the cache */
1219
1220	for (i = 0; i < MFC_LINES; i++) {
1221		list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1222			if (c->mfc_flags & MFC_STATIC)
1223				continue;
1224			list_del_rcu(&c->list);
1225			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1226			ipmr_cache_free(c);
1227		}
1228	}
1229
1230	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1231		spin_lock_bh(&mfc_unres_lock);
1232		list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1233			list_del(&c->list);
1234			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1235			ipmr_destroy_unres(mrt, c);
1236		}
1237		spin_unlock_bh(&mfc_unres_lock);
1238	}
1239}
1240
1241/* called from ip_ra_control(), before an RCU grace period,
1242 * we dont need to call synchronize_rcu() here
1243 */
1244static void mrtsock_destruct(struct sock *sk)
1245{
1246	struct net *net = sock_net(sk);
1247	struct mr_table *mrt;
1248
1249	rtnl_lock();
1250	ipmr_for_each_table(mrt, net) {
1251		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1252			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1253			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1254						    NETCONFA_IFINDEX_ALL,
1255						    net->ipv4.devconf_all);
1256			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1257			mroute_clean_tables(mrt);
1258		}
1259	}
1260	rtnl_unlock();
1261}
1262
1263/*
1264 *	Socket options and virtual interface manipulation. The whole
1265 *	virtual interface system is a complete heap, but unfortunately
1266 *	that's how BSD mrouted happens to think. Maybe one day with a proper
1267 *	MOSPF/PIM router set up we can clean this up.
1268 */
1269
1270int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1271{
1272	int ret, parent = 0;
1273	struct vifctl vif;
1274	struct mfcctl mfc;
1275	struct net *net = sock_net(sk);
1276	struct mr_table *mrt;
1277
1278	if (sk->sk_type != SOCK_RAW ||
1279	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1280		return -EOPNOTSUPP;
1281
1282	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1283	if (mrt == NULL)
1284		return -ENOENT;
1285
1286	if (optname != MRT_INIT) {
1287		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1288		    !ns_capable(net->user_ns, CAP_NET_ADMIN))
1289			return -EACCES;
1290	}
1291
1292	switch (optname) {
1293	case MRT_INIT:
 
 
 
1294		if (optlen != sizeof(int))
1295			return -EINVAL;
1296
1297		rtnl_lock();
1298		if (rtnl_dereference(mrt->mroute_sk)) {
1299			rtnl_unlock();
1300			return -EADDRINUSE;
1301		}
1302
1303		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1304		if (ret == 0) {
1305			rcu_assign_pointer(mrt->mroute_sk, sk);
1306			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1307			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1308						    NETCONFA_IFINDEX_ALL,
1309						    net->ipv4.devconf_all);
1310		}
1311		rtnl_unlock();
1312		return ret;
1313	case MRT_DONE:
1314		if (sk != rcu_access_pointer(mrt->mroute_sk))
1315			return -EACCES;
1316		return ip_ra_control(sk, 0, NULL);
1317	case MRT_ADD_VIF:
1318	case MRT_DEL_VIF:
1319		if (optlen != sizeof(vif))
1320			return -EINVAL;
1321		if (copy_from_user(&vif, optval, sizeof(vif)))
1322			return -EFAULT;
1323		if (vif.vifc_vifi >= MAXVIFS)
1324			return -ENFILE;
1325		rtnl_lock();
1326		if (optname == MRT_ADD_VIF) {
1327			ret = vif_add(net, mrt, &vif,
1328				      sk == rtnl_dereference(mrt->mroute_sk));
1329		} else {
1330			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1331		}
1332		rtnl_unlock();
1333		return ret;
1334
1335		/*
1336		 *	Manipulate the forwarding caches. These live
1337		 *	in a sort of kernel/user symbiosis.
1338		 */
1339	case MRT_ADD_MFC:
1340	case MRT_DEL_MFC:
1341		parent = -1;
1342	case MRT_ADD_MFC_PROXY:
1343	case MRT_DEL_MFC_PROXY:
1344		if (optlen != sizeof(mfc))
1345			return -EINVAL;
1346		if (copy_from_user(&mfc, optval, sizeof(mfc)))
1347			return -EFAULT;
1348		if (parent == 0)
1349			parent = mfc.mfcc_parent;
1350		rtnl_lock();
1351		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1352			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1353		else
1354			ret = ipmr_mfc_add(net, mrt, &mfc,
1355					   sk == rtnl_dereference(mrt->mroute_sk),
1356					   parent);
1357		rtnl_unlock();
1358		return ret;
1359		/*
1360		 *	Control PIM assert.
1361		 */
1362	case MRT_ASSERT:
1363	{
1364		int v;
1365		if (optlen != sizeof(v))
1366			return -EINVAL;
1367		if (get_user(v, (int __user *)optval))
1368			return -EFAULT;
1369		mrt->mroute_do_assert = v;
1370		return 0;
1371	}
1372#ifdef CONFIG_IP_PIMSM
1373	case MRT_PIM:
1374	{
1375		int v;
1376
1377		if (optlen != sizeof(v))
1378			return -EINVAL;
1379		if (get_user(v, (int __user *)optval))
1380			return -EFAULT;
1381		v = !!v;
1382
1383		rtnl_lock();
1384		ret = 0;
1385		if (v != mrt->mroute_do_pim) {
1386			mrt->mroute_do_pim = v;
1387			mrt->mroute_do_assert = v;
1388		}
1389		rtnl_unlock();
1390		return ret;
1391	}
1392#endif
1393#ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1394	case MRT_TABLE:
1395	{
1396		u32 v;
1397
1398		if (optlen != sizeof(u32))
1399			return -EINVAL;
1400		if (get_user(v, (u32 __user *)optval))
1401			return -EFAULT;
1402
1403		/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
1404		if (v != RT_TABLE_DEFAULT && v >= 1000000000)
1405			return -EINVAL;
1406
1407		rtnl_lock();
1408		ret = 0;
1409		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1410			ret = -EBUSY;
1411		} else {
1412			if (!ipmr_new_table(net, v))
1413				ret = -ENOMEM;
1414			else
1415				raw_sk(sk)->ipmr_table = v;
1416		}
1417		rtnl_unlock();
1418		return ret;
1419	}
1420#endif
1421	/*
1422	 *	Spurious command, or MRT_VERSION which you cannot
1423	 *	set.
1424	 */
1425	default:
1426		return -ENOPROTOOPT;
1427	}
1428}
1429
1430/*
1431 *	Getsock opt support for the multicast routing system.
1432 */
1433
1434int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1435{
1436	int olr;
1437	int val;
1438	struct net *net = sock_net(sk);
1439	struct mr_table *mrt;
1440
1441	if (sk->sk_type != SOCK_RAW ||
1442	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1443		return -EOPNOTSUPP;
1444
1445	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1446	if (mrt == NULL)
1447		return -ENOENT;
1448
1449	if (optname != MRT_VERSION &&
1450#ifdef CONFIG_IP_PIMSM
1451	   optname != MRT_PIM &&
1452#endif
1453	   optname != MRT_ASSERT)
1454		return -ENOPROTOOPT;
1455
1456	if (get_user(olr, optlen))
1457		return -EFAULT;
1458
1459	olr = min_t(unsigned int, olr, sizeof(int));
1460	if (olr < 0)
1461		return -EINVAL;
1462
1463	if (put_user(olr, optlen))
1464		return -EFAULT;
1465	if (optname == MRT_VERSION)
1466		val = 0x0305;
1467#ifdef CONFIG_IP_PIMSM
1468	else if (optname == MRT_PIM)
1469		val = mrt->mroute_do_pim;
1470#endif
1471	else
1472		val = mrt->mroute_do_assert;
1473	if (copy_to_user(optval, &val, olr))
1474		return -EFAULT;
1475	return 0;
1476}
1477
1478/*
1479 *	The IP multicast ioctl support routines.
1480 */
1481
1482int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1483{
1484	struct sioc_sg_req sr;
1485	struct sioc_vif_req vr;
1486	struct vif_device *vif;
1487	struct mfc_cache *c;
1488	struct net *net = sock_net(sk);
1489	struct mr_table *mrt;
1490
1491	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1492	if (mrt == NULL)
1493		return -ENOENT;
1494
1495	switch (cmd) {
1496	case SIOCGETVIFCNT:
1497		if (copy_from_user(&vr, arg, sizeof(vr)))
1498			return -EFAULT;
1499		if (vr.vifi >= mrt->maxvif)
1500			return -EINVAL;
1501		read_lock(&mrt_lock);
1502		vif = &mrt->vif_table[vr.vifi];
1503		if (VIF_EXISTS(mrt, vr.vifi)) {
1504			vr.icount = vif->pkt_in;
1505			vr.ocount = vif->pkt_out;
1506			vr.ibytes = vif->bytes_in;
1507			vr.obytes = vif->bytes_out;
1508			read_unlock(&mrt_lock);
1509
1510			if (copy_to_user(arg, &vr, sizeof(vr)))
1511				return -EFAULT;
1512			return 0;
1513		}
1514		read_unlock(&mrt_lock);
1515		return -EADDRNOTAVAIL;
1516	case SIOCGETSGCNT:
1517		if (copy_from_user(&sr, arg, sizeof(sr)))
1518			return -EFAULT;
1519
1520		rcu_read_lock();
1521		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1522		if (c) {
1523			sr.pktcnt = c->mfc_un.res.pkt;
1524			sr.bytecnt = c->mfc_un.res.bytes;
1525			sr.wrong_if = c->mfc_un.res.wrong_if;
1526			rcu_read_unlock();
1527
1528			if (copy_to_user(arg, &sr, sizeof(sr)))
1529				return -EFAULT;
1530			return 0;
1531		}
1532		rcu_read_unlock();
1533		return -EADDRNOTAVAIL;
1534	default:
1535		return -ENOIOCTLCMD;
1536	}
1537}
1538
1539#ifdef CONFIG_COMPAT
1540struct compat_sioc_sg_req {
1541	struct in_addr src;
1542	struct in_addr grp;
1543	compat_ulong_t pktcnt;
1544	compat_ulong_t bytecnt;
1545	compat_ulong_t wrong_if;
1546};
1547
1548struct compat_sioc_vif_req {
1549	vifi_t	vifi;		/* Which iface */
1550	compat_ulong_t icount;
1551	compat_ulong_t ocount;
1552	compat_ulong_t ibytes;
1553	compat_ulong_t obytes;
1554};
1555
1556int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1557{
1558	struct compat_sioc_sg_req sr;
1559	struct compat_sioc_vif_req vr;
1560	struct vif_device *vif;
1561	struct mfc_cache *c;
1562	struct net *net = sock_net(sk);
1563	struct mr_table *mrt;
1564
1565	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1566	if (mrt == NULL)
1567		return -ENOENT;
1568
1569	switch (cmd) {
1570	case SIOCGETVIFCNT:
1571		if (copy_from_user(&vr, arg, sizeof(vr)))
1572			return -EFAULT;
1573		if (vr.vifi >= mrt->maxvif)
1574			return -EINVAL;
1575		read_lock(&mrt_lock);
1576		vif = &mrt->vif_table[vr.vifi];
1577		if (VIF_EXISTS(mrt, vr.vifi)) {
1578			vr.icount = vif->pkt_in;
1579			vr.ocount = vif->pkt_out;
1580			vr.ibytes = vif->bytes_in;
1581			vr.obytes = vif->bytes_out;
1582			read_unlock(&mrt_lock);
1583
1584			if (copy_to_user(arg, &vr, sizeof(vr)))
1585				return -EFAULT;
1586			return 0;
1587		}
1588		read_unlock(&mrt_lock);
1589		return -EADDRNOTAVAIL;
1590	case SIOCGETSGCNT:
1591		if (copy_from_user(&sr, arg, sizeof(sr)))
1592			return -EFAULT;
1593
1594		rcu_read_lock();
1595		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1596		if (c) {
1597			sr.pktcnt = c->mfc_un.res.pkt;
1598			sr.bytecnt = c->mfc_un.res.bytes;
1599			sr.wrong_if = c->mfc_un.res.wrong_if;
1600			rcu_read_unlock();
1601
1602			if (copy_to_user(arg, &sr, sizeof(sr)))
1603				return -EFAULT;
1604			return 0;
1605		}
1606		rcu_read_unlock();
1607		return -EADDRNOTAVAIL;
1608	default:
1609		return -ENOIOCTLCMD;
1610	}
1611}
1612#endif
1613
1614
1615static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1616{
1617	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1618	struct net *net = dev_net(dev);
1619	struct mr_table *mrt;
1620	struct vif_device *v;
1621	int ct;
 
1622
1623	if (event != NETDEV_UNREGISTER)
1624		return NOTIFY_DONE;
1625
1626	ipmr_for_each_table(mrt, net) {
1627		v = &mrt->vif_table[0];
1628		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1629			if (v->dev == dev)
1630				vif_delete(mrt, ct, 1, NULL);
1631		}
1632	}
 
1633	return NOTIFY_DONE;
1634}
1635
1636
1637static struct notifier_block ip_mr_notifier = {
1638	.notifier_call = ipmr_device_event,
1639};
1640
1641/*
1642 *	Encapsulate a packet by attaching a valid IPIP header to it.
1643 *	This avoids tunnel drivers and other mess and gives us the speed so
1644 *	important for multicast video.
1645 */
1646
1647static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1648{
1649	struct iphdr *iph;
1650	const struct iphdr *old_iph = ip_hdr(skb);
1651
1652	skb_push(skb, sizeof(struct iphdr));
1653	skb->transport_header = skb->network_header;
1654	skb_reset_network_header(skb);
1655	iph = ip_hdr(skb);
1656
1657	iph->version	=	4;
1658	iph->tos	=	old_iph->tos;
1659	iph->ttl	=	old_iph->ttl;
1660	iph->frag_off	=	0;
1661	iph->daddr	=	daddr;
1662	iph->saddr	=	saddr;
1663	iph->protocol	=	IPPROTO_IPIP;
1664	iph->ihl	=	5;
1665	iph->tot_len	=	htons(skb->len);
1666	ip_select_ident(skb, skb_dst(skb), NULL);
1667	ip_send_check(iph);
1668
1669	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1670	nf_reset(skb);
1671}
1672
1673static inline int ipmr_forward_finish(struct sk_buff *skb)
1674{
1675	struct ip_options *opt = &(IPCB(skb)->opt);
1676
1677	IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1678	IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
1679
1680	if (unlikely(opt->optlen))
1681		ip_forward_options(skb);
1682
1683	return dst_output(skb);
1684}
1685
1686/*
1687 *	Processing handlers for ipmr_forward
1688 */
1689
1690static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1691			    struct sk_buff *skb, struct mfc_cache *c, int vifi)
1692{
1693	const struct iphdr *iph = ip_hdr(skb);
1694	struct vif_device *vif = &mrt->vif_table[vifi];
1695	struct net_device *dev;
1696	struct rtable *rt;
1697	struct flowi4 fl4;
1698	int    encap = 0;
1699
1700	if (vif->dev == NULL)
1701		goto out_free;
1702
1703#ifdef CONFIG_IP_PIMSM
1704	if (vif->flags & VIFF_REGISTER) {
1705		vif->pkt_out++;
1706		vif->bytes_out += skb->len;
1707		vif->dev->stats.tx_bytes += skb->len;
1708		vif->dev->stats.tx_packets++;
1709		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1710		goto out_free;
1711	}
1712#endif
1713
1714	if (vif->flags & VIFF_TUNNEL) {
1715		rt = ip_route_output_ports(net, &fl4, NULL,
1716					   vif->remote, vif->local,
1717					   0, 0,
1718					   IPPROTO_IPIP,
1719					   RT_TOS(iph->tos), vif->link);
1720		if (IS_ERR(rt))
1721			goto out_free;
1722		encap = sizeof(struct iphdr);
1723	} else {
1724		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1725					   0, 0,
1726					   IPPROTO_IPIP,
1727					   RT_TOS(iph->tos), vif->link);
1728		if (IS_ERR(rt))
1729			goto out_free;
1730	}
1731
1732	dev = rt->dst.dev;
1733
1734	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1735		/* Do not fragment multicasts. Alas, IPv4 does not
1736		 * allow to send ICMP, so that packets will disappear
1737		 * to blackhole.
1738		 */
1739
1740		IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1741		ip_rt_put(rt);
1742		goto out_free;
1743	}
1744
1745	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1746
1747	if (skb_cow(skb, encap)) {
1748		ip_rt_put(rt);
1749		goto out_free;
1750	}
1751
1752	vif->pkt_out++;
1753	vif->bytes_out += skb->len;
1754
1755	skb_dst_drop(skb);
1756	skb_dst_set(skb, &rt->dst);
1757	ip_decrease_ttl(ip_hdr(skb));
1758
1759	/* FIXME: forward and output firewalls used to be called here.
1760	 * What do we do with netfilter? -- RR
1761	 */
1762	if (vif->flags & VIFF_TUNNEL) {
1763		ip_encap(skb, vif->local, vif->remote);
1764		/* FIXME: extra output firewall step used to be here. --RR */
1765		vif->dev->stats.tx_packets++;
1766		vif->dev->stats.tx_bytes += skb->len;
1767	}
1768
1769	IPCB(skb)->flags |= IPSKB_FORWARDED;
1770
1771	/*
1772	 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1773	 * not only before forwarding, but after forwarding on all output
1774	 * interfaces. It is clear, if mrouter runs a multicasting
1775	 * program, it should receive packets not depending to what interface
1776	 * program is joined.
1777	 * If we will not make it, the program will have to join on all
1778	 * interfaces. On the other hand, multihoming host (or router, but
1779	 * not mrouter) cannot join to more than one interface - it will
1780	 * result in receiving multiple packets.
1781	 */
1782	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1783		ipmr_forward_finish);
1784	return;
1785
1786out_free:
1787	kfree_skb(skb);
1788}
1789
1790static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1791{
1792	int ct;
1793
1794	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1795		if (mrt->vif_table[ct].dev == dev)
1796			break;
1797	}
1798	return ct;
1799}
1800
1801/* "local" means that we should preserve one skb (for local delivery) */
1802
1803static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1804			  struct sk_buff *skb, struct mfc_cache *cache,
1805			  int local)
1806{
1807	int psend = -1;
1808	int vif, ct;
1809	int true_vifi = ipmr_find_vif(mrt, skb->dev);
1810
1811	vif = cache->mfc_parent;
1812	cache->mfc_un.res.pkt++;
1813	cache->mfc_un.res.bytes += skb->len;
1814
1815	if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1816		struct mfc_cache *cache_proxy;
1817
1818		/* For an (*,G) entry, we only check that the incomming
1819		 * interface is part of the static tree.
1820		 */
1821		cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1822		if (cache_proxy &&
1823		    cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1824			goto forward;
1825	}
1826
1827	/*
1828	 * Wrong interface: drop packet and (maybe) send PIM assert.
1829	 */
1830	if (mrt->vif_table[vif].dev != skb->dev) {
 
 
1831		if (rt_is_output_route(skb_rtable(skb))) {
1832			/* It is our own packet, looped back.
1833			 * Very complicated situation...
1834			 *
1835			 * The best workaround until routing daemons will be
1836			 * fixed is not to redistribute packet, if it was
1837			 * send through wrong interface. It means, that
1838			 * multicast applications WILL NOT work for
1839			 * (S,G), which have default multicast route pointing
1840			 * to wrong oif. In any case, it is not a good
1841			 * idea to use multicasting applications on router.
1842			 */
1843			goto dont_forward;
1844		}
1845
1846		cache->mfc_un.res.wrong_if++;
 
1847
1848		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1849		    /* pimsm uses asserts, when switching from RPT to SPT,
1850		     * so that we cannot check that packet arrived on an oif.
1851		     * It is bad, but otherwise we would need to move pretty
1852		     * large chunk of pimd to kernel. Ough... --ANK
1853		     */
1854		    (mrt->mroute_do_pim ||
1855		     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1856		    time_after(jiffies,
1857			       cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1858			cache->mfc_un.res.last_assert = jiffies;
1859			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1860		}
1861		goto dont_forward;
1862	}
1863
1864forward:
1865	mrt->vif_table[vif].pkt_in++;
1866	mrt->vif_table[vif].bytes_in += skb->len;
1867
1868	/*
1869	 *	Forward the frame
1870	 */
1871	if (cache->mfc_origin == htonl(INADDR_ANY) &&
1872	    cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1873		if (true_vifi >= 0 &&
1874		    true_vifi != cache->mfc_parent &&
1875		    ip_hdr(skb)->ttl >
1876				cache->mfc_un.res.ttls[cache->mfc_parent]) {
1877			/* It's an (*,*) entry and the packet is not coming from
1878			 * the upstream: forward the packet to the upstream
1879			 * only.
1880			 */
1881			psend = cache->mfc_parent;
1882			goto last_forward;
1883		}
1884		goto dont_forward;
1885	}
1886	for (ct = cache->mfc_un.res.maxvif - 1;
1887	     ct >= cache->mfc_un.res.minvif; ct--) {
1888		/* For (*,G) entry, don't forward to the incoming interface */
1889		if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1890		     ct != true_vifi) &&
1891		    ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1892			if (psend != -1) {
1893				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1894
1895				if (skb2)
1896					ipmr_queue_xmit(net, mrt, skb2, cache,
1897							psend);
1898			}
1899			psend = ct;
1900		}
1901	}
1902last_forward:
1903	if (psend != -1) {
1904		if (local) {
1905			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1906
1907			if (skb2)
1908				ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1909		} else {
1910			ipmr_queue_xmit(net, mrt, skb, cache, psend);
1911			return;
1912		}
1913	}
1914
1915dont_forward:
1916	if (!local)
1917		kfree_skb(skb);
 
1918}
1919
1920static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1921{
1922	struct rtable *rt = skb_rtable(skb);
1923	struct iphdr *iph = ip_hdr(skb);
1924	struct flowi4 fl4 = {
1925		.daddr = iph->daddr,
1926		.saddr = iph->saddr,
1927		.flowi4_tos = RT_TOS(iph->tos),
1928		.flowi4_oif = (rt_is_output_route(rt) ?
1929			       skb->dev->ifindex : 0),
1930		.flowi4_iif = (rt_is_output_route(rt) ?
1931			       LOOPBACK_IFINDEX :
1932			       skb->dev->ifindex),
1933		.flowi4_mark = skb->mark,
1934	};
1935	struct mr_table *mrt;
1936	int err;
1937
1938	err = ipmr_fib_lookup(net, &fl4, &mrt);
1939	if (err)
1940		return ERR_PTR(err);
1941	return mrt;
1942}
1943
1944/*
1945 *	Multicast packets for forwarding arrive here
1946 *	Called with rcu_read_lock();
1947 */
1948
1949int ip_mr_input(struct sk_buff *skb)
1950{
1951	struct mfc_cache *cache;
1952	struct net *net = dev_net(skb->dev);
1953	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1954	struct mr_table *mrt;
1955
1956	/* Packet is looped back after forward, it should not be
1957	 * forwarded second time, but still can be delivered locally.
1958	 */
1959	if (IPCB(skb)->flags & IPSKB_FORWARDED)
1960		goto dont_forward;
1961
1962	mrt = ipmr_rt_fib_lookup(net, skb);
1963	if (IS_ERR(mrt)) {
1964		kfree_skb(skb);
1965		return PTR_ERR(mrt);
1966	}
1967	if (!local) {
1968		if (IPCB(skb)->opt.router_alert) {
1969			if (ip_call_ra_chain(skb))
1970				return 0;
1971		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1972			/* IGMPv1 (and broken IGMPv2 implementations sort of
1973			 * Cisco IOS <= 11.2(8)) do not put router alert
1974			 * option to IGMP packets destined to routable
1975			 * groups. It is very bad, because it means
1976			 * that we can forward NO IGMP messages.
1977			 */
1978			struct sock *mroute_sk;
1979
1980			mroute_sk = rcu_dereference(mrt->mroute_sk);
1981			if (mroute_sk) {
1982				nf_reset(skb);
1983				raw_rcv(mroute_sk, skb);
1984				return 0;
1985			}
1986		    }
1987	}
1988
1989	/* already under rcu_read_lock() */
1990	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1991	if (cache == NULL) {
1992		int vif = ipmr_find_vif(mrt, skb->dev);
1993
1994		if (vif >= 0)
1995			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
1996						    vif);
1997	}
1998
1999	/*
2000	 *	No usable cache entry
2001	 */
2002	if (cache == NULL) {
2003		int vif;
2004
2005		if (local) {
2006			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2007			ip_local_deliver(skb);
2008			if (skb2 == NULL)
2009				return -ENOBUFS;
2010			skb = skb2;
2011		}
2012
2013		read_lock(&mrt_lock);
2014		vif = ipmr_find_vif(mrt, skb->dev);
2015		if (vif >= 0) {
2016			int err2 = ipmr_cache_unresolved(mrt, vif, skb);
2017			read_unlock(&mrt_lock);
2018
2019			return err2;
2020		}
2021		read_unlock(&mrt_lock);
2022		kfree_skb(skb);
2023		return -ENODEV;
2024	}
2025
2026	read_lock(&mrt_lock);
2027	ip_mr_forward(net, mrt, skb, cache, local);
2028	read_unlock(&mrt_lock);
2029
2030	if (local)
2031		return ip_local_deliver(skb);
2032
2033	return 0;
2034
2035dont_forward:
2036	if (local)
2037		return ip_local_deliver(skb);
2038	kfree_skb(skb);
2039	return 0;
2040}
2041
2042#ifdef CONFIG_IP_PIMSM
2043/* called with rcu_read_lock() */
2044static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
2045		     unsigned int pimlen)
2046{
2047	struct net_device *reg_dev = NULL;
2048	struct iphdr *encap;
2049
2050	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
2051	/*
2052	 * Check that:
2053	 * a. packet is really sent to a multicast group
2054	 * b. packet is not a NULL-REGISTER
2055	 * c. packet is not truncated
2056	 */
2057	if (!ipv4_is_multicast(encap->daddr) ||
2058	    encap->tot_len == 0 ||
2059	    ntohs(encap->tot_len) + pimlen > skb->len)
2060		return 1;
2061
2062	read_lock(&mrt_lock);
2063	if (mrt->mroute_reg_vif_num >= 0)
2064		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
2065	read_unlock(&mrt_lock);
2066
2067	if (reg_dev == NULL)
2068		return 1;
2069
2070	skb->mac_header = skb->network_header;
2071	skb_pull(skb, (u8 *)encap - skb->data);
2072	skb_reset_network_header(skb);
2073	skb->protocol = htons(ETH_P_IP);
2074	skb->ip_summed = CHECKSUM_NONE;
 
2075
2076	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
2077
2078	netif_rx(skb);
2079
2080	return NET_RX_SUCCESS;
2081}
2082#endif
2083
2084#ifdef CONFIG_IP_PIMSM_V1
2085/*
2086 * Handle IGMP messages of PIMv1
2087 */
2088
2089int pim_rcv_v1(struct sk_buff *skb)
2090{
2091	struct igmphdr *pim;
2092	struct net *net = dev_net(skb->dev);
2093	struct mr_table *mrt;
2094
2095	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2096		goto drop;
2097
2098	pim = igmp_hdr(skb);
2099
2100	mrt = ipmr_rt_fib_lookup(net, skb);
2101	if (IS_ERR(mrt))
2102		goto drop;
2103	if (!mrt->mroute_do_pim ||
2104	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2105		goto drop;
2106
2107	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2108drop:
2109		kfree_skb(skb);
2110	}
2111	return 0;
2112}
2113#endif
2114
2115#ifdef CONFIG_IP_PIMSM_V2
2116static int pim_rcv(struct sk_buff *skb)
2117{
2118	struct pimreghdr *pim;
2119	struct net *net = dev_net(skb->dev);
2120	struct mr_table *mrt;
2121
2122	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2123		goto drop;
2124
2125	pim = (struct pimreghdr *)skb_transport_header(skb);
2126	if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2127	    (pim->flags & PIM_NULL_REGISTER) ||
2128	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2129	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2130		goto drop;
2131
2132	mrt = ipmr_rt_fib_lookup(net, skb);
2133	if (IS_ERR(mrt))
2134		goto drop;
2135	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2136drop:
2137		kfree_skb(skb);
2138	}
2139	return 0;
2140}
2141#endif
2142
2143static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2144			      struct mfc_cache *c, struct rtmsg *rtm)
2145{
2146	int ct;
2147	struct rtnexthop *nhp;
2148	struct nlattr *mp_attr;
2149	struct rta_mfc_stats mfcs;
2150
2151	/* If cache is unresolved, don't try to parse IIF and OIF */
2152	if (c->mfc_parent >= MAXVIFS)
2153		return -ENOENT;
2154
2155	if (VIF_EXISTS(mrt, c->mfc_parent) &&
2156	    nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2157		return -EMSGSIZE;
2158
2159	if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2160		return -EMSGSIZE;
2161
2162	for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2163		if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2164			if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2165				nla_nest_cancel(skb, mp_attr);
2166				return -EMSGSIZE;
2167			}
2168
2169			nhp->rtnh_flags = 0;
2170			nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2171			nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2172			nhp->rtnh_len = sizeof(*nhp);
2173		}
2174	}
2175
2176	nla_nest_end(skb, mp_attr);
2177
2178	mfcs.mfcs_packets = c->mfc_un.res.pkt;
2179	mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2180	mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2181	if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
2182		return -EMSGSIZE;
2183
2184	rtm->rtm_type = RTN_MULTICAST;
2185	return 1;
 
 
 
 
2186}
2187
2188int ipmr_get_route(struct net *net, struct sk_buff *skb,
2189		   __be32 saddr, __be32 daddr,
2190		   struct rtmsg *rtm, int nowait)
2191{
2192	struct mfc_cache *cache;
2193	struct mr_table *mrt;
2194	int err;
2195
2196	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2197	if (mrt == NULL)
2198		return -ENOENT;
2199
2200	rcu_read_lock();
2201	cache = ipmr_cache_find(mrt, saddr, daddr);
2202	if (cache == NULL && skb->dev) {
2203		int vif = ipmr_find_vif(mrt, skb->dev);
2204
2205		if (vif >= 0)
2206			cache = ipmr_cache_find_any(mrt, daddr, vif);
2207	}
2208	if (cache == NULL) {
2209		struct sk_buff *skb2;
2210		struct iphdr *iph;
2211		struct net_device *dev;
2212		int vif = -1;
2213
2214		if (nowait) {
2215			rcu_read_unlock();
2216			return -EAGAIN;
2217		}
2218
2219		dev = skb->dev;
2220		read_lock(&mrt_lock);
2221		if (dev)
2222			vif = ipmr_find_vif(mrt, dev);
2223		if (vif < 0) {
2224			read_unlock(&mrt_lock);
2225			rcu_read_unlock();
2226			return -ENODEV;
2227		}
2228		skb2 = skb_clone(skb, GFP_ATOMIC);
2229		if (!skb2) {
2230			read_unlock(&mrt_lock);
2231			rcu_read_unlock();
2232			return -ENOMEM;
2233		}
2234
2235		skb_push(skb2, sizeof(struct iphdr));
2236		skb_reset_network_header(skb2);
2237		iph = ip_hdr(skb2);
2238		iph->ihl = sizeof(struct iphdr) >> 2;
2239		iph->saddr = saddr;
2240		iph->daddr = daddr;
2241		iph->version = 0;
2242		err = ipmr_cache_unresolved(mrt, vif, skb2);
2243		read_unlock(&mrt_lock);
2244		rcu_read_unlock();
2245		return err;
2246	}
2247
2248	read_lock(&mrt_lock);
2249	if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2250		cache->mfc_flags |= MFC_NOTIFY;
2251	err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2252	read_unlock(&mrt_lock);
2253	rcu_read_unlock();
2254	return err;
2255}
2256
2257static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2258			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2259			    int flags)
2260{
2261	struct nlmsghdr *nlh;
2262	struct rtmsg *rtm;
2263	int err;
2264
2265	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2266	if (nlh == NULL)
2267		return -EMSGSIZE;
2268
2269	rtm = nlmsg_data(nlh);
2270	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2271	rtm->rtm_dst_len  = 32;
2272	rtm->rtm_src_len  = 32;
2273	rtm->rtm_tos      = 0;
2274	rtm->rtm_table    = mrt->id;
2275	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2276		goto nla_put_failure;
2277	rtm->rtm_type     = RTN_MULTICAST;
2278	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2279	if (c->mfc_flags & MFC_STATIC)
2280		rtm->rtm_protocol = RTPROT_STATIC;
2281	else
2282		rtm->rtm_protocol = RTPROT_MROUTED;
2283	rtm->rtm_flags    = 0;
2284
2285	if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) ||
2286	    nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp))
2287		goto nla_put_failure;
2288	err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2289	/* do not break the dump if cache is unresolved */
2290	if (err < 0 && err != -ENOENT)
2291		goto nla_put_failure;
2292
2293	return nlmsg_end(skb, nlh);
2294
2295nla_put_failure:
2296	nlmsg_cancel(skb, nlh);
2297	return -EMSGSIZE;
2298}
2299
2300static size_t mroute_msgsize(bool unresolved, int maxvif)
2301{
2302	size_t len =
2303		NLMSG_ALIGN(sizeof(struct rtmsg))
2304		+ nla_total_size(4)	/* RTA_TABLE */
2305		+ nla_total_size(4)	/* RTA_SRC */
2306		+ nla_total_size(4)	/* RTA_DST */
2307		;
2308
2309	if (!unresolved)
2310		len = len
2311		      + nla_total_size(4)	/* RTA_IIF */
2312		      + nla_total_size(0)	/* RTA_MULTIPATH */
2313		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2314						/* RTA_MFC_STATS */
2315		      + nla_total_size(sizeof(struct rta_mfc_stats))
2316		;
2317
2318	return len;
2319}
2320
2321static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2322				 int cmd)
2323{
2324	struct net *net = read_pnet(&mrt->net);
2325	struct sk_buff *skb;
2326	int err = -ENOBUFS;
2327
2328	skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2329			GFP_ATOMIC);
2330	if (skb == NULL)
2331		goto errout;
2332
2333	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2334	if (err < 0)
2335		goto errout;
2336
2337	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2338	return;
2339
2340errout:
2341	kfree_skb(skb);
2342	if (err < 0)
2343		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2344}
2345
2346static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2347{
2348	struct net *net = sock_net(skb->sk);
2349	struct mr_table *mrt;
2350	struct mfc_cache *mfc;
2351	unsigned int t = 0, s_t;
2352	unsigned int h = 0, s_h;
2353	unsigned int e = 0, s_e;
2354
2355	s_t = cb->args[0];
2356	s_h = cb->args[1];
2357	s_e = cb->args[2];
2358
2359	rcu_read_lock();
2360	ipmr_for_each_table(mrt, net) {
2361		if (t < s_t)
2362			goto next_table;
2363		if (t > s_t)
2364			s_h = 0;
2365		for (h = s_h; h < MFC_LINES; h++) {
2366			list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2367				if (e < s_e)
2368					goto next_entry;
2369				if (ipmr_fill_mroute(mrt, skb,
2370						     NETLINK_CB(cb->skb).portid,
2371						     cb->nlh->nlmsg_seq,
2372						     mfc, RTM_NEWROUTE,
2373						     NLM_F_MULTI) < 0)
2374					goto done;
2375next_entry:
2376				e++;
2377			}
2378			e = s_e = 0;
2379		}
2380		spin_lock_bh(&mfc_unres_lock);
2381		list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2382			if (e < s_e)
2383				goto next_entry2;
2384			if (ipmr_fill_mroute(mrt, skb,
2385					     NETLINK_CB(cb->skb).portid,
2386					     cb->nlh->nlmsg_seq,
2387					     mfc, RTM_NEWROUTE,
2388					     NLM_F_MULTI) < 0) {
2389				spin_unlock_bh(&mfc_unres_lock);
2390				goto done;
2391			}
2392next_entry2:
2393			e++;
2394		}
2395		spin_unlock_bh(&mfc_unres_lock);
2396		e = s_e = 0;
2397		s_h = 0;
2398next_table:
2399		t++;
2400	}
2401done:
2402	rcu_read_unlock();
2403
2404	cb->args[2] = e;
2405	cb->args[1] = h;
2406	cb->args[0] = t;
2407
2408	return skb->len;
2409}
2410
2411#ifdef CONFIG_PROC_FS
2412/*
2413 *	The /proc interfaces to multicast routing :
2414 *	/proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2415 */
2416struct ipmr_vif_iter {
2417	struct seq_net_private p;
2418	struct mr_table *mrt;
2419	int ct;
2420};
2421
2422static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2423					   struct ipmr_vif_iter *iter,
2424					   loff_t pos)
2425{
2426	struct mr_table *mrt = iter->mrt;
2427
2428	for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2429		if (!VIF_EXISTS(mrt, iter->ct))
2430			continue;
2431		if (pos-- == 0)
2432			return &mrt->vif_table[iter->ct];
2433	}
2434	return NULL;
2435}
2436
2437static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2438	__acquires(mrt_lock)
2439{
2440	struct ipmr_vif_iter *iter = seq->private;
2441	struct net *net = seq_file_net(seq);
2442	struct mr_table *mrt;
2443
2444	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2445	if (mrt == NULL)
2446		return ERR_PTR(-ENOENT);
2447
2448	iter->mrt = mrt;
2449
2450	read_lock(&mrt_lock);
2451	return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2452		: SEQ_START_TOKEN;
2453}
2454
2455static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2456{
2457	struct ipmr_vif_iter *iter = seq->private;
2458	struct net *net = seq_file_net(seq);
2459	struct mr_table *mrt = iter->mrt;
2460
2461	++*pos;
2462	if (v == SEQ_START_TOKEN)
2463		return ipmr_vif_seq_idx(net, iter, 0);
2464
2465	while (++iter->ct < mrt->maxvif) {
2466		if (!VIF_EXISTS(mrt, iter->ct))
2467			continue;
2468		return &mrt->vif_table[iter->ct];
2469	}
2470	return NULL;
2471}
2472
2473static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2474	__releases(mrt_lock)
2475{
2476	read_unlock(&mrt_lock);
2477}
2478
2479static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2480{
2481	struct ipmr_vif_iter *iter = seq->private;
2482	struct mr_table *mrt = iter->mrt;
2483
2484	if (v == SEQ_START_TOKEN) {
2485		seq_puts(seq,
2486			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2487	} else {
2488		const struct vif_device *vif = v;
2489		const char *name =  vif->dev ? vif->dev->name : "none";
2490
2491		seq_printf(seq,
2492			   "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2493			   vif - mrt->vif_table,
2494			   name, vif->bytes_in, vif->pkt_in,
2495			   vif->bytes_out, vif->pkt_out,
2496			   vif->flags, vif->local, vif->remote);
2497	}
2498	return 0;
2499}
2500
2501static const struct seq_operations ipmr_vif_seq_ops = {
2502	.start = ipmr_vif_seq_start,
2503	.next  = ipmr_vif_seq_next,
2504	.stop  = ipmr_vif_seq_stop,
2505	.show  = ipmr_vif_seq_show,
2506};
2507
2508static int ipmr_vif_open(struct inode *inode, struct file *file)
2509{
2510	return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2511			    sizeof(struct ipmr_vif_iter));
2512}
2513
2514static const struct file_operations ipmr_vif_fops = {
2515	.owner	 = THIS_MODULE,
2516	.open    = ipmr_vif_open,
2517	.read    = seq_read,
2518	.llseek  = seq_lseek,
2519	.release = seq_release_net,
2520};
2521
2522struct ipmr_mfc_iter {
2523	struct seq_net_private p;
2524	struct mr_table *mrt;
2525	struct list_head *cache;
2526	int ct;
2527};
2528
2529
2530static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2531					  struct ipmr_mfc_iter *it, loff_t pos)
2532{
2533	struct mr_table *mrt = it->mrt;
2534	struct mfc_cache *mfc;
2535
2536	rcu_read_lock();
2537	for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2538		it->cache = &mrt->mfc_cache_array[it->ct];
2539		list_for_each_entry_rcu(mfc, it->cache, list)
2540			if (pos-- == 0)
2541				return mfc;
2542	}
2543	rcu_read_unlock();
2544
2545	spin_lock_bh(&mfc_unres_lock);
2546	it->cache = &mrt->mfc_unres_queue;
2547	list_for_each_entry(mfc, it->cache, list)
2548		if (pos-- == 0)
2549			return mfc;
2550	spin_unlock_bh(&mfc_unres_lock);
2551
2552	it->cache = NULL;
2553	return NULL;
2554}
2555
2556
2557static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2558{
2559	struct ipmr_mfc_iter *it = seq->private;
2560	struct net *net = seq_file_net(seq);
2561	struct mr_table *mrt;
2562
2563	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2564	if (mrt == NULL)
2565		return ERR_PTR(-ENOENT);
2566
2567	it->mrt = mrt;
2568	it->cache = NULL;
2569	it->ct = 0;
2570	return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2571		: SEQ_START_TOKEN;
2572}
2573
2574static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2575{
2576	struct mfc_cache *mfc = v;
2577	struct ipmr_mfc_iter *it = seq->private;
2578	struct net *net = seq_file_net(seq);
2579	struct mr_table *mrt = it->mrt;
2580
2581	++*pos;
2582
2583	if (v == SEQ_START_TOKEN)
2584		return ipmr_mfc_seq_idx(net, seq->private, 0);
2585
2586	if (mfc->list.next != it->cache)
2587		return list_entry(mfc->list.next, struct mfc_cache, list);
2588
2589	if (it->cache == &mrt->mfc_unres_queue)
2590		goto end_of_list;
2591
2592	BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2593
2594	while (++it->ct < MFC_LINES) {
2595		it->cache = &mrt->mfc_cache_array[it->ct];
2596		if (list_empty(it->cache))
2597			continue;
2598		return list_first_entry(it->cache, struct mfc_cache, list);
2599	}
2600
2601	/* exhausted cache_array, show unresolved */
2602	rcu_read_unlock();
2603	it->cache = &mrt->mfc_unres_queue;
2604	it->ct = 0;
2605
2606	spin_lock_bh(&mfc_unres_lock);
2607	if (!list_empty(it->cache))
2608		return list_first_entry(it->cache, struct mfc_cache, list);
2609
2610end_of_list:
2611	spin_unlock_bh(&mfc_unres_lock);
2612	it->cache = NULL;
2613
2614	return NULL;
2615}
2616
2617static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2618{
2619	struct ipmr_mfc_iter *it = seq->private;
2620	struct mr_table *mrt = it->mrt;
2621
2622	if (it->cache == &mrt->mfc_unres_queue)
2623		spin_unlock_bh(&mfc_unres_lock);
2624	else if (it->cache == &mrt->mfc_cache_array[it->ct])
2625		rcu_read_unlock();
2626}
2627
2628static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2629{
2630	int n;
2631
2632	if (v == SEQ_START_TOKEN) {
2633		seq_puts(seq,
2634		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2635	} else {
2636		const struct mfc_cache *mfc = v;
2637		const struct ipmr_mfc_iter *it = seq->private;
2638		const struct mr_table *mrt = it->mrt;
2639
2640		seq_printf(seq, "%08X %08X %-3hd",
2641			   (__force u32) mfc->mfc_mcastgrp,
2642			   (__force u32) mfc->mfc_origin,
2643			   mfc->mfc_parent);
2644
2645		if (it->cache != &mrt->mfc_unres_queue) {
2646			seq_printf(seq, " %8lu %8lu %8lu",
2647				   mfc->mfc_un.res.pkt,
2648				   mfc->mfc_un.res.bytes,
2649				   mfc->mfc_un.res.wrong_if);
2650			for (n = mfc->mfc_un.res.minvif;
2651			     n < mfc->mfc_un.res.maxvif; n++) {
2652				if (VIF_EXISTS(mrt, n) &&
2653				    mfc->mfc_un.res.ttls[n] < 255)
2654					seq_printf(seq,
2655					   " %2d:%-3d",
2656					   n, mfc->mfc_un.res.ttls[n]);
2657			}
2658		} else {
2659			/* unresolved mfc_caches don't contain
2660			 * pkt, bytes and wrong_if values
2661			 */
2662			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2663		}
2664		seq_putc(seq, '\n');
2665	}
2666	return 0;
2667}
2668
2669static const struct seq_operations ipmr_mfc_seq_ops = {
2670	.start = ipmr_mfc_seq_start,
2671	.next  = ipmr_mfc_seq_next,
2672	.stop  = ipmr_mfc_seq_stop,
2673	.show  = ipmr_mfc_seq_show,
2674};
2675
2676static int ipmr_mfc_open(struct inode *inode, struct file *file)
2677{
2678	return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2679			    sizeof(struct ipmr_mfc_iter));
2680}
2681
2682static const struct file_operations ipmr_mfc_fops = {
2683	.owner	 = THIS_MODULE,
2684	.open    = ipmr_mfc_open,
2685	.read    = seq_read,
2686	.llseek  = seq_lseek,
2687	.release = seq_release_net,
2688};
2689#endif
2690
2691#ifdef CONFIG_IP_PIMSM_V2
2692static const struct net_protocol pim_protocol = {
2693	.handler	=	pim_rcv,
2694	.netns_ok	=	1,
2695};
2696#endif
2697
2698
2699/*
2700 *	Setup for IP multicast routing
2701 */
2702static int __net_init ipmr_net_init(struct net *net)
2703{
2704	int err;
2705
2706	err = ipmr_rules_init(net);
2707	if (err < 0)
2708		goto fail;
2709
2710#ifdef CONFIG_PROC_FS
2711	err = -ENOMEM;
2712	if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2713		goto proc_vif_fail;
2714	if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2715		goto proc_cache_fail;
2716#endif
2717	return 0;
2718
2719#ifdef CONFIG_PROC_FS
2720proc_cache_fail:
2721	remove_proc_entry("ip_mr_vif", net->proc_net);
2722proc_vif_fail:
2723	ipmr_rules_exit(net);
2724#endif
2725fail:
2726	return err;
2727}
2728
2729static void __net_exit ipmr_net_exit(struct net *net)
2730{
2731#ifdef CONFIG_PROC_FS
2732	remove_proc_entry("ip_mr_cache", net->proc_net);
2733	remove_proc_entry("ip_mr_vif", net->proc_net);
2734#endif
2735	ipmr_rules_exit(net);
2736}
2737
2738static struct pernet_operations ipmr_net_ops = {
2739	.init = ipmr_net_init,
2740	.exit = ipmr_net_exit,
2741};
2742
2743int __init ip_mr_init(void)
2744{
2745	int err;
2746
2747	mrt_cachep = kmem_cache_create("ip_mrt_cache",
2748				       sizeof(struct mfc_cache),
2749				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2750				       NULL);
2751	if (!mrt_cachep)
2752		return -ENOMEM;
2753
2754	err = register_pernet_subsys(&ipmr_net_ops);
2755	if (err)
2756		goto reg_pernet_fail;
2757
2758	err = register_netdevice_notifier(&ip_mr_notifier);
2759	if (err)
2760		goto reg_notif_fail;
2761#ifdef CONFIG_IP_PIMSM_V2
2762	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2763		pr_err("%s: can't add PIM protocol\n", __func__);
2764		err = -EAGAIN;
2765		goto add_proto_fail;
2766	}
2767#endif
2768	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2769		      NULL, ipmr_rtm_dumproute, NULL);
2770	return 0;
2771
2772#ifdef CONFIG_IP_PIMSM_V2
2773add_proto_fail:
2774	unregister_netdevice_notifier(&ip_mr_notifier);
2775#endif
2776reg_notif_fail:
2777	unregister_pernet_subsys(&ipmr_net_ops);
2778reg_pernet_fail:
2779	kmem_cache_destroy(mrt_cachep);
2780	return err;
2781}