Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 *  linux/fs/nfs/file.c
  3 *
  4 *  Copyright (C) 1992  Rick Sladkey
  5 *
  6 *  Changes Copyright (C) 1994 by Florian La Roche
  7 *   - Do not copy data too often around in the kernel.
  8 *   - In nfs_file_read the return value of kmalloc wasn't checked.
  9 *   - Put in a better version of read look-ahead buffering. Original idea
 10 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 11 *
 12 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 13 *
 14 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 15 *
 16 *  nfs regular file handling functions
 17 */
 18
 
 19#include <linux/time.h>
 20#include <linux/kernel.h>
 21#include <linux/errno.h>
 22#include <linux/fcntl.h>
 23#include <linux/stat.h>
 24#include <linux/nfs_fs.h>
 25#include <linux/nfs_mount.h>
 26#include <linux/mm.h>
 27#include <linux/pagemap.h>
 28#include <linux/aio.h>
 29#include <linux/gfp.h>
 30#include <linux/swap.h>
 31
 32#include <asm/uaccess.h>
 33#include <asm/system.h>
 34
 35#include "delegation.h"
 36#include "internal.h"
 37#include "iostat.h"
 38#include "fscache.h"
 39#include "pnfs.h"
 40
 41#define NFSDBG_FACILITY		NFSDBG_FILE
 42
 43static int nfs_file_open(struct inode *, struct file *);
 44static int nfs_file_release(struct inode *, struct file *);
 45static loff_t nfs_file_llseek(struct file *file, loff_t offset, int origin);
 46static int  nfs_file_mmap(struct file *, struct vm_area_struct *);
 47static ssize_t nfs_file_splice_read(struct file *filp, loff_t *ppos,
 48					struct pipe_inode_info *pipe,
 49					size_t count, unsigned int flags);
 50static ssize_t nfs_file_read(struct kiocb *, const struct iovec *iov,
 51				unsigned long nr_segs, loff_t pos);
 52static ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe,
 53					struct file *filp, loff_t *ppos,
 54					size_t count, unsigned int flags);
 55static ssize_t nfs_file_write(struct kiocb *, const struct iovec *iov,
 56				unsigned long nr_segs, loff_t pos);
 57static int  nfs_file_flush(struct file *, fl_owner_t id);
 58static int  nfs_file_fsync(struct file *, loff_t, loff_t, int datasync);
 59static int nfs_check_flags(int flags);
 60static int nfs_lock(struct file *filp, int cmd, struct file_lock *fl);
 61static int nfs_flock(struct file *filp, int cmd, struct file_lock *fl);
 62static int nfs_setlease(struct file *file, long arg, struct file_lock **fl);
 63
 64static const struct vm_operations_struct nfs_file_vm_ops;
 65
 66const struct file_operations nfs_file_operations = {
 67	.llseek		= nfs_file_llseek,
 68	.read		= do_sync_read,
 69	.write		= do_sync_write,
 70	.aio_read	= nfs_file_read,
 71	.aio_write	= nfs_file_write,
 72	.mmap		= nfs_file_mmap,
 73	.open		= nfs_file_open,
 74	.flush		= nfs_file_flush,
 75	.release	= nfs_file_release,
 76	.fsync		= nfs_file_fsync,
 77	.lock		= nfs_lock,
 78	.flock		= nfs_flock,
 79	.splice_read	= nfs_file_splice_read,
 80	.splice_write	= nfs_file_splice_write,
 81	.check_flags	= nfs_check_flags,
 82	.setlease	= nfs_setlease,
 83};
 84
 85const struct inode_operations nfs_file_inode_operations = {
 86	.permission	= nfs_permission,
 87	.getattr	= nfs_getattr,
 88	.setattr	= nfs_setattr,
 89};
 90
 91#ifdef CONFIG_NFS_V3
 92const struct inode_operations nfs3_file_inode_operations = {
 93	.permission	= nfs_permission,
 94	.getattr	= nfs_getattr,
 95	.setattr	= nfs_setattr,
 96	.listxattr	= nfs3_listxattr,
 97	.getxattr	= nfs3_getxattr,
 98	.setxattr	= nfs3_setxattr,
 99	.removexattr	= nfs3_removexattr,
100};
101#endif  /* CONFIG_NFS_v3 */
102
103/* Hack for future NFS swap support */
104#ifndef IS_SWAPFILE
105# define IS_SWAPFILE(inode)	(0)
106#endif
107
108static int nfs_check_flags(int flags)
109{
110	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
111		return -EINVAL;
112
113	return 0;
114}
 
115
116/*
117 * Open file
118 */
119static int
120nfs_file_open(struct inode *inode, struct file *filp)
121{
122	int res;
123
124	dprintk("NFS: open file(%s/%s)\n",
125			filp->f_path.dentry->d_parent->d_name.name,
126			filp->f_path.dentry->d_name.name);
127
128	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
129	res = nfs_check_flags(filp->f_flags);
130	if (res)
131		return res;
132
133	res = nfs_open(inode, filp);
134	return res;
135}
136
137static int
138nfs_file_release(struct inode *inode, struct file *filp)
139{
140	struct dentry *dentry = filp->f_path.dentry;
141
142	dprintk("NFS: release(%s/%s)\n",
143			dentry->d_parent->d_name.name,
144			dentry->d_name.name);
145
146	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
147	return nfs_release(inode, filp);
 
148}
 
149
150/**
151 * nfs_revalidate_size - Revalidate the file size
152 * @inode - pointer to inode struct
153 * @file - pointer to struct file
154 *
155 * Revalidates the file length. This is basically a wrapper around
156 * nfs_revalidate_inode() that takes into account the fact that we may
157 * have cached writes (in which case we don't care about the server's
158 * idea of what the file length is), or O_DIRECT (in which case we
159 * shouldn't trust the cache).
160 */
161static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
162{
163	struct nfs_server *server = NFS_SERVER(inode);
164	struct nfs_inode *nfsi = NFS_I(inode);
165
166	if (nfs_have_delegated_attributes(inode))
167		goto out_noreval;
168
169	if (filp->f_flags & O_DIRECT)
170		goto force_reval;
171	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
172		goto force_reval;
173	if (nfs_attribute_timeout(inode))
174		goto force_reval;
175out_noreval:
176	return 0;
177force_reval:
178	return __nfs_revalidate_inode(server, inode);
179}
180
181static loff_t nfs_file_llseek(struct file *filp, loff_t offset, int origin)
182{
183	loff_t loff;
184
185	dprintk("NFS: llseek file(%s/%s, %lld, %d)\n",
186			filp->f_path.dentry->d_parent->d_name.name,
187			filp->f_path.dentry->d_name.name,
188			offset, origin);
189
190	/*
191	 * origin == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
192	 * the cached file length
193	 */
194	if (origin != SEEK_SET || origin != SEEK_CUR) {
195		struct inode *inode = filp->f_mapping->host;
196
197		int retval = nfs_revalidate_file_size(inode, filp);
198		if (retval < 0)
199			return (loff_t)retval;
 
200
201		spin_lock(&inode->i_lock);
202		loff = generic_file_llseek_unlocked(filp, offset, origin);
203		spin_unlock(&inode->i_lock);
204	} else
205		loff = generic_file_llseek_unlocked(filp, offset, origin);
206	return loff;
207}
 
208
209/*
210 * Flush all dirty pages, and check for write errors.
211 */
212static int
213nfs_file_flush(struct file *file, fl_owner_t id)
214{
215	struct dentry	*dentry = file->f_path.dentry;
216	struct inode	*inode = dentry->d_inode;
217
218	dprintk("NFS: flush(%s/%s)\n",
219			dentry->d_parent->d_name.name,
220			dentry->d_name.name);
221
222	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
223	if ((file->f_mode & FMODE_WRITE) == 0)
224		return 0;
225
226	/* Flush writes to the server and return any errors */
227	return vfs_fsync(file, 0);
228}
229
230static ssize_t
231nfs_file_read(struct kiocb *iocb, const struct iovec *iov,
232		unsigned long nr_segs, loff_t pos)
233{
234	struct dentry * dentry = iocb->ki_filp->f_path.dentry;
235	struct inode * inode = dentry->d_inode;
236	ssize_t result;
237	size_t count = iov_length(iov, nr_segs);
238
239	if (iocb->ki_filp->f_flags & O_DIRECT)
240		return nfs_file_direct_read(iocb, iov, nr_segs, pos);
241
242	dprintk("NFS: read(%s/%s, %lu@%lu)\n",
243		dentry->d_parent->d_name.name, dentry->d_name.name,
244		(unsigned long) count, (unsigned long) pos);
245
246	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
247	if (!result) {
248		result = generic_file_aio_read(iocb, iov, nr_segs, pos);
249		if (result > 0)
250			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
251	}
252	return result;
253}
 
254
255static ssize_t
256nfs_file_splice_read(struct file *filp, loff_t *ppos,
257		     struct pipe_inode_info *pipe, size_t count,
258		     unsigned int flags)
259{
260	struct dentry *dentry = filp->f_path.dentry;
261	struct inode *inode = dentry->d_inode;
262	ssize_t res;
263
264	dprintk("NFS: splice_read(%s/%s, %lu@%Lu)\n",
265		dentry->d_parent->d_name.name, dentry->d_name.name,
266		(unsigned long) count, (unsigned long long) *ppos);
267
268	res = nfs_revalidate_mapping(inode, filp->f_mapping);
269	if (!res) {
270		res = generic_file_splice_read(filp, ppos, pipe, count, flags);
271		if (res > 0)
272			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
273	}
274	return res;
275}
 
276
277static int
278nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
279{
280	struct dentry *dentry = file->f_path.dentry;
281	struct inode *inode = dentry->d_inode;
282	int	status;
283
284	dprintk("NFS: mmap(%s/%s)\n",
285		dentry->d_parent->d_name.name, dentry->d_name.name);
286
287	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
288	 *       so we call that before revalidating the mapping
289	 */
290	status = generic_file_mmap(file, vma);
291	if (!status) {
292		vma->vm_ops = &nfs_file_vm_ops;
293		status = nfs_revalidate_mapping(inode, file->f_mapping);
294	}
295	return status;
296}
 
297
298/*
299 * Flush any dirty pages for this process, and check for write errors.
300 * The return status from this call provides a reliable indication of
301 * whether any write errors occurred for this process.
302 *
303 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
304 * disk, but it retrieves and clears ctx->error after synching, despite
305 * the two being set at the same time in nfs_context_set_write_error().
306 * This is because the former is used to notify the _next_ call to
307 * nfs_file_write() that a write error occurred, and hence cause it to
308 * fall back to doing a synchronous write.
309 */
310static int
311nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
312{
313	struct dentry *dentry = file->f_path.dentry;
314	struct nfs_open_context *ctx = nfs_file_open_context(file);
315	struct inode *inode = dentry->d_inode;
316	int have_error, status;
317	int ret = 0;
318
319	dprintk("NFS: fsync file(%s/%s) datasync %d\n",
320			dentry->d_parent->d_name.name, dentry->d_name.name,
321			datasync);
322
323	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
324	if (ret)
325		return ret;
326	mutex_lock(&inode->i_mutex);
327
328	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
 
329	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
330	status = nfs_commit_inode(inode, FLUSH_SYNC);
331	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
332	if (have_error)
333		ret = xchg(&ctx->error, 0);
334	if (!ret && status < 0)
 
 
 
335		ret = status;
336	if (!ret && !datasync)
337		/* application has asked for meta-data sync */
338		ret = pnfs_layoutcommit_inode(inode, true);
339	mutex_unlock(&inode->i_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
340	return ret;
341}
 
342
343/*
344 * Decide whether a read/modify/write cycle may be more efficient
345 * then a modify/write/read cycle when writing to a page in the
346 * page cache.
347 *
348 * The modify/write/read cycle may occur if a page is read before
349 * being completely filled by the writer.  In this situation, the
350 * page must be completely written to stable storage on the server
351 * before it can be refilled by reading in the page from the server.
352 * This can lead to expensive, small, FILE_SYNC mode writes being
353 * done.
354 *
355 * It may be more efficient to read the page first if the file is
356 * open for reading in addition to writing, the page is not marked
357 * as Uptodate, it is not dirty or waiting to be committed,
358 * indicating that it was previously allocated and then modified,
359 * that there were valid bytes of data in that range of the file,
360 * and that the new data won't completely replace the old data in
361 * that range of the file.
362 */
363static int nfs_want_read_modify_write(struct file *file, struct page *page,
364			loff_t pos, unsigned len)
365{
366	unsigned int pglen = nfs_page_length(page);
367	unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
368	unsigned int end = offset + len;
369
 
 
 
 
 
 
370	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
371	    !PageUptodate(page) &&		/* Uptodate? */
372	    !PagePrivate(page) &&		/* i/o request already? */
373	    pglen &&				/* valid bytes of file? */
374	    (end < pglen || offset))		/* replace all valid bytes? */
375		return 1;
376	return 0;
377}
378
379/*
380 * This does the "real" work of the write. We must allocate and lock the
381 * page to be sent back to the generic routine, which then copies the
382 * data from user space.
383 *
384 * If the writer ends up delaying the write, the writer needs to
385 * increment the page use counts until he is done with the page.
386 */
387static int nfs_write_begin(struct file *file, struct address_space *mapping,
388			loff_t pos, unsigned len, unsigned flags,
389			struct page **pagep, void **fsdata)
390{
391	int ret;
392	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
393	struct page *page;
394	int once_thru = 0;
395
396	dfprintk(PAGECACHE, "NFS: write_begin(%s/%s(%ld), %u@%lld)\n",
397		file->f_path.dentry->d_parent->d_name.name,
398		file->f_path.dentry->d_name.name,
399		mapping->host->i_ino, len, (long long) pos);
400
401start:
402	/*
403	 * Prevent starvation issues if someone is doing a consistency
404	 * sync-to-disk
405	 */
406	ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
407			nfs_wait_bit_killable, TASK_KILLABLE);
408	if (ret)
409		return ret;
 
 
 
 
410
411	page = grab_cache_page_write_begin(mapping, index, flags);
412	if (!page)
413		return -ENOMEM;
414	*pagep = page;
415
416	ret = nfs_flush_incompatible(file, page);
417	if (ret) {
418		unlock_page(page);
419		page_cache_release(page);
420	} else if (!once_thru &&
421		   nfs_want_read_modify_write(file, page, pos, len)) {
422		once_thru = 1;
423		ret = nfs_readpage(file, page);
424		page_cache_release(page);
425		if (!ret)
426			goto start;
427	}
428	return ret;
429}
430
431static int nfs_write_end(struct file *file, struct address_space *mapping,
432			loff_t pos, unsigned len, unsigned copied,
433			struct page *page, void *fsdata)
434{
435	unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
 
436	int status;
437
438	dfprintk(PAGECACHE, "NFS: write_end(%s/%s(%ld), %u@%lld)\n",
439		file->f_path.dentry->d_parent->d_name.name,
440		file->f_path.dentry->d_name.name,
441		mapping->host->i_ino, len, (long long) pos);
442
443	/*
444	 * Zero any uninitialised parts of the page, and then mark the page
445	 * as up to date if it turns out that we're extending the file.
446	 */
447	if (!PageUptodate(page)) {
448		unsigned pglen = nfs_page_length(page);
449		unsigned end = offset + len;
450
451		if (pglen == 0) {
452			zero_user_segments(page, 0, offset,
453					end, PAGE_CACHE_SIZE);
454			SetPageUptodate(page);
455		} else if (end >= pglen) {
456			zero_user_segment(page, end, PAGE_CACHE_SIZE);
457			if (offset == 0)
458				SetPageUptodate(page);
459		} else
460			zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
461	}
462
463	status = nfs_updatepage(file, page, offset, copied);
464
465	unlock_page(page);
466	page_cache_release(page);
467
468	if (status < 0)
469		return status;
 
 
 
 
 
 
 
 
470	return copied;
471}
472
473/*
474 * Partially or wholly invalidate a page
475 * - Release the private state associated with a page if undergoing complete
476 *   page invalidation
477 * - Called if either PG_private or PG_fscache is set on the page
478 * - Caller holds page lock
479 */
480static void nfs_invalidate_page(struct page *page, unsigned long offset)
 
481{
482	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %lu)\n", page, offset);
 
483
484	if (offset != 0)
485		return;
486	/* Cancel any unstarted writes on this page */
487	nfs_wb_page_cancel(page->mapping->host, page);
488
489	nfs_fscache_invalidate_page(page, page->mapping->host);
490}
491
492/*
493 * Attempt to release the private state associated with a page
494 * - Called if either PG_private or PG_fscache is set on the page
495 * - Caller holds page lock
496 * - Return true (may release page) or false (may not)
497 */
498static int nfs_release_page(struct page *page, gfp_t gfp)
499{
500	struct address_space *mapping = page->mapping;
501
502	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
503
504	/* Only do I/O if gfp is a superset of GFP_KERNEL */
505	if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL) {
506		int how = FLUSH_SYNC;
507
508		/* Don't let kswapd deadlock waiting for OOM RPC calls */
509		if (current_is_kswapd())
510			how = 0;
511		nfs_commit_inode(mapping->host, how);
 
 
 
 
 
 
 
 
 
 
 
 
512	}
513	/* If PagePrivate() is set, then the page is not freeable */
514	if (PagePrivate(page))
515		return 0;
516	return nfs_fscache_release_page(page, gfp);
517}
518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
519/*
520 * Attempt to clear the private state associated with a page when an error
521 * occurs that requires the cached contents of an inode to be written back or
522 * destroyed
523 * - Called if either PG_private or fscache is set on the page
524 * - Caller holds page lock
525 * - Return 0 if successful, -error otherwise
526 */
527static int nfs_launder_page(struct page *page)
528{
529	struct inode *inode = page->mapping->host;
530	struct nfs_inode *nfsi = NFS_I(inode);
531
532	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
533		inode->i_ino, (long long)page_offset(page));
534
535	nfs_fscache_wait_on_page_write(nfsi, page);
536	return nfs_wb_page(inode, page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
537}
538
539const struct address_space_operations nfs_file_aops = {
540	.readpage = nfs_readpage,
541	.readpages = nfs_readpages,
542	.set_page_dirty = __set_page_dirty_nobuffers,
543	.writepage = nfs_writepage,
544	.writepages = nfs_writepages,
545	.write_begin = nfs_write_begin,
546	.write_end = nfs_write_end,
547	.invalidatepage = nfs_invalidate_page,
548	.releasepage = nfs_release_page,
549	.direct_IO = nfs_direct_IO,
550	.migratepage = nfs_migrate_page,
551	.launder_page = nfs_launder_page,
 
552	.error_remove_page = generic_error_remove_page,
 
 
553};
554
555/*
556 * Notification that a PTE pointing to an NFS page is about to be made
557 * writable, implying that someone is about to modify the page through a
558 * shared-writable mapping
559 */
560static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
561{
562	struct page *page = vmf->page;
563	struct file *filp = vma->vm_file;
564	struct dentry *dentry = filp->f_path.dentry;
565	unsigned pagelen;
566	int ret = VM_FAULT_NOPAGE;
567	struct address_space *mapping;
568
569	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%s/%s(%ld), offset %lld)\n",
570		dentry->d_parent->d_name.name, dentry->d_name.name,
571		filp->f_mapping->host->i_ino,
572		(long long)page_offset(page));
573
574	/* make sure the cache has finished storing the page */
575	nfs_fscache_wait_on_page_write(NFS_I(dentry->d_inode), page);
 
 
 
576
577	lock_page(page);
578	mapping = page->mapping;
579	if (mapping != dentry->d_inode->i_mapping)
580		goto out_unlock;
581
 
 
582	pagelen = nfs_page_length(page);
583	if (pagelen == 0)
584		goto out_unlock;
585
586	ret = VM_FAULT_LOCKED;
587	if (nfs_flush_incompatible(filp, page) == 0 &&
588	    nfs_updatepage(filp, page, 0, pagelen) == 0)
589		goto out;
590
591	ret = VM_FAULT_SIGBUS;
592out_unlock:
593	unlock_page(page);
594out:
595	return ret;
596}
597
598static const struct vm_operations_struct nfs_file_vm_ops = {
599	.fault = filemap_fault,
 
600	.page_mkwrite = nfs_vm_page_mkwrite,
601};
602
603static int nfs_need_sync_write(struct file *filp, struct inode *inode)
604{
605	struct nfs_open_context *ctx;
606
607	if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
608		return 1;
609	ctx = nfs_file_open_context(filp);
610	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags))
 
611		return 1;
612	return 0;
613}
614
615static ssize_t nfs_file_write(struct kiocb *iocb, const struct iovec *iov,
616				unsigned long nr_segs, loff_t pos)
617{
618	struct dentry * dentry = iocb->ki_filp->f_path.dentry;
619	struct inode * inode = dentry->d_inode;
620	unsigned long written = 0;
621	ssize_t result;
622	size_t count = iov_length(iov, nr_segs);
623
624	if (iocb->ki_filp->f_flags & O_DIRECT)
625		return nfs_file_direct_write(iocb, iov, nr_segs, pos);
 
 
 
 
 
 
 
 
626
627	dprintk("NFS: write(%s/%s, %lu@%Ld)\n",
628		dentry->d_parent->d_name.name, dentry->d_name.name,
629		(unsigned long) count, (long long) pos);
630
631	result = -EBUSY;
632	if (IS_SWAPFILE(inode))
633		goto out_swapfile;
634	/*
635	 * O_APPEND implies that we must revalidate the file length.
636	 */
637	if (iocb->ki_filp->f_flags & O_APPEND) {
638		result = nfs_revalidate_file_size(inode, iocb->ki_filp);
639		if (result)
640			goto out;
641	}
642
643	result = count;
644	if (!count)
645		goto out;
646
647	result = generic_file_aio_write(iocb, iov, nr_segs, pos);
648	if (result > 0)
649		written = result;
650
651	/* Return error values for O_DSYNC and IS_SYNC() */
652	if (result >= 0 && nfs_need_sync_write(iocb->ki_filp, inode)) {
653		int err = vfs_fsync(iocb->ki_filp, 0);
654		if (err < 0)
655			result = err;
656	}
657	if (result > 0)
658		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
659out:
660	return result;
661
662out_swapfile:
663	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
664	goto out;
665}
666
667static ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe,
668				     struct file *filp, loff_t *ppos,
669				     size_t count, unsigned int flags)
670{
671	struct dentry *dentry = filp->f_path.dentry;
672	struct inode *inode = dentry->d_inode;
673	unsigned long written = 0;
674	ssize_t ret;
675
676	dprintk("NFS splice_write(%s/%s, %lu@%llu)\n",
677		dentry->d_parent->d_name.name, dentry->d_name.name,
678		(unsigned long) count, (unsigned long long) *ppos);
679
680	/*
681	 * The combination of splice and an O_APPEND destination is disallowed.
682	 */
683
684	ret = generic_file_splice_write(pipe, filp, ppos, count, flags);
685	if (ret > 0)
686		written = ret;
687
688	if (ret >= 0 && nfs_need_sync_write(filp, inode)) {
689		int err = vfs_fsync(filp, 0);
690		if (err < 0)
691			ret = err;
692	}
693	if (ret > 0)
694		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
695	return ret;
696}
697
698static int
699do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
700{
701	struct inode *inode = filp->f_mapping->host;
702	int status = 0;
703	unsigned int saved_type = fl->fl_type;
704
705	/* Try local locking first */
706	posix_test_lock(filp, fl);
707	if (fl->fl_type != F_UNLCK) {
708		/* found a conflict */
709		goto out;
710	}
711	fl->fl_type = saved_type;
712
713	if (nfs_have_delegation(inode, FMODE_READ))
714		goto out_noconflict;
715
716	if (is_local)
717		goto out_noconflict;
718
719	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
720out:
721	return status;
722out_noconflict:
723	fl->fl_type = F_UNLCK;
724	goto out;
725}
726
727static int do_vfs_lock(struct file *file, struct file_lock *fl)
728{
729	int res = 0;
730	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
731		case FL_POSIX:
732			res = posix_lock_file_wait(file, fl);
733			break;
734		case FL_FLOCK:
735			res = flock_lock_file_wait(file, fl);
736			break;
737		default:
738			BUG();
739	}
740	return res;
741}
742
743static int
744do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
745{
746	struct inode *inode = filp->f_mapping->host;
 
747	int status;
748
749	/*
750	 * Flush all pending writes before doing anything
751	 * with locks..
752	 */
753	nfs_sync_mapping(filp->f_mapping);
 
 
 
 
 
 
 
 
754
755	/* NOTE: special case
756	 * 	If we're signalled while cleaning up locks on process exit, we
757	 * 	still need to complete the unlock.
758	 */
759	/*
760	 * Use local locking if mounted with "-onolock" or with appropriate
761	 * "-olocal_lock="
762	 */
763	if (!is_local)
764		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
765	else
766		status = do_vfs_lock(filp, fl);
767	return status;
768}
769
770static int
771is_time_granular(struct timespec *ts) {
772	return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
773}
774
775static int
776do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
777{
778	struct inode *inode = filp->f_mapping->host;
779	int status;
780
781	/*
782	 * Flush all pending writes before doing anything
783	 * with locks..
784	 */
785	status = nfs_sync_mapping(filp->f_mapping);
786	if (status != 0)
787		goto out;
788
789	/*
790	 * Use local locking if mounted with "-onolock" or with appropriate
791	 * "-olocal_lock="
792	 */
793	if (!is_local)
794		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
795	else
796		status = do_vfs_lock(filp, fl);
797	if (status < 0)
798		goto out;
799
800	/*
801	 * Revalidate the cache if the server has time stamps granular
802	 * enough to detect subsecond changes.  Otherwise, clear the
803	 * cache to prevent missing any changes.
804	 *
805	 * This makes locking act as a cache coherency point.
806	 */
807	nfs_sync_mapping(filp->f_mapping);
808	if (!nfs_have_delegation(inode, FMODE_READ)) {
809		if (is_time_granular(&NFS_SERVER(inode)->time_delta))
810			__nfs_revalidate_inode(NFS_SERVER(inode), inode);
811		else
812			nfs_zap_caches(inode);
813	}
814out:
815	return status;
816}
817
818/*
819 * Lock a (portion of) a file
820 */
821static int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
822{
823	struct inode *inode = filp->f_mapping->host;
824	int ret = -ENOLCK;
825	int is_local = 0;
826
827	dprintk("NFS: lock(%s/%s, t=%x, fl=%x, r=%lld:%lld)\n",
828			filp->f_path.dentry->d_parent->d_name.name,
829			filp->f_path.dentry->d_name.name,
830			fl->fl_type, fl->fl_flags,
831			(long long)fl->fl_start, (long long)fl->fl_end);
832
833	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
834
835	/* No mandatory locks over NFS */
836	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
837		goto out_err;
838
839	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
840		is_local = 1;
841
842	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
843		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
844		if (ret < 0)
845			goto out_err;
846	}
847
848	if (IS_GETLK(cmd))
849		ret = do_getlk(filp, cmd, fl, is_local);
850	else if (fl->fl_type == F_UNLCK)
851		ret = do_unlk(filp, cmd, fl, is_local);
852	else
853		ret = do_setlk(filp, cmd, fl, is_local);
854out_err:
855	return ret;
856}
 
857
858/*
859 * Lock a (portion of) a file
860 */
861static int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
862{
863	struct inode *inode = filp->f_mapping->host;
864	int is_local = 0;
865
866	dprintk("NFS: flock(%s/%s, t=%x, fl=%x)\n",
867			filp->f_path.dentry->d_parent->d_name.name,
868			filp->f_path.dentry->d_name.name,
869			fl->fl_type, fl->fl_flags);
870
871	if (!(fl->fl_flags & FL_FLOCK))
872		return -ENOLCK;
873
 
 
 
 
 
 
 
 
 
874	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
875		is_local = 1;
876
877	/* We're simulating flock() locks using posix locks on the server */
878	fl->fl_owner = (fl_owner_t)filp;
879	fl->fl_start = 0;
880	fl->fl_end = OFFSET_MAX;
881
882	if (fl->fl_type == F_UNLCK)
883		return do_unlk(filp, cmd, fl, is_local);
884	return do_setlk(filp, cmd, fl, is_local);
885}
 
886
887/*
888 * There is no protocol support for leases, so we have no way to implement
889 * them correctly in the face of opens by other clients.
890 */
891static int nfs_setlease(struct file *file, long arg, struct file_lock **fl)
892{
893	dprintk("NFS: setlease(%s/%s, arg=%ld)\n",
894			file->f_path.dentry->d_parent->d_name.name,
895			file->f_path.dentry->d_name.name, arg);
896	return -EINVAL;
897}
 
 
 
 
 
 
v4.6
  1/*
  2 *  linux/fs/nfs/file.c
  3 *
  4 *  Copyright (C) 1992  Rick Sladkey
  5 *
  6 *  Changes Copyright (C) 1994 by Florian La Roche
  7 *   - Do not copy data too often around in the kernel.
  8 *   - In nfs_file_read the return value of kmalloc wasn't checked.
  9 *   - Put in a better version of read look-ahead buffering. Original idea
 10 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 11 *
 12 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 13 *
 14 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 15 *
 16 *  nfs regular file handling functions
 17 */
 18
 19#include <linux/module.h>
 20#include <linux/time.h>
 21#include <linux/kernel.h>
 22#include <linux/errno.h>
 23#include <linux/fcntl.h>
 24#include <linux/stat.h>
 25#include <linux/nfs_fs.h>
 26#include <linux/nfs_mount.h>
 27#include <linux/mm.h>
 28#include <linux/pagemap.h>
 
 29#include <linux/gfp.h>
 30#include <linux/swap.h>
 31
 32#include <asm/uaccess.h>
 
 33
 34#include "delegation.h"
 35#include "internal.h"
 36#include "iostat.h"
 37#include "fscache.h"
 38#include "pnfs.h"
 39
 40#include "nfstrace.h"
 41
 42#define NFSDBG_FACILITY		NFSDBG_FILE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 43
 44static const struct vm_operations_struct nfs_file_vm_ops;
 45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 46/* Hack for future NFS swap support */
 47#ifndef IS_SWAPFILE
 48# define IS_SWAPFILE(inode)	(0)
 49#endif
 50
 51int nfs_check_flags(int flags)
 52{
 53	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 54		return -EINVAL;
 55
 56	return 0;
 57}
 58EXPORT_SYMBOL_GPL(nfs_check_flags);
 59
 60/*
 61 * Open file
 62 */
 63static int
 64nfs_file_open(struct inode *inode, struct file *filp)
 65{
 66	int res;
 67
 68	dprintk("NFS: open file(%pD2)\n", filp);
 
 
 69
 70	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 71	res = nfs_check_flags(filp->f_flags);
 72	if (res)
 73		return res;
 74
 75	res = nfs_open(inode, filp);
 76	return res;
 77}
 78
 79int
 80nfs_file_release(struct inode *inode, struct file *filp)
 81{
 82	dprintk("NFS: release(%pD2)\n", filp);
 
 
 
 
 83
 84	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
 85	nfs_file_clear_open_context(filp);
 86	return 0;
 87}
 88EXPORT_SYMBOL_GPL(nfs_file_release);
 89
 90/**
 91 * nfs_revalidate_size - Revalidate the file size
 92 * @inode - pointer to inode struct
 93 * @file - pointer to struct file
 94 *
 95 * Revalidates the file length. This is basically a wrapper around
 96 * nfs_revalidate_inode() that takes into account the fact that we may
 97 * have cached writes (in which case we don't care about the server's
 98 * idea of what the file length is), or O_DIRECT (in which case we
 99 * shouldn't trust the cache).
100 */
101static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
102{
103	struct nfs_server *server = NFS_SERVER(inode);
104	struct nfs_inode *nfsi = NFS_I(inode);
105
106	if (nfs_have_delegated_attributes(inode))
107		goto out_noreval;
108
109	if (filp->f_flags & O_DIRECT)
110		goto force_reval;
111	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
112		goto force_reval;
113	if (nfs_attribute_timeout(inode))
114		goto force_reval;
115out_noreval:
116	return 0;
117force_reval:
118	return __nfs_revalidate_inode(server, inode);
119}
120
121loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
122{
123	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
124			filp, offset, whence);
 
 
 
 
125
126	/*
127	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
128	 * the cached file length
129	 */
130	if (whence != SEEK_SET && whence != SEEK_CUR) {
131		struct inode *inode = filp->f_mapping->host;
132
133		int retval = nfs_revalidate_file_size(inode, filp);
134		if (retval < 0)
135			return (loff_t)retval;
136	}
137
138	return generic_file_llseek(filp, offset, whence);
 
 
 
 
 
139}
140EXPORT_SYMBOL_GPL(nfs_file_llseek);
141
142/*
143 * Flush all dirty pages, and check for write errors.
144 */
145static int
146nfs_file_flush(struct file *file, fl_owner_t id)
147{
148	struct inode	*inode = file_inode(file);
 
149
150	dprintk("NFS: flush(%pD2)\n", file);
 
 
151
152	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
153	if ((file->f_mode & FMODE_WRITE) == 0)
154		return 0;
155
156	/* Flush writes to the server and return any errors */
157	return vfs_fsync(file, 0);
158}
159
160ssize_t
161nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
 
162{
163	struct inode *inode = file_inode(iocb->ki_filp);
 
164	ssize_t result;
 
165
166	if (iocb->ki_flags & IOCB_DIRECT)
167		return nfs_file_direct_read(iocb, to, iocb->ki_pos);
168
169	dprintk("NFS: read(%pD2, %zu@%lu)\n",
170		iocb->ki_filp,
171		iov_iter_count(to), (unsigned long) iocb->ki_pos);
172
173	result = nfs_revalidate_mapping_protected(inode, iocb->ki_filp->f_mapping);
174	if (!result) {
175		result = generic_file_read_iter(iocb, to);
176		if (result > 0)
177			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
178	}
179	return result;
180}
181EXPORT_SYMBOL_GPL(nfs_file_read);
182
183ssize_t
184nfs_file_splice_read(struct file *filp, loff_t *ppos,
185		     struct pipe_inode_info *pipe, size_t count,
186		     unsigned int flags)
187{
188	struct inode *inode = file_inode(filp);
 
189	ssize_t res;
190
191	dprintk("NFS: splice_read(%pD2, %lu@%Lu)\n",
192		filp, (unsigned long) count, (unsigned long long) *ppos);
 
193
194	res = nfs_revalidate_mapping_protected(inode, filp->f_mapping);
195	if (!res) {
196		res = generic_file_splice_read(filp, ppos, pipe, count, flags);
197		if (res > 0)
198			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
199	}
200	return res;
201}
202EXPORT_SYMBOL_GPL(nfs_file_splice_read);
203
204int
205nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
206{
207	struct inode *inode = file_inode(file);
 
208	int	status;
209
210	dprintk("NFS: mmap(%pD2)\n", file);
 
211
212	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
213	 *       so we call that before revalidating the mapping
214	 */
215	status = generic_file_mmap(file, vma);
216	if (!status) {
217		vma->vm_ops = &nfs_file_vm_ops;
218		status = nfs_revalidate_mapping(inode, file->f_mapping);
219	}
220	return status;
221}
222EXPORT_SYMBOL_GPL(nfs_file_mmap);
223
224/*
225 * Flush any dirty pages for this process, and check for write errors.
226 * The return status from this call provides a reliable indication of
227 * whether any write errors occurred for this process.
228 *
229 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
230 * disk, but it retrieves and clears ctx->error after synching, despite
231 * the two being set at the same time in nfs_context_set_write_error().
232 * This is because the former is used to notify the _next_ call to
233 * nfs_file_write() that a write error occurred, and hence cause it to
234 * fall back to doing a synchronous write.
235 */
236static int
237nfs_file_fsync_commit(struct file *file, loff_t start, loff_t end, int datasync)
238{
 
239	struct nfs_open_context *ctx = nfs_file_open_context(file);
240	struct inode *inode = file_inode(file);
241	int have_error, do_resend, status;
242	int ret = 0;
243
244	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
 
 
 
 
 
 
 
245
246	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
247	do_resend = test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
248	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
249	status = nfs_commit_inode(inode, FLUSH_SYNC);
250	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
251	if (have_error) {
252		ret = xchg(&ctx->error, 0);
253		if (ret)
254			goto out;
255	}
256	if (status < 0) {
257		ret = status;
258		goto out;
259	}
260	do_resend |= test_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags);
261	if (do_resend)
262		ret = -EAGAIN;
263out:
264	return ret;
265}
266
267int
268nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
269{
270	int ret;
271	struct inode *inode = file_inode(file);
272
273	trace_nfs_fsync_enter(inode);
274
275	inode_dio_wait(inode);
276	do {
277		ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
278		if (ret != 0)
279			break;
280		inode_lock(inode);
281		ret = nfs_file_fsync_commit(file, start, end, datasync);
282		if (!ret)
283			ret = pnfs_sync_inode(inode, !!datasync);
284		inode_unlock(inode);
285		/*
286		 * If nfs_file_fsync_commit detected a server reboot, then
287		 * resend all dirty pages that might have been covered by
288		 * the NFS_CONTEXT_RESEND_WRITES flag
289		 */
290		start = 0;
291		end = LLONG_MAX;
292	} while (ret == -EAGAIN);
293
294	trace_nfs_fsync_exit(inode, ret);
295	return ret;
296}
297EXPORT_SYMBOL_GPL(nfs_file_fsync);
298
299/*
300 * Decide whether a read/modify/write cycle may be more efficient
301 * then a modify/write/read cycle when writing to a page in the
302 * page cache.
303 *
304 * The modify/write/read cycle may occur if a page is read before
305 * being completely filled by the writer.  In this situation, the
306 * page must be completely written to stable storage on the server
307 * before it can be refilled by reading in the page from the server.
308 * This can lead to expensive, small, FILE_SYNC mode writes being
309 * done.
310 *
311 * It may be more efficient to read the page first if the file is
312 * open for reading in addition to writing, the page is not marked
313 * as Uptodate, it is not dirty or waiting to be committed,
314 * indicating that it was previously allocated and then modified,
315 * that there were valid bytes of data in that range of the file,
316 * and that the new data won't completely replace the old data in
317 * that range of the file.
318 */
319static int nfs_want_read_modify_write(struct file *file, struct page *page,
320			loff_t pos, unsigned len)
321{
322	unsigned int pglen = nfs_page_length(page);
323	unsigned int offset = pos & (PAGE_SIZE - 1);
324	unsigned int end = offset + len;
325
326	if (pnfs_ld_read_whole_page(file->f_mapping->host)) {
327		if (!PageUptodate(page))
328			return 1;
329		return 0;
330	}
331
332	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
333	    !PageUptodate(page) &&		/* Uptodate? */
334	    !PagePrivate(page) &&		/* i/o request already? */
335	    pglen &&				/* valid bytes of file? */
336	    (end < pglen || offset))		/* replace all valid bytes? */
337		return 1;
338	return 0;
339}
340
341/*
342 * This does the "real" work of the write. We must allocate and lock the
343 * page to be sent back to the generic routine, which then copies the
344 * data from user space.
345 *
346 * If the writer ends up delaying the write, the writer needs to
347 * increment the page use counts until he is done with the page.
348 */
349static int nfs_write_begin(struct file *file, struct address_space *mapping,
350			loff_t pos, unsigned len, unsigned flags,
351			struct page **pagep, void **fsdata)
352{
353	int ret;
354	pgoff_t index = pos >> PAGE_SHIFT;
355	struct page *page;
356	int once_thru = 0;
357
358	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
359		file, mapping->host->i_ino, len, (long long) pos);
 
 
360
361start:
362	/*
363	 * Prevent starvation issues if someone is doing a consistency
364	 * sync-to-disk
365	 */
366	ret = wait_on_bit_action(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
367				 nfs_wait_bit_killable, TASK_KILLABLE);
368	if (ret)
369		return ret;
370	/*
371	 * Wait for O_DIRECT to complete
372	 */
373	inode_dio_wait(mapping->host);
374
375	page = grab_cache_page_write_begin(mapping, index, flags);
376	if (!page)
377		return -ENOMEM;
378	*pagep = page;
379
380	ret = nfs_flush_incompatible(file, page);
381	if (ret) {
382		unlock_page(page);
383		put_page(page);
384	} else if (!once_thru &&
385		   nfs_want_read_modify_write(file, page, pos, len)) {
386		once_thru = 1;
387		ret = nfs_readpage(file, page);
388		put_page(page);
389		if (!ret)
390			goto start;
391	}
392	return ret;
393}
394
395static int nfs_write_end(struct file *file, struct address_space *mapping,
396			loff_t pos, unsigned len, unsigned copied,
397			struct page *page, void *fsdata)
398{
399	unsigned offset = pos & (PAGE_SIZE - 1);
400	struct nfs_open_context *ctx = nfs_file_open_context(file);
401	int status;
402
403	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
404		file, mapping->host->i_ino, len, (long long) pos);
 
 
405
406	/*
407	 * Zero any uninitialised parts of the page, and then mark the page
408	 * as up to date if it turns out that we're extending the file.
409	 */
410	if (!PageUptodate(page)) {
411		unsigned pglen = nfs_page_length(page);
412		unsigned end = offset + len;
413
414		if (pglen == 0) {
415			zero_user_segments(page, 0, offset,
416					end, PAGE_SIZE);
417			SetPageUptodate(page);
418		} else if (end >= pglen) {
419			zero_user_segment(page, end, PAGE_SIZE);
420			if (offset == 0)
421				SetPageUptodate(page);
422		} else
423			zero_user_segment(page, pglen, PAGE_SIZE);
424	}
425
426	status = nfs_updatepage(file, page, offset, copied);
427
428	unlock_page(page);
429	put_page(page);
430
431	if (status < 0)
432		return status;
433	NFS_I(mapping->host)->write_io += copied;
434
435	if (nfs_ctx_key_to_expire(ctx)) {
436		status = nfs_wb_all(mapping->host);
437		if (status < 0)
438			return status;
439	}
440
441	return copied;
442}
443
444/*
445 * Partially or wholly invalidate a page
446 * - Release the private state associated with a page if undergoing complete
447 *   page invalidation
448 * - Called if either PG_private or PG_fscache is set on the page
449 * - Caller holds page lock
450 */
451static void nfs_invalidate_page(struct page *page, unsigned int offset,
452				unsigned int length)
453{
454	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
455		 page, offset, length);
456
457	if (offset != 0 || length < PAGE_SIZE)
458		return;
459	/* Cancel any unstarted writes on this page */
460	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
461
462	nfs_fscache_invalidate_page(page, page->mapping->host);
463}
464
465/*
466 * Attempt to release the private state associated with a page
467 * - Called if either PG_private or PG_fscache is set on the page
468 * - Caller holds page lock
469 * - Return true (may release page) or false (may not)
470 */
471static int nfs_release_page(struct page *page, gfp_t gfp)
472{
473	struct address_space *mapping = page->mapping;
474
475	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
476
477	/* Always try to initiate a 'commit' if relevant, but only
478	 * wait for it if the caller allows blocking.  Even then,
479	 * only wait 1 second and only if the 'bdi' is not congested.
480	 * Waiting indefinitely can cause deadlocks when the NFS
481	 * server is on this machine, when a new TCP connection is
482	 * needed and in other rare cases.  There is no particular
483	 * need to wait extensively here.  A short wait has the
484	 * benefit that someone else can worry about the freezer.
485	 */
486	if (mapping) {
487		struct nfs_server *nfss = NFS_SERVER(mapping->host);
488		nfs_commit_inode(mapping->host, 0);
489		if (gfpflags_allow_blocking(gfp) &&
490		    !bdi_write_congested(&nfss->backing_dev_info)) {
491			wait_on_page_bit_killable_timeout(page, PG_private,
492							  HZ);
493			if (PagePrivate(page))
494				set_bdi_congested(&nfss->backing_dev_info,
495						  BLK_RW_ASYNC);
496		}
497	}
498	/* If PagePrivate() is set, then the page is not freeable */
499	if (PagePrivate(page))
500		return 0;
501	return nfs_fscache_release_page(page, gfp);
502}
503
504static void nfs_check_dirty_writeback(struct page *page,
505				bool *dirty, bool *writeback)
506{
507	struct nfs_inode *nfsi;
508	struct address_space *mapping = page_file_mapping(page);
509
510	if (!mapping || PageSwapCache(page))
511		return;
512
513	/*
514	 * Check if an unstable page is currently being committed and
515	 * if so, have the VM treat it as if the page is under writeback
516	 * so it will not block due to pages that will shortly be freeable.
517	 */
518	nfsi = NFS_I(mapping->host);
519	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
520		*writeback = true;
521		return;
522	}
523
524	/*
525	 * If PagePrivate() is set, then the page is not freeable and as the
526	 * inode is not being committed, it's not going to be cleaned in the
527	 * near future so treat it as dirty
528	 */
529	if (PagePrivate(page))
530		*dirty = true;
531}
532
533/*
534 * Attempt to clear the private state associated with a page when an error
535 * occurs that requires the cached contents of an inode to be written back or
536 * destroyed
537 * - Called if either PG_private or fscache is set on the page
538 * - Caller holds page lock
539 * - Return 0 if successful, -error otherwise
540 */
541static int nfs_launder_page(struct page *page)
542{
543	struct inode *inode = page_file_mapping(page)->host;
544	struct nfs_inode *nfsi = NFS_I(inode);
545
546	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
547		inode->i_ino, (long long)page_offset(page));
548
549	nfs_fscache_wait_on_page_write(nfsi, page);
550	return nfs_wb_launder_page(inode, page);
551}
552
553static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
554						sector_t *span)
555{
556	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
557
558	*span = sis->pages;
559
560	return rpc_clnt_swap_activate(clnt);
561}
562
563static void nfs_swap_deactivate(struct file *file)
564{
565	struct rpc_clnt *clnt = NFS_CLIENT(file->f_mapping->host);
566
567	rpc_clnt_swap_deactivate(clnt);
568}
569
570const struct address_space_operations nfs_file_aops = {
571	.readpage = nfs_readpage,
572	.readpages = nfs_readpages,
573	.set_page_dirty = __set_page_dirty_nobuffers,
574	.writepage = nfs_writepage,
575	.writepages = nfs_writepages,
576	.write_begin = nfs_write_begin,
577	.write_end = nfs_write_end,
578	.invalidatepage = nfs_invalidate_page,
579	.releasepage = nfs_release_page,
580	.direct_IO = nfs_direct_IO,
581	.migratepage = nfs_migrate_page,
582	.launder_page = nfs_launder_page,
583	.is_dirty_writeback = nfs_check_dirty_writeback,
584	.error_remove_page = generic_error_remove_page,
585	.swap_activate = nfs_swap_activate,
586	.swap_deactivate = nfs_swap_deactivate,
587};
588
589/*
590 * Notification that a PTE pointing to an NFS page is about to be made
591 * writable, implying that someone is about to modify the page through a
592 * shared-writable mapping
593 */
594static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
595{
596	struct page *page = vmf->page;
597	struct file *filp = vma->vm_file;
598	struct inode *inode = file_inode(filp);
599	unsigned pagelen;
600	int ret = VM_FAULT_NOPAGE;
601	struct address_space *mapping;
602
603	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
604		filp, filp->f_mapping->host->i_ino,
 
605		(long long)page_offset(page));
606
607	/* make sure the cache has finished storing the page */
608	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
609
610	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
611			nfs_wait_bit_killable, TASK_KILLABLE);
612
613	lock_page(page);
614	mapping = page_file_mapping(page);
615	if (mapping != inode->i_mapping)
616		goto out_unlock;
617
618	wait_on_page_writeback(page);
619
620	pagelen = nfs_page_length(page);
621	if (pagelen == 0)
622		goto out_unlock;
623
624	ret = VM_FAULT_LOCKED;
625	if (nfs_flush_incompatible(filp, page) == 0 &&
626	    nfs_updatepage(filp, page, 0, pagelen) == 0)
627		goto out;
628
629	ret = VM_FAULT_SIGBUS;
630out_unlock:
631	unlock_page(page);
632out:
633	return ret;
634}
635
636static const struct vm_operations_struct nfs_file_vm_ops = {
637	.fault = filemap_fault,
638	.map_pages = filemap_map_pages,
639	.page_mkwrite = nfs_vm_page_mkwrite,
640};
641
642static int nfs_need_check_write(struct file *filp, struct inode *inode)
643{
644	struct nfs_open_context *ctx;
645
 
 
646	ctx = nfs_file_open_context(filp);
647	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags) ||
648	    nfs_ctx_key_to_expire(ctx))
649		return 1;
650	return 0;
651}
652
653ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
 
654{
655	struct file *file = iocb->ki_filp;
656	struct inode *inode = file_inode(file);
657	unsigned long written = 0;
658	ssize_t result;
659	size_t count = iov_iter_count(from);
660
661	result = nfs_key_timeout_notify(file, inode);
662	if (result)
663		return result;
664
665	if (iocb->ki_flags & IOCB_DIRECT) {
666		result = generic_write_checks(iocb, from);
667		if (result <= 0)
668			return result;
669		return nfs_file_direct_write(iocb, from);
670	}
671
672	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
673		file, count, (long long) iocb->ki_pos);
 
674
675	result = -EBUSY;
676	if (IS_SWAPFILE(inode))
677		goto out_swapfile;
678	/*
679	 * O_APPEND implies that we must revalidate the file length.
680	 */
681	if (iocb->ki_flags & IOCB_APPEND) {
682		result = nfs_revalidate_file_size(inode, file);
683		if (result)
684			goto out;
685	}
686
687	result = count;
688	if (!count)
689		goto out;
690
691	result = generic_file_write_iter(iocb, from);
692	if (result > 0)
693		written = result;
694
695	/* Return error values */
696	if (result >= 0 && nfs_need_check_write(file, inode)) {
697		int err = vfs_fsync(file, 0);
698		if (err < 0)
699			result = err;
700	}
701	if (result > 0)
702		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
703out:
704	return result;
705
706out_swapfile:
707	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
708	goto out;
709}
710EXPORT_SYMBOL_GPL(nfs_file_write);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
711
712static int
713do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
714{
715	struct inode *inode = filp->f_mapping->host;
716	int status = 0;
717	unsigned int saved_type = fl->fl_type;
718
719	/* Try local locking first */
720	posix_test_lock(filp, fl);
721	if (fl->fl_type != F_UNLCK) {
722		/* found a conflict */
723		goto out;
724	}
725	fl->fl_type = saved_type;
726
727	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
728		goto out_noconflict;
729
730	if (is_local)
731		goto out_noconflict;
732
733	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
734out:
735	return status;
736out_noconflict:
737	fl->fl_type = F_UNLCK;
738	goto out;
739}
740
741static int do_vfs_lock(struct file *file, struct file_lock *fl)
742{
743	return locks_lock_file_wait(file, fl);
 
 
 
 
 
 
 
 
 
 
 
744}
745
746static int
747do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
748{
749	struct inode *inode = filp->f_mapping->host;
750	struct nfs_lock_context *l_ctx;
751	int status;
752
753	/*
754	 * Flush all pending writes before doing anything
755	 * with locks..
756	 */
757	vfs_fsync(filp, 0);
758
759	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
760	if (!IS_ERR(l_ctx)) {
761		status = nfs_iocounter_wait(l_ctx);
762		nfs_put_lock_context(l_ctx);
763		if (status < 0)
764			return status;
765	}
766
767	/* NOTE: special case
768	 * 	If we're signalled while cleaning up locks on process exit, we
769	 * 	still need to complete the unlock.
770	 */
771	/*
772	 * Use local locking if mounted with "-onolock" or with appropriate
773	 * "-olocal_lock="
774	 */
775	if (!is_local)
776		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
777	else
778		status = do_vfs_lock(filp, fl);
779	return status;
780}
781
782static int
783is_time_granular(struct timespec *ts) {
784	return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
785}
786
787static int
788do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
789{
790	struct inode *inode = filp->f_mapping->host;
791	int status;
792
793	/*
794	 * Flush all pending writes before doing anything
795	 * with locks..
796	 */
797	status = nfs_sync_mapping(filp->f_mapping);
798	if (status != 0)
799		goto out;
800
801	/*
802	 * Use local locking if mounted with "-onolock" or with appropriate
803	 * "-olocal_lock="
804	 */
805	if (!is_local)
806		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
807	else
808		status = do_vfs_lock(filp, fl);
809	if (status < 0)
810		goto out;
811
812	/*
813	 * Revalidate the cache if the server has time stamps granular
814	 * enough to detect subsecond changes.  Otherwise, clear the
815	 * cache to prevent missing any changes.
816	 *
817	 * This makes locking act as a cache coherency point.
818	 */
819	nfs_sync_mapping(filp->f_mapping);
820	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
821		if (is_time_granular(&NFS_SERVER(inode)->time_delta))
822			__nfs_revalidate_inode(NFS_SERVER(inode), inode);
823		else
824			nfs_zap_caches(inode);
825	}
826out:
827	return status;
828}
829
830/*
831 * Lock a (portion of) a file
832 */
833int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
834{
835	struct inode *inode = filp->f_mapping->host;
836	int ret = -ENOLCK;
837	int is_local = 0;
838
839	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
840			filp, fl->fl_type, fl->fl_flags,
 
 
841			(long long)fl->fl_start, (long long)fl->fl_end);
842
843	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
844
845	/* No mandatory locks over NFS */
846	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
847		goto out_err;
848
849	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
850		is_local = 1;
851
852	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
853		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
854		if (ret < 0)
855			goto out_err;
856	}
857
858	if (IS_GETLK(cmd))
859		ret = do_getlk(filp, cmd, fl, is_local);
860	else if (fl->fl_type == F_UNLCK)
861		ret = do_unlk(filp, cmd, fl, is_local);
862	else
863		ret = do_setlk(filp, cmd, fl, is_local);
864out_err:
865	return ret;
866}
867EXPORT_SYMBOL_GPL(nfs_lock);
868
869/*
870 * Lock a (portion of) a file
871 */
872int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
873{
874	struct inode *inode = filp->f_mapping->host;
875	int is_local = 0;
876
877	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
878			filp, fl->fl_type, fl->fl_flags);
 
 
879
880	if (!(fl->fl_flags & FL_FLOCK))
881		return -ENOLCK;
882
883	/*
884	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
885	 * any standard. In principle we might be able to support LOCK_MAND
886	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
887	 * NFS code is not set up for it.
888	 */
889	if (fl->fl_type & LOCK_MAND)
890		return -EINVAL;
891
892	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
893		is_local = 1;
894
895	/* We're simulating flock() locks using posix locks on the server */
 
 
 
 
896	if (fl->fl_type == F_UNLCK)
897		return do_unlk(filp, cmd, fl, is_local);
898	return do_setlk(filp, cmd, fl, is_local);
899}
900EXPORT_SYMBOL_GPL(nfs_flock);
901
902const struct file_operations nfs_file_operations = {
903	.llseek		= nfs_file_llseek,
904	.read_iter	= nfs_file_read,
905	.write_iter	= nfs_file_write,
906	.mmap		= nfs_file_mmap,
907	.open		= nfs_file_open,
908	.flush		= nfs_file_flush,
909	.release	= nfs_file_release,
910	.fsync		= nfs_file_fsync,
911	.lock		= nfs_lock,
912	.flock		= nfs_flock,
913	.splice_read	= nfs_file_splice_read,
914	.splice_write	= iter_file_splice_write,
915	.check_flags	= nfs_check_flags,
916	.setlease	= simple_nosetlease,
917};
918EXPORT_SYMBOL_GPL(nfs_file_operations);