Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 *  linux/fs/nfs/file.c
  3 *
  4 *  Copyright (C) 1992  Rick Sladkey
  5 *
  6 *  Changes Copyright (C) 1994 by Florian La Roche
  7 *   - Do not copy data too often around in the kernel.
  8 *   - In nfs_file_read the return value of kmalloc wasn't checked.
  9 *   - Put in a better version of read look-ahead buffering. Original idea
 10 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 11 *
 12 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 13 *
 14 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 15 *
 16 *  nfs regular file handling functions
 17 */
 18
 19#include <linux/time.h>
 20#include <linux/kernel.h>
 21#include <linux/errno.h>
 22#include <linux/fcntl.h>
 23#include <linux/stat.h>
 24#include <linux/nfs_fs.h>
 25#include <linux/nfs_mount.h>
 26#include <linux/mm.h>
 27#include <linux/pagemap.h>
 28#include <linux/aio.h>
 29#include <linux/gfp.h>
 30#include <linux/swap.h>
 31
 32#include <asm/uaccess.h>
 33#include <asm/system.h>
 34
 35#include "delegation.h"
 36#include "internal.h"
 37#include "iostat.h"
 38#include "fscache.h"
 39#include "pnfs.h"
 40
 41#define NFSDBG_FACILITY		NFSDBG_FILE
 42
 43static int nfs_file_open(struct inode *, struct file *);
 44static int nfs_file_release(struct inode *, struct file *);
 45static loff_t nfs_file_llseek(struct file *file, loff_t offset, int origin);
 46static int  nfs_file_mmap(struct file *, struct vm_area_struct *);
 47static ssize_t nfs_file_splice_read(struct file *filp, loff_t *ppos,
 48					struct pipe_inode_info *pipe,
 49					size_t count, unsigned int flags);
 50static ssize_t nfs_file_read(struct kiocb *, const struct iovec *iov,
 51				unsigned long nr_segs, loff_t pos);
 52static ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe,
 53					struct file *filp, loff_t *ppos,
 54					size_t count, unsigned int flags);
 55static ssize_t nfs_file_write(struct kiocb *, const struct iovec *iov,
 56				unsigned long nr_segs, loff_t pos);
 57static int  nfs_file_flush(struct file *, fl_owner_t id);
 58static int  nfs_file_fsync(struct file *, loff_t, loff_t, int datasync);
 59static int nfs_check_flags(int flags);
 60static int nfs_lock(struct file *filp, int cmd, struct file_lock *fl);
 61static int nfs_flock(struct file *filp, int cmd, struct file_lock *fl);
 62static int nfs_setlease(struct file *file, long arg, struct file_lock **fl);
 63
 64static const struct vm_operations_struct nfs_file_vm_ops;
 65
 66const struct file_operations nfs_file_operations = {
 67	.llseek		= nfs_file_llseek,
 68	.read		= do_sync_read,
 69	.write		= do_sync_write,
 70	.aio_read	= nfs_file_read,
 71	.aio_write	= nfs_file_write,
 72	.mmap		= nfs_file_mmap,
 73	.open		= nfs_file_open,
 74	.flush		= nfs_file_flush,
 75	.release	= nfs_file_release,
 76	.fsync		= nfs_file_fsync,
 77	.lock		= nfs_lock,
 78	.flock		= nfs_flock,
 79	.splice_read	= nfs_file_splice_read,
 80	.splice_write	= nfs_file_splice_write,
 81	.check_flags	= nfs_check_flags,
 82	.setlease	= nfs_setlease,
 83};
 84
 85const struct inode_operations nfs_file_inode_operations = {
 86	.permission	= nfs_permission,
 87	.getattr	= nfs_getattr,
 88	.setattr	= nfs_setattr,
 89};
 90
 91#ifdef CONFIG_NFS_V3
 92const struct inode_operations nfs3_file_inode_operations = {
 93	.permission	= nfs_permission,
 94	.getattr	= nfs_getattr,
 95	.setattr	= nfs_setattr,
 96	.listxattr	= nfs3_listxattr,
 97	.getxattr	= nfs3_getxattr,
 98	.setxattr	= nfs3_setxattr,
 99	.removexattr	= nfs3_removexattr,
100};
101#endif  /* CONFIG_NFS_v3 */
102
103/* Hack for future NFS swap support */
104#ifndef IS_SWAPFILE
105# define IS_SWAPFILE(inode)	(0)
106#endif
107
108static int nfs_check_flags(int flags)
109{
110	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
111		return -EINVAL;
112
113	return 0;
114}
115
116/*
117 * Open file
118 */
119static int
120nfs_file_open(struct inode *inode, struct file *filp)
121{
122	int res;
123
124	dprintk("NFS: open file(%s/%s)\n",
125			filp->f_path.dentry->d_parent->d_name.name,
126			filp->f_path.dentry->d_name.name);
127
128	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
129	res = nfs_check_flags(filp->f_flags);
130	if (res)
131		return res;
132
133	res = nfs_open(inode, filp);
134	return res;
135}
136
137static int
138nfs_file_release(struct inode *inode, struct file *filp)
139{
140	struct dentry *dentry = filp->f_path.dentry;
141
142	dprintk("NFS: release(%s/%s)\n",
143			dentry->d_parent->d_name.name,
144			dentry->d_name.name);
145
146	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
147	return nfs_release(inode, filp);
148}
149
150/**
151 * nfs_revalidate_size - Revalidate the file size
152 * @inode - pointer to inode struct
153 * @file - pointer to struct file
154 *
155 * Revalidates the file length. This is basically a wrapper around
156 * nfs_revalidate_inode() that takes into account the fact that we may
157 * have cached writes (in which case we don't care about the server's
158 * idea of what the file length is), or O_DIRECT (in which case we
159 * shouldn't trust the cache).
160 */
161static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
162{
163	struct nfs_server *server = NFS_SERVER(inode);
164	struct nfs_inode *nfsi = NFS_I(inode);
165
166	if (nfs_have_delegated_attributes(inode))
167		goto out_noreval;
168
169	if (filp->f_flags & O_DIRECT)
170		goto force_reval;
171	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
172		goto force_reval;
173	if (nfs_attribute_timeout(inode))
174		goto force_reval;
175out_noreval:
176	return 0;
177force_reval:
178	return __nfs_revalidate_inode(server, inode);
179}
180
181static loff_t nfs_file_llseek(struct file *filp, loff_t offset, int origin)
182{
183	loff_t loff;
184
185	dprintk("NFS: llseek file(%s/%s, %lld, %d)\n",
186			filp->f_path.dentry->d_parent->d_name.name,
187			filp->f_path.dentry->d_name.name,
188			offset, origin);
189
190	/*
191	 * origin == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
192	 * the cached file length
193	 */
194	if (origin != SEEK_SET || origin != SEEK_CUR) {
195		struct inode *inode = filp->f_mapping->host;
196
197		int retval = nfs_revalidate_file_size(inode, filp);
198		if (retval < 0)
199			return (loff_t)retval;
 
200
201		spin_lock(&inode->i_lock);
202		loff = generic_file_llseek_unlocked(filp, offset, origin);
203		spin_unlock(&inode->i_lock);
204	} else
205		loff = generic_file_llseek_unlocked(filp, offset, origin);
206	return loff;
207}
208
209/*
210 * Flush all dirty pages, and check for write errors.
211 */
212static int
213nfs_file_flush(struct file *file, fl_owner_t id)
214{
215	struct dentry	*dentry = file->f_path.dentry;
216	struct inode	*inode = dentry->d_inode;
217
218	dprintk("NFS: flush(%s/%s)\n",
219			dentry->d_parent->d_name.name,
220			dentry->d_name.name);
221
222	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
223	if ((file->f_mode & FMODE_WRITE) == 0)
224		return 0;
225
 
 
 
 
 
 
 
226	/* Flush writes to the server and return any errors */
227	return vfs_fsync(file, 0);
228}
229
230static ssize_t
231nfs_file_read(struct kiocb *iocb, const struct iovec *iov,
232		unsigned long nr_segs, loff_t pos)
233{
234	struct dentry * dentry = iocb->ki_filp->f_path.dentry;
235	struct inode * inode = dentry->d_inode;
236	ssize_t result;
237	size_t count = iov_length(iov, nr_segs);
238
239	if (iocb->ki_filp->f_flags & O_DIRECT)
240		return nfs_file_direct_read(iocb, iov, nr_segs, pos);
241
242	dprintk("NFS: read(%s/%s, %lu@%lu)\n",
243		dentry->d_parent->d_name.name, dentry->d_name.name,
244		(unsigned long) count, (unsigned long) pos);
245
246	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
247	if (!result) {
248		result = generic_file_aio_read(iocb, iov, nr_segs, pos);
249		if (result > 0)
250			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
251	}
252	return result;
253}
254
255static ssize_t
256nfs_file_splice_read(struct file *filp, loff_t *ppos,
257		     struct pipe_inode_info *pipe, size_t count,
258		     unsigned int flags)
259{
260	struct dentry *dentry = filp->f_path.dentry;
261	struct inode *inode = dentry->d_inode;
262	ssize_t res;
263
264	dprintk("NFS: splice_read(%s/%s, %lu@%Lu)\n",
265		dentry->d_parent->d_name.name, dentry->d_name.name,
266		(unsigned long) count, (unsigned long long) *ppos);
267
268	res = nfs_revalidate_mapping(inode, filp->f_mapping);
269	if (!res) {
270		res = generic_file_splice_read(filp, ppos, pipe, count, flags);
271		if (res > 0)
272			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
273	}
274	return res;
275}
276
277static int
278nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
279{
280	struct dentry *dentry = file->f_path.dentry;
281	struct inode *inode = dentry->d_inode;
282	int	status;
283
284	dprintk("NFS: mmap(%s/%s)\n",
285		dentry->d_parent->d_name.name, dentry->d_name.name);
286
287	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
288	 *       so we call that before revalidating the mapping
289	 */
290	status = generic_file_mmap(file, vma);
291	if (!status) {
292		vma->vm_ops = &nfs_file_vm_ops;
293		status = nfs_revalidate_mapping(inode, file->f_mapping);
294	}
295	return status;
296}
297
298/*
299 * Flush any dirty pages for this process, and check for write errors.
300 * The return status from this call provides a reliable indication of
301 * whether any write errors occurred for this process.
302 *
303 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
304 * disk, but it retrieves and clears ctx->error after synching, despite
305 * the two being set at the same time in nfs_context_set_write_error().
306 * This is because the former is used to notify the _next_ call to
307 * nfs_file_write() that a write error occurred, and hence cause it to
308 * fall back to doing a synchronous write.
309 */
310static int
311nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
312{
313	struct dentry *dentry = file->f_path.dentry;
314	struct nfs_open_context *ctx = nfs_file_open_context(file);
315	struct inode *inode = dentry->d_inode;
316	int have_error, status;
317	int ret = 0;
318
319	dprintk("NFS: fsync file(%s/%s) datasync %d\n",
320			dentry->d_parent->d_name.name, dentry->d_name.name,
321			datasync);
322
323	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
324	if (ret)
325		return ret;
326	mutex_lock(&inode->i_mutex);
327
328	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
329	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
330	status = nfs_commit_inode(inode, FLUSH_SYNC);
 
 
331	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
332	if (have_error)
333		ret = xchg(&ctx->error, 0);
334	if (!ret && status < 0)
335		ret = status;
336	if (!ret && !datasync)
337		/* application has asked for meta-data sync */
338		ret = pnfs_layoutcommit_inode(inode, true);
339	mutex_unlock(&inode->i_mutex);
340	return ret;
341}
342
343/*
344 * Decide whether a read/modify/write cycle may be more efficient
345 * then a modify/write/read cycle when writing to a page in the
346 * page cache.
347 *
348 * The modify/write/read cycle may occur if a page is read before
349 * being completely filled by the writer.  In this situation, the
350 * page must be completely written to stable storage on the server
351 * before it can be refilled by reading in the page from the server.
352 * This can lead to expensive, small, FILE_SYNC mode writes being
353 * done.
354 *
355 * It may be more efficient to read the page first if the file is
356 * open for reading in addition to writing, the page is not marked
357 * as Uptodate, it is not dirty or waiting to be committed,
358 * indicating that it was previously allocated and then modified,
359 * that there were valid bytes of data in that range of the file,
360 * and that the new data won't completely replace the old data in
361 * that range of the file.
362 */
363static int nfs_want_read_modify_write(struct file *file, struct page *page,
364			loff_t pos, unsigned len)
365{
366	unsigned int pglen = nfs_page_length(page);
367	unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
368	unsigned int end = offset + len;
369
370	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
371	    !PageUptodate(page) &&		/* Uptodate? */
372	    !PagePrivate(page) &&		/* i/o request already? */
373	    pglen &&				/* valid bytes of file? */
374	    (end < pglen || offset))		/* replace all valid bytes? */
375		return 1;
376	return 0;
377}
378
379/*
380 * This does the "real" work of the write. We must allocate and lock the
381 * page to be sent back to the generic routine, which then copies the
382 * data from user space.
383 *
384 * If the writer ends up delaying the write, the writer needs to
385 * increment the page use counts until he is done with the page.
386 */
387static int nfs_write_begin(struct file *file, struct address_space *mapping,
388			loff_t pos, unsigned len, unsigned flags,
389			struct page **pagep, void **fsdata)
390{
391	int ret;
392	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
393	struct page *page;
394	int once_thru = 0;
395
396	dfprintk(PAGECACHE, "NFS: write_begin(%s/%s(%ld), %u@%lld)\n",
397		file->f_path.dentry->d_parent->d_name.name,
398		file->f_path.dentry->d_name.name,
399		mapping->host->i_ino, len, (long long) pos);
400
401start:
402	/*
403	 * Prevent starvation issues if someone is doing a consistency
404	 * sync-to-disk
405	 */
406	ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
407			nfs_wait_bit_killable, TASK_KILLABLE);
408	if (ret)
409		return ret;
410
411	page = grab_cache_page_write_begin(mapping, index, flags);
412	if (!page)
413		return -ENOMEM;
414	*pagep = page;
415
416	ret = nfs_flush_incompatible(file, page);
417	if (ret) {
418		unlock_page(page);
419		page_cache_release(page);
420	} else if (!once_thru &&
421		   nfs_want_read_modify_write(file, page, pos, len)) {
422		once_thru = 1;
423		ret = nfs_readpage(file, page);
424		page_cache_release(page);
425		if (!ret)
426			goto start;
427	}
428	return ret;
429}
430
431static int nfs_write_end(struct file *file, struct address_space *mapping,
432			loff_t pos, unsigned len, unsigned copied,
433			struct page *page, void *fsdata)
434{
435	unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
436	int status;
437
438	dfprintk(PAGECACHE, "NFS: write_end(%s/%s(%ld), %u@%lld)\n",
439		file->f_path.dentry->d_parent->d_name.name,
440		file->f_path.dentry->d_name.name,
441		mapping->host->i_ino, len, (long long) pos);
442
443	/*
444	 * Zero any uninitialised parts of the page, and then mark the page
445	 * as up to date if it turns out that we're extending the file.
446	 */
447	if (!PageUptodate(page)) {
448		unsigned pglen = nfs_page_length(page);
449		unsigned end = offset + len;
450
451		if (pglen == 0) {
452			zero_user_segments(page, 0, offset,
453					end, PAGE_CACHE_SIZE);
454			SetPageUptodate(page);
455		} else if (end >= pglen) {
456			zero_user_segment(page, end, PAGE_CACHE_SIZE);
457			if (offset == 0)
458				SetPageUptodate(page);
459		} else
460			zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
461	}
462
463	status = nfs_updatepage(file, page, offset, copied);
464
465	unlock_page(page);
466	page_cache_release(page);
467
468	if (status < 0)
469		return status;
 
470	return copied;
471}
472
473/*
474 * Partially or wholly invalidate a page
475 * - Release the private state associated with a page if undergoing complete
476 *   page invalidation
477 * - Called if either PG_private or PG_fscache is set on the page
478 * - Caller holds page lock
479 */
480static void nfs_invalidate_page(struct page *page, unsigned long offset)
481{
482	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %lu)\n", page, offset);
483
484	if (offset != 0)
485		return;
486	/* Cancel any unstarted writes on this page */
487	nfs_wb_page_cancel(page->mapping->host, page);
488
489	nfs_fscache_invalidate_page(page, page->mapping->host);
490}
491
492/*
493 * Attempt to release the private state associated with a page
494 * - Called if either PG_private or PG_fscache is set on the page
495 * - Caller holds page lock
496 * - Return true (may release page) or false (may not)
497 */
498static int nfs_release_page(struct page *page, gfp_t gfp)
499{
500	struct address_space *mapping = page->mapping;
501
502	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
503
504	/* Only do I/O if gfp is a superset of GFP_KERNEL */
505	if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL) {
 
 
 
506		int how = FLUSH_SYNC;
507
508		/* Don't let kswapd deadlock waiting for OOM RPC calls */
509		if (current_is_kswapd())
510			how = 0;
511		nfs_commit_inode(mapping->host, how);
512	}
513	/* If PagePrivate() is set, then the page is not freeable */
514	if (PagePrivate(page))
515		return 0;
516	return nfs_fscache_release_page(page, gfp);
517}
518
519/*
520 * Attempt to clear the private state associated with a page when an error
521 * occurs that requires the cached contents of an inode to be written back or
522 * destroyed
523 * - Called if either PG_private or fscache is set on the page
524 * - Caller holds page lock
525 * - Return 0 if successful, -error otherwise
526 */
527static int nfs_launder_page(struct page *page)
528{
529	struct inode *inode = page->mapping->host;
530	struct nfs_inode *nfsi = NFS_I(inode);
531
532	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
533		inode->i_ino, (long long)page_offset(page));
534
535	nfs_fscache_wait_on_page_write(nfsi, page);
536	return nfs_wb_page(inode, page);
537}
538
539const struct address_space_operations nfs_file_aops = {
540	.readpage = nfs_readpage,
541	.readpages = nfs_readpages,
542	.set_page_dirty = __set_page_dirty_nobuffers,
543	.writepage = nfs_writepage,
544	.writepages = nfs_writepages,
545	.write_begin = nfs_write_begin,
546	.write_end = nfs_write_end,
547	.invalidatepage = nfs_invalidate_page,
548	.releasepage = nfs_release_page,
549	.direct_IO = nfs_direct_IO,
550	.migratepage = nfs_migrate_page,
551	.launder_page = nfs_launder_page,
552	.error_remove_page = generic_error_remove_page,
553};
554
555/*
556 * Notification that a PTE pointing to an NFS page is about to be made
557 * writable, implying that someone is about to modify the page through a
558 * shared-writable mapping
559 */
560static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
561{
562	struct page *page = vmf->page;
563	struct file *filp = vma->vm_file;
564	struct dentry *dentry = filp->f_path.dentry;
565	unsigned pagelen;
566	int ret = VM_FAULT_NOPAGE;
567	struct address_space *mapping;
568
569	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%s/%s(%ld), offset %lld)\n",
570		dentry->d_parent->d_name.name, dentry->d_name.name,
571		filp->f_mapping->host->i_ino,
572		(long long)page_offset(page));
573
574	/* make sure the cache has finished storing the page */
575	nfs_fscache_wait_on_page_write(NFS_I(dentry->d_inode), page);
576
577	lock_page(page);
578	mapping = page->mapping;
579	if (mapping != dentry->d_inode->i_mapping)
580		goto out_unlock;
581
 
 
582	pagelen = nfs_page_length(page);
583	if (pagelen == 0)
584		goto out_unlock;
585
586	ret = VM_FAULT_LOCKED;
587	if (nfs_flush_incompatible(filp, page) == 0 &&
588	    nfs_updatepage(filp, page, 0, pagelen) == 0)
589		goto out;
590
591	ret = VM_FAULT_SIGBUS;
592out_unlock:
593	unlock_page(page);
594out:
595	return ret;
596}
597
598static const struct vm_operations_struct nfs_file_vm_ops = {
599	.fault = filemap_fault,
600	.page_mkwrite = nfs_vm_page_mkwrite,
601};
602
603static int nfs_need_sync_write(struct file *filp, struct inode *inode)
604{
605	struct nfs_open_context *ctx;
606
607	if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
608		return 1;
609	ctx = nfs_file_open_context(filp);
610	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags))
611		return 1;
612	return 0;
613}
614
615static ssize_t nfs_file_write(struct kiocb *iocb, const struct iovec *iov,
616				unsigned long nr_segs, loff_t pos)
617{
618	struct dentry * dentry = iocb->ki_filp->f_path.dentry;
619	struct inode * inode = dentry->d_inode;
620	unsigned long written = 0;
621	ssize_t result;
622	size_t count = iov_length(iov, nr_segs);
623
624	if (iocb->ki_filp->f_flags & O_DIRECT)
625		return nfs_file_direct_write(iocb, iov, nr_segs, pos);
626
627	dprintk("NFS: write(%s/%s, %lu@%Ld)\n",
628		dentry->d_parent->d_name.name, dentry->d_name.name,
629		(unsigned long) count, (long long) pos);
630
631	result = -EBUSY;
632	if (IS_SWAPFILE(inode))
633		goto out_swapfile;
634	/*
635	 * O_APPEND implies that we must revalidate the file length.
636	 */
637	if (iocb->ki_filp->f_flags & O_APPEND) {
638		result = nfs_revalidate_file_size(inode, iocb->ki_filp);
639		if (result)
640			goto out;
641	}
642
643	result = count;
644	if (!count)
645		goto out;
646
647	result = generic_file_aio_write(iocb, iov, nr_segs, pos);
648	if (result > 0)
649		written = result;
650
651	/* Return error values for O_DSYNC and IS_SYNC() */
652	if (result >= 0 && nfs_need_sync_write(iocb->ki_filp, inode)) {
653		int err = vfs_fsync(iocb->ki_filp, 0);
654		if (err < 0)
655			result = err;
656	}
657	if (result > 0)
658		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
659out:
660	return result;
661
662out_swapfile:
663	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
664	goto out;
665}
666
667static ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe,
668				     struct file *filp, loff_t *ppos,
669				     size_t count, unsigned int flags)
670{
671	struct dentry *dentry = filp->f_path.dentry;
672	struct inode *inode = dentry->d_inode;
673	unsigned long written = 0;
674	ssize_t ret;
675
676	dprintk("NFS splice_write(%s/%s, %lu@%llu)\n",
677		dentry->d_parent->d_name.name, dentry->d_name.name,
678		(unsigned long) count, (unsigned long long) *ppos);
679
680	/*
681	 * The combination of splice and an O_APPEND destination is disallowed.
682	 */
683
684	ret = generic_file_splice_write(pipe, filp, ppos, count, flags);
685	if (ret > 0)
686		written = ret;
687
688	if (ret >= 0 && nfs_need_sync_write(filp, inode)) {
689		int err = vfs_fsync(filp, 0);
690		if (err < 0)
691			ret = err;
692	}
693	if (ret > 0)
694		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
695	return ret;
696}
697
698static int
699do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
700{
701	struct inode *inode = filp->f_mapping->host;
702	int status = 0;
703	unsigned int saved_type = fl->fl_type;
704
705	/* Try local locking first */
706	posix_test_lock(filp, fl);
707	if (fl->fl_type != F_UNLCK) {
708		/* found a conflict */
709		goto out;
710	}
711	fl->fl_type = saved_type;
712
713	if (nfs_have_delegation(inode, FMODE_READ))
714		goto out_noconflict;
715
716	if (is_local)
717		goto out_noconflict;
718
719	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
720out:
721	return status;
722out_noconflict:
723	fl->fl_type = F_UNLCK;
724	goto out;
725}
726
727static int do_vfs_lock(struct file *file, struct file_lock *fl)
728{
729	int res = 0;
730	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
731		case FL_POSIX:
732			res = posix_lock_file_wait(file, fl);
733			break;
734		case FL_FLOCK:
735			res = flock_lock_file_wait(file, fl);
736			break;
737		default:
738			BUG();
739	}
740	return res;
741}
742
743static int
744do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
745{
746	struct inode *inode = filp->f_mapping->host;
747	int status;
748
749	/*
750	 * Flush all pending writes before doing anything
751	 * with locks..
752	 */
753	nfs_sync_mapping(filp->f_mapping);
754
755	/* NOTE: special case
756	 * 	If we're signalled while cleaning up locks on process exit, we
757	 * 	still need to complete the unlock.
758	 */
759	/*
760	 * Use local locking if mounted with "-onolock" or with appropriate
761	 * "-olocal_lock="
762	 */
763	if (!is_local)
764		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
765	else
766		status = do_vfs_lock(filp, fl);
767	return status;
768}
769
770static int
771is_time_granular(struct timespec *ts) {
772	return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
773}
774
775static int
776do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
777{
778	struct inode *inode = filp->f_mapping->host;
779	int status;
780
781	/*
782	 * Flush all pending writes before doing anything
783	 * with locks..
784	 */
785	status = nfs_sync_mapping(filp->f_mapping);
786	if (status != 0)
787		goto out;
788
789	/*
790	 * Use local locking if mounted with "-onolock" or with appropriate
791	 * "-olocal_lock="
792	 */
793	if (!is_local)
794		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
795	else
796		status = do_vfs_lock(filp, fl);
797	if (status < 0)
798		goto out;
799
800	/*
801	 * Revalidate the cache if the server has time stamps granular
802	 * enough to detect subsecond changes.  Otherwise, clear the
803	 * cache to prevent missing any changes.
804	 *
805	 * This makes locking act as a cache coherency point.
806	 */
807	nfs_sync_mapping(filp->f_mapping);
808	if (!nfs_have_delegation(inode, FMODE_READ)) {
809		if (is_time_granular(&NFS_SERVER(inode)->time_delta))
810			__nfs_revalidate_inode(NFS_SERVER(inode), inode);
811		else
812			nfs_zap_caches(inode);
813	}
814out:
815	return status;
816}
817
818/*
819 * Lock a (portion of) a file
820 */
821static int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
822{
823	struct inode *inode = filp->f_mapping->host;
824	int ret = -ENOLCK;
825	int is_local = 0;
826
827	dprintk("NFS: lock(%s/%s, t=%x, fl=%x, r=%lld:%lld)\n",
828			filp->f_path.dentry->d_parent->d_name.name,
829			filp->f_path.dentry->d_name.name,
830			fl->fl_type, fl->fl_flags,
831			(long long)fl->fl_start, (long long)fl->fl_end);
832
833	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
834
835	/* No mandatory locks over NFS */
836	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
837		goto out_err;
838
839	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
840		is_local = 1;
841
842	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
843		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
844		if (ret < 0)
845			goto out_err;
846	}
847
848	if (IS_GETLK(cmd))
849		ret = do_getlk(filp, cmd, fl, is_local);
850	else if (fl->fl_type == F_UNLCK)
851		ret = do_unlk(filp, cmd, fl, is_local);
852	else
853		ret = do_setlk(filp, cmd, fl, is_local);
854out_err:
855	return ret;
856}
857
858/*
859 * Lock a (portion of) a file
860 */
861static int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
862{
863	struct inode *inode = filp->f_mapping->host;
864	int is_local = 0;
865
866	dprintk("NFS: flock(%s/%s, t=%x, fl=%x)\n",
867			filp->f_path.dentry->d_parent->d_name.name,
868			filp->f_path.dentry->d_name.name,
869			fl->fl_type, fl->fl_flags);
870
871	if (!(fl->fl_flags & FL_FLOCK))
872		return -ENOLCK;
873
874	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
875		is_local = 1;
876
877	/* We're simulating flock() locks using posix locks on the server */
878	fl->fl_owner = (fl_owner_t)filp;
879	fl->fl_start = 0;
880	fl->fl_end = OFFSET_MAX;
881
882	if (fl->fl_type == F_UNLCK)
883		return do_unlk(filp, cmd, fl, is_local);
884	return do_setlk(filp, cmd, fl, is_local);
885}
886
887/*
888 * There is no protocol support for leases, so we have no way to implement
889 * them correctly in the face of opens by other clients.
890 */
891static int nfs_setlease(struct file *file, long arg, struct file_lock **fl)
892{
893	dprintk("NFS: setlease(%s/%s, arg=%ld)\n",
894			file->f_path.dentry->d_parent->d_name.name,
895			file->f_path.dentry->d_name.name, arg);
896	return -EINVAL;
897}
v3.5.6
  1/*
  2 *  linux/fs/nfs/file.c
  3 *
  4 *  Copyright (C) 1992  Rick Sladkey
  5 *
  6 *  Changes Copyright (C) 1994 by Florian La Roche
  7 *   - Do not copy data too often around in the kernel.
  8 *   - In nfs_file_read the return value of kmalloc wasn't checked.
  9 *   - Put in a better version of read look-ahead buffering. Original idea
 10 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
 11 *
 12 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
 13 *
 14 *  Total rewrite of read side for new NFS buffer cache.. Linus.
 15 *
 16 *  nfs regular file handling functions
 17 */
 18
 19#include <linux/time.h>
 20#include <linux/kernel.h>
 21#include <linux/errno.h>
 22#include <linux/fcntl.h>
 23#include <linux/stat.h>
 24#include <linux/nfs_fs.h>
 25#include <linux/nfs_mount.h>
 26#include <linux/mm.h>
 27#include <linux/pagemap.h>
 28#include <linux/aio.h>
 29#include <linux/gfp.h>
 30#include <linux/swap.h>
 31
 32#include <asm/uaccess.h>
 
 33
 34#include "delegation.h"
 35#include "internal.h"
 36#include "iostat.h"
 37#include "fscache.h"
 38#include "pnfs.h"
 39
 40#define NFSDBG_FACILITY		NFSDBG_FILE
 41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 42static const struct vm_operations_struct nfs_file_vm_ops;
 43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 44const struct inode_operations nfs_file_inode_operations = {
 45	.permission	= nfs_permission,
 46	.getattr	= nfs_getattr,
 47	.setattr	= nfs_setattr,
 48};
 49
 50#ifdef CONFIG_NFS_V3
 51const struct inode_operations nfs3_file_inode_operations = {
 52	.permission	= nfs_permission,
 53	.getattr	= nfs_getattr,
 54	.setattr	= nfs_setattr,
 55	.listxattr	= nfs3_listxattr,
 56	.getxattr	= nfs3_getxattr,
 57	.setxattr	= nfs3_setxattr,
 58	.removexattr	= nfs3_removexattr,
 59};
 60#endif  /* CONFIG_NFS_v3 */
 61
 62/* Hack for future NFS swap support */
 63#ifndef IS_SWAPFILE
 64# define IS_SWAPFILE(inode)	(0)
 65#endif
 66
 67static int nfs_check_flags(int flags)
 68{
 69	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
 70		return -EINVAL;
 71
 72	return 0;
 73}
 74
 75/*
 76 * Open file
 77 */
 78static int
 79nfs_file_open(struct inode *inode, struct file *filp)
 80{
 81	int res;
 82
 83	dprintk("NFS: open file(%s/%s)\n",
 84			filp->f_path.dentry->d_parent->d_name.name,
 85			filp->f_path.dentry->d_name.name);
 86
 87	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 88	res = nfs_check_flags(filp->f_flags);
 89	if (res)
 90		return res;
 91
 92	res = nfs_open(inode, filp);
 93	return res;
 94}
 95
 96static int
 97nfs_file_release(struct inode *inode, struct file *filp)
 98{
 
 
 99	dprintk("NFS: release(%s/%s)\n",
100			filp->f_path.dentry->d_parent->d_name.name,
101			filp->f_path.dentry->d_name.name);
102
103	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
104	return nfs_release(inode, filp);
105}
106
107/**
108 * nfs_revalidate_size - Revalidate the file size
109 * @inode - pointer to inode struct
110 * @file - pointer to struct file
111 *
112 * Revalidates the file length. This is basically a wrapper around
113 * nfs_revalidate_inode() that takes into account the fact that we may
114 * have cached writes (in which case we don't care about the server's
115 * idea of what the file length is), or O_DIRECT (in which case we
116 * shouldn't trust the cache).
117 */
118static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
119{
120	struct nfs_server *server = NFS_SERVER(inode);
121	struct nfs_inode *nfsi = NFS_I(inode);
122
123	if (nfs_have_delegated_attributes(inode))
124		goto out_noreval;
125
126	if (filp->f_flags & O_DIRECT)
127		goto force_reval;
128	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
129		goto force_reval;
130	if (nfs_attribute_timeout(inode))
131		goto force_reval;
132out_noreval:
133	return 0;
134force_reval:
135	return __nfs_revalidate_inode(server, inode);
136}
137
138static loff_t nfs_file_llseek(struct file *filp, loff_t offset, int origin)
139{
 
 
140	dprintk("NFS: llseek file(%s/%s, %lld, %d)\n",
141			filp->f_path.dentry->d_parent->d_name.name,
142			filp->f_path.dentry->d_name.name,
143			offset, origin);
144
145	/*
146	 * origin == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
147	 * the cached file length
148	 */
149	if (origin != SEEK_SET && origin != SEEK_CUR) {
150		struct inode *inode = filp->f_mapping->host;
151
152		int retval = nfs_revalidate_file_size(inode, filp);
153		if (retval < 0)
154			return (loff_t)retval;
155	}
156
157	return generic_file_llseek(filp, offset, origin);
 
 
 
 
 
158}
159
160/*
161 * Flush all dirty pages, and check for write errors.
162 */
163static int
164nfs_file_flush(struct file *file, fl_owner_t id)
165{
166	struct dentry	*dentry = file->f_path.dentry;
167	struct inode	*inode = dentry->d_inode;
168
169	dprintk("NFS: flush(%s/%s)\n",
170			dentry->d_parent->d_name.name,
171			dentry->d_name.name);
172
173	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
174	if ((file->f_mode & FMODE_WRITE) == 0)
175		return 0;
176
177	/*
178	 * If we're holding a write delegation, then just start the i/o
179	 * but don't wait for completion (or send a commit).
180	 */
181	if (nfs_have_delegation(inode, FMODE_WRITE))
182		return filemap_fdatawrite(file->f_mapping);
183
184	/* Flush writes to the server and return any errors */
185	return vfs_fsync(file, 0);
186}
187
188static ssize_t
189nfs_file_read(struct kiocb *iocb, const struct iovec *iov,
190		unsigned long nr_segs, loff_t pos)
191{
192	struct dentry * dentry = iocb->ki_filp->f_path.dentry;
193	struct inode * inode = dentry->d_inode;
194	ssize_t result;
 
195
196	if (iocb->ki_filp->f_flags & O_DIRECT)
197		return nfs_file_direct_read(iocb, iov, nr_segs, pos);
198
199	dprintk("NFS: read(%s/%s, %lu@%lu)\n",
200		dentry->d_parent->d_name.name, dentry->d_name.name,
201		(unsigned long) iov_length(iov, nr_segs), (unsigned long) pos);
202
203	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
204	if (!result) {
205		result = generic_file_aio_read(iocb, iov, nr_segs, pos);
206		if (result > 0)
207			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
208	}
209	return result;
210}
211
212static ssize_t
213nfs_file_splice_read(struct file *filp, loff_t *ppos,
214		     struct pipe_inode_info *pipe, size_t count,
215		     unsigned int flags)
216{
217	struct dentry *dentry = filp->f_path.dentry;
218	struct inode *inode = dentry->d_inode;
219	ssize_t res;
220
221	dprintk("NFS: splice_read(%s/%s, %lu@%Lu)\n",
222		dentry->d_parent->d_name.name, dentry->d_name.name,
223		(unsigned long) count, (unsigned long long) *ppos);
224
225	res = nfs_revalidate_mapping(inode, filp->f_mapping);
226	if (!res) {
227		res = generic_file_splice_read(filp, ppos, pipe, count, flags);
228		if (res > 0)
229			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
230	}
231	return res;
232}
233
234static int
235nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
236{
237	struct dentry *dentry = file->f_path.dentry;
238	struct inode *inode = dentry->d_inode;
239	int	status;
240
241	dprintk("NFS: mmap(%s/%s)\n",
242		dentry->d_parent->d_name.name, dentry->d_name.name);
243
244	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
245	 *       so we call that before revalidating the mapping
246	 */
247	status = generic_file_mmap(file, vma);
248	if (!status) {
249		vma->vm_ops = &nfs_file_vm_ops;
250		status = nfs_revalidate_mapping(inode, file->f_mapping);
251	}
252	return status;
253}
254
255/*
256 * Flush any dirty pages for this process, and check for write errors.
257 * The return status from this call provides a reliable indication of
258 * whether any write errors occurred for this process.
259 *
260 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
261 * disk, but it retrieves and clears ctx->error after synching, despite
262 * the two being set at the same time in nfs_context_set_write_error().
263 * This is because the former is used to notify the _next_ call to
264 * nfs_file_write() that a write error occurred, and hence cause it to
265 * fall back to doing a synchronous write.
266 */
267static int
268nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
269{
270	struct dentry *dentry = file->f_path.dentry;
271	struct nfs_open_context *ctx = nfs_file_open_context(file);
272	struct inode *inode = dentry->d_inode;
273	int have_error, status;
274	int ret = 0;
275
276	dprintk("NFS: fsync file(%s/%s) datasync %d\n",
277			dentry->d_parent->d_name.name, dentry->d_name.name,
278			datasync);
279
280	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
 
 
281	mutex_lock(&inode->i_mutex);
282
283	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
284	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
285	status = nfs_commit_inode(inode, FLUSH_SYNC);
286	if (status >= 0 && ret < 0)
287		status = ret;
288	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
289	if (have_error)
290		ret = xchg(&ctx->error, 0);
291	if (!ret && status < 0)
292		ret = status;
293	if (!ret && !datasync)
294		/* application has asked for meta-data sync */
295		ret = pnfs_layoutcommit_inode(inode, true);
296	mutex_unlock(&inode->i_mutex);
297	return ret;
298}
299
300/*
301 * Decide whether a read/modify/write cycle may be more efficient
302 * then a modify/write/read cycle when writing to a page in the
303 * page cache.
304 *
305 * The modify/write/read cycle may occur if a page is read before
306 * being completely filled by the writer.  In this situation, the
307 * page must be completely written to stable storage on the server
308 * before it can be refilled by reading in the page from the server.
309 * This can lead to expensive, small, FILE_SYNC mode writes being
310 * done.
311 *
312 * It may be more efficient to read the page first if the file is
313 * open for reading in addition to writing, the page is not marked
314 * as Uptodate, it is not dirty or waiting to be committed,
315 * indicating that it was previously allocated and then modified,
316 * that there were valid bytes of data in that range of the file,
317 * and that the new data won't completely replace the old data in
318 * that range of the file.
319 */
320static int nfs_want_read_modify_write(struct file *file, struct page *page,
321			loff_t pos, unsigned len)
322{
323	unsigned int pglen = nfs_page_length(page);
324	unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
325	unsigned int end = offset + len;
326
327	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
328	    !PageUptodate(page) &&		/* Uptodate? */
329	    !PagePrivate(page) &&		/* i/o request already? */
330	    pglen &&				/* valid bytes of file? */
331	    (end < pglen || offset))		/* replace all valid bytes? */
332		return 1;
333	return 0;
334}
335
336/*
337 * This does the "real" work of the write. We must allocate and lock the
338 * page to be sent back to the generic routine, which then copies the
339 * data from user space.
340 *
341 * If the writer ends up delaying the write, the writer needs to
342 * increment the page use counts until he is done with the page.
343 */
344static int nfs_write_begin(struct file *file, struct address_space *mapping,
345			loff_t pos, unsigned len, unsigned flags,
346			struct page **pagep, void **fsdata)
347{
348	int ret;
349	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
350	struct page *page;
351	int once_thru = 0;
352
353	dfprintk(PAGECACHE, "NFS: write_begin(%s/%s(%ld), %u@%lld)\n",
354		file->f_path.dentry->d_parent->d_name.name,
355		file->f_path.dentry->d_name.name,
356		mapping->host->i_ino, len, (long long) pos);
357
358start:
359	/*
360	 * Prevent starvation issues if someone is doing a consistency
361	 * sync-to-disk
362	 */
363	ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
364			nfs_wait_bit_killable, TASK_KILLABLE);
365	if (ret)
366		return ret;
367
368	page = grab_cache_page_write_begin(mapping, index, flags);
369	if (!page)
370		return -ENOMEM;
371	*pagep = page;
372
373	ret = nfs_flush_incompatible(file, page);
374	if (ret) {
375		unlock_page(page);
376		page_cache_release(page);
377	} else if (!once_thru &&
378		   nfs_want_read_modify_write(file, page, pos, len)) {
379		once_thru = 1;
380		ret = nfs_readpage(file, page);
381		page_cache_release(page);
382		if (!ret)
383			goto start;
384	}
385	return ret;
386}
387
388static int nfs_write_end(struct file *file, struct address_space *mapping,
389			loff_t pos, unsigned len, unsigned copied,
390			struct page *page, void *fsdata)
391{
392	unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
393	int status;
394
395	dfprintk(PAGECACHE, "NFS: write_end(%s/%s(%ld), %u@%lld)\n",
396		file->f_path.dentry->d_parent->d_name.name,
397		file->f_path.dentry->d_name.name,
398		mapping->host->i_ino, len, (long long) pos);
399
400	/*
401	 * Zero any uninitialised parts of the page, and then mark the page
402	 * as up to date if it turns out that we're extending the file.
403	 */
404	if (!PageUptodate(page)) {
405		unsigned pglen = nfs_page_length(page);
406		unsigned end = offset + len;
407
408		if (pglen == 0) {
409			zero_user_segments(page, 0, offset,
410					end, PAGE_CACHE_SIZE);
411			SetPageUptodate(page);
412		} else if (end >= pglen) {
413			zero_user_segment(page, end, PAGE_CACHE_SIZE);
414			if (offset == 0)
415				SetPageUptodate(page);
416		} else
417			zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
418	}
419
420	status = nfs_updatepage(file, page, offset, copied);
421
422	unlock_page(page);
423	page_cache_release(page);
424
425	if (status < 0)
426		return status;
427	NFS_I(mapping->host)->write_io += copied;
428	return copied;
429}
430
431/*
432 * Partially or wholly invalidate a page
433 * - Release the private state associated with a page if undergoing complete
434 *   page invalidation
435 * - Called if either PG_private or PG_fscache is set on the page
436 * - Caller holds page lock
437 */
438static void nfs_invalidate_page(struct page *page, unsigned long offset)
439{
440	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %lu)\n", page, offset);
441
442	if (offset != 0)
443		return;
444	/* Cancel any unstarted writes on this page */
445	nfs_wb_page_cancel(page->mapping->host, page);
446
447	nfs_fscache_invalidate_page(page, page->mapping->host);
448}
449
450/*
451 * Attempt to release the private state associated with a page
452 * - Called if either PG_private or PG_fscache is set on the page
453 * - Caller holds page lock
454 * - Return true (may release page) or false (may not)
455 */
456static int nfs_release_page(struct page *page, gfp_t gfp)
457{
458	struct address_space *mapping = page->mapping;
459
460	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
461
462	/* Only do I/O if gfp is a superset of GFP_KERNEL, and we're not
463	 * doing this memory reclaim for a fs-related allocation.
464	 */
465	if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL &&
466	    !(current->flags & PF_FSTRANS)) {
467		int how = FLUSH_SYNC;
468
469		/* Don't let kswapd deadlock waiting for OOM RPC calls */
470		if (current_is_kswapd())
471			how = 0;
472		nfs_commit_inode(mapping->host, how);
473	}
474	/* If PagePrivate() is set, then the page is not freeable */
475	if (PagePrivate(page))
476		return 0;
477	return nfs_fscache_release_page(page, gfp);
478}
479
480/*
481 * Attempt to clear the private state associated with a page when an error
482 * occurs that requires the cached contents of an inode to be written back or
483 * destroyed
484 * - Called if either PG_private or fscache is set on the page
485 * - Caller holds page lock
486 * - Return 0 if successful, -error otherwise
487 */
488static int nfs_launder_page(struct page *page)
489{
490	struct inode *inode = page->mapping->host;
491	struct nfs_inode *nfsi = NFS_I(inode);
492
493	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
494		inode->i_ino, (long long)page_offset(page));
495
496	nfs_fscache_wait_on_page_write(nfsi, page);
497	return nfs_wb_page(inode, page);
498}
499
500const struct address_space_operations nfs_file_aops = {
501	.readpage = nfs_readpage,
502	.readpages = nfs_readpages,
503	.set_page_dirty = __set_page_dirty_nobuffers,
504	.writepage = nfs_writepage,
505	.writepages = nfs_writepages,
506	.write_begin = nfs_write_begin,
507	.write_end = nfs_write_end,
508	.invalidatepage = nfs_invalidate_page,
509	.releasepage = nfs_release_page,
510	.direct_IO = nfs_direct_IO,
511	.migratepage = nfs_migrate_page,
512	.launder_page = nfs_launder_page,
513	.error_remove_page = generic_error_remove_page,
514};
515
516/*
517 * Notification that a PTE pointing to an NFS page is about to be made
518 * writable, implying that someone is about to modify the page through a
519 * shared-writable mapping
520 */
521static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
522{
523	struct page *page = vmf->page;
524	struct file *filp = vma->vm_file;
525	struct dentry *dentry = filp->f_path.dentry;
526	unsigned pagelen;
527	int ret = VM_FAULT_NOPAGE;
528	struct address_space *mapping;
529
530	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%s/%s(%ld), offset %lld)\n",
531		dentry->d_parent->d_name.name, dentry->d_name.name,
532		filp->f_mapping->host->i_ino,
533		(long long)page_offset(page));
534
535	/* make sure the cache has finished storing the page */
536	nfs_fscache_wait_on_page_write(NFS_I(dentry->d_inode), page);
537
538	lock_page(page);
539	mapping = page->mapping;
540	if (mapping != dentry->d_inode->i_mapping)
541		goto out_unlock;
542
543	wait_on_page_writeback(page);
544
545	pagelen = nfs_page_length(page);
546	if (pagelen == 0)
547		goto out_unlock;
548
549	ret = VM_FAULT_LOCKED;
550	if (nfs_flush_incompatible(filp, page) == 0 &&
551	    nfs_updatepage(filp, page, 0, pagelen) == 0)
552		goto out;
553
554	ret = VM_FAULT_SIGBUS;
555out_unlock:
556	unlock_page(page);
557out:
558	return ret;
559}
560
561static const struct vm_operations_struct nfs_file_vm_ops = {
562	.fault = filemap_fault,
563	.page_mkwrite = nfs_vm_page_mkwrite,
564};
565
566static int nfs_need_sync_write(struct file *filp, struct inode *inode)
567{
568	struct nfs_open_context *ctx;
569
570	if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
571		return 1;
572	ctx = nfs_file_open_context(filp);
573	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags))
574		return 1;
575	return 0;
576}
577
578static ssize_t nfs_file_write(struct kiocb *iocb, const struct iovec *iov,
579				unsigned long nr_segs, loff_t pos)
580{
581	struct dentry * dentry = iocb->ki_filp->f_path.dentry;
582	struct inode * inode = dentry->d_inode;
583	unsigned long written = 0;
584	ssize_t result;
585	size_t count = iov_length(iov, nr_segs);
586
587	if (iocb->ki_filp->f_flags & O_DIRECT)
588		return nfs_file_direct_write(iocb, iov, nr_segs, pos);
589
590	dprintk("NFS: write(%s/%s, %lu@%Ld)\n",
591		dentry->d_parent->d_name.name, dentry->d_name.name,
592		(unsigned long) count, (long long) pos);
593
594	result = -EBUSY;
595	if (IS_SWAPFILE(inode))
596		goto out_swapfile;
597	/*
598	 * O_APPEND implies that we must revalidate the file length.
599	 */
600	if (iocb->ki_filp->f_flags & O_APPEND) {
601		result = nfs_revalidate_file_size(inode, iocb->ki_filp);
602		if (result)
603			goto out;
604	}
605
606	result = count;
607	if (!count)
608		goto out;
609
610	result = generic_file_aio_write(iocb, iov, nr_segs, pos);
611	if (result > 0)
612		written = result;
613
614	/* Return error values for O_DSYNC and IS_SYNC() */
615	if (result >= 0 && nfs_need_sync_write(iocb->ki_filp, inode)) {
616		int err = vfs_fsync(iocb->ki_filp, 0);
617		if (err < 0)
618			result = err;
619	}
620	if (result > 0)
621		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
622out:
623	return result;
624
625out_swapfile:
626	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
627	goto out;
628}
629
630static ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe,
631				     struct file *filp, loff_t *ppos,
632				     size_t count, unsigned int flags)
633{
634	struct dentry *dentry = filp->f_path.dentry;
635	struct inode *inode = dentry->d_inode;
636	unsigned long written = 0;
637	ssize_t ret;
638
639	dprintk("NFS splice_write(%s/%s, %lu@%llu)\n",
640		dentry->d_parent->d_name.name, dentry->d_name.name,
641		(unsigned long) count, (unsigned long long) *ppos);
642
643	/*
644	 * The combination of splice and an O_APPEND destination is disallowed.
645	 */
646
647	ret = generic_file_splice_write(pipe, filp, ppos, count, flags);
648	if (ret > 0)
649		written = ret;
650
651	if (ret >= 0 && nfs_need_sync_write(filp, inode)) {
652		int err = vfs_fsync(filp, 0);
653		if (err < 0)
654			ret = err;
655	}
656	if (ret > 0)
657		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
658	return ret;
659}
660
661static int
662do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
663{
664	struct inode *inode = filp->f_mapping->host;
665	int status = 0;
666	unsigned int saved_type = fl->fl_type;
667
668	/* Try local locking first */
669	posix_test_lock(filp, fl);
670	if (fl->fl_type != F_UNLCK) {
671		/* found a conflict */
672		goto out;
673	}
674	fl->fl_type = saved_type;
675
676	if (nfs_have_delegation(inode, FMODE_READ))
677		goto out_noconflict;
678
679	if (is_local)
680		goto out_noconflict;
681
682	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
683out:
684	return status;
685out_noconflict:
686	fl->fl_type = F_UNLCK;
687	goto out;
688}
689
690static int do_vfs_lock(struct file *file, struct file_lock *fl)
691{
692	int res = 0;
693	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
694		case FL_POSIX:
695			res = posix_lock_file_wait(file, fl);
696			break;
697		case FL_FLOCK:
698			res = flock_lock_file_wait(file, fl);
699			break;
700		default:
701			BUG();
702	}
703	return res;
704}
705
706static int
707do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
708{
709	struct inode *inode = filp->f_mapping->host;
710	int status;
711
712	/*
713	 * Flush all pending writes before doing anything
714	 * with locks..
715	 */
716	nfs_sync_mapping(filp->f_mapping);
717
718	/* NOTE: special case
719	 * 	If we're signalled while cleaning up locks on process exit, we
720	 * 	still need to complete the unlock.
721	 */
722	/*
723	 * Use local locking if mounted with "-onolock" or with appropriate
724	 * "-olocal_lock="
725	 */
726	if (!is_local)
727		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
728	else
729		status = do_vfs_lock(filp, fl);
730	return status;
731}
732
733static int
734is_time_granular(struct timespec *ts) {
735	return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
736}
737
738static int
739do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
740{
741	struct inode *inode = filp->f_mapping->host;
742	int status;
743
744	/*
745	 * Flush all pending writes before doing anything
746	 * with locks..
747	 */
748	status = nfs_sync_mapping(filp->f_mapping);
749	if (status != 0)
750		goto out;
751
752	/*
753	 * Use local locking if mounted with "-onolock" or with appropriate
754	 * "-olocal_lock="
755	 */
756	if (!is_local)
757		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
758	else
759		status = do_vfs_lock(filp, fl);
760	if (status < 0)
761		goto out;
762
763	/*
764	 * Revalidate the cache if the server has time stamps granular
765	 * enough to detect subsecond changes.  Otherwise, clear the
766	 * cache to prevent missing any changes.
767	 *
768	 * This makes locking act as a cache coherency point.
769	 */
770	nfs_sync_mapping(filp->f_mapping);
771	if (!nfs_have_delegation(inode, FMODE_READ)) {
772		if (is_time_granular(&NFS_SERVER(inode)->time_delta))
773			__nfs_revalidate_inode(NFS_SERVER(inode), inode);
774		else
775			nfs_zap_caches(inode);
776	}
777out:
778	return status;
779}
780
781/*
782 * Lock a (portion of) a file
783 */
784static int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
785{
786	struct inode *inode = filp->f_mapping->host;
787	int ret = -ENOLCK;
788	int is_local = 0;
789
790	dprintk("NFS: lock(%s/%s, t=%x, fl=%x, r=%lld:%lld)\n",
791			filp->f_path.dentry->d_parent->d_name.name,
792			filp->f_path.dentry->d_name.name,
793			fl->fl_type, fl->fl_flags,
794			(long long)fl->fl_start, (long long)fl->fl_end);
795
796	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
797
798	/* No mandatory locks over NFS */
799	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
800		goto out_err;
801
802	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
803		is_local = 1;
804
805	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
806		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
807		if (ret < 0)
808			goto out_err;
809	}
810
811	if (IS_GETLK(cmd))
812		ret = do_getlk(filp, cmd, fl, is_local);
813	else if (fl->fl_type == F_UNLCK)
814		ret = do_unlk(filp, cmd, fl, is_local);
815	else
816		ret = do_setlk(filp, cmd, fl, is_local);
817out_err:
818	return ret;
819}
820
821/*
822 * Lock a (portion of) a file
823 */
824static int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
825{
826	struct inode *inode = filp->f_mapping->host;
827	int is_local = 0;
828
829	dprintk("NFS: flock(%s/%s, t=%x, fl=%x)\n",
830			filp->f_path.dentry->d_parent->d_name.name,
831			filp->f_path.dentry->d_name.name,
832			fl->fl_type, fl->fl_flags);
833
834	if (!(fl->fl_flags & FL_FLOCK))
835		return -ENOLCK;
836
837	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
838		is_local = 1;
839
840	/* We're simulating flock() locks using posix locks on the server */
841	fl->fl_owner = (fl_owner_t)filp;
842	fl->fl_start = 0;
843	fl->fl_end = OFFSET_MAX;
844
845	if (fl->fl_type == F_UNLCK)
846		return do_unlk(filp, cmd, fl, is_local);
847	return do_setlk(filp, cmd, fl, is_local);
848}
849
850/*
851 * There is no protocol support for leases, so we have no way to implement
852 * them correctly in the face of opens by other clients.
853 */
854static int nfs_setlease(struct file *file, long arg, struct file_lock **fl)
855{
856	dprintk("NFS: setlease(%s/%s, arg=%ld)\n",
857			file->f_path.dentry->d_parent->d_name.name,
858			file->f_path.dentry->d_name.name, arg);
859	return -EINVAL;
860}
861
862const struct file_operations nfs_file_operations = {
863	.llseek		= nfs_file_llseek,
864	.read		= do_sync_read,
865	.write		= do_sync_write,
866	.aio_read	= nfs_file_read,
867	.aio_write	= nfs_file_write,
868	.mmap		= nfs_file_mmap,
869	.open		= nfs_file_open,
870	.flush		= nfs_file_flush,
871	.release	= nfs_file_release,
872	.fsync		= nfs_file_fsync,
873	.lock		= nfs_lock,
874	.flock		= nfs_flock,
875	.splice_read	= nfs_file_splice_read,
876	.splice_write	= nfs_file_splice_write,
877	.check_flags	= nfs_check_flags,
878	.setlease	= nfs_setlease,
879};
880
881#ifdef CONFIG_NFS_V4
882static int
883nfs4_file_open(struct inode *inode, struct file *filp)
884{
885	struct nfs_open_context *ctx;
886	struct dentry *dentry = filp->f_path.dentry;
887	struct dentry *parent = NULL;
888	struct inode *dir;
889	unsigned openflags = filp->f_flags;
890	struct iattr attr;
891	int err;
892
893	BUG_ON(inode != dentry->d_inode);
894	/*
895	 * If no cached dentry exists or if it's negative, NFSv4 handled the
896	 * opens in ->lookup() or ->create().
897	 *
898	 * We only get this far for a cached positive dentry.  We skipped
899	 * revalidation, so handle it here by dropping the dentry and returning
900	 * -EOPENSTALE.  The VFS will retry the lookup/create/open.
901	 */
902
903	dprintk("NFS: open file(%s/%s)\n",
904		dentry->d_parent->d_name.name,
905		dentry->d_name.name);
906
907	if ((openflags & O_ACCMODE) == 3)
908		openflags--;
909
910	/* We can't create new files here */
911	openflags &= ~(O_CREAT|O_EXCL);
912
913	parent = dget_parent(dentry);
914	dir = parent->d_inode;
915
916	ctx = alloc_nfs_open_context(filp->f_path.dentry, filp->f_mode);
917	err = PTR_ERR(ctx);
918	if (IS_ERR(ctx))
919		goto out;
920
921	attr.ia_valid = ATTR_OPEN;
922	if (openflags & O_TRUNC) {
923		attr.ia_valid |= ATTR_SIZE;
924		attr.ia_size = 0;
925		nfs_wb_all(inode);
926	}
927
928	inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, &attr);
929	if (IS_ERR(inode)) {
930		err = PTR_ERR(inode);
931		switch (err) {
932		case -EPERM:
933		case -EACCES:
934		case -EDQUOT:
935		case -ENOSPC:
936		case -EROFS:
937			goto out_put_ctx;
938		default:
939			goto out_drop;
940		}
941	}
942	iput(inode);
943	if (inode != dentry->d_inode)
944		goto out_drop;
945
946	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
947	nfs_file_set_open_context(filp, ctx);
948	err = 0;
949
950out_put_ctx:
951	put_nfs_open_context(ctx);
952out:
953	dput(parent);
954	return err;
955
956out_drop:
957	d_drop(dentry);
958	err = -EOPENSTALE;
959	goto out_put_ctx;
960}
961
962const struct file_operations nfs4_file_operations = {
963	.llseek		= nfs_file_llseek,
964	.read		= do_sync_read,
965	.write		= do_sync_write,
966	.aio_read	= nfs_file_read,
967	.aio_write	= nfs_file_write,
968	.mmap		= nfs_file_mmap,
969	.open		= nfs4_file_open,
970	.flush		= nfs_file_flush,
971	.release	= nfs_file_release,
972	.fsync		= nfs_file_fsync,
973	.lock		= nfs_lock,
974	.flock		= nfs_flock,
975	.splice_read	= nfs_file_splice_read,
976	.splice_write	= nfs_file_splice_write,
977	.check_flags	= nfs_check_flags,
978	.setlease	= nfs_setlease,
979};
980#endif /* CONFIG_NFS_V4 */