Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/**
   2 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   3 *		http://www.samsung.com
   4 *
   5 * Copyright 2008 Openmoko, Inc.
   6 * Copyright 2008 Simtec Electronics
   7 *      Ben Dooks <ben@simtec.co.uk>
   8 *      http://armlinux.simtec.co.uk/
   9 *
  10 * S3C USB2.0 High-speed / OtG driver
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 */
  16
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/spinlock.h>
  20#include <linux/interrupt.h>
  21#include <linux/platform_device.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/mutex.h>
  24#include <linux/seq_file.h>
  25#include <linux/delay.h>
  26#include <linux/io.h>
  27#include <linux/slab.h>
  28#include <linux/of_platform.h>
  29
  30#include <linux/usb/ch9.h>
  31#include <linux/usb/gadget.h>
  32#include <linux/usb/phy.h>
  33
  34#include "core.h"
  35#include "hw.h"
  36
  37/* conversion functions */
  38static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
  39{
  40	return container_of(req, struct dwc2_hsotg_req, req);
  41}
  42
  43static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
  44{
  45	return container_of(ep, struct dwc2_hsotg_ep, ep);
  46}
  47
  48static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
  49{
  50	return container_of(gadget, struct dwc2_hsotg, gadget);
  51}
  52
  53static inline void __orr32(void __iomem *ptr, u32 val)
  54{
  55	dwc2_writel(dwc2_readl(ptr) | val, ptr);
  56}
  57
  58static inline void __bic32(void __iomem *ptr, u32 val)
  59{
  60	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
  61}
  62
  63static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
  64						u32 ep_index, u32 dir_in)
  65{
  66	if (dir_in)
  67		return hsotg->eps_in[ep_index];
  68	else
  69		return hsotg->eps_out[ep_index];
  70}
  71
  72/* forward declaration of functions */
  73static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
  74
  75/**
  76 * using_dma - return the DMA status of the driver.
  77 * @hsotg: The driver state.
  78 *
  79 * Return true if we're using DMA.
  80 *
  81 * Currently, we have the DMA support code worked into everywhere
  82 * that needs it, but the AMBA DMA implementation in the hardware can
  83 * only DMA from 32bit aligned addresses. This means that gadgets such
  84 * as the CDC Ethernet cannot work as they often pass packets which are
  85 * not 32bit aligned.
  86 *
  87 * Unfortunately the choice to use DMA or not is global to the controller
  88 * and seems to be only settable when the controller is being put through
  89 * a core reset. This means we either need to fix the gadgets to take
  90 * account of DMA alignment, or add bounce buffers (yuerk).
  91 *
  92 * g_using_dma is set depending on dts flag.
  93 */
  94static inline bool using_dma(struct dwc2_hsotg *hsotg)
  95{
  96	return hsotg->g_using_dma;
  97}
  98
  99/**
 100 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
 101 * @hsotg: The device state
 102 * @ints: A bitmask of the interrupts to enable
 103 */
 104static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 105{
 106	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
 107	u32 new_gsintmsk;
 108
 109	new_gsintmsk = gsintmsk | ints;
 110
 111	if (new_gsintmsk != gsintmsk) {
 112		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
 113		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
 114	}
 115}
 116
 117/**
 118 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
 119 * @hsotg: The device state
 120 * @ints: A bitmask of the interrupts to enable
 121 */
 122static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 123{
 124	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
 125	u32 new_gsintmsk;
 126
 127	new_gsintmsk = gsintmsk & ~ints;
 128
 129	if (new_gsintmsk != gsintmsk)
 130		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
 131}
 132
 133/**
 134 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
 135 * @hsotg: The device state
 136 * @ep: The endpoint index
 137 * @dir_in: True if direction is in.
 138 * @en: The enable value, true to enable
 139 *
 140 * Set or clear the mask for an individual endpoint's interrupt
 141 * request.
 142 */
 143static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
 144				 unsigned int ep, unsigned int dir_in,
 145				 unsigned int en)
 146{
 147	unsigned long flags;
 148	u32 bit = 1 << ep;
 149	u32 daint;
 150
 151	if (!dir_in)
 152		bit <<= 16;
 153
 154	local_irq_save(flags);
 155	daint = dwc2_readl(hsotg->regs + DAINTMSK);
 156	if (en)
 157		daint |= bit;
 158	else
 159		daint &= ~bit;
 160	dwc2_writel(daint, hsotg->regs + DAINTMSK);
 161	local_irq_restore(flags);
 162}
 163
 164/**
 165 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
 166 * @hsotg: The device instance.
 167 */
 168static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
 169{
 170	unsigned int ep;
 171	unsigned int addr;
 172	int timeout;
 173	u32 val;
 174
 175	/* Reset fifo map if not correctly cleared during previous session */
 176	WARN_ON(hsotg->fifo_map);
 177	hsotg->fifo_map = 0;
 178
 179	/* set RX/NPTX FIFO sizes */
 180	dwc2_writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
 181	dwc2_writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
 182		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
 183		hsotg->regs + GNPTXFSIZ);
 184
 185	/*
 186	 * arange all the rest of the TX FIFOs, as some versions of this
 187	 * block have overlapping default addresses. This also ensures
 188	 * that if the settings have been changed, then they are set to
 189	 * known values.
 190	 */
 191
 192	/* start at the end of the GNPTXFSIZ, rounded up */
 193	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
 194
 195	/*
 196	 * Configure fifos sizes from provided configuration and assign
 197	 * them to endpoints dynamically according to maxpacket size value of
 198	 * given endpoint.
 199	 */
 200	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
 201		if (!hsotg->g_tx_fifo_sz[ep])
 202			continue;
 203		val = addr;
 204		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
 205		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
 206			  "insufficient fifo memory");
 207		addr += hsotg->g_tx_fifo_sz[ep];
 208
 209		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
 210	}
 211
 212	/*
 213	 * according to p428 of the design guide, we need to ensure that
 214	 * all fifos are flushed before continuing
 215	 */
 216
 217	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
 218	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
 219
 220	/* wait until the fifos are both flushed */
 221	timeout = 100;
 222	while (1) {
 223		val = dwc2_readl(hsotg->regs + GRSTCTL);
 224
 225		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
 226			break;
 227
 228		if (--timeout == 0) {
 229			dev_err(hsotg->dev,
 230				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
 231				__func__, val);
 232			break;
 233		}
 234
 235		udelay(1);
 236	}
 237
 238	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
 239}
 240
 241/**
 242 * @ep: USB endpoint to allocate request for.
 243 * @flags: Allocation flags
 244 *
 245 * Allocate a new USB request structure appropriate for the specified endpoint
 246 */
 247static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
 248						      gfp_t flags)
 249{
 250	struct dwc2_hsotg_req *req;
 251
 252	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
 253	if (!req)
 254		return NULL;
 255
 256	INIT_LIST_HEAD(&req->queue);
 257
 258	return &req->req;
 259}
 260
 261/**
 262 * is_ep_periodic - return true if the endpoint is in periodic mode.
 263 * @hs_ep: The endpoint to query.
 264 *
 265 * Returns true if the endpoint is in periodic mode, meaning it is being
 266 * used for an Interrupt or ISO transfer.
 267 */
 268static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
 269{
 270	return hs_ep->periodic;
 271}
 272
 273/**
 274 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
 275 * @hsotg: The device state.
 276 * @hs_ep: The endpoint for the request
 277 * @hs_req: The request being processed.
 278 *
 279 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
 280 * of a request to ensure the buffer is ready for access by the caller.
 281 */
 282static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
 283				struct dwc2_hsotg_ep *hs_ep,
 284				struct dwc2_hsotg_req *hs_req)
 285{
 286	struct usb_request *req = &hs_req->req;
 287
 288	/* ignore this if we're not moving any data */
 289	if (hs_req->req.length == 0)
 290		return;
 291
 292	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
 293}
 294
 295/**
 296 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
 297 * @hsotg: The controller state.
 298 * @hs_ep: The endpoint we're going to write for.
 299 * @hs_req: The request to write data for.
 300 *
 301 * This is called when the TxFIFO has some space in it to hold a new
 302 * transmission and we have something to give it. The actual setup of
 303 * the data size is done elsewhere, so all we have to do is to actually
 304 * write the data.
 305 *
 306 * The return value is zero if there is more space (or nothing was done)
 307 * otherwise -ENOSPC is returned if the FIFO space was used up.
 308 *
 309 * This routine is only needed for PIO
 310 */
 311static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
 312				struct dwc2_hsotg_ep *hs_ep,
 313				struct dwc2_hsotg_req *hs_req)
 314{
 315	bool periodic = is_ep_periodic(hs_ep);
 316	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
 317	int buf_pos = hs_req->req.actual;
 318	int to_write = hs_ep->size_loaded;
 319	void *data;
 320	int can_write;
 321	int pkt_round;
 322	int max_transfer;
 323
 324	to_write -= (buf_pos - hs_ep->last_load);
 325
 326	/* if there's nothing to write, get out early */
 327	if (to_write == 0)
 328		return 0;
 329
 330	if (periodic && !hsotg->dedicated_fifos) {
 331		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
 332		int size_left;
 333		int size_done;
 334
 335		/*
 336		 * work out how much data was loaded so we can calculate
 337		 * how much data is left in the fifo.
 338		 */
 339
 340		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
 341
 342		/*
 343		 * if shared fifo, we cannot write anything until the
 344		 * previous data has been completely sent.
 345		 */
 346		if (hs_ep->fifo_load != 0) {
 347			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 348			return -ENOSPC;
 349		}
 350
 351		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
 352			__func__, size_left,
 353			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
 354
 355		/* how much of the data has moved */
 356		size_done = hs_ep->size_loaded - size_left;
 357
 358		/* how much data is left in the fifo */
 359		can_write = hs_ep->fifo_load - size_done;
 360		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
 361			__func__, can_write);
 362
 363		can_write = hs_ep->fifo_size - can_write;
 364		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
 365			__func__, can_write);
 366
 367		if (can_write <= 0) {
 368			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 369			return -ENOSPC;
 370		}
 371	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
 372		can_write = dwc2_readl(hsotg->regs + DTXFSTS(hs_ep->index));
 373
 374		can_write &= 0xffff;
 375		can_write *= 4;
 376	} else {
 377		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
 378			dev_dbg(hsotg->dev,
 379				"%s: no queue slots available (0x%08x)\n",
 380				__func__, gnptxsts);
 381
 382			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
 383			return -ENOSPC;
 384		}
 385
 386		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
 387		can_write *= 4;	/* fifo size is in 32bit quantities. */
 388	}
 389
 390	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
 391
 392	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
 393		 __func__, gnptxsts, can_write, to_write, max_transfer);
 394
 395	/*
 396	 * limit to 512 bytes of data, it seems at least on the non-periodic
 397	 * FIFO, requests of >512 cause the endpoint to get stuck with a
 398	 * fragment of the end of the transfer in it.
 399	 */
 400	if (can_write > 512 && !periodic)
 401		can_write = 512;
 402
 403	/*
 404	 * limit the write to one max-packet size worth of data, but allow
 405	 * the transfer to return that it did not run out of fifo space
 406	 * doing it.
 407	 */
 408	if (to_write > max_transfer) {
 409		to_write = max_transfer;
 410
 411		/* it's needed only when we do not use dedicated fifos */
 412		if (!hsotg->dedicated_fifos)
 413			dwc2_hsotg_en_gsint(hsotg,
 414					   periodic ? GINTSTS_PTXFEMP :
 415					   GINTSTS_NPTXFEMP);
 416	}
 417
 418	/* see if we can write data */
 419
 420	if (to_write > can_write) {
 421		to_write = can_write;
 422		pkt_round = to_write % max_transfer;
 423
 424		/*
 425		 * Round the write down to an
 426		 * exact number of packets.
 427		 *
 428		 * Note, we do not currently check to see if we can ever
 429		 * write a full packet or not to the FIFO.
 430		 */
 431
 432		if (pkt_round)
 433			to_write -= pkt_round;
 434
 435		/*
 436		 * enable correct FIFO interrupt to alert us when there
 437		 * is more room left.
 438		 */
 439
 440		/* it's needed only when we do not use dedicated fifos */
 441		if (!hsotg->dedicated_fifos)
 442			dwc2_hsotg_en_gsint(hsotg,
 443					   periodic ? GINTSTS_PTXFEMP :
 444					   GINTSTS_NPTXFEMP);
 445	}
 446
 447	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
 448		 to_write, hs_req->req.length, can_write, buf_pos);
 449
 450	if (to_write <= 0)
 451		return -ENOSPC;
 452
 453	hs_req->req.actual = buf_pos + to_write;
 454	hs_ep->total_data += to_write;
 455
 456	if (periodic)
 457		hs_ep->fifo_load += to_write;
 458
 459	to_write = DIV_ROUND_UP(to_write, 4);
 460	data = hs_req->req.buf + buf_pos;
 461
 462	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
 463
 464	return (to_write >= can_write) ? -ENOSPC : 0;
 465}
 466
 467/**
 468 * get_ep_limit - get the maximum data legnth for this endpoint
 469 * @hs_ep: The endpoint
 470 *
 471 * Return the maximum data that can be queued in one go on a given endpoint
 472 * so that transfers that are too long can be split.
 473 */
 474static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
 475{
 476	int index = hs_ep->index;
 477	unsigned maxsize;
 478	unsigned maxpkt;
 479
 480	if (index != 0) {
 481		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
 482		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
 483	} else {
 484		maxsize = 64+64;
 485		if (hs_ep->dir_in)
 486			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
 487		else
 488			maxpkt = 2;
 489	}
 490
 491	/* we made the constant loading easier above by using +1 */
 492	maxpkt--;
 493	maxsize--;
 494
 495	/*
 496	 * constrain by packet count if maxpkts*pktsize is greater
 497	 * than the length register size.
 498	 */
 499
 500	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
 501		maxsize = maxpkt * hs_ep->ep.maxpacket;
 502
 503	return maxsize;
 504}
 505
 506/**
 507 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
 508 * @hsotg: The controller state.
 509 * @hs_ep: The endpoint to process a request for
 510 * @hs_req: The request to start.
 511 * @continuing: True if we are doing more for the current request.
 512 *
 513 * Start the given request running by setting the endpoint registers
 514 * appropriately, and writing any data to the FIFOs.
 515 */
 516static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
 517				struct dwc2_hsotg_ep *hs_ep,
 518				struct dwc2_hsotg_req *hs_req,
 519				bool continuing)
 520{
 521	struct usb_request *ureq = &hs_req->req;
 522	int index = hs_ep->index;
 523	int dir_in = hs_ep->dir_in;
 524	u32 epctrl_reg;
 525	u32 epsize_reg;
 526	u32 epsize;
 527	u32 ctrl;
 528	unsigned length;
 529	unsigned packets;
 530	unsigned maxreq;
 531
 532	if (index != 0) {
 533		if (hs_ep->req && !continuing) {
 534			dev_err(hsotg->dev, "%s: active request\n", __func__);
 535			WARN_ON(1);
 536			return;
 537		} else if (hs_ep->req != hs_req && continuing) {
 538			dev_err(hsotg->dev,
 539				"%s: continue different req\n", __func__);
 540			WARN_ON(1);
 541			return;
 542		}
 543	}
 544
 545	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
 546	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
 547
 548	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
 549		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
 550		hs_ep->dir_in ? "in" : "out");
 551
 552	/* If endpoint is stalled, we will restart request later */
 553	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
 554
 555	if (index && ctrl & DXEPCTL_STALL) {
 556		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
 557		return;
 558	}
 559
 560	length = ureq->length - ureq->actual;
 561	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
 562		ureq->length, ureq->actual);
 563
 564	maxreq = get_ep_limit(hs_ep);
 565	if (length > maxreq) {
 566		int round = maxreq % hs_ep->ep.maxpacket;
 567
 568		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
 569			__func__, length, maxreq, round);
 570
 571		/* round down to multiple of packets */
 572		if (round)
 573			maxreq -= round;
 574
 575		length = maxreq;
 576	}
 577
 578	if (length)
 579		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
 580	else
 581		packets = 1;	/* send one packet if length is zero. */
 582
 583	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
 584		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
 585		return;
 586	}
 587
 588	if (dir_in && index != 0)
 589		if (hs_ep->isochronous)
 590			epsize = DXEPTSIZ_MC(packets);
 591		else
 592			epsize = DXEPTSIZ_MC(1);
 593	else
 594		epsize = 0;
 595
 596	/*
 597	 * zero length packet should be programmed on its own and should not
 598	 * be counted in DIEPTSIZ.PktCnt with other packets.
 599	 */
 600	if (dir_in && ureq->zero && !continuing) {
 601		/* Test if zlp is actually required. */
 602		if ((ureq->length >= hs_ep->ep.maxpacket) &&
 603					!(ureq->length % hs_ep->ep.maxpacket))
 604			hs_ep->send_zlp = 1;
 605	}
 606
 607	epsize |= DXEPTSIZ_PKTCNT(packets);
 608	epsize |= DXEPTSIZ_XFERSIZE(length);
 609
 610	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
 611		__func__, packets, length, ureq->length, epsize, epsize_reg);
 612
 613	/* store the request as the current one we're doing */
 614	hs_ep->req = hs_req;
 615
 616	/* write size / packets */
 617	dwc2_writel(epsize, hsotg->regs + epsize_reg);
 618
 619	if (using_dma(hsotg) && !continuing) {
 620		unsigned int dma_reg;
 621
 622		/*
 623		 * write DMA address to control register, buffer already
 624		 * synced by dwc2_hsotg_ep_queue().
 625		 */
 626
 627		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
 628		dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
 629
 630		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
 631			__func__, &ureq->dma, dma_reg);
 632	}
 633
 634	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
 635	ctrl |= DXEPCTL_USBACTEP;
 636
 637	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
 638
 639	/* For Setup request do not clear NAK */
 640	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
 641		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
 642
 643	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
 644	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
 645
 646	/*
 647	 * set these, it seems that DMA support increments past the end
 648	 * of the packet buffer so we need to calculate the length from
 649	 * this information.
 650	 */
 651	hs_ep->size_loaded = length;
 652	hs_ep->last_load = ureq->actual;
 653
 654	if (dir_in && !using_dma(hsotg)) {
 655		/* set these anyway, we may need them for non-periodic in */
 656		hs_ep->fifo_load = 0;
 657
 658		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
 659	}
 660
 661	/*
 662	 * clear the INTknTXFEmpMsk when we start request, more as a aide
 663	 * to debugging to see what is going on.
 664	 */
 665	if (dir_in)
 666		dwc2_writel(DIEPMSK_INTKNTXFEMPMSK,
 667		       hsotg->regs + DIEPINT(index));
 668
 669	/*
 670	 * Note, trying to clear the NAK here causes problems with transmit
 671	 * on the S3C6400 ending up with the TXFIFO becoming full.
 672	 */
 673
 674	/* check ep is enabled */
 675	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
 676		dev_dbg(hsotg->dev,
 677			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
 678			 index, dwc2_readl(hsotg->regs + epctrl_reg));
 679
 680	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
 681		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
 682
 683	/* enable ep interrupts */
 684	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
 685}
 686
 687/**
 688 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
 689 * @hsotg: The device state.
 690 * @hs_ep: The endpoint the request is on.
 691 * @req: The request being processed.
 692 *
 693 * We've been asked to queue a request, so ensure that the memory buffer
 694 * is correctly setup for DMA. If we've been passed an extant DMA address
 695 * then ensure the buffer has been synced to memory. If our buffer has no
 696 * DMA memory, then we map the memory and mark our request to allow us to
 697 * cleanup on completion.
 698 */
 699static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
 700			     struct dwc2_hsotg_ep *hs_ep,
 701			     struct usb_request *req)
 702{
 703	struct dwc2_hsotg_req *hs_req = our_req(req);
 704	int ret;
 705
 706	/* if the length is zero, ignore the DMA data */
 707	if (hs_req->req.length == 0)
 708		return 0;
 709
 710	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
 711	if (ret)
 712		goto dma_error;
 713
 714	return 0;
 715
 716dma_error:
 717	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
 718		__func__, req->buf, req->length);
 719
 720	return -EIO;
 721}
 722
 723static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
 724	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
 725{
 726	void *req_buf = hs_req->req.buf;
 727
 728	/* If dma is not being used or buffer is aligned */
 729	if (!using_dma(hsotg) || !((long)req_buf & 3))
 730		return 0;
 731
 732	WARN_ON(hs_req->saved_req_buf);
 733
 734	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
 735			hs_ep->ep.name, req_buf, hs_req->req.length);
 736
 737	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
 738	if (!hs_req->req.buf) {
 739		hs_req->req.buf = req_buf;
 740		dev_err(hsotg->dev,
 741			"%s: unable to allocate memory for bounce buffer\n",
 742			__func__);
 743		return -ENOMEM;
 744	}
 745
 746	/* Save actual buffer */
 747	hs_req->saved_req_buf = req_buf;
 748
 749	if (hs_ep->dir_in)
 750		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
 751	return 0;
 752}
 753
 754static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
 755	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
 756{
 757	/* If dma is not being used or buffer was aligned */
 758	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
 759		return;
 760
 761	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
 762		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
 763
 764	/* Copy data from bounce buffer on successful out transfer */
 765	if (!hs_ep->dir_in && !hs_req->req.status)
 766		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
 767							hs_req->req.actual);
 768
 769	/* Free bounce buffer */
 770	kfree(hs_req->req.buf);
 771
 772	hs_req->req.buf = hs_req->saved_req_buf;
 773	hs_req->saved_req_buf = NULL;
 774}
 775
 776static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
 777			      gfp_t gfp_flags)
 778{
 779	struct dwc2_hsotg_req *hs_req = our_req(req);
 780	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
 781	struct dwc2_hsotg *hs = hs_ep->parent;
 782	bool first;
 783	int ret;
 784
 785	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
 786		ep->name, req, req->length, req->buf, req->no_interrupt,
 787		req->zero, req->short_not_ok);
 788
 789	/* Prevent new request submission when controller is suspended */
 790	if (hs->lx_state == DWC2_L2) {
 791		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
 792				__func__);
 793		return -EAGAIN;
 794	}
 795
 796	/* initialise status of the request */
 797	INIT_LIST_HEAD(&hs_req->queue);
 798	req->actual = 0;
 799	req->status = -EINPROGRESS;
 800
 801	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
 802	if (ret)
 803		return ret;
 804
 805	/* if we're using DMA, sync the buffers as necessary */
 806	if (using_dma(hs)) {
 807		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
 808		if (ret)
 809			return ret;
 810	}
 811
 812	first = list_empty(&hs_ep->queue);
 813	list_add_tail(&hs_req->queue, &hs_ep->queue);
 814
 815	if (first)
 816		dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
 817
 818	return 0;
 819}
 820
 821static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
 822			      gfp_t gfp_flags)
 823{
 824	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
 825	struct dwc2_hsotg *hs = hs_ep->parent;
 826	unsigned long flags = 0;
 827	int ret = 0;
 828
 829	spin_lock_irqsave(&hs->lock, flags);
 830	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
 831	spin_unlock_irqrestore(&hs->lock, flags);
 832
 833	return ret;
 834}
 835
 836static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
 837				      struct usb_request *req)
 838{
 839	struct dwc2_hsotg_req *hs_req = our_req(req);
 840
 841	kfree(hs_req);
 842}
 843
 844/**
 845 * dwc2_hsotg_complete_oursetup - setup completion callback
 846 * @ep: The endpoint the request was on.
 847 * @req: The request completed.
 848 *
 849 * Called on completion of any requests the driver itself
 850 * submitted that need cleaning up.
 851 */
 852static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
 853					struct usb_request *req)
 854{
 855	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
 856	struct dwc2_hsotg *hsotg = hs_ep->parent;
 857
 858	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
 859
 860	dwc2_hsotg_ep_free_request(ep, req);
 861}
 862
 863/**
 864 * ep_from_windex - convert control wIndex value to endpoint
 865 * @hsotg: The driver state.
 866 * @windex: The control request wIndex field (in host order).
 867 *
 868 * Convert the given wIndex into a pointer to an driver endpoint
 869 * structure, or return NULL if it is not a valid endpoint.
 870 */
 871static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
 872					   u32 windex)
 873{
 874	struct dwc2_hsotg_ep *ep;
 875	int dir = (windex & USB_DIR_IN) ? 1 : 0;
 876	int idx = windex & 0x7F;
 877
 878	if (windex >= 0x100)
 879		return NULL;
 880
 881	if (idx > hsotg->num_of_eps)
 882		return NULL;
 883
 884	ep = index_to_ep(hsotg, idx, dir);
 885
 886	if (idx && ep->dir_in != dir)
 887		return NULL;
 888
 889	return ep;
 890}
 891
 892/**
 893 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
 894 * @hsotg: The driver state.
 895 * @testmode: requested usb test mode
 896 * Enable usb Test Mode requested by the Host.
 897 */
 898int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
 899{
 900	int dctl = dwc2_readl(hsotg->regs + DCTL);
 901
 902	dctl &= ~DCTL_TSTCTL_MASK;
 903	switch (testmode) {
 904	case TEST_J:
 905	case TEST_K:
 906	case TEST_SE0_NAK:
 907	case TEST_PACKET:
 908	case TEST_FORCE_EN:
 909		dctl |= testmode << DCTL_TSTCTL_SHIFT;
 910		break;
 911	default:
 912		return -EINVAL;
 913	}
 914	dwc2_writel(dctl, hsotg->regs + DCTL);
 915	return 0;
 916}
 917
 918/**
 919 * dwc2_hsotg_send_reply - send reply to control request
 920 * @hsotg: The device state
 921 * @ep: Endpoint 0
 922 * @buff: Buffer for request
 923 * @length: Length of reply.
 924 *
 925 * Create a request and queue it on the given endpoint. This is useful as
 926 * an internal method of sending replies to certain control requests, etc.
 927 */
 928static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
 929				struct dwc2_hsotg_ep *ep,
 930				void *buff,
 931				int length)
 932{
 933	struct usb_request *req;
 934	int ret;
 935
 936	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
 937
 938	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
 939	hsotg->ep0_reply = req;
 940	if (!req) {
 941		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
 942		return -ENOMEM;
 943	}
 944
 945	req->buf = hsotg->ep0_buff;
 946	req->length = length;
 947	/*
 948	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
 949	 * STATUS stage.
 950	 */
 951	req->zero = 0;
 952	req->complete = dwc2_hsotg_complete_oursetup;
 953
 954	if (length)
 955		memcpy(req->buf, buff, length);
 956
 957	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
 958	if (ret) {
 959		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
 960		return ret;
 961	}
 962
 963	return 0;
 964}
 965
 966/**
 967 * dwc2_hsotg_process_req_status - process request GET_STATUS
 968 * @hsotg: The device state
 969 * @ctrl: USB control request
 970 */
 971static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
 972					struct usb_ctrlrequest *ctrl)
 973{
 974	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
 975	struct dwc2_hsotg_ep *ep;
 976	__le16 reply;
 977	int ret;
 978
 979	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
 980
 981	if (!ep0->dir_in) {
 982		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
 983		return -EINVAL;
 984	}
 985
 986	switch (ctrl->bRequestType & USB_RECIP_MASK) {
 987	case USB_RECIP_DEVICE:
 988		reply = cpu_to_le16(0); /* bit 0 => self powered,
 989					 * bit 1 => remote wakeup */
 990		break;
 991
 992	case USB_RECIP_INTERFACE:
 993		/* currently, the data result should be zero */
 994		reply = cpu_to_le16(0);
 995		break;
 996
 997	case USB_RECIP_ENDPOINT:
 998		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
 999		if (!ep)
1000			return -ENOENT;
1001
1002		reply = cpu_to_le16(ep->halted ? 1 : 0);
1003		break;
1004
1005	default:
1006		return 0;
1007	}
1008
1009	if (le16_to_cpu(ctrl->wLength) != 2)
1010		return -EINVAL;
1011
1012	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1013	if (ret) {
1014		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1015		return ret;
1016	}
1017
1018	return 1;
1019}
1020
1021static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1022
1023/**
1024 * get_ep_head - return the first request on the endpoint
1025 * @hs_ep: The controller endpoint to get
1026 *
1027 * Get the first request on the endpoint.
1028 */
1029static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1030{
1031	if (list_empty(&hs_ep->queue))
1032		return NULL;
1033
1034	return list_first_entry(&hs_ep->queue, struct dwc2_hsotg_req, queue);
1035}
1036
1037/**
1038 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1039 * @hsotg: The device state
1040 * @ctrl: USB control request
1041 */
1042static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1043					 struct usb_ctrlrequest *ctrl)
1044{
1045	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1046	struct dwc2_hsotg_req *hs_req;
1047	bool restart;
1048	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1049	struct dwc2_hsotg_ep *ep;
1050	int ret;
1051	bool halted;
1052	u32 recip;
1053	u32 wValue;
1054	u32 wIndex;
1055
1056	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1057		__func__, set ? "SET" : "CLEAR");
1058
1059	wValue = le16_to_cpu(ctrl->wValue);
1060	wIndex = le16_to_cpu(ctrl->wIndex);
1061	recip = ctrl->bRequestType & USB_RECIP_MASK;
1062
1063	switch (recip) {
1064	case USB_RECIP_DEVICE:
1065		switch (wValue) {
1066		case USB_DEVICE_TEST_MODE:
1067			if ((wIndex & 0xff) != 0)
1068				return -EINVAL;
1069			if (!set)
1070				return -EINVAL;
1071
1072			hsotg->test_mode = wIndex >> 8;
1073			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1074			if (ret) {
1075				dev_err(hsotg->dev,
1076					"%s: failed to send reply\n", __func__);
1077				return ret;
1078			}
1079			break;
1080		default:
1081			return -ENOENT;
1082		}
1083		break;
1084
1085	case USB_RECIP_ENDPOINT:
1086		ep = ep_from_windex(hsotg, wIndex);
1087		if (!ep) {
1088			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1089				__func__, wIndex);
1090			return -ENOENT;
1091		}
1092
1093		switch (wValue) {
1094		case USB_ENDPOINT_HALT:
1095			halted = ep->halted;
1096
1097			dwc2_hsotg_ep_sethalt(&ep->ep, set);
1098
1099			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1100			if (ret) {
1101				dev_err(hsotg->dev,
1102					"%s: failed to send reply\n", __func__);
1103				return ret;
1104			}
1105
1106			/*
1107			 * we have to complete all requests for ep if it was
1108			 * halted, and the halt was cleared by CLEAR_FEATURE
1109			 */
1110
1111			if (!set && halted) {
1112				/*
1113				 * If we have request in progress,
1114				 * then complete it
1115				 */
1116				if (ep->req) {
1117					hs_req = ep->req;
1118					ep->req = NULL;
1119					list_del_init(&hs_req->queue);
1120					if (hs_req->req.complete) {
1121						spin_unlock(&hsotg->lock);
1122						usb_gadget_giveback_request(
1123							&ep->ep, &hs_req->req);
1124						spin_lock(&hsotg->lock);
1125					}
1126				}
1127
1128				/* If we have pending request, then start it */
1129				if (!ep->req) {
1130					restart = !list_empty(&ep->queue);
1131					if (restart) {
1132						hs_req = get_ep_head(ep);
1133						dwc2_hsotg_start_req(hsotg, ep,
1134								hs_req, false);
1135					}
1136				}
1137			}
1138
1139			break;
1140
1141		default:
1142			return -ENOENT;
1143		}
1144		break;
1145	default:
1146		return -ENOENT;
1147	}
1148	return 1;
1149}
1150
1151static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1152
1153/**
1154 * dwc2_hsotg_stall_ep0 - stall ep0
1155 * @hsotg: The device state
1156 *
1157 * Set stall for ep0 as response for setup request.
1158 */
1159static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1160{
1161	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1162	u32 reg;
1163	u32 ctrl;
1164
1165	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1166	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1167
1168	/*
1169	 * DxEPCTL_Stall will be cleared by EP once it has
1170	 * taken effect, so no need to clear later.
1171	 */
1172
1173	ctrl = dwc2_readl(hsotg->regs + reg);
1174	ctrl |= DXEPCTL_STALL;
1175	ctrl |= DXEPCTL_CNAK;
1176	dwc2_writel(ctrl, hsotg->regs + reg);
1177
1178	dev_dbg(hsotg->dev,
1179		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1180		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1181
1182	 /*
1183	  * complete won't be called, so we enqueue
1184	  * setup request here
1185	  */
1186	 dwc2_hsotg_enqueue_setup(hsotg);
1187}
1188
1189/**
1190 * dwc2_hsotg_process_control - process a control request
1191 * @hsotg: The device state
1192 * @ctrl: The control request received
1193 *
1194 * The controller has received the SETUP phase of a control request, and
1195 * needs to work out what to do next (and whether to pass it on to the
1196 * gadget driver).
1197 */
1198static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1199				      struct usb_ctrlrequest *ctrl)
1200{
1201	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1202	int ret = 0;
1203	u32 dcfg;
1204
1205	dev_dbg(hsotg->dev,
1206		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1207		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1208		ctrl->wIndex, ctrl->wLength);
1209
1210	if (ctrl->wLength == 0) {
1211		ep0->dir_in = 1;
1212		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1213	} else if (ctrl->bRequestType & USB_DIR_IN) {
1214		ep0->dir_in = 1;
1215		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1216	} else {
1217		ep0->dir_in = 0;
1218		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1219	}
1220
1221	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1222		switch (ctrl->bRequest) {
1223		case USB_REQ_SET_ADDRESS:
1224			hsotg->connected = 1;
1225			dcfg = dwc2_readl(hsotg->regs + DCFG);
1226			dcfg &= ~DCFG_DEVADDR_MASK;
1227			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1228				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1229			dwc2_writel(dcfg, hsotg->regs + DCFG);
1230
1231			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1232
1233			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1234			return;
1235
1236		case USB_REQ_GET_STATUS:
1237			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1238			break;
1239
1240		case USB_REQ_CLEAR_FEATURE:
1241		case USB_REQ_SET_FEATURE:
1242			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1243			break;
1244		}
1245	}
1246
1247	/* as a fallback, try delivering it to the driver to deal with */
1248
1249	if (ret == 0 && hsotg->driver) {
1250		spin_unlock(&hsotg->lock);
1251		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1252		spin_lock(&hsotg->lock);
1253		if (ret < 0)
1254			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1255	}
1256
1257	/*
1258	 * the request is either unhandlable, or is not formatted correctly
1259	 * so respond with a STALL for the status stage to indicate failure.
1260	 */
1261
1262	if (ret < 0)
1263		dwc2_hsotg_stall_ep0(hsotg);
1264}
1265
1266/**
1267 * dwc2_hsotg_complete_setup - completion of a setup transfer
1268 * @ep: The endpoint the request was on.
1269 * @req: The request completed.
1270 *
1271 * Called on completion of any requests the driver itself submitted for
1272 * EP0 setup packets
1273 */
1274static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1275				     struct usb_request *req)
1276{
1277	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1278	struct dwc2_hsotg *hsotg = hs_ep->parent;
1279
1280	if (req->status < 0) {
1281		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1282		return;
1283	}
1284
1285	spin_lock(&hsotg->lock);
1286	if (req->actual == 0)
1287		dwc2_hsotg_enqueue_setup(hsotg);
1288	else
1289		dwc2_hsotg_process_control(hsotg, req->buf);
1290	spin_unlock(&hsotg->lock);
1291}
1292
1293/**
1294 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1295 * @hsotg: The device state.
1296 *
1297 * Enqueue a request on EP0 if necessary to received any SETUP packets
1298 * received from the host.
1299 */
1300static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1301{
1302	struct usb_request *req = hsotg->ctrl_req;
1303	struct dwc2_hsotg_req *hs_req = our_req(req);
1304	int ret;
1305
1306	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1307
1308	req->zero = 0;
1309	req->length = 8;
1310	req->buf = hsotg->ctrl_buff;
1311	req->complete = dwc2_hsotg_complete_setup;
1312
1313	if (!list_empty(&hs_req->queue)) {
1314		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1315		return;
1316	}
1317
1318	hsotg->eps_out[0]->dir_in = 0;
1319	hsotg->eps_out[0]->send_zlp = 0;
1320	hsotg->ep0_state = DWC2_EP0_SETUP;
1321
1322	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1323	if (ret < 0) {
1324		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1325		/*
1326		 * Don't think there's much we can do other than watch the
1327		 * driver fail.
1328		 */
1329	}
1330}
1331
1332static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1333					struct dwc2_hsotg_ep *hs_ep)
1334{
1335	u32 ctrl;
1336	u8 index = hs_ep->index;
1337	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1338	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1339
1340	if (hs_ep->dir_in)
1341		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1342									index);
1343	else
1344		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1345									index);
1346
1347	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1348		    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1349		    epsiz_reg);
1350
1351	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1352	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1353	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1354	ctrl |= DXEPCTL_USBACTEP;
1355	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1356}
1357
1358/**
1359 * dwc2_hsotg_complete_request - complete a request given to us
1360 * @hsotg: The device state.
1361 * @hs_ep: The endpoint the request was on.
1362 * @hs_req: The request to complete.
1363 * @result: The result code (0 => Ok, otherwise errno)
1364 *
1365 * The given request has finished, so call the necessary completion
1366 * if it has one and then look to see if we can start a new request
1367 * on the endpoint.
1368 *
1369 * Note, expects the ep to already be locked as appropriate.
1370 */
1371static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1372				       struct dwc2_hsotg_ep *hs_ep,
1373				       struct dwc2_hsotg_req *hs_req,
1374				       int result)
1375{
1376	bool restart;
1377
1378	if (!hs_req) {
1379		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1380		return;
1381	}
1382
1383	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1384		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1385
1386	/*
1387	 * only replace the status if we've not already set an error
1388	 * from a previous transaction
1389	 */
1390
1391	if (hs_req->req.status == -EINPROGRESS)
1392		hs_req->req.status = result;
1393
1394	if (using_dma(hsotg))
1395		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1396
1397	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1398
1399	hs_ep->req = NULL;
1400	list_del_init(&hs_req->queue);
1401
1402	/*
1403	 * call the complete request with the locks off, just in case the
1404	 * request tries to queue more work for this endpoint.
1405	 */
1406
1407	if (hs_req->req.complete) {
1408		spin_unlock(&hsotg->lock);
1409		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1410		spin_lock(&hsotg->lock);
1411	}
1412
1413	/*
1414	 * Look to see if there is anything else to do. Note, the completion
1415	 * of the previous request may have caused a new request to be started
1416	 * so be careful when doing this.
1417	 */
1418
1419	if (!hs_ep->req && result >= 0) {
1420		restart = !list_empty(&hs_ep->queue);
1421		if (restart) {
1422			hs_req = get_ep_head(hs_ep);
1423			dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1424		}
1425	}
1426}
1427
1428/**
1429 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
1430 * @hsotg: The device state.
1431 * @ep_idx: The endpoint index for the data
1432 * @size: The size of data in the fifo, in bytes
1433 *
1434 * The FIFO status shows there is data to read from the FIFO for a given
1435 * endpoint, so sort out whether we need to read the data into a request
1436 * that has been made for that endpoint.
1437 */
1438static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1439{
1440	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1441	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1442	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1443	int to_read;
1444	int max_req;
1445	int read_ptr;
1446
1447
1448	if (!hs_req) {
1449		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
1450		int ptr;
1451
1452		dev_dbg(hsotg->dev,
1453			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1454			 __func__, size, ep_idx, epctl);
1455
1456		/* dump the data from the FIFO, we've nothing we can do */
1457		for (ptr = 0; ptr < size; ptr += 4)
1458			(void)dwc2_readl(fifo);
1459
1460		return;
1461	}
1462
1463	to_read = size;
1464	read_ptr = hs_req->req.actual;
1465	max_req = hs_req->req.length - read_ptr;
1466
1467	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1468		__func__, to_read, max_req, read_ptr, hs_req->req.length);
1469
1470	if (to_read > max_req) {
1471		/*
1472		 * more data appeared than we where willing
1473		 * to deal with in this request.
1474		 */
1475
1476		/* currently we don't deal this */
1477		WARN_ON_ONCE(1);
1478	}
1479
1480	hs_ep->total_data += to_read;
1481	hs_req->req.actual += to_read;
1482	to_read = DIV_ROUND_UP(to_read, 4);
1483
1484	/*
1485	 * note, we might over-write the buffer end by 3 bytes depending on
1486	 * alignment of the data.
1487	 */
1488	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1489}
1490
1491/**
1492 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1493 * @hsotg: The device instance
1494 * @dir_in: If IN zlp
1495 *
1496 * Generate a zero-length IN packet request for terminating a SETUP
1497 * transaction.
1498 *
1499 * Note, since we don't write any data to the TxFIFO, then it is
1500 * currently believed that we do not need to wait for any space in
1501 * the TxFIFO.
1502 */
1503static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1504{
1505	/* eps_out[0] is used in both directions */
1506	hsotg->eps_out[0]->dir_in = dir_in;
1507	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1508
1509	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1510}
1511
1512static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
1513			u32 epctl_reg)
1514{
1515	u32 ctrl;
1516
1517	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1518	if (ctrl & DXEPCTL_EOFRNUM)
1519		ctrl |= DXEPCTL_SETEVENFR;
1520	else
1521		ctrl |= DXEPCTL_SETODDFR;
1522	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1523}
1524
1525/**
1526 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1527 * @hsotg: The device instance
1528 * @epnum: The endpoint received from
1529 *
1530 * The RXFIFO has delivered an OutDone event, which means that the data
1531 * transfer for an OUT endpoint has been completed, either by a short
1532 * packet or by the finish of a transfer.
1533 */
1534static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1535{
1536	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
1537	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1538	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1539	struct usb_request *req = &hs_req->req;
1540	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1541	int result = 0;
1542
1543	if (!hs_req) {
1544		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1545		return;
1546	}
1547
1548	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
1549		dev_dbg(hsotg->dev, "zlp packet received\n");
1550		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1551		dwc2_hsotg_enqueue_setup(hsotg);
1552		return;
1553	}
1554
1555	if (using_dma(hsotg)) {
1556		unsigned size_done;
1557
1558		/*
1559		 * Calculate the size of the transfer by checking how much
1560		 * is left in the endpoint size register and then working it
1561		 * out from the amount we loaded for the transfer.
1562		 *
1563		 * We need to do this as DMA pointers are always 32bit aligned
1564		 * so may overshoot/undershoot the transfer.
1565		 */
1566
1567		size_done = hs_ep->size_loaded - size_left;
1568		size_done += hs_ep->last_load;
1569
1570		req->actual = size_done;
1571	}
1572
1573	/* if there is more request to do, schedule new transfer */
1574	if (req->actual < req->length && size_left == 0) {
1575		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1576		return;
1577	}
1578
1579	if (req->actual < req->length && req->short_not_ok) {
1580		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1581			__func__, req->actual, req->length);
1582
1583		/*
1584		 * todo - what should we return here? there's no one else
1585		 * even bothering to check the status.
1586		 */
1587	}
1588
1589	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
1590		/* Move to STATUS IN */
1591		dwc2_hsotg_ep0_zlp(hsotg, true);
1592		return;
1593	}
1594
1595	/*
1596	 * Slave mode OUT transfers do not go through XferComplete so
1597	 * adjust the ISOC parity here.
1598	 */
1599	if (!using_dma(hsotg)) {
1600		hs_ep->has_correct_parity = 1;
1601		if (hs_ep->isochronous && hs_ep->interval == 1)
1602			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
1603	}
1604
1605	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1606}
1607
1608/**
1609 * dwc2_hsotg_read_frameno - read current frame number
1610 * @hsotg: The device instance
1611 *
1612 * Return the current frame number
1613 */
1614static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1615{
1616	u32 dsts;
1617
1618	dsts = dwc2_readl(hsotg->regs + DSTS);
1619	dsts &= DSTS_SOFFN_MASK;
1620	dsts >>= DSTS_SOFFN_SHIFT;
1621
1622	return dsts;
1623}
1624
1625/**
1626 * dwc2_hsotg_handle_rx - RX FIFO has data
1627 * @hsotg: The device instance
1628 *
1629 * The IRQ handler has detected that the RX FIFO has some data in it
1630 * that requires processing, so find out what is in there and do the
1631 * appropriate read.
1632 *
1633 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1634 * chunks, so if you have x packets received on an endpoint you'll get x
1635 * FIFO events delivered, each with a packet's worth of data in it.
1636 *
1637 * When using DMA, we should not be processing events from the RXFIFO
1638 * as the actual data should be sent to the memory directly and we turn
1639 * on the completion interrupts to get notifications of transfer completion.
1640 */
1641static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1642{
1643	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
1644	u32 epnum, status, size;
1645
1646	WARN_ON(using_dma(hsotg));
1647
1648	epnum = grxstsr & GRXSTS_EPNUM_MASK;
1649	status = grxstsr & GRXSTS_PKTSTS_MASK;
1650
1651	size = grxstsr & GRXSTS_BYTECNT_MASK;
1652	size >>= GRXSTS_BYTECNT_SHIFT;
1653
1654	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1655			__func__, grxstsr, size, epnum);
1656
1657	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
1658	case GRXSTS_PKTSTS_GLOBALOUTNAK:
1659		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1660		break;
1661
1662	case GRXSTS_PKTSTS_OUTDONE:
1663		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1664			dwc2_hsotg_read_frameno(hsotg));
1665
1666		if (!using_dma(hsotg))
1667			dwc2_hsotg_handle_outdone(hsotg, epnum);
1668		break;
1669
1670	case GRXSTS_PKTSTS_SETUPDONE:
1671		dev_dbg(hsotg->dev,
1672			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1673			dwc2_hsotg_read_frameno(hsotg),
1674			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1675		/*
1676		 * Call dwc2_hsotg_handle_outdone here if it was not called from
1677		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
1678		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
1679		 */
1680		if (hsotg->ep0_state == DWC2_EP0_SETUP)
1681			dwc2_hsotg_handle_outdone(hsotg, epnum);
1682		break;
1683
1684	case GRXSTS_PKTSTS_OUTRX:
1685		dwc2_hsotg_rx_data(hsotg, epnum, size);
1686		break;
1687
1688	case GRXSTS_PKTSTS_SETUPRX:
1689		dev_dbg(hsotg->dev,
1690			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1691			dwc2_hsotg_read_frameno(hsotg),
1692			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1693
1694		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
1695
1696		dwc2_hsotg_rx_data(hsotg, epnum, size);
1697		break;
1698
1699	default:
1700		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1701			 __func__, grxstsr);
1702
1703		dwc2_hsotg_dump(hsotg);
1704		break;
1705	}
1706}
1707
1708/**
1709 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
1710 * @mps: The maximum packet size in bytes.
1711 */
1712static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
1713{
1714	switch (mps) {
1715	case 64:
1716		return D0EPCTL_MPS_64;
1717	case 32:
1718		return D0EPCTL_MPS_32;
1719	case 16:
1720		return D0EPCTL_MPS_16;
1721	case 8:
1722		return D0EPCTL_MPS_8;
1723	}
1724
1725	/* bad max packet size, warn and return invalid result */
1726	WARN_ON(1);
1727	return (u32)-1;
1728}
1729
1730/**
1731 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1732 * @hsotg: The driver state.
1733 * @ep: The index number of the endpoint
1734 * @mps: The maximum packet size in bytes
1735 *
1736 * Configure the maximum packet size for the given endpoint, updating
1737 * the hardware control registers to reflect this.
1738 */
1739static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1740			unsigned int ep, unsigned int mps, unsigned int dir_in)
1741{
1742	struct dwc2_hsotg_ep *hs_ep;
1743	void __iomem *regs = hsotg->regs;
1744	u32 mpsval;
1745	u32 mcval;
1746	u32 reg;
1747
1748	hs_ep = index_to_ep(hsotg, ep, dir_in);
1749	if (!hs_ep)
1750		return;
1751
1752	if (ep == 0) {
1753		/* EP0 is a special case */
1754		mpsval = dwc2_hsotg_ep0_mps(mps);
1755		if (mpsval > 3)
1756			goto bad_mps;
1757		hs_ep->ep.maxpacket = mps;
1758		hs_ep->mc = 1;
1759	} else {
1760		mpsval = mps & DXEPCTL_MPS_MASK;
1761		if (mpsval > 1024)
1762			goto bad_mps;
1763		mcval = ((mps >> 11) & 0x3) + 1;
1764		hs_ep->mc = mcval;
1765		if (mcval > 3)
1766			goto bad_mps;
1767		hs_ep->ep.maxpacket = mpsval;
1768	}
1769
1770	if (dir_in) {
1771		reg = dwc2_readl(regs + DIEPCTL(ep));
1772		reg &= ~DXEPCTL_MPS_MASK;
1773		reg |= mpsval;
1774		dwc2_writel(reg, regs + DIEPCTL(ep));
1775	} else {
1776		reg = dwc2_readl(regs + DOEPCTL(ep));
1777		reg &= ~DXEPCTL_MPS_MASK;
1778		reg |= mpsval;
1779		dwc2_writel(reg, regs + DOEPCTL(ep));
1780	}
1781
1782	return;
1783
1784bad_mps:
1785	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1786}
1787
1788/**
1789 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
1790 * @hsotg: The driver state
1791 * @idx: The index for the endpoint (0..15)
1792 */
1793static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1794{
1795	int timeout;
1796	int val;
1797
1798	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1799		    hsotg->regs + GRSTCTL);
1800
1801	/* wait until the fifo is flushed */
1802	timeout = 100;
1803
1804	while (1) {
1805		val = dwc2_readl(hsotg->regs + GRSTCTL);
1806
1807		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1808			break;
1809
1810		if (--timeout == 0) {
1811			dev_err(hsotg->dev,
1812				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1813				__func__, val);
1814			break;
1815		}
1816
1817		udelay(1);
1818	}
1819}
1820
1821/**
1822 * dwc2_hsotg_trytx - check to see if anything needs transmitting
1823 * @hsotg: The driver state
1824 * @hs_ep: The driver endpoint to check.
1825 *
1826 * Check to see if there is a request that has data to send, and if so
1827 * make an attempt to write data into the FIFO.
1828 */
1829static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
1830			   struct dwc2_hsotg_ep *hs_ep)
1831{
1832	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1833
1834	if (!hs_ep->dir_in || !hs_req) {
1835		/**
1836		 * if request is not enqueued, we disable interrupts
1837		 * for endpoints, excepting ep0
1838		 */
1839		if (hs_ep->index != 0)
1840			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
1841					     hs_ep->dir_in, 0);
1842		return 0;
1843	}
1844
1845	if (hs_req->req.actual < hs_req->req.length) {
1846		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1847			hs_ep->index);
1848		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1849	}
1850
1851	return 0;
1852}
1853
1854/**
1855 * dwc2_hsotg_complete_in - complete IN transfer
1856 * @hsotg: The device state.
1857 * @hs_ep: The endpoint that has just completed.
1858 *
1859 * An IN transfer has been completed, update the transfer's state and then
1860 * call the relevant completion routines.
1861 */
1862static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1863				  struct dwc2_hsotg_ep *hs_ep)
1864{
1865	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1866	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1867	int size_left, size_done;
1868
1869	if (!hs_req) {
1870		dev_dbg(hsotg->dev, "XferCompl but no req\n");
1871		return;
1872	}
1873
1874	/* Finish ZLP handling for IN EP0 transactions */
1875	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
1876		dev_dbg(hsotg->dev, "zlp packet sent\n");
1877		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1878		if (hsotg->test_mode) {
1879			int ret;
1880
1881			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1882			if (ret < 0) {
1883				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
1884						hsotg->test_mode);
1885				dwc2_hsotg_stall_ep0(hsotg);
1886				return;
1887			}
1888		}
1889		dwc2_hsotg_enqueue_setup(hsotg);
1890		return;
1891	}
1892
1893	/*
1894	 * Calculate the size of the transfer by checking how much is left
1895	 * in the endpoint size register and then working it out from
1896	 * the amount we loaded for the transfer.
1897	 *
1898	 * We do this even for DMA, as the transfer may have incremented
1899	 * past the end of the buffer (DMA transfers are always 32bit
1900	 * aligned).
1901	 */
1902
1903	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1904
1905	size_done = hs_ep->size_loaded - size_left;
1906	size_done += hs_ep->last_load;
1907
1908	if (hs_req->req.actual != size_done)
1909		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1910			__func__, hs_req->req.actual, size_done);
1911
1912	hs_req->req.actual = size_done;
1913	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1914		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1915
1916	if (!size_left && hs_req->req.actual < hs_req->req.length) {
1917		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1918		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1919		return;
1920	}
1921
1922	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
1923	if (hs_ep->send_zlp) {
1924		dwc2_hsotg_program_zlp(hsotg, hs_ep);
1925		hs_ep->send_zlp = 0;
1926		/* transfer will be completed on next complete interrupt */
1927		return;
1928	}
1929
1930	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
1931		/* Move to STATUS OUT */
1932		dwc2_hsotg_ep0_zlp(hsotg, false);
1933		return;
1934	}
1935
1936	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1937}
1938
1939/**
1940 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
1941 * @hsotg: The driver state
1942 * @idx: The index for the endpoint (0..15)
1943 * @dir_in: Set if this is an IN endpoint
1944 *
1945 * Process and clear any interrupt pending for an individual endpoint
1946 */
1947static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1948			    int dir_in)
1949{
1950	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1951	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1952	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1953	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1954	u32 ints;
1955	u32 ctrl;
1956
1957	ints = dwc2_readl(hsotg->regs + epint_reg);
1958	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1959
1960	/* Clear endpoint interrupts */
1961	dwc2_writel(ints, hsotg->regs + epint_reg);
1962
1963	if (!hs_ep) {
1964		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
1965					__func__, idx, dir_in ? "in" : "out");
1966		return;
1967	}
1968
1969	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1970		__func__, idx, dir_in ? "in" : "out", ints);
1971
1972	/* Don't process XferCompl interrupt if it is a setup packet */
1973	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
1974		ints &= ~DXEPINT_XFERCOMPL;
1975
1976	if (ints & DXEPINT_XFERCOMPL) {
1977		hs_ep->has_correct_parity = 1;
1978		if (hs_ep->isochronous && hs_ep->interval == 1)
1979			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
1980
1981		dev_dbg(hsotg->dev,
1982			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1983			__func__, dwc2_readl(hsotg->regs + epctl_reg),
1984			dwc2_readl(hsotg->regs + epsiz_reg));
1985
1986		/*
1987		 * we get OutDone from the FIFO, so we only need to look
1988		 * at completing IN requests here
1989		 */
1990		if (dir_in) {
1991			dwc2_hsotg_complete_in(hsotg, hs_ep);
1992
1993			if (idx == 0 && !hs_ep->req)
1994				dwc2_hsotg_enqueue_setup(hsotg);
1995		} else if (using_dma(hsotg)) {
1996			/*
1997			 * We're using DMA, we need to fire an OutDone here
1998			 * as we ignore the RXFIFO.
1999			 */
2000
2001			dwc2_hsotg_handle_outdone(hsotg, idx);
2002		}
2003	}
2004
2005	if (ints & DXEPINT_EPDISBLD) {
2006		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2007
2008		if (dir_in) {
2009			int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2010
2011			dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2012
2013			if ((epctl & DXEPCTL_STALL) &&
2014				(epctl & DXEPCTL_EPTYPE_BULK)) {
2015				int dctl = dwc2_readl(hsotg->regs + DCTL);
2016
2017				dctl |= DCTL_CGNPINNAK;
2018				dwc2_writel(dctl, hsotg->regs + DCTL);
2019			}
2020		}
2021	}
2022
2023	if (ints & DXEPINT_AHBERR)
2024		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2025
2026	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2027		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2028
2029		if (using_dma(hsotg) && idx == 0) {
2030			/*
2031			 * this is the notification we've received a
2032			 * setup packet. In non-DMA mode we'd get this
2033			 * from the RXFIFO, instead we need to process
2034			 * the setup here.
2035			 */
2036
2037			if (dir_in)
2038				WARN_ON_ONCE(1);
2039			else
2040				dwc2_hsotg_handle_outdone(hsotg, 0);
2041		}
2042	}
2043
2044	if (ints & DXEPINT_BACK2BACKSETUP)
2045		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2046
2047	if (dir_in && !hs_ep->isochronous) {
2048		/* not sure if this is important, but we'll clear it anyway */
2049		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
2050			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2051				__func__, idx);
2052		}
2053
2054		/* this probably means something bad is happening */
2055		if (ints & DIEPMSK_INTKNEPMISMSK) {
2056			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2057				 __func__, idx);
2058		}
2059
2060		/* FIFO has space or is empty (see GAHBCFG) */
2061		if (hsotg->dedicated_fifos &&
2062		    ints & DIEPMSK_TXFIFOEMPTY) {
2063			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2064				__func__, idx);
2065			if (!using_dma(hsotg))
2066				dwc2_hsotg_trytx(hsotg, hs_ep);
2067		}
2068	}
2069}
2070
2071/**
2072 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2073 * @hsotg: The device state.
2074 *
2075 * Handle updating the device settings after the enumeration phase has
2076 * been completed.
2077 */
2078static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2079{
2080	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2081	int ep0_mps = 0, ep_mps = 8;
2082
2083	/*
2084	 * This should signal the finish of the enumeration phase
2085	 * of the USB handshaking, so we should now know what rate
2086	 * we connected at.
2087	 */
2088
2089	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2090
2091	/*
2092	 * note, since we're limited by the size of transfer on EP0, and
2093	 * it seems IN transfers must be a even number of packets we do
2094	 * not advertise a 64byte MPS on EP0.
2095	 */
2096
2097	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2098	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2099	case DSTS_ENUMSPD_FS:
2100	case DSTS_ENUMSPD_FS48:
2101		hsotg->gadget.speed = USB_SPEED_FULL;
2102		ep0_mps = EP0_MPS_LIMIT;
2103		ep_mps = 1023;
2104		break;
2105
2106	case DSTS_ENUMSPD_HS:
2107		hsotg->gadget.speed = USB_SPEED_HIGH;
2108		ep0_mps = EP0_MPS_LIMIT;
2109		ep_mps = 1024;
2110		break;
2111
2112	case DSTS_ENUMSPD_LS:
2113		hsotg->gadget.speed = USB_SPEED_LOW;
2114		/*
2115		 * note, we don't actually support LS in this driver at the
2116		 * moment, and the documentation seems to imply that it isn't
2117		 * supported by the PHYs on some of the devices.
2118		 */
2119		break;
2120	}
2121	dev_info(hsotg->dev, "new device is %s\n",
2122		 usb_speed_string(hsotg->gadget.speed));
2123
2124	/*
2125	 * we should now know the maximum packet size for an
2126	 * endpoint, so set the endpoints to a default value.
2127	 */
2128
2129	if (ep0_mps) {
2130		int i;
2131		/* Initialize ep0 for both in and out directions */
2132		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
2133		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
2134		for (i = 1; i < hsotg->num_of_eps; i++) {
2135			if (hsotg->eps_in[i])
2136				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
2137			if (hsotg->eps_out[i])
2138				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
2139		}
2140	}
2141
2142	/* ensure after enumeration our EP0 is active */
2143
2144	dwc2_hsotg_enqueue_setup(hsotg);
2145
2146	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2147		dwc2_readl(hsotg->regs + DIEPCTL0),
2148		dwc2_readl(hsotg->regs + DOEPCTL0));
2149}
2150
2151/**
2152 * kill_all_requests - remove all requests from the endpoint's queue
2153 * @hsotg: The device state.
2154 * @ep: The endpoint the requests may be on.
2155 * @result: The result code to use.
2156 *
2157 * Go through the requests on the given endpoint and mark them
2158 * completed with the given result code.
2159 */
2160static void kill_all_requests(struct dwc2_hsotg *hsotg,
2161			      struct dwc2_hsotg_ep *ep,
2162			      int result)
2163{
2164	struct dwc2_hsotg_req *req, *treq;
2165	unsigned size;
2166
2167	ep->req = NULL;
2168
2169	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2170		dwc2_hsotg_complete_request(hsotg, ep, req,
2171					   result);
2172
2173	if (!hsotg->dedicated_fifos)
2174		return;
2175	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2176	if (size < ep->fifo_size)
2177		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2178}
2179
2180/**
2181 * dwc2_hsotg_disconnect - disconnect service
2182 * @hsotg: The device state.
2183 *
2184 * The device has been disconnected. Remove all current
2185 * transactions and signal the gadget driver that this
2186 * has happened.
2187 */
2188void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2189{
2190	unsigned ep;
2191
2192	if (!hsotg->connected)
2193		return;
2194
2195	hsotg->connected = 0;
2196	hsotg->test_mode = 0;
2197
2198	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
2199		if (hsotg->eps_in[ep])
2200			kill_all_requests(hsotg, hsotg->eps_in[ep],
2201								-ESHUTDOWN);
2202		if (hsotg->eps_out[ep])
2203			kill_all_requests(hsotg, hsotg->eps_out[ep],
2204								-ESHUTDOWN);
2205	}
2206
2207	call_gadget(hsotg, disconnect);
2208	hsotg->lx_state = DWC2_L3;
2209}
2210
2211/**
2212 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2213 * @hsotg: The device state:
2214 * @periodic: True if this is a periodic FIFO interrupt
2215 */
2216static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2217{
2218	struct dwc2_hsotg_ep *ep;
2219	int epno, ret;
2220
2221	/* look through for any more data to transmit */
2222	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2223		ep = index_to_ep(hsotg, epno, 1);
2224
2225		if (!ep)
2226			continue;
2227
2228		if (!ep->dir_in)
2229			continue;
2230
2231		if ((periodic && !ep->periodic) ||
2232		    (!periodic && ep->periodic))
2233			continue;
2234
2235		ret = dwc2_hsotg_trytx(hsotg, ep);
2236		if (ret < 0)
2237			break;
2238	}
2239}
2240
2241/* IRQ flags which will trigger a retry around the IRQ loop */
2242#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
2243			GINTSTS_PTXFEMP |  \
2244			GINTSTS_RXFLVL)
2245
2246/**
2247 * dwc2_hsotg_core_init - issue softreset to the core
2248 * @hsotg: The device state
2249 *
2250 * Issue a soft reset to the core, and await the core finishing it.
2251 */
2252void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2253						bool is_usb_reset)
2254{
2255	u32 intmsk;
2256	u32 val;
2257	u32 usbcfg;
2258
2259	/* Kill any ep0 requests as controller will be reinitialized */
2260	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
2261
2262	if (!is_usb_reset)
2263		if (dwc2_core_reset(hsotg))
2264			return;
2265
2266	/*
2267	 * we must now enable ep0 ready for host detection and then
2268	 * set configuration.
2269	 */
2270
2271	/* keep other bits untouched (so e.g. forced modes are not lost) */
2272	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2273	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
2274		GUSBCFG_HNPCAP);
2275
2276	/* set the PLL on, remove the HNP/SRP and set the PHY */
2277	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2278	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2279		(val << GUSBCFG_USBTRDTIM_SHIFT);
2280	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2281
2282	dwc2_hsotg_init_fifo(hsotg);
2283
2284	if (!is_usb_reset)
2285		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2286
2287	dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2288
2289	/* Clear any pending OTG interrupts */
2290	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
2291
2292	/* Clear any pending interrupts */
2293	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
2294	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2295		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2296		GINTSTS_USBRST | GINTSTS_RESETDET |
2297		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2298		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
2299		GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
2300
2301	if (hsotg->core_params->external_id_pin_ctl <= 0)
2302		intmsk |= GINTSTS_CONIDSTSCHNG;
2303
2304	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
2305
2306	if (using_dma(hsotg))
2307		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2308			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2309			    hsotg->regs + GAHBCFG);
2310	else
2311		dwc2_writel(((hsotg->dedicated_fifos) ?
2312						(GAHBCFG_NP_TXF_EMP_LVL |
2313						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
2314			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
2315
2316	/*
2317	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2318	 * when we have no data to transfer. Otherwise we get being flooded by
2319	 * interrupts.
2320	 */
2321
2322	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2323		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2324		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2325		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2326		DIEPMSK_INTKNEPMISMSK,
2327		hsotg->regs + DIEPMSK);
2328
2329	/*
2330	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2331	 * DMA mode we may need this.
2332	 */
2333	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2334				    DIEPMSK_TIMEOUTMSK) : 0) |
2335		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2336		DOEPMSK_SETUPMSK,
2337		hsotg->regs + DOEPMSK);
2338
2339	dwc2_writel(0, hsotg->regs + DAINTMSK);
2340
2341	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2342		dwc2_readl(hsotg->regs + DIEPCTL0),
2343		dwc2_readl(hsotg->regs + DOEPCTL0));
2344
2345	/* enable in and out endpoint interrupts */
2346	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2347
2348	/*
2349	 * Enable the RXFIFO when in slave mode, as this is how we collect
2350	 * the data. In DMA mode, we get events from the FIFO but also
2351	 * things we cannot process, so do not use it.
2352	 */
2353	if (!using_dma(hsotg))
2354		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2355
2356	/* Enable interrupts for EP0 in and out */
2357	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2358	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2359
2360	if (!is_usb_reset) {
2361		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2362		udelay(10);  /* see openiboot */
2363		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2364	}
2365
2366	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
2367
2368	/*
2369	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2370	 * writing to the EPCTL register..
2371	 */
2372
2373	/* set to read 1 8byte packet */
2374	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2375	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2376
2377	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2378	       DXEPCTL_CNAK | DXEPCTL_EPENA |
2379	       DXEPCTL_USBACTEP,
2380	       hsotg->regs + DOEPCTL0);
2381
2382	/* enable, but don't activate EP0in */
2383	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2384	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2385
2386	dwc2_hsotg_enqueue_setup(hsotg);
2387
2388	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2389		dwc2_readl(hsotg->regs + DIEPCTL0),
2390		dwc2_readl(hsotg->regs + DOEPCTL0));
2391
2392	/* clear global NAKs */
2393	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
2394	if (!is_usb_reset)
2395		val |= DCTL_SFTDISCON;
2396	__orr32(hsotg->regs + DCTL, val);
2397
2398	/* must be at-least 3ms to allow bus to see disconnect */
2399	mdelay(3);
2400
2401	hsotg->lx_state = DWC2_L0;
2402}
2403
2404static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2405{
2406	/* set the soft-disconnect bit */
2407	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2408}
2409
2410void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2411{
2412	/* remove the soft-disconnect and let's go */
2413	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2414}
2415
2416/**
2417 * dwc2_hsotg_irq - handle device interrupt
2418 * @irq: The IRQ number triggered
2419 * @pw: The pw value when registered the handler.
2420 */
2421static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
2422{
2423	struct dwc2_hsotg *hsotg = pw;
2424	int retry_count = 8;
2425	u32 gintsts;
2426	u32 gintmsk;
2427
2428	spin_lock(&hsotg->lock);
2429irq_retry:
2430	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
2431	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
2432
2433	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2434		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2435
2436	gintsts &= gintmsk;
2437
2438	if (gintsts & GINTSTS_RESETDET) {
2439		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
2440
2441		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
2442
2443		/* This event must be used only if controller is suspended */
2444		if (hsotg->lx_state == DWC2_L2) {
2445			dwc2_exit_hibernation(hsotg, true);
2446			hsotg->lx_state = DWC2_L0;
2447		}
2448	}
2449
2450	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
2451
2452		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
2453		u32 connected = hsotg->connected;
2454
2455		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2456		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2457			dwc2_readl(hsotg->regs + GNPTXSTS));
2458
2459		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2460
2461		/* Report disconnection if it is not already done. */
2462		dwc2_hsotg_disconnect(hsotg);
2463
2464		if (usb_status & GOTGCTL_BSESVLD && connected)
2465			dwc2_hsotg_core_init_disconnected(hsotg, true);
2466	}
2467
2468	if (gintsts & GINTSTS_ENUMDONE) {
2469		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2470
2471		dwc2_hsotg_irq_enumdone(hsotg);
2472	}
2473
2474	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2475		u32 daint = dwc2_readl(hsotg->regs + DAINT);
2476		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
2477		u32 daint_out, daint_in;
2478		int ep;
2479
2480		daint &= daintmsk;
2481		daint_out = daint >> DAINT_OUTEP_SHIFT;
2482		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2483
2484		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2485
2486		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
2487						ep++, daint_out >>= 1) {
2488			if (daint_out & 1)
2489				dwc2_hsotg_epint(hsotg, ep, 0);
2490		}
2491
2492		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
2493						ep++, daint_in >>= 1) {
2494			if (daint_in & 1)
2495				dwc2_hsotg_epint(hsotg, ep, 1);
2496		}
2497	}
2498
2499	/* check both FIFOs */
2500
2501	if (gintsts & GINTSTS_NPTXFEMP) {
2502		dev_dbg(hsotg->dev, "NPTxFEmp\n");
2503
2504		/*
2505		 * Disable the interrupt to stop it happening again
2506		 * unless one of these endpoint routines decides that
2507		 * it needs re-enabling
2508		 */
2509
2510		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2511		dwc2_hsotg_irq_fifoempty(hsotg, false);
2512	}
2513
2514	if (gintsts & GINTSTS_PTXFEMP) {
2515		dev_dbg(hsotg->dev, "PTxFEmp\n");
2516
2517		/* See note in GINTSTS_NPTxFEmp */
2518
2519		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2520		dwc2_hsotg_irq_fifoempty(hsotg, true);
2521	}
2522
2523	if (gintsts & GINTSTS_RXFLVL) {
2524		/*
2525		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2526		 * we need to retry dwc2_hsotg_handle_rx if this is still
2527		 * set.
2528		 */
2529
2530		dwc2_hsotg_handle_rx(hsotg);
2531	}
2532
2533	if (gintsts & GINTSTS_ERLYSUSP) {
2534		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2535		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2536	}
2537
2538	/*
2539	 * these next two seem to crop-up occasionally causing the core
2540	 * to shutdown the USB transfer, so try clearing them and logging
2541	 * the occurrence.
2542	 */
2543
2544	if (gintsts & GINTSTS_GOUTNAKEFF) {
2545		dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2546
2547		__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
2548
2549		dwc2_hsotg_dump(hsotg);
2550	}
2551
2552	if (gintsts & GINTSTS_GINNAKEFF) {
2553		dev_info(hsotg->dev, "GINNakEff triggered\n");
2554
2555		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
2556
2557		dwc2_hsotg_dump(hsotg);
2558	}
2559
2560	if (gintsts & GINTSTS_INCOMPL_SOIN) {
2561		u32 idx, epctl_reg;
2562		struct dwc2_hsotg_ep *hs_ep;
2563
2564		dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOIN\n", __func__);
2565		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
2566			hs_ep = hsotg->eps_in[idx];
2567
2568			if (!hs_ep->isochronous || hs_ep->has_correct_parity)
2569				continue;
2570
2571			epctl_reg = DIEPCTL(idx);
2572			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
2573		}
2574		dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
2575	}
2576
2577	if (gintsts & GINTSTS_INCOMPL_SOOUT) {
2578		u32 idx, epctl_reg;
2579		struct dwc2_hsotg_ep *hs_ep;
2580
2581		dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
2582		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
2583			hs_ep = hsotg->eps_out[idx];
2584
2585			if (!hs_ep->isochronous || hs_ep->has_correct_parity)
2586				continue;
2587
2588			epctl_reg = DOEPCTL(idx);
2589			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
2590		}
2591		dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
2592	}
2593
2594	/*
2595	 * if we've had fifo events, we should try and go around the
2596	 * loop again to see if there's any point in returning yet.
2597	 */
2598
2599	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2600			goto irq_retry;
2601
2602	spin_unlock(&hsotg->lock);
2603
2604	return IRQ_HANDLED;
2605}
2606
2607/**
2608 * dwc2_hsotg_ep_enable - enable the given endpoint
2609 * @ep: The USB endpint to configure
2610 * @desc: The USB endpoint descriptor to configure with.
2611 *
2612 * This is called from the USB gadget code's usb_ep_enable().
2613 */
2614static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
2615			       const struct usb_endpoint_descriptor *desc)
2616{
2617	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2618	struct dwc2_hsotg *hsotg = hs_ep->parent;
2619	unsigned long flags;
2620	unsigned int index = hs_ep->index;
2621	u32 epctrl_reg;
2622	u32 epctrl;
2623	u32 mps;
2624	unsigned int dir_in;
2625	unsigned int i, val, size;
2626	int ret = 0;
2627
2628	dev_dbg(hsotg->dev,
2629		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2630		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2631		desc->wMaxPacketSize, desc->bInterval);
2632
2633	/* not to be called for EP0 */
2634	WARN_ON(index == 0);
2635
2636	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2637	if (dir_in != hs_ep->dir_in) {
2638		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2639		return -EINVAL;
2640	}
2641
2642	mps = usb_endpoint_maxp(desc);
2643
2644	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
2645
2646	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2647	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2648
2649	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2650		__func__, epctrl, epctrl_reg);
2651
2652	spin_lock_irqsave(&hsotg->lock, flags);
2653
2654	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
2655	epctrl |= DXEPCTL_MPS(mps);
2656
2657	/*
2658	 * mark the endpoint as active, otherwise the core may ignore
2659	 * transactions entirely for this endpoint
2660	 */
2661	epctrl |= DXEPCTL_USBACTEP;
2662
2663	/*
2664	 * set the NAK status on the endpoint, otherwise we might try and
2665	 * do something with data that we've yet got a request to process
2666	 * since the RXFIFO will take data for an endpoint even if the
2667	 * size register hasn't been set.
2668	 */
2669
2670	epctrl |= DXEPCTL_SNAK;
2671
2672	/* update the endpoint state */
2673	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2674
2675	/* default, set to non-periodic */
2676	hs_ep->isochronous = 0;
2677	hs_ep->periodic = 0;
2678	hs_ep->halted = 0;
2679	hs_ep->interval = desc->bInterval;
2680	hs_ep->has_correct_parity = 0;
2681
2682	if (hs_ep->interval > 1 && hs_ep->mc > 1)
2683		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2684
2685	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2686	case USB_ENDPOINT_XFER_ISOC:
2687		epctrl |= DXEPCTL_EPTYPE_ISO;
2688		epctrl |= DXEPCTL_SETEVENFR;
2689		hs_ep->isochronous = 1;
2690		if (dir_in)
2691			hs_ep->periodic = 1;
2692		break;
2693
2694	case USB_ENDPOINT_XFER_BULK:
2695		epctrl |= DXEPCTL_EPTYPE_BULK;
2696		break;
2697
2698	case USB_ENDPOINT_XFER_INT:
2699		if (dir_in)
2700			hs_ep->periodic = 1;
2701
2702		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2703		break;
2704
2705	case USB_ENDPOINT_XFER_CONTROL:
2706		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2707		break;
2708	}
2709
2710	/* If fifo is already allocated for this ep */
2711	if (hs_ep->fifo_index) {
2712		size =  hs_ep->ep.maxpacket * hs_ep->mc;
2713		/* If bigger fifo is required deallocate current one */
2714		if (size > hs_ep->fifo_size) {
2715			hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
2716			hs_ep->fifo_index = 0;
2717			hs_ep->fifo_size = 0;
2718		}
2719	}
2720
2721	/*
2722	 * if the hardware has dedicated fifos, we must give each IN EP
2723	 * a unique tx-fifo even if it is non-periodic.
2724	 */
2725	if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2726		u32 fifo_index = 0;
2727		u32 fifo_size = UINT_MAX;
2728		size = hs_ep->ep.maxpacket*hs_ep->mc;
2729		for (i = 1; i < hsotg->num_of_eps; ++i) {
2730			if (hsotg->fifo_map & (1<<i))
2731				continue;
2732			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
2733			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
2734			if (val < size)
2735				continue;
2736			/* Search for smallest acceptable fifo */
2737			if (val < fifo_size) {
2738				fifo_size = val;
2739				fifo_index = i;
2740			}
2741		}
2742		if (!fifo_index) {
2743			dev_err(hsotg->dev,
2744				"%s: No suitable fifo found\n", __func__);
2745			ret = -ENOMEM;
2746			goto error;
2747		}
2748		hsotg->fifo_map |= 1 << fifo_index;
2749		epctrl |= DXEPCTL_TXFNUM(fifo_index);
2750		hs_ep->fifo_index = fifo_index;
2751		hs_ep->fifo_size = fifo_size;
2752	}
2753
2754	/* for non control endpoints, set PID to D0 */
2755	if (index)
2756		epctrl |= DXEPCTL_SETD0PID;
2757
2758	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2759		__func__, epctrl);
2760
2761	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
2762	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2763		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
2764
2765	/* enable the endpoint interrupt */
2766	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2767
2768error:
2769	spin_unlock_irqrestore(&hsotg->lock, flags);
2770	return ret;
2771}
2772
2773/**
2774 * dwc2_hsotg_ep_disable - disable given endpoint
2775 * @ep: The endpoint to disable.
2776 */
2777static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
2778{
2779	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2780	struct dwc2_hsotg *hsotg = hs_ep->parent;
2781	int dir_in = hs_ep->dir_in;
2782	int index = hs_ep->index;
2783	unsigned long flags;
2784	u32 epctrl_reg;
2785	u32 ctrl;
2786
2787	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2788
2789	if (ep == &hsotg->eps_out[0]->ep) {
2790		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2791		return -EINVAL;
2792	}
2793
2794	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2795
2796	spin_lock_irqsave(&hsotg->lock, flags);
2797
2798	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
2799	hs_ep->fifo_index = 0;
2800	hs_ep->fifo_size = 0;
2801
2802	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2803	ctrl &= ~DXEPCTL_EPENA;
2804	ctrl &= ~DXEPCTL_USBACTEP;
2805	ctrl |= DXEPCTL_SNAK;
2806
2807	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2808	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
2809
2810	/* disable endpoint interrupts */
2811	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2812
2813	/* terminate all requests with shutdown */
2814	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
2815
2816	spin_unlock_irqrestore(&hsotg->lock, flags);
2817	return 0;
2818}
2819
2820/**
2821 * on_list - check request is on the given endpoint
2822 * @ep: The endpoint to check.
2823 * @test: The request to test if it is on the endpoint.
2824 */
2825static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
2826{
2827	struct dwc2_hsotg_req *req, *treq;
2828
2829	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2830		if (req == test)
2831			return true;
2832	}
2833
2834	return false;
2835}
2836
2837static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
2838							u32 bit, u32 timeout)
2839{
2840	u32 i;
2841
2842	for (i = 0; i < timeout; i++) {
2843		if (dwc2_readl(hs_otg->regs + reg) & bit)
2844			return 0;
2845		udelay(1);
2846	}
2847
2848	return -ETIMEDOUT;
2849}
2850
2851static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2852						struct dwc2_hsotg_ep *hs_ep)
2853{
2854	u32 epctrl_reg;
2855	u32 epint_reg;
2856
2857	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
2858		DOEPCTL(hs_ep->index);
2859	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
2860		DOEPINT(hs_ep->index);
2861
2862	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
2863			hs_ep->name);
2864	if (hs_ep->dir_in) {
2865		__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
2866		/* Wait for Nak effect */
2867		if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
2868						DXEPINT_INEPNAKEFF, 100))
2869			dev_warn(hsotg->dev,
2870				"%s: timeout DIEPINT.NAKEFF\n", __func__);
2871	} else {
2872		/* Clear any pending nak effect interrupt */
2873		dwc2_writel(GINTSTS_GOUTNAKEFF, hsotg->regs + GINTSTS);
2874
2875		__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
2876
2877		/* Wait for global nak to take effect */
2878		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
2879						GINTSTS_GOUTNAKEFF, 100))
2880			dev_warn(hsotg->dev,
2881				"%s: timeout GINTSTS.GOUTNAKEFF\n", __func__);
2882	}
2883
2884	/* Disable ep */
2885	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
2886
2887	/* Wait for ep to be disabled */
2888	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
2889		dev_warn(hsotg->dev,
2890			"%s: timeout DOEPCTL.EPDisable\n", __func__);
2891
2892	if (hs_ep->dir_in) {
2893		if (hsotg->dedicated_fifos) {
2894			dwc2_writel(GRSTCTL_TXFNUM(hs_ep->fifo_index) |
2895				GRSTCTL_TXFFLSH, hsotg->regs + GRSTCTL);
2896			/* Wait for fifo flush */
2897			if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
2898							GRSTCTL_TXFFLSH, 100))
2899				dev_warn(hsotg->dev,
2900					"%s: timeout flushing fifos\n",
2901					__func__);
2902		}
2903		/* TODO: Flush shared tx fifo */
2904	} else {
2905		/* Remove global NAKs */
2906		__bic32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
2907	}
2908}
2909
2910/**
2911 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
2912 * @ep: The endpoint to dequeue.
2913 * @req: The request to be removed from a queue.
2914 */
2915static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2916{
2917	struct dwc2_hsotg_req *hs_req = our_req(req);
2918	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2919	struct dwc2_hsotg *hs = hs_ep->parent;
2920	unsigned long flags;
2921
2922	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2923
2924	spin_lock_irqsave(&hs->lock, flags);
2925
2926	if (!on_list(hs_ep, hs_req)) {
2927		spin_unlock_irqrestore(&hs->lock, flags);
2928		return -EINVAL;
2929	}
2930
2931	/* Dequeue already started request */
2932	if (req == &hs_ep->req->req)
2933		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
2934
2935	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2936	spin_unlock_irqrestore(&hs->lock, flags);
2937
2938	return 0;
2939}
2940
2941/**
2942 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
2943 * @ep: The endpoint to set halt.
2944 * @value: Set or unset the halt.
2945 */
2946static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2947{
2948	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2949	struct dwc2_hsotg *hs = hs_ep->parent;
2950	int index = hs_ep->index;
2951	u32 epreg;
2952	u32 epctl;
2953	u32 xfertype;
2954
2955	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2956
2957	if (index == 0) {
2958		if (value)
2959			dwc2_hsotg_stall_ep0(hs);
2960		else
2961			dev_warn(hs->dev,
2962				 "%s: can't clear halt on ep0\n", __func__);
2963		return 0;
2964	}
2965
2966	if (hs_ep->dir_in) {
2967		epreg = DIEPCTL(index);
2968		epctl = dwc2_readl(hs->regs + epreg);
2969
2970		if (value) {
2971			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
2972			if (epctl & DXEPCTL_EPENA)
2973				epctl |= DXEPCTL_EPDIS;
2974		} else {
2975			epctl &= ~DXEPCTL_STALL;
2976			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2977			if (xfertype == DXEPCTL_EPTYPE_BULK ||
2978				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2979					epctl |= DXEPCTL_SETD0PID;
2980		}
2981		dwc2_writel(epctl, hs->regs + epreg);
2982	} else {
2983
2984		epreg = DOEPCTL(index);
2985		epctl = dwc2_readl(hs->regs + epreg);
2986
2987		if (value)
2988			epctl |= DXEPCTL_STALL;
2989		else {
2990			epctl &= ~DXEPCTL_STALL;
2991			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2992			if (xfertype == DXEPCTL_EPTYPE_BULK ||
2993				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2994					epctl |= DXEPCTL_SETD0PID;
2995		}
2996		dwc2_writel(epctl, hs->regs + epreg);
2997	}
2998
2999	hs_ep->halted = value;
3000
3001	return 0;
3002}
3003
3004/**
3005 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
3006 * @ep: The endpoint to set halt.
3007 * @value: Set or unset the halt.
3008 */
3009static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
3010{
3011	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3012	struct dwc2_hsotg *hs = hs_ep->parent;
3013	unsigned long flags = 0;
3014	int ret = 0;
3015
3016	spin_lock_irqsave(&hs->lock, flags);
3017	ret = dwc2_hsotg_ep_sethalt(ep, value);
3018	spin_unlock_irqrestore(&hs->lock, flags);
3019
3020	return ret;
3021}
3022
3023static struct usb_ep_ops dwc2_hsotg_ep_ops = {
3024	.enable		= dwc2_hsotg_ep_enable,
3025	.disable	= dwc2_hsotg_ep_disable,
3026	.alloc_request	= dwc2_hsotg_ep_alloc_request,
3027	.free_request	= dwc2_hsotg_ep_free_request,
3028	.queue		= dwc2_hsotg_ep_queue_lock,
3029	.dequeue	= dwc2_hsotg_ep_dequeue,
3030	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
3031	/* note, don't believe we have any call for the fifo routines */
3032};
3033
3034/**
3035 * dwc2_hsotg_init - initalize the usb core
3036 * @hsotg: The driver state
3037 */
3038static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
3039{
3040	u32 trdtim;
3041	u32 usbcfg;
3042	/* unmask subset of endpoint interrupts */
3043
3044	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
3045		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
3046		    hsotg->regs + DIEPMSK);
3047
3048	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
3049		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
3050		    hsotg->regs + DOEPMSK);
3051
3052	dwc2_writel(0, hsotg->regs + DAINTMSK);
3053
3054	/* Be in disconnected state until gadget is registered */
3055	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3056
3057	/* setup fifos */
3058
3059	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3060		dwc2_readl(hsotg->regs + GRXFSIZ),
3061		dwc2_readl(hsotg->regs + GNPTXFSIZ));
3062
3063	dwc2_hsotg_init_fifo(hsotg);
3064
3065	/* keep other bits untouched (so e.g. forced modes are not lost) */
3066	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3067	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3068		GUSBCFG_HNPCAP);
3069
3070	/* set the PLL on, remove the HNP/SRP and set the PHY */
3071	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3072	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3073		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
3074	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3075
3076	if (using_dma(hsotg))
3077		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3078}
3079
3080/**
3081 * dwc2_hsotg_udc_start - prepare the udc for work
3082 * @gadget: The usb gadget state
3083 * @driver: The usb gadget driver
3084 *
3085 * Perform initialization to prepare udc device and driver
3086 * to work.
3087 */
3088static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
3089			   struct usb_gadget_driver *driver)
3090{
3091	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3092	unsigned long flags;
3093	int ret;
3094
3095	if (!hsotg) {
3096		pr_err("%s: called with no device\n", __func__);
3097		return -ENODEV;
3098	}
3099
3100	if (!driver) {
3101		dev_err(hsotg->dev, "%s: no driver\n", __func__);
3102		return -EINVAL;
3103	}
3104
3105	if (driver->max_speed < USB_SPEED_FULL)
3106		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
3107
3108	if (!driver->setup) {
3109		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
3110		return -EINVAL;
3111	}
3112
3113	WARN_ON(hsotg->driver);
3114
3115	driver->driver.bus = NULL;
3116	hsotg->driver = driver;
3117	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3118	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3119
3120	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
3121		ret = dwc2_lowlevel_hw_enable(hsotg);
3122		if (ret)
3123			goto err;
3124	}
3125
3126	if (!IS_ERR_OR_NULL(hsotg->uphy))
3127		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3128
3129	spin_lock_irqsave(&hsotg->lock, flags);
3130	dwc2_hsotg_init(hsotg);
3131	dwc2_hsotg_core_init_disconnected(hsotg, false);
3132	hsotg->enabled = 0;
3133	spin_unlock_irqrestore(&hsotg->lock, flags);
3134
3135	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3136
3137	return 0;
3138
3139err:
3140	hsotg->driver = NULL;
3141	return ret;
3142}
3143
3144/**
3145 * dwc2_hsotg_udc_stop - stop the udc
3146 * @gadget: The usb gadget state
3147 * @driver: The usb gadget driver
3148 *
3149 * Stop udc hw block and stay tunned for future transmissions
3150 */
3151static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
3152{
3153	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3154	unsigned long flags = 0;
3155	int ep;
3156
3157	if (!hsotg)
3158		return -ENODEV;
3159
3160	/* all endpoints should be shutdown */
3161	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3162		if (hsotg->eps_in[ep])
3163			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3164		if (hsotg->eps_out[ep])
3165			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3166	}
3167
3168	spin_lock_irqsave(&hsotg->lock, flags);
3169
3170	hsotg->driver = NULL;
3171	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3172	hsotg->enabled = 0;
3173
3174	spin_unlock_irqrestore(&hsotg->lock, flags);
3175
3176	if (!IS_ERR_OR_NULL(hsotg->uphy))
3177		otg_set_peripheral(hsotg->uphy->otg, NULL);
3178
3179	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
3180		dwc2_lowlevel_hw_disable(hsotg);
3181
3182	return 0;
3183}
3184
3185/**
3186 * dwc2_hsotg_gadget_getframe - read the frame number
3187 * @gadget: The usb gadget state
3188 *
3189 * Read the {micro} frame number
3190 */
3191static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
3192{
3193	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
3194}
3195
3196/**
3197 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
3198 * @gadget: The usb gadget state
3199 * @is_on: Current state of the USB PHY
3200 *
3201 * Connect/Disconnect the USB PHY pullup
3202 */
3203static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3204{
3205	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3206	unsigned long flags = 0;
3207
3208	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
3209			hsotg->op_state);
3210
3211	/* Don't modify pullup state while in host mode */
3212	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
3213		hsotg->enabled = is_on;
3214		return 0;
3215	}
3216
3217	spin_lock_irqsave(&hsotg->lock, flags);
3218	if (is_on) {
3219		hsotg->enabled = 1;
3220		dwc2_hsotg_core_init_disconnected(hsotg, false);
3221		dwc2_hsotg_core_connect(hsotg);
3222	} else {
3223		dwc2_hsotg_core_disconnect(hsotg);
3224		dwc2_hsotg_disconnect(hsotg);
3225		hsotg->enabled = 0;
3226	}
3227
3228	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3229	spin_unlock_irqrestore(&hsotg->lock, flags);
3230
3231	return 0;
3232}
3233
3234static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3235{
3236	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3237	unsigned long flags;
3238
3239	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
3240	spin_lock_irqsave(&hsotg->lock, flags);
3241
3242	/*
3243	 * If controller is hibernated, it must exit from hibernation
3244	 * before being initialized / de-initialized
3245	 */
3246	if (hsotg->lx_state == DWC2_L2)
3247		dwc2_exit_hibernation(hsotg, false);
3248
3249	if (is_active) {
3250		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3251
3252		dwc2_hsotg_core_init_disconnected(hsotg, false);
3253		if (hsotg->enabled)
3254			dwc2_hsotg_core_connect(hsotg);
3255	} else {
3256		dwc2_hsotg_core_disconnect(hsotg);
3257		dwc2_hsotg_disconnect(hsotg);
3258	}
3259
3260	spin_unlock_irqrestore(&hsotg->lock, flags);
3261	return 0;
3262}
3263
3264/**
3265 * dwc2_hsotg_vbus_draw - report bMaxPower field
3266 * @gadget: The usb gadget state
3267 * @mA: Amount of current
3268 *
3269 * Report how much power the device may consume to the phy.
3270 */
3271static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3272{
3273	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3274
3275	if (IS_ERR_OR_NULL(hsotg->uphy))
3276		return -ENOTSUPP;
3277	return usb_phy_set_power(hsotg->uphy, mA);
3278}
3279
3280static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
3281	.get_frame	= dwc2_hsotg_gadget_getframe,
3282	.udc_start		= dwc2_hsotg_udc_start,
3283	.udc_stop		= dwc2_hsotg_udc_stop,
3284	.pullup                 = dwc2_hsotg_pullup,
3285	.vbus_session		= dwc2_hsotg_vbus_session,
3286	.vbus_draw		= dwc2_hsotg_vbus_draw,
3287};
3288
3289/**
3290 * dwc2_hsotg_initep - initialise a single endpoint
3291 * @hsotg: The device state.
3292 * @hs_ep: The endpoint to be initialised.
3293 * @epnum: The endpoint number
3294 *
3295 * Initialise the given endpoint (as part of the probe and device state
3296 * creation) to give to the gadget driver. Setup the endpoint name, any
3297 * direction information and other state that may be required.
3298 */
3299static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
3300				       struct dwc2_hsotg_ep *hs_ep,
3301				       int epnum,
3302				       bool dir_in)
3303{
3304	char *dir;
3305
3306	if (epnum == 0)
3307		dir = "";
3308	else if (dir_in)
3309		dir = "in";
3310	else
3311		dir = "out";
3312
3313	hs_ep->dir_in = dir_in;
3314	hs_ep->index = epnum;
3315
3316	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3317
3318	INIT_LIST_HEAD(&hs_ep->queue);
3319	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3320
3321	/* add to the list of endpoints known by the gadget driver */
3322	if (epnum)
3323		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3324
3325	hs_ep->parent = hsotg;
3326	hs_ep->ep.name = hs_ep->name;
3327	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3328	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
3329
3330	if (epnum == 0) {
3331		hs_ep->ep.caps.type_control = true;
3332	} else {
3333		hs_ep->ep.caps.type_iso = true;
3334		hs_ep->ep.caps.type_bulk = true;
3335		hs_ep->ep.caps.type_int = true;
3336	}
3337
3338	if (dir_in)
3339		hs_ep->ep.caps.dir_in = true;
3340	else
3341		hs_ep->ep.caps.dir_out = true;
3342
3343	/*
3344	 * if we're using dma, we need to set the next-endpoint pointer
3345	 * to be something valid.
3346	 */
3347
3348	if (using_dma(hsotg)) {
3349		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3350		if (dir_in)
3351			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
3352		else
3353			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
3354	}
3355}
3356
3357/**
3358 * dwc2_hsotg_hw_cfg - read HW configuration registers
3359 * @param: The device state
3360 *
3361 * Read the USB core HW configuration registers
3362 */
3363static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3364{
3365	u32 cfg;
3366	u32 ep_type;
3367	u32 i;
3368
3369	/* check hardware configuration */
3370
3371	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
3372
3373	/* Add ep0 */
3374	hsotg->num_of_eps++;
3375
3376	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
3377								GFP_KERNEL);
3378	if (!hsotg->eps_in[0])
3379		return -ENOMEM;
3380	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
3381	hsotg->eps_out[0] = hsotg->eps_in[0];
3382
3383	cfg = hsotg->hw_params.dev_ep_dirs;
3384	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3385		ep_type = cfg & 3;
3386		/* Direction in or both */
3387		if (!(ep_type & 2)) {
3388			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3389				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3390			if (!hsotg->eps_in[i])
3391				return -ENOMEM;
3392		}
3393		/* Direction out or both */
3394		if (!(ep_type & 1)) {
3395			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3396				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3397			if (!hsotg->eps_out[i])
3398				return -ENOMEM;
3399		}
3400	}
3401
3402	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
3403	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
3404
3405	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
3406		 hsotg->num_of_eps,
3407		 hsotg->dedicated_fifos ? "dedicated" : "shared",
3408		 hsotg->fifo_mem);
3409	return 0;
3410}
3411
3412/**
3413 * dwc2_hsotg_dump - dump state of the udc
3414 * @param: The device state
3415 */
3416static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
3417{
3418#ifdef DEBUG
3419	struct device *dev = hsotg->dev;
3420	void __iomem *regs = hsotg->regs;
3421	u32 val;
3422	int idx;
3423
3424	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3425		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
3426		 dwc2_readl(regs + DIEPMSK));
3427
3428	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3429		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
3430
3431	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3432		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
3433
3434	/* show periodic fifo settings */
3435
3436	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3437		val = dwc2_readl(regs + DPTXFSIZN(idx));
3438		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3439			 val >> FIFOSIZE_DEPTH_SHIFT,
3440			 val & FIFOSIZE_STARTADDR_MASK);
3441	}
3442
3443	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3444		dev_info(dev,
3445			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3446			 dwc2_readl(regs + DIEPCTL(idx)),
3447			 dwc2_readl(regs + DIEPTSIZ(idx)),
3448			 dwc2_readl(regs + DIEPDMA(idx)));
3449
3450		val = dwc2_readl(regs + DOEPCTL(idx));
3451		dev_info(dev,
3452			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3453			 idx, dwc2_readl(regs + DOEPCTL(idx)),
3454			 dwc2_readl(regs + DOEPTSIZ(idx)),
3455			 dwc2_readl(regs + DOEPDMA(idx)));
3456
3457	}
3458
3459	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3460		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
3461#endif
3462}
3463
3464#ifdef CONFIG_OF
3465static void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg)
3466{
3467	struct device_node *np = hsotg->dev->of_node;
3468	u32 len = 0;
3469	u32 i = 0;
3470
3471	/* Enable dma if requested in device tree */
3472	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3473
3474	/*
3475	* Register TX periodic fifo size per endpoint.
3476	* EP0 is excluded since it has no fifo configuration.
3477	*/
3478	if (!of_find_property(np, "g-tx-fifo-size", &len))
3479		goto rx_fifo;
3480
3481	len /= sizeof(u32);
3482
3483	/* Read tx fifo sizes other than ep0 */
3484	if (of_property_read_u32_array(np, "g-tx-fifo-size",
3485						&hsotg->g_tx_fifo_sz[1], len))
3486		goto rx_fifo;
3487
3488	/* Add ep0 */
3489	len++;
3490
3491	/* Make remaining TX fifos unavailable */
3492	if (len < MAX_EPS_CHANNELS) {
3493		for (i = len; i < MAX_EPS_CHANNELS; i++)
3494			hsotg->g_tx_fifo_sz[i] = 0;
3495	}
3496
3497rx_fifo:
3498	/* Register RX fifo size */
3499	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);
3500
3501	/* Register NPTX fifo size */
3502	of_property_read_u32(np, "g-np-tx-fifo-size",
3503						&hsotg->g_np_g_tx_fifo_sz);
3504}
3505#else
3506static inline void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
3507#endif
3508
3509/**
3510 * dwc2_gadget_init - init function for gadget
3511 * @dwc2: The data structure for the DWC2 driver.
3512 * @irq: The IRQ number for the controller.
3513 */
3514int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3515{
3516	struct device *dev = hsotg->dev;
3517	int epnum;
3518	int ret;
3519	int i;
3520	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3521
3522	/* Initialize to legacy fifo configuration values */
3523	hsotg->g_rx_fifo_sz = 2048;
3524	hsotg->g_np_g_tx_fifo_sz = 1024;
3525	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
3526	/* Device tree specific probe */
3527	dwc2_hsotg_of_probe(hsotg);
3528
3529	/* Check against largest possible value. */
3530	if (hsotg->g_np_g_tx_fifo_sz >
3531	    hsotg->hw_params.dev_nperio_tx_fifo_size) {
3532		dev_warn(dev, "Specified GNPTXFDEP=%d > %d\n",
3533			 hsotg->g_np_g_tx_fifo_sz,
3534			 hsotg->hw_params.dev_nperio_tx_fifo_size);
3535		hsotg->g_np_g_tx_fifo_sz =
3536			hsotg->hw_params.dev_nperio_tx_fifo_size;
3537	}
3538
3539	/* Dump fifo information */
3540	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
3541						hsotg->g_np_g_tx_fifo_sz);
3542	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
3543	for (i = 0; i < MAX_EPS_CHANNELS; i++)
3544		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
3545						hsotg->g_tx_fifo_sz[i]);
3546
3547	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3548	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
3549	hsotg->gadget.name = dev_name(dev);
3550	if (hsotg->dr_mode == USB_DR_MODE_OTG)
3551		hsotg->gadget.is_otg = 1;
3552	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
3553		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3554
3555	ret = dwc2_hsotg_hw_cfg(hsotg);
3556	if (ret) {
3557		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3558		return ret;
3559	}
3560
3561	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
3562			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3563	if (!hsotg->ctrl_buff) {
3564		dev_err(dev, "failed to allocate ctrl request buff\n");
3565		return -ENOMEM;
3566	}
3567
3568	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
3569			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3570	if (!hsotg->ep0_buff) {
3571		dev_err(dev, "failed to allocate ctrl reply buff\n");
3572		return -ENOMEM;
3573	}
3574
3575	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
3576				dev_name(hsotg->dev), hsotg);
3577	if (ret < 0) {
3578		dev_err(dev, "cannot claim IRQ for gadget\n");
3579		return ret;
3580	}
3581
3582	/* hsotg->num_of_eps holds number of EPs other than ep0 */
3583
3584	if (hsotg->num_of_eps == 0) {
3585		dev_err(dev, "wrong number of EPs (zero)\n");
3586		return -EINVAL;
3587	}
3588
3589	/* setup endpoint information */
3590
3591	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3592	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3593
3594	/* allocate EP0 request */
3595
3596	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3597						     GFP_KERNEL);
3598	if (!hsotg->ctrl_req) {
3599		dev_err(dev, "failed to allocate ctrl req\n");
3600		return -ENOMEM;
3601	}
3602
3603	/* initialise the endpoints now the core has been initialised */
3604	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
3605		if (hsotg->eps_in[epnum])
3606			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
3607								epnum, 1);
3608		if (hsotg->eps_out[epnum])
3609			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
3610								epnum, 0);
3611	}
3612
3613	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3614	if (ret)
3615		return ret;
3616
3617	dwc2_hsotg_dump(hsotg);
3618
3619	return 0;
3620}
3621
3622/**
3623 * dwc2_hsotg_remove - remove function for hsotg driver
3624 * @pdev: The platform information for the driver
3625 */
3626int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
3627{
3628	usb_del_gadget_udc(&hsotg->gadget);
3629
3630	return 0;
3631}
3632
3633int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
3634{
3635	unsigned long flags;
3636
3637	if (hsotg->lx_state != DWC2_L0)
3638		return 0;
3639
3640	if (hsotg->driver) {
3641		int ep;
3642
3643		dev_info(hsotg->dev, "suspending usb gadget %s\n",
3644			 hsotg->driver->driver.name);
3645
3646		spin_lock_irqsave(&hsotg->lock, flags);
3647		if (hsotg->enabled)
3648			dwc2_hsotg_core_disconnect(hsotg);
3649		dwc2_hsotg_disconnect(hsotg);
3650		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3651		spin_unlock_irqrestore(&hsotg->lock, flags);
3652
3653		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3654			if (hsotg->eps_in[ep])
3655				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3656			if (hsotg->eps_out[ep])
3657				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3658		}
3659	}
3660
3661	return 0;
3662}
3663
3664int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
3665{
3666	unsigned long flags;
3667
3668	if (hsotg->lx_state == DWC2_L2)
3669		return 0;
3670
3671	if (hsotg->driver) {
3672		dev_info(hsotg->dev, "resuming usb gadget %s\n",
3673			 hsotg->driver->driver.name);
3674
3675		spin_lock_irqsave(&hsotg->lock, flags);
3676		dwc2_hsotg_core_init_disconnected(hsotg, false);
3677		if (hsotg->enabled)
3678			dwc2_hsotg_core_connect(hsotg);
3679		spin_unlock_irqrestore(&hsotg->lock, flags);
3680	}
3681
3682	return 0;
3683}
3684
3685/**
3686 * dwc2_backup_device_registers() - Backup controller device registers.
3687 * When suspending usb bus, registers needs to be backuped
3688 * if controller power is disabled once suspended.
3689 *
3690 * @hsotg: Programming view of the DWC_otg controller
3691 */
3692int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
3693{
3694	struct dwc2_dregs_backup *dr;
3695	int i;
3696
3697	dev_dbg(hsotg->dev, "%s\n", __func__);
3698
3699	/* Backup dev regs */
3700	dr = &hsotg->dr_backup;
3701
3702	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
3703	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
3704	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3705	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
3706	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
3707
3708	for (i = 0; i < hsotg->num_of_eps; i++) {
3709		/* Backup IN EPs */
3710		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
3711
3712		/* Ensure DATA PID is correctly configured */
3713		if (dr->diepctl[i] & DXEPCTL_DPID)
3714			dr->diepctl[i] |= DXEPCTL_SETD1PID;
3715		else
3716			dr->diepctl[i] |= DXEPCTL_SETD0PID;
3717
3718		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
3719		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
3720
3721		/* Backup OUT EPs */
3722		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
3723
3724		/* Ensure DATA PID is correctly configured */
3725		if (dr->doepctl[i] & DXEPCTL_DPID)
3726			dr->doepctl[i] |= DXEPCTL_SETD1PID;
3727		else
3728			dr->doepctl[i] |= DXEPCTL_SETD0PID;
3729
3730		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
3731		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
3732	}
3733	dr->valid = true;
3734	return 0;
3735}
3736
3737/**
3738 * dwc2_restore_device_registers() - Restore controller device registers.
3739 * When resuming usb bus, device registers needs to be restored
3740 * if controller power were disabled.
3741 *
3742 * @hsotg: Programming view of the DWC_otg controller
3743 */
3744int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
3745{
3746	struct dwc2_dregs_backup *dr;
3747	u32 dctl;
3748	int i;
3749
3750	dev_dbg(hsotg->dev, "%s\n", __func__);
3751
3752	/* Restore dev regs */
3753	dr = &hsotg->dr_backup;
3754	if (!dr->valid) {
3755		dev_err(hsotg->dev, "%s: no device registers to restore\n",
3756			__func__);
3757		return -EINVAL;
3758	}
3759	dr->valid = false;
3760
3761	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
3762	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
3763	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
3764	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
3765	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
3766
3767	for (i = 0; i < hsotg->num_of_eps; i++) {
3768		/* Restore IN EPs */
3769		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
3770		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
3771		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
3772
3773		/* Restore OUT EPs */
3774		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
3775		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
3776		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
3777	}
3778
3779	/* Set the Power-On Programming done bit */
3780	dctl = dwc2_readl(hsotg->regs + DCTL);
3781	dctl |= DCTL_PWRONPRGDONE;
3782	dwc2_writel(dctl, hsotg->regs + DCTL);
3783
3784	return 0;
3785}