Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * This code is derived from the VIA reference driver (copyright message
   3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
   4 * addition to the Linux kernel.
   5 *
   6 * The code has been merged into one source file, cleaned up to follow
   7 * Linux coding style,  ported to the Linux 2.6 kernel tree and cleaned
   8 * for 64bit hardware platforms.
   9 *
  10 * TODO
  11 *	rx_copybreak/alignment
  12 *	More testing
  13 *
  14 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
  15 * Additional fixes and clean up: Francois Romieu
  16 *
  17 * This source has not been verified for use in safety critical systems.
  18 *
  19 * Please direct queries about the revamped driver to the linux-kernel
  20 * list not VIA.
  21 *
  22 * Original code:
  23 *
  24 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
  25 * All rights reserved.
  26 *
  27 * This software may be redistributed and/or modified under
  28 * the terms of the GNU General Public License as published by the Free
  29 * Software Foundation; either version 2 of the License, or
  30 * any later version.
  31 *
  32 * This program is distributed in the hope that it will be useful, but
  33 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  34 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  35 * for more details.
  36 *
  37 * Author: Chuang Liang-Shing, AJ Jiang
  38 *
  39 * Date: Jan 24, 2003
  40 *
  41 * MODULE_LICENSE("GPL");
  42 *
  43 */
  44
  45#include <linux/module.h>
  46#include <linux/types.h>
  47#include <linux/bitops.h>
  48#include <linux/init.h>
  49#include <linux/dma-mapping.h>
  50#include <linux/mm.h>
  51#include <linux/errno.h>
  52#include <linux/ioport.h>
  53#include <linux/pci.h>
  54#include <linux/kernel.h>
  55#include <linux/netdevice.h>
  56#include <linux/etherdevice.h>
  57#include <linux/skbuff.h>
  58#include <linux/delay.h>
  59#include <linux/timer.h>
  60#include <linux/slab.h>
  61#include <linux/interrupt.h>
  62#include <linux/string.h>
  63#include <linux/wait.h>
  64#include <linux/io.h>
  65#include <linux/if.h>
  66#include <linux/uaccess.h>
  67#include <linux/proc_fs.h>
  68#include <linux/of_address.h>
  69#include <linux/of_device.h>
  70#include <linux/of_irq.h>
  71#include <linux/inetdevice.h>
  72#include <linux/platform_device.h>
  73#include <linux/reboot.h>
  74#include <linux/ethtool.h>
  75#include <linux/mii.h>
  76#include <linux/in.h>
  77#include <linux/if_arp.h>
  78#include <linux/if_vlan.h>
  79#include <linux/ip.h>
  80#include <linux/tcp.h>
  81#include <linux/udp.h>
  82#include <linux/crc-ccitt.h>
  83#include <linux/crc32.h>
  84
  85#include "via-velocity.h"
  86
  87enum velocity_bus_type {
  88	BUS_PCI,
  89	BUS_PLATFORM,
  90};
  91
  92static int velocity_nics;
  93static int msglevel = MSG_LEVEL_INFO;
  94
  95static void velocity_set_power_state(struct velocity_info *vptr, char state)
  96{
  97	void *addr = vptr->mac_regs;
  98
  99	if (vptr->pdev)
 100		pci_set_power_state(vptr->pdev, state);
 101	else
 102		writeb(state, addr + 0x154);
 103}
 104
 105/**
 106 *	mac_get_cam_mask	-	Read a CAM mask
 107 *	@regs: register block for this velocity
 108 *	@mask: buffer to store mask
 109 *
 110 *	Fetch the mask bits of the selected CAM and store them into the
 111 *	provided mask buffer.
 112 */
 113static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
 114{
 115	int i;
 116
 117	/* Select CAM mask */
 118	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
 119
 120	writeb(0, &regs->CAMADDR);
 121
 122	/* read mask */
 123	for (i = 0; i < 8; i++)
 124		*mask++ = readb(&(regs->MARCAM[i]));
 125
 126	/* disable CAMEN */
 127	writeb(0, &regs->CAMADDR);
 128
 129	/* Select mar */
 130	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
 131}
 132
 133/**
 134 *	mac_set_cam_mask	-	Set a CAM mask
 135 *	@regs: register block for this velocity
 136 *	@mask: CAM mask to load
 137 *
 138 *	Store a new mask into a CAM
 139 */
 140static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
 141{
 142	int i;
 143	/* Select CAM mask */
 144	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
 145
 146	writeb(CAMADDR_CAMEN, &regs->CAMADDR);
 147
 148	for (i = 0; i < 8; i++)
 149		writeb(*mask++, &(regs->MARCAM[i]));
 150
 151	/* disable CAMEN */
 152	writeb(0, &regs->CAMADDR);
 153
 154	/* Select mar */
 155	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
 156}
 157
 158static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
 159{
 160	int i;
 161	/* Select CAM mask */
 162	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
 163
 164	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
 165
 166	for (i = 0; i < 8; i++)
 167		writeb(*mask++, &(regs->MARCAM[i]));
 168
 169	/* disable CAMEN */
 170	writeb(0, &regs->CAMADDR);
 171
 172	/* Select mar */
 173	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
 174}
 175
 176/**
 177 *	mac_set_cam	-	set CAM data
 178 *	@regs: register block of this velocity
 179 *	@idx: Cam index
 180 *	@addr: 2 or 6 bytes of CAM data
 181 *
 182 *	Load an address or vlan tag into a CAM
 183 */
 184static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
 185{
 186	int i;
 187
 188	/* Select CAM mask */
 189	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
 190
 191	idx &= (64 - 1);
 192
 193	writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
 194
 195	for (i = 0; i < 6; i++)
 196		writeb(*addr++, &(regs->MARCAM[i]));
 197
 198	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
 199
 200	udelay(10);
 201
 202	writeb(0, &regs->CAMADDR);
 203
 204	/* Select mar */
 205	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
 206}
 207
 208static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
 209			     const u8 *addr)
 210{
 211
 212	/* Select CAM mask */
 213	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
 214
 215	idx &= (64 - 1);
 216
 217	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
 218	writew(*((u16 *) addr), &regs->MARCAM[0]);
 219
 220	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
 221
 222	udelay(10);
 223
 224	writeb(0, &regs->CAMADDR);
 225
 226	/* Select mar */
 227	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
 228}
 229
 230
 231/**
 232 *	mac_wol_reset	-	reset WOL after exiting low power
 233 *	@regs: register block of this velocity
 234 *
 235 *	Called after we drop out of wake on lan mode in order to
 236 *	reset the Wake on lan features. This function doesn't restore
 237 *	the rest of the logic from the result of sleep/wakeup
 238 */
 239static void mac_wol_reset(struct mac_regs __iomem *regs)
 240{
 241
 242	/* Turn off SWPTAG right after leaving power mode */
 243	BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
 244	/* clear sticky bits */
 245	BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
 246
 247	BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
 248	BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
 249	/* disable force PME-enable */
 250	writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
 251	/* disable power-event config bit */
 252	writew(0xFFFF, &regs->WOLCRClr);
 253	/* clear power status */
 254	writew(0xFFFF, &regs->WOLSRClr);
 255}
 256
 257static const struct ethtool_ops velocity_ethtool_ops;
 258
 259/*
 260    Define module options
 261*/
 262
 263MODULE_AUTHOR("VIA Networking Technologies, Inc.");
 264MODULE_LICENSE("GPL");
 265MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
 266
 267#define VELOCITY_PARAM(N, D) \
 268	static int N[MAX_UNITS] = OPTION_DEFAULT;\
 269	module_param_array(N, int, NULL, 0); \
 270	MODULE_PARM_DESC(N, D);
 271
 272#define RX_DESC_MIN     64
 273#define RX_DESC_MAX     255
 274#define RX_DESC_DEF     64
 275VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
 276
 277#define TX_DESC_MIN     16
 278#define TX_DESC_MAX     256
 279#define TX_DESC_DEF     64
 280VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
 281
 282#define RX_THRESH_MIN   0
 283#define RX_THRESH_MAX   3
 284#define RX_THRESH_DEF   0
 285/* rx_thresh[] is used for controlling the receive fifo threshold.
 286   0: indicate the rxfifo threshold is 128 bytes.
 287   1: indicate the rxfifo threshold is 512 bytes.
 288   2: indicate the rxfifo threshold is 1024 bytes.
 289   3: indicate the rxfifo threshold is store & forward.
 290*/
 291VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
 292
 293#define DMA_LENGTH_MIN  0
 294#define DMA_LENGTH_MAX  7
 295#define DMA_LENGTH_DEF  6
 296
 297/* DMA_length[] is used for controlling the DMA length
 298   0: 8 DWORDs
 299   1: 16 DWORDs
 300   2: 32 DWORDs
 301   3: 64 DWORDs
 302   4: 128 DWORDs
 303   5: 256 DWORDs
 304   6: SF(flush till emply)
 305   7: SF(flush till emply)
 306*/
 307VELOCITY_PARAM(DMA_length, "DMA length");
 308
 309#define IP_ALIG_DEF     0
 310/* IP_byte_align[] is used for IP header DWORD byte aligned
 311   0: indicate the IP header won't be DWORD byte aligned.(Default) .
 312   1: indicate the IP header will be DWORD byte aligned.
 313      In some environment, the IP header should be DWORD byte aligned,
 314      or the packet will be droped when we receive it. (eg: IPVS)
 315*/
 316VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
 317
 318#define FLOW_CNTL_DEF   1
 319#define FLOW_CNTL_MIN   1
 320#define FLOW_CNTL_MAX   5
 321
 322/* flow_control[] is used for setting the flow control ability of NIC.
 323   1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
 324   2: enable TX flow control.
 325   3: enable RX flow control.
 326   4: enable RX/TX flow control.
 327   5: disable
 328*/
 329VELOCITY_PARAM(flow_control, "Enable flow control ability");
 330
 331#define MED_LNK_DEF 0
 332#define MED_LNK_MIN 0
 333#define MED_LNK_MAX 5
 334/* speed_duplex[] is used for setting the speed and duplex mode of NIC.
 335   0: indicate autonegotiation for both speed and duplex mode
 336   1: indicate 100Mbps half duplex mode
 337   2: indicate 100Mbps full duplex mode
 338   3: indicate 10Mbps half duplex mode
 339   4: indicate 10Mbps full duplex mode
 340   5: indicate 1000Mbps full duplex mode
 341
 342   Note:
 343   if EEPROM have been set to the force mode, this option is ignored
 344   by driver.
 345*/
 346VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
 347
 348#define WOL_OPT_DEF     0
 349#define WOL_OPT_MIN     0
 350#define WOL_OPT_MAX     7
 351/* wol_opts[] is used for controlling wake on lan behavior.
 352   0: Wake up if recevied a magic packet. (Default)
 353   1: Wake up if link status is on/off.
 354   2: Wake up if recevied an arp packet.
 355   4: Wake up if recevied any unicast packet.
 356   Those value can be sumed up to support more than one option.
 357*/
 358VELOCITY_PARAM(wol_opts, "Wake On Lan options");
 359
 360static int rx_copybreak = 200;
 361module_param(rx_copybreak, int, 0644);
 362MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
 363
 364/*
 365 *	Internal board variants. At the moment we have only one
 366 */
 367static struct velocity_info_tbl chip_info_table[] = {
 368	{CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
 369	{ }
 370};
 371
 372/*
 373 *	Describe the PCI device identifiers that we support in this
 374 *	device driver. Used for hotplug autoloading.
 375 */
 376
 377static const struct pci_device_id velocity_pci_id_table[] = {
 378	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
 379	{ }
 380};
 381
 382MODULE_DEVICE_TABLE(pci, velocity_pci_id_table);
 383
 384/**
 385 *	Describe the OF device identifiers that we support in this
 386 *	device driver. Used for devicetree nodes.
 387 */
 388static const struct of_device_id velocity_of_ids[] = {
 389	{ .compatible = "via,velocity-vt6110", .data = &chip_info_table[0] },
 390	{ /* Sentinel */ },
 391};
 392MODULE_DEVICE_TABLE(of, velocity_of_ids);
 393
 394/**
 395 *	get_chip_name	- 	identifier to name
 396 *	@id: chip identifier
 397 *
 398 *	Given a chip identifier return a suitable description. Returns
 399 *	a pointer a static string valid while the driver is loaded.
 400 */
 401static const char *get_chip_name(enum chip_type chip_id)
 402{
 403	int i;
 404	for (i = 0; chip_info_table[i].name != NULL; i++)
 405		if (chip_info_table[i].chip_id == chip_id)
 406			break;
 407	return chip_info_table[i].name;
 408}
 409
 410/**
 411 *	velocity_set_int_opt	-	parser for integer options
 412 *	@opt: pointer to option value
 413 *	@val: value the user requested (or -1 for default)
 414 *	@min: lowest value allowed
 415 *	@max: highest value allowed
 416 *	@def: default value
 417 *	@name: property name
 418 *	@dev: device name
 419 *
 420 *	Set an integer property in the module options. This function does
 421 *	all the verification and checking as well as reporting so that
 422 *	we don't duplicate code for each option.
 423 */
 424static void velocity_set_int_opt(int *opt, int val, int min, int max, int def,
 425				 char *name, const char *devname)
 426{
 427	if (val == -1)
 428		*opt = def;
 429	else if (val < min || val > max) {
 430		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
 431					devname, name, min, max);
 432		*opt = def;
 433	} else {
 434		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
 435					devname, name, val);
 436		*opt = val;
 437	}
 438}
 439
 440/**
 441 *	velocity_set_bool_opt	-	parser for boolean options
 442 *	@opt: pointer to option value
 443 *	@val: value the user requested (or -1 for default)
 444 *	@def: default value (yes/no)
 445 *	@flag: numeric value to set for true.
 446 *	@name: property name
 447 *	@dev: device name
 448 *
 449 *	Set a boolean property in the module options. This function does
 450 *	all the verification and checking as well as reporting so that
 451 *	we don't duplicate code for each option.
 452 */
 453static void velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag,
 454				  char *name, const char *devname)
 455{
 456	(*opt) &= (~flag);
 457	if (val == -1)
 458		*opt |= (def ? flag : 0);
 459	else if (val < 0 || val > 1) {
 460		printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
 461			devname, name);
 462		*opt |= (def ? flag : 0);
 463	} else {
 464		printk(KERN_INFO "%s: set parameter %s to %s\n",
 465			devname, name, val ? "TRUE" : "FALSE");
 466		*opt |= (val ? flag : 0);
 467	}
 468}
 469
 470/**
 471 *	velocity_get_options	-	set options on device
 472 *	@opts: option structure for the device
 473 *	@index: index of option to use in module options array
 474 *	@devname: device name
 475 *
 476 *	Turn the module and command options into a single structure
 477 *	for the current device
 478 */
 479static void velocity_get_options(struct velocity_opt *opts, int index,
 480				 const char *devname)
 481{
 482
 483	velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
 484	velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
 485	velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
 486	velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
 487
 488	velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
 489	velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
 490	velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
 491	velocity_set_int_opt(&opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
 492	opts->numrx = (opts->numrx & ~3);
 493}
 494
 495/**
 496 *	velocity_init_cam_filter	-	initialise CAM
 497 *	@vptr: velocity to program
 498 *
 499 *	Initialize the content addressable memory used for filters. Load
 500 *	appropriately according to the presence of VLAN
 501 */
 502static void velocity_init_cam_filter(struct velocity_info *vptr)
 503{
 504	struct mac_regs __iomem *regs = vptr->mac_regs;
 505	unsigned int vid, i = 0;
 506
 507	/* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
 508	WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
 509	WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
 510
 511	/* Disable all CAMs */
 512	memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
 513	memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
 514	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
 515	mac_set_cam_mask(regs, vptr->mCAMmask);
 516
 517	/* Enable VCAMs */
 518	for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) {
 519		mac_set_vlan_cam(regs, i, (u8 *) &vid);
 520		vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
 521		if (++i >= VCAM_SIZE)
 522			break;
 523	}
 524	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
 525}
 526
 527static int velocity_vlan_rx_add_vid(struct net_device *dev,
 528				    __be16 proto, u16 vid)
 529{
 530	struct velocity_info *vptr = netdev_priv(dev);
 531
 532	spin_lock_irq(&vptr->lock);
 533	set_bit(vid, vptr->active_vlans);
 534	velocity_init_cam_filter(vptr);
 535	spin_unlock_irq(&vptr->lock);
 536	return 0;
 537}
 538
 539static int velocity_vlan_rx_kill_vid(struct net_device *dev,
 540				     __be16 proto, u16 vid)
 541{
 542	struct velocity_info *vptr = netdev_priv(dev);
 543
 544	spin_lock_irq(&vptr->lock);
 545	clear_bit(vid, vptr->active_vlans);
 546	velocity_init_cam_filter(vptr);
 547	spin_unlock_irq(&vptr->lock);
 548	return 0;
 549}
 550
 551static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
 552{
 553	vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
 554}
 555
 556/**
 557 *	velocity_rx_reset	-	handle a receive reset
 558 *	@vptr: velocity we are resetting
 559 *
 560 *	Reset the ownership and status for the receive ring side.
 561 *	Hand all the receive queue to the NIC.
 562 */
 563static void velocity_rx_reset(struct velocity_info *vptr)
 564{
 565
 566	struct mac_regs __iomem *regs = vptr->mac_regs;
 567	int i;
 568
 569	velocity_init_rx_ring_indexes(vptr);
 570
 571	/*
 572	 *	Init state, all RD entries belong to the NIC
 573	 */
 574	for (i = 0; i < vptr->options.numrx; ++i)
 575		vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
 576
 577	writew(vptr->options.numrx, &regs->RBRDU);
 578	writel(vptr->rx.pool_dma, &regs->RDBaseLo);
 579	writew(0, &regs->RDIdx);
 580	writew(vptr->options.numrx - 1, &regs->RDCSize);
 581}
 582
 583/**
 584 *	velocity_get_opt_media_mode	-	get media selection
 585 *	@vptr: velocity adapter
 586 *
 587 *	Get the media mode stored in EEPROM or module options and load
 588 *	mii_status accordingly. The requested link state information
 589 *	is also returned.
 590 */
 591static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
 592{
 593	u32 status = 0;
 594
 595	switch (vptr->options.spd_dpx) {
 596	case SPD_DPX_AUTO:
 597		status = VELOCITY_AUTONEG_ENABLE;
 598		break;
 599	case SPD_DPX_100_FULL:
 600		status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
 601		break;
 602	case SPD_DPX_10_FULL:
 603		status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
 604		break;
 605	case SPD_DPX_100_HALF:
 606		status = VELOCITY_SPEED_100;
 607		break;
 608	case SPD_DPX_10_HALF:
 609		status = VELOCITY_SPEED_10;
 610		break;
 611	case SPD_DPX_1000_FULL:
 612		status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
 613		break;
 614	}
 615	vptr->mii_status = status;
 616	return status;
 617}
 618
 619/**
 620 *	safe_disable_mii_autopoll	-	autopoll off
 621 *	@regs: velocity registers
 622 *
 623 *	Turn off the autopoll and wait for it to disable on the chip
 624 */
 625static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
 626{
 627	u16 ww;
 628
 629	/*  turn off MAUTO */
 630	writeb(0, &regs->MIICR);
 631	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
 632		udelay(1);
 633		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
 634			break;
 635	}
 636}
 637
 638/**
 639 *	enable_mii_autopoll	-	turn on autopolling
 640 *	@regs: velocity registers
 641 *
 642 *	Enable the MII link status autopoll feature on the Velocity
 643 *	hardware. Wait for it to enable.
 644 */
 645static void enable_mii_autopoll(struct mac_regs __iomem *regs)
 646{
 647	int ii;
 648
 649	writeb(0, &(regs->MIICR));
 650	writeb(MIIADR_SWMPL, &regs->MIIADR);
 651
 652	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
 653		udelay(1);
 654		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
 655			break;
 656	}
 657
 658	writeb(MIICR_MAUTO, &regs->MIICR);
 659
 660	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
 661		udelay(1);
 662		if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
 663			break;
 664	}
 665
 666}
 667
 668/**
 669 *	velocity_mii_read	-	read MII data
 670 *	@regs: velocity registers
 671 *	@index: MII register index
 672 *	@data: buffer for received data
 673 *
 674 *	Perform a single read of an MII 16bit register. Returns zero
 675 *	on success or -ETIMEDOUT if the PHY did not respond.
 676 */
 677static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
 678{
 679	u16 ww;
 680
 681	/*
 682	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
 683	 */
 684	safe_disable_mii_autopoll(regs);
 685
 686	writeb(index, &regs->MIIADR);
 687
 688	BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
 689
 690	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
 691		if (!(readb(&regs->MIICR) & MIICR_RCMD))
 692			break;
 693	}
 694
 695	*data = readw(&regs->MIIDATA);
 696
 697	enable_mii_autopoll(regs);
 698	if (ww == W_MAX_TIMEOUT)
 699		return -ETIMEDOUT;
 700	return 0;
 701}
 702
 703/**
 704 *	mii_check_media_mode	-	check media state
 705 *	@regs: velocity registers
 706 *
 707 *	Check the current MII status and determine the link status
 708 *	accordingly
 709 */
 710static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
 711{
 712	u32 status = 0;
 713	u16 ANAR;
 714
 715	if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs))
 716		status |= VELOCITY_LINK_FAIL;
 717
 718	if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs))
 719		status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
 720	else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs))
 721		status |= (VELOCITY_SPEED_1000);
 722	else {
 723		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
 724		if (ANAR & ADVERTISE_100FULL)
 725			status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
 726		else if (ANAR & ADVERTISE_100HALF)
 727			status |= VELOCITY_SPEED_100;
 728		else if (ANAR & ADVERTISE_10FULL)
 729			status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
 730		else
 731			status |= (VELOCITY_SPEED_10);
 732	}
 733
 734	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
 735		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
 736		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
 737		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
 738			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
 739				status |= VELOCITY_AUTONEG_ENABLE;
 740		}
 741	}
 742
 743	return status;
 744}
 745
 746/**
 747 *	velocity_mii_write	-	write MII data
 748 *	@regs: velocity registers
 749 *	@index: MII register index
 750 *	@data: 16bit data for the MII register
 751 *
 752 *	Perform a single write to an MII 16bit register. Returns zero
 753 *	on success or -ETIMEDOUT if the PHY did not respond.
 754 */
 755static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
 756{
 757	u16 ww;
 758
 759	/*
 760	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
 761	 */
 762	safe_disable_mii_autopoll(regs);
 763
 764	/* MII reg offset */
 765	writeb(mii_addr, &regs->MIIADR);
 766	/* set MII data */
 767	writew(data, &regs->MIIDATA);
 768
 769	/* turn on MIICR_WCMD */
 770	BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
 771
 772	/* W_MAX_TIMEOUT is the timeout period */
 773	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
 774		udelay(5);
 775		if (!(readb(&regs->MIICR) & MIICR_WCMD))
 776			break;
 777	}
 778	enable_mii_autopoll(regs);
 779
 780	if (ww == W_MAX_TIMEOUT)
 781		return -ETIMEDOUT;
 782	return 0;
 783}
 784
 785/**
 786 *	set_mii_flow_control	-	flow control setup
 787 *	@vptr: velocity interface
 788 *
 789 *	Set up the flow control on this interface according to
 790 *	the supplied user/eeprom options.
 791 */
 792static void set_mii_flow_control(struct velocity_info *vptr)
 793{
 794	/*Enable or Disable PAUSE in ANAR */
 795	switch (vptr->options.flow_cntl) {
 796	case FLOW_CNTL_TX:
 797		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
 798		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
 799		break;
 800
 801	case FLOW_CNTL_RX:
 802		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
 803		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
 804		break;
 805
 806	case FLOW_CNTL_TX_RX:
 807		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
 808		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
 809		break;
 810
 811	case FLOW_CNTL_DISABLE:
 812		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
 813		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
 814		break;
 815	default:
 816		break;
 817	}
 818}
 819
 820/**
 821 *	mii_set_auto_on		-	autonegotiate on
 822 *	@vptr: velocity
 823 *
 824 *	Enable autonegotation on this interface
 825 */
 826static void mii_set_auto_on(struct velocity_info *vptr)
 827{
 828	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs))
 829		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
 830	else
 831		MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs);
 832}
 833
 834static u32 check_connection_type(struct mac_regs __iomem *regs)
 835{
 836	u32 status = 0;
 837	u8 PHYSR0;
 838	u16 ANAR;
 839	PHYSR0 = readb(&regs->PHYSR0);
 840
 841	/*
 842	   if (!(PHYSR0 & PHYSR0_LINKGD))
 843	   status|=VELOCITY_LINK_FAIL;
 844	 */
 845
 846	if (PHYSR0 & PHYSR0_FDPX)
 847		status |= VELOCITY_DUPLEX_FULL;
 848
 849	if (PHYSR0 & PHYSR0_SPDG)
 850		status |= VELOCITY_SPEED_1000;
 851	else if (PHYSR0 & PHYSR0_SPD10)
 852		status |= VELOCITY_SPEED_10;
 853	else
 854		status |= VELOCITY_SPEED_100;
 855
 856	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
 857		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
 858		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
 859		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
 860			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
 861				status |= VELOCITY_AUTONEG_ENABLE;
 862		}
 863	}
 864
 865	return status;
 866}
 867
 868/**
 869 *	velocity_set_media_mode		-	set media mode
 870 *	@mii_status: old MII link state
 871 *
 872 *	Check the media link state and configure the flow control
 873 *	PHY and also velocity hardware setup accordingly. In particular
 874 *	we need to set up CD polling and frame bursting.
 875 */
 876static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
 877{
 878	u32 curr_status;
 879	struct mac_regs __iomem *regs = vptr->mac_regs;
 880
 881	vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
 882	curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
 883
 884	/* Set mii link status */
 885	set_mii_flow_control(vptr);
 886
 887	/*
 888	   Check if new status is consistent with current status
 889	   if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) ||
 890	       (mii_status==curr_status)) {
 891	   vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
 892	   vptr->mii_status=check_connection_type(vptr->mac_regs);
 893	   VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
 894	   return 0;
 895	   }
 896	 */
 897
 898	if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
 899		MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
 900
 901	/*
 902	 *	If connection type is AUTO
 903	 */
 904	if (mii_status & VELOCITY_AUTONEG_ENABLE) {
 905		VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
 906		/* clear force MAC mode bit */
 907		BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
 908		/* set duplex mode of MAC according to duplex mode of MII */
 909		MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs);
 910		MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
 911		MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs);
 912
 913		/* enable AUTO-NEGO mode */
 914		mii_set_auto_on(vptr);
 915	} else {
 916		u16 CTRL1000;
 917		u16 ANAR;
 918		u8 CHIPGCR;
 919
 920		/*
 921		 * 1. if it's 3119, disable frame bursting in halfduplex mode
 922		 *    and enable it in fullduplex mode
 923		 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
 924		 * 3. only enable CD heart beat counter in 10HD mode
 925		 */
 926
 927		/* set force MAC mode bit */
 928		BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
 929
 930		CHIPGCR = readb(&regs->CHIPGCR);
 931
 932		if (mii_status & VELOCITY_SPEED_1000)
 933			CHIPGCR |= CHIPGCR_FCGMII;
 934		else
 935			CHIPGCR &= ~CHIPGCR_FCGMII;
 936
 937		if (mii_status & VELOCITY_DUPLEX_FULL) {
 938			CHIPGCR |= CHIPGCR_FCFDX;
 939			writeb(CHIPGCR, &regs->CHIPGCR);
 940			VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
 941			if (vptr->rev_id < REV_ID_VT3216_A0)
 942				BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
 943		} else {
 944			CHIPGCR &= ~CHIPGCR_FCFDX;
 945			VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
 946			writeb(CHIPGCR, &regs->CHIPGCR);
 947			if (vptr->rev_id < REV_ID_VT3216_A0)
 948				BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
 949		}
 950
 951		velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000);
 952		CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
 953		if ((mii_status & VELOCITY_SPEED_1000) &&
 954		    (mii_status & VELOCITY_DUPLEX_FULL)) {
 955			CTRL1000 |= ADVERTISE_1000FULL;
 956		}
 957		velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000);
 958
 959		if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
 960			BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
 961		else
 962			BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
 963
 964		/* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */
 965		velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR);
 966		ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF));
 967		if (mii_status & VELOCITY_SPEED_100) {
 968			if (mii_status & VELOCITY_DUPLEX_FULL)
 969				ANAR |= ADVERTISE_100FULL;
 970			else
 971				ANAR |= ADVERTISE_100HALF;
 972		} else if (mii_status & VELOCITY_SPEED_10) {
 973			if (mii_status & VELOCITY_DUPLEX_FULL)
 974				ANAR |= ADVERTISE_10FULL;
 975			else
 976				ANAR |= ADVERTISE_10HALF;
 977		}
 978		velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR);
 979		/* enable AUTO-NEGO mode */
 980		mii_set_auto_on(vptr);
 981		/* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */
 982	}
 983	/* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
 984	/* vptr->mii_status=check_connection_type(vptr->mac_regs); */
 985	return VELOCITY_LINK_CHANGE;
 986}
 987
 988/**
 989 *	velocity_print_link_status	-	link status reporting
 990 *	@vptr: velocity to report on
 991 *
 992 *	Turn the link status of the velocity card into a kernel log
 993 *	description of the new link state, detailing speed and duplex
 994 *	status
 995 */
 996static void velocity_print_link_status(struct velocity_info *vptr)
 997{
 998
 999	if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1000		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->netdev->name);
1001	} else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1002		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->netdev->name);
1003
1004		if (vptr->mii_status & VELOCITY_SPEED_1000)
1005			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1006		else if (vptr->mii_status & VELOCITY_SPEED_100)
1007			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1008		else
1009			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1010
1011		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1012			VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1013		else
1014			VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1015	} else {
1016		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->netdev->name);
1017		switch (vptr->options.spd_dpx) {
1018		case SPD_DPX_1000_FULL:
1019			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n");
1020			break;
1021		case SPD_DPX_100_HALF:
1022			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1023			break;
1024		case SPD_DPX_100_FULL:
1025			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1026			break;
1027		case SPD_DPX_10_HALF:
1028			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1029			break;
1030		case SPD_DPX_10_FULL:
1031			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1032			break;
1033		default:
1034			break;
1035		}
1036	}
1037}
1038
1039/**
1040 *	enable_flow_control_ability	-	flow control
1041 *	@vptr: veloity to configure
1042 *
1043 *	Set up flow control according to the flow control options
1044 *	determined by the eeprom/configuration.
1045 */
1046static void enable_flow_control_ability(struct velocity_info *vptr)
1047{
1048
1049	struct mac_regs __iomem *regs = vptr->mac_regs;
1050
1051	switch (vptr->options.flow_cntl) {
1052
1053	case FLOW_CNTL_DEFAULT:
1054		if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1055			writel(CR0_FDXRFCEN, &regs->CR0Set);
1056		else
1057			writel(CR0_FDXRFCEN, &regs->CR0Clr);
1058
1059		if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1060			writel(CR0_FDXTFCEN, &regs->CR0Set);
1061		else
1062			writel(CR0_FDXTFCEN, &regs->CR0Clr);
1063		break;
1064
1065	case FLOW_CNTL_TX:
1066		writel(CR0_FDXTFCEN, &regs->CR0Set);
1067		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1068		break;
1069
1070	case FLOW_CNTL_RX:
1071		writel(CR0_FDXRFCEN, &regs->CR0Set);
1072		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1073		break;
1074
1075	case FLOW_CNTL_TX_RX:
1076		writel(CR0_FDXTFCEN, &regs->CR0Set);
1077		writel(CR0_FDXRFCEN, &regs->CR0Set);
1078		break;
1079
1080	case FLOW_CNTL_DISABLE:
1081		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1082		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1083		break;
1084
1085	default:
1086		break;
1087	}
1088
1089}
1090
1091/**
1092 *	velocity_soft_reset	-	soft reset
1093 *	@vptr: velocity to reset
1094 *
1095 *	Kick off a soft reset of the velocity adapter and then poll
1096 *	until the reset sequence has completed before returning.
1097 */
1098static int velocity_soft_reset(struct velocity_info *vptr)
1099{
1100	struct mac_regs __iomem *regs = vptr->mac_regs;
1101	int i = 0;
1102
1103	writel(CR0_SFRST, &regs->CR0Set);
1104
1105	for (i = 0; i < W_MAX_TIMEOUT; i++) {
1106		udelay(5);
1107		if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1108			break;
1109	}
1110
1111	if (i == W_MAX_TIMEOUT) {
1112		writel(CR0_FORSRST, &regs->CR0Set);
1113		/* FIXME: PCI POSTING */
1114		/* delay 2ms */
1115		mdelay(2);
1116	}
1117	return 0;
1118}
1119
1120/**
1121 *	velocity_set_multi	-	filter list change callback
1122 *	@dev: network device
1123 *
1124 *	Called by the network layer when the filter lists need to change
1125 *	for a velocity adapter. Reload the CAMs with the new address
1126 *	filter ruleset.
1127 */
1128static void velocity_set_multi(struct net_device *dev)
1129{
1130	struct velocity_info *vptr = netdev_priv(dev);
1131	struct mac_regs __iomem *regs = vptr->mac_regs;
1132	u8 rx_mode;
1133	int i;
1134	struct netdev_hw_addr *ha;
1135
1136	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1137		writel(0xffffffff, &regs->MARCAM[0]);
1138		writel(0xffffffff, &regs->MARCAM[4]);
1139		rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1140	} else if ((netdev_mc_count(dev) > vptr->multicast_limit) ||
1141		   (dev->flags & IFF_ALLMULTI)) {
1142		writel(0xffffffff, &regs->MARCAM[0]);
1143		writel(0xffffffff, &regs->MARCAM[4]);
1144		rx_mode = (RCR_AM | RCR_AB);
1145	} else {
1146		int offset = MCAM_SIZE - vptr->multicast_limit;
1147		mac_get_cam_mask(regs, vptr->mCAMmask);
1148
1149		i = 0;
1150		netdev_for_each_mc_addr(ha, dev) {
1151			mac_set_cam(regs, i + offset, ha->addr);
1152			vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1153			i++;
1154		}
1155
1156		mac_set_cam_mask(regs, vptr->mCAMmask);
1157		rx_mode = RCR_AM | RCR_AB | RCR_AP;
1158	}
1159	if (dev->mtu > 1500)
1160		rx_mode |= RCR_AL;
1161
1162	BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1163
1164}
1165
1166/*
1167 * MII access , media link mode setting functions
1168 */
1169
1170/**
1171 *	mii_init	-	set up MII
1172 *	@vptr: velocity adapter
1173 *	@mii_status:  links tatus
1174 *
1175 *	Set up the PHY for the current link state.
1176 */
1177static void mii_init(struct velocity_info *vptr, u32 mii_status)
1178{
1179	u16 BMCR;
1180
1181	switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1182	case PHYID_ICPLUS_IP101A:
1183		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP),
1184						MII_ADVERTISE, vptr->mac_regs);
1185		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1186			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION,
1187								vptr->mac_regs);
1188		else
1189			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION,
1190								vptr->mac_regs);
1191		MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1192		break;
1193	case PHYID_CICADA_CS8201:
1194		/*
1195		 *	Reset to hardware default
1196		 */
1197		MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1198		/*
1199		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1200		 *	off it in NWay-forced half mode for NWay-forced v.s.
1201		 *	legacy-forced issue.
1202		 */
1203		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1204			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1205		else
1206			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1207		/*
1208		 *	Turn on Link/Activity LED enable bit for CIS8201
1209		 */
1210		MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1211		break;
1212	case PHYID_VT3216_32BIT:
1213	case PHYID_VT3216_64BIT:
1214		/*
1215		 *	Reset to hardware default
1216		 */
1217		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1218		/*
1219		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1220		 *	off it in NWay-forced half mode for NWay-forced v.s.
1221		 *	legacy-forced issue
1222		 */
1223		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1224			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1225		else
1226			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1227		break;
1228
1229	case PHYID_MARVELL_1000:
1230	case PHYID_MARVELL_1000S:
1231		/*
1232		 *	Assert CRS on Transmit
1233		 */
1234		MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1235		/*
1236		 *	Reset to hardware default
1237		 */
1238		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1239		break;
1240	default:
1241		;
1242	}
1243	velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR);
1244	if (BMCR & BMCR_ISOLATE) {
1245		BMCR &= ~BMCR_ISOLATE;
1246		velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR);
1247	}
1248}
1249
1250/**
1251 * setup_queue_timers	-	Setup interrupt timers
1252 *
1253 * Setup interrupt frequency during suppression (timeout if the frame
1254 * count isn't filled).
1255 */
1256static void setup_queue_timers(struct velocity_info *vptr)
1257{
1258	/* Only for newer revisions */
1259	if (vptr->rev_id >= REV_ID_VT3216_A0) {
1260		u8 txqueue_timer = 0;
1261		u8 rxqueue_timer = 0;
1262
1263		if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1264				VELOCITY_SPEED_100)) {
1265			txqueue_timer = vptr->options.txqueue_timer;
1266			rxqueue_timer = vptr->options.rxqueue_timer;
1267		}
1268
1269		writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1270		writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1271	}
1272}
1273
1274/**
1275 * setup_adaptive_interrupts  -  Setup interrupt suppression
1276 *
1277 * @vptr velocity adapter
1278 *
1279 * The velocity is able to suppress interrupt during high interrupt load.
1280 * This function turns on that feature.
1281 */
1282static void setup_adaptive_interrupts(struct velocity_info *vptr)
1283{
1284	struct mac_regs __iomem *regs = vptr->mac_regs;
1285	u16 tx_intsup = vptr->options.tx_intsup;
1286	u16 rx_intsup = vptr->options.rx_intsup;
1287
1288	/* Setup default interrupt mask (will be changed below) */
1289	vptr->int_mask = INT_MASK_DEF;
1290
1291	/* Set Tx Interrupt Suppression Threshold */
1292	writeb(CAMCR_PS0, &regs->CAMCR);
1293	if (tx_intsup != 0) {
1294		vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1295				ISR_PTX2I | ISR_PTX3I);
1296		writew(tx_intsup, &regs->ISRCTL);
1297	} else
1298		writew(ISRCTL_TSUPDIS, &regs->ISRCTL);
1299
1300	/* Set Rx Interrupt Suppression Threshold */
1301	writeb(CAMCR_PS1, &regs->CAMCR);
1302	if (rx_intsup != 0) {
1303		vptr->int_mask &= ~ISR_PRXI;
1304		writew(rx_intsup, &regs->ISRCTL);
1305	} else
1306		writew(ISRCTL_RSUPDIS, &regs->ISRCTL);
1307
1308	/* Select page to interrupt hold timer */
1309	writeb(0, &regs->CAMCR);
1310}
1311
1312/**
1313 *	velocity_init_registers	-	initialise MAC registers
1314 *	@vptr: velocity to init
1315 *	@type: type of initialisation (hot or cold)
1316 *
1317 *	Initialise the MAC on a reset or on first set up on the
1318 *	hardware.
1319 */
1320static void velocity_init_registers(struct velocity_info *vptr,
1321				    enum velocity_init_type type)
1322{
1323	struct mac_regs __iomem *regs = vptr->mac_regs;
1324	struct net_device *netdev = vptr->netdev;
1325	int i, mii_status;
1326
1327	mac_wol_reset(regs);
1328
1329	switch (type) {
1330	case VELOCITY_INIT_RESET:
1331	case VELOCITY_INIT_WOL:
1332
1333		netif_stop_queue(netdev);
1334
1335		/*
1336		 *	Reset RX to prevent RX pointer not on the 4X location
1337		 */
1338		velocity_rx_reset(vptr);
1339		mac_rx_queue_run(regs);
1340		mac_rx_queue_wake(regs);
1341
1342		mii_status = velocity_get_opt_media_mode(vptr);
1343		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1344			velocity_print_link_status(vptr);
1345			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1346				netif_wake_queue(netdev);
1347		}
1348
1349		enable_flow_control_ability(vptr);
1350
1351		mac_clear_isr(regs);
1352		writel(CR0_STOP, &regs->CR0Clr);
1353		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1354							&regs->CR0Set);
1355
1356		break;
1357
1358	case VELOCITY_INIT_COLD:
1359	default:
1360		/*
1361		 *	Do reset
1362		 */
1363		velocity_soft_reset(vptr);
1364		mdelay(5);
1365
1366		if (!vptr->no_eeprom) {
1367			mac_eeprom_reload(regs);
1368			for (i = 0; i < 6; i++)
1369				writeb(netdev->dev_addr[i], regs->PAR + i);
1370		}
1371
1372		/*
1373		 *	clear Pre_ACPI bit.
1374		 */
1375		BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1376		mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1377		mac_set_dma_length(regs, vptr->options.DMA_length);
1378
1379		writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1380		/*
1381		 *	Back off algorithm use original IEEE standard
1382		 */
1383		BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1384
1385		/*
1386		 *	Init CAM filter
1387		 */
1388		velocity_init_cam_filter(vptr);
1389
1390		/*
1391		 *	Set packet filter: Receive directed and broadcast address
1392		 */
1393		velocity_set_multi(netdev);
1394
1395		/*
1396		 *	Enable MII auto-polling
1397		 */
1398		enable_mii_autopoll(regs);
1399
1400		setup_adaptive_interrupts(vptr);
1401
1402		writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1403		writew(vptr->options.numrx - 1, &regs->RDCSize);
1404		mac_rx_queue_run(regs);
1405		mac_rx_queue_wake(regs);
1406
1407		writew(vptr->options.numtx - 1, &regs->TDCSize);
1408
1409		for (i = 0; i < vptr->tx.numq; i++) {
1410			writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1411			mac_tx_queue_run(regs, i);
1412		}
1413
1414		init_flow_control_register(vptr);
1415
1416		writel(CR0_STOP, &regs->CR0Clr);
1417		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1418
1419		mii_status = velocity_get_opt_media_mode(vptr);
1420		netif_stop_queue(netdev);
1421
1422		mii_init(vptr, mii_status);
1423
1424		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1425			velocity_print_link_status(vptr);
1426			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1427				netif_wake_queue(netdev);
1428		}
1429
1430		enable_flow_control_ability(vptr);
1431		mac_hw_mibs_init(regs);
1432		mac_write_int_mask(vptr->int_mask, regs);
1433		mac_clear_isr(regs);
1434
1435	}
1436}
1437
1438static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1439{
1440	struct mac_regs __iomem *regs = vptr->mac_regs;
1441	int avail, dirty, unusable;
1442
1443	/*
1444	 * RD number must be equal to 4X per hardware spec
1445	 * (programming guide rev 1.20, p.13)
1446	 */
1447	if (vptr->rx.filled < 4)
1448		return;
1449
1450	wmb();
1451
1452	unusable = vptr->rx.filled & 0x0003;
1453	dirty = vptr->rx.dirty - unusable;
1454	for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1455		dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1456		vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1457	}
1458
1459	writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1460	vptr->rx.filled = unusable;
1461}
1462
1463/**
1464 *	velocity_init_dma_rings	-	set up DMA rings
1465 *	@vptr: Velocity to set up
1466 *
1467 *	Allocate PCI mapped DMA rings for the receive and transmit layer
1468 *	to use.
1469 */
1470static int velocity_init_dma_rings(struct velocity_info *vptr)
1471{
1472	struct velocity_opt *opt = &vptr->options;
1473	const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1474	const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1475	dma_addr_t pool_dma;
1476	void *pool;
1477	unsigned int i;
1478
1479	/*
1480	 * Allocate all RD/TD rings a single pool.
1481	 *
1482	 * dma_alloc_coherent() fulfills the requirement for 64 bytes
1483	 * alignment
1484	 */
1485	pool = dma_alloc_coherent(vptr->dev, tx_ring_size * vptr->tx.numq +
1486				    rx_ring_size, &pool_dma, GFP_ATOMIC);
1487	if (!pool) {
1488		dev_err(vptr->dev, "%s : DMA memory allocation failed.\n",
1489			vptr->netdev->name);
1490		return -ENOMEM;
1491	}
1492
1493	vptr->rx.ring = pool;
1494	vptr->rx.pool_dma = pool_dma;
1495
1496	pool += rx_ring_size;
1497	pool_dma += rx_ring_size;
1498
1499	for (i = 0; i < vptr->tx.numq; i++) {
1500		vptr->tx.rings[i] = pool;
1501		vptr->tx.pool_dma[i] = pool_dma;
1502		pool += tx_ring_size;
1503		pool_dma += tx_ring_size;
1504	}
1505
1506	return 0;
1507}
1508
1509static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1510{
1511	vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1512}
1513
1514/**
1515 *	velocity_alloc_rx_buf	-	allocate aligned receive buffer
1516 *	@vptr: velocity
1517 *	@idx: ring index
1518 *
1519 *	Allocate a new full sized buffer for the reception of a frame and
1520 *	map it into PCI space for the hardware to use. The hardware
1521 *	requires *64* byte alignment of the buffer which makes life
1522 *	less fun than would be ideal.
1523 */
1524static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1525{
1526	struct rx_desc *rd = &(vptr->rx.ring[idx]);
1527	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1528
1529	rd_info->skb = netdev_alloc_skb(vptr->netdev, vptr->rx.buf_sz + 64);
1530	if (rd_info->skb == NULL)
1531		return -ENOMEM;
1532
1533	/*
1534	 *	Do the gymnastics to get the buffer head for data at
1535	 *	64byte alignment.
1536	 */
1537	skb_reserve(rd_info->skb,
1538			64 - ((unsigned long) rd_info->skb->data & 63));
1539	rd_info->skb_dma = dma_map_single(vptr->dev, rd_info->skb->data,
1540					vptr->rx.buf_sz, DMA_FROM_DEVICE);
1541
1542	/*
1543	 *	Fill in the descriptor to match
1544	 */
1545
1546	*((u32 *) & (rd->rdesc0)) = 0;
1547	rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1548	rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1549	rd->pa_high = 0;
1550	return 0;
1551}
1552
1553
1554static int velocity_rx_refill(struct velocity_info *vptr)
1555{
1556	int dirty = vptr->rx.dirty, done = 0;
1557
1558	do {
1559		struct rx_desc *rd = vptr->rx.ring + dirty;
1560
1561		/* Fine for an all zero Rx desc at init time as well */
1562		if (rd->rdesc0.len & OWNED_BY_NIC)
1563			break;
1564
1565		if (!vptr->rx.info[dirty].skb) {
1566			if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1567				break;
1568		}
1569		done++;
1570		dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1571	} while (dirty != vptr->rx.curr);
1572
1573	if (done) {
1574		vptr->rx.dirty = dirty;
1575		vptr->rx.filled += done;
1576	}
1577
1578	return done;
1579}
1580
1581/**
1582 *	velocity_free_rd_ring	-	free receive ring
1583 *	@vptr: velocity to clean up
1584 *
1585 *	Free the receive buffers for each ring slot and any
1586 *	attached socket buffers that need to go away.
1587 */
1588static void velocity_free_rd_ring(struct velocity_info *vptr)
1589{
1590	int i;
1591
1592	if (vptr->rx.info == NULL)
1593		return;
1594
1595	for (i = 0; i < vptr->options.numrx; i++) {
1596		struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1597		struct rx_desc *rd = vptr->rx.ring + i;
1598
1599		memset(rd, 0, sizeof(*rd));
1600
1601		if (!rd_info->skb)
1602			continue;
1603		dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz,
1604				 DMA_FROM_DEVICE);
1605		rd_info->skb_dma = 0;
1606
1607		dev_kfree_skb(rd_info->skb);
1608		rd_info->skb = NULL;
1609	}
1610
1611	kfree(vptr->rx.info);
1612	vptr->rx.info = NULL;
1613}
1614
1615/**
1616 *	velocity_init_rd_ring	-	set up receive ring
1617 *	@vptr: velocity to configure
1618 *
1619 *	Allocate and set up the receive buffers for each ring slot and
1620 *	assign them to the network adapter.
1621 */
1622static int velocity_init_rd_ring(struct velocity_info *vptr)
1623{
1624	int ret = -ENOMEM;
1625
1626	vptr->rx.info = kcalloc(vptr->options.numrx,
1627				sizeof(struct velocity_rd_info), GFP_KERNEL);
1628	if (!vptr->rx.info)
1629		goto out;
1630
1631	velocity_init_rx_ring_indexes(vptr);
1632
1633	if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1634		VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1635			"%s: failed to allocate RX buffer.\n", vptr->netdev->name);
1636		velocity_free_rd_ring(vptr);
1637		goto out;
1638	}
1639
1640	ret = 0;
1641out:
1642	return ret;
1643}
1644
1645/**
1646 *	velocity_init_td_ring	-	set up transmit ring
1647 *	@vptr:	velocity
1648 *
1649 *	Set up the transmit ring and chain the ring pointers together.
1650 *	Returns zero on success or a negative posix errno code for
1651 *	failure.
1652 */
1653static int velocity_init_td_ring(struct velocity_info *vptr)
1654{
1655	int j;
1656
1657	/* Init the TD ring entries */
1658	for (j = 0; j < vptr->tx.numq; j++) {
1659
1660		vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1661					    sizeof(struct velocity_td_info),
1662					    GFP_KERNEL);
1663		if (!vptr->tx.infos[j])	{
1664			while (--j >= 0)
1665				kfree(vptr->tx.infos[j]);
1666			return -ENOMEM;
1667		}
1668
1669		vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1670	}
1671	return 0;
1672}
1673
1674/**
1675 *	velocity_free_dma_rings	-	free PCI ring pointers
1676 *	@vptr: Velocity to free from
1677 *
1678 *	Clean up the PCI ring buffers allocated to this velocity.
1679 */
1680static void velocity_free_dma_rings(struct velocity_info *vptr)
1681{
1682	const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1683		vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1684
1685	dma_free_coherent(vptr->dev, size, vptr->rx.ring, vptr->rx.pool_dma);
1686}
1687
1688static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1689{
1690	int ret;
1691
1692	velocity_set_rxbufsize(vptr, mtu);
1693
1694	ret = velocity_init_dma_rings(vptr);
1695	if (ret < 0)
1696		goto out;
1697
1698	ret = velocity_init_rd_ring(vptr);
1699	if (ret < 0)
1700		goto err_free_dma_rings_0;
1701
1702	ret = velocity_init_td_ring(vptr);
1703	if (ret < 0)
1704		goto err_free_rd_ring_1;
1705out:
1706	return ret;
1707
1708err_free_rd_ring_1:
1709	velocity_free_rd_ring(vptr);
1710err_free_dma_rings_0:
1711	velocity_free_dma_rings(vptr);
1712	goto out;
1713}
1714
1715/**
1716 *	velocity_free_tx_buf	-	free transmit buffer
1717 *	@vptr: velocity
1718 *	@tdinfo: buffer
1719 *
1720 *	Release an transmit buffer. If the buffer was preallocated then
1721 *	recycle it, if not then unmap the buffer.
1722 */
1723static void velocity_free_tx_buf(struct velocity_info *vptr,
1724		struct velocity_td_info *tdinfo, struct tx_desc *td)
1725{
1726	struct sk_buff *skb = tdinfo->skb;
1727
1728	/*
1729	 *	Don't unmap the pre-allocated tx_bufs
1730	 */
1731	if (tdinfo->skb_dma) {
1732		int i;
1733
1734		for (i = 0; i < tdinfo->nskb_dma; i++) {
1735			size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1736
1737			/* For scatter-gather */
1738			if (skb_shinfo(skb)->nr_frags > 0)
1739				pktlen = max_t(size_t, pktlen,
1740						td->td_buf[i].size & ~TD_QUEUE);
1741
1742			dma_unmap_single(vptr->dev, tdinfo->skb_dma[i],
1743					le16_to_cpu(pktlen), DMA_TO_DEVICE);
1744		}
1745	}
1746	dev_kfree_skb_irq(skb);
1747	tdinfo->skb = NULL;
1748}
1749
1750/*
1751 *	FIXME: could we merge this with velocity_free_tx_buf ?
1752 */
1753static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1754							 int q, int n)
1755{
1756	struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1757	int i;
1758
1759	if (td_info == NULL)
1760		return;
1761
1762	if (td_info->skb) {
1763		for (i = 0; i < td_info->nskb_dma; i++) {
1764			if (td_info->skb_dma[i]) {
1765				dma_unmap_single(vptr->dev, td_info->skb_dma[i],
1766					td_info->skb->len, DMA_TO_DEVICE);
1767				td_info->skb_dma[i] = 0;
1768			}
1769		}
1770		dev_kfree_skb(td_info->skb);
1771		td_info->skb = NULL;
1772	}
1773}
1774
1775/**
1776 *	velocity_free_td_ring	-	free td ring
1777 *	@vptr: velocity
1778 *
1779 *	Free up the transmit ring for this particular velocity adapter.
1780 *	We free the ring contents but not the ring itself.
1781 */
1782static void velocity_free_td_ring(struct velocity_info *vptr)
1783{
1784	int i, j;
1785
1786	for (j = 0; j < vptr->tx.numq; j++) {
1787		if (vptr->tx.infos[j] == NULL)
1788			continue;
1789		for (i = 0; i < vptr->options.numtx; i++)
1790			velocity_free_td_ring_entry(vptr, j, i);
1791
1792		kfree(vptr->tx.infos[j]);
1793		vptr->tx.infos[j] = NULL;
1794	}
1795}
1796
1797static void velocity_free_rings(struct velocity_info *vptr)
1798{
1799	velocity_free_td_ring(vptr);
1800	velocity_free_rd_ring(vptr);
1801	velocity_free_dma_rings(vptr);
1802}
1803
1804/**
1805 *	velocity_error	-	handle error from controller
1806 *	@vptr: velocity
1807 *	@status: card status
1808 *
1809 *	Process an error report from the hardware and attempt to recover
1810 *	the card itself. At the moment we cannot recover from some
1811 *	theoretically impossible errors but this could be fixed using
1812 *	the pci_device_failed logic to bounce the hardware
1813 *
1814 */
1815static void velocity_error(struct velocity_info *vptr, int status)
1816{
1817
1818	if (status & ISR_TXSTLI) {
1819		struct mac_regs __iomem *regs = vptr->mac_regs;
1820
1821		printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1822		BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1823		writew(TRDCSR_RUN, &regs->TDCSRClr);
1824		netif_stop_queue(vptr->netdev);
1825
1826		/* FIXME: port over the pci_device_failed code and use it
1827		   here */
1828	}
1829
1830	if (status & ISR_SRCI) {
1831		struct mac_regs __iomem *regs = vptr->mac_regs;
1832		int linked;
1833
1834		if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1835			vptr->mii_status = check_connection_type(regs);
1836
1837			/*
1838			 *	If it is a 3119, disable frame bursting in
1839			 *	halfduplex mode and enable it in fullduplex
1840			 *	 mode
1841			 */
1842			if (vptr->rev_id < REV_ID_VT3216_A0) {
1843				if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1844					BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1845				else
1846					BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1847			}
1848			/*
1849			 *	Only enable CD heart beat counter in 10HD mode
1850			 */
1851			if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1852				BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1853			else
1854				BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1855
1856			setup_queue_timers(vptr);
1857		}
1858		/*
1859		 *	Get link status from PHYSR0
1860		 */
1861		linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1862
1863		if (linked) {
1864			vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1865			netif_carrier_on(vptr->netdev);
1866		} else {
1867			vptr->mii_status |= VELOCITY_LINK_FAIL;
1868			netif_carrier_off(vptr->netdev);
1869		}
1870
1871		velocity_print_link_status(vptr);
1872		enable_flow_control_ability(vptr);
1873
1874		/*
1875		 *	Re-enable auto-polling because SRCI will disable
1876		 *	auto-polling
1877		 */
1878
1879		enable_mii_autopoll(regs);
1880
1881		if (vptr->mii_status & VELOCITY_LINK_FAIL)
1882			netif_stop_queue(vptr->netdev);
1883		else
1884			netif_wake_queue(vptr->netdev);
1885
1886	}
1887	if (status & ISR_MIBFI)
1888		velocity_update_hw_mibs(vptr);
1889	if (status & ISR_LSTEI)
1890		mac_rx_queue_wake(vptr->mac_regs);
1891}
1892
1893/**
1894 *	tx_srv		-	transmit interrupt service
1895 *	@vptr; Velocity
1896 *
1897 *	Scan the queues looking for transmitted packets that
1898 *	we can complete and clean up. Update any statistics as
1899 *	necessary/
1900 */
1901static int velocity_tx_srv(struct velocity_info *vptr)
1902{
1903	struct tx_desc *td;
1904	int qnum;
1905	int full = 0;
1906	int idx;
1907	int works = 0;
1908	struct velocity_td_info *tdinfo;
1909	struct net_device_stats *stats = &vptr->netdev->stats;
1910
1911	for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1912		for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1913			idx = (idx + 1) % vptr->options.numtx) {
1914
1915			/*
1916			 *	Get Tx Descriptor
1917			 */
1918			td = &(vptr->tx.rings[qnum][idx]);
1919			tdinfo = &(vptr->tx.infos[qnum][idx]);
1920
1921			if (td->tdesc0.len & OWNED_BY_NIC)
1922				break;
1923
1924			if ((works++ > 15))
1925				break;
1926
1927			if (td->tdesc0.TSR & TSR0_TERR) {
1928				stats->tx_errors++;
1929				stats->tx_dropped++;
1930				if (td->tdesc0.TSR & TSR0_CDH)
1931					stats->tx_heartbeat_errors++;
1932				if (td->tdesc0.TSR & TSR0_CRS)
1933					stats->tx_carrier_errors++;
1934				if (td->tdesc0.TSR & TSR0_ABT)
1935					stats->tx_aborted_errors++;
1936				if (td->tdesc0.TSR & TSR0_OWC)
1937					stats->tx_window_errors++;
1938			} else {
1939				stats->tx_packets++;
1940				stats->tx_bytes += tdinfo->skb->len;
1941			}
1942			velocity_free_tx_buf(vptr, tdinfo, td);
1943			vptr->tx.used[qnum]--;
1944		}
1945		vptr->tx.tail[qnum] = idx;
1946
1947		if (AVAIL_TD(vptr, qnum) < 1)
1948			full = 1;
1949	}
1950	/*
1951	 *	Look to see if we should kick the transmit network
1952	 *	layer for more work.
1953	 */
1954	if (netif_queue_stopped(vptr->netdev) && (full == 0) &&
1955	    (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1956		netif_wake_queue(vptr->netdev);
1957	}
1958	return works;
1959}
1960
1961/**
1962 *	velocity_rx_csum	-	checksum process
1963 *	@rd: receive packet descriptor
1964 *	@skb: network layer packet buffer
1965 *
1966 *	Process the status bits for the received packet and determine
1967 *	if the checksum was computed and verified by the hardware
1968 */
1969static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1970{
1971	skb_checksum_none_assert(skb);
1972
1973	if (rd->rdesc1.CSM & CSM_IPKT) {
1974		if (rd->rdesc1.CSM & CSM_IPOK) {
1975			if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1976					(rd->rdesc1.CSM & CSM_UDPKT)) {
1977				if (!(rd->rdesc1.CSM & CSM_TUPOK))
1978					return;
1979			}
1980			skb->ip_summed = CHECKSUM_UNNECESSARY;
1981		}
1982	}
1983}
1984
1985/**
1986 *	velocity_rx_copy	-	in place Rx copy for small packets
1987 *	@rx_skb: network layer packet buffer candidate
1988 *	@pkt_size: received data size
1989 *	@rd: receive packet descriptor
1990 *	@dev: network device
1991 *
1992 *	Replace the current skb that is scheduled for Rx processing by a
1993 *	shorter, immediately allocated skb, if the received packet is small
1994 *	enough. This function returns a negative value if the received
1995 *	packet is too big or if memory is exhausted.
1996 */
1997static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1998			    struct velocity_info *vptr)
1999{
2000	int ret = -1;
2001	if (pkt_size < rx_copybreak) {
2002		struct sk_buff *new_skb;
2003
2004		new_skb = netdev_alloc_skb_ip_align(vptr->netdev, pkt_size);
2005		if (new_skb) {
2006			new_skb->ip_summed = rx_skb[0]->ip_summed;
2007			skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
2008			*rx_skb = new_skb;
2009			ret = 0;
2010		}
2011
2012	}
2013	return ret;
2014}
2015
2016/**
2017 *	velocity_iph_realign	-	IP header alignment
2018 *	@vptr: velocity we are handling
2019 *	@skb: network layer packet buffer
2020 *	@pkt_size: received data size
2021 *
2022 *	Align IP header on a 2 bytes boundary. This behavior can be
2023 *	configured by the user.
2024 */
2025static inline void velocity_iph_realign(struct velocity_info *vptr,
2026					struct sk_buff *skb, int pkt_size)
2027{
2028	if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2029		memmove(skb->data + 2, skb->data, pkt_size);
2030		skb_reserve(skb, 2);
2031	}
2032}
2033
2034/**
2035 *	velocity_receive_frame	-	received packet processor
2036 *	@vptr: velocity we are handling
2037 *	@idx: ring index
2038 *
2039 *	A packet has arrived. We process the packet and if appropriate
2040 *	pass the frame up the network stack
2041 */
2042static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2043{
2044	struct net_device_stats *stats = &vptr->netdev->stats;
2045	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2046	struct rx_desc *rd = &(vptr->rx.ring[idx]);
2047	int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2048	struct sk_buff *skb;
2049
2050	if (unlikely(rd->rdesc0.RSR & (RSR_STP | RSR_EDP | RSR_RL))) {
2051		if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP))
2052			VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame spans multiple RDs.\n", vptr->netdev->name);
2053		stats->rx_length_errors++;
2054		return -EINVAL;
2055	}
2056
2057	if (rd->rdesc0.RSR & RSR_MAR)
2058		stats->multicast++;
2059
2060	skb = rd_info->skb;
2061
2062	dma_sync_single_for_cpu(vptr->dev, rd_info->skb_dma,
2063				    vptr->rx.buf_sz, DMA_FROM_DEVICE);
2064
2065	velocity_rx_csum(rd, skb);
2066
2067	if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2068		velocity_iph_realign(vptr, skb, pkt_len);
2069		rd_info->skb = NULL;
2070		dma_unmap_single(vptr->dev, rd_info->skb_dma, vptr->rx.buf_sz,
2071				 DMA_FROM_DEVICE);
2072	} else {
2073		dma_sync_single_for_device(vptr->dev, rd_info->skb_dma,
2074					   vptr->rx.buf_sz, DMA_FROM_DEVICE);
2075	}
2076
2077	skb_put(skb, pkt_len - 4);
2078	skb->protocol = eth_type_trans(skb, vptr->netdev);
2079
2080	if (rd->rdesc0.RSR & RSR_DETAG) {
2081		u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG));
2082
2083		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
2084	}
2085	netif_receive_skb(skb);
2086
2087	stats->rx_bytes += pkt_len;
2088	stats->rx_packets++;
2089
2090	return 0;
2091}
2092
2093/**
2094 *	velocity_rx_srv		-	service RX interrupt
2095 *	@vptr: velocity
2096 *
2097 *	Walk the receive ring of the velocity adapter and remove
2098 *	any received packets from the receive queue. Hand the ring
2099 *	slots back to the adapter for reuse.
2100 */
2101static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2102{
2103	struct net_device_stats *stats = &vptr->netdev->stats;
2104	int rd_curr = vptr->rx.curr;
2105	int works = 0;
2106
2107	while (works < budget_left) {
2108		struct rx_desc *rd = vptr->rx.ring + rd_curr;
2109
2110		if (!vptr->rx.info[rd_curr].skb)
2111			break;
2112
2113		if (rd->rdesc0.len & OWNED_BY_NIC)
2114			break;
2115
2116		rmb();
2117
2118		/*
2119		 *	Don't drop CE or RL error frame although RXOK is off
2120		 */
2121		if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2122			if (velocity_receive_frame(vptr, rd_curr) < 0)
2123				stats->rx_dropped++;
2124		} else {
2125			if (rd->rdesc0.RSR & RSR_CRC)
2126				stats->rx_crc_errors++;
2127			if (rd->rdesc0.RSR & RSR_FAE)
2128				stats->rx_frame_errors++;
2129
2130			stats->rx_dropped++;
2131		}
2132
2133		rd->size |= RX_INTEN;
2134
2135		rd_curr++;
2136		if (rd_curr >= vptr->options.numrx)
2137			rd_curr = 0;
2138		works++;
2139	}
2140
2141	vptr->rx.curr = rd_curr;
2142
2143	if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2144		velocity_give_many_rx_descs(vptr);
2145
2146	VAR_USED(stats);
2147	return works;
2148}
2149
2150static int velocity_poll(struct napi_struct *napi, int budget)
2151{
2152	struct velocity_info *vptr = container_of(napi,
2153			struct velocity_info, napi);
2154	unsigned int rx_done;
2155	unsigned long flags;
2156
2157	/*
2158	 * Do rx and tx twice for performance (taken from the VIA
2159	 * out-of-tree driver).
2160	 */
2161	rx_done = velocity_rx_srv(vptr, budget);
2162	spin_lock_irqsave(&vptr->lock, flags);
2163	velocity_tx_srv(vptr);
2164	/* If budget not fully consumed, exit the polling mode */
2165	if (rx_done < budget) {
2166		napi_complete(napi);
2167		mac_enable_int(vptr->mac_regs);
2168	}
2169	spin_unlock_irqrestore(&vptr->lock, flags);
2170
2171	return rx_done;
2172}
2173
2174/**
2175 *	velocity_intr		-	interrupt callback
2176 *	@irq: interrupt number
2177 *	@dev_instance: interrupting device
2178 *
2179 *	Called whenever an interrupt is generated by the velocity
2180 *	adapter IRQ line. We may not be the source of the interrupt
2181 *	and need to identify initially if we are, and if not exit as
2182 *	efficiently as possible.
2183 */
2184static irqreturn_t velocity_intr(int irq, void *dev_instance)
2185{
2186	struct net_device *dev = dev_instance;
2187	struct velocity_info *vptr = netdev_priv(dev);
2188	u32 isr_status;
2189
2190	spin_lock(&vptr->lock);
2191	isr_status = mac_read_isr(vptr->mac_regs);
2192
2193	/* Not us ? */
2194	if (isr_status == 0) {
2195		spin_unlock(&vptr->lock);
2196		return IRQ_NONE;
2197	}
2198
2199	/* Ack the interrupt */
2200	mac_write_isr(vptr->mac_regs, isr_status);
2201
2202	if (likely(napi_schedule_prep(&vptr->napi))) {
2203		mac_disable_int(vptr->mac_regs);
2204		__napi_schedule(&vptr->napi);
2205	}
2206
2207	if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2208		velocity_error(vptr, isr_status);
2209
2210	spin_unlock(&vptr->lock);
2211
2212	return IRQ_HANDLED;
2213}
2214
2215/**
2216 *	velocity_open		-	interface activation callback
2217 *	@dev: network layer device to open
2218 *
2219 *	Called when the network layer brings the interface up. Returns
2220 *	a negative posix error code on failure, or zero on success.
2221 *
2222 *	All the ring allocation and set up is done on open for this
2223 *	adapter to minimise memory usage when inactive
2224 */
2225static int velocity_open(struct net_device *dev)
2226{
2227	struct velocity_info *vptr = netdev_priv(dev);
2228	int ret;
2229
2230	ret = velocity_init_rings(vptr, dev->mtu);
2231	if (ret < 0)
2232		goto out;
2233
2234	/* Ensure chip is running */
2235	velocity_set_power_state(vptr, PCI_D0);
2236
2237	velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2238
2239	ret = request_irq(dev->irq, velocity_intr, IRQF_SHARED,
2240			  dev->name, dev);
2241	if (ret < 0) {
2242		/* Power down the chip */
2243		velocity_set_power_state(vptr, PCI_D3hot);
2244		velocity_free_rings(vptr);
2245		goto out;
2246	}
2247
2248	velocity_give_many_rx_descs(vptr);
2249
2250	mac_enable_int(vptr->mac_regs);
2251	netif_start_queue(dev);
2252	napi_enable(&vptr->napi);
2253	vptr->flags |= VELOCITY_FLAGS_OPENED;
2254out:
2255	return ret;
2256}
2257
2258/**
2259 *	velocity_shutdown	-	shut down the chip
2260 *	@vptr: velocity to deactivate
2261 *
2262 *	Shuts down the internal operations of the velocity and
2263 *	disables interrupts, autopolling, transmit and receive
2264 */
2265static void velocity_shutdown(struct velocity_info *vptr)
2266{
2267	struct mac_regs __iomem *regs = vptr->mac_regs;
2268	mac_disable_int(regs);
2269	writel(CR0_STOP, &regs->CR0Set);
2270	writew(0xFFFF, &regs->TDCSRClr);
2271	writeb(0xFF, &regs->RDCSRClr);
2272	safe_disable_mii_autopoll(regs);
2273	mac_clear_isr(regs);
2274}
2275
2276/**
2277 *	velocity_change_mtu	-	MTU change callback
2278 *	@dev: network device
2279 *	@new_mtu: desired MTU
2280 *
2281 *	Handle requests from the networking layer for MTU change on
2282 *	this interface. It gets called on a change by the network layer.
2283 *	Return zero for success or negative posix error code.
2284 */
2285static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2286{
2287	struct velocity_info *vptr = netdev_priv(dev);
2288	int ret = 0;
2289
2290	if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
2291		VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
2292				vptr->netdev->name);
2293		ret = -EINVAL;
2294		goto out_0;
2295	}
2296
2297	if (!netif_running(dev)) {
2298		dev->mtu = new_mtu;
2299		goto out_0;
2300	}
2301
2302	if (dev->mtu != new_mtu) {
2303		struct velocity_info *tmp_vptr;
2304		unsigned long flags;
2305		struct rx_info rx;
2306		struct tx_info tx;
2307
2308		tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2309		if (!tmp_vptr) {
2310			ret = -ENOMEM;
2311			goto out_0;
2312		}
2313
2314		tmp_vptr->netdev = dev;
2315		tmp_vptr->pdev = vptr->pdev;
2316		tmp_vptr->dev = vptr->dev;
2317		tmp_vptr->options = vptr->options;
2318		tmp_vptr->tx.numq = vptr->tx.numq;
2319
2320		ret = velocity_init_rings(tmp_vptr, new_mtu);
2321		if (ret < 0)
2322			goto out_free_tmp_vptr_1;
2323
2324		napi_disable(&vptr->napi);
2325
2326		spin_lock_irqsave(&vptr->lock, flags);
2327
2328		netif_stop_queue(dev);
2329		velocity_shutdown(vptr);
2330
2331		rx = vptr->rx;
2332		tx = vptr->tx;
2333
2334		vptr->rx = tmp_vptr->rx;
2335		vptr->tx = tmp_vptr->tx;
2336
2337		tmp_vptr->rx = rx;
2338		tmp_vptr->tx = tx;
2339
2340		dev->mtu = new_mtu;
2341
2342		velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2343
2344		velocity_give_many_rx_descs(vptr);
2345
2346		napi_enable(&vptr->napi);
2347
2348		mac_enable_int(vptr->mac_regs);
2349		netif_start_queue(dev);
2350
2351		spin_unlock_irqrestore(&vptr->lock, flags);
2352
2353		velocity_free_rings(tmp_vptr);
2354
2355out_free_tmp_vptr_1:
2356		kfree(tmp_vptr);
2357	}
2358out_0:
2359	return ret;
2360}
2361
2362#ifdef CONFIG_NET_POLL_CONTROLLER
2363/**
2364 *  velocity_poll_controller		-	Velocity Poll controller function
2365 *  @dev: network device
2366 *
2367 *
2368 *  Used by NETCONSOLE and other diagnostic tools to allow network I/P
2369 *  with interrupts disabled.
2370 */
2371static void velocity_poll_controller(struct net_device *dev)
2372{
2373	disable_irq(dev->irq);
2374	velocity_intr(dev->irq, dev);
2375	enable_irq(dev->irq);
2376}
2377#endif
2378
2379/**
2380 *	velocity_mii_ioctl		-	MII ioctl handler
2381 *	@dev: network device
2382 *	@ifr: the ifreq block for the ioctl
2383 *	@cmd: the command
2384 *
2385 *	Process MII requests made via ioctl from the network layer. These
2386 *	are used by tools like kudzu to interrogate the link state of the
2387 *	hardware
2388 */
2389static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2390{
2391	struct velocity_info *vptr = netdev_priv(dev);
2392	struct mac_regs __iomem *regs = vptr->mac_regs;
2393	unsigned long flags;
2394	struct mii_ioctl_data *miidata = if_mii(ifr);
2395	int err;
2396
2397	switch (cmd) {
2398	case SIOCGMIIPHY:
2399		miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2400		break;
2401	case SIOCGMIIREG:
2402		if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2403			return -ETIMEDOUT;
2404		break;
2405	case SIOCSMIIREG:
2406		spin_lock_irqsave(&vptr->lock, flags);
2407		err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2408		spin_unlock_irqrestore(&vptr->lock, flags);
2409		check_connection_type(vptr->mac_regs);
2410		if (err)
2411			return err;
2412		break;
2413	default:
2414		return -EOPNOTSUPP;
2415	}
2416	return 0;
2417}
2418
2419/**
2420 *	velocity_ioctl		-	ioctl entry point
2421 *	@dev: network device
2422 *	@rq: interface request ioctl
2423 *	@cmd: command code
2424 *
2425 *	Called when the user issues an ioctl request to the network
2426 *	device in question. The velocity interface supports MII.
2427 */
2428static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2429{
2430	struct velocity_info *vptr = netdev_priv(dev);
2431	int ret;
2432
2433	/* If we are asked for information and the device is power
2434	   saving then we need to bring the device back up to talk to it */
2435
2436	if (!netif_running(dev))
2437		velocity_set_power_state(vptr, PCI_D0);
2438
2439	switch (cmd) {
2440	case SIOCGMIIPHY:	/* Get address of MII PHY in use. */
2441	case SIOCGMIIREG:	/* Read MII PHY register. */
2442	case SIOCSMIIREG:	/* Write to MII PHY register. */
2443		ret = velocity_mii_ioctl(dev, rq, cmd);
2444		break;
2445
2446	default:
2447		ret = -EOPNOTSUPP;
2448	}
2449	if (!netif_running(dev))
2450		velocity_set_power_state(vptr, PCI_D3hot);
2451
2452
2453	return ret;
2454}
2455
2456/**
2457 *	velocity_get_status	-	statistics callback
2458 *	@dev: network device
2459 *
2460 *	Callback from the network layer to allow driver statistics
2461 *	to be resynchronized with hardware collected state. In the
2462 *	case of the velocity we need to pull the MIB counters from
2463 *	the hardware into the counters before letting the network
2464 *	layer display them.
2465 */
2466static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2467{
2468	struct velocity_info *vptr = netdev_priv(dev);
2469
2470	/* If the hardware is down, don't touch MII */
2471	if (!netif_running(dev))
2472		return &dev->stats;
2473
2474	spin_lock_irq(&vptr->lock);
2475	velocity_update_hw_mibs(vptr);
2476	spin_unlock_irq(&vptr->lock);
2477
2478	dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2479	dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2480	dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2481
2482//  unsigned long   rx_dropped;     /* no space in linux buffers    */
2483	dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2484	/* detailed rx_errors: */
2485//  unsigned long   rx_length_errors;
2486//  unsigned long   rx_over_errors;     /* receiver ring buff overflow  */
2487	dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2488//  unsigned long   rx_frame_errors;    /* recv'd frame alignment error */
2489//  unsigned long   rx_fifo_errors;     /* recv'r fifo overrun      */
2490//  unsigned long   rx_missed_errors;   /* receiver missed packet   */
2491
2492	/* detailed tx_errors */
2493//  unsigned long   tx_fifo_errors;
2494
2495	return &dev->stats;
2496}
2497
2498/**
2499 *	velocity_close		-	close adapter callback
2500 *	@dev: network device
2501 *
2502 *	Callback from the network layer when the velocity is being
2503 *	deactivated by the network layer
2504 */
2505static int velocity_close(struct net_device *dev)
2506{
2507	struct velocity_info *vptr = netdev_priv(dev);
2508
2509	napi_disable(&vptr->napi);
2510	netif_stop_queue(dev);
2511	velocity_shutdown(vptr);
2512
2513	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2514		velocity_get_ip(vptr);
2515
2516	free_irq(dev->irq, dev);
2517
2518	velocity_free_rings(vptr);
2519
2520	vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2521	return 0;
2522}
2523
2524/**
2525 *	velocity_xmit		-	transmit packet callback
2526 *	@skb: buffer to transmit
2527 *	@dev: network device
2528 *
2529 *	Called by the networ layer to request a packet is queued to
2530 *	the velocity. Returns zero on success.
2531 */
2532static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2533				 struct net_device *dev)
2534{
2535	struct velocity_info *vptr = netdev_priv(dev);
2536	int qnum = 0;
2537	struct tx_desc *td_ptr;
2538	struct velocity_td_info *tdinfo;
2539	unsigned long flags;
2540	int pktlen;
2541	int index, prev;
2542	int i = 0;
2543
2544	if (skb_padto(skb, ETH_ZLEN))
2545		goto out;
2546
2547	/* The hardware can handle at most 7 memory segments, so merge
2548	 * the skb if there are more */
2549	if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2550		dev_kfree_skb_any(skb);
2551		return NETDEV_TX_OK;
2552	}
2553
2554	pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2555			max_t(unsigned int, skb->len, ETH_ZLEN) :
2556				skb_headlen(skb);
2557
2558	spin_lock_irqsave(&vptr->lock, flags);
2559
2560	index = vptr->tx.curr[qnum];
2561	td_ptr = &(vptr->tx.rings[qnum][index]);
2562	tdinfo = &(vptr->tx.infos[qnum][index]);
2563
2564	td_ptr->tdesc1.TCR = TCR0_TIC;
2565	td_ptr->td_buf[0].size &= ~TD_QUEUE;
2566
2567	/*
2568	 *	Map the linear network buffer into PCI space and
2569	 *	add it to the transmit ring.
2570	 */
2571	tdinfo->skb = skb;
2572	tdinfo->skb_dma[0] = dma_map_single(vptr->dev, skb->data, pktlen,
2573								DMA_TO_DEVICE);
2574	td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2575	td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2576	td_ptr->td_buf[0].pa_high = 0;
2577	td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2578
2579	/* Handle fragments */
2580	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2581		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2582
2583		tdinfo->skb_dma[i + 1] = skb_frag_dma_map(vptr->dev,
2584							  frag, 0,
2585							  skb_frag_size(frag),
2586							  DMA_TO_DEVICE);
2587
2588		td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2589		td_ptr->td_buf[i + 1].pa_high = 0;
2590		td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag));
2591	}
2592	tdinfo->nskb_dma = i + 1;
2593
2594	td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2595
2596	if (skb_vlan_tag_present(skb)) {
2597		td_ptr->tdesc1.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
2598		td_ptr->tdesc1.TCR |= TCR0_VETAG;
2599	}
2600
2601	/*
2602	 *	Handle hardware checksum
2603	 */
2604	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2605		const struct iphdr *ip = ip_hdr(skb);
2606		if (ip->protocol == IPPROTO_TCP)
2607			td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2608		else if (ip->protocol == IPPROTO_UDP)
2609			td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2610		td_ptr->tdesc1.TCR |= TCR0_IPCK;
2611	}
2612
2613	prev = index - 1;
2614	if (prev < 0)
2615		prev = vptr->options.numtx - 1;
2616	td_ptr->tdesc0.len |= OWNED_BY_NIC;
2617	vptr->tx.used[qnum]++;
2618	vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2619
2620	if (AVAIL_TD(vptr, qnum) < 1)
2621		netif_stop_queue(dev);
2622
2623	td_ptr = &(vptr->tx.rings[qnum][prev]);
2624	td_ptr->td_buf[0].size |= TD_QUEUE;
2625	mac_tx_queue_wake(vptr->mac_regs, qnum);
2626
2627	spin_unlock_irqrestore(&vptr->lock, flags);
2628out:
2629	return NETDEV_TX_OK;
2630}
2631
2632static const struct net_device_ops velocity_netdev_ops = {
2633	.ndo_open		= velocity_open,
2634	.ndo_stop		= velocity_close,
2635	.ndo_start_xmit		= velocity_xmit,
2636	.ndo_get_stats		= velocity_get_stats,
2637	.ndo_validate_addr	= eth_validate_addr,
2638	.ndo_set_mac_address	= eth_mac_addr,
2639	.ndo_set_rx_mode	= velocity_set_multi,
2640	.ndo_change_mtu		= velocity_change_mtu,
2641	.ndo_do_ioctl		= velocity_ioctl,
2642	.ndo_vlan_rx_add_vid	= velocity_vlan_rx_add_vid,
2643	.ndo_vlan_rx_kill_vid	= velocity_vlan_rx_kill_vid,
2644#ifdef CONFIG_NET_POLL_CONTROLLER
2645	.ndo_poll_controller = velocity_poll_controller,
2646#endif
2647};
2648
2649/**
2650 *	velocity_init_info	-	init private data
2651 *	@pdev: PCI device
2652 *	@vptr: Velocity info
2653 *	@info: Board type
2654 *
2655 *	Set up the initial velocity_info struct for the device that has been
2656 *	discovered.
2657 */
2658static void velocity_init_info(struct velocity_info *vptr,
2659				const struct velocity_info_tbl *info)
2660{
2661	vptr->chip_id = info->chip_id;
2662	vptr->tx.numq = info->txqueue;
2663	vptr->multicast_limit = MCAM_SIZE;
2664	spin_lock_init(&vptr->lock);
2665}
2666
2667/**
2668 *	velocity_get_pci_info	-	retrieve PCI info for device
2669 *	@vptr: velocity device
2670 *	@pdev: PCI device it matches
2671 *
2672 *	Retrieve the PCI configuration space data that interests us from
2673 *	the kernel PCI layer
2674 */
2675static int velocity_get_pci_info(struct velocity_info *vptr)
2676{
2677	struct pci_dev *pdev = vptr->pdev;
2678
2679	pci_set_master(pdev);
2680
2681	vptr->ioaddr = pci_resource_start(pdev, 0);
2682	vptr->memaddr = pci_resource_start(pdev, 1);
2683
2684	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2685		dev_err(&pdev->dev,
2686			   "region #0 is not an I/O resource, aborting.\n");
2687		return -EINVAL;
2688	}
2689
2690	if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2691		dev_err(&pdev->dev,
2692			   "region #1 is an I/O resource, aborting.\n");
2693		return -EINVAL;
2694	}
2695
2696	if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2697		dev_err(&pdev->dev, "region #1 is too small.\n");
2698		return -EINVAL;
2699	}
2700
2701	return 0;
2702}
2703
2704/**
2705 *	velocity_get_platform_info - retrieve platform info for device
2706 *	@vptr: velocity device
2707 *	@pdev: platform device it matches
2708 *
2709 *	Retrieve the Platform configuration data that interests us
2710 */
2711static int velocity_get_platform_info(struct velocity_info *vptr)
2712{
2713	struct resource res;
2714	int ret;
2715
2716	if (of_get_property(vptr->dev->of_node, "no-eeprom", NULL))
2717		vptr->no_eeprom = 1;
2718
2719	ret = of_address_to_resource(vptr->dev->of_node, 0, &res);
2720	if (ret) {
2721		dev_err(vptr->dev, "unable to find memory address\n");
2722		return ret;
2723	}
2724
2725	vptr->memaddr = res.start;
2726
2727	if (resource_size(&res) < VELOCITY_IO_SIZE) {
2728		dev_err(vptr->dev, "memory region is too small.\n");
2729		return -EINVAL;
2730	}
2731
2732	return 0;
2733}
2734
2735/**
2736 *	velocity_print_info	-	per driver data
2737 *	@vptr: velocity
2738 *
2739 *	Print per driver data as the kernel driver finds Velocity
2740 *	hardware
2741 */
2742static void velocity_print_info(struct velocity_info *vptr)
2743{
2744	struct net_device *dev = vptr->netdev;
2745
2746	printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
2747	printk(KERN_INFO "%s: Ethernet Address: %pM\n",
2748		dev->name, dev->dev_addr);
2749}
2750
2751static u32 velocity_get_link(struct net_device *dev)
2752{
2753	struct velocity_info *vptr = netdev_priv(dev);
2754	struct mac_regs __iomem *regs = vptr->mac_regs;
2755	return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2756}
2757
2758/**
2759 *	velocity_probe - set up discovered velocity device
2760 *	@pdev: PCI device
2761 *	@ent: PCI device table entry that matched
2762 *	@bustype: bus that device is connected to
2763 *
2764 *	Configure a discovered adapter from scratch. Return a negative
2765 *	errno error code on failure paths.
2766 */
2767static int velocity_probe(struct device *dev, int irq,
2768			   const struct velocity_info_tbl *info,
2769			   enum velocity_bus_type bustype)
2770{
2771	static int first = 1;
2772	struct net_device *netdev;
2773	int i;
2774	const char *drv_string;
2775	struct velocity_info *vptr;
2776	struct mac_regs __iomem *regs;
2777	int ret = -ENOMEM;
2778
2779	/* FIXME: this driver, like almost all other ethernet drivers,
2780	 * can support more than MAX_UNITS.
2781	 */
2782	if (velocity_nics >= MAX_UNITS) {
2783		dev_notice(dev, "already found %d NICs.\n", velocity_nics);
2784		return -ENODEV;
2785	}
2786
2787	netdev = alloc_etherdev(sizeof(struct velocity_info));
2788	if (!netdev)
2789		goto out;
2790
2791	/* Chain it all together */
2792
2793	SET_NETDEV_DEV(netdev, dev);
2794	vptr = netdev_priv(netdev);
2795
2796	if (first) {
2797		printk(KERN_INFO "%s Ver. %s\n",
2798			VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2799		printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2800		printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
2801		first = 0;
2802	}
2803
2804	netdev->irq = irq;
2805	vptr->netdev = netdev;
2806	vptr->dev = dev;
2807
2808	velocity_init_info(vptr, info);
2809
2810	if (bustype == BUS_PCI) {
2811		vptr->pdev = to_pci_dev(dev);
2812
2813		ret = velocity_get_pci_info(vptr);
2814		if (ret < 0)
2815			goto err_free_dev;
2816	} else {
2817		vptr->pdev = NULL;
2818		ret = velocity_get_platform_info(vptr);
2819		if (ret < 0)
2820			goto err_free_dev;
2821	}
2822
2823	regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2824	if (regs == NULL) {
2825		ret = -EIO;
2826		goto err_free_dev;
2827	}
2828
2829	vptr->mac_regs = regs;
2830	vptr->rev_id = readb(&regs->rev_id);
2831
2832	mac_wol_reset(regs);
2833
2834	for (i = 0; i < 6; i++)
2835		netdev->dev_addr[i] = readb(&regs->PAR[i]);
2836
2837
2838	drv_string = dev_driver_string(dev);
2839
2840	velocity_get_options(&vptr->options, velocity_nics, drv_string);
2841
2842	/*
2843	 *	Mask out the options cannot be set to the chip
2844	 */
2845
2846	vptr->options.flags &= info->flags;
2847
2848	/*
2849	 *	Enable the chip specified capbilities
2850	 */
2851
2852	vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2853
2854	vptr->wol_opts = vptr->options.wol_opts;
2855	vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2856
2857	vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2858
2859	netdev->netdev_ops = &velocity_netdev_ops;
2860	netdev->ethtool_ops = &velocity_ethtool_ops;
2861	netif_napi_add(netdev, &vptr->napi, velocity_poll,
2862							VELOCITY_NAPI_WEIGHT);
2863
2864	netdev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
2865			   NETIF_F_HW_VLAN_CTAG_TX;
2866	netdev->features |= NETIF_F_HW_VLAN_CTAG_TX |
2867			NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX |
2868			NETIF_F_IP_CSUM;
2869
2870	ret = register_netdev(netdev);
2871	if (ret < 0)
2872		goto err_iounmap;
2873
2874	if (!velocity_get_link(netdev)) {
2875		netif_carrier_off(netdev);
2876		vptr->mii_status |= VELOCITY_LINK_FAIL;
2877	}
2878
2879	velocity_print_info(vptr);
2880	dev_set_drvdata(vptr->dev, netdev);
2881
2882	/* and leave the chip powered down */
2883
2884	velocity_set_power_state(vptr, PCI_D3hot);
2885	velocity_nics++;
2886out:
2887	return ret;
2888
2889err_iounmap:
2890	netif_napi_del(&vptr->napi);
2891	iounmap(regs);
2892err_free_dev:
2893	free_netdev(netdev);
2894	goto out;
2895}
2896
2897/**
2898 *	velocity_remove	- device unplug
2899 *	@dev: device being removed
2900 *
2901 *	Device unload callback. Called on an unplug or on module
2902 *	unload for each active device that is present. Disconnects
2903 *	the device from the network layer and frees all the resources
2904 */
2905static int velocity_remove(struct device *dev)
2906{
2907	struct net_device *netdev = dev_get_drvdata(dev);
2908	struct velocity_info *vptr = netdev_priv(netdev);
2909
2910	unregister_netdev(netdev);
2911	netif_napi_del(&vptr->napi);
2912	iounmap(vptr->mac_regs);
2913	free_netdev(netdev);
2914	velocity_nics--;
2915
2916	return 0;
2917}
2918
2919static int velocity_pci_probe(struct pci_dev *pdev,
2920			       const struct pci_device_id *ent)
2921{
2922	const struct velocity_info_tbl *info =
2923					&chip_info_table[ent->driver_data];
2924	int ret;
2925
2926	ret = pci_enable_device(pdev);
2927	if (ret < 0)
2928		return ret;
2929
2930	ret = pci_request_regions(pdev, VELOCITY_NAME);
2931	if (ret < 0) {
2932		dev_err(&pdev->dev, "No PCI resources.\n");
2933		goto fail1;
2934	}
2935
2936	ret = velocity_probe(&pdev->dev, pdev->irq, info, BUS_PCI);
2937	if (ret == 0)
2938		return 0;
2939
2940	pci_release_regions(pdev);
2941fail1:
2942	pci_disable_device(pdev);
2943	return ret;
2944}
2945
2946static void velocity_pci_remove(struct pci_dev *pdev)
2947{
2948	velocity_remove(&pdev->dev);
2949
2950	pci_release_regions(pdev);
2951	pci_disable_device(pdev);
2952}
2953
2954static int velocity_platform_probe(struct platform_device *pdev)
2955{
2956	const struct of_device_id *of_id;
2957	const struct velocity_info_tbl *info;
2958	int irq;
2959
2960	of_id = of_match_device(velocity_of_ids, &pdev->dev);
2961	if (!of_id)
2962		return -EINVAL;
2963	info = of_id->data;
2964
2965	irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
2966	if (!irq)
2967		return -EINVAL;
2968
2969	return velocity_probe(&pdev->dev, irq, info, BUS_PLATFORM);
2970}
2971
2972static int velocity_platform_remove(struct platform_device *pdev)
2973{
2974	velocity_remove(&pdev->dev);
2975
2976	return 0;
2977}
2978
2979#ifdef CONFIG_PM_SLEEP
2980/**
2981 *	wol_calc_crc		-	WOL CRC
2982 *	@pattern: data pattern
2983 *	@mask_pattern: mask
2984 *
2985 *	Compute the wake on lan crc hashes for the packet header
2986 *	we are interested in.
2987 */
2988static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2989{
2990	u16 crc = 0xFFFF;
2991	u8 mask;
2992	int i, j;
2993
2994	for (i = 0; i < size; i++) {
2995		mask = mask_pattern[i];
2996
2997		/* Skip this loop if the mask equals to zero */
2998		if (mask == 0x00)
2999			continue;
3000
3001		for (j = 0; j < 8; j++) {
3002			if ((mask & 0x01) == 0) {
3003				mask >>= 1;
3004				continue;
3005			}
3006			mask >>= 1;
3007			crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
3008		}
3009	}
3010	/*	Finally, invert the result once to get the correct data */
3011	crc = ~crc;
3012	return bitrev32(crc) >> 16;
3013}
3014
3015/**
3016 *	velocity_set_wol	-	set up for wake on lan
3017 *	@vptr: velocity to set WOL status on
3018 *
3019 *	Set a card up for wake on lan either by unicast or by
3020 *	ARP packet.
3021 *
3022 *	FIXME: check static buffer is safe here
3023 */
3024static int velocity_set_wol(struct velocity_info *vptr)
3025{
3026	struct mac_regs __iomem *regs = vptr->mac_regs;
3027	enum speed_opt spd_dpx = vptr->options.spd_dpx;
3028	static u8 buf[256];
3029	int i;
3030
3031	static u32 mask_pattern[2][4] = {
3032		{0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3033		{0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff}	 /* Magic Packet */
3034	};
3035
3036	writew(0xFFFF, &regs->WOLCRClr);
3037	writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3038	writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3039
3040	/*
3041	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
3042	   writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3043	 */
3044
3045	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3046		writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3047
3048	if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3049		struct arp_packet *arp = (struct arp_packet *) buf;
3050		u16 crc;
3051		memset(buf, 0, sizeof(struct arp_packet) + 7);
3052
3053		for (i = 0; i < 4; i++)
3054			writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3055
3056		arp->type = htons(ETH_P_ARP);
3057		arp->ar_op = htons(1);
3058
3059		memcpy(arp->ar_tip, vptr->ip_addr, 4);
3060
3061		crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3062				(u8 *) & mask_pattern[0][0]);
3063
3064		writew(crc, &regs->PatternCRC[0]);
3065		writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3066	}
3067
3068	BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3069	BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3070
3071	writew(0x0FFF, &regs->WOLSRClr);
3072
3073	if (spd_dpx == SPD_DPX_1000_FULL)
3074		goto mac_done;
3075
3076	if (spd_dpx != SPD_DPX_AUTO)
3077		goto advertise_done;
3078
3079	if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3080		if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3081			MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
3082
3083		MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
3084	}
3085
3086	if (vptr->mii_status & VELOCITY_SPEED_1000)
3087		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
3088
3089advertise_done:
3090	BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3091
3092	{
3093		u8 GCR;
3094		GCR = readb(&regs->CHIPGCR);
3095		GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3096		writeb(GCR, &regs->CHIPGCR);
3097	}
3098
3099mac_done:
3100	BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3101	/* Turn on SWPTAG just before entering power mode */
3102	BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3103	/* Go to bed ..... */
3104	BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3105
3106	return 0;
3107}
3108
3109/**
3110 *	velocity_save_context	-	save registers
3111 *	@vptr: velocity
3112 *	@context: buffer for stored context
3113 *
3114 *	Retrieve the current configuration from the velocity hardware
3115 *	and stash it in the context structure, for use by the context
3116 *	restore functions. This allows us to save things we need across
3117 *	power down states
3118 */
3119static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
3120{
3121	struct mac_regs __iomem *regs = vptr->mac_regs;
3122	u16 i;
3123	u8 __iomem *ptr = (u8 __iomem *)regs;
3124
3125	for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3126		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3127
3128	for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3129		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3130
3131	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3132		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3133
3134}
3135
3136static int velocity_suspend(struct device *dev)
3137{
3138	struct net_device *netdev = dev_get_drvdata(dev);
3139	struct velocity_info *vptr = netdev_priv(netdev);
3140	unsigned long flags;
3141
3142	if (!netif_running(vptr->netdev))
3143		return 0;
3144
3145	netif_device_detach(vptr->netdev);
3146
3147	spin_lock_irqsave(&vptr->lock, flags);
3148	if (vptr->pdev)
3149		pci_save_state(vptr->pdev);
3150
3151	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3152		velocity_get_ip(vptr);
3153		velocity_save_context(vptr, &vptr->context);
3154		velocity_shutdown(vptr);
3155		velocity_set_wol(vptr);
3156		if (vptr->pdev)
3157			pci_enable_wake(vptr->pdev, PCI_D3hot, 1);
3158		velocity_set_power_state(vptr, PCI_D3hot);
3159	} else {
3160		velocity_save_context(vptr, &vptr->context);
3161		velocity_shutdown(vptr);
3162		if (vptr->pdev)
3163			pci_disable_device(vptr->pdev);
3164		velocity_set_power_state(vptr, PCI_D3hot);
3165	}
3166
3167	spin_unlock_irqrestore(&vptr->lock, flags);
3168	return 0;
3169}
3170
3171/**
3172 *	velocity_restore_context	-	restore registers
3173 *	@vptr: velocity
3174 *	@context: buffer for stored context
3175 *
3176 *	Reload the register configuration from the velocity context
3177 *	created by velocity_save_context.
3178 */
3179static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3180{
3181	struct mac_regs __iomem *regs = vptr->mac_regs;
3182	int i;
3183	u8 __iomem *ptr = (u8 __iomem *)regs;
3184
3185	for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3186		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3187
3188	/* Just skip cr0 */
3189	for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3190		/* Clear */
3191		writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3192		/* Set */
3193		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3194	}
3195
3196	for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3197		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3198
3199	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3200		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3201
3202	for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3203		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3204}
3205
3206static int velocity_resume(struct device *dev)
3207{
3208	struct net_device *netdev = dev_get_drvdata(dev);
3209	struct velocity_info *vptr = netdev_priv(netdev);
3210	unsigned long flags;
3211	int i;
3212
3213	if (!netif_running(vptr->netdev))
3214		return 0;
3215
3216	velocity_set_power_state(vptr, PCI_D0);
3217
3218	if (vptr->pdev) {
3219		pci_enable_wake(vptr->pdev, PCI_D0, 0);
3220		pci_restore_state(vptr->pdev);
3221	}
3222
3223	mac_wol_reset(vptr->mac_regs);
3224
3225	spin_lock_irqsave(&vptr->lock, flags);
3226	velocity_restore_context(vptr, &vptr->context);
3227	velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3228	mac_disable_int(vptr->mac_regs);
3229
3230	velocity_tx_srv(vptr);
3231
3232	for (i = 0; i < vptr->tx.numq; i++) {
3233		if (vptr->tx.used[i])
3234			mac_tx_queue_wake(vptr->mac_regs, i);
3235	}
3236
3237	mac_enable_int(vptr->mac_regs);
3238	spin_unlock_irqrestore(&vptr->lock, flags);
3239	netif_device_attach(vptr->netdev);
3240
3241	return 0;
3242}
3243#endif	/* CONFIG_PM_SLEEP */
3244
3245static SIMPLE_DEV_PM_OPS(velocity_pm_ops, velocity_suspend, velocity_resume);
3246
3247/*
3248 *	Definition for our device driver. The PCI layer interface
3249 *	uses this to handle all our card discover and plugging
3250 */
3251static struct pci_driver velocity_pci_driver = {
3252	.name		= VELOCITY_NAME,
3253	.id_table	= velocity_pci_id_table,
3254	.probe		= velocity_pci_probe,
3255	.remove		= velocity_pci_remove,
3256	.driver = {
3257		.pm = &velocity_pm_ops,
3258	},
3259};
3260
3261static struct platform_driver velocity_platform_driver = {
3262	.probe		= velocity_platform_probe,
3263	.remove		= velocity_platform_remove,
3264	.driver = {
3265		.name = "via-velocity",
3266		.of_match_table = velocity_of_ids,
3267		.pm = &velocity_pm_ops,
3268	},
3269};
3270
3271/**
3272 *	velocity_ethtool_up	-	pre hook for ethtool
3273 *	@dev: network device
3274 *
3275 *	Called before an ethtool operation. We need to make sure the
3276 *	chip is out of D3 state before we poke at it.
3277 */
3278static int velocity_ethtool_up(struct net_device *dev)
3279{
3280	struct velocity_info *vptr = netdev_priv(dev);
3281	if (!netif_running(dev))
3282		velocity_set_power_state(vptr, PCI_D0);
3283	return 0;
3284}
3285
3286/**
3287 *	velocity_ethtool_down	-	post hook for ethtool
3288 *	@dev: network device
3289 *
3290 *	Called after an ethtool operation. Restore the chip back to D3
3291 *	state if it isn't running.
3292 */
3293static void velocity_ethtool_down(struct net_device *dev)
3294{
3295	struct velocity_info *vptr = netdev_priv(dev);
3296	if (!netif_running(dev))
3297		velocity_set_power_state(vptr, PCI_D3hot);
3298}
3299
3300static int velocity_get_settings(struct net_device *dev,
3301				 struct ethtool_cmd *cmd)
3302{
3303	struct velocity_info *vptr = netdev_priv(dev);
3304	struct mac_regs __iomem *regs = vptr->mac_regs;
3305	u32 status;
3306	status = check_connection_type(vptr->mac_regs);
3307
3308	cmd->supported = SUPPORTED_TP |
3309			SUPPORTED_Autoneg |
3310			SUPPORTED_10baseT_Half |
3311			SUPPORTED_10baseT_Full |
3312			SUPPORTED_100baseT_Half |
3313			SUPPORTED_100baseT_Full |
3314			SUPPORTED_1000baseT_Half |
3315			SUPPORTED_1000baseT_Full;
3316
3317	cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
3318	if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
3319		cmd->advertising |=
3320			ADVERTISED_10baseT_Half |
3321			ADVERTISED_10baseT_Full |
3322			ADVERTISED_100baseT_Half |
3323			ADVERTISED_100baseT_Full |
3324			ADVERTISED_1000baseT_Half |
3325			ADVERTISED_1000baseT_Full;
3326	} else {
3327		switch (vptr->options.spd_dpx) {
3328		case SPD_DPX_1000_FULL:
3329			cmd->advertising |= ADVERTISED_1000baseT_Full;
3330			break;
3331		case SPD_DPX_100_HALF:
3332			cmd->advertising |= ADVERTISED_100baseT_Half;
3333			break;
3334		case SPD_DPX_100_FULL:
3335			cmd->advertising |= ADVERTISED_100baseT_Full;
3336			break;
3337		case SPD_DPX_10_HALF:
3338			cmd->advertising |= ADVERTISED_10baseT_Half;
3339			break;
3340		case SPD_DPX_10_FULL:
3341			cmd->advertising |= ADVERTISED_10baseT_Full;
3342			break;
3343		default:
3344			break;
3345		}
3346	}
3347
3348	if (status & VELOCITY_SPEED_1000)
3349		ethtool_cmd_speed_set(cmd, SPEED_1000);
3350	else if (status & VELOCITY_SPEED_100)
3351		ethtool_cmd_speed_set(cmd, SPEED_100);
3352	else
3353		ethtool_cmd_speed_set(cmd, SPEED_10);
3354
3355	cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3356	cmd->port = PORT_TP;
3357	cmd->transceiver = XCVR_INTERNAL;
3358	cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3359
3360	if (status & VELOCITY_DUPLEX_FULL)
3361		cmd->duplex = DUPLEX_FULL;
3362	else
3363		cmd->duplex = DUPLEX_HALF;
3364
3365	return 0;
3366}
3367
3368static int velocity_set_settings(struct net_device *dev,
3369				 struct ethtool_cmd *cmd)
3370{
3371	struct velocity_info *vptr = netdev_priv(dev);
3372	u32 speed = ethtool_cmd_speed(cmd);
3373	u32 curr_status;
3374	u32 new_status = 0;
3375	int ret = 0;
3376
3377	curr_status = check_connection_type(vptr->mac_regs);
3378	curr_status &= (~VELOCITY_LINK_FAIL);
3379
3380	new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3381	new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0);
3382	new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3383	new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3384	new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3385
3386	if ((new_status & VELOCITY_AUTONEG_ENABLE) &&
3387	    (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) {
3388		ret = -EINVAL;
3389	} else {
3390		enum speed_opt spd_dpx;
3391
3392		if (new_status & VELOCITY_AUTONEG_ENABLE)
3393			spd_dpx = SPD_DPX_AUTO;
3394		else if ((new_status & VELOCITY_SPEED_1000) &&
3395			 (new_status & VELOCITY_DUPLEX_FULL)) {
3396			spd_dpx = SPD_DPX_1000_FULL;
3397		} else if (new_status & VELOCITY_SPEED_100)
3398			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3399				SPD_DPX_100_FULL : SPD_DPX_100_HALF;
3400		else if (new_status & VELOCITY_SPEED_10)
3401			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3402				SPD_DPX_10_FULL : SPD_DPX_10_HALF;
3403		else
3404			return -EOPNOTSUPP;
3405
3406		vptr->options.spd_dpx = spd_dpx;
3407
3408		velocity_set_media_mode(vptr, new_status);
3409	}
3410
3411	return ret;
3412}
3413
3414static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3415{
3416	struct velocity_info *vptr = netdev_priv(dev);
3417
3418	strlcpy(info->driver, VELOCITY_NAME, sizeof(info->driver));
3419	strlcpy(info->version, VELOCITY_VERSION, sizeof(info->version));
3420	if (vptr->pdev)
3421		strlcpy(info->bus_info, pci_name(vptr->pdev),
3422						sizeof(info->bus_info));
3423	else
3424		strlcpy(info->bus_info, "platform", sizeof(info->bus_info));
3425}
3426
3427static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3428{
3429	struct velocity_info *vptr = netdev_priv(dev);
3430	wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3431	wol->wolopts |= WAKE_MAGIC;
3432	/*
3433	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
3434		   wol.wolopts|=WAKE_PHY;
3435			 */
3436	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3437		wol->wolopts |= WAKE_UCAST;
3438	if (vptr->wol_opts & VELOCITY_WOL_ARP)
3439		wol->wolopts |= WAKE_ARP;
3440	memcpy(&wol->sopass, vptr->wol_passwd, 6);
3441}
3442
3443static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3444{
3445	struct velocity_info *vptr = netdev_priv(dev);
3446
3447	if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3448		return -EFAULT;
3449	vptr->wol_opts = VELOCITY_WOL_MAGIC;
3450
3451	/*
3452	   if (wol.wolopts & WAKE_PHY) {
3453	   vptr->wol_opts|=VELOCITY_WOL_PHY;
3454	   vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3455	   }
3456	 */
3457
3458	if (wol->wolopts & WAKE_MAGIC) {
3459		vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3460		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3461	}
3462	if (wol->wolopts & WAKE_UCAST) {
3463		vptr->wol_opts |= VELOCITY_WOL_UCAST;
3464		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3465	}
3466	if (wol->wolopts & WAKE_ARP) {
3467		vptr->wol_opts |= VELOCITY_WOL_ARP;
3468		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3469	}
3470	memcpy(vptr->wol_passwd, wol->sopass, 6);
3471	return 0;
3472}
3473
3474static u32 velocity_get_msglevel(struct net_device *dev)
3475{
3476	return msglevel;
3477}
3478
3479static void velocity_set_msglevel(struct net_device *dev, u32 value)
3480{
3481	 msglevel = value;
3482}
3483
3484static int get_pending_timer_val(int val)
3485{
3486	int mult_bits = val >> 6;
3487	int mult = 1;
3488
3489	switch (mult_bits)
3490	{
3491	case 1:
3492		mult = 4; break;
3493	case 2:
3494		mult = 16; break;
3495	case 3:
3496		mult = 64; break;
3497	case 0:
3498	default:
3499		break;
3500	}
3501
3502	return (val & 0x3f) * mult;
3503}
3504
3505static void set_pending_timer_val(int *val, u32 us)
3506{
3507	u8 mult = 0;
3508	u8 shift = 0;
3509
3510	if (us >= 0x3f) {
3511		mult = 1; /* mult with 4 */
3512		shift = 2;
3513	}
3514	if (us >= 0x3f * 4) {
3515		mult = 2; /* mult with 16 */
3516		shift = 4;
3517	}
3518	if (us >= 0x3f * 16) {
3519		mult = 3; /* mult with 64 */
3520		shift = 6;
3521	}
3522
3523	*val = (mult << 6) | ((us >> shift) & 0x3f);
3524}
3525
3526
3527static int velocity_get_coalesce(struct net_device *dev,
3528		struct ethtool_coalesce *ecmd)
3529{
3530	struct velocity_info *vptr = netdev_priv(dev);
3531
3532	ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3533	ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3534
3535	ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3536	ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3537
3538	return 0;
3539}
3540
3541static int velocity_set_coalesce(struct net_device *dev,
3542		struct ethtool_coalesce *ecmd)
3543{
3544	struct velocity_info *vptr = netdev_priv(dev);
3545	int max_us = 0x3f * 64;
3546	unsigned long flags;
3547
3548	/* 6 bits of  */
3549	if (ecmd->tx_coalesce_usecs > max_us)
3550		return -EINVAL;
3551	if (ecmd->rx_coalesce_usecs > max_us)
3552		return -EINVAL;
3553
3554	if (ecmd->tx_max_coalesced_frames > 0xff)
3555		return -EINVAL;
3556	if (ecmd->rx_max_coalesced_frames > 0xff)
3557		return -EINVAL;
3558
3559	vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3560	vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3561
3562	set_pending_timer_val(&vptr->options.rxqueue_timer,
3563			ecmd->rx_coalesce_usecs);
3564	set_pending_timer_val(&vptr->options.txqueue_timer,
3565			ecmd->tx_coalesce_usecs);
3566
3567	/* Setup the interrupt suppression and queue timers */
3568	spin_lock_irqsave(&vptr->lock, flags);
3569	mac_disable_int(vptr->mac_regs);
3570	setup_adaptive_interrupts(vptr);
3571	setup_queue_timers(vptr);
3572
3573	mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3574	mac_clear_isr(vptr->mac_regs);
3575	mac_enable_int(vptr->mac_regs);
3576	spin_unlock_irqrestore(&vptr->lock, flags);
3577
3578	return 0;
3579}
3580
3581static const char velocity_gstrings[][ETH_GSTRING_LEN] = {
3582	"rx_all",
3583	"rx_ok",
3584	"tx_ok",
3585	"rx_error",
3586	"rx_runt_ok",
3587	"rx_runt_err",
3588	"rx_64",
3589	"tx_64",
3590	"rx_65_to_127",
3591	"tx_65_to_127",
3592	"rx_128_to_255",
3593	"tx_128_to_255",
3594	"rx_256_to_511",
3595	"tx_256_to_511",
3596	"rx_512_to_1023",
3597	"tx_512_to_1023",
3598	"rx_1024_to_1518",
3599	"tx_1024_to_1518",
3600	"tx_ether_collisions",
3601	"rx_crc_errors",
3602	"rx_jumbo",
3603	"tx_jumbo",
3604	"rx_mac_control_frames",
3605	"tx_mac_control_frames",
3606	"rx_frame_alignement_errors",
3607	"rx_long_ok",
3608	"rx_long_err",
3609	"tx_sqe_errors",
3610	"rx_no_buf",
3611	"rx_symbol_errors",
3612	"in_range_length_errors",
3613	"late_collisions"
3614};
3615
3616static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data)
3617{
3618	switch (sset) {
3619	case ETH_SS_STATS:
3620		memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings));
3621		break;
3622	}
3623}
3624
3625static int velocity_get_sset_count(struct net_device *dev, int sset)
3626{
3627	switch (sset) {
3628	case ETH_SS_STATS:
3629		return ARRAY_SIZE(velocity_gstrings);
3630	default:
3631		return -EOPNOTSUPP;
3632	}
3633}
3634
3635static void velocity_get_ethtool_stats(struct net_device *dev,
3636				       struct ethtool_stats *stats, u64 *data)
3637{
3638	if (netif_running(dev)) {
3639		struct velocity_info *vptr = netdev_priv(dev);
3640		u32 *p = vptr->mib_counter;
3641		int i;
3642
3643		spin_lock_irq(&vptr->lock);
3644		velocity_update_hw_mibs(vptr);
3645		spin_unlock_irq(&vptr->lock);
3646
3647		for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++)
3648			*data++ = *p++;
3649	}
3650}
3651
3652static const struct ethtool_ops velocity_ethtool_ops = {
3653	.get_settings		= velocity_get_settings,
3654	.set_settings		= velocity_set_settings,
3655	.get_drvinfo		= velocity_get_drvinfo,
3656	.get_wol		= velocity_ethtool_get_wol,
3657	.set_wol		= velocity_ethtool_set_wol,
3658	.get_msglevel		= velocity_get_msglevel,
3659	.set_msglevel		= velocity_set_msglevel,
3660	.get_link		= velocity_get_link,
3661	.get_strings		= velocity_get_strings,
3662	.get_sset_count		= velocity_get_sset_count,
3663	.get_ethtool_stats	= velocity_get_ethtool_stats,
3664	.get_coalesce		= velocity_get_coalesce,
3665	.set_coalesce		= velocity_set_coalesce,
3666	.begin			= velocity_ethtool_up,
3667	.complete		= velocity_ethtool_down
3668};
3669
3670#if defined(CONFIG_PM) && defined(CONFIG_INET)
3671static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3672{
3673	struct in_ifaddr *ifa = ptr;
3674	struct net_device *dev = ifa->ifa_dev->dev;
3675
3676	if (dev_net(dev) == &init_net &&
3677	    dev->netdev_ops == &velocity_netdev_ops)
3678		velocity_get_ip(netdev_priv(dev));
3679
3680	return NOTIFY_DONE;
3681}
3682
3683static struct notifier_block velocity_inetaddr_notifier = {
3684	.notifier_call	= velocity_netdev_event,
3685};
3686
3687static void velocity_register_notifier(void)
3688{
3689	register_inetaddr_notifier(&velocity_inetaddr_notifier);
3690}
3691
3692static void velocity_unregister_notifier(void)
3693{
3694	unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3695}
3696
3697#else
3698
3699#define velocity_register_notifier()	do {} while (0)
3700#define velocity_unregister_notifier()	do {} while (0)
3701
3702#endif	/* defined(CONFIG_PM) && defined(CONFIG_INET) */
3703
3704/**
3705 *	velocity_init_module	-	load time function
3706 *
3707 *	Called when the velocity module is loaded. The PCI driver
3708 *	is registered with the PCI layer, and in turn will call
3709 *	the probe functions for each velocity adapter installed
3710 *	in the system.
3711 */
3712static int __init velocity_init_module(void)
3713{
3714	int ret_pci, ret_platform;
3715
3716	velocity_register_notifier();
3717
3718	ret_pci = pci_register_driver(&velocity_pci_driver);
3719	ret_platform = platform_driver_register(&velocity_platform_driver);
3720
3721	/* if both_registers failed, remove the notifier */
3722	if ((ret_pci < 0) && (ret_platform < 0)) {
3723		velocity_unregister_notifier();
3724		return ret_pci;
3725	}
3726
3727	return 0;
3728}
3729
3730/**
3731 *	velocity_cleanup	-	module unload
3732 *
3733 *	When the velocity hardware is unloaded this function is called.
3734 *	It will clean up the notifiers and the unregister the PCI
3735 *	driver interface for this hardware. This in turn cleans up
3736 *	all discovered interfaces before returning from the function
3737 */
3738static void __exit velocity_cleanup_module(void)
3739{
3740	velocity_unregister_notifier();
3741
3742	pci_unregister_driver(&velocity_pci_driver);
3743	platform_driver_unregister(&velocity_platform_driver);
3744}
3745
3746module_init(velocity_init_module);
3747module_exit(velocity_cleanup_module);