Linux Audio

Check our new training course

Loading...
   1/*
   2 * This code is derived from the VIA reference driver (copyright message
   3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
   4 * addition to the Linux kernel.
   5 *
   6 * The code has been merged into one source file, cleaned up to follow
   7 * Linux coding style,  ported to the Linux 2.6 kernel tree and cleaned
   8 * for 64bit hardware platforms.
   9 *
  10 * TODO
  11 *	rx_copybreak/alignment
  12 *	More testing
  13 *
  14 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
  15 * Additional fixes and clean up: Francois Romieu
  16 *
  17 * This source has not been verified for use in safety critical systems.
  18 *
  19 * Please direct queries about the revamped driver to the linux-kernel
  20 * list not VIA.
  21 *
  22 * Original code:
  23 *
  24 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
  25 * All rights reserved.
  26 *
  27 * This software may be redistributed and/or modified under
  28 * the terms of the GNU General Public License as published by the Free
  29 * Software Foundation; either version 2 of the License, or
  30 * any later version.
  31 *
  32 * This program is distributed in the hope that it will be useful, but
  33 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  34 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  35 * for more details.
  36 *
  37 * Author: Chuang Liang-Shing, AJ Jiang
  38 *
  39 * Date: Jan 24, 2003
  40 *
  41 * MODULE_LICENSE("GPL");
  42 *
  43 */
  44
  45#include <linux/module.h>
  46#include <linux/types.h>
  47#include <linux/bitops.h>
  48#include <linux/init.h>
  49#include <linux/mm.h>
  50#include <linux/errno.h>
  51#include <linux/ioport.h>
  52#include <linux/pci.h>
  53#include <linux/kernel.h>
  54#include <linux/netdevice.h>
  55#include <linux/etherdevice.h>
  56#include <linux/skbuff.h>
  57#include <linux/delay.h>
  58#include <linux/timer.h>
  59#include <linux/slab.h>
  60#include <linux/interrupt.h>
  61#include <linux/string.h>
  62#include <linux/wait.h>
  63#include <linux/io.h>
  64#include <linux/if.h>
  65#include <linux/uaccess.h>
  66#include <linux/proc_fs.h>
  67#include <linux/inetdevice.h>
  68#include <linux/reboot.h>
  69#include <linux/ethtool.h>
  70#include <linux/mii.h>
  71#include <linux/in.h>
  72#include <linux/if_arp.h>
  73#include <linux/if_vlan.h>
  74#include <linux/ip.h>
  75#include <linux/tcp.h>
  76#include <linux/udp.h>
  77#include <linux/crc-ccitt.h>
  78#include <linux/crc32.h>
  79
  80#include "via-velocity.h"
  81
  82
  83static int velocity_nics;
  84static int msglevel = MSG_LEVEL_INFO;
  85
  86/**
  87 *	mac_get_cam_mask	-	Read a CAM mask
  88 *	@regs: register block for this velocity
  89 *	@mask: buffer to store mask
  90 *
  91 *	Fetch the mask bits of the selected CAM and store them into the
  92 *	provided mask buffer.
  93 */
  94static void mac_get_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
  95{
  96	int i;
  97
  98	/* Select CAM mask */
  99	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
 100
 101	writeb(0, &regs->CAMADDR);
 102
 103	/* read mask */
 104	for (i = 0; i < 8; i++)
 105		*mask++ = readb(&(regs->MARCAM[i]));
 106
 107	/* disable CAMEN */
 108	writeb(0, &regs->CAMADDR);
 109
 110	/* Select mar */
 111	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
 112}
 113
 114/**
 115 *	mac_set_cam_mask	-	Set a CAM mask
 116 *	@regs: register block for this velocity
 117 *	@mask: CAM mask to load
 118 *
 119 *	Store a new mask into a CAM
 120 */
 121static void mac_set_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
 122{
 123	int i;
 124	/* Select CAM mask */
 125	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
 126
 127	writeb(CAMADDR_CAMEN, &regs->CAMADDR);
 128
 129	for (i = 0; i < 8; i++)
 130		writeb(*mask++, &(regs->MARCAM[i]));
 131
 132	/* disable CAMEN */
 133	writeb(0, &regs->CAMADDR);
 134
 135	/* Select mar */
 136	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
 137}
 138
 139static void mac_set_vlan_cam_mask(struct mac_regs __iomem *regs, u8 *mask)
 140{
 141	int i;
 142	/* Select CAM mask */
 143	BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
 144
 145	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
 146
 147	for (i = 0; i < 8; i++)
 148		writeb(*mask++, &(regs->MARCAM[i]));
 149
 150	/* disable CAMEN */
 151	writeb(0, &regs->CAMADDR);
 152
 153	/* Select mar */
 154	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
 155}
 156
 157/**
 158 *	mac_set_cam	-	set CAM data
 159 *	@regs: register block of this velocity
 160 *	@idx: Cam index
 161 *	@addr: 2 or 6 bytes of CAM data
 162 *
 163 *	Load an address or vlan tag into a CAM
 164 */
 165static void mac_set_cam(struct mac_regs __iomem *regs, int idx, const u8 *addr)
 166{
 167	int i;
 168
 169	/* Select CAM mask */
 170	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
 171
 172	idx &= (64 - 1);
 173
 174	writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
 175
 176	for (i = 0; i < 6; i++)
 177		writeb(*addr++, &(regs->MARCAM[i]));
 178
 179	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
 180
 181	udelay(10);
 182
 183	writeb(0, &regs->CAMADDR);
 184
 185	/* Select mar */
 186	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
 187}
 188
 189static void mac_set_vlan_cam(struct mac_regs __iomem *regs, int idx,
 190			     const u8 *addr)
 191{
 192
 193	/* Select CAM mask */
 194	BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
 195
 196	idx &= (64 - 1);
 197
 198	writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
 199	writew(*((u16 *) addr), &regs->MARCAM[0]);
 200
 201	BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
 202
 203	udelay(10);
 204
 205	writeb(0, &regs->CAMADDR);
 206
 207	/* Select mar */
 208	BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
 209}
 210
 211
 212/**
 213 *	mac_wol_reset	-	reset WOL after exiting low power
 214 *	@regs: register block of this velocity
 215 *
 216 *	Called after we drop out of wake on lan mode in order to
 217 *	reset the Wake on lan features. This function doesn't restore
 218 *	the rest of the logic from the result of sleep/wakeup
 219 */
 220static void mac_wol_reset(struct mac_regs __iomem *regs)
 221{
 222
 223	/* Turn off SWPTAG right after leaving power mode */
 224	BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
 225	/* clear sticky bits */
 226	BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
 227
 228	BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
 229	BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
 230	/* disable force PME-enable */
 231	writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
 232	/* disable power-event config bit */
 233	writew(0xFFFF, &regs->WOLCRClr);
 234	/* clear power status */
 235	writew(0xFFFF, &regs->WOLSRClr);
 236}
 237
 238static const struct ethtool_ops velocity_ethtool_ops;
 239
 240/*
 241    Define module options
 242*/
 243
 244MODULE_AUTHOR("VIA Networking Technologies, Inc.");
 245MODULE_LICENSE("GPL");
 246MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
 247
 248#define VELOCITY_PARAM(N, D) \
 249	static int N[MAX_UNITS] = OPTION_DEFAULT;\
 250	module_param_array(N, int, NULL, 0); \
 251	MODULE_PARM_DESC(N, D);
 252
 253#define RX_DESC_MIN     64
 254#define RX_DESC_MAX     255
 255#define RX_DESC_DEF     64
 256VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
 257
 258#define TX_DESC_MIN     16
 259#define TX_DESC_MAX     256
 260#define TX_DESC_DEF     64
 261VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
 262
 263#define RX_THRESH_MIN   0
 264#define RX_THRESH_MAX   3
 265#define RX_THRESH_DEF   0
 266/* rx_thresh[] is used for controlling the receive fifo threshold.
 267   0: indicate the rxfifo threshold is 128 bytes.
 268   1: indicate the rxfifo threshold is 512 bytes.
 269   2: indicate the rxfifo threshold is 1024 bytes.
 270   3: indicate the rxfifo threshold is store & forward.
 271*/
 272VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
 273
 274#define DMA_LENGTH_MIN  0
 275#define DMA_LENGTH_MAX  7
 276#define DMA_LENGTH_DEF  6
 277
 278/* DMA_length[] is used for controlling the DMA length
 279   0: 8 DWORDs
 280   1: 16 DWORDs
 281   2: 32 DWORDs
 282   3: 64 DWORDs
 283   4: 128 DWORDs
 284   5: 256 DWORDs
 285   6: SF(flush till emply)
 286   7: SF(flush till emply)
 287*/
 288VELOCITY_PARAM(DMA_length, "DMA length");
 289
 290#define IP_ALIG_DEF     0
 291/* IP_byte_align[] is used for IP header DWORD byte aligned
 292   0: indicate the IP header won't be DWORD byte aligned.(Default) .
 293   1: indicate the IP header will be DWORD byte aligned.
 294      In some environment, the IP header should be DWORD byte aligned,
 295      or the packet will be droped when we receive it. (eg: IPVS)
 296*/
 297VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
 298
 299#define FLOW_CNTL_DEF   1
 300#define FLOW_CNTL_MIN   1
 301#define FLOW_CNTL_MAX   5
 302
 303/* flow_control[] is used for setting the flow control ability of NIC.
 304   1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
 305   2: enable TX flow control.
 306   3: enable RX flow control.
 307   4: enable RX/TX flow control.
 308   5: disable
 309*/
 310VELOCITY_PARAM(flow_control, "Enable flow control ability");
 311
 312#define MED_LNK_DEF 0
 313#define MED_LNK_MIN 0
 314#define MED_LNK_MAX 5
 315/* speed_duplex[] is used for setting the speed and duplex mode of NIC.
 316   0: indicate autonegotiation for both speed and duplex mode
 317   1: indicate 100Mbps half duplex mode
 318   2: indicate 100Mbps full duplex mode
 319   3: indicate 10Mbps half duplex mode
 320   4: indicate 10Mbps full duplex mode
 321   5: indicate 1000Mbps full duplex mode
 322
 323   Note:
 324   if EEPROM have been set to the force mode, this option is ignored
 325   by driver.
 326*/
 327VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
 328
 329#define VAL_PKT_LEN_DEF     0
 330/* ValPktLen[] is used for setting the checksum offload ability of NIC.
 331   0: Receive frame with invalid layer 2 length (Default)
 332   1: Drop frame with invalid layer 2 length
 333*/
 334VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
 335
 336#define WOL_OPT_DEF     0
 337#define WOL_OPT_MIN     0
 338#define WOL_OPT_MAX     7
 339/* wol_opts[] is used for controlling wake on lan behavior.
 340   0: Wake up if recevied a magic packet. (Default)
 341   1: Wake up if link status is on/off.
 342   2: Wake up if recevied an arp packet.
 343   4: Wake up if recevied any unicast packet.
 344   Those value can be sumed up to support more than one option.
 345*/
 346VELOCITY_PARAM(wol_opts, "Wake On Lan options");
 347
 348static int rx_copybreak = 200;
 349module_param(rx_copybreak, int, 0644);
 350MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
 351
 352/*
 353 *	Internal board variants. At the moment we have only one
 354 */
 355static struct velocity_info_tbl chip_info_table[] = {
 356	{CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
 357	{ }
 358};
 359
 360/*
 361 *	Describe the PCI device identifiers that we support in this
 362 *	device driver. Used for hotplug autoloading.
 363 */
 364static DEFINE_PCI_DEVICE_TABLE(velocity_id_table) = {
 365	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
 366	{ }
 367};
 368
 369MODULE_DEVICE_TABLE(pci, velocity_id_table);
 370
 371/**
 372 *	get_chip_name	- 	identifier to name
 373 *	@id: chip identifier
 374 *
 375 *	Given a chip identifier return a suitable description. Returns
 376 *	a pointer a static string valid while the driver is loaded.
 377 */
 378static const char __devinit *get_chip_name(enum chip_type chip_id)
 379{
 380	int i;
 381	for (i = 0; chip_info_table[i].name != NULL; i++)
 382		if (chip_info_table[i].chip_id == chip_id)
 383			break;
 384	return chip_info_table[i].name;
 385}
 386
 387/**
 388 *	velocity_remove1	-	device unplug
 389 *	@pdev: PCI device being removed
 390 *
 391 *	Device unload callback. Called on an unplug or on module
 392 *	unload for each active device that is present. Disconnects
 393 *	the device from the network layer and frees all the resources
 394 */
 395static void __devexit velocity_remove1(struct pci_dev *pdev)
 396{
 397	struct net_device *dev = pci_get_drvdata(pdev);
 398	struct velocity_info *vptr = netdev_priv(dev);
 399
 400	unregister_netdev(dev);
 401	iounmap(vptr->mac_regs);
 402	pci_release_regions(pdev);
 403	pci_disable_device(pdev);
 404	pci_set_drvdata(pdev, NULL);
 405	free_netdev(dev);
 406
 407	velocity_nics--;
 408}
 409
 410/**
 411 *	velocity_set_int_opt	-	parser for integer options
 412 *	@opt: pointer to option value
 413 *	@val: value the user requested (or -1 for default)
 414 *	@min: lowest value allowed
 415 *	@max: highest value allowed
 416 *	@def: default value
 417 *	@name: property name
 418 *	@dev: device name
 419 *
 420 *	Set an integer property in the module options. This function does
 421 *	all the verification and checking as well as reporting so that
 422 *	we don't duplicate code for each option.
 423 */
 424static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, const char *devname)
 425{
 426	if (val == -1)
 427		*opt = def;
 428	else if (val < min || val > max) {
 429		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
 430					devname, name, min, max);
 431		*opt = def;
 432	} else {
 433		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
 434					devname, name, val);
 435		*opt = val;
 436	}
 437}
 438
 439/**
 440 *	velocity_set_bool_opt	-	parser for boolean options
 441 *	@opt: pointer to option value
 442 *	@val: value the user requested (or -1 for default)
 443 *	@def: default value (yes/no)
 444 *	@flag: numeric value to set for true.
 445 *	@name: property name
 446 *	@dev: device name
 447 *
 448 *	Set a boolean property in the module options. This function does
 449 *	all the verification and checking as well as reporting so that
 450 *	we don't duplicate code for each option.
 451 */
 452static void __devinit velocity_set_bool_opt(u32 *opt, int val, int def, u32 flag, char *name, const char *devname)
 453{
 454	(*opt) &= (~flag);
 455	if (val == -1)
 456		*opt |= (def ? flag : 0);
 457	else if (val < 0 || val > 1) {
 458		printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
 459			devname, name);
 460		*opt |= (def ? flag : 0);
 461	} else {
 462		printk(KERN_INFO "%s: set parameter %s to %s\n",
 463			devname, name, val ? "TRUE" : "FALSE");
 464		*opt |= (val ? flag : 0);
 465	}
 466}
 467
 468/**
 469 *	velocity_get_options	-	set options on device
 470 *	@opts: option structure for the device
 471 *	@index: index of option to use in module options array
 472 *	@devname: device name
 473 *
 474 *	Turn the module and command options into a single structure
 475 *	for the current device
 476 */
 477static void __devinit velocity_get_options(struct velocity_opt *opts, int index, const char *devname)
 478{
 479
 480	velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
 481	velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
 482	velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
 483	velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
 484
 485	velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
 486	velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
 487	velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
 488	velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
 489	velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
 490	opts->numrx = (opts->numrx & ~3);
 491}
 492
 493/**
 494 *	velocity_init_cam_filter	-	initialise CAM
 495 *	@vptr: velocity to program
 496 *
 497 *	Initialize the content addressable memory used for filters. Load
 498 *	appropriately according to the presence of VLAN
 499 */
 500static void velocity_init_cam_filter(struct velocity_info *vptr)
 501{
 502	struct mac_regs __iomem *regs = vptr->mac_regs;
 503	unsigned int vid, i = 0;
 504
 505	/* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
 506	WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
 507	WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
 508
 509	/* Disable all CAMs */
 510	memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
 511	memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
 512	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
 513	mac_set_cam_mask(regs, vptr->mCAMmask);
 514
 515	/* Enable VCAMs */
 516	for_each_set_bit(vid, vptr->active_vlans, VLAN_N_VID) {
 517		mac_set_vlan_cam(regs, i, (u8 *) &vid);
 518		vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
 519		if (++i >= VCAM_SIZE)
 520			break;
 521	}
 522	mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
 523}
 524
 525static int velocity_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
 526{
 527	struct velocity_info *vptr = netdev_priv(dev);
 528
 529	spin_lock_irq(&vptr->lock);
 530	set_bit(vid, vptr->active_vlans);
 531	velocity_init_cam_filter(vptr);
 532	spin_unlock_irq(&vptr->lock);
 533	return 0;
 534}
 535
 536static int velocity_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
 537{
 538	struct velocity_info *vptr = netdev_priv(dev);
 539
 540	spin_lock_irq(&vptr->lock);
 541	clear_bit(vid, vptr->active_vlans);
 542	velocity_init_cam_filter(vptr);
 543	spin_unlock_irq(&vptr->lock);
 544	return 0;
 545}
 546
 547static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
 548{
 549	vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
 550}
 551
 552/**
 553 *	velocity_rx_reset	-	handle a receive reset
 554 *	@vptr: velocity we are resetting
 555 *
 556 *	Reset the ownership and status for the receive ring side.
 557 *	Hand all the receive queue to the NIC.
 558 */
 559static void velocity_rx_reset(struct velocity_info *vptr)
 560{
 561
 562	struct mac_regs __iomem *regs = vptr->mac_regs;
 563	int i;
 564
 565	velocity_init_rx_ring_indexes(vptr);
 566
 567	/*
 568	 *	Init state, all RD entries belong to the NIC
 569	 */
 570	for (i = 0; i < vptr->options.numrx; ++i)
 571		vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
 572
 573	writew(vptr->options.numrx, &regs->RBRDU);
 574	writel(vptr->rx.pool_dma, &regs->RDBaseLo);
 575	writew(0, &regs->RDIdx);
 576	writew(vptr->options.numrx - 1, &regs->RDCSize);
 577}
 578
 579/**
 580 *	velocity_get_opt_media_mode	-	get media selection
 581 *	@vptr: velocity adapter
 582 *
 583 *	Get the media mode stored in EEPROM or module options and load
 584 *	mii_status accordingly. The requested link state information
 585 *	is also returned.
 586 */
 587static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
 588{
 589	u32 status = 0;
 590
 591	switch (vptr->options.spd_dpx) {
 592	case SPD_DPX_AUTO:
 593		status = VELOCITY_AUTONEG_ENABLE;
 594		break;
 595	case SPD_DPX_100_FULL:
 596		status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
 597		break;
 598	case SPD_DPX_10_FULL:
 599		status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
 600		break;
 601	case SPD_DPX_100_HALF:
 602		status = VELOCITY_SPEED_100;
 603		break;
 604	case SPD_DPX_10_HALF:
 605		status = VELOCITY_SPEED_10;
 606		break;
 607	case SPD_DPX_1000_FULL:
 608		status = VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
 609		break;
 610	}
 611	vptr->mii_status = status;
 612	return status;
 613}
 614
 615/**
 616 *	safe_disable_mii_autopoll	-	autopoll off
 617 *	@regs: velocity registers
 618 *
 619 *	Turn off the autopoll and wait for it to disable on the chip
 620 */
 621static void safe_disable_mii_autopoll(struct mac_regs __iomem *regs)
 622{
 623	u16 ww;
 624
 625	/*  turn off MAUTO */
 626	writeb(0, &regs->MIICR);
 627	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
 628		udelay(1);
 629		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
 630			break;
 631	}
 632}
 633
 634/**
 635 *	enable_mii_autopoll	-	turn on autopolling
 636 *	@regs: velocity registers
 637 *
 638 *	Enable the MII link status autopoll feature on the Velocity
 639 *	hardware. Wait for it to enable.
 640 */
 641static void enable_mii_autopoll(struct mac_regs __iomem *regs)
 642{
 643	int ii;
 644
 645	writeb(0, &(regs->MIICR));
 646	writeb(MIIADR_SWMPL, &regs->MIIADR);
 647
 648	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
 649		udelay(1);
 650		if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
 651			break;
 652	}
 653
 654	writeb(MIICR_MAUTO, &regs->MIICR);
 655
 656	for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
 657		udelay(1);
 658		if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
 659			break;
 660	}
 661
 662}
 663
 664/**
 665 *	velocity_mii_read	-	read MII data
 666 *	@regs: velocity registers
 667 *	@index: MII register index
 668 *	@data: buffer for received data
 669 *
 670 *	Perform a single read of an MII 16bit register. Returns zero
 671 *	on success or -ETIMEDOUT if the PHY did not respond.
 672 */
 673static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
 674{
 675	u16 ww;
 676
 677	/*
 678	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
 679	 */
 680	safe_disable_mii_autopoll(regs);
 681
 682	writeb(index, &regs->MIIADR);
 683
 684	BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
 685
 686	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
 687		if (!(readb(&regs->MIICR) & MIICR_RCMD))
 688			break;
 689	}
 690
 691	*data = readw(&regs->MIIDATA);
 692
 693	enable_mii_autopoll(regs);
 694	if (ww == W_MAX_TIMEOUT)
 695		return -ETIMEDOUT;
 696	return 0;
 697}
 698
 699/**
 700 *	mii_check_media_mode	-	check media state
 701 *	@regs: velocity registers
 702 *
 703 *	Check the current MII status and determine the link status
 704 *	accordingly
 705 */
 706static u32 mii_check_media_mode(struct mac_regs __iomem *regs)
 707{
 708	u32 status = 0;
 709	u16 ANAR;
 710
 711	if (!MII_REG_BITS_IS_ON(BMSR_LSTATUS, MII_BMSR, regs))
 712		status |= VELOCITY_LINK_FAIL;
 713
 714	if (MII_REG_BITS_IS_ON(ADVERTISE_1000FULL, MII_CTRL1000, regs))
 715		status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
 716	else if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF, MII_CTRL1000, regs))
 717		status |= (VELOCITY_SPEED_1000);
 718	else {
 719		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
 720		if (ANAR & ADVERTISE_100FULL)
 721			status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
 722		else if (ANAR & ADVERTISE_100HALF)
 723			status |= VELOCITY_SPEED_100;
 724		else if (ANAR & ADVERTISE_10FULL)
 725			status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
 726		else
 727			status |= (VELOCITY_SPEED_10);
 728	}
 729
 730	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
 731		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
 732		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
 733		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
 734			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
 735				status |= VELOCITY_AUTONEG_ENABLE;
 736		}
 737	}
 738
 739	return status;
 740}
 741
 742/**
 743 *	velocity_mii_write	-	write MII data
 744 *	@regs: velocity registers
 745 *	@index: MII register index
 746 *	@data: 16bit data for the MII register
 747 *
 748 *	Perform a single write to an MII 16bit register. Returns zero
 749 *	on success or -ETIMEDOUT if the PHY did not respond.
 750 */
 751static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
 752{
 753	u16 ww;
 754
 755	/*
 756	 *	Disable MIICR_MAUTO, so that mii addr can be set normally
 757	 */
 758	safe_disable_mii_autopoll(regs);
 759
 760	/* MII reg offset */
 761	writeb(mii_addr, &regs->MIIADR);
 762	/* set MII data */
 763	writew(data, &regs->MIIDATA);
 764
 765	/* turn on MIICR_WCMD */
 766	BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
 767
 768	/* W_MAX_TIMEOUT is the timeout period */
 769	for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
 770		udelay(5);
 771		if (!(readb(&regs->MIICR) & MIICR_WCMD))
 772			break;
 773	}
 774	enable_mii_autopoll(regs);
 775
 776	if (ww == W_MAX_TIMEOUT)
 777		return -ETIMEDOUT;
 778	return 0;
 779}
 780
 781/**
 782 *	set_mii_flow_control	-	flow control setup
 783 *	@vptr: velocity interface
 784 *
 785 *	Set up the flow control on this interface according to
 786 *	the supplied user/eeprom options.
 787 */
 788static void set_mii_flow_control(struct velocity_info *vptr)
 789{
 790	/*Enable or Disable PAUSE in ANAR */
 791	switch (vptr->options.flow_cntl) {
 792	case FLOW_CNTL_TX:
 793		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
 794		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
 795		break;
 796
 797	case FLOW_CNTL_RX:
 798		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
 799		MII_REG_BITS_ON(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
 800		break;
 801
 802	case FLOW_CNTL_TX_RX:
 803		MII_REG_BITS_ON(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
 804		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
 805		break;
 806
 807	case FLOW_CNTL_DISABLE:
 808		MII_REG_BITS_OFF(ADVERTISE_PAUSE_CAP, MII_ADVERTISE, vptr->mac_regs);
 809		MII_REG_BITS_OFF(ADVERTISE_PAUSE_ASYM, MII_ADVERTISE, vptr->mac_regs);
 810		break;
 811	default:
 812		break;
 813	}
 814}
 815
 816/**
 817 *	mii_set_auto_on		-	autonegotiate on
 818 *	@vptr: velocity
 819 *
 820 *	Enable autonegotation on this interface
 821 */
 822static void mii_set_auto_on(struct velocity_info *vptr)
 823{
 824	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs))
 825		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
 826	else
 827		MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs);
 828}
 829
 830static u32 check_connection_type(struct mac_regs __iomem *regs)
 831{
 832	u32 status = 0;
 833	u8 PHYSR0;
 834	u16 ANAR;
 835	PHYSR0 = readb(&regs->PHYSR0);
 836
 837	/*
 838	   if (!(PHYSR0 & PHYSR0_LINKGD))
 839	   status|=VELOCITY_LINK_FAIL;
 840	 */
 841
 842	if (PHYSR0 & PHYSR0_FDPX)
 843		status |= VELOCITY_DUPLEX_FULL;
 844
 845	if (PHYSR0 & PHYSR0_SPDG)
 846		status |= VELOCITY_SPEED_1000;
 847	else if (PHYSR0 & PHYSR0_SPD10)
 848		status |= VELOCITY_SPEED_10;
 849	else
 850		status |= VELOCITY_SPEED_100;
 851
 852	if (MII_REG_BITS_IS_ON(BMCR_ANENABLE, MII_BMCR, regs)) {
 853		velocity_mii_read(regs, MII_ADVERTISE, &ANAR);
 854		if ((ANAR & (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF))
 855		    == (ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF)) {
 856			if (MII_REG_BITS_IS_ON(ADVERTISE_1000HALF | ADVERTISE_1000FULL, MII_CTRL1000, regs))
 857				status |= VELOCITY_AUTONEG_ENABLE;
 858		}
 859	}
 860
 861	return status;
 862}
 863
 864/**
 865 *	velocity_set_media_mode		-	set media mode
 866 *	@mii_status: old MII link state
 867 *
 868 *	Check the media link state and configure the flow control
 869 *	PHY and also velocity hardware setup accordingly. In particular
 870 *	we need to set up CD polling and frame bursting.
 871 */
 872static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
 873{
 874	u32 curr_status;
 875	struct mac_regs __iomem *regs = vptr->mac_regs;
 876
 877	vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
 878	curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
 879
 880	/* Set mii link status */
 881	set_mii_flow_control(vptr);
 882
 883	/*
 884	   Check if new status is consistent with current status
 885	   if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE) ||
 886	       (mii_status==curr_status)) {
 887	   vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
 888	   vptr->mii_status=check_connection_type(vptr->mac_regs);
 889	   VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
 890	   return 0;
 891	   }
 892	 */
 893
 894	if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
 895		MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
 896
 897	/*
 898	 *	If connection type is AUTO
 899	 */
 900	if (mii_status & VELOCITY_AUTONEG_ENABLE) {
 901		VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
 902		/* clear force MAC mode bit */
 903		BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
 904		/* set duplex mode of MAC according to duplex mode of MII */
 905		MII_REG_BITS_ON(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF, MII_ADVERTISE, vptr->mac_regs);
 906		MII_REG_BITS_ON(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
 907		MII_REG_BITS_ON(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs);
 908
 909		/* enable AUTO-NEGO mode */
 910		mii_set_auto_on(vptr);
 911	} else {
 912		u16 CTRL1000;
 913		u16 ANAR;
 914		u8 CHIPGCR;
 915
 916		/*
 917		 * 1. if it's 3119, disable frame bursting in halfduplex mode
 918		 *    and enable it in fullduplex mode
 919		 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
 920		 * 3. only enable CD heart beat counter in 10HD mode
 921		 */
 922
 923		/* set force MAC mode bit */
 924		BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
 925
 926		CHIPGCR = readb(&regs->CHIPGCR);
 927
 928		if (mii_status & VELOCITY_SPEED_1000)
 929			CHIPGCR |= CHIPGCR_FCGMII;
 930		else
 931			CHIPGCR &= ~CHIPGCR_FCGMII;
 932
 933		if (mii_status & VELOCITY_DUPLEX_FULL) {
 934			CHIPGCR |= CHIPGCR_FCFDX;
 935			writeb(CHIPGCR, &regs->CHIPGCR);
 936			VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
 937			if (vptr->rev_id < REV_ID_VT3216_A0)
 938				BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
 939		} else {
 940			CHIPGCR &= ~CHIPGCR_FCFDX;
 941			VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
 942			writeb(CHIPGCR, &regs->CHIPGCR);
 943			if (vptr->rev_id < REV_ID_VT3216_A0)
 944				BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
 945		}
 946
 947		velocity_mii_read(vptr->mac_regs, MII_CTRL1000, &CTRL1000);
 948		CTRL1000 &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
 949		if ((mii_status & VELOCITY_SPEED_1000) &&
 950		    (mii_status & VELOCITY_DUPLEX_FULL)) {
 951			CTRL1000 |= ADVERTISE_1000FULL;
 952		}
 953		velocity_mii_write(vptr->mac_regs, MII_CTRL1000, CTRL1000);
 954
 955		if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10))
 956			BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
 957		else
 958			BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
 959
 960		/* MII_REG_BITS_OFF(BMCR_SPEED1000, MII_BMCR, vptr->mac_regs); */
 961		velocity_mii_read(vptr->mac_regs, MII_ADVERTISE, &ANAR);
 962		ANAR &= (~(ADVERTISE_100FULL | ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF));
 963		if (mii_status & VELOCITY_SPEED_100) {
 964			if (mii_status & VELOCITY_DUPLEX_FULL)
 965				ANAR |= ADVERTISE_100FULL;
 966			else
 967				ANAR |= ADVERTISE_100HALF;
 968		} else if (mii_status & VELOCITY_SPEED_10) {
 969			if (mii_status & VELOCITY_DUPLEX_FULL)
 970				ANAR |= ADVERTISE_10FULL;
 971			else
 972				ANAR |= ADVERTISE_10HALF;
 973		}
 974		velocity_mii_write(vptr->mac_regs, MII_ADVERTISE, ANAR);
 975		/* enable AUTO-NEGO mode */
 976		mii_set_auto_on(vptr);
 977		/* MII_REG_BITS_ON(BMCR_ANENABLE, MII_BMCR, vptr->mac_regs); */
 978	}
 979	/* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
 980	/* vptr->mii_status=check_connection_type(vptr->mac_regs); */
 981	return VELOCITY_LINK_CHANGE;
 982}
 983
 984/**
 985 *	velocity_print_link_status	-	link status reporting
 986 *	@vptr: velocity to report on
 987 *
 988 *	Turn the link status of the velocity card into a kernel log
 989 *	description of the new link state, detailing speed and duplex
 990 *	status
 991 */
 992static void velocity_print_link_status(struct velocity_info *vptr)
 993{
 994
 995	if (vptr->mii_status & VELOCITY_LINK_FAIL) {
 996		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
 997	} else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
 998		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->dev->name);
 999
1000		if (vptr->mii_status & VELOCITY_SPEED_1000)
1001			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1002		else if (vptr->mii_status & VELOCITY_SPEED_100)
1003			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1004		else
1005			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1006
1007		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1008			VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1009		else
1010			VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1011	} else {
1012		VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1013		switch (vptr->options.spd_dpx) {
1014		case SPD_DPX_1000_FULL:
1015			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps full duplex\n");
1016			break;
1017		case SPD_DPX_100_HALF:
1018			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1019			break;
1020		case SPD_DPX_100_FULL:
1021			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1022			break;
1023		case SPD_DPX_10_HALF:
1024			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1025			break;
1026		case SPD_DPX_10_FULL:
1027			VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1028			break;
1029		default:
1030			break;
1031		}
1032	}
1033}
1034
1035/**
1036 *	enable_flow_control_ability	-	flow control
1037 *	@vptr: veloity to configure
1038 *
1039 *	Set up flow control according to the flow control options
1040 *	determined by the eeprom/configuration.
1041 */
1042static void enable_flow_control_ability(struct velocity_info *vptr)
1043{
1044
1045	struct mac_regs __iomem *regs = vptr->mac_regs;
1046
1047	switch (vptr->options.flow_cntl) {
1048
1049	case FLOW_CNTL_DEFAULT:
1050		if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
1051			writel(CR0_FDXRFCEN, &regs->CR0Set);
1052		else
1053			writel(CR0_FDXRFCEN, &regs->CR0Clr);
1054
1055		if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
1056			writel(CR0_FDXTFCEN, &regs->CR0Set);
1057		else
1058			writel(CR0_FDXTFCEN, &regs->CR0Clr);
1059		break;
1060
1061	case FLOW_CNTL_TX:
1062		writel(CR0_FDXTFCEN, &regs->CR0Set);
1063		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1064		break;
1065
1066	case FLOW_CNTL_RX:
1067		writel(CR0_FDXRFCEN, &regs->CR0Set);
1068		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1069		break;
1070
1071	case FLOW_CNTL_TX_RX:
1072		writel(CR0_FDXTFCEN, &regs->CR0Set);
1073		writel(CR0_FDXRFCEN, &regs->CR0Set);
1074		break;
1075
1076	case FLOW_CNTL_DISABLE:
1077		writel(CR0_FDXRFCEN, &regs->CR0Clr);
1078		writel(CR0_FDXTFCEN, &regs->CR0Clr);
1079		break;
1080
1081	default:
1082		break;
1083	}
1084
1085}
1086
1087/**
1088 *	velocity_soft_reset	-	soft reset
1089 *	@vptr: velocity to reset
1090 *
1091 *	Kick off a soft reset of the velocity adapter and then poll
1092 *	until the reset sequence has completed before returning.
1093 */
1094static int velocity_soft_reset(struct velocity_info *vptr)
1095{
1096	struct mac_regs __iomem *regs = vptr->mac_regs;
1097	int i = 0;
1098
1099	writel(CR0_SFRST, &regs->CR0Set);
1100
1101	for (i = 0; i < W_MAX_TIMEOUT; i++) {
1102		udelay(5);
1103		if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
1104			break;
1105	}
1106
1107	if (i == W_MAX_TIMEOUT) {
1108		writel(CR0_FORSRST, &regs->CR0Set);
1109		/* FIXME: PCI POSTING */
1110		/* delay 2ms */
1111		mdelay(2);
1112	}
1113	return 0;
1114}
1115
1116/**
1117 *	velocity_set_multi	-	filter list change callback
1118 *	@dev: network device
1119 *
1120 *	Called by the network layer when the filter lists need to change
1121 *	for a velocity adapter. Reload the CAMs with the new address
1122 *	filter ruleset.
1123 */
1124static void velocity_set_multi(struct net_device *dev)
1125{
1126	struct velocity_info *vptr = netdev_priv(dev);
1127	struct mac_regs __iomem *regs = vptr->mac_regs;
1128	u8 rx_mode;
1129	int i;
1130	struct netdev_hw_addr *ha;
1131
1132	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1133		writel(0xffffffff, &regs->MARCAM[0]);
1134		writel(0xffffffff, &regs->MARCAM[4]);
1135		rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
1136	} else if ((netdev_mc_count(dev) > vptr->multicast_limit) ||
1137		   (dev->flags & IFF_ALLMULTI)) {
1138		writel(0xffffffff, &regs->MARCAM[0]);
1139		writel(0xffffffff, &regs->MARCAM[4]);
1140		rx_mode = (RCR_AM | RCR_AB);
1141	} else {
1142		int offset = MCAM_SIZE - vptr->multicast_limit;
1143		mac_get_cam_mask(regs, vptr->mCAMmask);
1144
1145		i = 0;
1146		netdev_for_each_mc_addr(ha, dev) {
1147			mac_set_cam(regs, i + offset, ha->addr);
1148			vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
1149			i++;
1150		}
1151
1152		mac_set_cam_mask(regs, vptr->mCAMmask);
1153		rx_mode = RCR_AM | RCR_AB | RCR_AP;
1154	}
1155	if (dev->mtu > 1500)
1156		rx_mode |= RCR_AL;
1157
1158	BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
1159
1160}
1161
1162/*
1163 * MII access , media link mode setting functions
1164 */
1165
1166/**
1167 *	mii_init	-	set up MII
1168 *	@vptr: velocity adapter
1169 *	@mii_status:  links tatus
1170 *
1171 *	Set up the PHY for the current link state.
1172 */
1173static void mii_init(struct velocity_info *vptr, u32 mii_status)
1174{
1175	u16 BMCR;
1176
1177	switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
1178	case PHYID_CICADA_CS8201:
1179		/*
1180		 *	Reset to hardware default
1181		 */
1182		MII_REG_BITS_OFF((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1183		/*
1184		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1185		 *	off it in NWay-forced half mode for NWay-forced v.s.
1186		 *	legacy-forced issue.
1187		 */
1188		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1189			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1190		else
1191			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1192		/*
1193		 *	Turn on Link/Activity LED enable bit for CIS8201
1194		 */
1195		MII_REG_BITS_ON(PLED_LALBE, MII_TPISTATUS, vptr->mac_regs);
1196		break;
1197	case PHYID_VT3216_32BIT:
1198	case PHYID_VT3216_64BIT:
1199		/*
1200		 *	Reset to hardware default
1201		 */
1202		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1203		/*
1204		 *	Turn on ECHODIS bit in NWay-forced full mode and turn it
1205		 *	off it in NWay-forced half mode for NWay-forced v.s.
1206		 *	legacy-forced issue
1207		 */
1208		if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1209			MII_REG_BITS_ON(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1210		else
1211			MII_REG_BITS_OFF(TCSR_ECHODIS, MII_SREVISION, vptr->mac_regs);
1212		break;
1213
1214	case PHYID_MARVELL_1000:
1215	case PHYID_MARVELL_1000S:
1216		/*
1217		 *	Assert CRS on Transmit
1218		 */
1219		MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
1220		/*
1221		 *	Reset to hardware default
1222		 */
1223		MII_REG_BITS_ON((ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP), MII_ADVERTISE, vptr->mac_regs);
1224		break;
1225	default:
1226		;
1227	}
1228	velocity_mii_read(vptr->mac_regs, MII_BMCR, &BMCR);
1229	if (BMCR & BMCR_ISOLATE) {
1230		BMCR &= ~BMCR_ISOLATE;
1231		velocity_mii_write(vptr->mac_regs, MII_BMCR, BMCR);
1232	}
1233}
1234
1235/**
1236 * setup_queue_timers	-	Setup interrupt timers
1237 *
1238 * Setup interrupt frequency during suppression (timeout if the frame
1239 * count isn't filled).
1240 */
1241static void setup_queue_timers(struct velocity_info *vptr)
1242{
1243	/* Only for newer revisions */
1244	if (vptr->rev_id >= REV_ID_VT3216_A0) {
1245		u8 txqueue_timer = 0;
1246		u8 rxqueue_timer = 0;
1247
1248		if (vptr->mii_status & (VELOCITY_SPEED_1000 |
1249				VELOCITY_SPEED_100)) {
1250			txqueue_timer = vptr->options.txqueue_timer;
1251			rxqueue_timer = vptr->options.rxqueue_timer;
1252		}
1253
1254		writeb(txqueue_timer, &vptr->mac_regs->TQETMR);
1255		writeb(rxqueue_timer, &vptr->mac_regs->RQETMR);
1256	}
1257}
1258
1259/**
1260 * setup_adaptive_interrupts  -  Setup interrupt suppression
1261 *
1262 * @vptr velocity adapter
1263 *
1264 * The velocity is able to suppress interrupt during high interrupt load.
1265 * This function turns on that feature.
1266 */
1267static void setup_adaptive_interrupts(struct velocity_info *vptr)
1268{
1269	struct mac_regs __iomem *regs = vptr->mac_regs;
1270	u16 tx_intsup = vptr->options.tx_intsup;
1271	u16 rx_intsup = vptr->options.rx_intsup;
1272
1273	/* Setup default interrupt mask (will be changed below) */
1274	vptr->int_mask = INT_MASK_DEF;
1275
1276	/* Set Tx Interrupt Suppression Threshold */
1277	writeb(CAMCR_PS0, &regs->CAMCR);
1278	if (tx_intsup != 0) {
1279		vptr->int_mask &= ~(ISR_PTXI | ISR_PTX0I | ISR_PTX1I |
1280				ISR_PTX2I | ISR_PTX3I);
1281		writew(tx_intsup, &regs->ISRCTL);
1282	} else
1283		writew(ISRCTL_TSUPDIS, &regs->ISRCTL);
1284
1285	/* Set Rx Interrupt Suppression Threshold */
1286	writeb(CAMCR_PS1, &regs->CAMCR);
1287	if (rx_intsup != 0) {
1288		vptr->int_mask &= ~ISR_PRXI;
1289		writew(rx_intsup, &regs->ISRCTL);
1290	} else
1291		writew(ISRCTL_RSUPDIS, &regs->ISRCTL);
1292
1293	/* Select page to interrupt hold timer */
1294	writeb(0, &regs->CAMCR);
1295}
1296
1297/**
1298 *	velocity_init_registers	-	initialise MAC registers
1299 *	@vptr: velocity to init
1300 *	@type: type of initialisation (hot or cold)
1301 *
1302 *	Initialise the MAC on a reset or on first set up on the
1303 *	hardware.
1304 */
1305static void velocity_init_registers(struct velocity_info *vptr,
1306				    enum velocity_init_type type)
1307{
1308	struct mac_regs __iomem *regs = vptr->mac_regs;
1309	int i, mii_status;
1310
1311	mac_wol_reset(regs);
1312
1313	switch (type) {
1314	case VELOCITY_INIT_RESET:
1315	case VELOCITY_INIT_WOL:
1316
1317		netif_stop_queue(vptr->dev);
1318
1319		/*
1320		 *	Reset RX to prevent RX pointer not on the 4X location
1321		 */
1322		velocity_rx_reset(vptr);
1323		mac_rx_queue_run(regs);
1324		mac_rx_queue_wake(regs);
1325
1326		mii_status = velocity_get_opt_media_mode(vptr);
1327		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1328			velocity_print_link_status(vptr);
1329			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1330				netif_wake_queue(vptr->dev);
1331		}
1332
1333		enable_flow_control_ability(vptr);
1334
1335		mac_clear_isr(regs);
1336		writel(CR0_STOP, &regs->CR0Clr);
1337		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
1338							&regs->CR0Set);
1339
1340		break;
1341
1342	case VELOCITY_INIT_COLD:
1343	default:
1344		/*
1345		 *	Do reset
1346		 */
1347		velocity_soft_reset(vptr);
1348		mdelay(5);
1349
1350		mac_eeprom_reload(regs);
1351		for (i = 0; i < 6; i++)
1352			writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
1353
1354		/*
1355		 *	clear Pre_ACPI bit.
1356		 */
1357		BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
1358		mac_set_rx_thresh(regs, vptr->options.rx_thresh);
1359		mac_set_dma_length(regs, vptr->options.DMA_length);
1360
1361		writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
1362		/*
1363		 *	Back off algorithm use original IEEE standard
1364		 */
1365		BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
1366
1367		/*
1368		 *	Init CAM filter
1369		 */
1370		velocity_init_cam_filter(vptr);
1371
1372		/*
1373		 *	Set packet filter: Receive directed and broadcast address
1374		 */
1375		velocity_set_multi(vptr->dev);
1376
1377		/*
1378		 *	Enable MII auto-polling
1379		 */
1380		enable_mii_autopoll(regs);
1381
1382		setup_adaptive_interrupts(vptr);
1383
1384		writel(vptr->rx.pool_dma, &regs->RDBaseLo);
1385		writew(vptr->options.numrx - 1, &regs->RDCSize);
1386		mac_rx_queue_run(regs);
1387		mac_rx_queue_wake(regs);
1388
1389		writew(vptr->options.numtx - 1, &regs->TDCSize);
1390
1391		for (i = 0; i < vptr->tx.numq; i++) {
1392			writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
1393			mac_tx_queue_run(regs, i);
1394		}
1395
1396		init_flow_control_register(vptr);
1397
1398		writel(CR0_STOP, &regs->CR0Clr);
1399		writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
1400
1401		mii_status = velocity_get_opt_media_mode(vptr);
1402		netif_stop_queue(vptr->dev);
1403
1404		mii_init(vptr, mii_status);
1405
1406		if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
1407			velocity_print_link_status(vptr);
1408			if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
1409				netif_wake_queue(vptr->dev);
1410		}
1411
1412		enable_flow_control_ability(vptr);
1413		mac_hw_mibs_init(regs);
1414		mac_write_int_mask(vptr->int_mask, regs);
1415		mac_clear_isr(regs);
1416
1417	}
1418}
1419
1420static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1421{
1422	struct mac_regs __iomem *regs = vptr->mac_regs;
1423	int avail, dirty, unusable;
1424
1425	/*
1426	 * RD number must be equal to 4X per hardware spec
1427	 * (programming guide rev 1.20, p.13)
1428	 */
1429	if (vptr->rx.filled < 4)
1430		return;
1431
1432	wmb();
1433
1434	unusable = vptr->rx.filled & 0x0003;
1435	dirty = vptr->rx.dirty - unusable;
1436	for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1437		dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1438		vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1439	}
1440
1441	writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1442	vptr->rx.filled = unusable;
1443}
1444
1445/**
1446 *	velocity_init_dma_rings	-	set up DMA rings
1447 *	@vptr: Velocity to set up
1448 *
1449 *	Allocate PCI mapped DMA rings for the receive and transmit layer
1450 *	to use.
1451 */
1452static int velocity_init_dma_rings(struct velocity_info *vptr)
1453{
1454	struct velocity_opt *opt = &vptr->options;
1455	const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1456	const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1457	struct pci_dev *pdev = vptr->pdev;
1458	dma_addr_t pool_dma;
1459	void *pool;
1460	unsigned int i;
1461
1462	/*
1463	 * Allocate all RD/TD rings a single pool.
1464	 *
1465	 * pci_alloc_consistent() fulfills the requirement for 64 bytes
1466	 * alignment
1467	 */
1468	pool = pci_alloc_consistent(pdev, tx_ring_size * vptr->tx.numq +
1469				    rx_ring_size, &pool_dma);
1470	if (!pool) {
1471		dev_err(&pdev->dev, "%s : DMA memory allocation failed.\n",
1472			vptr->dev->name);
1473		return -ENOMEM;
1474	}
1475
1476	vptr->rx.ring = pool;
1477	vptr->rx.pool_dma = pool_dma;
1478
1479	pool += rx_ring_size;
1480	pool_dma += rx_ring_size;
1481
1482	for (i = 0; i < vptr->tx.numq; i++) {
1483		vptr->tx.rings[i] = pool;
1484		vptr->tx.pool_dma[i] = pool_dma;
1485		pool += tx_ring_size;
1486		pool_dma += tx_ring_size;
1487	}
1488
1489	return 0;
1490}
1491
1492static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1493{
1494	vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1495}
1496
1497/**
1498 *	velocity_alloc_rx_buf	-	allocate aligned receive buffer
1499 *	@vptr: velocity
1500 *	@idx: ring index
1501 *
1502 *	Allocate a new full sized buffer for the reception of a frame and
1503 *	map it into PCI space for the hardware to use. The hardware
1504 *	requires *64* byte alignment of the buffer which makes life
1505 *	less fun than would be ideal.
1506 */
1507static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1508{
1509	struct rx_desc *rd = &(vptr->rx.ring[idx]);
1510	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1511
1512	rd_info->skb = netdev_alloc_skb(vptr->dev, vptr->rx.buf_sz + 64);
1513	if (rd_info->skb == NULL)
1514		return -ENOMEM;
1515
1516	/*
1517	 *	Do the gymnastics to get the buffer head for data at
1518	 *	64byte alignment.
1519	 */
1520	skb_reserve(rd_info->skb,
1521			64 - ((unsigned long) rd_info->skb->data & 63));
1522	rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data,
1523					vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
1524
1525	/*
1526	 *	Fill in the descriptor to match
1527	 */
1528
1529	*((u32 *) & (rd->rdesc0)) = 0;
1530	rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1531	rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1532	rd->pa_high = 0;
1533	return 0;
1534}
1535
1536
1537static int velocity_rx_refill(struct velocity_info *vptr)
1538{
1539	int dirty = vptr->rx.dirty, done = 0;
1540
1541	do {
1542		struct rx_desc *rd = vptr->rx.ring + dirty;
1543
1544		/* Fine for an all zero Rx desc at init time as well */
1545		if (rd->rdesc0.len & OWNED_BY_NIC)
1546			break;
1547
1548		if (!vptr->rx.info[dirty].skb) {
1549			if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1550				break;
1551		}
1552		done++;
1553		dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1554	} while (dirty != vptr->rx.curr);
1555
1556	if (done) {
1557		vptr->rx.dirty = dirty;
1558		vptr->rx.filled += done;
1559	}
1560
1561	return done;
1562}
1563
1564/**
1565 *	velocity_free_rd_ring	-	free receive ring
1566 *	@vptr: velocity to clean up
1567 *
1568 *	Free the receive buffers for each ring slot and any
1569 *	attached socket buffers that need to go away.
1570 */
1571static void velocity_free_rd_ring(struct velocity_info *vptr)
1572{
1573	int i;
1574
1575	if (vptr->rx.info == NULL)
1576		return;
1577
1578	for (i = 0; i < vptr->options.numrx; i++) {
1579		struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1580		struct rx_desc *rd = vptr->rx.ring + i;
1581
1582		memset(rd, 0, sizeof(*rd));
1583
1584		if (!rd_info->skb)
1585			continue;
1586		pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
1587				 PCI_DMA_FROMDEVICE);
1588		rd_info->skb_dma = 0;
1589
1590		dev_kfree_skb(rd_info->skb);
1591		rd_info->skb = NULL;
1592	}
1593
1594	kfree(vptr->rx.info);
1595	vptr->rx.info = NULL;
1596}
1597
1598/**
1599 *	velocity_init_rd_ring	-	set up receive ring
1600 *	@vptr: velocity to configure
1601 *
1602 *	Allocate and set up the receive buffers for each ring slot and
1603 *	assign them to the network adapter.
1604 */
1605static int velocity_init_rd_ring(struct velocity_info *vptr)
1606{
1607	int ret = -ENOMEM;
1608
1609	vptr->rx.info = kcalloc(vptr->options.numrx,
1610				sizeof(struct velocity_rd_info), GFP_KERNEL);
1611	if (!vptr->rx.info)
1612		goto out;
1613
1614	velocity_init_rx_ring_indexes(vptr);
1615
1616	if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1617		VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1618			"%s: failed to allocate RX buffer.\n", vptr->dev->name);
1619		velocity_free_rd_ring(vptr);
1620		goto out;
1621	}
1622
1623	ret = 0;
1624out:
1625	return ret;
1626}
1627
1628/**
1629 *	velocity_init_td_ring	-	set up transmit ring
1630 *	@vptr:	velocity
1631 *
1632 *	Set up the transmit ring and chain the ring pointers together.
1633 *	Returns zero on success or a negative posix errno code for
1634 *	failure.
1635 */
1636static int velocity_init_td_ring(struct velocity_info *vptr)
1637{
1638	int j;
1639
1640	/* Init the TD ring entries */
1641	for (j = 0; j < vptr->tx.numq; j++) {
1642
1643		vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1644					    sizeof(struct velocity_td_info),
1645					    GFP_KERNEL);
1646		if (!vptr->tx.infos[j])	{
1647			while (--j >= 0)
1648				kfree(vptr->tx.infos[j]);
1649			return -ENOMEM;
1650		}
1651
1652		vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1653	}
1654	return 0;
1655}
1656
1657/**
1658 *	velocity_free_dma_rings	-	free PCI ring pointers
1659 *	@vptr: Velocity to free from
1660 *
1661 *	Clean up the PCI ring buffers allocated to this velocity.
1662 */
1663static void velocity_free_dma_rings(struct velocity_info *vptr)
1664{
1665	const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1666		vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1667
1668	pci_free_consistent(vptr->pdev, size, vptr->rx.ring, vptr->rx.pool_dma);
1669}
1670
1671static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1672{
1673	int ret;
1674
1675	velocity_set_rxbufsize(vptr, mtu);
1676
1677	ret = velocity_init_dma_rings(vptr);
1678	if (ret < 0)
1679		goto out;
1680
1681	ret = velocity_init_rd_ring(vptr);
1682	if (ret < 0)
1683		goto err_free_dma_rings_0;
1684
1685	ret = velocity_init_td_ring(vptr);
1686	if (ret < 0)
1687		goto err_free_rd_ring_1;
1688out:
1689	return ret;
1690
1691err_free_rd_ring_1:
1692	velocity_free_rd_ring(vptr);
1693err_free_dma_rings_0:
1694	velocity_free_dma_rings(vptr);
1695	goto out;
1696}
1697
1698/**
1699 *	velocity_free_tx_buf	-	free transmit buffer
1700 *	@vptr: velocity
1701 *	@tdinfo: buffer
1702 *
1703 *	Release an transmit buffer. If the buffer was preallocated then
1704 *	recycle it, if not then unmap the buffer.
1705 */
1706static void velocity_free_tx_buf(struct velocity_info *vptr,
1707		struct velocity_td_info *tdinfo, struct tx_desc *td)
1708{
1709	struct sk_buff *skb = tdinfo->skb;
1710
1711	/*
1712	 *	Don't unmap the pre-allocated tx_bufs
1713	 */
1714	if (tdinfo->skb_dma) {
1715		int i;
1716
1717		for (i = 0; i < tdinfo->nskb_dma; i++) {
1718			size_t pktlen = max_t(size_t, skb->len, ETH_ZLEN);
1719
1720			/* For scatter-gather */
1721			if (skb_shinfo(skb)->nr_frags > 0)
1722				pktlen = max_t(size_t, pktlen,
1723						td->td_buf[i].size & ~TD_QUEUE);
1724
1725			pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i],
1726					le16_to_cpu(pktlen), PCI_DMA_TODEVICE);
1727		}
1728	}
1729	dev_kfree_skb_irq(skb);
1730	tdinfo->skb = NULL;
1731}
1732
1733/*
1734 *	FIXME: could we merge this with velocity_free_tx_buf ?
1735 */
1736static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1737							 int q, int n)
1738{
1739	struct velocity_td_info *td_info = &(vptr->tx.infos[q][n]);
1740	int i;
1741
1742	if (td_info == NULL)
1743		return;
1744
1745	if (td_info->skb) {
1746		for (i = 0; i < td_info->nskb_dma; i++) {
1747			if (td_info->skb_dma[i]) {
1748				pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1749					td_info->skb->len, PCI_DMA_TODEVICE);
1750				td_info->skb_dma[i] = 0;
1751			}
1752		}
1753		dev_kfree_skb(td_info->skb);
1754		td_info->skb = NULL;
1755	}
1756}
1757
1758/**
1759 *	velocity_free_td_ring	-	free td ring
1760 *	@vptr: velocity
1761 *
1762 *	Free up the transmit ring for this particular velocity adapter.
1763 *	We free the ring contents but not the ring itself.
1764 */
1765static void velocity_free_td_ring(struct velocity_info *vptr)
1766{
1767	int i, j;
1768
1769	for (j = 0; j < vptr->tx.numq; j++) {
1770		if (vptr->tx.infos[j] == NULL)
1771			continue;
1772		for (i = 0; i < vptr->options.numtx; i++)
1773			velocity_free_td_ring_entry(vptr, j, i);
1774
1775		kfree(vptr->tx.infos[j]);
1776		vptr->tx.infos[j] = NULL;
1777	}
1778}
1779
1780static void velocity_free_rings(struct velocity_info *vptr)
1781{
1782	velocity_free_td_ring(vptr);
1783	velocity_free_rd_ring(vptr);
1784	velocity_free_dma_rings(vptr);
1785}
1786
1787/**
1788 *	velocity_error	-	handle error from controller
1789 *	@vptr: velocity
1790 *	@status: card status
1791 *
1792 *	Process an error report from the hardware and attempt to recover
1793 *	the card itself. At the moment we cannot recover from some
1794 *	theoretically impossible errors but this could be fixed using
1795 *	the pci_device_failed logic to bounce the hardware
1796 *
1797 */
1798static void velocity_error(struct velocity_info *vptr, int status)
1799{
1800
1801	if (status & ISR_TXSTLI) {
1802		struct mac_regs __iomem *regs = vptr->mac_regs;
1803
1804		printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1805		BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1806		writew(TRDCSR_RUN, &regs->TDCSRClr);
1807		netif_stop_queue(vptr->dev);
1808
1809		/* FIXME: port over the pci_device_failed code and use it
1810		   here */
1811	}
1812
1813	if (status & ISR_SRCI) {
1814		struct mac_regs __iomem *regs = vptr->mac_regs;
1815		int linked;
1816
1817		if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1818			vptr->mii_status = check_connection_type(regs);
1819
1820			/*
1821			 *	If it is a 3119, disable frame bursting in
1822			 *	halfduplex mode and enable it in fullduplex
1823			 *	 mode
1824			 */
1825			if (vptr->rev_id < REV_ID_VT3216_A0) {
1826				if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1827					BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1828				else
1829					BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1830			}
1831			/*
1832			 *	Only enable CD heart beat counter in 10HD mode
1833			 */
1834			if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10))
1835				BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1836			else
1837				BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1838
1839			setup_queue_timers(vptr);
1840		}
1841		/*
1842		 *	Get link status from PHYSR0
1843		 */
1844		linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1845
1846		if (linked) {
1847			vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1848			netif_carrier_on(vptr->dev);
1849		} else {
1850			vptr->mii_status |= VELOCITY_LINK_FAIL;
1851			netif_carrier_off(vptr->dev);
1852		}
1853
1854		velocity_print_link_status(vptr);
1855		enable_flow_control_ability(vptr);
1856
1857		/*
1858		 *	Re-enable auto-polling because SRCI will disable
1859		 *	auto-polling
1860		 */
1861
1862		enable_mii_autopoll(regs);
1863
1864		if (vptr->mii_status & VELOCITY_LINK_FAIL)
1865			netif_stop_queue(vptr->dev);
1866		else
1867			netif_wake_queue(vptr->dev);
1868
1869	}
1870	if (status & ISR_MIBFI)
1871		velocity_update_hw_mibs(vptr);
1872	if (status & ISR_LSTEI)
1873		mac_rx_queue_wake(vptr->mac_regs);
1874}
1875
1876/**
1877 *	tx_srv		-	transmit interrupt service
1878 *	@vptr; Velocity
1879 *
1880 *	Scan the queues looking for transmitted packets that
1881 *	we can complete and clean up. Update any statistics as
1882 *	necessary/
1883 */
1884static int velocity_tx_srv(struct velocity_info *vptr)
1885{
1886	struct tx_desc *td;
1887	int qnum;
1888	int full = 0;
1889	int idx;
1890	int works = 0;
1891	struct velocity_td_info *tdinfo;
1892	struct net_device_stats *stats = &vptr->dev->stats;
1893
1894	for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1895		for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1896			idx = (idx + 1) % vptr->options.numtx) {
1897
1898			/*
1899			 *	Get Tx Descriptor
1900			 */
1901			td = &(vptr->tx.rings[qnum][idx]);
1902			tdinfo = &(vptr->tx.infos[qnum][idx]);
1903
1904			if (td->tdesc0.len & OWNED_BY_NIC)
1905				break;
1906
1907			if ((works++ > 15))
1908				break;
1909
1910			if (td->tdesc0.TSR & TSR0_TERR) {
1911				stats->tx_errors++;
1912				stats->tx_dropped++;
1913				if (td->tdesc0.TSR & TSR0_CDH)
1914					stats->tx_heartbeat_errors++;
1915				if (td->tdesc0.TSR & TSR0_CRS)
1916					stats->tx_carrier_errors++;
1917				if (td->tdesc0.TSR & TSR0_ABT)
1918					stats->tx_aborted_errors++;
1919				if (td->tdesc0.TSR & TSR0_OWC)
1920					stats->tx_window_errors++;
1921			} else {
1922				stats->tx_packets++;
1923				stats->tx_bytes += tdinfo->skb->len;
1924			}
1925			velocity_free_tx_buf(vptr, tdinfo, td);
1926			vptr->tx.used[qnum]--;
1927		}
1928		vptr->tx.tail[qnum] = idx;
1929
1930		if (AVAIL_TD(vptr, qnum) < 1)
1931			full = 1;
1932	}
1933	/*
1934	 *	Look to see if we should kick the transmit network
1935	 *	layer for more work.
1936	 */
1937	if (netif_queue_stopped(vptr->dev) && (full == 0) &&
1938	    (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1939		netif_wake_queue(vptr->dev);
1940	}
1941	return works;
1942}
1943
1944/**
1945 *	velocity_rx_csum	-	checksum process
1946 *	@rd: receive packet descriptor
1947 *	@skb: network layer packet buffer
1948 *
1949 *	Process the status bits for the received packet and determine
1950 *	if the checksum was computed and verified by the hardware
1951 */
1952static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1953{
1954	skb_checksum_none_assert(skb);
1955
1956	if (rd->rdesc1.CSM & CSM_IPKT) {
1957		if (rd->rdesc1.CSM & CSM_IPOK) {
1958			if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1959					(rd->rdesc1.CSM & CSM_UDPKT)) {
1960				if (!(rd->rdesc1.CSM & CSM_TUPOK))
1961					return;
1962			}
1963			skb->ip_summed = CHECKSUM_UNNECESSARY;
1964		}
1965	}
1966}
1967
1968/**
1969 *	velocity_rx_copy	-	in place Rx copy for small packets
1970 *	@rx_skb: network layer packet buffer candidate
1971 *	@pkt_size: received data size
1972 *	@rd: receive packet descriptor
1973 *	@dev: network device
1974 *
1975 *	Replace the current skb that is scheduled for Rx processing by a
1976 *	shorter, immediately allocated skb, if the received packet is small
1977 *	enough. This function returns a negative value if the received
1978 *	packet is too big or if memory is exhausted.
1979 */
1980static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1981			    struct velocity_info *vptr)
1982{
1983	int ret = -1;
1984	if (pkt_size < rx_copybreak) {
1985		struct sk_buff *new_skb;
1986
1987		new_skb = netdev_alloc_skb_ip_align(vptr->dev, pkt_size);
1988		if (new_skb) {
1989			new_skb->ip_summed = rx_skb[0]->ip_summed;
1990			skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
1991			*rx_skb = new_skb;
1992			ret = 0;
1993		}
1994
1995	}
1996	return ret;
1997}
1998
1999/**
2000 *	velocity_iph_realign	-	IP header alignment
2001 *	@vptr: velocity we are handling
2002 *	@skb: network layer packet buffer
2003 *	@pkt_size: received data size
2004 *
2005 *	Align IP header on a 2 bytes boundary. This behavior can be
2006 *	configured by the user.
2007 */
2008static inline void velocity_iph_realign(struct velocity_info *vptr,
2009					struct sk_buff *skb, int pkt_size)
2010{
2011	if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
2012		memmove(skb->data + 2, skb->data, pkt_size);
2013		skb_reserve(skb, 2);
2014	}
2015}
2016
2017/**
2018 *	velocity_receive_frame	-	received packet processor
2019 *	@vptr: velocity we are handling
2020 *	@idx: ring index
2021 *
2022 *	A packet has arrived. We process the packet and if appropriate
2023 *	pass the frame up the network stack
2024 */
2025static int velocity_receive_frame(struct velocity_info *vptr, int idx)
2026{
2027	void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
2028	struct net_device_stats *stats = &vptr->dev->stats;
2029	struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
2030	struct rx_desc *rd = &(vptr->rx.ring[idx]);
2031	int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
2032	struct sk_buff *skb;
2033
2034	if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
2035		VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
2036		stats->rx_length_errors++;
2037		return -EINVAL;
2038	}
2039
2040	if (rd->rdesc0.RSR & RSR_MAR)
2041		stats->multicast++;
2042
2043	skb = rd_info->skb;
2044
2045	pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
2046				    vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
2047
2048	/*
2049	 *	Drop frame not meeting IEEE 802.3
2050	 */
2051
2052	if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
2053		if (rd->rdesc0.RSR & RSR_RL) {
2054			stats->rx_length_errors++;
2055			return -EINVAL;
2056		}
2057	}
2058
2059	pci_action = pci_dma_sync_single_for_device;
2060
2061	velocity_rx_csum(rd, skb);
2062
2063	if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
2064		velocity_iph_realign(vptr, skb, pkt_len);
2065		pci_action = pci_unmap_single;
2066		rd_info->skb = NULL;
2067	}
2068
2069	pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
2070		   PCI_DMA_FROMDEVICE);
2071
2072	skb_put(skb, pkt_len - 4);
2073	skb->protocol = eth_type_trans(skb, vptr->dev);
2074
2075	if (rd->rdesc0.RSR & RSR_DETAG) {
2076		u16 vid = swab16(le16_to_cpu(rd->rdesc1.PQTAG));
2077
2078		__vlan_hwaccel_put_tag(skb, vid);
2079	}
2080	netif_rx(skb);
2081
2082	stats->rx_bytes += pkt_len;
2083	stats->rx_packets++;
2084
2085	return 0;
2086}
2087
2088/**
2089 *	velocity_rx_srv		-	service RX interrupt
2090 *	@vptr: velocity
2091 *
2092 *	Walk the receive ring of the velocity adapter and remove
2093 *	any received packets from the receive queue. Hand the ring
2094 *	slots back to the adapter for reuse.
2095 */
2096static int velocity_rx_srv(struct velocity_info *vptr, int budget_left)
2097{
2098	struct net_device_stats *stats = &vptr->dev->stats;
2099	int rd_curr = vptr->rx.curr;
2100	int works = 0;
2101
2102	while (works < budget_left) {
2103		struct rx_desc *rd = vptr->rx.ring + rd_curr;
2104
2105		if (!vptr->rx.info[rd_curr].skb)
2106			break;
2107
2108		if (rd->rdesc0.len & OWNED_BY_NIC)
2109			break;
2110
2111		rmb();
2112
2113		/*
2114		 *	Don't drop CE or RL error frame although RXOK is off
2115		 */
2116		if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
2117			if (velocity_receive_frame(vptr, rd_curr) < 0)
2118				stats->rx_dropped++;
2119		} else {
2120			if (rd->rdesc0.RSR & RSR_CRC)
2121				stats->rx_crc_errors++;
2122			if (rd->rdesc0.RSR & RSR_FAE)
2123				stats->rx_frame_errors++;
2124
2125			stats->rx_dropped++;
2126		}
2127
2128		rd->size |= RX_INTEN;
2129
2130		rd_curr++;
2131		if (rd_curr >= vptr->options.numrx)
2132			rd_curr = 0;
2133		works++;
2134	}
2135
2136	vptr->rx.curr = rd_curr;
2137
2138	if ((works > 0) && (velocity_rx_refill(vptr) > 0))
2139		velocity_give_many_rx_descs(vptr);
2140
2141	VAR_USED(stats);
2142	return works;
2143}
2144
2145static int velocity_poll(struct napi_struct *napi, int budget)
2146{
2147	struct velocity_info *vptr = container_of(napi,
2148			struct velocity_info, napi);
2149	unsigned int rx_done;
2150	unsigned long flags;
2151
2152	spin_lock_irqsave(&vptr->lock, flags);
2153	/*
2154	 * Do rx and tx twice for performance (taken from the VIA
2155	 * out-of-tree driver).
2156	 */
2157	rx_done = velocity_rx_srv(vptr, budget / 2);
2158	velocity_tx_srv(vptr);
2159	rx_done += velocity_rx_srv(vptr, budget - rx_done);
2160	velocity_tx_srv(vptr);
2161
2162	/* If budget not fully consumed, exit the polling mode */
2163	if (rx_done < budget) {
2164		napi_complete(napi);
2165		mac_enable_int(vptr->mac_regs);
2166	}
2167	spin_unlock_irqrestore(&vptr->lock, flags);
2168
2169	return rx_done;
2170}
2171
2172/**
2173 *	velocity_intr		-	interrupt callback
2174 *	@irq: interrupt number
2175 *	@dev_instance: interrupting device
2176 *
2177 *	Called whenever an interrupt is generated by the velocity
2178 *	adapter IRQ line. We may not be the source of the interrupt
2179 *	and need to identify initially if we are, and if not exit as
2180 *	efficiently as possible.
2181 */
2182static irqreturn_t velocity_intr(int irq, void *dev_instance)
2183{
2184	struct net_device *dev = dev_instance;
2185	struct velocity_info *vptr = netdev_priv(dev);
2186	u32 isr_status;
2187
2188	spin_lock(&vptr->lock);
2189	isr_status = mac_read_isr(vptr->mac_regs);
2190
2191	/* Not us ? */
2192	if (isr_status == 0) {
2193		spin_unlock(&vptr->lock);
2194		return IRQ_NONE;
2195	}
2196
2197	/* Ack the interrupt */
2198	mac_write_isr(vptr->mac_regs, isr_status);
2199
2200	if (likely(napi_schedule_prep(&vptr->napi))) {
2201		mac_disable_int(vptr->mac_regs);
2202		__napi_schedule(&vptr->napi);
2203	}
2204
2205	if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2206		velocity_error(vptr, isr_status);
2207
2208	spin_unlock(&vptr->lock);
2209
2210	return IRQ_HANDLED;
2211}
2212
2213/**
2214 *	velocity_open		-	interface activation callback
2215 *	@dev: network layer device to open
2216 *
2217 *	Called when the network layer brings the interface up. Returns
2218 *	a negative posix error code on failure, or zero on success.
2219 *
2220 *	All the ring allocation and set up is done on open for this
2221 *	adapter to minimise memory usage when inactive
2222 */
2223static int velocity_open(struct net_device *dev)
2224{
2225	struct velocity_info *vptr = netdev_priv(dev);
2226	int ret;
2227
2228	ret = velocity_init_rings(vptr, dev->mtu);
2229	if (ret < 0)
2230		goto out;
2231
2232	/* Ensure chip is running */
2233	pci_set_power_state(vptr->pdev, PCI_D0);
2234
2235	velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2236
2237	ret = request_irq(vptr->pdev->irq, velocity_intr, IRQF_SHARED,
2238			  dev->name, dev);
2239	if (ret < 0) {
2240		/* Power down the chip */
2241		pci_set_power_state(vptr->pdev, PCI_D3hot);
2242		velocity_free_rings(vptr);
2243		goto out;
2244	}
2245
2246	velocity_give_many_rx_descs(vptr);
2247
2248	mac_enable_int(vptr->mac_regs);
2249	netif_start_queue(dev);
2250	napi_enable(&vptr->napi);
2251	vptr->flags |= VELOCITY_FLAGS_OPENED;
2252out:
2253	return ret;
2254}
2255
2256/**
2257 *	velocity_shutdown	-	shut down the chip
2258 *	@vptr: velocity to deactivate
2259 *
2260 *	Shuts down the internal operations of the velocity and
2261 *	disables interrupts, autopolling, transmit and receive
2262 */
2263static void velocity_shutdown(struct velocity_info *vptr)
2264{
2265	struct mac_regs __iomem *regs = vptr->mac_regs;
2266	mac_disable_int(regs);
2267	writel(CR0_STOP, &regs->CR0Set);
2268	writew(0xFFFF, &regs->TDCSRClr);
2269	writeb(0xFF, &regs->RDCSRClr);
2270	safe_disable_mii_autopoll(regs);
2271	mac_clear_isr(regs);
2272}
2273
2274/**
2275 *	velocity_change_mtu	-	MTU change callback
2276 *	@dev: network device
2277 *	@new_mtu: desired MTU
2278 *
2279 *	Handle requests from the networking layer for MTU change on
2280 *	this interface. It gets called on a change by the network layer.
2281 *	Return zero for success or negative posix error code.
2282 */
2283static int velocity_change_mtu(struct net_device *dev, int new_mtu)
2284{
2285	struct velocity_info *vptr = netdev_priv(dev);
2286	int ret = 0;
2287
2288	if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
2289		VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
2290				vptr->dev->name);
2291		ret = -EINVAL;
2292		goto out_0;
2293	}
2294
2295	if (!netif_running(dev)) {
2296		dev->mtu = new_mtu;
2297		goto out_0;
2298	}
2299
2300	if (dev->mtu != new_mtu) {
2301		struct velocity_info *tmp_vptr;
2302		unsigned long flags;
2303		struct rx_info rx;
2304		struct tx_info tx;
2305
2306		tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
2307		if (!tmp_vptr) {
2308			ret = -ENOMEM;
2309			goto out_0;
2310		}
2311
2312		tmp_vptr->dev = dev;
2313		tmp_vptr->pdev = vptr->pdev;
2314		tmp_vptr->options = vptr->options;
2315		tmp_vptr->tx.numq = vptr->tx.numq;
2316
2317		ret = velocity_init_rings(tmp_vptr, new_mtu);
2318		if (ret < 0)
2319			goto out_free_tmp_vptr_1;
2320
2321		spin_lock_irqsave(&vptr->lock, flags);
2322
2323		netif_stop_queue(dev);
2324		velocity_shutdown(vptr);
2325
2326		rx = vptr->rx;
2327		tx = vptr->tx;
2328
2329		vptr->rx = tmp_vptr->rx;
2330		vptr->tx = tmp_vptr->tx;
2331
2332		tmp_vptr->rx = rx;
2333		tmp_vptr->tx = tx;
2334
2335		dev->mtu = new_mtu;
2336
2337		velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2338
2339		velocity_give_many_rx_descs(vptr);
2340
2341		mac_enable_int(vptr->mac_regs);
2342		netif_start_queue(dev);
2343
2344		spin_unlock_irqrestore(&vptr->lock, flags);
2345
2346		velocity_free_rings(tmp_vptr);
2347
2348out_free_tmp_vptr_1:
2349		kfree(tmp_vptr);
2350	}
2351out_0:
2352	return ret;
2353}
2354
2355/**
2356 *	velocity_mii_ioctl		-	MII ioctl handler
2357 *	@dev: network device
2358 *	@ifr: the ifreq block for the ioctl
2359 *	@cmd: the command
2360 *
2361 *	Process MII requests made via ioctl from the network layer. These
2362 *	are used by tools like kudzu to interrogate the link state of the
2363 *	hardware
2364 */
2365static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2366{
2367	struct velocity_info *vptr = netdev_priv(dev);
2368	struct mac_regs __iomem *regs = vptr->mac_regs;
2369	unsigned long flags;
2370	struct mii_ioctl_data *miidata = if_mii(ifr);
2371	int err;
2372
2373	switch (cmd) {
2374	case SIOCGMIIPHY:
2375		miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
2376		break;
2377	case SIOCGMIIREG:
2378		if (velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
2379			return -ETIMEDOUT;
2380		break;
2381	case SIOCSMIIREG:
2382		spin_lock_irqsave(&vptr->lock, flags);
2383		err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
2384		spin_unlock_irqrestore(&vptr->lock, flags);
2385		check_connection_type(vptr->mac_regs);
2386		if (err)
2387			return err;
2388		break;
2389	default:
2390		return -EOPNOTSUPP;
2391	}
2392	return 0;
2393}
2394
2395/**
2396 *	velocity_ioctl		-	ioctl entry point
2397 *	@dev: network device
2398 *	@rq: interface request ioctl
2399 *	@cmd: command code
2400 *
2401 *	Called when the user issues an ioctl request to the network
2402 *	device in question. The velocity interface supports MII.
2403 */
2404static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2405{
2406	struct velocity_info *vptr = netdev_priv(dev);
2407	int ret;
2408
2409	/* If we are asked for information and the device is power
2410	   saving then we need to bring the device back up to talk to it */
2411
2412	if (!netif_running(dev))
2413		pci_set_power_state(vptr->pdev, PCI_D0);
2414
2415	switch (cmd) {
2416	case SIOCGMIIPHY:	/* Get address of MII PHY in use. */
2417	case SIOCGMIIREG:	/* Read MII PHY register. */
2418	case SIOCSMIIREG:	/* Write to MII PHY register. */
2419		ret = velocity_mii_ioctl(dev, rq, cmd);
2420		break;
2421
2422	default:
2423		ret = -EOPNOTSUPP;
2424	}
2425	if (!netif_running(dev))
2426		pci_set_power_state(vptr->pdev, PCI_D3hot);
2427
2428
2429	return ret;
2430}
2431
2432/**
2433 *	velocity_get_status	-	statistics callback
2434 *	@dev: network device
2435 *
2436 *	Callback from the network layer to allow driver statistics
2437 *	to be resynchronized with hardware collected state. In the
2438 *	case of the velocity we need to pull the MIB counters from
2439 *	the hardware into the counters before letting the network
2440 *	layer display them.
2441 */
2442static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2443{
2444	struct velocity_info *vptr = netdev_priv(dev);
2445
2446	/* If the hardware is down, don't touch MII */
2447	if (!netif_running(dev))
2448		return &dev->stats;
2449
2450	spin_lock_irq(&vptr->lock);
2451	velocity_update_hw_mibs(vptr);
2452	spin_unlock_irq(&vptr->lock);
2453
2454	dev->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2455	dev->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2456	dev->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2457
2458//  unsigned long   rx_dropped;     /* no space in linux buffers    */
2459	dev->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2460	/* detailed rx_errors: */
2461//  unsigned long   rx_length_errors;
2462//  unsigned long   rx_over_errors;     /* receiver ring buff overflow  */
2463	dev->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2464//  unsigned long   rx_frame_errors;    /* recv'd frame alignment error */
2465//  unsigned long   rx_fifo_errors;     /* recv'r fifo overrun      */
2466//  unsigned long   rx_missed_errors;   /* receiver missed packet   */
2467
2468	/* detailed tx_errors */
2469//  unsigned long   tx_fifo_errors;
2470
2471	return &dev->stats;
2472}
2473
2474/**
2475 *	velocity_close		-	close adapter callback
2476 *	@dev: network device
2477 *
2478 *	Callback from the network layer when the velocity is being
2479 *	deactivated by the network layer
2480 */
2481static int velocity_close(struct net_device *dev)
2482{
2483	struct velocity_info *vptr = netdev_priv(dev);
2484
2485	napi_disable(&vptr->napi);
2486	netif_stop_queue(dev);
2487	velocity_shutdown(vptr);
2488
2489	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2490		velocity_get_ip(vptr);
2491
2492	free_irq(vptr->pdev->irq, dev);
2493
2494	velocity_free_rings(vptr);
2495
2496	vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2497	return 0;
2498}
2499
2500/**
2501 *	velocity_xmit		-	transmit packet callback
2502 *	@skb: buffer to transmit
2503 *	@dev: network device
2504 *
2505 *	Called by the networ layer to request a packet is queued to
2506 *	the velocity. Returns zero on success.
2507 */
2508static netdev_tx_t velocity_xmit(struct sk_buff *skb,
2509				 struct net_device *dev)
2510{
2511	struct velocity_info *vptr = netdev_priv(dev);
2512	int qnum = 0;
2513	struct tx_desc *td_ptr;
2514	struct velocity_td_info *tdinfo;
2515	unsigned long flags;
2516	int pktlen;
2517	int index, prev;
2518	int i = 0;
2519
2520	if (skb_padto(skb, ETH_ZLEN))
2521		goto out;
2522
2523	/* The hardware can handle at most 7 memory segments, so merge
2524	 * the skb if there are more */
2525	if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2526		kfree_skb(skb);
2527		return NETDEV_TX_OK;
2528	}
2529
2530	pktlen = skb_shinfo(skb)->nr_frags == 0 ?
2531			max_t(unsigned int, skb->len, ETH_ZLEN) :
2532				skb_headlen(skb);
2533
2534	spin_lock_irqsave(&vptr->lock, flags);
2535
2536	index = vptr->tx.curr[qnum];
2537	td_ptr = &(vptr->tx.rings[qnum][index]);
2538	tdinfo = &(vptr->tx.infos[qnum][index]);
2539
2540	td_ptr->tdesc1.TCR = TCR0_TIC;
2541	td_ptr->td_buf[0].size &= ~TD_QUEUE;
2542
2543	/*
2544	 *	Map the linear network buffer into PCI space and
2545	 *	add it to the transmit ring.
2546	 */
2547	tdinfo->skb = skb;
2548	tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
2549	td_ptr->tdesc0.len = cpu_to_le16(pktlen);
2550	td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2551	td_ptr->td_buf[0].pa_high = 0;
2552	td_ptr->td_buf[0].size = cpu_to_le16(pktlen);
2553
2554	/* Handle fragments */
2555	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2556		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2557
2558		tdinfo->skb_dma[i + 1] = skb_frag_dma_map(&vptr->pdev->dev,
2559							  frag, 0,
2560							  skb_frag_size(frag),
2561							  DMA_TO_DEVICE);
2562
2563		td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2564		td_ptr->td_buf[i + 1].pa_high = 0;
2565		td_ptr->td_buf[i + 1].size = cpu_to_le16(skb_frag_size(frag));
2566	}
2567	tdinfo->nskb_dma = i + 1;
2568
2569	td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2570
2571	if (vlan_tx_tag_present(skb)) {
2572		td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb));
2573		td_ptr->tdesc1.TCR |= TCR0_VETAG;
2574	}
2575
2576	/*
2577	 *	Handle hardware checksum
2578	 */
2579	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2580		const struct iphdr *ip = ip_hdr(skb);
2581		if (ip->protocol == IPPROTO_TCP)
2582			td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2583		else if (ip->protocol == IPPROTO_UDP)
2584			td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2585		td_ptr->tdesc1.TCR |= TCR0_IPCK;
2586	}
2587
2588	prev = index - 1;
2589	if (prev < 0)
2590		prev = vptr->options.numtx - 1;
2591	td_ptr->tdesc0.len |= OWNED_BY_NIC;
2592	vptr->tx.used[qnum]++;
2593	vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2594
2595	if (AVAIL_TD(vptr, qnum) < 1)
2596		netif_stop_queue(dev);
2597
2598	td_ptr = &(vptr->tx.rings[qnum][prev]);
2599	td_ptr->td_buf[0].size |= TD_QUEUE;
2600	mac_tx_queue_wake(vptr->mac_regs, qnum);
2601
2602	spin_unlock_irqrestore(&vptr->lock, flags);
2603out:
2604	return NETDEV_TX_OK;
2605}
2606
2607static const struct net_device_ops velocity_netdev_ops = {
2608	.ndo_open		= velocity_open,
2609	.ndo_stop		= velocity_close,
2610	.ndo_start_xmit		= velocity_xmit,
2611	.ndo_get_stats		= velocity_get_stats,
2612	.ndo_validate_addr	= eth_validate_addr,
2613	.ndo_set_mac_address	= eth_mac_addr,
2614	.ndo_set_rx_mode	= velocity_set_multi,
2615	.ndo_change_mtu		= velocity_change_mtu,
2616	.ndo_do_ioctl		= velocity_ioctl,
2617	.ndo_vlan_rx_add_vid	= velocity_vlan_rx_add_vid,
2618	.ndo_vlan_rx_kill_vid	= velocity_vlan_rx_kill_vid,
2619};
2620
2621/**
2622 *	velocity_init_info	-	init private data
2623 *	@pdev: PCI device
2624 *	@vptr: Velocity info
2625 *	@info: Board type
2626 *
2627 *	Set up the initial velocity_info struct for the device that has been
2628 *	discovered.
2629 */
2630static void __devinit velocity_init_info(struct pci_dev *pdev,
2631					 struct velocity_info *vptr,
2632					 const struct velocity_info_tbl *info)
2633{
2634	memset(vptr, 0, sizeof(struct velocity_info));
2635
2636	vptr->pdev = pdev;
2637	vptr->chip_id = info->chip_id;
2638	vptr->tx.numq = info->txqueue;
2639	vptr->multicast_limit = MCAM_SIZE;
2640	spin_lock_init(&vptr->lock);
2641}
2642
2643/**
2644 *	velocity_get_pci_info	-	retrieve PCI info for device
2645 *	@vptr: velocity device
2646 *	@pdev: PCI device it matches
2647 *
2648 *	Retrieve the PCI configuration space data that interests us from
2649 *	the kernel PCI layer
2650 */
2651static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
2652{
2653	vptr->rev_id = pdev->revision;
2654
2655	pci_set_master(pdev);
2656
2657	vptr->ioaddr = pci_resource_start(pdev, 0);
2658	vptr->memaddr = pci_resource_start(pdev, 1);
2659
2660	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
2661		dev_err(&pdev->dev,
2662			   "region #0 is not an I/O resource, aborting.\n");
2663		return -EINVAL;
2664	}
2665
2666	if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
2667		dev_err(&pdev->dev,
2668			   "region #1 is an I/O resource, aborting.\n");
2669		return -EINVAL;
2670	}
2671
2672	if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
2673		dev_err(&pdev->dev, "region #1 is too small.\n");
2674		return -EINVAL;
2675	}
2676	vptr->pdev = pdev;
2677
2678	return 0;
2679}
2680
2681/**
2682 *	velocity_print_info	-	per driver data
2683 *	@vptr: velocity
2684 *
2685 *	Print per driver data as the kernel driver finds Velocity
2686 *	hardware
2687 */
2688static void __devinit velocity_print_info(struct velocity_info *vptr)
2689{
2690	struct net_device *dev = vptr->dev;
2691
2692	printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
2693	printk(KERN_INFO "%s: Ethernet Address: %pM\n",
2694		dev->name, dev->dev_addr);
2695}
2696
2697static u32 velocity_get_link(struct net_device *dev)
2698{
2699	struct velocity_info *vptr = netdev_priv(dev);
2700	struct mac_regs __iomem *regs = vptr->mac_regs;
2701	return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
2702}
2703
2704/**
2705 *	velocity_found1		-	set up discovered velocity card
2706 *	@pdev: PCI device
2707 *	@ent: PCI device table entry that matched
2708 *
2709 *	Configure a discovered adapter from scratch. Return a negative
2710 *	errno error code on failure paths.
2711 */
2712static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
2713{
2714	static int first = 1;
2715	struct net_device *dev;
2716	int i;
2717	const char *drv_string;
2718	const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data];
2719	struct velocity_info *vptr;
2720	struct mac_regs __iomem *regs;
2721	int ret = -ENOMEM;
2722
2723	/* FIXME: this driver, like almost all other ethernet drivers,
2724	 * can support more than MAX_UNITS.
2725	 */
2726	if (velocity_nics >= MAX_UNITS) {
2727		dev_notice(&pdev->dev, "already found %d NICs.\n",
2728			   velocity_nics);
2729		return -ENODEV;
2730	}
2731
2732	dev = alloc_etherdev(sizeof(struct velocity_info));
2733	if (!dev)
2734		goto out;
2735
2736	/* Chain it all together */
2737
2738	SET_NETDEV_DEV(dev, &pdev->dev);
2739	vptr = netdev_priv(dev);
2740
2741
2742	if (first) {
2743		printk(KERN_INFO "%s Ver. %s\n",
2744			VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
2745		printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
2746		printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
2747		first = 0;
2748	}
2749
2750	velocity_init_info(pdev, vptr, info);
2751
2752	vptr->dev = dev;
2753
2754	ret = pci_enable_device(pdev);
2755	if (ret < 0)
2756		goto err_free_dev;
2757
2758	ret = velocity_get_pci_info(vptr, pdev);
2759	if (ret < 0) {
2760		/* error message already printed */
2761		goto err_disable;
2762	}
2763
2764	ret = pci_request_regions(pdev, VELOCITY_NAME);
2765	if (ret < 0) {
2766		dev_err(&pdev->dev, "No PCI resources.\n");
2767		goto err_disable;
2768	}
2769
2770	regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
2771	if (regs == NULL) {
2772		ret = -EIO;
2773		goto err_release_res;
2774	}
2775
2776	vptr->mac_regs = regs;
2777
2778	mac_wol_reset(regs);
2779
2780	for (i = 0; i < 6; i++)
2781		dev->dev_addr[i] = readb(&regs->PAR[i]);
2782
2783
2784	drv_string = dev_driver_string(&pdev->dev);
2785
2786	velocity_get_options(&vptr->options, velocity_nics, drv_string);
2787
2788	/*
2789	 *	Mask out the options cannot be set to the chip
2790	 */
2791
2792	vptr->options.flags &= info->flags;
2793
2794	/*
2795	 *	Enable the chip specified capbilities
2796	 */
2797
2798	vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
2799
2800	vptr->wol_opts = vptr->options.wol_opts;
2801	vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
2802
2803	vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
2804
2805	dev->netdev_ops = &velocity_netdev_ops;
2806	dev->ethtool_ops = &velocity_ethtool_ops;
2807	netif_napi_add(dev, &vptr->napi, velocity_poll, VELOCITY_NAPI_WEIGHT);
2808
2809	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HW_VLAN_TX;
2810	dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_FILTER |
2811		NETIF_F_HW_VLAN_RX | NETIF_F_IP_CSUM;
2812
2813	ret = register_netdev(dev);
2814	if (ret < 0)
2815		goto err_iounmap;
2816
2817	if (!velocity_get_link(dev)) {
2818		netif_carrier_off(dev);
2819		vptr->mii_status |= VELOCITY_LINK_FAIL;
2820	}
2821
2822	velocity_print_info(vptr);
2823	pci_set_drvdata(pdev, dev);
2824
2825	/* and leave the chip powered down */
2826
2827	pci_set_power_state(pdev, PCI_D3hot);
2828	velocity_nics++;
2829out:
2830	return ret;
2831
2832err_iounmap:
2833	iounmap(regs);
2834err_release_res:
2835	pci_release_regions(pdev);
2836err_disable:
2837	pci_disable_device(pdev);
2838err_free_dev:
2839	free_netdev(dev);
2840	goto out;
2841}
2842
2843#ifdef CONFIG_PM
2844/**
2845 *	wol_calc_crc		-	WOL CRC
2846 *	@pattern: data pattern
2847 *	@mask_pattern: mask
2848 *
2849 *	Compute the wake on lan crc hashes for the packet header
2850 *	we are interested in.
2851 */
2852static u16 wol_calc_crc(int size, u8 *pattern, u8 *mask_pattern)
2853{
2854	u16 crc = 0xFFFF;
2855	u8 mask;
2856	int i, j;
2857
2858	for (i = 0; i < size; i++) {
2859		mask = mask_pattern[i];
2860
2861		/* Skip this loop if the mask equals to zero */
2862		if (mask == 0x00)
2863			continue;
2864
2865		for (j = 0; j < 8; j++) {
2866			if ((mask & 0x01) == 0) {
2867				mask >>= 1;
2868				continue;
2869			}
2870			mask >>= 1;
2871			crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
2872		}
2873	}
2874	/*	Finally, invert the result once to get the correct data */
2875	crc = ~crc;
2876	return bitrev32(crc) >> 16;
2877}
2878
2879/**
2880 *	velocity_set_wol	-	set up for wake on lan
2881 *	@vptr: velocity to set WOL status on
2882 *
2883 *	Set a card up for wake on lan either by unicast or by
2884 *	ARP packet.
2885 *
2886 *	FIXME: check static buffer is safe here
2887 */
2888static int velocity_set_wol(struct velocity_info *vptr)
2889{
2890	struct mac_regs __iomem *regs = vptr->mac_regs;
2891	enum speed_opt spd_dpx = vptr->options.spd_dpx;
2892	static u8 buf[256];
2893	int i;
2894
2895	static u32 mask_pattern[2][4] = {
2896		{0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
2897		{0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff}	 /* Magic Packet */
2898	};
2899
2900	writew(0xFFFF, &regs->WOLCRClr);
2901	writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
2902	writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
2903
2904	/*
2905	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
2906	   writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
2907	 */
2908
2909	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
2910		writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
2911
2912	if (vptr->wol_opts & VELOCITY_WOL_ARP) {
2913		struct arp_packet *arp = (struct arp_packet *) buf;
2914		u16 crc;
2915		memset(buf, 0, sizeof(struct arp_packet) + 7);
2916
2917		for (i = 0; i < 4; i++)
2918			writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
2919
2920		arp->type = htons(ETH_P_ARP);
2921		arp->ar_op = htons(1);
2922
2923		memcpy(arp->ar_tip, vptr->ip_addr, 4);
2924
2925		crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
2926				(u8 *) & mask_pattern[0][0]);
2927
2928		writew(crc, &regs->PatternCRC[0]);
2929		writew(WOLCR_ARP_EN, &regs->WOLCRSet);
2930	}
2931
2932	BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
2933	BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
2934
2935	writew(0x0FFF, &regs->WOLSRClr);
2936
2937	if (spd_dpx == SPD_DPX_1000_FULL)
2938		goto mac_done;
2939
2940	if (spd_dpx != SPD_DPX_AUTO)
2941		goto advertise_done;
2942
2943	if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
2944		if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
2945			MII_REG_BITS_ON(AUXCR_MDPPS, MII_NCONFIG, vptr->mac_regs);
2946
2947		MII_REG_BITS_OFF(ADVERTISE_1000FULL | ADVERTISE_1000HALF, MII_CTRL1000, vptr->mac_regs);
2948	}
2949
2950	if (vptr->mii_status & VELOCITY_SPEED_1000)
2951		MII_REG_BITS_ON(BMCR_ANRESTART, MII_BMCR, vptr->mac_regs);
2952
2953advertise_done:
2954	BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2955
2956	{
2957		u8 GCR;
2958		GCR = readb(&regs->CHIPGCR);
2959		GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
2960		writeb(GCR, &regs->CHIPGCR);
2961	}
2962
2963mac_done:
2964	BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
2965	/* Turn on SWPTAG just before entering power mode */
2966	BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
2967	/* Go to bed ..... */
2968	BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
2969
2970	return 0;
2971}
2972
2973/**
2974 *	velocity_save_context	-	save registers
2975 *	@vptr: velocity
2976 *	@context: buffer for stored context
2977 *
2978 *	Retrieve the current configuration from the velocity hardware
2979 *	and stash it in the context structure, for use by the context
2980 *	restore functions. This allows us to save things we need across
2981 *	power down states
2982 */
2983static void velocity_save_context(struct velocity_info *vptr, struct velocity_context *context)
2984{
2985	struct mac_regs __iomem *regs = vptr->mac_regs;
2986	u16 i;
2987	u8 __iomem *ptr = (u8 __iomem *)regs;
2988
2989	for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
2990		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
2991
2992	for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
2993		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
2994
2995	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
2996		*((u32 *) (context->mac_reg + i)) = readl(ptr + i);
2997
2998}
2999
3000static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3001{
3002	struct net_device *dev = pci_get_drvdata(pdev);
3003	struct velocity_info *vptr = netdev_priv(dev);
3004	unsigned long flags;
3005
3006	if (!netif_running(vptr->dev))
3007		return 0;
3008
3009	netif_device_detach(vptr->dev);
3010
3011	spin_lock_irqsave(&vptr->lock, flags);
3012	pci_save_state(pdev);
3013
3014	if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3015		velocity_get_ip(vptr);
3016		velocity_save_context(vptr, &vptr->context);
3017		velocity_shutdown(vptr);
3018		velocity_set_wol(vptr);
3019		pci_enable_wake(pdev, PCI_D3hot, 1);
3020		pci_set_power_state(pdev, PCI_D3hot);
3021	} else {
3022		velocity_save_context(vptr, &vptr->context);
3023		velocity_shutdown(vptr);
3024		pci_disable_device(pdev);
3025		pci_set_power_state(pdev, pci_choose_state(pdev, state));
3026	}
3027
3028	spin_unlock_irqrestore(&vptr->lock, flags);
3029	return 0;
3030}
3031
3032/**
3033 *	velocity_restore_context	-	restore registers
3034 *	@vptr: velocity
3035 *	@context: buffer for stored context
3036 *
3037 *	Reload the register configuration from the velocity context
3038 *	created by velocity_save_context.
3039 */
3040static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3041{
3042	struct mac_regs __iomem *regs = vptr->mac_regs;
3043	int i;
3044	u8 __iomem *ptr = (u8 __iomem *)regs;
3045
3046	for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4)
3047		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3048
3049	/* Just skip cr0 */
3050	for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3051		/* Clear */
3052		writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3053		/* Set */
3054		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3055	}
3056
3057	for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4)
3058		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3059
3060	for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3061		writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3062
3063	for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++)
3064		writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3065}
3066
3067static int velocity_resume(struct pci_dev *pdev)
3068{
3069	struct net_device *dev = pci_get_drvdata(pdev);
3070	struct velocity_info *vptr = netdev_priv(dev);
3071	unsigned long flags;
3072	int i;
3073
3074	if (!netif_running(vptr->dev))
3075		return 0;
3076
3077	pci_set_power_state(pdev, PCI_D0);
3078	pci_enable_wake(pdev, 0, 0);
3079	pci_restore_state(pdev);
3080
3081	mac_wol_reset(vptr->mac_regs);
3082
3083	spin_lock_irqsave(&vptr->lock, flags);
3084	velocity_restore_context(vptr, &vptr->context);
3085	velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3086	mac_disable_int(vptr->mac_regs);
3087
3088	velocity_tx_srv(vptr);
3089
3090	for (i = 0; i < vptr->tx.numq; i++) {
3091		if (vptr->tx.used[i])
3092			mac_tx_queue_wake(vptr->mac_regs, i);
3093	}
3094
3095	mac_enable_int(vptr->mac_regs);
3096	spin_unlock_irqrestore(&vptr->lock, flags);
3097	netif_device_attach(vptr->dev);
3098
3099	return 0;
3100}
3101#endif
3102
3103/*
3104 *	Definition for our device driver. The PCI layer interface
3105 *	uses this to handle all our card discover and plugging
3106 */
3107static struct pci_driver velocity_driver = {
3108	.name		= VELOCITY_NAME,
3109	.id_table	= velocity_id_table,
3110	.probe		= velocity_found1,
3111	.remove		= __devexit_p(velocity_remove1),
3112#ifdef CONFIG_PM
3113	.suspend	= velocity_suspend,
3114	.resume		= velocity_resume,
3115#endif
3116};
3117
3118
3119/**
3120 *	velocity_ethtool_up	-	pre hook for ethtool
3121 *	@dev: network device
3122 *
3123 *	Called before an ethtool operation. We need to make sure the
3124 *	chip is out of D3 state before we poke at it.
3125 */
3126static int velocity_ethtool_up(struct net_device *dev)
3127{
3128	struct velocity_info *vptr = netdev_priv(dev);
3129	if (!netif_running(dev))
3130		pci_set_power_state(vptr->pdev, PCI_D0);
3131	return 0;
3132}
3133
3134/**
3135 *	velocity_ethtool_down	-	post hook for ethtool
3136 *	@dev: network device
3137 *
3138 *	Called after an ethtool operation. Restore the chip back to D3
3139 *	state if it isn't running.
3140 */
3141static void velocity_ethtool_down(struct net_device *dev)
3142{
3143	struct velocity_info *vptr = netdev_priv(dev);
3144	if (!netif_running(dev))
3145		pci_set_power_state(vptr->pdev, PCI_D3hot);
3146}
3147
3148static int velocity_get_settings(struct net_device *dev,
3149				 struct ethtool_cmd *cmd)
3150{
3151	struct velocity_info *vptr = netdev_priv(dev);
3152	struct mac_regs __iomem *regs = vptr->mac_regs;
3153	u32 status;
3154	status = check_connection_type(vptr->mac_regs);
3155
3156	cmd->supported = SUPPORTED_TP |
3157			SUPPORTED_Autoneg |
3158			SUPPORTED_10baseT_Half |
3159			SUPPORTED_10baseT_Full |
3160			SUPPORTED_100baseT_Half |
3161			SUPPORTED_100baseT_Full |
3162			SUPPORTED_1000baseT_Half |
3163			SUPPORTED_1000baseT_Full;
3164
3165	cmd->advertising = ADVERTISED_TP | ADVERTISED_Autoneg;
3166	if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
3167		cmd->advertising |=
3168			ADVERTISED_10baseT_Half |
3169			ADVERTISED_10baseT_Full |
3170			ADVERTISED_100baseT_Half |
3171			ADVERTISED_100baseT_Full |
3172			ADVERTISED_1000baseT_Half |
3173			ADVERTISED_1000baseT_Full;
3174	} else {
3175		switch (vptr->options.spd_dpx) {
3176		case SPD_DPX_1000_FULL:
3177			cmd->advertising |= ADVERTISED_1000baseT_Full;
3178			break;
3179		case SPD_DPX_100_HALF:
3180			cmd->advertising |= ADVERTISED_100baseT_Half;
3181			break;
3182		case SPD_DPX_100_FULL:
3183			cmd->advertising |= ADVERTISED_100baseT_Full;
3184			break;
3185		case SPD_DPX_10_HALF:
3186			cmd->advertising |= ADVERTISED_10baseT_Half;
3187			break;
3188		case SPD_DPX_10_FULL:
3189			cmd->advertising |= ADVERTISED_10baseT_Full;
3190			break;
3191		default:
3192			break;
3193		}
3194	}
3195
3196	if (status & VELOCITY_SPEED_1000)
3197		ethtool_cmd_speed_set(cmd, SPEED_1000);
3198	else if (status & VELOCITY_SPEED_100)
3199		ethtool_cmd_speed_set(cmd, SPEED_100);
3200	else
3201		ethtool_cmd_speed_set(cmd, SPEED_10);
3202
3203	cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3204	cmd->port = PORT_TP;
3205	cmd->transceiver = XCVR_INTERNAL;
3206	cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3207
3208	if (status & VELOCITY_DUPLEX_FULL)
3209		cmd->duplex = DUPLEX_FULL;
3210	else
3211		cmd->duplex = DUPLEX_HALF;
3212
3213	return 0;
3214}
3215
3216static int velocity_set_settings(struct net_device *dev,
3217				 struct ethtool_cmd *cmd)
3218{
3219	struct velocity_info *vptr = netdev_priv(dev);
3220	u32 speed = ethtool_cmd_speed(cmd);
3221	u32 curr_status;
3222	u32 new_status = 0;
3223	int ret = 0;
3224
3225	curr_status = check_connection_type(vptr->mac_regs);
3226	curr_status &= (~VELOCITY_LINK_FAIL);
3227
3228	new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3229	new_status |= ((speed == SPEED_1000) ? VELOCITY_SPEED_1000 : 0);
3230	new_status |= ((speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3231	new_status |= ((speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3232	new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3233
3234	if ((new_status & VELOCITY_AUTONEG_ENABLE) &&
3235	    (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE))) {
3236		ret = -EINVAL;
3237	} else {
3238		enum speed_opt spd_dpx;
3239
3240		if (new_status & VELOCITY_AUTONEG_ENABLE)
3241			spd_dpx = SPD_DPX_AUTO;
3242		else if ((new_status & VELOCITY_SPEED_1000) &&
3243			 (new_status & VELOCITY_DUPLEX_FULL)) {
3244			spd_dpx = SPD_DPX_1000_FULL;
3245		} else if (new_status & VELOCITY_SPEED_100)
3246			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3247				SPD_DPX_100_FULL : SPD_DPX_100_HALF;
3248		else if (new_status & VELOCITY_SPEED_10)
3249			spd_dpx = (new_status & VELOCITY_DUPLEX_FULL) ?
3250				SPD_DPX_10_FULL : SPD_DPX_10_HALF;
3251		else
3252			return -EOPNOTSUPP;
3253
3254		vptr->options.spd_dpx = spd_dpx;
3255
3256		velocity_set_media_mode(vptr, new_status);
3257	}
3258
3259	return ret;
3260}
3261
3262static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3263{
3264	struct velocity_info *vptr = netdev_priv(dev);
3265	strlcpy(info->driver, VELOCITY_NAME, sizeof(info->driver));
3266	strlcpy(info->version, VELOCITY_VERSION, sizeof(info->version));
3267	strlcpy(info->bus_info, pci_name(vptr->pdev), sizeof(info->bus_info));
3268}
3269
3270static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3271{
3272	struct velocity_info *vptr = netdev_priv(dev);
3273	wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3274	wol->wolopts |= WAKE_MAGIC;
3275	/*
3276	   if (vptr->wol_opts & VELOCITY_WOL_PHY)
3277		   wol.wolopts|=WAKE_PHY;
3278			 */
3279	if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3280		wol->wolopts |= WAKE_UCAST;
3281	if (vptr->wol_opts & VELOCITY_WOL_ARP)
3282		wol->wolopts |= WAKE_ARP;
3283	memcpy(&wol->sopass, vptr->wol_passwd, 6);
3284}
3285
3286static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3287{
3288	struct velocity_info *vptr = netdev_priv(dev);
3289
3290	if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3291		return -EFAULT;
3292	vptr->wol_opts = VELOCITY_WOL_MAGIC;
3293
3294	/*
3295	   if (wol.wolopts & WAKE_PHY) {
3296	   vptr->wol_opts|=VELOCITY_WOL_PHY;
3297	   vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3298	   }
3299	 */
3300
3301	if (wol->wolopts & WAKE_MAGIC) {
3302		vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3303		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3304	}
3305	if (wol->wolopts & WAKE_UCAST) {
3306		vptr->wol_opts |= VELOCITY_WOL_UCAST;
3307		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3308	}
3309	if (wol->wolopts & WAKE_ARP) {
3310		vptr->wol_opts |= VELOCITY_WOL_ARP;
3311		vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3312	}
3313	memcpy(vptr->wol_passwd, wol->sopass, 6);
3314	return 0;
3315}
3316
3317static u32 velocity_get_msglevel(struct net_device *dev)
3318{
3319	return msglevel;
3320}
3321
3322static void velocity_set_msglevel(struct net_device *dev, u32 value)
3323{
3324	 msglevel = value;
3325}
3326
3327static int get_pending_timer_val(int val)
3328{
3329	int mult_bits = val >> 6;
3330	int mult = 1;
3331
3332	switch (mult_bits)
3333	{
3334	case 1:
3335		mult = 4; break;
3336	case 2:
3337		mult = 16; break;
3338	case 3:
3339		mult = 64; break;
3340	case 0:
3341	default:
3342		break;
3343	}
3344
3345	return (val & 0x3f) * mult;
3346}
3347
3348static void set_pending_timer_val(int *val, u32 us)
3349{
3350	u8 mult = 0;
3351	u8 shift = 0;
3352
3353	if (us >= 0x3f) {
3354		mult = 1; /* mult with 4 */
3355		shift = 2;
3356	}
3357	if (us >= 0x3f * 4) {
3358		mult = 2; /* mult with 16 */
3359		shift = 4;
3360	}
3361	if (us >= 0x3f * 16) {
3362		mult = 3; /* mult with 64 */
3363		shift = 6;
3364	}
3365
3366	*val = (mult << 6) | ((us >> shift) & 0x3f);
3367}
3368
3369
3370static int velocity_get_coalesce(struct net_device *dev,
3371		struct ethtool_coalesce *ecmd)
3372{
3373	struct velocity_info *vptr = netdev_priv(dev);
3374
3375	ecmd->tx_max_coalesced_frames = vptr->options.tx_intsup;
3376	ecmd->rx_max_coalesced_frames = vptr->options.rx_intsup;
3377
3378	ecmd->rx_coalesce_usecs = get_pending_timer_val(vptr->options.rxqueue_timer);
3379	ecmd->tx_coalesce_usecs = get_pending_timer_val(vptr->options.txqueue_timer);
3380
3381	return 0;
3382}
3383
3384static int velocity_set_coalesce(struct net_device *dev,
3385		struct ethtool_coalesce *ecmd)
3386{
3387	struct velocity_info *vptr = netdev_priv(dev);
3388	int max_us = 0x3f * 64;
3389	unsigned long flags;
3390
3391	/* 6 bits of  */
3392	if (ecmd->tx_coalesce_usecs > max_us)
3393		return -EINVAL;
3394	if (ecmd->rx_coalesce_usecs > max_us)
3395		return -EINVAL;
3396
3397	if (ecmd->tx_max_coalesced_frames > 0xff)
3398		return -EINVAL;
3399	if (ecmd->rx_max_coalesced_frames > 0xff)
3400		return -EINVAL;
3401
3402	vptr->options.rx_intsup = ecmd->rx_max_coalesced_frames;
3403	vptr->options.tx_intsup = ecmd->tx_max_coalesced_frames;
3404
3405	set_pending_timer_val(&vptr->options.rxqueue_timer,
3406			ecmd->rx_coalesce_usecs);
3407	set_pending_timer_val(&vptr->options.txqueue_timer,
3408			ecmd->tx_coalesce_usecs);
3409
3410	/* Setup the interrupt suppression and queue timers */
3411	spin_lock_irqsave(&vptr->lock, flags);
3412	mac_disable_int(vptr->mac_regs);
3413	setup_adaptive_interrupts(vptr);
3414	setup_queue_timers(vptr);
3415
3416	mac_write_int_mask(vptr->int_mask, vptr->mac_regs);
3417	mac_clear_isr(vptr->mac_regs);
3418	mac_enable_int(vptr->mac_regs);
3419	spin_unlock_irqrestore(&vptr->lock, flags);
3420
3421	return 0;
3422}
3423
3424static const char velocity_gstrings[][ETH_GSTRING_LEN] = {
3425	"rx_all",
3426	"rx_ok",
3427	"tx_ok",
3428	"rx_error",
3429	"rx_runt_ok",
3430	"rx_runt_err",
3431	"rx_64",
3432	"tx_64",
3433	"rx_65_to_127",
3434	"tx_65_to_127",
3435	"rx_128_to_255",
3436	"tx_128_to_255",
3437	"rx_256_to_511",
3438	"tx_256_to_511",
3439	"rx_512_to_1023",
3440	"tx_512_to_1023",
3441	"rx_1024_to_1518",
3442	"tx_1024_to_1518",
3443	"tx_ether_collisions",
3444	"rx_crc_errors",
3445	"rx_jumbo",
3446	"tx_jumbo",
3447	"rx_mac_control_frames",
3448	"tx_mac_control_frames",
3449	"rx_frame_alignement_errors",
3450	"rx_long_ok",
3451	"rx_long_err",
3452	"tx_sqe_errors",
3453	"rx_no_buf",
3454	"rx_symbol_errors",
3455	"in_range_length_errors",
3456	"late_collisions"
3457};
3458
3459static void velocity_get_strings(struct net_device *dev, u32 sset, u8 *data)
3460{
3461	switch (sset) {
3462	case ETH_SS_STATS:
3463		memcpy(data, *velocity_gstrings, sizeof(velocity_gstrings));
3464		break;
3465	}
3466}
3467
3468static int velocity_get_sset_count(struct net_device *dev, int sset)
3469{
3470	switch (sset) {
3471	case ETH_SS_STATS:
3472		return ARRAY_SIZE(velocity_gstrings);
3473	default:
3474		return -EOPNOTSUPP;
3475	}
3476}
3477
3478static void velocity_get_ethtool_stats(struct net_device *dev,
3479				       struct ethtool_stats *stats, u64 *data)
3480{
3481	if (netif_running(dev)) {
3482		struct velocity_info *vptr = netdev_priv(dev);
3483		u32 *p = vptr->mib_counter;
3484		int i;
3485
3486		spin_lock_irq(&vptr->lock);
3487		velocity_update_hw_mibs(vptr);
3488		spin_unlock_irq(&vptr->lock);
3489
3490		for (i = 0; i < ARRAY_SIZE(velocity_gstrings); i++)
3491			*data++ = *p++;
3492	}
3493}
3494
3495static const struct ethtool_ops velocity_ethtool_ops = {
3496	.get_settings		= velocity_get_settings,
3497	.set_settings		= velocity_set_settings,
3498	.get_drvinfo		= velocity_get_drvinfo,
3499	.get_wol		= velocity_ethtool_get_wol,
3500	.set_wol		= velocity_ethtool_set_wol,
3501	.get_msglevel		= velocity_get_msglevel,
3502	.set_msglevel		= velocity_set_msglevel,
3503	.get_link		= velocity_get_link,
3504	.get_strings		= velocity_get_strings,
3505	.get_sset_count		= velocity_get_sset_count,
3506	.get_ethtool_stats	= velocity_get_ethtool_stats,
3507	.get_coalesce		= velocity_get_coalesce,
3508	.set_coalesce		= velocity_set_coalesce,
3509	.begin			= velocity_ethtool_up,
3510	.complete		= velocity_ethtool_down
3511};
3512
3513#if defined(CONFIG_PM) && defined(CONFIG_INET)
3514static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3515{
3516	struct in_ifaddr *ifa = ptr;
3517	struct net_device *dev = ifa->ifa_dev->dev;
3518
3519	if (dev_net(dev) == &init_net &&
3520	    dev->netdev_ops == &velocity_netdev_ops)
3521		velocity_get_ip(netdev_priv(dev));
3522
3523	return NOTIFY_DONE;
3524}
3525
3526static struct notifier_block velocity_inetaddr_notifier = {
3527	.notifier_call	= velocity_netdev_event,
3528};
3529
3530static void velocity_register_notifier(void)
3531{
3532	register_inetaddr_notifier(&velocity_inetaddr_notifier);
3533}
3534
3535static void velocity_unregister_notifier(void)
3536{
3537	unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
3538}
3539
3540#else
3541
3542#define velocity_register_notifier()	do {} while (0)
3543#define velocity_unregister_notifier()	do {} while (0)
3544
3545#endif	/* defined(CONFIG_PM) && defined(CONFIG_INET) */
3546
3547/**
3548 *	velocity_init_module	-	load time function
3549 *
3550 *	Called when the velocity module is loaded. The PCI driver
3551 *	is registered with the PCI layer, and in turn will call
3552 *	the probe functions for each velocity adapter installed
3553 *	in the system.
3554 */
3555static int __init velocity_init_module(void)
3556{
3557	int ret;
3558
3559	velocity_register_notifier();
3560	ret = pci_register_driver(&velocity_driver);
3561	if (ret < 0)
3562		velocity_unregister_notifier();
3563	return ret;
3564}
3565
3566/**
3567 *	velocity_cleanup	-	module unload
3568 *
3569 *	When the velocity hardware is unloaded this function is called.
3570 *	It will clean up the notifiers and the unregister the PCI
3571 *	driver interface for this hardware. This in turn cleans up
3572 *	all discovered interfaces before returning from the function
3573 */
3574static void __exit velocity_cleanup_module(void)
3575{
3576	velocity_unregister_notifier();
3577	pci_unregister_driver(&velocity_driver);
3578}
3579
3580module_init(velocity_init_module);
3581module_exit(velocity_cleanup_module);