Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/* linux/arch/arm/mach-exynos4/mct.c
  2 *
  3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
  4 *		http://www.samsung.com
  5 *
  6 * EXYNOS4 MCT(Multi-Core Timer) support
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11*/
 12
 13#include <linux/sched.h>
 14#include <linux/interrupt.h>
 15#include <linux/irq.h>
 16#include <linux/err.h>
 17#include <linux/clk.h>
 18#include <linux/clockchips.h>
 19#include <linux/cpu.h>
 20#include <linux/platform_device.h>
 21#include <linux/delay.h>
 22#include <linux/percpu.h>
 23#include <linux/of.h>
 24#include <linux/of_irq.h>
 25#include <linux/of_address.h>
 26#include <linux/clocksource.h>
 27#include <linux/sched_clock.h>
 28
 29#define EXYNOS4_MCTREG(x)		(x)
 30#define EXYNOS4_MCT_G_CNT_L		EXYNOS4_MCTREG(0x100)
 31#define EXYNOS4_MCT_G_CNT_U		EXYNOS4_MCTREG(0x104)
 32#define EXYNOS4_MCT_G_CNT_WSTAT		EXYNOS4_MCTREG(0x110)
 33#define EXYNOS4_MCT_G_COMP0_L		EXYNOS4_MCTREG(0x200)
 34#define EXYNOS4_MCT_G_COMP0_U		EXYNOS4_MCTREG(0x204)
 35#define EXYNOS4_MCT_G_COMP0_ADD_INCR	EXYNOS4_MCTREG(0x208)
 36#define EXYNOS4_MCT_G_TCON		EXYNOS4_MCTREG(0x240)
 37#define EXYNOS4_MCT_G_INT_CSTAT		EXYNOS4_MCTREG(0x244)
 38#define EXYNOS4_MCT_G_INT_ENB		EXYNOS4_MCTREG(0x248)
 39#define EXYNOS4_MCT_G_WSTAT		EXYNOS4_MCTREG(0x24C)
 40#define _EXYNOS4_MCT_L_BASE		EXYNOS4_MCTREG(0x300)
 41#define EXYNOS4_MCT_L_BASE(x)		(_EXYNOS4_MCT_L_BASE + (0x100 * x))
 42#define EXYNOS4_MCT_L_MASK		(0xffffff00)
 43
 44#define MCT_L_TCNTB_OFFSET		(0x00)
 45#define MCT_L_ICNTB_OFFSET		(0x08)
 46#define MCT_L_TCON_OFFSET		(0x20)
 47#define MCT_L_INT_CSTAT_OFFSET		(0x30)
 48#define MCT_L_INT_ENB_OFFSET		(0x34)
 49#define MCT_L_WSTAT_OFFSET		(0x40)
 50#define MCT_G_TCON_START		(1 << 8)
 51#define MCT_G_TCON_COMP0_AUTO_INC	(1 << 1)
 52#define MCT_G_TCON_COMP0_ENABLE		(1 << 0)
 53#define MCT_L_TCON_INTERVAL_MODE	(1 << 2)
 54#define MCT_L_TCON_INT_START		(1 << 1)
 55#define MCT_L_TCON_TIMER_START		(1 << 0)
 56
 57#define TICK_BASE_CNT	1
 58
 59enum {
 60	MCT_INT_SPI,
 61	MCT_INT_PPI
 62};
 63
 64enum {
 65	MCT_G0_IRQ,
 66	MCT_G1_IRQ,
 67	MCT_G2_IRQ,
 68	MCT_G3_IRQ,
 69	MCT_L0_IRQ,
 70	MCT_L1_IRQ,
 71	MCT_L2_IRQ,
 72	MCT_L3_IRQ,
 73	MCT_L4_IRQ,
 74	MCT_L5_IRQ,
 75	MCT_L6_IRQ,
 76	MCT_L7_IRQ,
 77	MCT_NR_IRQS,
 78};
 79
 80static void __iomem *reg_base;
 81static unsigned long clk_rate;
 82static unsigned int mct_int_type;
 83static int mct_irqs[MCT_NR_IRQS];
 84
 85struct mct_clock_event_device {
 86	struct clock_event_device evt;
 87	unsigned long base;
 88	char name[10];
 89};
 90
 91static void exynos4_mct_write(unsigned int value, unsigned long offset)
 92{
 93	unsigned long stat_addr;
 94	u32 mask;
 95	u32 i;
 96
 97	writel_relaxed(value, reg_base + offset);
 98
 99	if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
100		stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
101		switch (offset & ~EXYNOS4_MCT_L_MASK) {
102		case MCT_L_TCON_OFFSET:
103			mask = 1 << 3;		/* L_TCON write status */
104			break;
105		case MCT_L_ICNTB_OFFSET:
106			mask = 1 << 1;		/* L_ICNTB write status */
107			break;
108		case MCT_L_TCNTB_OFFSET:
109			mask = 1 << 0;		/* L_TCNTB write status */
110			break;
111		default:
112			return;
113		}
114	} else {
115		switch (offset) {
116		case EXYNOS4_MCT_G_TCON:
117			stat_addr = EXYNOS4_MCT_G_WSTAT;
118			mask = 1 << 16;		/* G_TCON write status */
119			break;
120		case EXYNOS4_MCT_G_COMP0_L:
121			stat_addr = EXYNOS4_MCT_G_WSTAT;
122			mask = 1 << 0;		/* G_COMP0_L write status */
123			break;
124		case EXYNOS4_MCT_G_COMP0_U:
125			stat_addr = EXYNOS4_MCT_G_WSTAT;
126			mask = 1 << 1;		/* G_COMP0_U write status */
127			break;
128		case EXYNOS4_MCT_G_COMP0_ADD_INCR:
129			stat_addr = EXYNOS4_MCT_G_WSTAT;
130			mask = 1 << 2;		/* G_COMP0_ADD_INCR w status */
131			break;
132		case EXYNOS4_MCT_G_CNT_L:
133			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
134			mask = 1 << 0;		/* G_CNT_L write status */
135			break;
136		case EXYNOS4_MCT_G_CNT_U:
137			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
138			mask = 1 << 1;		/* G_CNT_U write status */
139			break;
140		default:
141			return;
142		}
143	}
144
145	/* Wait maximum 1 ms until written values are applied */
146	for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
147		if (readl_relaxed(reg_base + stat_addr) & mask) {
148			writel_relaxed(mask, reg_base + stat_addr);
149			return;
150		}
151
152	panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
153}
154
155/* Clocksource handling */
156static void exynos4_mct_frc_start(void)
157{
158	u32 reg;
159
160	reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
161	reg |= MCT_G_TCON_START;
162	exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
163}
164
165/**
166 * exynos4_read_count_64 - Read all 64-bits of the global counter
167 *
168 * This will read all 64-bits of the global counter taking care to make sure
169 * that the upper and lower half match.  Note that reading the MCT can be quite
170 * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
171 * only) version when possible.
172 *
173 * Returns the number of cycles in the global counter.
174 */
175static u64 exynos4_read_count_64(void)
176{
177	unsigned int lo, hi;
178	u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
179
180	do {
181		hi = hi2;
182		lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
183		hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
184	} while (hi != hi2);
185
186	return ((cycle_t)hi << 32) | lo;
187}
188
189/**
190 * exynos4_read_count_32 - Read the lower 32-bits of the global counter
191 *
192 * This will read just the lower 32-bits of the global counter.  This is marked
193 * as notrace so it can be used by the scheduler clock.
194 *
195 * Returns the number of cycles in the global counter (lower 32 bits).
196 */
197static u32 notrace exynos4_read_count_32(void)
198{
199	return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
200}
201
202static cycle_t exynos4_frc_read(struct clocksource *cs)
203{
204	return exynos4_read_count_32();
205}
206
207static void exynos4_frc_resume(struct clocksource *cs)
208{
209	exynos4_mct_frc_start();
210}
211
212static struct clocksource mct_frc = {
213	.name		= "mct-frc",
214	.rating		= 400,
215	.read		= exynos4_frc_read,
216	.mask		= CLOCKSOURCE_MASK(32),
217	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
218	.resume		= exynos4_frc_resume,
219};
220
221static u64 notrace exynos4_read_sched_clock(void)
222{
223	return exynos4_read_count_32();
224}
225
226static struct delay_timer exynos4_delay_timer;
227
228static cycles_t exynos4_read_current_timer(void)
229{
230	BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
231			 "cycles_t needs to move to 32-bit for ARM64 usage");
232	return exynos4_read_count_32();
233}
234
235static void __init exynos4_clocksource_init(void)
236{
237	exynos4_mct_frc_start();
238
239	exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
240	exynos4_delay_timer.freq = clk_rate;
241	register_current_timer_delay(&exynos4_delay_timer);
242
243	if (clocksource_register_hz(&mct_frc, clk_rate))
244		panic("%s: can't register clocksource\n", mct_frc.name);
245
246	sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
247}
248
249static void exynos4_mct_comp0_stop(void)
250{
251	unsigned int tcon;
252
253	tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
254	tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
255
256	exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
257	exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
258}
259
260static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
261{
262	unsigned int tcon;
263	cycle_t comp_cycle;
264
265	tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
266
267	if (periodic) {
268		tcon |= MCT_G_TCON_COMP0_AUTO_INC;
269		exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
270	}
271
272	comp_cycle = exynos4_read_count_64() + cycles;
273	exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
274	exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
275
276	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
277
278	tcon |= MCT_G_TCON_COMP0_ENABLE;
279	exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
280}
281
282static int exynos4_comp_set_next_event(unsigned long cycles,
283				       struct clock_event_device *evt)
284{
285	exynos4_mct_comp0_start(false, cycles);
286
287	return 0;
288}
289
290static int mct_set_state_shutdown(struct clock_event_device *evt)
291{
292	exynos4_mct_comp0_stop();
293	return 0;
294}
295
296static int mct_set_state_periodic(struct clock_event_device *evt)
297{
298	unsigned long cycles_per_jiffy;
299
300	cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
301			    >> evt->shift);
302	exynos4_mct_comp0_stop();
303	exynos4_mct_comp0_start(true, cycles_per_jiffy);
304	return 0;
305}
306
307static struct clock_event_device mct_comp_device = {
308	.name			= "mct-comp",
309	.features		= CLOCK_EVT_FEAT_PERIODIC |
310				  CLOCK_EVT_FEAT_ONESHOT,
311	.rating			= 250,
312	.set_next_event		= exynos4_comp_set_next_event,
313	.set_state_periodic	= mct_set_state_periodic,
314	.set_state_shutdown	= mct_set_state_shutdown,
315	.set_state_oneshot	= mct_set_state_shutdown,
316	.set_state_oneshot_stopped = mct_set_state_shutdown,
317	.tick_resume		= mct_set_state_shutdown,
318};
319
320static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
321{
322	struct clock_event_device *evt = dev_id;
323
324	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
325
326	evt->event_handler(evt);
327
328	return IRQ_HANDLED;
329}
330
331static struct irqaction mct_comp_event_irq = {
332	.name		= "mct_comp_irq",
333	.flags		= IRQF_TIMER | IRQF_IRQPOLL,
334	.handler	= exynos4_mct_comp_isr,
335	.dev_id		= &mct_comp_device,
336};
337
338static void exynos4_clockevent_init(void)
339{
340	mct_comp_device.cpumask = cpumask_of(0);
341	clockevents_config_and_register(&mct_comp_device, clk_rate,
342					0xf, 0xffffffff);
343	setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
344}
345
346static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
347
348/* Clock event handling */
349static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
350{
351	unsigned long tmp;
352	unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
353	unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
354
355	tmp = readl_relaxed(reg_base + offset);
356	if (tmp & mask) {
357		tmp &= ~mask;
358		exynos4_mct_write(tmp, offset);
359	}
360}
361
362static void exynos4_mct_tick_start(unsigned long cycles,
363				   struct mct_clock_event_device *mevt)
364{
365	unsigned long tmp;
366
367	exynos4_mct_tick_stop(mevt);
368
369	tmp = (1 << 31) | cycles;	/* MCT_L_UPDATE_ICNTB */
370
371	/* update interrupt count buffer */
372	exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
373
374	/* enable MCT tick interrupt */
375	exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
376
377	tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
378	tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
379	       MCT_L_TCON_INTERVAL_MODE;
380	exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
381}
382
383static int exynos4_tick_set_next_event(unsigned long cycles,
384				       struct clock_event_device *evt)
385{
386	struct mct_clock_event_device *mevt;
387
388	mevt = container_of(evt, struct mct_clock_event_device, evt);
389	exynos4_mct_tick_start(cycles, mevt);
390	return 0;
391}
392
393static int set_state_shutdown(struct clock_event_device *evt)
394{
395	struct mct_clock_event_device *mevt;
396
397	mevt = container_of(evt, struct mct_clock_event_device, evt);
398	exynos4_mct_tick_stop(mevt);
399	return 0;
400}
401
402static int set_state_periodic(struct clock_event_device *evt)
403{
404	struct mct_clock_event_device *mevt;
405	unsigned long cycles_per_jiffy;
406
407	mevt = container_of(evt, struct mct_clock_event_device, evt);
408	cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
409			    >> evt->shift);
410	exynos4_mct_tick_stop(mevt);
411	exynos4_mct_tick_start(cycles_per_jiffy, mevt);
412	return 0;
413}
414
415static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
416{
417	/*
418	 * This is for supporting oneshot mode.
419	 * Mct would generate interrupt periodically
420	 * without explicit stopping.
421	 */
422	if (!clockevent_state_periodic(&mevt->evt))
423		exynos4_mct_tick_stop(mevt);
424
425	/* Clear the MCT tick interrupt */
426	if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
427		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
428}
429
430static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
431{
432	struct mct_clock_event_device *mevt = dev_id;
433	struct clock_event_device *evt = &mevt->evt;
434
435	exynos4_mct_tick_clear(mevt);
436
437	evt->event_handler(evt);
438
439	return IRQ_HANDLED;
440}
441
442static int exynos4_local_timer_setup(struct mct_clock_event_device *mevt)
443{
444	struct clock_event_device *evt = &mevt->evt;
445	unsigned int cpu = smp_processor_id();
446
447	mevt->base = EXYNOS4_MCT_L_BASE(cpu);
448	snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
449
450	evt->name = mevt->name;
451	evt->cpumask = cpumask_of(cpu);
452	evt->set_next_event = exynos4_tick_set_next_event;
453	evt->set_state_periodic = set_state_periodic;
454	evt->set_state_shutdown = set_state_shutdown;
455	evt->set_state_oneshot = set_state_shutdown;
456	evt->set_state_oneshot_stopped = set_state_shutdown;
457	evt->tick_resume = set_state_shutdown;
458	evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
459	evt->rating = 450;
460
461	exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
462
463	if (mct_int_type == MCT_INT_SPI) {
464
465		if (evt->irq == -1)
466			return -EIO;
467
468		irq_force_affinity(evt->irq, cpumask_of(cpu));
469		enable_irq(evt->irq);
470	} else {
471		enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
472	}
473	clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
474					0xf, 0x7fffffff);
475
476	return 0;
477}
478
479static void exynos4_local_timer_stop(struct mct_clock_event_device *mevt)
480{
481	struct clock_event_device *evt = &mevt->evt;
482
483	evt->set_state_shutdown(evt);
484	if (mct_int_type == MCT_INT_SPI) {
485		if (evt->irq != -1)
486			disable_irq_nosync(evt->irq);
487	} else {
488		disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
489	}
490}
491
492static int exynos4_mct_cpu_notify(struct notifier_block *self,
493					   unsigned long action, void *hcpu)
494{
495	struct mct_clock_event_device *mevt;
496
497	/*
498	 * Grab cpu pointer in each case to avoid spurious
499	 * preemptible warnings
500	 */
501	switch (action & ~CPU_TASKS_FROZEN) {
502	case CPU_STARTING:
503		mevt = this_cpu_ptr(&percpu_mct_tick);
504		exynos4_local_timer_setup(mevt);
505		break;
506	case CPU_DYING:
507		mevt = this_cpu_ptr(&percpu_mct_tick);
508		exynos4_local_timer_stop(mevt);
509		break;
510	}
511
512	return NOTIFY_OK;
513}
514
515static struct notifier_block exynos4_mct_cpu_nb = {
516	.notifier_call = exynos4_mct_cpu_notify,
517};
518
519static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
520{
521	int err, cpu;
522	struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
523	struct clk *mct_clk, *tick_clk;
524
525	tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
526				clk_get(NULL, "fin_pll");
527	if (IS_ERR(tick_clk))
528		panic("%s: unable to determine tick clock rate\n", __func__);
529	clk_rate = clk_get_rate(tick_clk);
530
531	mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
532	if (IS_ERR(mct_clk))
533		panic("%s: unable to retrieve mct clock instance\n", __func__);
534	clk_prepare_enable(mct_clk);
535
536	reg_base = base;
537	if (!reg_base)
538		panic("%s: unable to ioremap mct address space\n", __func__);
539
540	if (mct_int_type == MCT_INT_PPI) {
541
542		err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
543					 exynos4_mct_tick_isr, "MCT",
544					 &percpu_mct_tick);
545		WARN(err, "MCT: can't request IRQ %d (%d)\n",
546		     mct_irqs[MCT_L0_IRQ], err);
547	} else {
548		for_each_possible_cpu(cpu) {
549			int mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
550			struct mct_clock_event_device *pcpu_mevt =
551				per_cpu_ptr(&percpu_mct_tick, cpu);
552
553			pcpu_mevt->evt.irq = -1;
554
555			irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
556			if (request_irq(mct_irq,
557					exynos4_mct_tick_isr,
558					IRQF_TIMER | IRQF_NOBALANCING,
559					pcpu_mevt->name, pcpu_mevt)) {
560				pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
561									cpu);
562
563				continue;
564			}
565			pcpu_mevt->evt.irq = mct_irq;
566		}
567	}
568
569	err = register_cpu_notifier(&exynos4_mct_cpu_nb);
570	if (err)
571		goto out_irq;
572
573	/* Immediately configure the timer on the boot CPU */
574	exynos4_local_timer_setup(mevt);
575	return;
576
577out_irq:
578	free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
579}
580
581static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
582{
583	u32 nr_irqs, i;
584
585	mct_int_type = int_type;
586
587	/* This driver uses only one global timer interrupt */
588	mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
589
590	/*
591	 * Find out the number of local irqs specified. The local
592	 * timer irqs are specified after the four global timer
593	 * irqs are specified.
594	 */
595#ifdef CONFIG_OF
596	nr_irqs = of_irq_count(np);
597#else
598	nr_irqs = 0;
599#endif
600	for (i = MCT_L0_IRQ; i < nr_irqs; i++)
601		mct_irqs[i] = irq_of_parse_and_map(np, i);
602
603	exynos4_timer_resources(np, of_iomap(np, 0));
604	exynos4_clocksource_init();
605	exynos4_clockevent_init();
606}
607
608
609static void __init mct_init_spi(struct device_node *np)
610{
611	return mct_init_dt(np, MCT_INT_SPI);
612}
613
614static void __init mct_init_ppi(struct device_node *np)
615{
616	return mct_init_dt(np, MCT_INT_PPI);
617}
618CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
619CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);