Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/* linux/arch/arm/mach-exynos4/mct.c
  2 *
  3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
  4 *		http://www.samsung.com
  5 *
  6 * EXYNOS4 MCT(Multi-Core Timer) support
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11*/
 12
 13#include <linux/sched.h>
 14#include <linux/interrupt.h>
 15#include <linux/irq.h>
 16#include <linux/err.h>
 17#include <linux/clk.h>
 18#include <linux/clockchips.h>
 19#include <linux/cpu.h>
 20#include <linux/platform_device.h>
 21#include <linux/delay.h>
 22#include <linux/percpu.h>
 23#include <linux/of.h>
 24#include <linux/of_irq.h>
 25#include <linux/of_address.h>
 26#include <linux/clocksource.h>
 27#include <linux/sched_clock.h>
 28
 29#define EXYNOS4_MCTREG(x)		(x)
 30#define EXYNOS4_MCT_G_CNT_L		EXYNOS4_MCTREG(0x100)
 31#define EXYNOS4_MCT_G_CNT_U		EXYNOS4_MCTREG(0x104)
 32#define EXYNOS4_MCT_G_CNT_WSTAT		EXYNOS4_MCTREG(0x110)
 33#define EXYNOS4_MCT_G_COMP0_L		EXYNOS4_MCTREG(0x200)
 34#define EXYNOS4_MCT_G_COMP0_U		EXYNOS4_MCTREG(0x204)
 35#define EXYNOS4_MCT_G_COMP0_ADD_INCR	EXYNOS4_MCTREG(0x208)
 36#define EXYNOS4_MCT_G_TCON		EXYNOS4_MCTREG(0x240)
 37#define EXYNOS4_MCT_G_INT_CSTAT		EXYNOS4_MCTREG(0x244)
 38#define EXYNOS4_MCT_G_INT_ENB		EXYNOS4_MCTREG(0x248)
 39#define EXYNOS4_MCT_G_WSTAT		EXYNOS4_MCTREG(0x24C)
 40#define _EXYNOS4_MCT_L_BASE		EXYNOS4_MCTREG(0x300)
 41#define EXYNOS4_MCT_L_BASE(x)		(_EXYNOS4_MCT_L_BASE + (0x100 * x))
 42#define EXYNOS4_MCT_L_MASK		(0xffffff00)
 43
 44#define MCT_L_TCNTB_OFFSET		(0x00)
 45#define MCT_L_ICNTB_OFFSET		(0x08)
 46#define MCT_L_TCON_OFFSET		(0x20)
 47#define MCT_L_INT_CSTAT_OFFSET		(0x30)
 48#define MCT_L_INT_ENB_OFFSET		(0x34)
 49#define MCT_L_WSTAT_OFFSET		(0x40)
 50#define MCT_G_TCON_START		(1 << 8)
 51#define MCT_G_TCON_COMP0_AUTO_INC	(1 << 1)
 52#define MCT_G_TCON_COMP0_ENABLE		(1 << 0)
 53#define MCT_L_TCON_INTERVAL_MODE	(1 << 2)
 54#define MCT_L_TCON_INT_START		(1 << 1)
 55#define MCT_L_TCON_TIMER_START		(1 << 0)
 56
 57#define TICK_BASE_CNT	1
 58
 59enum {
 60	MCT_INT_SPI,
 61	MCT_INT_PPI
 62};
 63
 64enum {
 65	MCT_G0_IRQ,
 66	MCT_G1_IRQ,
 67	MCT_G2_IRQ,
 68	MCT_G3_IRQ,
 69	MCT_L0_IRQ,
 70	MCT_L1_IRQ,
 71	MCT_L2_IRQ,
 72	MCT_L3_IRQ,
 73	MCT_L4_IRQ,
 74	MCT_L5_IRQ,
 75	MCT_L6_IRQ,
 76	MCT_L7_IRQ,
 77	MCT_NR_IRQS,
 78};
 79
 80static void __iomem *reg_base;
 81static unsigned long clk_rate;
 82static unsigned int mct_int_type;
 83static int mct_irqs[MCT_NR_IRQS];
 84
 85struct mct_clock_event_device {
 86	struct clock_event_device evt;
 87	unsigned long base;
 88	char name[10];
 89};
 90
 91static void exynos4_mct_write(unsigned int value, unsigned long offset)
 92{
 93	unsigned long stat_addr;
 94	u32 mask;
 95	u32 i;
 96
 97	writel_relaxed(value, reg_base + offset);
 98
 99	if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
100		stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
101		switch (offset & ~EXYNOS4_MCT_L_MASK) {
102		case MCT_L_TCON_OFFSET:
103			mask = 1 << 3;		/* L_TCON write status */
104			break;
105		case MCT_L_ICNTB_OFFSET:
106			mask = 1 << 1;		/* L_ICNTB write status */
107			break;
108		case MCT_L_TCNTB_OFFSET:
109			mask = 1 << 0;		/* L_TCNTB write status */
110			break;
111		default:
112			return;
113		}
114	} else {
115		switch (offset) {
116		case EXYNOS4_MCT_G_TCON:
117			stat_addr = EXYNOS4_MCT_G_WSTAT;
118			mask = 1 << 16;		/* G_TCON write status */
119			break;
120		case EXYNOS4_MCT_G_COMP0_L:
121			stat_addr = EXYNOS4_MCT_G_WSTAT;
122			mask = 1 << 0;		/* G_COMP0_L write status */
123			break;
124		case EXYNOS4_MCT_G_COMP0_U:
125			stat_addr = EXYNOS4_MCT_G_WSTAT;
126			mask = 1 << 1;		/* G_COMP0_U write status */
127			break;
128		case EXYNOS4_MCT_G_COMP0_ADD_INCR:
129			stat_addr = EXYNOS4_MCT_G_WSTAT;
130			mask = 1 << 2;		/* G_COMP0_ADD_INCR w status */
131			break;
132		case EXYNOS4_MCT_G_CNT_L:
133			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
134			mask = 1 << 0;		/* G_CNT_L write status */
135			break;
136		case EXYNOS4_MCT_G_CNT_U:
137			stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
138			mask = 1 << 1;		/* G_CNT_U write status */
139			break;
140		default:
141			return;
142		}
143	}
144
145	/* Wait maximum 1 ms until written values are applied */
146	for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
147		if (readl_relaxed(reg_base + stat_addr) & mask) {
148			writel_relaxed(mask, reg_base + stat_addr);
149			return;
150		}
151
152	panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
153}
154
155/* Clocksource handling */
156static void exynos4_mct_frc_start(void)
157{
158	u32 reg;
159
160	reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
161	reg |= MCT_G_TCON_START;
162	exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
163}
164
165/**
166 * exynos4_read_count_64 - Read all 64-bits of the global counter
167 *
168 * This will read all 64-bits of the global counter taking care to make sure
169 * that the upper and lower half match.  Note that reading the MCT can be quite
170 * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
171 * only) version when possible.
172 *
173 * Returns the number of cycles in the global counter.
174 */
175static u64 exynos4_read_count_64(void)
176{
177	unsigned int lo, hi;
178	u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
179
180	do {
181		hi = hi2;
182		lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
183		hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
184	} while (hi != hi2);
185
186	return ((u64)hi << 32) | lo;
187}
188
189/**
190 * exynos4_read_count_32 - Read the lower 32-bits of the global counter
191 *
192 * This will read just the lower 32-bits of the global counter.  This is marked
193 * as notrace so it can be used by the scheduler clock.
194 *
195 * Returns the number of cycles in the global counter (lower 32 bits).
196 */
197static u32 notrace exynos4_read_count_32(void)
198{
199	return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
200}
201
202static u64 exynos4_frc_read(struct clocksource *cs)
203{
204	return exynos4_read_count_32();
205}
206
207static void exynos4_frc_resume(struct clocksource *cs)
208{
209	exynos4_mct_frc_start();
210}
211
212static struct clocksource mct_frc = {
213	.name		= "mct-frc",
214	.rating		= 400,
215	.read		= exynos4_frc_read,
216	.mask		= CLOCKSOURCE_MASK(32),
217	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
218	.resume		= exynos4_frc_resume,
219};
220
221static u64 notrace exynos4_read_sched_clock(void)
222{
223	return exynos4_read_count_32();
224}
225
226#if defined(CONFIG_ARM)
227static struct delay_timer exynos4_delay_timer;
228
229static cycles_t exynos4_read_current_timer(void)
230{
231	BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
232			 "cycles_t needs to move to 32-bit for ARM64 usage");
233	return exynos4_read_count_32();
234}
235#endif
236
237static int __init exynos4_clocksource_init(void)
238{
239	exynos4_mct_frc_start();
240
241#if defined(CONFIG_ARM)
242	exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
243	exynos4_delay_timer.freq = clk_rate;
244	register_current_timer_delay(&exynos4_delay_timer);
245#endif
246
247	if (clocksource_register_hz(&mct_frc, clk_rate))
248		panic("%s: can't register clocksource\n", mct_frc.name);
249
250	sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
251
252	return 0;
253}
254
255static void exynos4_mct_comp0_stop(void)
256{
257	unsigned int tcon;
258
259	tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
260	tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
261
262	exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
263	exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
264}
265
266static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
267{
268	unsigned int tcon;
269	u64 comp_cycle;
270
271	tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
272
273	if (periodic) {
274		tcon |= MCT_G_TCON_COMP0_AUTO_INC;
275		exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
276	}
277
278	comp_cycle = exynos4_read_count_64() + cycles;
279	exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
280	exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
281
282	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
283
284	tcon |= MCT_G_TCON_COMP0_ENABLE;
285	exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
286}
287
288static int exynos4_comp_set_next_event(unsigned long cycles,
289				       struct clock_event_device *evt)
290{
291	exynos4_mct_comp0_start(false, cycles);
292
293	return 0;
294}
295
296static int mct_set_state_shutdown(struct clock_event_device *evt)
297{
298	exynos4_mct_comp0_stop();
299	return 0;
300}
301
302static int mct_set_state_periodic(struct clock_event_device *evt)
303{
304	unsigned long cycles_per_jiffy;
305
306	cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
307			    >> evt->shift);
308	exynos4_mct_comp0_stop();
309	exynos4_mct_comp0_start(true, cycles_per_jiffy);
310	return 0;
311}
312
313static struct clock_event_device mct_comp_device = {
314	.name			= "mct-comp",
315	.features		= CLOCK_EVT_FEAT_PERIODIC |
316				  CLOCK_EVT_FEAT_ONESHOT,
317	.rating			= 250,
318	.set_next_event		= exynos4_comp_set_next_event,
319	.set_state_periodic	= mct_set_state_periodic,
320	.set_state_shutdown	= mct_set_state_shutdown,
321	.set_state_oneshot	= mct_set_state_shutdown,
322	.set_state_oneshot_stopped = mct_set_state_shutdown,
323	.tick_resume		= mct_set_state_shutdown,
324};
325
326static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
327{
328	struct clock_event_device *evt = dev_id;
329
330	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
331
332	evt->event_handler(evt);
333
334	return IRQ_HANDLED;
335}
336
337static struct irqaction mct_comp_event_irq = {
338	.name		= "mct_comp_irq",
339	.flags		= IRQF_TIMER | IRQF_IRQPOLL,
340	.handler	= exynos4_mct_comp_isr,
341	.dev_id		= &mct_comp_device,
342};
343
344static int exynos4_clockevent_init(void)
345{
346	mct_comp_device.cpumask = cpumask_of(0);
347	clockevents_config_and_register(&mct_comp_device, clk_rate,
348					0xf, 0xffffffff);
349	setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
350
351	return 0;
352}
353
354static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
355
356/* Clock event handling */
357static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
358{
359	unsigned long tmp;
360	unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
361	unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
362
363	tmp = readl_relaxed(reg_base + offset);
364	if (tmp & mask) {
365		tmp &= ~mask;
366		exynos4_mct_write(tmp, offset);
367	}
368}
369
370static void exynos4_mct_tick_start(unsigned long cycles,
371				   struct mct_clock_event_device *mevt)
372{
373	unsigned long tmp;
374
375	exynos4_mct_tick_stop(mevt);
376
377	tmp = (1 << 31) | cycles;	/* MCT_L_UPDATE_ICNTB */
378
379	/* update interrupt count buffer */
380	exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
381
382	/* enable MCT tick interrupt */
383	exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
384
385	tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
386	tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
387	       MCT_L_TCON_INTERVAL_MODE;
388	exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
389}
390
391static int exynos4_tick_set_next_event(unsigned long cycles,
392				       struct clock_event_device *evt)
393{
394	struct mct_clock_event_device *mevt;
395
396	mevt = container_of(evt, struct mct_clock_event_device, evt);
397	exynos4_mct_tick_start(cycles, mevt);
398	return 0;
399}
400
401static int set_state_shutdown(struct clock_event_device *evt)
402{
403	struct mct_clock_event_device *mevt;
404
405	mevt = container_of(evt, struct mct_clock_event_device, evt);
406	exynos4_mct_tick_stop(mevt);
407	return 0;
408}
409
410static int set_state_periodic(struct clock_event_device *evt)
411{
412	struct mct_clock_event_device *mevt;
413	unsigned long cycles_per_jiffy;
414
415	mevt = container_of(evt, struct mct_clock_event_device, evt);
416	cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
417			    >> evt->shift);
418	exynos4_mct_tick_stop(mevt);
419	exynos4_mct_tick_start(cycles_per_jiffy, mevt);
420	return 0;
421}
422
423static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
424{
425	/*
426	 * This is for supporting oneshot mode.
427	 * Mct would generate interrupt periodically
428	 * without explicit stopping.
429	 */
430	if (!clockevent_state_periodic(&mevt->evt))
431		exynos4_mct_tick_stop(mevt);
432
433	/* Clear the MCT tick interrupt */
434	if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
435		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
436}
437
438static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
439{
440	struct mct_clock_event_device *mevt = dev_id;
441	struct clock_event_device *evt = &mevt->evt;
442
443	exynos4_mct_tick_clear(mevt);
444
445	evt->event_handler(evt);
446
447	return IRQ_HANDLED;
448}
449
450static int exynos4_mct_starting_cpu(unsigned int cpu)
451{
452	struct mct_clock_event_device *mevt =
453		per_cpu_ptr(&percpu_mct_tick, cpu);
454	struct clock_event_device *evt = &mevt->evt;
455
456	mevt->base = EXYNOS4_MCT_L_BASE(cpu);
457	snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
458
459	evt->name = mevt->name;
460	evt->cpumask = cpumask_of(cpu);
461	evt->set_next_event = exynos4_tick_set_next_event;
462	evt->set_state_periodic = set_state_periodic;
463	evt->set_state_shutdown = set_state_shutdown;
464	evt->set_state_oneshot = set_state_shutdown;
465	evt->set_state_oneshot_stopped = set_state_shutdown;
466	evt->tick_resume = set_state_shutdown;
467	evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
468	evt->rating = 450;
469
470	exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
471
472	if (mct_int_type == MCT_INT_SPI) {
473
474		if (evt->irq == -1)
475			return -EIO;
476
477		irq_force_affinity(evt->irq, cpumask_of(cpu));
478		enable_irq(evt->irq);
479	} else {
480		enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
481	}
482	clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
483					0xf, 0x7fffffff);
484
485	return 0;
486}
487
488static int exynos4_mct_dying_cpu(unsigned int cpu)
489{
490	struct mct_clock_event_device *mevt =
491		per_cpu_ptr(&percpu_mct_tick, cpu);
492	struct clock_event_device *evt = &mevt->evt;
493
494	evt->set_state_shutdown(evt);
495	if (mct_int_type == MCT_INT_SPI) {
496		if (evt->irq != -1)
497			disable_irq_nosync(evt->irq);
498		exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
499	} else {
500		disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
501	}
502	return 0;
503}
504
505static int __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
506{
507	int err, cpu;
508	struct clk *mct_clk, *tick_clk;
509
510	tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
511				clk_get(NULL, "fin_pll");
512	if (IS_ERR(tick_clk))
513		panic("%s: unable to determine tick clock rate\n", __func__);
514	clk_rate = clk_get_rate(tick_clk);
515
516	mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
517	if (IS_ERR(mct_clk))
518		panic("%s: unable to retrieve mct clock instance\n", __func__);
519	clk_prepare_enable(mct_clk);
520
521	reg_base = base;
522	if (!reg_base)
523		panic("%s: unable to ioremap mct address space\n", __func__);
524
525	if (mct_int_type == MCT_INT_PPI) {
526
527		err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
528					 exynos4_mct_tick_isr, "MCT",
529					 &percpu_mct_tick);
530		WARN(err, "MCT: can't request IRQ %d (%d)\n",
531		     mct_irqs[MCT_L0_IRQ], err);
532	} else {
533		for_each_possible_cpu(cpu) {
534			int mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
535			struct mct_clock_event_device *pcpu_mevt =
536				per_cpu_ptr(&percpu_mct_tick, cpu);
537
538			pcpu_mevt->evt.irq = -1;
539
540			irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
541			if (request_irq(mct_irq,
542					exynos4_mct_tick_isr,
543					IRQF_TIMER | IRQF_NOBALANCING,
544					pcpu_mevt->name, pcpu_mevt)) {
545				pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
546									cpu);
547
548				continue;
549			}
550			pcpu_mevt->evt.irq = mct_irq;
551		}
552	}
553
554	/* Install hotplug callbacks which configure the timer on this CPU */
555	err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
556				"clockevents/exynos4/mct_timer:starting",
557				exynos4_mct_starting_cpu,
558				exynos4_mct_dying_cpu);
559	if (err)
560		goto out_irq;
561
562	return 0;
563
564out_irq:
565	free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
566	return err;
567}
568
569static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
570{
571	u32 nr_irqs, i;
572	int ret;
573
574	mct_int_type = int_type;
575
576	/* This driver uses only one global timer interrupt */
577	mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
578
579	/*
580	 * Find out the number of local irqs specified. The local
581	 * timer irqs are specified after the four global timer
582	 * irqs are specified.
583	 */
584#ifdef CONFIG_OF
585	nr_irqs = of_irq_count(np);
586#else
587	nr_irqs = 0;
588#endif
589	for (i = MCT_L0_IRQ; i < nr_irqs; i++)
590		mct_irqs[i] = irq_of_parse_and_map(np, i);
591
592	ret = exynos4_timer_resources(np, of_iomap(np, 0));
593	if (ret)
594		return ret;
595
596	ret = exynos4_clocksource_init();
597	if (ret)
598		return ret;
599
600	return exynos4_clockevent_init();
601}
602
603
604static int __init mct_init_spi(struct device_node *np)
605{
606	return mct_init_dt(np, MCT_INT_SPI);
607}
608
609static int __init mct_init_ppi(struct device_node *np)
610{
611	return mct_init_dt(np, MCT_INT_PPI);
612}
613TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
614TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);