Loading...
1/*
2 * This program is free software; you can redistribute it and/or modify it
3 * under the terms of the GNU General Public License as published by the
4 * Free Software Foundation; either version 2, or (at your option) any
5 * later version.
6 *
7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10 * General Public License for more details.
11 *
12 */
13
14/*
15 * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16 * Copyright (C) 2000-2001 VERITAS Software Corporation.
17 * Copyright (C) 2002 Andi Kleen, SuSE Labs
18 * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19 * Copyright (C) 2007 MontaVista Software, Inc.
20 * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
21 */
22/****************************************************************************
23 * Contributor: Lake Stevens Instrument Division$
24 * Written by: Glenn Engel $
25 * Updated by: Amit Kale<akale@veritas.com>
26 * Updated by: Tom Rini <trini@kernel.crashing.org>
27 * Updated by: Jason Wessel <jason.wessel@windriver.com>
28 * Modified for 386 by Jim Kingdon, Cygnus Support.
29 * Origianl kgdb, compatibility with 2.1.xx kernel by
30 * David Grothe <dave@gcom.com>
31 * Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32 * X86_64 changes from Andi Kleen's patch merged by Jim Houston
33 */
34#include <linux/spinlock.h>
35#include <linux/kdebug.h>
36#include <linux/string.h>
37#include <linux/kernel.h>
38#include <linux/ptrace.h>
39#include <linux/sched.h>
40#include <linux/delay.h>
41#include <linux/kgdb.h>
42#include <linux/init.h>
43#include <linux/smp.h>
44#include <linux/nmi.h>
45#include <linux/hw_breakpoint.h>
46
47#include <asm/debugreg.h>
48#include <asm/apicdef.h>
49#include <asm/system.h>
50#include <asm/apic.h>
51#include <asm/nmi.h>
52
53struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
54{
55#ifdef CONFIG_X86_32
56 { "ax", 4, offsetof(struct pt_regs, ax) },
57 { "cx", 4, offsetof(struct pt_regs, cx) },
58 { "dx", 4, offsetof(struct pt_regs, dx) },
59 { "bx", 4, offsetof(struct pt_regs, bx) },
60 { "sp", 4, offsetof(struct pt_regs, sp) },
61 { "bp", 4, offsetof(struct pt_regs, bp) },
62 { "si", 4, offsetof(struct pt_regs, si) },
63 { "di", 4, offsetof(struct pt_regs, di) },
64 { "ip", 4, offsetof(struct pt_regs, ip) },
65 { "flags", 4, offsetof(struct pt_regs, flags) },
66 { "cs", 4, offsetof(struct pt_regs, cs) },
67 { "ss", 4, offsetof(struct pt_regs, ss) },
68 { "ds", 4, offsetof(struct pt_regs, ds) },
69 { "es", 4, offsetof(struct pt_regs, es) },
70 { "fs", 4, -1 },
71 { "gs", 4, -1 },
72#else
73 { "ax", 8, offsetof(struct pt_regs, ax) },
74 { "bx", 8, offsetof(struct pt_regs, bx) },
75 { "cx", 8, offsetof(struct pt_regs, cx) },
76 { "dx", 8, offsetof(struct pt_regs, dx) },
77 { "si", 8, offsetof(struct pt_regs, dx) },
78 { "di", 8, offsetof(struct pt_regs, di) },
79 { "bp", 8, offsetof(struct pt_regs, bp) },
80 { "sp", 8, offsetof(struct pt_regs, sp) },
81 { "r8", 8, offsetof(struct pt_regs, r8) },
82 { "r9", 8, offsetof(struct pt_regs, r9) },
83 { "r10", 8, offsetof(struct pt_regs, r10) },
84 { "r11", 8, offsetof(struct pt_regs, r11) },
85 { "r12", 8, offsetof(struct pt_regs, r12) },
86 { "r13", 8, offsetof(struct pt_regs, r13) },
87 { "r14", 8, offsetof(struct pt_regs, r14) },
88 { "r15", 8, offsetof(struct pt_regs, r15) },
89 { "ip", 8, offsetof(struct pt_regs, ip) },
90 { "flags", 4, offsetof(struct pt_regs, flags) },
91 { "cs", 4, offsetof(struct pt_regs, cs) },
92 { "ss", 4, offsetof(struct pt_regs, ss) },
93#endif
94};
95
96int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
97{
98 if (
99#ifdef CONFIG_X86_32
100 regno == GDB_SS || regno == GDB_FS || regno == GDB_GS ||
101#endif
102 regno == GDB_SP || regno == GDB_ORIG_AX)
103 return 0;
104
105 if (dbg_reg_def[regno].offset != -1)
106 memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
107 dbg_reg_def[regno].size);
108 return 0;
109}
110
111char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
112{
113 if (regno == GDB_ORIG_AX) {
114 memcpy(mem, ®s->orig_ax, sizeof(regs->orig_ax));
115 return "orig_ax";
116 }
117 if (regno >= DBG_MAX_REG_NUM || regno < 0)
118 return NULL;
119
120 if (dbg_reg_def[regno].offset != -1)
121 memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
122 dbg_reg_def[regno].size);
123
124#ifdef CONFIG_X86_32
125 switch (regno) {
126 case GDB_SS:
127 if (!user_mode_vm(regs))
128 *(unsigned long *)mem = __KERNEL_DS;
129 break;
130 case GDB_SP:
131 if (!user_mode_vm(regs))
132 *(unsigned long *)mem = kernel_stack_pointer(regs);
133 break;
134 case GDB_GS:
135 case GDB_FS:
136 *(unsigned long *)mem = 0xFFFF;
137 break;
138 }
139#endif
140 return dbg_reg_def[regno].name;
141}
142
143/**
144 * sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
145 * @gdb_regs: A pointer to hold the registers in the order GDB wants.
146 * @p: The &struct task_struct of the desired process.
147 *
148 * Convert the register values of the sleeping process in @p to
149 * the format that GDB expects.
150 * This function is called when kgdb does not have access to the
151 * &struct pt_regs and therefore it should fill the gdb registers
152 * @gdb_regs with what has been saved in &struct thread_struct
153 * thread field during switch_to.
154 */
155void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
156{
157#ifndef CONFIG_X86_32
158 u32 *gdb_regs32 = (u32 *)gdb_regs;
159#endif
160 gdb_regs[GDB_AX] = 0;
161 gdb_regs[GDB_BX] = 0;
162 gdb_regs[GDB_CX] = 0;
163 gdb_regs[GDB_DX] = 0;
164 gdb_regs[GDB_SI] = 0;
165 gdb_regs[GDB_DI] = 0;
166 gdb_regs[GDB_BP] = *(unsigned long *)p->thread.sp;
167#ifdef CONFIG_X86_32
168 gdb_regs[GDB_DS] = __KERNEL_DS;
169 gdb_regs[GDB_ES] = __KERNEL_DS;
170 gdb_regs[GDB_PS] = 0;
171 gdb_regs[GDB_CS] = __KERNEL_CS;
172 gdb_regs[GDB_PC] = p->thread.ip;
173 gdb_regs[GDB_SS] = __KERNEL_DS;
174 gdb_regs[GDB_FS] = 0xFFFF;
175 gdb_regs[GDB_GS] = 0xFFFF;
176#else
177 gdb_regs32[GDB_PS] = *(unsigned long *)(p->thread.sp + 8);
178 gdb_regs32[GDB_CS] = __KERNEL_CS;
179 gdb_regs32[GDB_SS] = __KERNEL_DS;
180 gdb_regs[GDB_PC] = 0;
181 gdb_regs[GDB_R8] = 0;
182 gdb_regs[GDB_R9] = 0;
183 gdb_regs[GDB_R10] = 0;
184 gdb_regs[GDB_R11] = 0;
185 gdb_regs[GDB_R12] = 0;
186 gdb_regs[GDB_R13] = 0;
187 gdb_regs[GDB_R14] = 0;
188 gdb_regs[GDB_R15] = 0;
189#endif
190 gdb_regs[GDB_SP] = p->thread.sp;
191}
192
193static struct hw_breakpoint {
194 unsigned enabled;
195 unsigned long addr;
196 int len;
197 int type;
198 struct perf_event * __percpu *pev;
199} breakinfo[HBP_NUM];
200
201static unsigned long early_dr7;
202
203static void kgdb_correct_hw_break(void)
204{
205 int breakno;
206
207 for (breakno = 0; breakno < HBP_NUM; breakno++) {
208 struct perf_event *bp;
209 struct arch_hw_breakpoint *info;
210 int val;
211 int cpu = raw_smp_processor_id();
212 if (!breakinfo[breakno].enabled)
213 continue;
214 if (dbg_is_early) {
215 set_debugreg(breakinfo[breakno].addr, breakno);
216 early_dr7 |= encode_dr7(breakno,
217 breakinfo[breakno].len,
218 breakinfo[breakno].type);
219 set_debugreg(early_dr7, 7);
220 continue;
221 }
222 bp = *per_cpu_ptr(breakinfo[breakno].pev, cpu);
223 info = counter_arch_bp(bp);
224 if (bp->attr.disabled != 1)
225 continue;
226 bp->attr.bp_addr = breakinfo[breakno].addr;
227 bp->attr.bp_len = breakinfo[breakno].len;
228 bp->attr.bp_type = breakinfo[breakno].type;
229 info->address = breakinfo[breakno].addr;
230 info->len = breakinfo[breakno].len;
231 info->type = breakinfo[breakno].type;
232 val = arch_install_hw_breakpoint(bp);
233 if (!val)
234 bp->attr.disabled = 0;
235 }
236 if (!dbg_is_early)
237 hw_breakpoint_restore();
238}
239
240static int hw_break_reserve_slot(int breakno)
241{
242 int cpu;
243 int cnt = 0;
244 struct perf_event **pevent;
245
246 if (dbg_is_early)
247 return 0;
248
249 for_each_online_cpu(cpu) {
250 cnt++;
251 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
252 if (dbg_reserve_bp_slot(*pevent))
253 goto fail;
254 }
255
256 return 0;
257
258fail:
259 for_each_online_cpu(cpu) {
260 cnt--;
261 if (!cnt)
262 break;
263 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
264 dbg_release_bp_slot(*pevent);
265 }
266 return -1;
267}
268
269static int hw_break_release_slot(int breakno)
270{
271 struct perf_event **pevent;
272 int cpu;
273
274 if (dbg_is_early)
275 return 0;
276
277 for_each_online_cpu(cpu) {
278 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
279 if (dbg_release_bp_slot(*pevent))
280 /*
281 * The debugger is responsible for handing the retry on
282 * remove failure.
283 */
284 return -1;
285 }
286 return 0;
287}
288
289static int
290kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
291{
292 int i;
293
294 for (i = 0; i < HBP_NUM; i++)
295 if (breakinfo[i].addr == addr && breakinfo[i].enabled)
296 break;
297 if (i == HBP_NUM)
298 return -1;
299
300 if (hw_break_release_slot(i)) {
301 printk(KERN_ERR "Cannot remove hw breakpoint at %lx\n", addr);
302 return -1;
303 }
304 breakinfo[i].enabled = 0;
305
306 return 0;
307}
308
309static void kgdb_remove_all_hw_break(void)
310{
311 int i;
312 int cpu = raw_smp_processor_id();
313 struct perf_event *bp;
314
315 for (i = 0; i < HBP_NUM; i++) {
316 if (!breakinfo[i].enabled)
317 continue;
318 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
319 if (!bp->attr.disabled) {
320 arch_uninstall_hw_breakpoint(bp);
321 bp->attr.disabled = 1;
322 continue;
323 }
324 if (dbg_is_early)
325 early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
326 breakinfo[i].type);
327 else if (hw_break_release_slot(i))
328 printk(KERN_ERR "KGDB: hw bpt remove failed %lx\n",
329 breakinfo[i].addr);
330 breakinfo[i].enabled = 0;
331 }
332}
333
334static int
335kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
336{
337 int i;
338
339 for (i = 0; i < HBP_NUM; i++)
340 if (!breakinfo[i].enabled)
341 break;
342 if (i == HBP_NUM)
343 return -1;
344
345 switch (bptype) {
346 case BP_HARDWARE_BREAKPOINT:
347 len = 1;
348 breakinfo[i].type = X86_BREAKPOINT_EXECUTE;
349 break;
350 case BP_WRITE_WATCHPOINT:
351 breakinfo[i].type = X86_BREAKPOINT_WRITE;
352 break;
353 case BP_ACCESS_WATCHPOINT:
354 breakinfo[i].type = X86_BREAKPOINT_RW;
355 break;
356 default:
357 return -1;
358 }
359 switch (len) {
360 case 1:
361 breakinfo[i].len = X86_BREAKPOINT_LEN_1;
362 break;
363 case 2:
364 breakinfo[i].len = X86_BREAKPOINT_LEN_2;
365 break;
366 case 4:
367 breakinfo[i].len = X86_BREAKPOINT_LEN_4;
368 break;
369#ifdef CONFIG_X86_64
370 case 8:
371 breakinfo[i].len = X86_BREAKPOINT_LEN_8;
372 break;
373#endif
374 default:
375 return -1;
376 }
377 breakinfo[i].addr = addr;
378 if (hw_break_reserve_slot(i)) {
379 breakinfo[i].addr = 0;
380 return -1;
381 }
382 breakinfo[i].enabled = 1;
383
384 return 0;
385}
386
387/**
388 * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
389 * @regs: Current &struct pt_regs.
390 *
391 * This function will be called if the particular architecture must
392 * disable hardware debugging while it is processing gdb packets or
393 * handling exception.
394 */
395static void kgdb_disable_hw_debug(struct pt_regs *regs)
396{
397 int i;
398 int cpu = raw_smp_processor_id();
399 struct perf_event *bp;
400
401 /* Disable hardware debugging while we are in kgdb: */
402 set_debugreg(0UL, 7);
403 for (i = 0; i < HBP_NUM; i++) {
404 if (!breakinfo[i].enabled)
405 continue;
406 if (dbg_is_early) {
407 early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
408 breakinfo[i].type);
409 continue;
410 }
411 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
412 if (bp->attr.disabled == 1)
413 continue;
414 arch_uninstall_hw_breakpoint(bp);
415 bp->attr.disabled = 1;
416 }
417}
418
419#ifdef CONFIG_SMP
420/**
421 * kgdb_roundup_cpus - Get other CPUs into a holding pattern
422 * @flags: Current IRQ state
423 *
424 * On SMP systems, we need to get the attention of the other CPUs
425 * and get them be in a known state. This should do what is needed
426 * to get the other CPUs to call kgdb_wait(). Note that on some arches,
427 * the NMI approach is not used for rounding up all the CPUs. For example,
428 * in case of MIPS, smp_call_function() is used to roundup CPUs. In
429 * this case, we have to make sure that interrupts are enabled before
430 * calling smp_call_function(). The argument to this function is
431 * the flags that will be used when restoring the interrupts. There is
432 * local_irq_save() call before kgdb_roundup_cpus().
433 *
434 * On non-SMP systems, this is not called.
435 */
436void kgdb_roundup_cpus(unsigned long flags)
437{
438 apic->send_IPI_allbutself(APIC_DM_NMI);
439}
440#endif
441
442/**
443 * kgdb_arch_handle_exception - Handle architecture specific GDB packets.
444 * @vector: The error vector of the exception that happened.
445 * @signo: The signal number of the exception that happened.
446 * @err_code: The error code of the exception that happened.
447 * @remcom_in_buffer: The buffer of the packet we have read.
448 * @remcom_out_buffer: The buffer of %BUFMAX bytes to write a packet into.
449 * @regs: The &struct pt_regs of the current process.
450 *
451 * This function MUST handle the 'c' and 's' command packets,
452 * as well packets to set / remove a hardware breakpoint, if used.
453 * If there are additional packets which the hardware needs to handle,
454 * they are handled here. The code should return -1 if it wants to
455 * process more packets, and a %0 or %1 if it wants to exit from the
456 * kgdb callback.
457 */
458int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
459 char *remcomInBuffer, char *remcomOutBuffer,
460 struct pt_regs *linux_regs)
461{
462 unsigned long addr;
463 char *ptr;
464
465 switch (remcomInBuffer[0]) {
466 case 'c':
467 case 's':
468 /* try to read optional parameter, pc unchanged if no parm */
469 ptr = &remcomInBuffer[1];
470 if (kgdb_hex2long(&ptr, &addr))
471 linux_regs->ip = addr;
472 case 'D':
473 case 'k':
474 /* clear the trace bit */
475 linux_regs->flags &= ~X86_EFLAGS_TF;
476 atomic_set(&kgdb_cpu_doing_single_step, -1);
477
478 /* set the trace bit if we're stepping */
479 if (remcomInBuffer[0] == 's') {
480 linux_regs->flags |= X86_EFLAGS_TF;
481 atomic_set(&kgdb_cpu_doing_single_step,
482 raw_smp_processor_id());
483 }
484
485 return 0;
486 }
487
488 /* this means that we do not want to exit from the handler: */
489 return -1;
490}
491
492static inline int
493single_step_cont(struct pt_regs *regs, struct die_args *args)
494{
495 /*
496 * Single step exception from kernel space to user space so
497 * eat the exception and continue the process:
498 */
499 printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
500 "resuming...\n");
501 kgdb_arch_handle_exception(args->trapnr, args->signr,
502 args->err, "c", "", regs);
503 /*
504 * Reset the BS bit in dr6 (pointed by args->err) to
505 * denote completion of processing
506 */
507 (*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
508
509 return NOTIFY_STOP;
510}
511
512static int was_in_debug_nmi[NR_CPUS];
513
514static int __kgdb_notify(struct die_args *args, unsigned long cmd)
515{
516 struct pt_regs *regs = args->regs;
517
518 switch (cmd) {
519 case DIE_NMI:
520 if (atomic_read(&kgdb_active) != -1) {
521 /* KGDB CPU roundup */
522 kgdb_nmicallback(raw_smp_processor_id(), regs);
523 was_in_debug_nmi[raw_smp_processor_id()] = 1;
524 touch_nmi_watchdog();
525 return NOTIFY_STOP;
526 }
527 return NOTIFY_DONE;
528
529 case DIE_NMIUNKNOWN:
530 if (was_in_debug_nmi[raw_smp_processor_id()]) {
531 was_in_debug_nmi[raw_smp_processor_id()] = 0;
532 return NOTIFY_STOP;
533 }
534 return NOTIFY_DONE;
535
536 case DIE_DEBUG:
537 if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
538 if (user_mode(regs))
539 return single_step_cont(regs, args);
540 break;
541 } else if (test_thread_flag(TIF_SINGLESTEP))
542 /* This means a user thread is single stepping
543 * a system call which should be ignored
544 */
545 return NOTIFY_DONE;
546 /* fall through */
547 default:
548 if (user_mode(regs))
549 return NOTIFY_DONE;
550 }
551
552 if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
553 return NOTIFY_DONE;
554
555 /* Must touch watchdog before return to normal operation */
556 touch_nmi_watchdog();
557 return NOTIFY_STOP;
558}
559
560int kgdb_ll_trap(int cmd, const char *str,
561 struct pt_regs *regs, long err, int trap, int sig)
562{
563 struct die_args args = {
564 .regs = regs,
565 .str = str,
566 .err = err,
567 .trapnr = trap,
568 .signr = sig,
569
570 };
571
572 if (!kgdb_io_module_registered)
573 return NOTIFY_DONE;
574
575 return __kgdb_notify(&args, cmd);
576}
577
578static int
579kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
580{
581 unsigned long flags;
582 int ret;
583
584 local_irq_save(flags);
585 ret = __kgdb_notify(ptr, cmd);
586 local_irq_restore(flags);
587
588 return ret;
589}
590
591static struct notifier_block kgdb_notifier = {
592 .notifier_call = kgdb_notify,
593
594 /*
595 * Lowest-prio notifier priority, we want to be notified last:
596 */
597 .priority = NMI_LOCAL_LOW_PRIOR,
598};
599
600/**
601 * kgdb_arch_init - Perform any architecture specific initalization.
602 *
603 * This function will handle the initalization of any architecture
604 * specific callbacks.
605 */
606int kgdb_arch_init(void)
607{
608 return register_die_notifier(&kgdb_notifier);
609}
610
611static void kgdb_hw_overflow_handler(struct perf_event *event,
612 struct perf_sample_data *data, struct pt_regs *regs)
613{
614 struct task_struct *tsk = current;
615 int i;
616
617 for (i = 0; i < 4; i++)
618 if (breakinfo[i].enabled)
619 tsk->thread.debugreg6 |= (DR_TRAP0 << i);
620}
621
622void kgdb_arch_late(void)
623{
624 int i, cpu;
625 struct perf_event_attr attr;
626 struct perf_event **pevent;
627
628 /*
629 * Pre-allocate the hw breakpoint structions in the non-atomic
630 * portion of kgdb because this operation requires mutexs to
631 * complete.
632 */
633 hw_breakpoint_init(&attr);
634 attr.bp_addr = (unsigned long)kgdb_arch_init;
635 attr.bp_len = HW_BREAKPOINT_LEN_1;
636 attr.bp_type = HW_BREAKPOINT_W;
637 attr.disabled = 1;
638 for (i = 0; i < HBP_NUM; i++) {
639 if (breakinfo[i].pev)
640 continue;
641 breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
642 if (IS_ERR((void * __force)breakinfo[i].pev)) {
643 printk(KERN_ERR "kgdb: Could not allocate hw"
644 "breakpoints\nDisabling the kernel debugger\n");
645 breakinfo[i].pev = NULL;
646 kgdb_arch_exit();
647 return;
648 }
649 for_each_online_cpu(cpu) {
650 pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
651 pevent[0]->hw.sample_period = 1;
652 pevent[0]->overflow_handler = kgdb_hw_overflow_handler;
653 if (pevent[0]->destroy != NULL) {
654 pevent[0]->destroy = NULL;
655 release_bp_slot(*pevent);
656 }
657 }
658 }
659}
660
661/**
662 * kgdb_arch_exit - Perform any architecture specific uninitalization.
663 *
664 * This function will handle the uninitalization of any architecture
665 * specific callbacks, for dynamic registration and unregistration.
666 */
667void kgdb_arch_exit(void)
668{
669 int i;
670 for (i = 0; i < 4; i++) {
671 if (breakinfo[i].pev) {
672 unregister_wide_hw_breakpoint(breakinfo[i].pev);
673 breakinfo[i].pev = NULL;
674 }
675 }
676 unregister_die_notifier(&kgdb_notifier);
677}
678
679/**
680 *
681 * kgdb_skipexception - Bail out of KGDB when we've been triggered.
682 * @exception: Exception vector number
683 * @regs: Current &struct pt_regs.
684 *
685 * On some architectures we need to skip a breakpoint exception when
686 * it occurs after a breakpoint has been removed.
687 *
688 * Skip an int3 exception when it occurs after a breakpoint has been
689 * removed. Backtrack eip by 1 since the int3 would have caused it to
690 * increment by 1.
691 */
692int kgdb_skipexception(int exception, struct pt_regs *regs)
693{
694 if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
695 regs->ip -= 1;
696 return 1;
697 }
698 return 0;
699}
700
701unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
702{
703 if (exception == 3)
704 return instruction_pointer(regs) - 1;
705 return instruction_pointer(regs);
706}
707
708void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
709{
710 regs->ip = ip;
711}
712
713struct kgdb_arch arch_kgdb_ops = {
714 /* Breakpoint instruction: */
715 .gdb_bpt_instr = { 0xcc },
716 .flags = KGDB_HW_BREAKPOINT,
717 .set_hw_breakpoint = kgdb_set_hw_break,
718 .remove_hw_breakpoint = kgdb_remove_hw_break,
719 .disable_hw_break = kgdb_disable_hw_debug,
720 .remove_all_hw_break = kgdb_remove_all_hw_break,
721 .correct_hw_break = kgdb_correct_hw_break,
722};
1/*
2 * This program is free software; you can redistribute it and/or modify it
3 * under the terms of the GNU General Public License as published by the
4 * Free Software Foundation; either version 2, or (at your option) any
5 * later version.
6 *
7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10 * General Public License for more details.
11 *
12 */
13
14/*
15 * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16 * Copyright (C) 2000-2001 VERITAS Software Corporation.
17 * Copyright (C) 2002 Andi Kleen, SuSE Labs
18 * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19 * Copyright (C) 2007 MontaVista Software, Inc.
20 * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
21 */
22/****************************************************************************
23 * Contributor: Lake Stevens Instrument Division$
24 * Written by: Glenn Engel $
25 * Updated by: Amit Kale<akale@veritas.com>
26 * Updated by: Tom Rini <trini@kernel.crashing.org>
27 * Updated by: Jason Wessel <jason.wessel@windriver.com>
28 * Modified for 386 by Jim Kingdon, Cygnus Support.
29 * Origianl kgdb, compatibility with 2.1.xx kernel by
30 * David Grothe <dave@gcom.com>
31 * Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32 * X86_64 changes from Andi Kleen's patch merged by Jim Houston
33 */
34#include <linux/spinlock.h>
35#include <linux/kdebug.h>
36#include <linux/string.h>
37#include <linux/kernel.h>
38#include <linux/ptrace.h>
39#include <linux/sched.h>
40#include <linux/delay.h>
41#include <linux/kgdb.h>
42#include <linux/smp.h>
43#include <linux/nmi.h>
44#include <linux/hw_breakpoint.h>
45#include <linux/uaccess.h>
46#include <linux/memory.h>
47
48#include <asm/debugreg.h>
49#include <asm/apicdef.h>
50#include <asm/apic.h>
51#include <asm/nmi.h>
52
53struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
54{
55#ifdef CONFIG_X86_32
56 { "ax", 4, offsetof(struct pt_regs, ax) },
57 { "cx", 4, offsetof(struct pt_regs, cx) },
58 { "dx", 4, offsetof(struct pt_regs, dx) },
59 { "bx", 4, offsetof(struct pt_regs, bx) },
60 { "sp", 4, offsetof(struct pt_regs, sp) },
61 { "bp", 4, offsetof(struct pt_regs, bp) },
62 { "si", 4, offsetof(struct pt_regs, si) },
63 { "di", 4, offsetof(struct pt_regs, di) },
64 { "ip", 4, offsetof(struct pt_regs, ip) },
65 { "flags", 4, offsetof(struct pt_regs, flags) },
66 { "cs", 4, offsetof(struct pt_regs, cs) },
67 { "ss", 4, offsetof(struct pt_regs, ss) },
68 { "ds", 4, offsetof(struct pt_regs, ds) },
69 { "es", 4, offsetof(struct pt_regs, es) },
70#else
71 { "ax", 8, offsetof(struct pt_regs, ax) },
72 { "bx", 8, offsetof(struct pt_regs, bx) },
73 { "cx", 8, offsetof(struct pt_regs, cx) },
74 { "dx", 8, offsetof(struct pt_regs, dx) },
75 { "si", 8, offsetof(struct pt_regs, si) },
76 { "di", 8, offsetof(struct pt_regs, di) },
77 { "bp", 8, offsetof(struct pt_regs, bp) },
78 { "sp", 8, offsetof(struct pt_regs, sp) },
79 { "r8", 8, offsetof(struct pt_regs, r8) },
80 { "r9", 8, offsetof(struct pt_regs, r9) },
81 { "r10", 8, offsetof(struct pt_regs, r10) },
82 { "r11", 8, offsetof(struct pt_regs, r11) },
83 { "r12", 8, offsetof(struct pt_regs, r12) },
84 { "r13", 8, offsetof(struct pt_regs, r13) },
85 { "r14", 8, offsetof(struct pt_regs, r14) },
86 { "r15", 8, offsetof(struct pt_regs, r15) },
87 { "ip", 8, offsetof(struct pt_regs, ip) },
88 { "flags", 4, offsetof(struct pt_regs, flags) },
89 { "cs", 4, offsetof(struct pt_regs, cs) },
90 { "ss", 4, offsetof(struct pt_regs, ss) },
91 { "ds", 4, -1 },
92 { "es", 4, -1 },
93#endif
94 { "fs", 4, -1 },
95 { "gs", 4, -1 },
96};
97
98int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
99{
100 if (
101#ifdef CONFIG_X86_32
102 regno == GDB_SS || regno == GDB_FS || regno == GDB_GS ||
103#endif
104 regno == GDB_SP || regno == GDB_ORIG_AX)
105 return 0;
106
107 if (dbg_reg_def[regno].offset != -1)
108 memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
109 dbg_reg_def[regno].size);
110 return 0;
111}
112
113char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
114{
115 if (regno == GDB_ORIG_AX) {
116 memcpy(mem, ®s->orig_ax, sizeof(regs->orig_ax));
117 return "orig_ax";
118 }
119 if (regno >= DBG_MAX_REG_NUM || regno < 0)
120 return NULL;
121
122 if (dbg_reg_def[regno].offset != -1)
123 memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
124 dbg_reg_def[regno].size);
125
126#ifdef CONFIG_X86_32
127 switch (regno) {
128 case GDB_SS:
129 if (!user_mode(regs))
130 *(unsigned long *)mem = __KERNEL_DS;
131 break;
132 case GDB_SP:
133 if (!user_mode(regs))
134 *(unsigned long *)mem = kernel_stack_pointer(regs);
135 break;
136 case GDB_GS:
137 case GDB_FS:
138 *(unsigned long *)mem = 0xFFFF;
139 break;
140 }
141#endif
142 return dbg_reg_def[regno].name;
143}
144
145/**
146 * sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
147 * @gdb_regs: A pointer to hold the registers in the order GDB wants.
148 * @p: The &struct task_struct of the desired process.
149 *
150 * Convert the register values of the sleeping process in @p to
151 * the format that GDB expects.
152 * This function is called when kgdb does not have access to the
153 * &struct pt_regs and therefore it should fill the gdb registers
154 * @gdb_regs with what has been saved in &struct thread_struct
155 * thread field during switch_to.
156 */
157void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
158{
159#ifndef CONFIG_X86_32
160 u32 *gdb_regs32 = (u32 *)gdb_regs;
161#endif
162 gdb_regs[GDB_AX] = 0;
163 gdb_regs[GDB_BX] = 0;
164 gdb_regs[GDB_CX] = 0;
165 gdb_regs[GDB_DX] = 0;
166 gdb_regs[GDB_SI] = 0;
167 gdb_regs[GDB_DI] = 0;
168 gdb_regs[GDB_BP] = *(unsigned long *)p->thread.sp;
169#ifdef CONFIG_X86_32
170 gdb_regs[GDB_DS] = __KERNEL_DS;
171 gdb_regs[GDB_ES] = __KERNEL_DS;
172 gdb_regs[GDB_PS] = 0;
173 gdb_regs[GDB_CS] = __KERNEL_CS;
174 gdb_regs[GDB_PC] = p->thread.ip;
175 gdb_regs[GDB_SS] = __KERNEL_DS;
176 gdb_regs[GDB_FS] = 0xFFFF;
177 gdb_regs[GDB_GS] = 0xFFFF;
178#else
179 gdb_regs32[GDB_PS] = *(unsigned long *)(p->thread.sp + 8);
180 gdb_regs32[GDB_CS] = __KERNEL_CS;
181 gdb_regs32[GDB_SS] = __KERNEL_DS;
182 gdb_regs[GDB_PC] = 0;
183 gdb_regs[GDB_R8] = 0;
184 gdb_regs[GDB_R9] = 0;
185 gdb_regs[GDB_R10] = 0;
186 gdb_regs[GDB_R11] = 0;
187 gdb_regs[GDB_R12] = 0;
188 gdb_regs[GDB_R13] = 0;
189 gdb_regs[GDB_R14] = 0;
190 gdb_regs[GDB_R15] = 0;
191#endif
192 gdb_regs[GDB_SP] = p->thread.sp;
193}
194
195static struct hw_breakpoint {
196 unsigned enabled;
197 unsigned long addr;
198 int len;
199 int type;
200 struct perf_event * __percpu *pev;
201} breakinfo[HBP_NUM];
202
203static unsigned long early_dr7;
204
205static void kgdb_correct_hw_break(void)
206{
207 int breakno;
208
209 for (breakno = 0; breakno < HBP_NUM; breakno++) {
210 struct perf_event *bp;
211 struct arch_hw_breakpoint *info;
212 int val;
213 int cpu = raw_smp_processor_id();
214 if (!breakinfo[breakno].enabled)
215 continue;
216 if (dbg_is_early) {
217 set_debugreg(breakinfo[breakno].addr, breakno);
218 early_dr7 |= encode_dr7(breakno,
219 breakinfo[breakno].len,
220 breakinfo[breakno].type);
221 set_debugreg(early_dr7, 7);
222 continue;
223 }
224 bp = *per_cpu_ptr(breakinfo[breakno].pev, cpu);
225 info = counter_arch_bp(bp);
226 if (bp->attr.disabled != 1)
227 continue;
228 bp->attr.bp_addr = breakinfo[breakno].addr;
229 bp->attr.bp_len = breakinfo[breakno].len;
230 bp->attr.bp_type = breakinfo[breakno].type;
231 info->address = breakinfo[breakno].addr;
232 info->len = breakinfo[breakno].len;
233 info->type = breakinfo[breakno].type;
234 val = arch_install_hw_breakpoint(bp);
235 if (!val)
236 bp->attr.disabled = 0;
237 }
238 if (!dbg_is_early)
239 hw_breakpoint_restore();
240}
241
242static int hw_break_reserve_slot(int breakno)
243{
244 int cpu;
245 int cnt = 0;
246 struct perf_event **pevent;
247
248 if (dbg_is_early)
249 return 0;
250
251 for_each_online_cpu(cpu) {
252 cnt++;
253 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
254 if (dbg_reserve_bp_slot(*pevent))
255 goto fail;
256 }
257
258 return 0;
259
260fail:
261 for_each_online_cpu(cpu) {
262 cnt--;
263 if (!cnt)
264 break;
265 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
266 dbg_release_bp_slot(*pevent);
267 }
268 return -1;
269}
270
271static int hw_break_release_slot(int breakno)
272{
273 struct perf_event **pevent;
274 int cpu;
275
276 if (dbg_is_early)
277 return 0;
278
279 for_each_online_cpu(cpu) {
280 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
281 if (dbg_release_bp_slot(*pevent))
282 /*
283 * The debugger is responsible for handing the retry on
284 * remove failure.
285 */
286 return -1;
287 }
288 return 0;
289}
290
291static int
292kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
293{
294 int i;
295
296 for (i = 0; i < HBP_NUM; i++)
297 if (breakinfo[i].addr == addr && breakinfo[i].enabled)
298 break;
299 if (i == HBP_NUM)
300 return -1;
301
302 if (hw_break_release_slot(i)) {
303 printk(KERN_ERR "Cannot remove hw breakpoint at %lx\n", addr);
304 return -1;
305 }
306 breakinfo[i].enabled = 0;
307
308 return 0;
309}
310
311static void kgdb_remove_all_hw_break(void)
312{
313 int i;
314 int cpu = raw_smp_processor_id();
315 struct perf_event *bp;
316
317 for (i = 0; i < HBP_NUM; i++) {
318 if (!breakinfo[i].enabled)
319 continue;
320 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
321 if (!bp->attr.disabled) {
322 arch_uninstall_hw_breakpoint(bp);
323 bp->attr.disabled = 1;
324 continue;
325 }
326 if (dbg_is_early)
327 early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
328 breakinfo[i].type);
329 else if (hw_break_release_slot(i))
330 printk(KERN_ERR "KGDB: hw bpt remove failed %lx\n",
331 breakinfo[i].addr);
332 breakinfo[i].enabled = 0;
333 }
334}
335
336static int
337kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
338{
339 int i;
340
341 for (i = 0; i < HBP_NUM; i++)
342 if (!breakinfo[i].enabled)
343 break;
344 if (i == HBP_NUM)
345 return -1;
346
347 switch (bptype) {
348 case BP_HARDWARE_BREAKPOINT:
349 len = 1;
350 breakinfo[i].type = X86_BREAKPOINT_EXECUTE;
351 break;
352 case BP_WRITE_WATCHPOINT:
353 breakinfo[i].type = X86_BREAKPOINT_WRITE;
354 break;
355 case BP_ACCESS_WATCHPOINT:
356 breakinfo[i].type = X86_BREAKPOINT_RW;
357 break;
358 default:
359 return -1;
360 }
361 switch (len) {
362 case 1:
363 breakinfo[i].len = X86_BREAKPOINT_LEN_1;
364 break;
365 case 2:
366 breakinfo[i].len = X86_BREAKPOINT_LEN_2;
367 break;
368 case 4:
369 breakinfo[i].len = X86_BREAKPOINT_LEN_4;
370 break;
371#ifdef CONFIG_X86_64
372 case 8:
373 breakinfo[i].len = X86_BREAKPOINT_LEN_8;
374 break;
375#endif
376 default:
377 return -1;
378 }
379 breakinfo[i].addr = addr;
380 if (hw_break_reserve_slot(i)) {
381 breakinfo[i].addr = 0;
382 return -1;
383 }
384 breakinfo[i].enabled = 1;
385
386 return 0;
387}
388
389/**
390 * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
391 * @regs: Current &struct pt_regs.
392 *
393 * This function will be called if the particular architecture must
394 * disable hardware debugging while it is processing gdb packets or
395 * handling exception.
396 */
397static void kgdb_disable_hw_debug(struct pt_regs *regs)
398{
399 int i;
400 int cpu = raw_smp_processor_id();
401 struct perf_event *bp;
402
403 /* Disable hardware debugging while we are in kgdb: */
404 set_debugreg(0UL, 7);
405 for (i = 0; i < HBP_NUM; i++) {
406 if (!breakinfo[i].enabled)
407 continue;
408 if (dbg_is_early) {
409 early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
410 breakinfo[i].type);
411 continue;
412 }
413 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
414 if (bp->attr.disabled == 1)
415 continue;
416 arch_uninstall_hw_breakpoint(bp);
417 bp->attr.disabled = 1;
418 }
419}
420
421#ifdef CONFIG_SMP
422/**
423 * kgdb_roundup_cpus - Get other CPUs into a holding pattern
424 * @flags: Current IRQ state
425 *
426 * On SMP systems, we need to get the attention of the other CPUs
427 * and get them be in a known state. This should do what is needed
428 * to get the other CPUs to call kgdb_wait(). Note that on some arches,
429 * the NMI approach is not used for rounding up all the CPUs. For example,
430 * in case of MIPS, smp_call_function() is used to roundup CPUs. In
431 * this case, we have to make sure that interrupts are enabled before
432 * calling smp_call_function(). The argument to this function is
433 * the flags that will be used when restoring the interrupts. There is
434 * local_irq_save() call before kgdb_roundup_cpus().
435 *
436 * On non-SMP systems, this is not called.
437 */
438void kgdb_roundup_cpus(unsigned long flags)
439{
440 apic->send_IPI_allbutself(APIC_DM_NMI);
441}
442#endif
443
444/**
445 * kgdb_arch_handle_exception - Handle architecture specific GDB packets.
446 * @e_vector: The error vector of the exception that happened.
447 * @signo: The signal number of the exception that happened.
448 * @err_code: The error code of the exception that happened.
449 * @remcomInBuffer: The buffer of the packet we have read.
450 * @remcomOutBuffer: The buffer of %BUFMAX bytes to write a packet into.
451 * @linux_regs: The &struct pt_regs of the current process.
452 *
453 * This function MUST handle the 'c' and 's' command packets,
454 * as well packets to set / remove a hardware breakpoint, if used.
455 * If there are additional packets which the hardware needs to handle,
456 * they are handled here. The code should return -1 if it wants to
457 * process more packets, and a %0 or %1 if it wants to exit from the
458 * kgdb callback.
459 */
460int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
461 char *remcomInBuffer, char *remcomOutBuffer,
462 struct pt_regs *linux_regs)
463{
464 unsigned long addr;
465 char *ptr;
466
467 switch (remcomInBuffer[0]) {
468 case 'c':
469 case 's':
470 /* try to read optional parameter, pc unchanged if no parm */
471 ptr = &remcomInBuffer[1];
472 if (kgdb_hex2long(&ptr, &addr))
473 linux_regs->ip = addr;
474 case 'D':
475 case 'k':
476 /* clear the trace bit */
477 linux_regs->flags &= ~X86_EFLAGS_TF;
478 atomic_set(&kgdb_cpu_doing_single_step, -1);
479
480 /* set the trace bit if we're stepping */
481 if (remcomInBuffer[0] == 's') {
482 linux_regs->flags |= X86_EFLAGS_TF;
483 atomic_set(&kgdb_cpu_doing_single_step,
484 raw_smp_processor_id());
485 }
486
487 return 0;
488 }
489
490 /* this means that we do not want to exit from the handler: */
491 return -1;
492}
493
494static inline int
495single_step_cont(struct pt_regs *regs, struct die_args *args)
496{
497 /*
498 * Single step exception from kernel space to user space so
499 * eat the exception and continue the process:
500 */
501 printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
502 "resuming...\n");
503 kgdb_arch_handle_exception(args->trapnr, args->signr,
504 args->err, "c", "", regs);
505 /*
506 * Reset the BS bit in dr6 (pointed by args->err) to
507 * denote completion of processing
508 */
509 (*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
510
511 return NOTIFY_STOP;
512}
513
514static DECLARE_BITMAP(was_in_debug_nmi, NR_CPUS);
515
516static int kgdb_nmi_handler(unsigned int cmd, struct pt_regs *regs)
517{
518 int cpu;
519
520 switch (cmd) {
521 case NMI_LOCAL:
522 if (atomic_read(&kgdb_active) != -1) {
523 /* KGDB CPU roundup */
524 cpu = raw_smp_processor_id();
525 kgdb_nmicallback(cpu, regs);
526 set_bit(cpu, was_in_debug_nmi);
527 touch_nmi_watchdog();
528
529 return NMI_HANDLED;
530 }
531 break;
532
533 case NMI_UNKNOWN:
534 cpu = raw_smp_processor_id();
535
536 if (__test_and_clear_bit(cpu, was_in_debug_nmi))
537 return NMI_HANDLED;
538
539 break;
540 default:
541 /* do nothing */
542 break;
543 }
544 return NMI_DONE;
545}
546
547static int __kgdb_notify(struct die_args *args, unsigned long cmd)
548{
549 struct pt_regs *regs = args->regs;
550
551 switch (cmd) {
552 case DIE_DEBUG:
553 if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
554 if (user_mode(regs))
555 return single_step_cont(regs, args);
556 break;
557 } else if (test_thread_flag(TIF_SINGLESTEP))
558 /* This means a user thread is single stepping
559 * a system call which should be ignored
560 */
561 return NOTIFY_DONE;
562 /* fall through */
563 default:
564 if (user_mode(regs))
565 return NOTIFY_DONE;
566 }
567
568 if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
569 return NOTIFY_DONE;
570
571 /* Must touch watchdog before return to normal operation */
572 touch_nmi_watchdog();
573 return NOTIFY_STOP;
574}
575
576int kgdb_ll_trap(int cmd, const char *str,
577 struct pt_regs *regs, long err, int trap, int sig)
578{
579 struct die_args args = {
580 .regs = regs,
581 .str = str,
582 .err = err,
583 .trapnr = trap,
584 .signr = sig,
585
586 };
587
588 if (!kgdb_io_module_registered)
589 return NOTIFY_DONE;
590
591 return __kgdb_notify(&args, cmd);
592}
593
594static int
595kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
596{
597 unsigned long flags;
598 int ret;
599
600 local_irq_save(flags);
601 ret = __kgdb_notify(ptr, cmd);
602 local_irq_restore(flags);
603
604 return ret;
605}
606
607static struct notifier_block kgdb_notifier = {
608 .notifier_call = kgdb_notify,
609};
610
611/**
612 * kgdb_arch_init - Perform any architecture specific initialization.
613 *
614 * This function will handle the initialization of any architecture
615 * specific callbacks.
616 */
617int kgdb_arch_init(void)
618{
619 int retval;
620
621 retval = register_die_notifier(&kgdb_notifier);
622 if (retval)
623 goto out;
624
625 retval = register_nmi_handler(NMI_LOCAL, kgdb_nmi_handler,
626 0, "kgdb");
627 if (retval)
628 goto out1;
629
630 retval = register_nmi_handler(NMI_UNKNOWN, kgdb_nmi_handler,
631 0, "kgdb");
632
633 if (retval)
634 goto out2;
635
636 return retval;
637
638out2:
639 unregister_nmi_handler(NMI_LOCAL, "kgdb");
640out1:
641 unregister_die_notifier(&kgdb_notifier);
642out:
643 return retval;
644}
645
646static void kgdb_hw_overflow_handler(struct perf_event *event,
647 struct perf_sample_data *data, struct pt_regs *regs)
648{
649 struct task_struct *tsk = current;
650 int i;
651
652 for (i = 0; i < 4; i++)
653 if (breakinfo[i].enabled)
654 tsk->thread.debugreg6 |= (DR_TRAP0 << i);
655}
656
657void kgdb_arch_late(void)
658{
659 int i, cpu;
660 struct perf_event_attr attr;
661 struct perf_event **pevent;
662
663 /*
664 * Pre-allocate the hw breakpoint structions in the non-atomic
665 * portion of kgdb because this operation requires mutexs to
666 * complete.
667 */
668 hw_breakpoint_init(&attr);
669 attr.bp_addr = (unsigned long)kgdb_arch_init;
670 attr.bp_len = HW_BREAKPOINT_LEN_1;
671 attr.bp_type = HW_BREAKPOINT_W;
672 attr.disabled = 1;
673 for (i = 0; i < HBP_NUM; i++) {
674 if (breakinfo[i].pev)
675 continue;
676 breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
677 if (IS_ERR((void * __force)breakinfo[i].pev)) {
678 printk(KERN_ERR "kgdb: Could not allocate hw"
679 "breakpoints\nDisabling the kernel debugger\n");
680 breakinfo[i].pev = NULL;
681 kgdb_arch_exit();
682 return;
683 }
684 for_each_online_cpu(cpu) {
685 pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
686 pevent[0]->hw.sample_period = 1;
687 pevent[0]->overflow_handler = kgdb_hw_overflow_handler;
688 if (pevent[0]->destroy != NULL) {
689 pevent[0]->destroy = NULL;
690 release_bp_slot(*pevent);
691 }
692 }
693 }
694}
695
696/**
697 * kgdb_arch_exit - Perform any architecture specific uninitalization.
698 *
699 * This function will handle the uninitalization of any architecture
700 * specific callbacks, for dynamic registration and unregistration.
701 */
702void kgdb_arch_exit(void)
703{
704 int i;
705 for (i = 0; i < 4; i++) {
706 if (breakinfo[i].pev) {
707 unregister_wide_hw_breakpoint(breakinfo[i].pev);
708 breakinfo[i].pev = NULL;
709 }
710 }
711 unregister_nmi_handler(NMI_UNKNOWN, "kgdb");
712 unregister_nmi_handler(NMI_LOCAL, "kgdb");
713 unregister_die_notifier(&kgdb_notifier);
714}
715
716/**
717 *
718 * kgdb_skipexception - Bail out of KGDB when we've been triggered.
719 * @exception: Exception vector number
720 * @regs: Current &struct pt_regs.
721 *
722 * On some architectures we need to skip a breakpoint exception when
723 * it occurs after a breakpoint has been removed.
724 *
725 * Skip an int3 exception when it occurs after a breakpoint has been
726 * removed. Backtrack eip by 1 since the int3 would have caused it to
727 * increment by 1.
728 */
729int kgdb_skipexception(int exception, struct pt_regs *regs)
730{
731 if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
732 regs->ip -= 1;
733 return 1;
734 }
735 return 0;
736}
737
738unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
739{
740 if (exception == 3)
741 return instruction_pointer(regs) - 1;
742 return instruction_pointer(regs);
743}
744
745void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
746{
747 regs->ip = ip;
748}
749
750int kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
751{
752 int err;
753 char opc[BREAK_INSTR_SIZE];
754
755 bpt->type = BP_BREAKPOINT;
756 err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
757 BREAK_INSTR_SIZE);
758 if (err)
759 return err;
760 err = probe_kernel_write((char *)bpt->bpt_addr,
761 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
762 if (!err)
763 return err;
764 /*
765 * It is safe to call text_poke() because normal kernel execution
766 * is stopped on all cores, so long as the text_mutex is not locked.
767 */
768 if (mutex_is_locked(&text_mutex))
769 return -EBUSY;
770 text_poke((void *)bpt->bpt_addr, arch_kgdb_ops.gdb_bpt_instr,
771 BREAK_INSTR_SIZE);
772 err = probe_kernel_read(opc, (char *)bpt->bpt_addr, BREAK_INSTR_SIZE);
773 if (err)
774 return err;
775 if (memcmp(opc, arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE))
776 return -EINVAL;
777 bpt->type = BP_POKE_BREAKPOINT;
778
779 return err;
780}
781
782int kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
783{
784 int err;
785 char opc[BREAK_INSTR_SIZE];
786
787 if (bpt->type != BP_POKE_BREAKPOINT)
788 goto knl_write;
789 /*
790 * It is safe to call text_poke() because normal kernel execution
791 * is stopped on all cores, so long as the text_mutex is not locked.
792 */
793 if (mutex_is_locked(&text_mutex))
794 goto knl_write;
795 text_poke((void *)bpt->bpt_addr, bpt->saved_instr, BREAK_INSTR_SIZE);
796 err = probe_kernel_read(opc, (char *)bpt->bpt_addr, BREAK_INSTR_SIZE);
797 if (err || memcmp(opc, bpt->saved_instr, BREAK_INSTR_SIZE))
798 goto knl_write;
799 return err;
800
801knl_write:
802 return probe_kernel_write((char *)bpt->bpt_addr,
803 (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
804}
805
806struct kgdb_arch arch_kgdb_ops = {
807 /* Breakpoint instruction: */
808 .gdb_bpt_instr = { 0xcc },
809 .flags = KGDB_HW_BREAKPOINT,
810 .set_hw_breakpoint = kgdb_set_hw_break,
811 .remove_hw_breakpoint = kgdb_remove_hw_break,
812 .disable_hw_break = kgdb_disable_hw_debug,
813 .remove_all_hw_break = kgdb_remove_all_hw_break,
814 .correct_hw_break = kgdb_correct_hw_break,
815};