Loading...
1/*
2 * This program is free software; you can redistribute it and/or modify it
3 * under the terms of the GNU General Public License as published by the
4 * Free Software Foundation; either version 2, or (at your option) any
5 * later version.
6 *
7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10 * General Public License for more details.
11 *
12 */
13
14/*
15 * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16 * Copyright (C) 2000-2001 VERITAS Software Corporation.
17 * Copyright (C) 2002 Andi Kleen, SuSE Labs
18 * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19 * Copyright (C) 2007 MontaVista Software, Inc.
20 * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
21 */
22/****************************************************************************
23 * Contributor: Lake Stevens Instrument Division$
24 * Written by: Glenn Engel $
25 * Updated by: Amit Kale<akale@veritas.com>
26 * Updated by: Tom Rini <trini@kernel.crashing.org>
27 * Updated by: Jason Wessel <jason.wessel@windriver.com>
28 * Modified for 386 by Jim Kingdon, Cygnus Support.
29 * Origianl kgdb, compatibility with 2.1.xx kernel by
30 * David Grothe <dave@gcom.com>
31 * Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32 * X86_64 changes from Andi Kleen's patch merged by Jim Houston
33 */
34#include <linux/spinlock.h>
35#include <linux/kdebug.h>
36#include <linux/string.h>
37#include <linux/kernel.h>
38#include <linux/ptrace.h>
39#include <linux/sched.h>
40#include <linux/delay.h>
41#include <linux/kgdb.h>
42#include <linux/init.h>
43#include <linux/smp.h>
44#include <linux/nmi.h>
45#include <linux/hw_breakpoint.h>
46
47#include <asm/debugreg.h>
48#include <asm/apicdef.h>
49#include <asm/system.h>
50#include <asm/apic.h>
51#include <asm/nmi.h>
52
53struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
54{
55#ifdef CONFIG_X86_32
56 { "ax", 4, offsetof(struct pt_regs, ax) },
57 { "cx", 4, offsetof(struct pt_regs, cx) },
58 { "dx", 4, offsetof(struct pt_regs, dx) },
59 { "bx", 4, offsetof(struct pt_regs, bx) },
60 { "sp", 4, offsetof(struct pt_regs, sp) },
61 { "bp", 4, offsetof(struct pt_regs, bp) },
62 { "si", 4, offsetof(struct pt_regs, si) },
63 { "di", 4, offsetof(struct pt_regs, di) },
64 { "ip", 4, offsetof(struct pt_regs, ip) },
65 { "flags", 4, offsetof(struct pt_regs, flags) },
66 { "cs", 4, offsetof(struct pt_regs, cs) },
67 { "ss", 4, offsetof(struct pt_regs, ss) },
68 { "ds", 4, offsetof(struct pt_regs, ds) },
69 { "es", 4, offsetof(struct pt_regs, es) },
70 { "fs", 4, -1 },
71 { "gs", 4, -1 },
72#else
73 { "ax", 8, offsetof(struct pt_regs, ax) },
74 { "bx", 8, offsetof(struct pt_regs, bx) },
75 { "cx", 8, offsetof(struct pt_regs, cx) },
76 { "dx", 8, offsetof(struct pt_regs, dx) },
77 { "si", 8, offsetof(struct pt_regs, dx) },
78 { "di", 8, offsetof(struct pt_regs, di) },
79 { "bp", 8, offsetof(struct pt_regs, bp) },
80 { "sp", 8, offsetof(struct pt_regs, sp) },
81 { "r8", 8, offsetof(struct pt_regs, r8) },
82 { "r9", 8, offsetof(struct pt_regs, r9) },
83 { "r10", 8, offsetof(struct pt_regs, r10) },
84 { "r11", 8, offsetof(struct pt_regs, r11) },
85 { "r12", 8, offsetof(struct pt_regs, r12) },
86 { "r13", 8, offsetof(struct pt_regs, r13) },
87 { "r14", 8, offsetof(struct pt_regs, r14) },
88 { "r15", 8, offsetof(struct pt_regs, r15) },
89 { "ip", 8, offsetof(struct pt_regs, ip) },
90 { "flags", 4, offsetof(struct pt_regs, flags) },
91 { "cs", 4, offsetof(struct pt_regs, cs) },
92 { "ss", 4, offsetof(struct pt_regs, ss) },
93#endif
94};
95
96int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
97{
98 if (
99#ifdef CONFIG_X86_32
100 regno == GDB_SS || regno == GDB_FS || regno == GDB_GS ||
101#endif
102 regno == GDB_SP || regno == GDB_ORIG_AX)
103 return 0;
104
105 if (dbg_reg_def[regno].offset != -1)
106 memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
107 dbg_reg_def[regno].size);
108 return 0;
109}
110
111char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
112{
113 if (regno == GDB_ORIG_AX) {
114 memcpy(mem, ®s->orig_ax, sizeof(regs->orig_ax));
115 return "orig_ax";
116 }
117 if (regno >= DBG_MAX_REG_NUM || regno < 0)
118 return NULL;
119
120 if (dbg_reg_def[regno].offset != -1)
121 memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
122 dbg_reg_def[regno].size);
123
124#ifdef CONFIG_X86_32
125 switch (regno) {
126 case GDB_SS:
127 if (!user_mode_vm(regs))
128 *(unsigned long *)mem = __KERNEL_DS;
129 break;
130 case GDB_SP:
131 if (!user_mode_vm(regs))
132 *(unsigned long *)mem = kernel_stack_pointer(regs);
133 break;
134 case GDB_GS:
135 case GDB_FS:
136 *(unsigned long *)mem = 0xFFFF;
137 break;
138 }
139#endif
140 return dbg_reg_def[regno].name;
141}
142
143/**
144 * sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
145 * @gdb_regs: A pointer to hold the registers in the order GDB wants.
146 * @p: The &struct task_struct of the desired process.
147 *
148 * Convert the register values of the sleeping process in @p to
149 * the format that GDB expects.
150 * This function is called when kgdb does not have access to the
151 * &struct pt_regs and therefore it should fill the gdb registers
152 * @gdb_regs with what has been saved in &struct thread_struct
153 * thread field during switch_to.
154 */
155void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
156{
157#ifndef CONFIG_X86_32
158 u32 *gdb_regs32 = (u32 *)gdb_regs;
159#endif
160 gdb_regs[GDB_AX] = 0;
161 gdb_regs[GDB_BX] = 0;
162 gdb_regs[GDB_CX] = 0;
163 gdb_regs[GDB_DX] = 0;
164 gdb_regs[GDB_SI] = 0;
165 gdb_regs[GDB_DI] = 0;
166 gdb_regs[GDB_BP] = *(unsigned long *)p->thread.sp;
167#ifdef CONFIG_X86_32
168 gdb_regs[GDB_DS] = __KERNEL_DS;
169 gdb_regs[GDB_ES] = __KERNEL_DS;
170 gdb_regs[GDB_PS] = 0;
171 gdb_regs[GDB_CS] = __KERNEL_CS;
172 gdb_regs[GDB_PC] = p->thread.ip;
173 gdb_regs[GDB_SS] = __KERNEL_DS;
174 gdb_regs[GDB_FS] = 0xFFFF;
175 gdb_regs[GDB_GS] = 0xFFFF;
176#else
177 gdb_regs32[GDB_PS] = *(unsigned long *)(p->thread.sp + 8);
178 gdb_regs32[GDB_CS] = __KERNEL_CS;
179 gdb_regs32[GDB_SS] = __KERNEL_DS;
180 gdb_regs[GDB_PC] = 0;
181 gdb_regs[GDB_R8] = 0;
182 gdb_regs[GDB_R9] = 0;
183 gdb_regs[GDB_R10] = 0;
184 gdb_regs[GDB_R11] = 0;
185 gdb_regs[GDB_R12] = 0;
186 gdb_regs[GDB_R13] = 0;
187 gdb_regs[GDB_R14] = 0;
188 gdb_regs[GDB_R15] = 0;
189#endif
190 gdb_regs[GDB_SP] = p->thread.sp;
191}
192
193static struct hw_breakpoint {
194 unsigned enabled;
195 unsigned long addr;
196 int len;
197 int type;
198 struct perf_event * __percpu *pev;
199} breakinfo[HBP_NUM];
200
201static unsigned long early_dr7;
202
203static void kgdb_correct_hw_break(void)
204{
205 int breakno;
206
207 for (breakno = 0; breakno < HBP_NUM; breakno++) {
208 struct perf_event *bp;
209 struct arch_hw_breakpoint *info;
210 int val;
211 int cpu = raw_smp_processor_id();
212 if (!breakinfo[breakno].enabled)
213 continue;
214 if (dbg_is_early) {
215 set_debugreg(breakinfo[breakno].addr, breakno);
216 early_dr7 |= encode_dr7(breakno,
217 breakinfo[breakno].len,
218 breakinfo[breakno].type);
219 set_debugreg(early_dr7, 7);
220 continue;
221 }
222 bp = *per_cpu_ptr(breakinfo[breakno].pev, cpu);
223 info = counter_arch_bp(bp);
224 if (bp->attr.disabled != 1)
225 continue;
226 bp->attr.bp_addr = breakinfo[breakno].addr;
227 bp->attr.bp_len = breakinfo[breakno].len;
228 bp->attr.bp_type = breakinfo[breakno].type;
229 info->address = breakinfo[breakno].addr;
230 info->len = breakinfo[breakno].len;
231 info->type = breakinfo[breakno].type;
232 val = arch_install_hw_breakpoint(bp);
233 if (!val)
234 bp->attr.disabled = 0;
235 }
236 if (!dbg_is_early)
237 hw_breakpoint_restore();
238}
239
240static int hw_break_reserve_slot(int breakno)
241{
242 int cpu;
243 int cnt = 0;
244 struct perf_event **pevent;
245
246 if (dbg_is_early)
247 return 0;
248
249 for_each_online_cpu(cpu) {
250 cnt++;
251 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
252 if (dbg_reserve_bp_slot(*pevent))
253 goto fail;
254 }
255
256 return 0;
257
258fail:
259 for_each_online_cpu(cpu) {
260 cnt--;
261 if (!cnt)
262 break;
263 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
264 dbg_release_bp_slot(*pevent);
265 }
266 return -1;
267}
268
269static int hw_break_release_slot(int breakno)
270{
271 struct perf_event **pevent;
272 int cpu;
273
274 if (dbg_is_early)
275 return 0;
276
277 for_each_online_cpu(cpu) {
278 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
279 if (dbg_release_bp_slot(*pevent))
280 /*
281 * The debugger is responsible for handing the retry on
282 * remove failure.
283 */
284 return -1;
285 }
286 return 0;
287}
288
289static int
290kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
291{
292 int i;
293
294 for (i = 0; i < HBP_NUM; i++)
295 if (breakinfo[i].addr == addr && breakinfo[i].enabled)
296 break;
297 if (i == HBP_NUM)
298 return -1;
299
300 if (hw_break_release_slot(i)) {
301 printk(KERN_ERR "Cannot remove hw breakpoint at %lx\n", addr);
302 return -1;
303 }
304 breakinfo[i].enabled = 0;
305
306 return 0;
307}
308
309static void kgdb_remove_all_hw_break(void)
310{
311 int i;
312 int cpu = raw_smp_processor_id();
313 struct perf_event *bp;
314
315 for (i = 0; i < HBP_NUM; i++) {
316 if (!breakinfo[i].enabled)
317 continue;
318 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
319 if (!bp->attr.disabled) {
320 arch_uninstall_hw_breakpoint(bp);
321 bp->attr.disabled = 1;
322 continue;
323 }
324 if (dbg_is_early)
325 early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
326 breakinfo[i].type);
327 else if (hw_break_release_slot(i))
328 printk(KERN_ERR "KGDB: hw bpt remove failed %lx\n",
329 breakinfo[i].addr);
330 breakinfo[i].enabled = 0;
331 }
332}
333
334static int
335kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
336{
337 int i;
338
339 for (i = 0; i < HBP_NUM; i++)
340 if (!breakinfo[i].enabled)
341 break;
342 if (i == HBP_NUM)
343 return -1;
344
345 switch (bptype) {
346 case BP_HARDWARE_BREAKPOINT:
347 len = 1;
348 breakinfo[i].type = X86_BREAKPOINT_EXECUTE;
349 break;
350 case BP_WRITE_WATCHPOINT:
351 breakinfo[i].type = X86_BREAKPOINT_WRITE;
352 break;
353 case BP_ACCESS_WATCHPOINT:
354 breakinfo[i].type = X86_BREAKPOINT_RW;
355 break;
356 default:
357 return -1;
358 }
359 switch (len) {
360 case 1:
361 breakinfo[i].len = X86_BREAKPOINT_LEN_1;
362 break;
363 case 2:
364 breakinfo[i].len = X86_BREAKPOINT_LEN_2;
365 break;
366 case 4:
367 breakinfo[i].len = X86_BREAKPOINT_LEN_4;
368 break;
369#ifdef CONFIG_X86_64
370 case 8:
371 breakinfo[i].len = X86_BREAKPOINT_LEN_8;
372 break;
373#endif
374 default:
375 return -1;
376 }
377 breakinfo[i].addr = addr;
378 if (hw_break_reserve_slot(i)) {
379 breakinfo[i].addr = 0;
380 return -1;
381 }
382 breakinfo[i].enabled = 1;
383
384 return 0;
385}
386
387/**
388 * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
389 * @regs: Current &struct pt_regs.
390 *
391 * This function will be called if the particular architecture must
392 * disable hardware debugging while it is processing gdb packets or
393 * handling exception.
394 */
395static void kgdb_disable_hw_debug(struct pt_regs *regs)
396{
397 int i;
398 int cpu = raw_smp_processor_id();
399 struct perf_event *bp;
400
401 /* Disable hardware debugging while we are in kgdb: */
402 set_debugreg(0UL, 7);
403 for (i = 0; i < HBP_NUM; i++) {
404 if (!breakinfo[i].enabled)
405 continue;
406 if (dbg_is_early) {
407 early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
408 breakinfo[i].type);
409 continue;
410 }
411 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
412 if (bp->attr.disabled == 1)
413 continue;
414 arch_uninstall_hw_breakpoint(bp);
415 bp->attr.disabled = 1;
416 }
417}
418
419#ifdef CONFIG_SMP
420/**
421 * kgdb_roundup_cpus - Get other CPUs into a holding pattern
422 * @flags: Current IRQ state
423 *
424 * On SMP systems, we need to get the attention of the other CPUs
425 * and get them be in a known state. This should do what is needed
426 * to get the other CPUs to call kgdb_wait(). Note that on some arches,
427 * the NMI approach is not used for rounding up all the CPUs. For example,
428 * in case of MIPS, smp_call_function() is used to roundup CPUs. In
429 * this case, we have to make sure that interrupts are enabled before
430 * calling smp_call_function(). The argument to this function is
431 * the flags that will be used when restoring the interrupts. There is
432 * local_irq_save() call before kgdb_roundup_cpus().
433 *
434 * On non-SMP systems, this is not called.
435 */
436void kgdb_roundup_cpus(unsigned long flags)
437{
438 apic->send_IPI_allbutself(APIC_DM_NMI);
439}
440#endif
441
442/**
443 * kgdb_arch_handle_exception - Handle architecture specific GDB packets.
444 * @vector: The error vector of the exception that happened.
445 * @signo: The signal number of the exception that happened.
446 * @err_code: The error code of the exception that happened.
447 * @remcom_in_buffer: The buffer of the packet we have read.
448 * @remcom_out_buffer: The buffer of %BUFMAX bytes to write a packet into.
449 * @regs: The &struct pt_regs of the current process.
450 *
451 * This function MUST handle the 'c' and 's' command packets,
452 * as well packets to set / remove a hardware breakpoint, if used.
453 * If there are additional packets which the hardware needs to handle,
454 * they are handled here. The code should return -1 if it wants to
455 * process more packets, and a %0 or %1 if it wants to exit from the
456 * kgdb callback.
457 */
458int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
459 char *remcomInBuffer, char *remcomOutBuffer,
460 struct pt_regs *linux_regs)
461{
462 unsigned long addr;
463 char *ptr;
464
465 switch (remcomInBuffer[0]) {
466 case 'c':
467 case 's':
468 /* try to read optional parameter, pc unchanged if no parm */
469 ptr = &remcomInBuffer[1];
470 if (kgdb_hex2long(&ptr, &addr))
471 linux_regs->ip = addr;
472 case 'D':
473 case 'k':
474 /* clear the trace bit */
475 linux_regs->flags &= ~X86_EFLAGS_TF;
476 atomic_set(&kgdb_cpu_doing_single_step, -1);
477
478 /* set the trace bit if we're stepping */
479 if (remcomInBuffer[0] == 's') {
480 linux_regs->flags |= X86_EFLAGS_TF;
481 atomic_set(&kgdb_cpu_doing_single_step,
482 raw_smp_processor_id());
483 }
484
485 return 0;
486 }
487
488 /* this means that we do not want to exit from the handler: */
489 return -1;
490}
491
492static inline int
493single_step_cont(struct pt_regs *regs, struct die_args *args)
494{
495 /*
496 * Single step exception from kernel space to user space so
497 * eat the exception and continue the process:
498 */
499 printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
500 "resuming...\n");
501 kgdb_arch_handle_exception(args->trapnr, args->signr,
502 args->err, "c", "", regs);
503 /*
504 * Reset the BS bit in dr6 (pointed by args->err) to
505 * denote completion of processing
506 */
507 (*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
508
509 return NOTIFY_STOP;
510}
511
512static int was_in_debug_nmi[NR_CPUS];
513
514static int __kgdb_notify(struct die_args *args, unsigned long cmd)
515{
516 struct pt_regs *regs = args->regs;
517
518 switch (cmd) {
519 case DIE_NMI:
520 if (atomic_read(&kgdb_active) != -1) {
521 /* KGDB CPU roundup */
522 kgdb_nmicallback(raw_smp_processor_id(), regs);
523 was_in_debug_nmi[raw_smp_processor_id()] = 1;
524 touch_nmi_watchdog();
525 return NOTIFY_STOP;
526 }
527 return NOTIFY_DONE;
528
529 case DIE_NMIUNKNOWN:
530 if (was_in_debug_nmi[raw_smp_processor_id()]) {
531 was_in_debug_nmi[raw_smp_processor_id()] = 0;
532 return NOTIFY_STOP;
533 }
534 return NOTIFY_DONE;
535
536 case DIE_DEBUG:
537 if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
538 if (user_mode(regs))
539 return single_step_cont(regs, args);
540 break;
541 } else if (test_thread_flag(TIF_SINGLESTEP))
542 /* This means a user thread is single stepping
543 * a system call which should be ignored
544 */
545 return NOTIFY_DONE;
546 /* fall through */
547 default:
548 if (user_mode(regs))
549 return NOTIFY_DONE;
550 }
551
552 if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
553 return NOTIFY_DONE;
554
555 /* Must touch watchdog before return to normal operation */
556 touch_nmi_watchdog();
557 return NOTIFY_STOP;
558}
559
560int kgdb_ll_trap(int cmd, const char *str,
561 struct pt_regs *regs, long err, int trap, int sig)
562{
563 struct die_args args = {
564 .regs = regs,
565 .str = str,
566 .err = err,
567 .trapnr = trap,
568 .signr = sig,
569
570 };
571
572 if (!kgdb_io_module_registered)
573 return NOTIFY_DONE;
574
575 return __kgdb_notify(&args, cmd);
576}
577
578static int
579kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
580{
581 unsigned long flags;
582 int ret;
583
584 local_irq_save(flags);
585 ret = __kgdb_notify(ptr, cmd);
586 local_irq_restore(flags);
587
588 return ret;
589}
590
591static struct notifier_block kgdb_notifier = {
592 .notifier_call = kgdb_notify,
593
594 /*
595 * Lowest-prio notifier priority, we want to be notified last:
596 */
597 .priority = NMI_LOCAL_LOW_PRIOR,
598};
599
600/**
601 * kgdb_arch_init - Perform any architecture specific initalization.
602 *
603 * This function will handle the initalization of any architecture
604 * specific callbacks.
605 */
606int kgdb_arch_init(void)
607{
608 return register_die_notifier(&kgdb_notifier);
609}
610
611static void kgdb_hw_overflow_handler(struct perf_event *event,
612 struct perf_sample_data *data, struct pt_regs *regs)
613{
614 struct task_struct *tsk = current;
615 int i;
616
617 for (i = 0; i < 4; i++)
618 if (breakinfo[i].enabled)
619 tsk->thread.debugreg6 |= (DR_TRAP0 << i);
620}
621
622void kgdb_arch_late(void)
623{
624 int i, cpu;
625 struct perf_event_attr attr;
626 struct perf_event **pevent;
627
628 /*
629 * Pre-allocate the hw breakpoint structions in the non-atomic
630 * portion of kgdb because this operation requires mutexs to
631 * complete.
632 */
633 hw_breakpoint_init(&attr);
634 attr.bp_addr = (unsigned long)kgdb_arch_init;
635 attr.bp_len = HW_BREAKPOINT_LEN_1;
636 attr.bp_type = HW_BREAKPOINT_W;
637 attr.disabled = 1;
638 for (i = 0; i < HBP_NUM; i++) {
639 if (breakinfo[i].pev)
640 continue;
641 breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
642 if (IS_ERR((void * __force)breakinfo[i].pev)) {
643 printk(KERN_ERR "kgdb: Could not allocate hw"
644 "breakpoints\nDisabling the kernel debugger\n");
645 breakinfo[i].pev = NULL;
646 kgdb_arch_exit();
647 return;
648 }
649 for_each_online_cpu(cpu) {
650 pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
651 pevent[0]->hw.sample_period = 1;
652 pevent[0]->overflow_handler = kgdb_hw_overflow_handler;
653 if (pevent[0]->destroy != NULL) {
654 pevent[0]->destroy = NULL;
655 release_bp_slot(*pevent);
656 }
657 }
658 }
659}
660
661/**
662 * kgdb_arch_exit - Perform any architecture specific uninitalization.
663 *
664 * This function will handle the uninitalization of any architecture
665 * specific callbacks, for dynamic registration and unregistration.
666 */
667void kgdb_arch_exit(void)
668{
669 int i;
670 for (i = 0; i < 4; i++) {
671 if (breakinfo[i].pev) {
672 unregister_wide_hw_breakpoint(breakinfo[i].pev);
673 breakinfo[i].pev = NULL;
674 }
675 }
676 unregister_die_notifier(&kgdb_notifier);
677}
678
679/**
680 *
681 * kgdb_skipexception - Bail out of KGDB when we've been triggered.
682 * @exception: Exception vector number
683 * @regs: Current &struct pt_regs.
684 *
685 * On some architectures we need to skip a breakpoint exception when
686 * it occurs after a breakpoint has been removed.
687 *
688 * Skip an int3 exception when it occurs after a breakpoint has been
689 * removed. Backtrack eip by 1 since the int3 would have caused it to
690 * increment by 1.
691 */
692int kgdb_skipexception(int exception, struct pt_regs *regs)
693{
694 if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
695 regs->ip -= 1;
696 return 1;
697 }
698 return 0;
699}
700
701unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
702{
703 if (exception == 3)
704 return instruction_pointer(regs) - 1;
705 return instruction_pointer(regs);
706}
707
708void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
709{
710 regs->ip = ip;
711}
712
713struct kgdb_arch arch_kgdb_ops = {
714 /* Breakpoint instruction: */
715 .gdb_bpt_instr = { 0xcc },
716 .flags = KGDB_HW_BREAKPOINT,
717 .set_hw_breakpoint = kgdb_set_hw_break,
718 .remove_hw_breakpoint = kgdb_remove_hw_break,
719 .disable_hw_break = kgdb_disable_hw_debug,
720 .remove_all_hw_break = kgdb_remove_all_hw_break,
721 .correct_hw_break = kgdb_correct_hw_break,
722};
1/*
2 * This program is free software; you can redistribute it and/or modify it
3 * under the terms of the GNU General Public License as published by the
4 * Free Software Foundation; either version 2, or (at your option) any
5 * later version.
6 *
7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10 * General Public License for more details.
11 *
12 */
13
14/*
15 * Copyright (C) 2004 Amit S. Kale <amitkale@linsyssoft.com>
16 * Copyright (C) 2000-2001 VERITAS Software Corporation.
17 * Copyright (C) 2002 Andi Kleen, SuSE Labs
18 * Copyright (C) 2004 LinSysSoft Technologies Pvt. Ltd.
19 * Copyright (C) 2007 MontaVista Software, Inc.
20 * Copyright (C) 2007-2008 Jason Wessel, Wind River Systems, Inc.
21 */
22/****************************************************************************
23 * Contributor: Lake Stevens Instrument Division$
24 * Written by: Glenn Engel $
25 * Updated by: Amit Kale<akale@veritas.com>
26 * Updated by: Tom Rini <trini@kernel.crashing.org>
27 * Updated by: Jason Wessel <jason.wessel@windriver.com>
28 * Modified for 386 by Jim Kingdon, Cygnus Support.
29 * Origianl kgdb, compatibility with 2.1.xx kernel by
30 * David Grothe <dave@gcom.com>
31 * Integrated into 2.2.5 kernel by Tigran Aivazian <tigran@sco.com>
32 * X86_64 changes from Andi Kleen's patch merged by Jim Houston
33 */
34#include <linux/spinlock.h>
35#include <linux/kdebug.h>
36#include <linux/string.h>
37#include <linux/kernel.h>
38#include <linux/ptrace.h>
39#include <linux/sched.h>
40#include <linux/delay.h>
41#include <linux/kgdb.h>
42#include <linux/smp.h>
43#include <linux/nmi.h>
44#include <linux/hw_breakpoint.h>
45#include <linux/uaccess.h>
46#include <linux/memory.h>
47
48#include <asm/text-patching.h>
49#include <asm/debugreg.h>
50#include <asm/apicdef.h>
51#include <asm/apic.h>
52#include <asm/nmi.h>
53#include <asm/switch_to.h>
54
55struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] =
56{
57#ifdef CONFIG_X86_32
58 { "ax", 4, offsetof(struct pt_regs, ax) },
59 { "cx", 4, offsetof(struct pt_regs, cx) },
60 { "dx", 4, offsetof(struct pt_regs, dx) },
61 { "bx", 4, offsetof(struct pt_regs, bx) },
62 { "sp", 4, offsetof(struct pt_regs, sp) },
63 { "bp", 4, offsetof(struct pt_regs, bp) },
64 { "si", 4, offsetof(struct pt_regs, si) },
65 { "di", 4, offsetof(struct pt_regs, di) },
66 { "ip", 4, offsetof(struct pt_regs, ip) },
67 { "flags", 4, offsetof(struct pt_regs, flags) },
68 { "cs", 4, offsetof(struct pt_regs, cs) },
69 { "ss", 4, offsetof(struct pt_regs, ss) },
70 { "ds", 4, offsetof(struct pt_regs, ds) },
71 { "es", 4, offsetof(struct pt_regs, es) },
72#else
73 { "ax", 8, offsetof(struct pt_regs, ax) },
74 { "bx", 8, offsetof(struct pt_regs, bx) },
75 { "cx", 8, offsetof(struct pt_regs, cx) },
76 { "dx", 8, offsetof(struct pt_regs, dx) },
77 { "si", 8, offsetof(struct pt_regs, si) },
78 { "di", 8, offsetof(struct pt_regs, di) },
79 { "bp", 8, offsetof(struct pt_regs, bp) },
80 { "sp", 8, offsetof(struct pt_regs, sp) },
81 { "r8", 8, offsetof(struct pt_regs, r8) },
82 { "r9", 8, offsetof(struct pt_regs, r9) },
83 { "r10", 8, offsetof(struct pt_regs, r10) },
84 { "r11", 8, offsetof(struct pt_regs, r11) },
85 { "r12", 8, offsetof(struct pt_regs, r12) },
86 { "r13", 8, offsetof(struct pt_regs, r13) },
87 { "r14", 8, offsetof(struct pt_regs, r14) },
88 { "r15", 8, offsetof(struct pt_regs, r15) },
89 { "ip", 8, offsetof(struct pt_regs, ip) },
90 { "flags", 4, offsetof(struct pt_regs, flags) },
91 { "cs", 4, offsetof(struct pt_regs, cs) },
92 { "ss", 4, offsetof(struct pt_regs, ss) },
93 { "ds", 4, -1 },
94 { "es", 4, -1 },
95#endif
96 { "fs", 4, -1 },
97 { "gs", 4, -1 },
98};
99
100int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
101{
102 if (
103#ifdef CONFIG_X86_32
104 regno == GDB_SS || regno == GDB_FS || regno == GDB_GS ||
105#endif
106 regno == GDB_SP || regno == GDB_ORIG_AX)
107 return 0;
108
109 if (dbg_reg_def[regno].offset != -1)
110 memcpy((void *)regs + dbg_reg_def[regno].offset, mem,
111 dbg_reg_def[regno].size);
112 return 0;
113}
114
115char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
116{
117 if (regno == GDB_ORIG_AX) {
118 memcpy(mem, ®s->orig_ax, sizeof(regs->orig_ax));
119 return "orig_ax";
120 }
121 if (regno >= DBG_MAX_REG_NUM || regno < 0)
122 return NULL;
123
124 if (dbg_reg_def[regno].offset != -1)
125 memcpy(mem, (void *)regs + dbg_reg_def[regno].offset,
126 dbg_reg_def[regno].size);
127
128#ifdef CONFIG_X86_32
129 switch (regno) {
130 case GDB_SS:
131 if (!user_mode(regs))
132 *(unsigned long *)mem = __KERNEL_DS;
133 break;
134 case GDB_SP:
135 if (!user_mode(regs))
136 *(unsigned long *)mem = kernel_stack_pointer(regs);
137 break;
138 case GDB_GS:
139 case GDB_FS:
140 *(unsigned long *)mem = 0xFFFF;
141 break;
142 }
143#endif
144 return dbg_reg_def[regno].name;
145}
146
147/**
148 * sleeping_thread_to_gdb_regs - Convert ptrace regs to GDB regs
149 * @gdb_regs: A pointer to hold the registers in the order GDB wants.
150 * @p: The &struct task_struct of the desired process.
151 *
152 * Convert the register values of the sleeping process in @p to
153 * the format that GDB expects.
154 * This function is called when kgdb does not have access to the
155 * &struct pt_regs and therefore it should fill the gdb registers
156 * @gdb_regs with what has been saved in &struct thread_struct
157 * thread field during switch_to.
158 */
159void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
160{
161#ifndef CONFIG_X86_32
162 u32 *gdb_regs32 = (u32 *)gdb_regs;
163#endif
164 gdb_regs[GDB_AX] = 0;
165 gdb_regs[GDB_BX] = 0;
166 gdb_regs[GDB_CX] = 0;
167 gdb_regs[GDB_DX] = 0;
168 gdb_regs[GDB_SI] = 0;
169 gdb_regs[GDB_DI] = 0;
170 gdb_regs[GDB_BP] = ((struct inactive_task_frame *)p->thread.sp)->bp;
171#ifdef CONFIG_X86_32
172 gdb_regs[GDB_DS] = __KERNEL_DS;
173 gdb_regs[GDB_ES] = __KERNEL_DS;
174 gdb_regs[GDB_PS] = 0;
175 gdb_regs[GDB_CS] = __KERNEL_CS;
176 gdb_regs[GDB_SS] = __KERNEL_DS;
177 gdb_regs[GDB_FS] = 0xFFFF;
178 gdb_regs[GDB_GS] = 0xFFFF;
179#else
180 gdb_regs32[GDB_PS] = 0;
181 gdb_regs32[GDB_CS] = __KERNEL_CS;
182 gdb_regs32[GDB_SS] = __KERNEL_DS;
183 gdb_regs[GDB_R8] = 0;
184 gdb_regs[GDB_R9] = 0;
185 gdb_regs[GDB_R10] = 0;
186 gdb_regs[GDB_R11] = 0;
187 gdb_regs[GDB_R12] = 0;
188 gdb_regs[GDB_R13] = 0;
189 gdb_regs[GDB_R14] = 0;
190 gdb_regs[GDB_R15] = 0;
191#endif
192 gdb_regs[GDB_PC] = 0;
193 gdb_regs[GDB_SP] = p->thread.sp;
194}
195
196static struct hw_breakpoint {
197 unsigned enabled;
198 unsigned long addr;
199 int len;
200 int type;
201 struct perf_event * __percpu *pev;
202} breakinfo[HBP_NUM];
203
204static unsigned long early_dr7;
205
206static void kgdb_correct_hw_break(void)
207{
208 int breakno;
209
210 for (breakno = 0; breakno < HBP_NUM; breakno++) {
211 struct perf_event *bp;
212 struct arch_hw_breakpoint *info;
213 int val;
214 int cpu = raw_smp_processor_id();
215 if (!breakinfo[breakno].enabled)
216 continue;
217 if (dbg_is_early) {
218 set_debugreg(breakinfo[breakno].addr, breakno);
219 early_dr7 |= encode_dr7(breakno,
220 breakinfo[breakno].len,
221 breakinfo[breakno].type);
222 set_debugreg(early_dr7, 7);
223 continue;
224 }
225 bp = *per_cpu_ptr(breakinfo[breakno].pev, cpu);
226 info = counter_arch_bp(bp);
227 if (bp->attr.disabled != 1)
228 continue;
229 bp->attr.bp_addr = breakinfo[breakno].addr;
230 bp->attr.bp_len = breakinfo[breakno].len;
231 bp->attr.bp_type = breakinfo[breakno].type;
232 info->address = breakinfo[breakno].addr;
233 info->len = breakinfo[breakno].len;
234 info->type = breakinfo[breakno].type;
235 val = arch_install_hw_breakpoint(bp);
236 if (!val)
237 bp->attr.disabled = 0;
238 }
239 if (!dbg_is_early)
240 hw_breakpoint_restore();
241}
242
243static int hw_break_reserve_slot(int breakno)
244{
245 int cpu;
246 int cnt = 0;
247 struct perf_event **pevent;
248
249 if (dbg_is_early)
250 return 0;
251
252 for_each_online_cpu(cpu) {
253 cnt++;
254 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
255 if (dbg_reserve_bp_slot(*pevent))
256 goto fail;
257 }
258
259 return 0;
260
261fail:
262 for_each_online_cpu(cpu) {
263 cnt--;
264 if (!cnt)
265 break;
266 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
267 dbg_release_bp_slot(*pevent);
268 }
269 return -1;
270}
271
272static int hw_break_release_slot(int breakno)
273{
274 struct perf_event **pevent;
275 int cpu;
276
277 if (dbg_is_early)
278 return 0;
279
280 for_each_online_cpu(cpu) {
281 pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
282 if (dbg_release_bp_slot(*pevent))
283 /*
284 * The debugger is responsible for handing the retry on
285 * remove failure.
286 */
287 return -1;
288 }
289 return 0;
290}
291
292static int
293kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
294{
295 int i;
296
297 for (i = 0; i < HBP_NUM; i++)
298 if (breakinfo[i].addr == addr && breakinfo[i].enabled)
299 break;
300 if (i == HBP_NUM)
301 return -1;
302
303 if (hw_break_release_slot(i)) {
304 printk(KERN_ERR "Cannot remove hw breakpoint at %lx\n", addr);
305 return -1;
306 }
307 breakinfo[i].enabled = 0;
308
309 return 0;
310}
311
312static void kgdb_remove_all_hw_break(void)
313{
314 int i;
315 int cpu = raw_smp_processor_id();
316 struct perf_event *bp;
317
318 for (i = 0; i < HBP_NUM; i++) {
319 if (!breakinfo[i].enabled)
320 continue;
321 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
322 if (!bp->attr.disabled) {
323 arch_uninstall_hw_breakpoint(bp);
324 bp->attr.disabled = 1;
325 continue;
326 }
327 if (dbg_is_early)
328 early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
329 breakinfo[i].type);
330 else if (hw_break_release_slot(i))
331 printk(KERN_ERR "KGDB: hw bpt remove failed %lx\n",
332 breakinfo[i].addr);
333 breakinfo[i].enabled = 0;
334 }
335}
336
337static int
338kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
339{
340 int i;
341
342 for (i = 0; i < HBP_NUM; i++)
343 if (!breakinfo[i].enabled)
344 break;
345 if (i == HBP_NUM)
346 return -1;
347
348 switch (bptype) {
349 case BP_HARDWARE_BREAKPOINT:
350 len = 1;
351 breakinfo[i].type = X86_BREAKPOINT_EXECUTE;
352 break;
353 case BP_WRITE_WATCHPOINT:
354 breakinfo[i].type = X86_BREAKPOINT_WRITE;
355 break;
356 case BP_ACCESS_WATCHPOINT:
357 breakinfo[i].type = X86_BREAKPOINT_RW;
358 break;
359 default:
360 return -1;
361 }
362 switch (len) {
363 case 1:
364 breakinfo[i].len = X86_BREAKPOINT_LEN_1;
365 break;
366 case 2:
367 breakinfo[i].len = X86_BREAKPOINT_LEN_2;
368 break;
369 case 4:
370 breakinfo[i].len = X86_BREAKPOINT_LEN_4;
371 break;
372#ifdef CONFIG_X86_64
373 case 8:
374 breakinfo[i].len = X86_BREAKPOINT_LEN_8;
375 break;
376#endif
377 default:
378 return -1;
379 }
380 breakinfo[i].addr = addr;
381 if (hw_break_reserve_slot(i)) {
382 breakinfo[i].addr = 0;
383 return -1;
384 }
385 breakinfo[i].enabled = 1;
386
387 return 0;
388}
389
390/**
391 * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
392 * @regs: Current &struct pt_regs.
393 *
394 * This function will be called if the particular architecture must
395 * disable hardware debugging while it is processing gdb packets or
396 * handling exception.
397 */
398static void kgdb_disable_hw_debug(struct pt_regs *regs)
399{
400 int i;
401 int cpu = raw_smp_processor_id();
402 struct perf_event *bp;
403
404 /* Disable hardware debugging while we are in kgdb: */
405 set_debugreg(0UL, 7);
406 for (i = 0; i < HBP_NUM; i++) {
407 if (!breakinfo[i].enabled)
408 continue;
409 if (dbg_is_early) {
410 early_dr7 &= ~encode_dr7(i, breakinfo[i].len,
411 breakinfo[i].type);
412 continue;
413 }
414 bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
415 if (bp->attr.disabled == 1)
416 continue;
417 arch_uninstall_hw_breakpoint(bp);
418 bp->attr.disabled = 1;
419 }
420}
421
422#ifdef CONFIG_SMP
423/**
424 * kgdb_roundup_cpus - Get other CPUs into a holding pattern
425 * @flags: Current IRQ state
426 *
427 * On SMP systems, we need to get the attention of the other CPUs
428 * and get them be in a known state. This should do what is needed
429 * to get the other CPUs to call kgdb_wait(). Note that on some arches,
430 * the NMI approach is not used for rounding up all the CPUs. For example,
431 * in case of MIPS, smp_call_function() is used to roundup CPUs. In
432 * this case, we have to make sure that interrupts are enabled before
433 * calling smp_call_function(). The argument to this function is
434 * the flags that will be used when restoring the interrupts. There is
435 * local_irq_save() call before kgdb_roundup_cpus().
436 *
437 * On non-SMP systems, this is not called.
438 */
439void kgdb_roundup_cpus(unsigned long flags)
440{
441 apic->send_IPI_allbutself(APIC_DM_NMI);
442}
443#endif
444
445/**
446 * kgdb_arch_handle_exception - Handle architecture specific GDB packets.
447 * @e_vector: The error vector of the exception that happened.
448 * @signo: The signal number of the exception that happened.
449 * @err_code: The error code of the exception that happened.
450 * @remcomInBuffer: The buffer of the packet we have read.
451 * @remcomOutBuffer: The buffer of %BUFMAX bytes to write a packet into.
452 * @linux_regs: The &struct pt_regs of the current process.
453 *
454 * This function MUST handle the 'c' and 's' command packets,
455 * as well packets to set / remove a hardware breakpoint, if used.
456 * If there are additional packets which the hardware needs to handle,
457 * they are handled here. The code should return -1 if it wants to
458 * process more packets, and a %0 or %1 if it wants to exit from the
459 * kgdb callback.
460 */
461int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
462 char *remcomInBuffer, char *remcomOutBuffer,
463 struct pt_regs *linux_regs)
464{
465 unsigned long addr;
466 char *ptr;
467
468 switch (remcomInBuffer[0]) {
469 case 'c':
470 case 's':
471 /* try to read optional parameter, pc unchanged if no parm */
472 ptr = &remcomInBuffer[1];
473 if (kgdb_hex2long(&ptr, &addr))
474 linux_regs->ip = addr;
475 case 'D':
476 case 'k':
477 /* clear the trace bit */
478 linux_regs->flags &= ~X86_EFLAGS_TF;
479 atomic_set(&kgdb_cpu_doing_single_step, -1);
480
481 /* set the trace bit if we're stepping */
482 if (remcomInBuffer[0] == 's') {
483 linux_regs->flags |= X86_EFLAGS_TF;
484 atomic_set(&kgdb_cpu_doing_single_step,
485 raw_smp_processor_id());
486 }
487
488 return 0;
489 }
490
491 /* this means that we do not want to exit from the handler: */
492 return -1;
493}
494
495static inline int
496single_step_cont(struct pt_regs *regs, struct die_args *args)
497{
498 /*
499 * Single step exception from kernel space to user space so
500 * eat the exception and continue the process:
501 */
502 printk(KERN_ERR "KGDB: trap/step from kernel to user space, "
503 "resuming...\n");
504 kgdb_arch_handle_exception(args->trapnr, args->signr,
505 args->err, "c", "", regs);
506 /*
507 * Reset the BS bit in dr6 (pointed by args->err) to
508 * denote completion of processing
509 */
510 (*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
511
512 return NOTIFY_STOP;
513}
514
515static DECLARE_BITMAP(was_in_debug_nmi, NR_CPUS);
516
517static int kgdb_nmi_handler(unsigned int cmd, struct pt_regs *regs)
518{
519 int cpu;
520
521 switch (cmd) {
522 case NMI_LOCAL:
523 if (atomic_read(&kgdb_active) != -1) {
524 /* KGDB CPU roundup */
525 cpu = raw_smp_processor_id();
526 kgdb_nmicallback(cpu, regs);
527 set_bit(cpu, was_in_debug_nmi);
528 touch_nmi_watchdog();
529
530 return NMI_HANDLED;
531 }
532 break;
533
534 case NMI_UNKNOWN:
535 cpu = raw_smp_processor_id();
536
537 if (__test_and_clear_bit(cpu, was_in_debug_nmi))
538 return NMI_HANDLED;
539
540 break;
541 default:
542 /* do nothing */
543 break;
544 }
545 return NMI_DONE;
546}
547
548static int __kgdb_notify(struct die_args *args, unsigned long cmd)
549{
550 struct pt_regs *regs = args->regs;
551
552 switch (cmd) {
553 case DIE_DEBUG:
554 if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
555 if (user_mode(regs))
556 return single_step_cont(regs, args);
557 break;
558 } else if (test_thread_flag(TIF_SINGLESTEP))
559 /* This means a user thread is single stepping
560 * a system call which should be ignored
561 */
562 return NOTIFY_DONE;
563 /* fall through */
564 default:
565 if (user_mode(regs))
566 return NOTIFY_DONE;
567 }
568
569 if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
570 return NOTIFY_DONE;
571
572 /* Must touch watchdog before return to normal operation */
573 touch_nmi_watchdog();
574 return NOTIFY_STOP;
575}
576
577int kgdb_ll_trap(int cmd, const char *str,
578 struct pt_regs *regs, long err, int trap, int sig)
579{
580 struct die_args args = {
581 .regs = regs,
582 .str = str,
583 .err = err,
584 .trapnr = trap,
585 .signr = sig,
586
587 };
588
589 if (!kgdb_io_module_registered)
590 return NOTIFY_DONE;
591
592 return __kgdb_notify(&args, cmd);
593}
594
595static int
596kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
597{
598 unsigned long flags;
599 int ret;
600
601 local_irq_save(flags);
602 ret = __kgdb_notify(ptr, cmd);
603 local_irq_restore(flags);
604
605 return ret;
606}
607
608static struct notifier_block kgdb_notifier = {
609 .notifier_call = kgdb_notify,
610};
611
612/**
613 * kgdb_arch_init - Perform any architecture specific initialization.
614 *
615 * This function will handle the initialization of any architecture
616 * specific callbacks.
617 */
618int kgdb_arch_init(void)
619{
620 int retval;
621
622 retval = register_die_notifier(&kgdb_notifier);
623 if (retval)
624 goto out;
625
626 retval = register_nmi_handler(NMI_LOCAL, kgdb_nmi_handler,
627 0, "kgdb");
628 if (retval)
629 goto out1;
630
631 retval = register_nmi_handler(NMI_UNKNOWN, kgdb_nmi_handler,
632 0, "kgdb");
633
634 if (retval)
635 goto out2;
636
637 return retval;
638
639out2:
640 unregister_nmi_handler(NMI_LOCAL, "kgdb");
641out1:
642 unregister_die_notifier(&kgdb_notifier);
643out:
644 return retval;
645}
646
647static void kgdb_hw_overflow_handler(struct perf_event *event,
648 struct perf_sample_data *data, struct pt_regs *regs)
649{
650 struct task_struct *tsk = current;
651 int i;
652
653 for (i = 0; i < 4; i++)
654 if (breakinfo[i].enabled)
655 tsk->thread.debugreg6 |= (DR_TRAP0 << i);
656}
657
658void kgdb_arch_late(void)
659{
660 int i, cpu;
661 struct perf_event_attr attr;
662 struct perf_event **pevent;
663
664 /*
665 * Pre-allocate the hw breakpoint structions in the non-atomic
666 * portion of kgdb because this operation requires mutexs to
667 * complete.
668 */
669 hw_breakpoint_init(&attr);
670 attr.bp_addr = (unsigned long)kgdb_arch_init;
671 attr.bp_len = HW_BREAKPOINT_LEN_1;
672 attr.bp_type = HW_BREAKPOINT_W;
673 attr.disabled = 1;
674 for (i = 0; i < HBP_NUM; i++) {
675 if (breakinfo[i].pev)
676 continue;
677 breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
678 if (IS_ERR((void * __force)breakinfo[i].pev)) {
679 printk(KERN_ERR "kgdb: Could not allocate hw"
680 "breakpoints\nDisabling the kernel debugger\n");
681 breakinfo[i].pev = NULL;
682 kgdb_arch_exit();
683 return;
684 }
685 for_each_online_cpu(cpu) {
686 pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
687 pevent[0]->hw.sample_period = 1;
688 pevent[0]->overflow_handler = kgdb_hw_overflow_handler;
689 if (pevent[0]->destroy != NULL) {
690 pevent[0]->destroy = NULL;
691 release_bp_slot(*pevent);
692 }
693 }
694 }
695}
696
697/**
698 * kgdb_arch_exit - Perform any architecture specific uninitalization.
699 *
700 * This function will handle the uninitalization of any architecture
701 * specific callbacks, for dynamic registration and unregistration.
702 */
703void kgdb_arch_exit(void)
704{
705 int i;
706 for (i = 0; i < 4; i++) {
707 if (breakinfo[i].pev) {
708 unregister_wide_hw_breakpoint(breakinfo[i].pev);
709 breakinfo[i].pev = NULL;
710 }
711 }
712 unregister_nmi_handler(NMI_UNKNOWN, "kgdb");
713 unregister_nmi_handler(NMI_LOCAL, "kgdb");
714 unregister_die_notifier(&kgdb_notifier);
715}
716
717/**
718 *
719 * kgdb_skipexception - Bail out of KGDB when we've been triggered.
720 * @exception: Exception vector number
721 * @regs: Current &struct pt_regs.
722 *
723 * On some architectures we need to skip a breakpoint exception when
724 * it occurs after a breakpoint has been removed.
725 *
726 * Skip an int3 exception when it occurs after a breakpoint has been
727 * removed. Backtrack eip by 1 since the int3 would have caused it to
728 * increment by 1.
729 */
730int kgdb_skipexception(int exception, struct pt_regs *regs)
731{
732 if (exception == 3 && kgdb_isremovedbreak(regs->ip - 1)) {
733 regs->ip -= 1;
734 return 1;
735 }
736 return 0;
737}
738
739unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs)
740{
741 if (exception == 3)
742 return instruction_pointer(regs) - 1;
743 return instruction_pointer(regs);
744}
745
746void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip)
747{
748 regs->ip = ip;
749}
750
751int kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
752{
753 int err;
754 char opc[BREAK_INSTR_SIZE];
755
756 bpt->type = BP_BREAKPOINT;
757 err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
758 BREAK_INSTR_SIZE);
759 if (err)
760 return err;
761 err = probe_kernel_write((char *)bpt->bpt_addr,
762 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
763 if (!err)
764 return err;
765 /*
766 * It is safe to call text_poke() because normal kernel execution
767 * is stopped on all cores, so long as the text_mutex is not locked.
768 */
769 if (mutex_is_locked(&text_mutex))
770 return -EBUSY;
771 text_poke((void *)bpt->bpt_addr, arch_kgdb_ops.gdb_bpt_instr,
772 BREAK_INSTR_SIZE);
773 err = probe_kernel_read(opc, (char *)bpt->bpt_addr, BREAK_INSTR_SIZE);
774 if (err)
775 return err;
776 if (memcmp(opc, arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE))
777 return -EINVAL;
778 bpt->type = BP_POKE_BREAKPOINT;
779
780 return err;
781}
782
783int kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
784{
785 int err;
786 char opc[BREAK_INSTR_SIZE];
787
788 if (bpt->type != BP_POKE_BREAKPOINT)
789 goto knl_write;
790 /*
791 * It is safe to call text_poke() because normal kernel execution
792 * is stopped on all cores, so long as the text_mutex is not locked.
793 */
794 if (mutex_is_locked(&text_mutex))
795 goto knl_write;
796 text_poke((void *)bpt->bpt_addr, bpt->saved_instr, BREAK_INSTR_SIZE);
797 err = probe_kernel_read(opc, (char *)bpt->bpt_addr, BREAK_INSTR_SIZE);
798 if (err || memcmp(opc, bpt->saved_instr, BREAK_INSTR_SIZE))
799 goto knl_write;
800 return err;
801
802knl_write:
803 return probe_kernel_write((char *)bpt->bpt_addr,
804 (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
805}
806
807struct kgdb_arch arch_kgdb_ops = {
808 /* Breakpoint instruction: */
809 .gdb_bpt_instr = { 0xcc },
810 .flags = KGDB_HW_BREAKPOINT,
811 .set_hw_breakpoint = kgdb_set_hw_break,
812 .remove_hw_breakpoint = kgdb_remove_hw_break,
813 .disable_hw_break = kgdb_disable_hw_debug,
814 .remove_all_hw_break = kgdb_remove_all_hw_break,
815 .correct_hw_break = kgdb_correct_hw_break,
816};