Loading...
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 *
14 * From i386 code copyright (C) 1995 Linus Torvalds
15 */
16
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/errno.h>
21#include <linux/string.h>
22#include <linux/types.h>
23#include <linux/ptrace.h>
24#include <linux/mman.h>
25#include <linux/mm.h>
26#include <linux/smp.h>
27#include <linux/interrupt.h>
28#include <linux/init.h>
29#include <linux/tty.h>
30#include <linux/vt_kern.h> /* For unblank_screen() */
31#include <linux/highmem.h>
32#include <linux/module.h>
33#include <linux/kprobes.h>
34#include <linux/hugetlb.h>
35#include <linux/syscalls.h>
36#include <linux/uaccess.h>
37
38#include <asm/system.h>
39#include <asm/pgalloc.h>
40#include <asm/sections.h>
41#include <asm/traps.h>
42#include <asm/syscalls.h>
43
44#include <arch/interrupts.h>
45
46static noinline void force_sig_info_fault(const char *type, int si_signo,
47 int si_code, unsigned long address,
48 int fault_num,
49 struct task_struct *tsk,
50 struct pt_regs *regs)
51{
52 siginfo_t info;
53
54 if (unlikely(tsk->pid < 2)) {
55 panic("Signal %d (code %d) at %#lx sent to %s!",
56 si_signo, si_code & 0xffff, address,
57 tsk->pid ? "init" : "the idle task");
58 }
59
60 info.si_signo = si_signo;
61 info.si_errno = 0;
62 info.si_code = si_code;
63 info.si_addr = (void __user *)address;
64 info.si_trapno = fault_num;
65 trace_unhandled_signal(type, regs, address, si_signo);
66 force_sig_info(si_signo, &info, tsk);
67}
68
69#ifndef __tilegx__
70/*
71 * Synthesize the fault a PL0 process would get by doing a word-load of
72 * an unaligned address or a high kernel address.
73 */
74SYSCALL_DEFINE2(cmpxchg_badaddr, unsigned long, address,
75 struct pt_regs *, regs)
76{
77 if (address >= PAGE_OFFSET)
78 force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR,
79 address, INT_DTLB_MISS, current, regs);
80 else
81 force_sig_info_fault("atomic alignment fault", SIGBUS,
82 BUS_ADRALN, address,
83 INT_UNALIGN_DATA, current, regs);
84
85 /*
86 * Adjust pc to point at the actual instruction, which is unusual
87 * for syscalls normally, but is appropriate when we are claiming
88 * that a syscall swint1 caused a page fault or bus error.
89 */
90 regs->pc -= 8;
91
92 /*
93 * Mark this as a caller-save interrupt, like a normal page fault,
94 * so that when we go through the signal handler path we will
95 * properly restore r0, r1, and r2 for the signal handler arguments.
96 */
97 regs->flags |= PT_FLAGS_CALLER_SAVES;
98
99 return 0;
100}
101#endif
102
103static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
104{
105 unsigned index = pgd_index(address);
106 pgd_t *pgd_k;
107 pud_t *pud, *pud_k;
108 pmd_t *pmd, *pmd_k;
109
110 pgd += index;
111 pgd_k = init_mm.pgd + index;
112
113 if (!pgd_present(*pgd_k))
114 return NULL;
115
116 pud = pud_offset(pgd, address);
117 pud_k = pud_offset(pgd_k, address);
118 if (!pud_present(*pud_k))
119 return NULL;
120
121 pmd = pmd_offset(pud, address);
122 pmd_k = pmd_offset(pud_k, address);
123 if (!pmd_present(*pmd_k))
124 return NULL;
125 if (!pmd_present(*pmd)) {
126 set_pmd(pmd, *pmd_k);
127 arch_flush_lazy_mmu_mode();
128 } else
129 BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
130 return pmd_k;
131}
132
133/*
134 * Handle a fault on the vmalloc or module mapping area
135 */
136static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
137{
138 pmd_t *pmd_k;
139 pte_t *pte_k;
140
141 /* Make sure we are in vmalloc area */
142 if (!(address >= VMALLOC_START && address < VMALLOC_END))
143 return -1;
144
145 /*
146 * Synchronize this task's top level page-table
147 * with the 'reference' page table.
148 */
149 pmd_k = vmalloc_sync_one(pgd, address);
150 if (!pmd_k)
151 return -1;
152 if (pmd_huge(*pmd_k))
153 return 0; /* support TILE huge_vmap() API */
154 pte_k = pte_offset_kernel(pmd_k, address);
155 if (!pte_present(*pte_k))
156 return -1;
157 return 0;
158}
159
160/* Wait until this PTE has completed migration. */
161static void wait_for_migration(pte_t *pte)
162{
163 if (pte_migrating(*pte)) {
164 /*
165 * Wait until the migrater fixes up this pte.
166 * We scale the loop count by the clock rate so we'll wait for
167 * a few seconds here.
168 */
169 int retries = 0;
170 int bound = get_clock_rate();
171 while (pte_migrating(*pte)) {
172 barrier();
173 if (++retries > bound)
174 panic("Hit migrating PTE (%#llx) and"
175 " page PFN %#lx still migrating",
176 pte->val, pte_pfn(*pte));
177 }
178 }
179}
180
181/*
182 * It's not generally safe to use "current" to get the page table pointer,
183 * since we might be running an oprofile interrupt in the middle of a
184 * task switch.
185 */
186static pgd_t *get_current_pgd(void)
187{
188 HV_Context ctx = hv_inquire_context();
189 unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
190 struct page *pgd_page = pfn_to_page(pgd_pfn);
191 BUG_ON(PageHighMem(pgd_page)); /* oops, HIGHPTE? */
192 return (pgd_t *) __va(ctx.page_table);
193}
194
195/*
196 * We can receive a page fault from a migrating PTE at any time.
197 * Handle it by just waiting until the fault resolves.
198 *
199 * It's also possible to get a migrating kernel PTE that resolves
200 * itself during the downcall from hypervisor to Linux. We just check
201 * here to see if the PTE seems valid, and if so we retry it.
202 *
203 * NOTE! We MUST NOT take any locks for this case. We may be in an
204 * interrupt or a critical region, and must do as little as possible.
205 * Similarly, we can't use atomic ops here, since we may be handling a
206 * fault caused by an atomic op access.
207 */
208static int handle_migrating_pte(pgd_t *pgd, int fault_num,
209 unsigned long address,
210 int is_kernel_mode, int write)
211{
212 pud_t *pud;
213 pmd_t *pmd;
214 pte_t *pte;
215 pte_t pteval;
216
217 if (pgd_addr_invalid(address))
218 return 0;
219
220 pgd += pgd_index(address);
221 pud = pud_offset(pgd, address);
222 if (!pud || !pud_present(*pud))
223 return 0;
224 pmd = pmd_offset(pud, address);
225 if (!pmd || !pmd_present(*pmd))
226 return 0;
227 pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
228 pte_offset_kernel(pmd, address);
229 pteval = *pte;
230 if (pte_migrating(pteval)) {
231 wait_for_migration(pte);
232 return 1;
233 }
234
235 if (!is_kernel_mode || !pte_present(pteval))
236 return 0;
237 if (fault_num == INT_ITLB_MISS) {
238 if (pte_exec(pteval))
239 return 1;
240 } else if (write) {
241 if (pte_write(pteval))
242 return 1;
243 } else {
244 if (pte_read(pteval))
245 return 1;
246 }
247
248 return 0;
249}
250
251/*
252 * This routine is responsible for faulting in user pages.
253 * It passes the work off to one of the appropriate routines.
254 * It returns true if the fault was successfully handled.
255 */
256static int handle_page_fault(struct pt_regs *regs,
257 int fault_num,
258 int is_page_fault,
259 unsigned long address,
260 int write)
261{
262 struct task_struct *tsk;
263 struct mm_struct *mm;
264 struct vm_area_struct *vma;
265 unsigned long stack_offset;
266 int fault;
267 int si_code;
268 int is_kernel_mode;
269 pgd_t *pgd;
270
271 /* on TILE, protection faults are always writes */
272 if (!is_page_fault)
273 write = 1;
274
275 is_kernel_mode = (EX1_PL(regs->ex1) != USER_PL);
276
277 tsk = validate_current();
278
279 /*
280 * Check to see if we might be overwriting the stack, and bail
281 * out if so. The page fault code is a relatively likely
282 * place to get trapped in an infinite regress, and once we
283 * overwrite the whole stack, it becomes very hard to recover.
284 */
285 stack_offset = stack_pointer & (THREAD_SIZE-1);
286 if (stack_offset < THREAD_SIZE / 8) {
287 pr_alert("Potential stack overrun: sp %#lx\n",
288 stack_pointer);
289 show_regs(regs);
290 pr_alert("Killing current process %d/%s\n",
291 tsk->pid, tsk->comm);
292 do_group_exit(SIGKILL);
293 }
294
295 /*
296 * Early on, we need to check for migrating PTE entries;
297 * see homecache.c. If we find a migrating PTE, we wait until
298 * the backing page claims to be done migrating, then we proceed.
299 * For kernel PTEs, we rewrite the PTE and return and retry.
300 * Otherwise, we treat the fault like a normal "no PTE" fault,
301 * rather than trying to patch up the existing PTE.
302 */
303 pgd = get_current_pgd();
304 if (handle_migrating_pte(pgd, fault_num, address,
305 is_kernel_mode, write))
306 return 1;
307
308 si_code = SEGV_MAPERR;
309
310 /*
311 * We fault-in kernel-space virtual memory on-demand. The
312 * 'reference' page table is init_mm.pgd.
313 *
314 * NOTE! We MUST NOT take any locks for this case. We may
315 * be in an interrupt or a critical region, and should
316 * only copy the information from the master page table,
317 * nothing more.
318 *
319 * This verifies that the fault happens in kernel space
320 * and that the fault was not a protection fault.
321 */
322 if (unlikely(address >= TASK_SIZE &&
323 !is_arch_mappable_range(address, 0))) {
324 if (is_kernel_mode && is_page_fault &&
325 vmalloc_fault(pgd, address) >= 0)
326 return 1;
327 /*
328 * Don't take the mm semaphore here. If we fixup a prefetch
329 * fault we could otherwise deadlock.
330 */
331 mm = NULL; /* happy compiler */
332 vma = NULL;
333 goto bad_area_nosemaphore;
334 }
335
336 /*
337 * If we're trying to touch user-space addresses, we must
338 * be either at PL0, or else with interrupts enabled in the
339 * kernel, so either way we can re-enable interrupts here.
340 */
341 local_irq_enable();
342
343 mm = tsk->mm;
344
345 /*
346 * If we're in an interrupt, have no user context or are running in an
347 * atomic region then we must not take the fault.
348 */
349 if (in_atomic() || !mm) {
350 vma = NULL; /* happy compiler */
351 goto bad_area_nosemaphore;
352 }
353
354 /*
355 * When running in the kernel we expect faults to occur only to
356 * addresses in user space. All other faults represent errors in the
357 * kernel and should generate an OOPS. Unfortunately, in the case of an
358 * erroneous fault occurring in a code path which already holds mmap_sem
359 * we will deadlock attempting to validate the fault against the
360 * address space. Luckily the kernel only validly references user
361 * space from well defined areas of code, which are listed in the
362 * exceptions table.
363 *
364 * As the vast majority of faults will be valid we will only perform
365 * the source reference check when there is a possibility of a deadlock.
366 * Attempt to lock the address space, if we cannot we then validate the
367 * source. If this is invalid we can skip the address space check,
368 * thus avoiding the deadlock.
369 */
370 if (!down_read_trylock(&mm->mmap_sem)) {
371 if (is_kernel_mode &&
372 !search_exception_tables(regs->pc)) {
373 vma = NULL; /* happy compiler */
374 goto bad_area_nosemaphore;
375 }
376 down_read(&mm->mmap_sem);
377 }
378
379 vma = find_vma(mm, address);
380 if (!vma)
381 goto bad_area;
382 if (vma->vm_start <= address)
383 goto good_area;
384 if (!(vma->vm_flags & VM_GROWSDOWN))
385 goto bad_area;
386 if (regs->sp < PAGE_OFFSET) {
387 /*
388 * accessing the stack below sp is always a bug.
389 */
390 if (address < regs->sp)
391 goto bad_area;
392 }
393 if (expand_stack(vma, address))
394 goto bad_area;
395
396/*
397 * Ok, we have a good vm_area for this memory access, so
398 * we can handle it..
399 */
400good_area:
401 si_code = SEGV_ACCERR;
402 if (fault_num == INT_ITLB_MISS) {
403 if (!(vma->vm_flags & VM_EXEC))
404 goto bad_area;
405 } else if (write) {
406#ifdef TEST_VERIFY_AREA
407 if (!is_page_fault && regs->cs == KERNEL_CS)
408 pr_err("WP fault at "REGFMT"\n", regs->eip);
409#endif
410 if (!(vma->vm_flags & VM_WRITE))
411 goto bad_area;
412 } else {
413 if (!is_page_fault || !(vma->vm_flags & VM_READ))
414 goto bad_area;
415 }
416
417 survive:
418 /*
419 * If for any reason at all we couldn't handle the fault,
420 * make sure we exit gracefully rather than endlessly redo
421 * the fault.
422 */
423 fault = handle_mm_fault(mm, vma, address, write);
424 if (unlikely(fault & VM_FAULT_ERROR)) {
425 if (fault & VM_FAULT_OOM)
426 goto out_of_memory;
427 else if (fault & VM_FAULT_SIGBUS)
428 goto do_sigbus;
429 BUG();
430 }
431 if (fault & VM_FAULT_MAJOR)
432 tsk->maj_flt++;
433 else
434 tsk->min_flt++;
435
436#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
437 /*
438 * If this was an asynchronous fault,
439 * restart the appropriate engine.
440 */
441 switch (fault_num) {
442#if CHIP_HAS_TILE_DMA()
443 case INT_DMATLB_MISS:
444 case INT_DMATLB_MISS_DWNCL:
445 case INT_DMATLB_ACCESS:
446 case INT_DMATLB_ACCESS_DWNCL:
447 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
448 break;
449#endif
450#if CHIP_HAS_SN_PROC()
451 case INT_SNITLB_MISS:
452 case INT_SNITLB_MISS_DWNCL:
453 __insn_mtspr(SPR_SNCTL,
454 __insn_mfspr(SPR_SNCTL) &
455 ~SPR_SNCTL__FRZPROC_MASK);
456 break;
457#endif
458 }
459#endif
460
461 up_read(&mm->mmap_sem);
462 return 1;
463
464/*
465 * Something tried to access memory that isn't in our memory map..
466 * Fix it, but check if it's kernel or user first..
467 */
468bad_area:
469 up_read(&mm->mmap_sem);
470
471bad_area_nosemaphore:
472 /* User mode accesses just cause a SIGSEGV */
473 if (!is_kernel_mode) {
474 /*
475 * It's possible to have interrupts off here.
476 */
477 local_irq_enable();
478
479 force_sig_info_fault("segfault", SIGSEGV, si_code, address,
480 fault_num, tsk, regs);
481 return 0;
482 }
483
484no_context:
485 /* Are we prepared to handle this kernel fault? */
486 if (fixup_exception(regs))
487 return 0;
488
489/*
490 * Oops. The kernel tried to access some bad page. We'll have to
491 * terminate things with extreme prejudice.
492 */
493
494 bust_spinlocks(1);
495
496 /* FIXME: no lookup_address() yet */
497#ifdef SUPPORT_LOOKUP_ADDRESS
498 if (fault_num == INT_ITLB_MISS) {
499 pte_t *pte = lookup_address(address);
500
501 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
502 pr_crit("kernel tried to execute"
503 " non-executable page - exploit attempt?"
504 " (uid: %d)\n", current->uid);
505 }
506#endif
507 if (address < PAGE_SIZE)
508 pr_alert("Unable to handle kernel NULL pointer dereference\n");
509 else
510 pr_alert("Unable to handle kernel paging request\n");
511 pr_alert(" at virtual address "REGFMT", pc "REGFMT"\n",
512 address, regs->pc);
513
514 show_regs(regs);
515
516 if (unlikely(tsk->pid < 2)) {
517 panic("Kernel page fault running %s!",
518 tsk->pid ? "init" : "the idle task");
519 }
520
521 /*
522 * More FIXME: we should probably copy the i386 here and
523 * implement a generic die() routine. Not today.
524 */
525#ifdef SUPPORT_DIE
526 die("Oops", regs);
527#endif
528 bust_spinlocks(1);
529
530 do_group_exit(SIGKILL);
531
532/*
533 * We ran out of memory, or some other thing happened to us that made
534 * us unable to handle the page fault gracefully.
535 */
536out_of_memory:
537 up_read(&mm->mmap_sem);
538 if (is_global_init(tsk)) {
539 yield();
540 down_read(&mm->mmap_sem);
541 goto survive;
542 }
543 pr_alert("VM: killing process %s\n", tsk->comm);
544 if (!is_kernel_mode)
545 do_group_exit(SIGKILL);
546 goto no_context;
547
548do_sigbus:
549 up_read(&mm->mmap_sem);
550
551 /* Kernel mode? Handle exceptions or die */
552 if (is_kernel_mode)
553 goto no_context;
554
555 force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address,
556 fault_num, tsk, regs);
557 return 0;
558}
559
560#ifndef __tilegx__
561
562/* We must release ICS before panicking or we won't get anywhere. */
563#define ics_panic(fmt, ...) do { \
564 __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
565 panic(fmt, __VA_ARGS__); \
566} while (0)
567
568/*
569 * When we take an ITLB or DTLB fault or access violation in the
570 * supervisor while the critical section bit is set, the hypervisor is
571 * reluctant to write new values into the EX_CONTEXT_K_x registers,
572 * since that might indicate we have not yet squirreled the SPR
573 * contents away and can thus safely take a recursive interrupt.
574 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
575 *
576 * Note that this routine is called before homecache_tlb_defer_enter(),
577 * which means that we can properly unlock any atomics that might
578 * be used there (good), but also means we must be very sensitive
579 * to not touch any data structures that might be located in memory
580 * that could migrate, as we could be entering the kernel on a dataplane
581 * cpu that has been deferring kernel TLB updates. This means, for
582 * example, that we can't migrate init_mm or its pgd.
583 */
584struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
585 unsigned long address,
586 unsigned long info)
587{
588 unsigned long pc = info & ~1;
589 int write = info & 1;
590 pgd_t *pgd = get_current_pgd();
591
592 /* Retval is 1 at first since we will handle the fault fully. */
593 struct intvec_state state = {
594 do_page_fault, fault_num, address, write, 1
595 };
596
597 /* Validate that we are plausibly in the right routine. */
598 if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
599 (fault_num != INT_DTLB_MISS &&
600 fault_num != INT_DTLB_ACCESS)) {
601 unsigned long old_pc = regs->pc;
602 regs->pc = pc;
603 ics_panic("Bad ICS page fault args:"
604 " old PC %#lx, fault %d/%d at %#lx\n",
605 old_pc, fault_num, write, address);
606 }
607
608 /* We might be faulting on a vmalloc page, so check that first. */
609 if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
610 return state;
611
612 /*
613 * If we faulted with ICS set in sys_cmpxchg, we are providing
614 * a user syscall service that should generate a signal on
615 * fault. We didn't set up a kernel stack on initial entry to
616 * sys_cmpxchg, but instead had one set up by the fault, which
617 * (because sys_cmpxchg never releases ICS) came to us via the
618 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
619 * still referencing the original user code. We release the
620 * atomic lock and rewrite pt_regs so that it appears that we
621 * came from user-space directly, and after we finish the
622 * fault we'll go back to user space and re-issue the swint.
623 * This way the backtrace information is correct if we need to
624 * emit a stack dump at any point while handling this.
625 *
626 * Must match register use in sys_cmpxchg().
627 */
628 if (pc >= (unsigned long) sys_cmpxchg &&
629 pc < (unsigned long) __sys_cmpxchg_end) {
630#ifdef CONFIG_SMP
631 /* Don't unlock before we could have locked. */
632 if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
633 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
634 __atomic_fault_unlock(lock_ptr);
635 }
636#endif
637 regs->sp = regs->regs[27];
638 }
639
640 /*
641 * We can also fault in the atomic assembly, in which
642 * case we use the exception table to do the first-level fixup.
643 * We may re-fixup again in the real fault handler if it
644 * turns out the faulting address is just bad, and not,
645 * for example, migrating.
646 */
647 else if (pc >= (unsigned long) __start_atomic_asm_code &&
648 pc < (unsigned long) __end_atomic_asm_code) {
649 const struct exception_table_entry *fixup;
650#ifdef CONFIG_SMP
651 /* Unlock the atomic lock. */
652 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
653 __atomic_fault_unlock(lock_ptr);
654#endif
655 fixup = search_exception_tables(pc);
656 if (!fixup)
657 ics_panic("ICS atomic fault not in table:"
658 " PC %#lx, fault %d", pc, fault_num);
659 regs->pc = fixup->fixup;
660 regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
661 }
662
663 /*
664 * Now that we have released the atomic lock (if necessary),
665 * it's safe to spin if the PTE that caused the fault was migrating.
666 */
667 if (fault_num == INT_DTLB_ACCESS)
668 write = 1;
669 if (handle_migrating_pte(pgd, fault_num, address, 1, write))
670 return state;
671
672 /* Return zero so that we continue on with normal fault handling. */
673 state.retval = 0;
674 return state;
675}
676
677#endif /* !__tilegx__ */
678
679/*
680 * This routine handles page faults. It determines the address, and the
681 * problem, and then passes it handle_page_fault() for normal DTLB and
682 * ITLB issues, and for DMA or SN processor faults when we are in user
683 * space. For the latter, if we're in kernel mode, we just save the
684 * interrupt away appropriately and return immediately. We can't do
685 * page faults for user code while in kernel mode.
686 */
687void do_page_fault(struct pt_regs *regs, int fault_num,
688 unsigned long address, unsigned long write)
689{
690 int is_page_fault;
691
692 /* This case should have been handled by do_page_fault_ics(). */
693 BUG_ON(write & ~1);
694
695#if CHIP_HAS_TILE_DMA()
696 /*
697 * If it's a DMA fault, suspend the transfer while we're
698 * handling the miss; we'll restart after it's handled. If we
699 * don't suspend, it's possible that this process could swap
700 * out and back in, and restart the engine since the DMA is
701 * still 'running'.
702 */
703 if (fault_num == INT_DMATLB_MISS ||
704 fault_num == INT_DMATLB_ACCESS ||
705 fault_num == INT_DMATLB_MISS_DWNCL ||
706 fault_num == INT_DMATLB_ACCESS_DWNCL) {
707 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
708 while (__insn_mfspr(SPR_DMA_USER_STATUS) &
709 SPR_DMA_STATUS__BUSY_MASK)
710 ;
711 }
712#endif
713
714 /* Validate fault num and decide if this is a first-time page fault. */
715 switch (fault_num) {
716 case INT_ITLB_MISS:
717 case INT_DTLB_MISS:
718#if CHIP_HAS_TILE_DMA()
719 case INT_DMATLB_MISS:
720 case INT_DMATLB_MISS_DWNCL:
721#endif
722#if CHIP_HAS_SN_PROC()
723 case INT_SNITLB_MISS:
724 case INT_SNITLB_MISS_DWNCL:
725#endif
726 is_page_fault = 1;
727 break;
728
729 case INT_DTLB_ACCESS:
730#if CHIP_HAS_TILE_DMA()
731 case INT_DMATLB_ACCESS:
732 case INT_DMATLB_ACCESS_DWNCL:
733#endif
734 is_page_fault = 0;
735 break;
736
737 default:
738 panic("Bad fault number %d in do_page_fault", fault_num);
739 }
740
741#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
742 if (EX1_PL(regs->ex1) != USER_PL) {
743 struct async_tlb *async;
744 switch (fault_num) {
745#if CHIP_HAS_TILE_DMA()
746 case INT_DMATLB_MISS:
747 case INT_DMATLB_ACCESS:
748 case INT_DMATLB_MISS_DWNCL:
749 case INT_DMATLB_ACCESS_DWNCL:
750 async = ¤t->thread.dma_async_tlb;
751 break;
752#endif
753#if CHIP_HAS_SN_PROC()
754 case INT_SNITLB_MISS:
755 case INT_SNITLB_MISS_DWNCL:
756 async = ¤t->thread.sn_async_tlb;
757 break;
758#endif
759 default:
760 async = NULL;
761 }
762 if (async) {
763
764 /*
765 * No vmalloc check required, so we can allow
766 * interrupts immediately at this point.
767 */
768 local_irq_enable();
769
770 set_thread_flag(TIF_ASYNC_TLB);
771 if (async->fault_num != 0) {
772 panic("Second async fault %d;"
773 " old fault was %d (%#lx/%ld)",
774 fault_num, async->fault_num,
775 address, write);
776 }
777 BUG_ON(fault_num == 0);
778 async->fault_num = fault_num;
779 async->is_fault = is_page_fault;
780 async->is_write = write;
781 async->address = address;
782 return;
783 }
784 }
785#endif
786
787 handle_page_fault(regs, fault_num, is_page_fault, address, write);
788}
789
790
791#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
792/*
793 * Check an async_tlb structure to see if a deferred fault is waiting,
794 * and if so pass it to the page-fault code.
795 */
796static void handle_async_page_fault(struct pt_regs *regs,
797 struct async_tlb *async)
798{
799 if (async->fault_num) {
800 /*
801 * Clear async->fault_num before calling the page-fault
802 * handler so that if we re-interrupt before returning
803 * from the function we have somewhere to put the
804 * information from the new interrupt.
805 */
806 int fault_num = async->fault_num;
807 async->fault_num = 0;
808 handle_page_fault(regs, fault_num, async->is_fault,
809 async->address, async->is_write);
810 }
811}
812
813/*
814 * This routine effectively re-issues asynchronous page faults
815 * when we are returning to user space.
816 */
817void do_async_page_fault(struct pt_regs *regs)
818{
819 /*
820 * Clear thread flag early. If we re-interrupt while processing
821 * code here, we will reset it and recall this routine before
822 * returning to user space.
823 */
824 clear_thread_flag(TIF_ASYNC_TLB);
825
826#if CHIP_HAS_TILE_DMA()
827 handle_async_page_fault(regs, ¤t->thread.dma_async_tlb);
828#endif
829#if CHIP_HAS_SN_PROC()
830 handle_async_page_fault(regs, ¤t->thread.sn_async_tlb);
831#endif
832}
833#endif /* CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() */
834
835
836void vmalloc_sync_all(void)
837{
838#ifdef __tilegx__
839 /* Currently all L1 kernel pmd's are static and shared. */
840 BUG_ON(pgd_index(VMALLOC_END) != pgd_index(VMALLOC_START));
841#else
842 /*
843 * Note that races in the updates of insync and start aren't
844 * problematic: insync can only get set bits added, and updates to
845 * start are only improving performance (without affecting correctness
846 * if undone).
847 */
848 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
849 static unsigned long start = PAGE_OFFSET;
850 unsigned long address;
851
852 BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
853 for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
854 if (!test_bit(pgd_index(address), insync)) {
855 unsigned long flags;
856 struct list_head *pos;
857
858 spin_lock_irqsave(&pgd_lock, flags);
859 list_for_each(pos, &pgd_list)
860 if (!vmalloc_sync_one(list_to_pgd(pos),
861 address)) {
862 /* Must be at first entry in list. */
863 BUG_ON(pos != pgd_list.next);
864 break;
865 }
866 spin_unlock_irqrestore(&pgd_lock, flags);
867 if (pos != pgd_list.next)
868 set_bit(pgd_index(address), insync);
869 }
870 if (address == start && test_bit(pgd_index(address), insync))
871 start = address + PGDIR_SIZE;
872 }
873#endif
874}
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 *
14 * From i386 code copyright (C) 1995 Linus Torvalds
15 */
16
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/errno.h>
21#include <linux/string.h>
22#include <linux/types.h>
23#include <linux/ptrace.h>
24#include <linux/mman.h>
25#include <linux/mm.h>
26#include <linux/smp.h>
27#include <linux/interrupt.h>
28#include <linux/init.h>
29#include <linux/tty.h>
30#include <linux/vt_kern.h> /* For unblank_screen() */
31#include <linux/highmem.h>
32#include <linux/module.h>
33#include <linux/kprobes.h>
34#include <linux/hugetlb.h>
35#include <linux/syscalls.h>
36#include <linux/uaccess.h>
37#include <linux/kdebug.h>
38
39#include <asm/pgalloc.h>
40#include <asm/sections.h>
41#include <asm/traps.h>
42#include <asm/syscalls.h>
43
44#include <arch/interrupts.h>
45
46static noinline void force_sig_info_fault(const char *type, int si_signo,
47 int si_code, unsigned long address,
48 int fault_num,
49 struct task_struct *tsk,
50 struct pt_regs *regs)
51{
52 siginfo_t info;
53
54 if (unlikely(tsk->pid < 2)) {
55 panic("Signal %d (code %d) at %#lx sent to %s!",
56 si_signo, si_code & 0xffff, address,
57 is_idle_task(tsk) ? "the idle task" : "init");
58 }
59
60 info.si_signo = si_signo;
61 info.si_errno = 0;
62 info.si_code = si_code;
63 info.si_addr = (void __user *)address;
64 info.si_trapno = fault_num;
65 trace_unhandled_signal(type, regs, address, si_signo);
66 force_sig_info(si_signo, &info, tsk);
67}
68
69#ifndef __tilegx__
70/*
71 * Synthesize the fault a PL0 process would get by doing a word-load of
72 * an unaligned address or a high kernel address.
73 */
74SYSCALL_DEFINE1(cmpxchg_badaddr, unsigned long, address)
75{
76 struct pt_regs *regs = current_pt_regs();
77
78 if (address >= PAGE_OFFSET)
79 force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR,
80 address, INT_DTLB_MISS, current, regs);
81 else
82 force_sig_info_fault("atomic alignment fault", SIGBUS,
83 BUS_ADRALN, address,
84 INT_UNALIGN_DATA, current, regs);
85
86 /*
87 * Adjust pc to point at the actual instruction, which is unusual
88 * for syscalls normally, but is appropriate when we are claiming
89 * that a syscall swint1 caused a page fault or bus error.
90 */
91 regs->pc -= 8;
92
93 /*
94 * Mark this as a caller-save interrupt, like a normal page fault,
95 * so that when we go through the signal handler path we will
96 * properly restore r0, r1, and r2 for the signal handler arguments.
97 */
98 regs->flags |= PT_FLAGS_CALLER_SAVES;
99
100 return 0;
101}
102#endif
103
104static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
105{
106 unsigned index = pgd_index(address);
107 pgd_t *pgd_k;
108 pud_t *pud, *pud_k;
109 pmd_t *pmd, *pmd_k;
110
111 pgd += index;
112 pgd_k = init_mm.pgd + index;
113
114 if (!pgd_present(*pgd_k))
115 return NULL;
116
117 pud = pud_offset(pgd, address);
118 pud_k = pud_offset(pgd_k, address);
119 if (!pud_present(*pud_k))
120 return NULL;
121
122 pmd = pmd_offset(pud, address);
123 pmd_k = pmd_offset(pud_k, address);
124 if (!pmd_present(*pmd_k))
125 return NULL;
126 if (!pmd_present(*pmd))
127 set_pmd(pmd, *pmd_k);
128 else
129 BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
130 return pmd_k;
131}
132
133/*
134 * Handle a fault on the vmalloc area.
135 */
136static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
137{
138 pmd_t *pmd_k;
139 pte_t *pte_k;
140
141 /* Make sure we are in vmalloc area */
142 if (!(address >= VMALLOC_START && address < VMALLOC_END))
143 return -1;
144
145 /*
146 * Synchronize this task's top level page-table
147 * with the 'reference' page table.
148 */
149 pmd_k = vmalloc_sync_one(pgd, address);
150 if (!pmd_k)
151 return -1;
152 pte_k = pte_offset_kernel(pmd_k, address);
153 if (!pte_present(*pte_k))
154 return -1;
155 return 0;
156}
157
158/* Wait until this PTE has completed migration. */
159static void wait_for_migration(pte_t *pte)
160{
161 if (pte_migrating(*pte)) {
162 /*
163 * Wait until the migrater fixes up this pte.
164 * We scale the loop count by the clock rate so we'll wait for
165 * a few seconds here.
166 */
167 int retries = 0;
168 int bound = get_clock_rate();
169 while (pte_migrating(*pte)) {
170 barrier();
171 if (++retries > bound)
172 panic("Hit migrating PTE (%#llx) and page PFN %#lx still migrating",
173 pte->val, pte_pfn(*pte));
174 }
175 }
176}
177
178/*
179 * It's not generally safe to use "current" to get the page table pointer,
180 * since we might be running an oprofile interrupt in the middle of a
181 * task switch.
182 */
183static pgd_t *get_current_pgd(void)
184{
185 HV_Context ctx = hv_inquire_context();
186 unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
187 struct page *pgd_page = pfn_to_page(pgd_pfn);
188 BUG_ON(PageHighMem(pgd_page));
189 return (pgd_t *) __va(ctx.page_table);
190}
191
192/*
193 * We can receive a page fault from a migrating PTE at any time.
194 * Handle it by just waiting until the fault resolves.
195 *
196 * It's also possible to get a migrating kernel PTE that resolves
197 * itself during the downcall from hypervisor to Linux. We just check
198 * here to see if the PTE seems valid, and if so we retry it.
199 *
200 * NOTE! We MUST NOT take any locks for this case. We may be in an
201 * interrupt or a critical region, and must do as little as possible.
202 * Similarly, we can't use atomic ops here, since we may be handling a
203 * fault caused by an atomic op access.
204 *
205 * If we find a migrating PTE while we're in an NMI context, and we're
206 * at a PC that has a registered exception handler, we don't wait,
207 * since this thread may (e.g.) have been interrupted while migrating
208 * its own stack, which would then cause us to self-deadlock.
209 */
210static int handle_migrating_pte(pgd_t *pgd, int fault_num,
211 unsigned long address, unsigned long pc,
212 int is_kernel_mode, int write)
213{
214 pud_t *pud;
215 pmd_t *pmd;
216 pte_t *pte;
217 pte_t pteval;
218
219 if (pgd_addr_invalid(address))
220 return 0;
221
222 pgd += pgd_index(address);
223 pud = pud_offset(pgd, address);
224 if (!pud || !pud_present(*pud))
225 return 0;
226 pmd = pmd_offset(pud, address);
227 if (!pmd || !pmd_present(*pmd))
228 return 0;
229 pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
230 pte_offset_kernel(pmd, address);
231 pteval = *pte;
232 if (pte_migrating(pteval)) {
233 if (in_nmi() && search_exception_tables(pc))
234 return 0;
235 wait_for_migration(pte);
236 return 1;
237 }
238
239 if (!is_kernel_mode || !pte_present(pteval))
240 return 0;
241 if (fault_num == INT_ITLB_MISS) {
242 if (pte_exec(pteval))
243 return 1;
244 } else if (write) {
245 if (pte_write(pteval))
246 return 1;
247 } else {
248 if (pte_read(pteval))
249 return 1;
250 }
251
252 return 0;
253}
254
255/*
256 * This routine is responsible for faulting in user pages.
257 * It passes the work off to one of the appropriate routines.
258 * It returns true if the fault was successfully handled.
259 */
260static int handle_page_fault(struct pt_regs *regs,
261 int fault_num,
262 int is_page_fault,
263 unsigned long address,
264 int write)
265{
266 struct task_struct *tsk;
267 struct mm_struct *mm;
268 struct vm_area_struct *vma;
269 unsigned long stack_offset;
270 int fault;
271 int si_code;
272 int is_kernel_mode;
273 pgd_t *pgd;
274 unsigned int flags;
275
276 /* on TILE, protection faults are always writes */
277 if (!is_page_fault)
278 write = 1;
279
280 flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
281
282 is_kernel_mode = !user_mode(regs);
283
284 tsk = validate_current();
285
286 /*
287 * Check to see if we might be overwriting the stack, and bail
288 * out if so. The page fault code is a relatively likely
289 * place to get trapped in an infinite regress, and once we
290 * overwrite the whole stack, it becomes very hard to recover.
291 */
292 stack_offset = stack_pointer & (THREAD_SIZE-1);
293 if (stack_offset < THREAD_SIZE / 8) {
294 pr_alert("Potential stack overrun: sp %#lx\n", stack_pointer);
295 show_regs(regs);
296 pr_alert("Killing current process %d/%s\n",
297 tsk->pid, tsk->comm);
298 do_group_exit(SIGKILL);
299 }
300
301 /*
302 * Early on, we need to check for migrating PTE entries;
303 * see homecache.c. If we find a migrating PTE, we wait until
304 * the backing page claims to be done migrating, then we proceed.
305 * For kernel PTEs, we rewrite the PTE and return and retry.
306 * Otherwise, we treat the fault like a normal "no PTE" fault,
307 * rather than trying to patch up the existing PTE.
308 */
309 pgd = get_current_pgd();
310 if (handle_migrating_pte(pgd, fault_num, address, regs->pc,
311 is_kernel_mode, write))
312 return 1;
313
314 si_code = SEGV_MAPERR;
315
316 /*
317 * We fault-in kernel-space virtual memory on-demand. The
318 * 'reference' page table is init_mm.pgd.
319 *
320 * NOTE! We MUST NOT take any locks for this case. We may
321 * be in an interrupt or a critical region, and should
322 * only copy the information from the master page table,
323 * nothing more.
324 *
325 * This verifies that the fault happens in kernel space
326 * and that the fault was not a protection fault.
327 */
328 if (unlikely(address >= TASK_SIZE &&
329 !is_arch_mappable_range(address, 0))) {
330 if (is_kernel_mode && is_page_fault &&
331 vmalloc_fault(pgd, address) >= 0)
332 return 1;
333 /*
334 * Don't take the mm semaphore here. If we fixup a prefetch
335 * fault we could otherwise deadlock.
336 */
337 mm = NULL; /* happy compiler */
338 vma = NULL;
339 goto bad_area_nosemaphore;
340 }
341
342 /*
343 * If we're trying to touch user-space addresses, we must
344 * be either at PL0, or else with interrupts enabled in the
345 * kernel, so either way we can re-enable interrupts here
346 * unless we are doing atomic access to user space with
347 * interrupts disabled.
348 */
349 if (!(regs->flags & PT_FLAGS_DISABLE_IRQ))
350 local_irq_enable();
351
352 mm = tsk->mm;
353
354 /*
355 * If we're in an interrupt, have no user context or are running in an
356 * region with pagefaults disabled then we must not take the fault.
357 */
358 if (pagefault_disabled() || !mm) {
359 vma = NULL; /* happy compiler */
360 goto bad_area_nosemaphore;
361 }
362
363 if (!is_kernel_mode)
364 flags |= FAULT_FLAG_USER;
365
366 /*
367 * When running in the kernel we expect faults to occur only to
368 * addresses in user space. All other faults represent errors in the
369 * kernel and should generate an OOPS. Unfortunately, in the case of an
370 * erroneous fault occurring in a code path which already holds mmap_sem
371 * we will deadlock attempting to validate the fault against the
372 * address space. Luckily the kernel only validly references user
373 * space from well defined areas of code, which are listed in the
374 * exceptions table.
375 *
376 * As the vast majority of faults will be valid we will only perform
377 * the source reference check when there is a possibility of a deadlock.
378 * Attempt to lock the address space, if we cannot we then validate the
379 * source. If this is invalid we can skip the address space check,
380 * thus avoiding the deadlock.
381 */
382 if (!down_read_trylock(&mm->mmap_sem)) {
383 if (is_kernel_mode &&
384 !search_exception_tables(regs->pc)) {
385 vma = NULL; /* happy compiler */
386 goto bad_area_nosemaphore;
387 }
388
389retry:
390 down_read(&mm->mmap_sem);
391 }
392
393 vma = find_vma(mm, address);
394 if (!vma)
395 goto bad_area;
396 if (vma->vm_start <= address)
397 goto good_area;
398 if (!(vma->vm_flags & VM_GROWSDOWN))
399 goto bad_area;
400 if (regs->sp < PAGE_OFFSET) {
401 /*
402 * accessing the stack below sp is always a bug.
403 */
404 if (address < regs->sp)
405 goto bad_area;
406 }
407 if (expand_stack(vma, address))
408 goto bad_area;
409
410/*
411 * Ok, we have a good vm_area for this memory access, so
412 * we can handle it..
413 */
414good_area:
415 si_code = SEGV_ACCERR;
416 if (fault_num == INT_ITLB_MISS) {
417 if (!(vma->vm_flags & VM_EXEC))
418 goto bad_area;
419 } else if (write) {
420#ifdef TEST_VERIFY_AREA
421 if (!is_page_fault && regs->cs == KERNEL_CS)
422 pr_err("WP fault at " REGFMT "\n", regs->eip);
423#endif
424 if (!(vma->vm_flags & VM_WRITE))
425 goto bad_area;
426 flags |= FAULT_FLAG_WRITE;
427 } else {
428 if (!is_page_fault || !(vma->vm_flags & VM_READ))
429 goto bad_area;
430 }
431
432 /*
433 * If for any reason at all we couldn't handle the fault,
434 * make sure we exit gracefully rather than endlessly redo
435 * the fault.
436 */
437 fault = handle_mm_fault(mm, vma, address, flags);
438
439 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
440 return 0;
441
442 if (unlikely(fault & VM_FAULT_ERROR)) {
443 if (fault & VM_FAULT_OOM)
444 goto out_of_memory;
445 else if (fault & VM_FAULT_SIGSEGV)
446 goto bad_area;
447 else if (fault & VM_FAULT_SIGBUS)
448 goto do_sigbus;
449 BUG();
450 }
451 if (flags & FAULT_FLAG_ALLOW_RETRY) {
452 if (fault & VM_FAULT_MAJOR)
453 tsk->maj_flt++;
454 else
455 tsk->min_flt++;
456 if (fault & VM_FAULT_RETRY) {
457 flags &= ~FAULT_FLAG_ALLOW_RETRY;
458 flags |= FAULT_FLAG_TRIED;
459
460 /*
461 * No need to up_read(&mm->mmap_sem) as we would
462 * have already released it in __lock_page_or_retry
463 * in mm/filemap.c.
464 */
465 goto retry;
466 }
467 }
468
469#if CHIP_HAS_TILE_DMA()
470 /* If this was a DMA TLB fault, restart the DMA engine. */
471 switch (fault_num) {
472 case INT_DMATLB_MISS:
473 case INT_DMATLB_MISS_DWNCL:
474 case INT_DMATLB_ACCESS:
475 case INT_DMATLB_ACCESS_DWNCL:
476 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
477 break;
478 }
479#endif
480
481 up_read(&mm->mmap_sem);
482 return 1;
483
484/*
485 * Something tried to access memory that isn't in our memory map..
486 * Fix it, but check if it's kernel or user first..
487 */
488bad_area:
489 up_read(&mm->mmap_sem);
490
491bad_area_nosemaphore:
492 /* User mode accesses just cause a SIGSEGV */
493 if (!is_kernel_mode) {
494 /*
495 * It's possible to have interrupts off here.
496 */
497 local_irq_enable();
498
499 force_sig_info_fault("segfault", SIGSEGV, si_code, address,
500 fault_num, tsk, regs);
501 return 0;
502 }
503
504no_context:
505 /* Are we prepared to handle this kernel fault? */
506 if (fixup_exception(regs))
507 return 0;
508
509/*
510 * Oops. The kernel tried to access some bad page. We'll have to
511 * terminate things with extreme prejudice.
512 */
513
514 bust_spinlocks(1);
515
516 /* FIXME: no lookup_address() yet */
517#ifdef SUPPORT_LOOKUP_ADDRESS
518 if (fault_num == INT_ITLB_MISS) {
519 pte_t *pte = lookup_address(address);
520
521 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
522 pr_crit("kernel tried to execute non-executable page - exploit attempt? (uid: %d)\n",
523 current->uid);
524 }
525#endif
526 if (address < PAGE_SIZE)
527 pr_alert("Unable to handle kernel NULL pointer dereference\n");
528 else
529 pr_alert("Unable to handle kernel paging request\n");
530 pr_alert(" at virtual address " REGFMT ", pc " REGFMT "\n",
531 address, regs->pc);
532
533 show_regs(regs);
534
535 if (unlikely(tsk->pid < 2)) {
536 panic("Kernel page fault running %s!",
537 is_idle_task(tsk) ? "the idle task" : "init");
538 }
539
540 /*
541 * More FIXME: we should probably copy the i386 here and
542 * implement a generic die() routine. Not today.
543 */
544#ifdef SUPPORT_DIE
545 die("Oops", regs);
546#endif
547 bust_spinlocks(1);
548
549 do_group_exit(SIGKILL);
550
551/*
552 * We ran out of memory, or some other thing happened to us that made
553 * us unable to handle the page fault gracefully.
554 */
555out_of_memory:
556 up_read(&mm->mmap_sem);
557 if (is_kernel_mode)
558 goto no_context;
559 pagefault_out_of_memory();
560 return 0;
561
562do_sigbus:
563 up_read(&mm->mmap_sem);
564
565 /* Kernel mode? Handle exceptions or die */
566 if (is_kernel_mode)
567 goto no_context;
568
569 force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address,
570 fault_num, tsk, regs);
571 return 0;
572}
573
574#ifndef __tilegx__
575
576/* We must release ICS before panicking or we won't get anywhere. */
577#define ics_panic(fmt, ...) \
578do { \
579 __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
580 panic(fmt, ##__VA_ARGS__); \
581} while (0)
582
583/*
584 * When we take an ITLB or DTLB fault or access violation in the
585 * supervisor while the critical section bit is set, the hypervisor is
586 * reluctant to write new values into the EX_CONTEXT_K_x registers,
587 * since that might indicate we have not yet squirreled the SPR
588 * contents away and can thus safely take a recursive interrupt.
589 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
590 *
591 * Note that this routine is called before homecache_tlb_defer_enter(),
592 * which means that we can properly unlock any atomics that might
593 * be used there (good), but also means we must be very sensitive
594 * to not touch any data structures that might be located in memory
595 * that could migrate, as we could be entering the kernel on a dataplane
596 * cpu that has been deferring kernel TLB updates. This means, for
597 * example, that we can't migrate init_mm or its pgd.
598 */
599struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
600 unsigned long address,
601 unsigned long info)
602{
603 unsigned long pc = info & ~1;
604 int write = info & 1;
605 pgd_t *pgd = get_current_pgd();
606
607 /* Retval is 1 at first since we will handle the fault fully. */
608 struct intvec_state state = {
609 do_page_fault, fault_num, address, write, 1
610 };
611
612 /* Validate that we are plausibly in the right routine. */
613 if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
614 (fault_num != INT_DTLB_MISS &&
615 fault_num != INT_DTLB_ACCESS)) {
616 unsigned long old_pc = regs->pc;
617 regs->pc = pc;
618 ics_panic("Bad ICS page fault args: old PC %#lx, fault %d/%d at %#lx",
619 old_pc, fault_num, write, address);
620 }
621
622 /* We might be faulting on a vmalloc page, so check that first. */
623 if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
624 return state;
625
626 /*
627 * If we faulted with ICS set in sys_cmpxchg, we are providing
628 * a user syscall service that should generate a signal on
629 * fault. We didn't set up a kernel stack on initial entry to
630 * sys_cmpxchg, but instead had one set up by the fault, which
631 * (because sys_cmpxchg never releases ICS) came to us via the
632 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
633 * still referencing the original user code. We release the
634 * atomic lock and rewrite pt_regs so that it appears that we
635 * came from user-space directly, and after we finish the
636 * fault we'll go back to user space and re-issue the swint.
637 * This way the backtrace information is correct if we need to
638 * emit a stack dump at any point while handling this.
639 *
640 * Must match register use in sys_cmpxchg().
641 */
642 if (pc >= (unsigned long) sys_cmpxchg &&
643 pc < (unsigned long) __sys_cmpxchg_end) {
644#ifdef CONFIG_SMP
645 /* Don't unlock before we could have locked. */
646 if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
647 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
648 __atomic_fault_unlock(lock_ptr);
649 }
650#endif
651 regs->sp = regs->regs[27];
652 }
653
654 /*
655 * We can also fault in the atomic assembly, in which
656 * case we use the exception table to do the first-level fixup.
657 * We may re-fixup again in the real fault handler if it
658 * turns out the faulting address is just bad, and not,
659 * for example, migrating.
660 */
661 else if (pc >= (unsigned long) __start_atomic_asm_code &&
662 pc < (unsigned long) __end_atomic_asm_code) {
663 const struct exception_table_entry *fixup;
664#ifdef CONFIG_SMP
665 /* Unlock the atomic lock. */
666 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
667 __atomic_fault_unlock(lock_ptr);
668#endif
669 fixup = search_exception_tables(pc);
670 if (!fixup)
671 ics_panic("ICS atomic fault not in table: PC %#lx, fault %d",
672 pc, fault_num);
673 regs->pc = fixup->fixup;
674 regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
675 }
676
677 /*
678 * Now that we have released the atomic lock (if necessary),
679 * it's safe to spin if the PTE that caused the fault was migrating.
680 */
681 if (fault_num == INT_DTLB_ACCESS)
682 write = 1;
683 if (handle_migrating_pte(pgd, fault_num, address, pc, 1, write))
684 return state;
685
686 /* Return zero so that we continue on with normal fault handling. */
687 state.retval = 0;
688 return state;
689}
690
691#endif /* !__tilegx__ */
692
693/*
694 * This routine handles page faults. It determines the address, and the
695 * problem, and then passes it handle_page_fault() for normal DTLB and
696 * ITLB issues, and for DMA or SN processor faults when we are in user
697 * space. For the latter, if we're in kernel mode, we just save the
698 * interrupt away appropriately and return immediately. We can't do
699 * page faults for user code while in kernel mode.
700 */
701static inline void __do_page_fault(struct pt_regs *regs, int fault_num,
702 unsigned long address, unsigned long write)
703{
704 int is_page_fault;
705
706#ifdef CONFIG_KPROBES
707 /*
708 * This is to notify the fault handler of the kprobes. The
709 * exception code is redundant as it is also carried in REGS,
710 * but we pass it anyhow.
711 */
712 if (notify_die(DIE_PAGE_FAULT, "page fault", regs, -1,
713 regs->faultnum, SIGSEGV) == NOTIFY_STOP)
714 return;
715#endif
716
717#ifdef __tilegx__
718 /*
719 * We don't need early do_page_fault_ics() support, since unlike
720 * Pro we don't need to worry about unlocking the atomic locks.
721 * There is only one current case in GX where we touch any memory
722 * under ICS other than our own kernel stack, and we handle that
723 * here. (If we crash due to trying to touch our own stack,
724 * we're in too much trouble for C code to help out anyway.)
725 */
726 if (write & ~1) {
727 unsigned long pc = write & ~1;
728 if (pc >= (unsigned long) __start_unalign_asm_code &&
729 pc < (unsigned long) __end_unalign_asm_code) {
730 struct thread_info *ti = current_thread_info();
731 /*
732 * Our EX_CONTEXT is still what it was from the
733 * initial unalign exception, but now we've faulted
734 * on the JIT page. We would like to complete the
735 * page fault however is appropriate, and then retry
736 * the instruction that caused the unalign exception.
737 * Our state has been "corrupted" by setting the low
738 * bit in "sp", and stashing r0..r3 in the
739 * thread_info area, so we revert all of that, then
740 * continue as if this were a normal page fault.
741 */
742 regs->sp &= ~1UL;
743 regs->regs[0] = ti->unalign_jit_tmp[0];
744 regs->regs[1] = ti->unalign_jit_tmp[1];
745 regs->regs[2] = ti->unalign_jit_tmp[2];
746 regs->regs[3] = ti->unalign_jit_tmp[3];
747 write &= 1;
748 } else {
749 pr_alert("%s/%d: ICS set at page fault at %#lx: %#lx\n",
750 current->comm, current->pid, pc, address);
751 show_regs(regs);
752 do_group_exit(SIGKILL);
753 }
754 }
755#else
756 /* This case should have been handled by do_page_fault_ics(). */
757 BUG_ON(write & ~1);
758#endif
759
760#if CHIP_HAS_TILE_DMA()
761 /*
762 * If it's a DMA fault, suspend the transfer while we're
763 * handling the miss; we'll restart after it's handled. If we
764 * don't suspend, it's possible that this process could swap
765 * out and back in, and restart the engine since the DMA is
766 * still 'running'.
767 */
768 if (fault_num == INT_DMATLB_MISS ||
769 fault_num == INT_DMATLB_ACCESS ||
770 fault_num == INT_DMATLB_MISS_DWNCL ||
771 fault_num == INT_DMATLB_ACCESS_DWNCL) {
772 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
773 while (__insn_mfspr(SPR_DMA_USER_STATUS) &
774 SPR_DMA_STATUS__BUSY_MASK)
775 ;
776 }
777#endif
778
779 /* Validate fault num and decide if this is a first-time page fault. */
780 switch (fault_num) {
781 case INT_ITLB_MISS:
782 case INT_DTLB_MISS:
783#if CHIP_HAS_TILE_DMA()
784 case INT_DMATLB_MISS:
785 case INT_DMATLB_MISS_DWNCL:
786#endif
787 is_page_fault = 1;
788 break;
789
790 case INT_DTLB_ACCESS:
791#if CHIP_HAS_TILE_DMA()
792 case INT_DMATLB_ACCESS:
793 case INT_DMATLB_ACCESS_DWNCL:
794#endif
795 is_page_fault = 0;
796 break;
797
798 default:
799 panic("Bad fault number %d in do_page_fault", fault_num);
800 }
801
802#if CHIP_HAS_TILE_DMA()
803 if (!user_mode(regs)) {
804 struct async_tlb *async;
805 switch (fault_num) {
806#if CHIP_HAS_TILE_DMA()
807 case INT_DMATLB_MISS:
808 case INT_DMATLB_ACCESS:
809 case INT_DMATLB_MISS_DWNCL:
810 case INT_DMATLB_ACCESS_DWNCL:
811 async = ¤t->thread.dma_async_tlb;
812 break;
813#endif
814 default:
815 async = NULL;
816 }
817 if (async) {
818
819 /*
820 * No vmalloc check required, so we can allow
821 * interrupts immediately at this point.
822 */
823 local_irq_enable();
824
825 set_thread_flag(TIF_ASYNC_TLB);
826 if (async->fault_num != 0) {
827 panic("Second async fault %d; old fault was %d (%#lx/%ld)",
828 fault_num, async->fault_num,
829 address, write);
830 }
831 BUG_ON(fault_num == 0);
832 async->fault_num = fault_num;
833 async->is_fault = is_page_fault;
834 async->is_write = write;
835 async->address = address;
836 return;
837 }
838 }
839#endif
840
841 handle_page_fault(regs, fault_num, is_page_fault, address, write);
842}
843
844void do_page_fault(struct pt_regs *regs, int fault_num,
845 unsigned long address, unsigned long write)
846{
847 __do_page_fault(regs, fault_num, address, write);
848}
849
850#if CHIP_HAS_TILE_DMA()
851/*
852 * This routine effectively re-issues asynchronous page faults
853 * when we are returning to user space.
854 */
855void do_async_page_fault(struct pt_regs *regs)
856{
857 struct async_tlb *async = ¤t->thread.dma_async_tlb;
858
859 /*
860 * Clear thread flag early. If we re-interrupt while processing
861 * code here, we will reset it and recall this routine before
862 * returning to user space.
863 */
864 clear_thread_flag(TIF_ASYNC_TLB);
865
866 if (async->fault_num) {
867 /*
868 * Clear async->fault_num before calling the page-fault
869 * handler so that if we re-interrupt before returning
870 * from the function we have somewhere to put the
871 * information from the new interrupt.
872 */
873 int fault_num = async->fault_num;
874 async->fault_num = 0;
875 handle_page_fault(regs, fault_num, async->is_fault,
876 async->address, async->is_write);
877 }
878}
879#endif /* CHIP_HAS_TILE_DMA() */
880
881
882void vmalloc_sync_all(void)
883{
884#ifdef __tilegx__
885 /* Currently all L1 kernel pmd's are static and shared. */
886 BUILD_BUG_ON(pgd_index(VMALLOC_END - PAGE_SIZE) !=
887 pgd_index(VMALLOC_START));
888#else
889 /*
890 * Note that races in the updates of insync and start aren't
891 * problematic: insync can only get set bits added, and updates to
892 * start are only improving performance (without affecting correctness
893 * if undone).
894 */
895 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
896 static unsigned long start = PAGE_OFFSET;
897 unsigned long address;
898
899 BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
900 for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
901 if (!test_bit(pgd_index(address), insync)) {
902 unsigned long flags;
903 struct list_head *pos;
904
905 spin_lock_irqsave(&pgd_lock, flags);
906 list_for_each(pos, &pgd_list)
907 if (!vmalloc_sync_one(list_to_pgd(pos),
908 address)) {
909 /* Must be at first entry in list. */
910 BUG_ON(pos != pgd_list.next);
911 break;
912 }
913 spin_unlock_irqrestore(&pgd_lock, flags);
914 if (pos != pgd_list.next)
915 set_bit(pgd_index(address), insync);
916 }
917 if (address == start && test_bit(pgd_index(address), insync))
918 start = address + PGDIR_SIZE;
919 }
920#endif
921}