Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
  2/*
  3 * hcd.h - DesignWare HS OTG Controller host-mode declarations
  4 *
  5 * Copyright (C) 2004-2013 Synopsys, Inc.
  6 *
  7 * Redistribution and use in source and binary forms, with or without
  8 * modification, are permitted provided that the following conditions
  9 * are met:
 10 * 1. Redistributions of source code must retain the above copyright
 11 *    notice, this list of conditions, and the following disclaimer,
 12 *    without modification.
 13 * 2. Redistributions in binary form must reproduce the above copyright
 14 *    notice, this list of conditions and the following disclaimer in the
 15 *    documentation and/or other materials provided with the distribution.
 16 * 3. The names of the above-listed copyright holders may not be used
 17 *    to endorse or promote products derived from this software without
 18 *    specific prior written permission.
 19 *
 20 * ALTERNATIVELY, this software may be distributed under the terms of the
 21 * GNU General Public License ("GPL") as published by the Free Software
 22 * Foundation; either version 2 of the License, or (at your option) any
 23 * later version.
 24 *
 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 36 */
 37#ifndef __DWC2_HCD_H__
 38#define __DWC2_HCD_H__
 39
 40/*
 41 * This file contains the structures, constants, and interfaces for the
 42 * Host Contoller Driver (HCD)
 43 *
 44 * The Host Controller Driver (HCD) is responsible for translating requests
 45 * from the USB Driver into the appropriate actions on the DWC_otg controller.
 46 * It isolates the USBD from the specifics of the controller by providing an
 47 * API to the USBD.
 48 */
 49
 50struct dwc2_qh;
 51
 52/**
 53 * struct dwc2_host_chan - Software host channel descriptor
 54 *
 55 * @hc_num:             Host channel number, used for register address lookup
 56 * @dev_addr:           Address of the device
 57 * @ep_num:             Endpoint of the device
 58 * @ep_is_in:           Endpoint direction
 59 * @speed:              Device speed. One of the following values:
 60 *                       - USB_SPEED_LOW
 61 *                       - USB_SPEED_FULL
 62 *                       - USB_SPEED_HIGH
 63 * @ep_type:            Endpoint type. One of the following values:
 64 *                       - USB_ENDPOINT_XFER_CONTROL: 0
 65 *                       - USB_ENDPOINT_XFER_ISOC:    1
 66 *                       - USB_ENDPOINT_XFER_BULK:    2
 67 *                       - USB_ENDPOINT_XFER_INTR:    3
 68 * @max_packet:         Max packet size in bytes
 69 * @data_pid_start:     PID for initial transaction.
 70 *                       0: DATA0
 71 *                       1: DATA2
 72 *                       2: DATA1
 73 *                       3: MDATA (non-Control EP),
 74 *                          SETUP (Control EP)
 75 * @multi_count:        Number of additional periodic transactions per
 76 *                      (micro)frame
 77 * @xfer_buf:           Pointer to current transfer buffer position
 78 * @xfer_dma:           DMA address of xfer_buf
 79 * @xfer_len:           Total number of bytes to transfer
 80 * @xfer_count:         Number of bytes transferred so far
 81 * @start_pkt_count:    Packet count at start of transfer
 82 * @xfer_started:       True if the transfer has been started
 83 * @ping:               True if a PING request should be issued on this channel
 84 * @error_state:        True if the error count for this transaction is non-zero
 85 * @halt_on_queue:      True if this channel should be halted the next time a
 86 *                      request is queued for the channel. This is necessary in
 87 *                      slave mode if no request queue space is available when
 88 *                      an attempt is made to halt the channel.
 89 * @halt_pending:       True if the host channel has been halted, but the core
 90 *                      is not finished flushing queued requests
 91 * @do_split:           Enable split for the channel
 92 * @complete_split:     Enable complete split
 93 * @hub_addr:           Address of high speed hub for the split
 94 * @hub_port:           Port of the low/full speed device for the split
 95 * @xact_pos:           Split transaction position. One of the following values:
 96 *                       - DWC2_HCSPLT_XACTPOS_MID
 97 *                       - DWC2_HCSPLT_XACTPOS_BEGIN
 98 *                       - DWC2_HCSPLT_XACTPOS_END
 99 *                       - DWC2_HCSPLT_XACTPOS_ALL
100 * @requests:           Number of requests issued for this channel since it was
101 *                      assigned to the current transfer (not counting PINGs)
102 * @schinfo:            Scheduling micro-frame bitmap
103 * @ntd:                Number of transfer descriptors for the transfer
104 * @halt_status:        Reason for halting the host channel
105 * @hcint               Contents of the HCINT register when the interrupt came
106 * @qh:                 QH for the transfer being processed by this channel
107 * @hc_list_entry:      For linking to list of host channels
108 * @desc_list_addr:     Current QH's descriptor list DMA address
109 * @desc_list_sz:       Current QH's descriptor list size
110 * @split_order_list_entry: List entry for keeping track of the order of splits
111 *
112 * This structure represents the state of a single host channel when acting in
113 * host mode. It contains the data items needed to transfer packets to an
114 * endpoint via a host channel.
115 */
116struct dwc2_host_chan {
117	u8 hc_num;
118
119	unsigned dev_addr:7;
120	unsigned ep_num:4;
121	unsigned ep_is_in:1;
122	unsigned speed:4;
123	unsigned ep_type:2;
124	unsigned max_packet:11;
125	unsigned data_pid_start:2;
126#define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
127#define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
128#define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
129#define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
130#define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
131
132	unsigned multi_count:2;
133
134	u8 *xfer_buf;
135	dma_addr_t xfer_dma;
136	u32 xfer_len;
137	u32 xfer_count;
138	u16 start_pkt_count;
139	u8 xfer_started;
140	u8 do_ping;
141	u8 error_state;
142	u8 halt_on_queue;
143	u8 halt_pending;
144	u8 do_split;
145	u8 complete_split;
146	u8 hub_addr;
147	u8 hub_port;
148	u8 xact_pos;
149#define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
150#define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
151#define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
152#define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
153
154	u8 requests;
155	u8 schinfo;
156	u16 ntd;
157	enum dwc2_halt_status halt_status;
158	u32 hcint;
159	struct dwc2_qh *qh;
160	struct list_head hc_list_entry;
161	dma_addr_t desc_list_addr;
162	u32 desc_list_sz;
163	struct list_head split_order_list_entry;
164};
165
166struct dwc2_hcd_pipe_info {
167	u8 dev_addr;
168	u8 ep_num;
169	u8 pipe_type;
170	u8 pipe_dir;
171	u16 mps;
172};
173
174struct dwc2_hcd_iso_packet_desc {
175	u32 offset;
176	u32 length;
177	u32 actual_length;
178	u32 status;
179};
180
181struct dwc2_qtd;
182
183struct dwc2_hcd_urb {
184	void *priv;
185	struct dwc2_qtd *qtd;
186	void *buf;
187	dma_addr_t dma;
188	void *setup_packet;
189	dma_addr_t setup_dma;
190	u32 length;
191	u32 actual_length;
192	u32 status;
193	u32 error_count;
194	u32 packet_count;
195	u32 flags;
196	u16 interval;
197	struct dwc2_hcd_pipe_info pipe_info;
198	struct dwc2_hcd_iso_packet_desc iso_descs[0];
199};
200
201/* Phases for control transfers */
202enum dwc2_control_phase {
203	DWC2_CONTROL_SETUP,
204	DWC2_CONTROL_DATA,
205	DWC2_CONTROL_STATUS,
206};
207
208/* Transaction types */
209enum dwc2_transaction_type {
210	DWC2_TRANSACTION_NONE,
211	DWC2_TRANSACTION_PERIODIC,
212	DWC2_TRANSACTION_NON_PERIODIC,
213	DWC2_TRANSACTION_ALL,
214};
215
216/* The number of elements per LS bitmap (per port on multi_tt) */
217#define DWC2_ELEMENTS_PER_LS_BITMAP	DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
218						     BITS_PER_LONG)
219
220/**
221 * struct dwc2_tt - dwc2 data associated with a usb_tt
222 *
223 * @refcount:           Number of Queue Heads (QHs) holding a reference.
224 * @usb_tt:             Pointer back to the official usb_tt.
225 * @periodic_bitmaps:   Bitmap for which parts of the 1ms frame are accounted
226 *                      for already.  Each is DWC2_ELEMENTS_PER_LS_BITMAP
227 *			elements (so sizeof(long) times that in bytes).
228 *
229 * This structure is stored in the hcpriv of the official usb_tt.
230 */
231struct dwc2_tt {
232	int refcount;
233	struct usb_tt *usb_tt;
234	unsigned long periodic_bitmaps[];
235};
236
237/**
238 * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
239 *
240 * @start_schedule_usecs:  The start time on the main bus schedule.  Note that
241 *                         the main bus schedule is tightly packed and this
242 *			   time should be interpreted as tightly packed (so
243 *			   uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
244 *			   instead of 125 us).
245 * @duration_us:           How long this transfer goes.
246 */
247
248struct dwc2_hs_transfer_time {
249	u32 start_schedule_us;
250	u16 duration_us;
251};
252
253/**
254 * struct dwc2_qh - Software queue head structure
255 *
256 * @hsotg:              The HCD state structure for the DWC OTG controller
257 * @ep_type:            Endpoint type. One of the following values:
258 *                       - USB_ENDPOINT_XFER_CONTROL
259 *                       - USB_ENDPOINT_XFER_BULK
260 *                       - USB_ENDPOINT_XFER_INT
261 *                       - USB_ENDPOINT_XFER_ISOC
262 * @ep_is_in:           Endpoint direction
263 * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
264 * @dev_speed:          Device speed. One of the following values:
265 *                       - USB_SPEED_LOW
266 *                       - USB_SPEED_FULL
267 *                       - USB_SPEED_HIGH
268 * @data_toggle:        Determines the PID of the next data packet for
269 *                      non-controltransfers. Ignored for control transfers.
270 *                      One of the following values:
271 *                       - DWC2_HC_PID_DATA0
272 *                       - DWC2_HC_PID_DATA1
273 * @ping_state:         Ping state
274 * @do_split:           Full/low speed endpoint on high-speed hub requires split
275 * @td_first:           Index of first activated isochronous transfer descriptor
276 * @td_last:            Index of last activated isochronous transfer descriptor
277 * @host_us:            Bandwidth in microseconds per transfer as seen by host
278 * @device_us:          Bandwidth in microseconds per transfer as seen by device
279 * @host_interval:      Interval between transfers as seen by the host.  If
280 *                      the host is high speed and the device is low speed this
281 *                      will be 8 times device interval.
282 * @device_interval:    Interval between transfers as seen by the device.
283 *                      interval.
284 * @next_active_frame:  (Micro)frame _before_ we next need to put something on
285 *                      the bus.  We'll move the qh to active here.  If the
286 *                      host is in high speed mode this will be a uframe.  If
287 *                      the host is in low speed mode this will be a full frame.
288 * @start_active_frame: If we are partway through a split transfer, this will be
289 *			what next_active_frame was when we started.  Otherwise
290 *			it should always be the same as next_active_frame.
291 * @num_hs_transfers:   Number of transfers in hs_transfers.
292 *                      Normally this is 1 but can be more than one for splits.
293 *                      Always >= 1 unless the host is in low/full speed mode.
294 * @hs_transfers:       Transfers that are scheduled as seen by the high speed
295 *                      bus.  Not used if host is in low or full speed mode (but
296 *                      note that it IS USED if the device is low or full speed
297 *                      as long as the HOST is in high speed mode).
298 * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
299 *                           schedule that's being used by this device.  This
300 *			     will be on the periodic_bitmap in a
301 *                           "struct dwc2_tt".  Not used if this device is high
302 *                           speed.  Note that this is in "schedule slice" which
303 *                           is tightly packed.
304 * @ls_duration_us:     Duration on the low speed bus schedule.
305 * @ntd:                Actual number of transfer descriptors in a list
306 * @qtd_list:           List of QTDs for this QH
307 * @channel:            Host channel currently processing transfers for this QH
308 * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
309 *                      schedule
310 * @desc_list:          List of transfer descriptors
311 * @desc_list_dma:      Physical address of desc_list
312 * @desc_list_sz:       Size of descriptors list
313 * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
314 *                      descriptor and indicates original XferSize value for the
315 *                      descriptor
316 * @unreserve_timer:    Timer for releasing periodic reservation.
317 * @wait_timer:         Timer used to wait before re-queuing.
318 * @dwc2_tt:            Pointer to our tt info (or NULL if no tt).
319 * @ttport:             Port number within our tt.
320 * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
321 * @unreserve_pending:  True if we planned to unreserve but haven't yet.
322 * @schedule_low_speed: True if we have a low/full speed component (either the
323 *			host is in low/full speed mode or do_split).
324 * @want_wait:          We should wait before re-queuing; only matters for non-
325 *                      periodic transfers and is ignored for periodic ones.
326 * @wait_timer_cancel:  Set to true to cancel the wait_timer.
327 *
328 * A Queue Head (QH) holds the static characteristics of an endpoint and
329 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
330 * be entered in either the non-periodic or periodic schedule.
331 */
332struct dwc2_qh {
333	struct dwc2_hsotg *hsotg;
334	u8 ep_type;
335	u8 ep_is_in;
336	u16 maxp;
337	u8 dev_speed;
338	u8 data_toggle;
339	u8 ping_state;
340	u8 do_split;
341	u8 td_first;
342	u8 td_last;
343	u16 host_us;
344	u16 device_us;
345	u16 host_interval;
346	u16 device_interval;
347	u16 next_active_frame;
348	u16 start_active_frame;
349	s16 num_hs_transfers;
350	struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
351	u32 ls_start_schedule_slice;
352	u16 ntd;
353	struct list_head qtd_list;
354	struct dwc2_host_chan *channel;
355	struct list_head qh_list_entry;
356	struct dwc2_dma_desc *desc_list;
357	dma_addr_t desc_list_dma;
358	u32 desc_list_sz;
359	u32 *n_bytes;
360	struct timer_list unreserve_timer;
361	struct timer_list wait_timer;
362	struct dwc2_tt *dwc_tt;
363	int ttport;
364	unsigned tt_buffer_dirty:1;
365	unsigned unreserve_pending:1;
366	unsigned schedule_low_speed:1;
367	unsigned want_wait:1;
368	unsigned wait_timer_cancel:1;
369};
370
371/**
372 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
373 *
374 * @control_phase:      Current phase for control transfers (Setup, Data, or
375 *                      Status)
376 * @in_process:         Indicates if this QTD is currently processed by HW
377 * @data_toggle:        Determines the PID of the next data packet for the
378 *                      data phase of control transfers. Ignored for other
379 *                      transfer types. One of the following values:
380 *                       - DWC2_HC_PID_DATA0
381 *                       - DWC2_HC_PID_DATA1
382 * @complete_split:     Keeps track of the current split type for FS/LS
383 *                      endpoints on a HS Hub
384 * @isoc_split_pos:     Position of the ISOC split in full/low speed
385 * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
386 *                      transfer. A frame descriptor describes the buffer
387 *                      position and length of the data to be transferred in the
388 *                      next scheduled (micro)frame of an isochronous transfer.
389 *                      It also holds status for that transaction. The frame
390 *                      index starts at 0.
391 * @isoc_split_offset:  Position of the ISOC split in the buffer for the
392 *                      current frame
393 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
394 * @error_count:        Holds the number of bus errors that have occurred for
395 *                      a transaction within this transfer
396 * @n_desc:             Number of DMA descriptors for this QTD
397 * @isoc_frame_index_last: Last activated frame (packet) index, used in
398 *                      descriptor DMA mode only
399 * @num_naks:           Number of NAKs received on this QTD.
400 * @urb:                URB for this transfer
401 * @qh:                 Queue head for this QTD
402 * @qtd_list_entry:     For linking to the QH's list of QTDs
403 *
404 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
405 * interrupt, or isochronous transfer. A single QTD is created for each URB
406 * (of one of these types) submitted to the HCD. The transfer associated with
407 * a QTD may require one or multiple transactions.
408 *
409 * A QTD is linked to a Queue Head, which is entered in either the
410 * non-periodic or periodic schedule for execution. When a QTD is chosen for
411 * execution, some or all of its transactions may be executed. After
412 * execution, the state of the QTD is updated. The QTD may be retired if all
413 * its transactions are complete or if an error occurred. Otherwise, it
414 * remains in the schedule so more transactions can be executed later.
415 */
416struct dwc2_qtd {
417	enum dwc2_control_phase control_phase;
418	u8 in_process;
419	u8 data_toggle;
420	u8 complete_split;
421	u8 isoc_split_pos;
422	u16 isoc_frame_index;
423	u16 isoc_split_offset;
424	u16 isoc_td_last;
425	u16 isoc_td_first;
426	u32 ssplit_out_xfer_count;
427	u8 error_count;
428	u8 n_desc;
429	u16 isoc_frame_index_last;
430	u16 num_naks;
431	struct dwc2_hcd_urb *urb;
432	struct dwc2_qh *qh;
433	struct list_head qtd_list_entry;
434};
435
436#ifdef DEBUG
437struct hc_xfer_info {
438	struct dwc2_hsotg *hsotg;
439	struct dwc2_host_chan *chan;
440};
441#endif
442
443u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
444
445/* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
446static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
447{
448	return (struct usb_hcd *)hsotg->priv;
449}
450
451/*
452 * Inline used to disable one channel interrupt. Channel interrupts are
453 * disabled when the channel is halted or released by the interrupt handler.
454 * There is no need to handle further interrupts of that type until the
455 * channel is re-assigned. In fact, subsequent handling may cause crashes
456 * because the channel structures are cleaned up when the channel is released.
457 */
458static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
459{
460	u32 mask = dwc2_readl(hsotg->regs + HCINTMSK(chnum));
461
462	mask &= ~intr;
463	dwc2_writel(mask, hsotg->regs + HCINTMSK(chnum));
464}
465
466void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
467void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
468		  enum dwc2_halt_status halt_status);
469void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
470				 struct dwc2_host_chan *chan);
471
472/*
473 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
474 * are read as 1, they won't clear when written back.
475 */
476static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
477{
478	u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
479
480	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
481	return hprt0;
482}
483
484static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
485{
486	return pipe->ep_num;
487}
488
489static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
490{
491	return pipe->pipe_type;
492}
493
494static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
495{
496	return pipe->mps;
497}
498
499static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
500{
501	return pipe->dev_addr;
502}
503
504static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
505{
506	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
507}
508
509static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
510{
511	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
512}
513
514static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
515{
516	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
517}
518
519static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
520{
521	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
522}
523
524static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
525{
526	return pipe->pipe_dir == USB_DIR_IN;
527}
528
529static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
530{
531	return !dwc2_hcd_is_pipe_in(pipe);
532}
533
534int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
535void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
536
537/* Transaction Execution Functions */
538enum dwc2_transaction_type dwc2_hcd_select_transactions(
539						struct dwc2_hsotg *hsotg);
540void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
541				 enum dwc2_transaction_type tr_type);
542
543/* Schedule Queue Functions */
544/* Implemented in hcd_queue.c */
545struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
546				   struct dwc2_hcd_urb *urb,
547					  gfp_t mem_flags);
548void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
549int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
550void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
551void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
552			    int sched_csplit);
553
554void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
555int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
556		     struct dwc2_qh *qh);
557
558/* Unlinks and frees a QTD */
559static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
560						struct dwc2_qtd *qtd,
561						struct dwc2_qh *qh)
562{
563	list_del(&qtd->qtd_list_entry);
564	kfree(qtd);
565	qtd = NULL;
566}
567
568/* Descriptor DMA support functions */
569void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
570			      struct dwc2_qh *qh);
571void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
572				 struct dwc2_host_chan *chan, int chnum,
573					enum dwc2_halt_status halt_status);
574
575int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
576			  gfp_t mem_flags);
577void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
578
579/* Check if QH is non-periodic */
580#define dwc2_qh_is_non_per(_qh_ptr_) \
581	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
582	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
583
584#ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
585static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
586static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
587static inline bool dbg_urb(struct urb *urb) { return true; }
588static inline bool dbg_perio(void) { return true; }
589#else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
590static inline bool dbg_hc(struct dwc2_host_chan *hc)
591{
592	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
593	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
594}
595
596static inline bool dbg_qh(struct dwc2_qh *qh)
597{
598	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
599	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
600}
601
602static inline bool dbg_urb(struct urb *urb)
603{
604	return usb_pipetype(urb->pipe) == PIPE_BULK ||
605	       usb_pipetype(urb->pipe) == PIPE_CONTROL;
606}
607
608static inline bool dbg_perio(void) { return false; }
609#endif
610
611/* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
612#define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
613
614/* Packet size for any kind of endpoint descriptor */
615#define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
616
617/*
618 * Returns true if frame1 index is greater than frame2 index. The comparison
619 * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
620 * frame number when the max index frame number is reached.
621 */
622static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
623{
624	u16 diff = fr_idx1 - fr_idx2;
625	u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
626
627	return diff && !sign;
628}
629
630/*
631 * Returns true if frame1 is less than or equal to frame2. The comparison is
632 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
633 * frame number when the max frame number is reached.
634 */
635static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
636{
637	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
638}
639
640/*
641 * Returns true if frame1 is greater than frame2. The comparison is done
642 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
643 * number when the max frame number is reached.
644 */
645static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
646{
647	return (frame1 != frame2) &&
648	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
649}
650
651/*
652 * Increments frame by the amount specified by inc. The addition is done
653 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
654 */
655static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
656{
657	return (frame + inc) & HFNUM_MAX_FRNUM;
658}
659
660static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
661{
662	return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
663}
664
665static inline u16 dwc2_full_frame_num(u16 frame)
666{
667	return (frame & HFNUM_MAX_FRNUM) >> 3;
668}
669
670static inline u16 dwc2_micro_frame_num(u16 frame)
671{
672	return frame & 0x7;
673}
674
675/*
676 * Returns the Core Interrupt Status register contents, ANDed with the Core
677 * Interrupt Mask register contents
678 */
679static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
680{
681	return dwc2_readl(hsotg->regs + GINTSTS) &
682	       dwc2_readl(hsotg->regs + GINTMSK);
683}
684
685static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
686{
687	return dwc2_urb->status;
688}
689
690static inline u32 dwc2_hcd_urb_get_actual_length(
691		struct dwc2_hcd_urb *dwc2_urb)
692{
693	return dwc2_urb->actual_length;
694}
695
696static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
697{
698	return dwc2_urb->error_count;
699}
700
701static inline void dwc2_hcd_urb_set_iso_desc_params(
702		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
703		u32 length)
704{
705	dwc2_urb->iso_descs[desc_num].offset = offset;
706	dwc2_urb->iso_descs[desc_num].length = length;
707}
708
709static inline u32 dwc2_hcd_urb_get_iso_desc_status(
710		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
711{
712	return dwc2_urb->iso_descs[desc_num].status;
713}
714
715static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
716		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
717{
718	return dwc2_urb->iso_descs[desc_num].actual_length;
719}
720
721static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
722						  struct usb_host_endpoint *ep)
723{
724	struct dwc2_qh *qh = ep->hcpriv;
725
726	if (qh && !list_empty(&qh->qh_list_entry))
727		return 1;
728
729	return 0;
730}
731
732static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
733					    struct usb_host_endpoint *ep)
734{
735	struct dwc2_qh *qh = ep->hcpriv;
736
737	if (!qh) {
738		WARN_ON(1);
739		return 0;
740	}
741
742	return qh->host_us;
743}
744
745void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
746			       struct dwc2_host_chan *chan, int chnum,
747				      struct dwc2_qtd *qtd);
748
749/* HCD Core API */
750
751/**
752 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
753 *
754 * @hsotg: The DWC2 HCD
755 *
756 * Returns IRQ_HANDLED if interrupt is handled
757 * Return IRQ_NONE if interrupt is not handled
758 */
759irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
760
761/**
762 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
763 *
764 * @hsotg: The DWC2 HCD
765 */
766void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
767
768/**
769 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
770 * and 0 otherwise
771 *
772 * @hsotg: The DWC2 HCD
773 */
774int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
775
776/**
777 * dwc2_hcd_dump_state() - Dumps hsotg state
778 *
779 * @hsotg: The DWC2 HCD
780 *
781 * NOTE: This function will be removed once the peripheral controller code
782 * is integrated and the driver is stable
783 */
784void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
785
786/* URB interface */
787
788/* Transfer flags */
789#define URB_GIVEBACK_ASAP	0x1
790#define URB_SEND_ZERO_PACKET	0x2
791
792/* Host driver callbacks */
793struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
794				      void *context, gfp_t mem_flags,
795				      int *ttport);
796
797void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
798			   struct dwc2_tt *dwc_tt);
799int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
800void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
801			int status);
802
803#endif /* __DWC2_HCD_H__ */