Loading...
1/*
2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved.
4 * Copyright(c) 2008 Mike Christie
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Maintained at www.Open-FCoE.org
20 */
21
22/*
23 * Fibre Channel exchange and sequence handling.
24 */
25
26#include <linux/timer.h>
27#include <linux/slab.h>
28#include <linux/err.h>
29
30#include <scsi/fc/fc_fc2.h>
31
32#include <scsi/libfc.h>
33#include <scsi/fc_encode.h>
34
35#include "fc_libfc.h"
36
37u16 fc_cpu_mask; /* cpu mask for possible cpus */
38EXPORT_SYMBOL(fc_cpu_mask);
39static u16 fc_cpu_order; /* 2's power to represent total possible cpus */
40static struct kmem_cache *fc_em_cachep; /* cache for exchanges */
41static struct workqueue_struct *fc_exch_workqueue;
42
43/*
44 * Structure and function definitions for managing Fibre Channel Exchanges
45 * and Sequences.
46 *
47 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
48 *
49 * fc_exch_mgr holds the exchange state for an N port
50 *
51 * fc_exch holds state for one exchange and links to its active sequence.
52 *
53 * fc_seq holds the state for an individual sequence.
54 */
55
56/**
57 * struct fc_exch_pool - Per cpu exchange pool
58 * @next_index: Next possible free exchange index
59 * @total_exches: Total allocated exchanges
60 * @lock: Exch pool lock
61 * @ex_list: List of exchanges
62 *
63 * This structure manages per cpu exchanges in array of exchange pointers.
64 * This array is allocated followed by struct fc_exch_pool memory for
65 * assigned range of exchanges to per cpu pool.
66 */
67struct fc_exch_pool {
68 u16 next_index;
69 u16 total_exches;
70
71 /* two cache of free slot in exch array */
72 u16 left;
73 u16 right;
74
75 spinlock_t lock;
76 struct list_head ex_list;
77};
78
79/**
80 * struct fc_exch_mgr - The Exchange Manager (EM).
81 * @class: Default class for new sequences
82 * @kref: Reference counter
83 * @min_xid: Minimum exchange ID
84 * @max_xid: Maximum exchange ID
85 * @ep_pool: Reserved exchange pointers
86 * @pool_max_index: Max exch array index in exch pool
87 * @pool: Per cpu exch pool
88 * @stats: Statistics structure
89 *
90 * This structure is the center for creating exchanges and sequences.
91 * It manages the allocation of exchange IDs.
92 */
93struct fc_exch_mgr {
94 enum fc_class class;
95 struct kref kref;
96 u16 min_xid;
97 u16 max_xid;
98 mempool_t *ep_pool;
99 u16 pool_max_index;
100 struct fc_exch_pool *pool;
101
102 /*
103 * currently exchange mgr stats are updated but not used.
104 * either stats can be expose via sysfs or remove them
105 * all together if not used XXX
106 */
107 struct {
108 atomic_t no_free_exch;
109 atomic_t no_free_exch_xid;
110 atomic_t xid_not_found;
111 atomic_t xid_busy;
112 atomic_t seq_not_found;
113 atomic_t non_bls_resp;
114 } stats;
115};
116
117/**
118 * struct fc_exch_mgr_anchor - primary structure for list of EMs
119 * @ema_list: Exchange Manager Anchor list
120 * @mp: Exchange Manager associated with this anchor
121 * @match: Routine to determine if this anchor's EM should be used
122 *
123 * When walking the list of anchors the match routine will be called
124 * for each anchor to determine if that EM should be used. The last
125 * anchor in the list will always match to handle any exchanges not
126 * handled by other EMs. The non-default EMs would be added to the
127 * anchor list by HW that provides FCoE offloads.
128 */
129struct fc_exch_mgr_anchor {
130 struct list_head ema_list;
131 struct fc_exch_mgr *mp;
132 bool (*match)(struct fc_frame *);
133};
134
135static void fc_exch_rrq(struct fc_exch *);
136static void fc_seq_ls_acc(struct fc_frame *);
137static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
138 enum fc_els_rjt_explan);
139static void fc_exch_els_rec(struct fc_frame *);
140static void fc_exch_els_rrq(struct fc_frame *);
141
142/*
143 * Internal implementation notes.
144 *
145 * The exchange manager is one by default in libfc but LLD may choose
146 * to have one per CPU. The sequence manager is one per exchange manager
147 * and currently never separated.
148 *
149 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field
150 * assigned by the Sequence Initiator that shall be unique for a specific
151 * D_ID and S_ID pair while the Sequence is open." Note that it isn't
152 * qualified by exchange ID, which one might think it would be.
153 * In practice this limits the number of open sequences and exchanges to 256
154 * per session. For most targets we could treat this limit as per exchange.
155 *
156 * The exchange and its sequence are freed when the last sequence is received.
157 * It's possible for the remote port to leave an exchange open without
158 * sending any sequences.
159 *
160 * Notes on reference counts:
161 *
162 * Exchanges are reference counted and exchange gets freed when the reference
163 * count becomes zero.
164 *
165 * Timeouts:
166 * Sequences are timed out for E_D_TOV and R_A_TOV.
167 *
168 * Sequence event handling:
169 *
170 * The following events may occur on initiator sequences:
171 *
172 * Send.
173 * For now, the whole thing is sent.
174 * Receive ACK
175 * This applies only to class F.
176 * The sequence is marked complete.
177 * ULP completion.
178 * The upper layer calls fc_exch_done() when done
179 * with exchange and sequence tuple.
180 * RX-inferred completion.
181 * When we receive the next sequence on the same exchange, we can
182 * retire the previous sequence ID. (XXX not implemented).
183 * Timeout.
184 * R_A_TOV frees the sequence ID. If we're waiting for ACK,
185 * E_D_TOV causes abort and calls upper layer response handler
186 * with FC_EX_TIMEOUT error.
187 * Receive RJT
188 * XXX defer.
189 * Send ABTS
190 * On timeout.
191 *
192 * The following events may occur on recipient sequences:
193 *
194 * Receive
195 * Allocate sequence for first frame received.
196 * Hold during receive handler.
197 * Release when final frame received.
198 * Keep status of last N of these for the ELS RES command. XXX TBD.
199 * Receive ABTS
200 * Deallocate sequence
201 * Send RJT
202 * Deallocate
203 *
204 * For now, we neglect conditions where only part of a sequence was
205 * received or transmitted, or where out-of-order receipt is detected.
206 */
207
208/*
209 * Locking notes:
210 *
211 * The EM code run in a per-CPU worker thread.
212 *
213 * To protect against concurrency between a worker thread code and timers,
214 * sequence allocation and deallocation must be locked.
215 * - exchange refcnt can be done atomicly without locks.
216 * - sequence allocation must be locked by exch lock.
217 * - If the EM pool lock and ex_lock must be taken at the same time, then the
218 * EM pool lock must be taken before the ex_lock.
219 */
220
221/*
222 * opcode names for debugging.
223 */
224static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
225
226/**
227 * fc_exch_name_lookup() - Lookup name by opcode
228 * @op: Opcode to be looked up
229 * @table: Opcode/name table
230 * @max_index: Index not to be exceeded
231 *
232 * This routine is used to determine a human-readable string identifying
233 * a R_CTL opcode.
234 */
235static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
236 unsigned int max_index)
237{
238 const char *name = NULL;
239
240 if (op < max_index)
241 name = table[op];
242 if (!name)
243 name = "unknown";
244 return name;
245}
246
247/**
248 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
249 * @op: The opcode to be looked up
250 */
251static const char *fc_exch_rctl_name(unsigned int op)
252{
253 return fc_exch_name_lookup(op, fc_exch_rctl_names,
254 ARRAY_SIZE(fc_exch_rctl_names));
255}
256
257/**
258 * fc_exch_hold() - Increment an exchange's reference count
259 * @ep: Echange to be held
260 */
261static inline void fc_exch_hold(struct fc_exch *ep)
262{
263 atomic_inc(&ep->ex_refcnt);
264}
265
266/**
267 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
268 * and determine SOF and EOF.
269 * @ep: The exchange to that will use the header
270 * @fp: The frame whose header is to be modified
271 * @f_ctl: F_CTL bits that will be used for the frame header
272 *
273 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
274 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
275 */
276static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
277 u32 f_ctl)
278{
279 struct fc_frame_header *fh = fc_frame_header_get(fp);
280 u16 fill;
281
282 fr_sof(fp) = ep->class;
283 if (ep->seq.cnt)
284 fr_sof(fp) = fc_sof_normal(ep->class);
285
286 if (f_ctl & FC_FC_END_SEQ) {
287 fr_eof(fp) = FC_EOF_T;
288 if (fc_sof_needs_ack(ep->class))
289 fr_eof(fp) = FC_EOF_N;
290 /*
291 * From F_CTL.
292 * The number of fill bytes to make the length a 4-byte
293 * multiple is the low order 2-bits of the f_ctl.
294 * The fill itself will have been cleared by the frame
295 * allocation.
296 * After this, the length will be even, as expected by
297 * the transport.
298 */
299 fill = fr_len(fp) & 3;
300 if (fill) {
301 fill = 4 - fill;
302 /* TODO, this may be a problem with fragmented skb */
303 skb_put(fp_skb(fp), fill);
304 hton24(fh->fh_f_ctl, f_ctl | fill);
305 }
306 } else {
307 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */
308 fr_eof(fp) = FC_EOF_N;
309 }
310
311 /*
312 * Initialize remainig fh fields
313 * from fc_fill_fc_hdr
314 */
315 fh->fh_ox_id = htons(ep->oxid);
316 fh->fh_rx_id = htons(ep->rxid);
317 fh->fh_seq_id = ep->seq.id;
318 fh->fh_seq_cnt = htons(ep->seq.cnt);
319}
320
321/**
322 * fc_exch_release() - Decrement an exchange's reference count
323 * @ep: Exchange to be released
324 *
325 * If the reference count reaches zero and the exchange is complete,
326 * it is freed.
327 */
328static void fc_exch_release(struct fc_exch *ep)
329{
330 struct fc_exch_mgr *mp;
331
332 if (atomic_dec_and_test(&ep->ex_refcnt)) {
333 mp = ep->em;
334 if (ep->destructor)
335 ep->destructor(&ep->seq, ep->arg);
336 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
337 mempool_free(ep, mp->ep_pool);
338 }
339}
340
341/**
342 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
343 * @ep: The exchange that is complete
344 */
345static int fc_exch_done_locked(struct fc_exch *ep)
346{
347 int rc = 1;
348
349 /*
350 * We must check for completion in case there are two threads
351 * tyring to complete this. But the rrq code will reuse the
352 * ep, and in that case we only clear the resp and set it as
353 * complete, so it can be reused by the timer to send the rrq.
354 */
355 ep->resp = NULL;
356 if (ep->state & FC_EX_DONE)
357 return rc;
358 ep->esb_stat |= ESB_ST_COMPLETE;
359
360 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
361 ep->state |= FC_EX_DONE;
362 if (cancel_delayed_work(&ep->timeout_work))
363 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
364 rc = 0;
365 }
366 return rc;
367}
368
369/**
370 * fc_exch_ptr_get() - Return an exchange from an exchange pool
371 * @pool: Exchange Pool to get an exchange from
372 * @index: Index of the exchange within the pool
373 *
374 * Use the index to get an exchange from within an exchange pool. exches
375 * will point to an array of exchange pointers. The index will select
376 * the exchange within the array.
377 */
378static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
379 u16 index)
380{
381 struct fc_exch **exches = (struct fc_exch **)(pool + 1);
382 return exches[index];
383}
384
385/**
386 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
387 * @pool: The pool to assign the exchange to
388 * @index: The index in the pool where the exchange will be assigned
389 * @ep: The exchange to assign to the pool
390 */
391static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
392 struct fc_exch *ep)
393{
394 ((struct fc_exch **)(pool + 1))[index] = ep;
395}
396
397/**
398 * fc_exch_delete() - Delete an exchange
399 * @ep: The exchange to be deleted
400 */
401static void fc_exch_delete(struct fc_exch *ep)
402{
403 struct fc_exch_pool *pool;
404 u16 index;
405
406 pool = ep->pool;
407 spin_lock_bh(&pool->lock);
408 WARN_ON(pool->total_exches <= 0);
409 pool->total_exches--;
410
411 /* update cache of free slot */
412 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
413 if (pool->left == FC_XID_UNKNOWN)
414 pool->left = index;
415 else if (pool->right == FC_XID_UNKNOWN)
416 pool->right = index;
417 else
418 pool->next_index = index;
419
420 fc_exch_ptr_set(pool, index, NULL);
421 list_del(&ep->ex_list);
422 spin_unlock_bh(&pool->lock);
423 fc_exch_release(ep); /* drop hold for exch in mp */
424}
425
426/**
427 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
428 * the exchange lock held
429 * @ep: The exchange whose timer will start
430 * @timer_msec: The timeout period
431 *
432 * Used for upper level protocols to time out the exchange.
433 * The timer is cancelled when it fires or when the exchange completes.
434 */
435static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
436 unsigned int timer_msec)
437{
438 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
439 return;
440
441 FC_EXCH_DBG(ep, "Exchange timer armed\n");
442
443 if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
444 msecs_to_jiffies(timer_msec)))
445 fc_exch_hold(ep); /* hold for timer */
446}
447
448/**
449 * fc_exch_timer_set() - Lock the exchange and set the timer
450 * @ep: The exchange whose timer will start
451 * @timer_msec: The timeout period
452 */
453static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
454{
455 spin_lock_bh(&ep->ex_lock);
456 fc_exch_timer_set_locked(ep, timer_msec);
457 spin_unlock_bh(&ep->ex_lock);
458}
459
460/**
461 * fc_seq_send() - Send a frame using existing sequence/exchange pair
462 * @lport: The local port that the exchange will be sent on
463 * @sp: The sequence to be sent
464 * @fp: The frame to be sent on the exchange
465 */
466static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
467 struct fc_frame *fp)
468{
469 struct fc_exch *ep;
470 struct fc_frame_header *fh = fc_frame_header_get(fp);
471 int error;
472 u32 f_ctl;
473
474 ep = fc_seq_exch(sp);
475 WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);
476
477 f_ctl = ntoh24(fh->fh_f_ctl);
478 fc_exch_setup_hdr(ep, fp, f_ctl);
479 fr_encaps(fp) = ep->encaps;
480
481 /*
482 * update sequence count if this frame is carrying
483 * multiple FC frames when sequence offload is enabled
484 * by LLD.
485 */
486 if (fr_max_payload(fp))
487 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
488 fr_max_payload(fp));
489 else
490 sp->cnt++;
491
492 /*
493 * Send the frame.
494 */
495 error = lport->tt.frame_send(lport, fp);
496
497 if (fh->fh_type == FC_TYPE_BLS)
498 return error;
499
500 /*
501 * Update the exchange and sequence flags,
502 * assuming all frames for the sequence have been sent.
503 * We can only be called to send once for each sequence.
504 */
505 spin_lock_bh(&ep->ex_lock);
506 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */
507 if (f_ctl & FC_FC_SEQ_INIT)
508 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
509 spin_unlock_bh(&ep->ex_lock);
510 return error;
511}
512
513/**
514 * fc_seq_alloc() - Allocate a sequence for a given exchange
515 * @ep: The exchange to allocate a new sequence for
516 * @seq_id: The sequence ID to be used
517 *
518 * We don't support multiple originated sequences on the same exchange.
519 * By implication, any previously originated sequence on this exchange
520 * is complete, and we reallocate the same sequence.
521 */
522static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
523{
524 struct fc_seq *sp;
525
526 sp = &ep->seq;
527 sp->ssb_stat = 0;
528 sp->cnt = 0;
529 sp->id = seq_id;
530 return sp;
531}
532
533/**
534 * fc_seq_start_next_locked() - Allocate a new sequence on the same
535 * exchange as the supplied sequence
536 * @sp: The sequence/exchange to get a new sequence for
537 */
538static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
539{
540 struct fc_exch *ep = fc_seq_exch(sp);
541
542 sp = fc_seq_alloc(ep, ep->seq_id++);
543 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
544 ep->f_ctl, sp->id);
545 return sp;
546}
547
548/**
549 * fc_seq_start_next() - Lock the exchange and get a new sequence
550 * for a given sequence/exchange pair
551 * @sp: The sequence/exchange to get a new exchange for
552 */
553static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
554{
555 struct fc_exch *ep = fc_seq_exch(sp);
556
557 spin_lock_bh(&ep->ex_lock);
558 sp = fc_seq_start_next_locked(sp);
559 spin_unlock_bh(&ep->ex_lock);
560
561 return sp;
562}
563
564/*
565 * Set the response handler for the exchange associated with a sequence.
566 */
567static void fc_seq_set_resp(struct fc_seq *sp,
568 void (*resp)(struct fc_seq *, struct fc_frame *,
569 void *),
570 void *arg)
571{
572 struct fc_exch *ep = fc_seq_exch(sp);
573
574 spin_lock_bh(&ep->ex_lock);
575 ep->resp = resp;
576 ep->arg = arg;
577 spin_unlock_bh(&ep->ex_lock);
578}
579
580/**
581 * fc_exch_abort_locked() - Abort an exchange
582 * @ep: The exchange to be aborted
583 * @timer_msec: The period of time to wait before aborting
584 *
585 * Locking notes: Called with exch lock held
586 *
587 * Return value: 0 on success else error code
588 */
589static int fc_exch_abort_locked(struct fc_exch *ep,
590 unsigned int timer_msec)
591{
592 struct fc_seq *sp;
593 struct fc_frame *fp;
594 int error;
595
596 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
597 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP))
598 return -ENXIO;
599
600 /*
601 * Send the abort on a new sequence if possible.
602 */
603 sp = fc_seq_start_next_locked(&ep->seq);
604 if (!sp)
605 return -ENOMEM;
606
607 ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
608 if (timer_msec)
609 fc_exch_timer_set_locked(ep, timer_msec);
610
611 /*
612 * If not logged into the fabric, don't send ABTS but leave
613 * sequence active until next timeout.
614 */
615 if (!ep->sid)
616 return 0;
617
618 /*
619 * Send an abort for the sequence that timed out.
620 */
621 fp = fc_frame_alloc(ep->lp, 0);
622 if (fp) {
623 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
624 FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
625 error = fc_seq_send(ep->lp, sp, fp);
626 } else
627 error = -ENOBUFS;
628 return error;
629}
630
631/**
632 * fc_seq_exch_abort() - Abort an exchange and sequence
633 * @req_sp: The sequence to be aborted
634 * @timer_msec: The period of time to wait before aborting
635 *
636 * Generally called because of a timeout or an abort from the upper layer.
637 *
638 * Return value: 0 on success else error code
639 */
640static int fc_seq_exch_abort(const struct fc_seq *req_sp,
641 unsigned int timer_msec)
642{
643 struct fc_exch *ep;
644 int error;
645
646 ep = fc_seq_exch(req_sp);
647 spin_lock_bh(&ep->ex_lock);
648 error = fc_exch_abort_locked(ep, timer_msec);
649 spin_unlock_bh(&ep->ex_lock);
650 return error;
651}
652
653/**
654 * fc_exch_timeout() - Handle exchange timer expiration
655 * @work: The work_struct identifying the exchange that timed out
656 */
657static void fc_exch_timeout(struct work_struct *work)
658{
659 struct fc_exch *ep = container_of(work, struct fc_exch,
660 timeout_work.work);
661 struct fc_seq *sp = &ep->seq;
662 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
663 void *arg;
664 u32 e_stat;
665 int rc = 1;
666
667 FC_EXCH_DBG(ep, "Exchange timed out\n");
668
669 spin_lock_bh(&ep->ex_lock);
670 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
671 goto unlock;
672
673 e_stat = ep->esb_stat;
674 if (e_stat & ESB_ST_COMPLETE) {
675 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
676 spin_unlock_bh(&ep->ex_lock);
677 if (e_stat & ESB_ST_REC_QUAL)
678 fc_exch_rrq(ep);
679 goto done;
680 } else {
681 resp = ep->resp;
682 arg = ep->arg;
683 ep->resp = NULL;
684 if (e_stat & ESB_ST_ABNORMAL)
685 rc = fc_exch_done_locked(ep);
686 spin_unlock_bh(&ep->ex_lock);
687 if (!rc)
688 fc_exch_delete(ep);
689 if (resp)
690 resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
691 fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
692 goto done;
693 }
694unlock:
695 spin_unlock_bh(&ep->ex_lock);
696done:
697 /*
698 * This release matches the hold taken when the timer was set.
699 */
700 fc_exch_release(ep);
701}
702
703/**
704 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
705 * @lport: The local port that the exchange is for
706 * @mp: The exchange manager that will allocate the exchange
707 *
708 * Returns pointer to allocated fc_exch with exch lock held.
709 */
710static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
711 struct fc_exch_mgr *mp)
712{
713 struct fc_exch *ep;
714 unsigned int cpu;
715 u16 index;
716 struct fc_exch_pool *pool;
717
718 /* allocate memory for exchange */
719 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
720 if (!ep) {
721 atomic_inc(&mp->stats.no_free_exch);
722 goto out;
723 }
724 memset(ep, 0, sizeof(*ep));
725
726 cpu = get_cpu();
727 pool = per_cpu_ptr(mp->pool, cpu);
728 spin_lock_bh(&pool->lock);
729 put_cpu();
730
731 /* peek cache of free slot */
732 if (pool->left != FC_XID_UNKNOWN) {
733 index = pool->left;
734 pool->left = FC_XID_UNKNOWN;
735 goto hit;
736 }
737 if (pool->right != FC_XID_UNKNOWN) {
738 index = pool->right;
739 pool->right = FC_XID_UNKNOWN;
740 goto hit;
741 }
742
743 index = pool->next_index;
744 /* allocate new exch from pool */
745 while (fc_exch_ptr_get(pool, index)) {
746 index = index == mp->pool_max_index ? 0 : index + 1;
747 if (index == pool->next_index)
748 goto err;
749 }
750 pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
751hit:
752 fc_exch_hold(ep); /* hold for exch in mp */
753 spin_lock_init(&ep->ex_lock);
754 /*
755 * Hold exch lock for caller to prevent fc_exch_reset()
756 * from releasing exch while fc_exch_alloc() caller is
757 * still working on exch.
758 */
759 spin_lock_bh(&ep->ex_lock);
760
761 fc_exch_ptr_set(pool, index, ep);
762 list_add_tail(&ep->ex_list, &pool->ex_list);
763 fc_seq_alloc(ep, ep->seq_id++);
764 pool->total_exches++;
765 spin_unlock_bh(&pool->lock);
766
767 /*
768 * update exchange
769 */
770 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
771 ep->em = mp;
772 ep->pool = pool;
773 ep->lp = lport;
774 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */
775 ep->rxid = FC_XID_UNKNOWN;
776 ep->class = mp->class;
777 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
778out:
779 return ep;
780err:
781 spin_unlock_bh(&pool->lock);
782 atomic_inc(&mp->stats.no_free_exch_xid);
783 mempool_free(ep, mp->ep_pool);
784 return NULL;
785}
786
787/**
788 * fc_exch_alloc() - Allocate an exchange from an EM on a
789 * local port's list of EMs.
790 * @lport: The local port that will own the exchange
791 * @fp: The FC frame that the exchange will be for
792 *
793 * This function walks the list of exchange manager(EM)
794 * anchors to select an EM for a new exchange allocation. The
795 * EM is selected when a NULL match function pointer is encountered
796 * or when a call to a match function returns true.
797 */
798static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
799 struct fc_frame *fp)
800{
801 struct fc_exch_mgr_anchor *ema;
802
803 list_for_each_entry(ema, &lport->ema_list, ema_list)
804 if (!ema->match || ema->match(fp))
805 return fc_exch_em_alloc(lport, ema->mp);
806 return NULL;
807}
808
809/**
810 * fc_exch_find() - Lookup and hold an exchange
811 * @mp: The exchange manager to lookup the exchange from
812 * @xid: The XID of the exchange to look up
813 */
814static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
815{
816 struct fc_exch_pool *pool;
817 struct fc_exch *ep = NULL;
818
819 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
820 pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
821 spin_lock_bh(&pool->lock);
822 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
823 if (ep && ep->xid == xid)
824 fc_exch_hold(ep);
825 spin_unlock_bh(&pool->lock);
826 }
827 return ep;
828}
829
830
831/**
832 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
833 * the memory allocated for the related objects may be freed.
834 * @sp: The sequence that has completed
835 */
836static void fc_exch_done(struct fc_seq *sp)
837{
838 struct fc_exch *ep = fc_seq_exch(sp);
839 int rc;
840
841 spin_lock_bh(&ep->ex_lock);
842 rc = fc_exch_done_locked(ep);
843 spin_unlock_bh(&ep->ex_lock);
844 if (!rc)
845 fc_exch_delete(ep);
846}
847
848/**
849 * fc_exch_resp() - Allocate a new exchange for a response frame
850 * @lport: The local port that the exchange was for
851 * @mp: The exchange manager to allocate the exchange from
852 * @fp: The response frame
853 *
854 * Sets the responder ID in the frame header.
855 */
856static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
857 struct fc_exch_mgr *mp,
858 struct fc_frame *fp)
859{
860 struct fc_exch *ep;
861 struct fc_frame_header *fh;
862
863 ep = fc_exch_alloc(lport, fp);
864 if (ep) {
865 ep->class = fc_frame_class(fp);
866
867 /*
868 * Set EX_CTX indicating we're responding on this exchange.
869 */
870 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */
871 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */
872 fh = fc_frame_header_get(fp);
873 ep->sid = ntoh24(fh->fh_d_id);
874 ep->did = ntoh24(fh->fh_s_id);
875 ep->oid = ep->did;
876
877 /*
878 * Allocated exchange has placed the XID in the
879 * originator field. Move it to the responder field,
880 * and set the originator XID from the frame.
881 */
882 ep->rxid = ep->xid;
883 ep->oxid = ntohs(fh->fh_ox_id);
884 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
885 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
886 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
887
888 fc_exch_hold(ep); /* hold for caller */
889 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */
890 }
891 return ep;
892}
893
894/**
895 * fc_seq_lookup_recip() - Find a sequence where the other end
896 * originated the sequence
897 * @lport: The local port that the frame was sent to
898 * @mp: The Exchange Manager to lookup the exchange from
899 * @fp: The frame associated with the sequence we're looking for
900 *
901 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
902 * on the ep that should be released by the caller.
903 */
904static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
905 struct fc_exch_mgr *mp,
906 struct fc_frame *fp)
907{
908 struct fc_frame_header *fh = fc_frame_header_get(fp);
909 struct fc_exch *ep = NULL;
910 struct fc_seq *sp = NULL;
911 enum fc_pf_rjt_reason reject = FC_RJT_NONE;
912 u32 f_ctl;
913 u16 xid;
914
915 f_ctl = ntoh24(fh->fh_f_ctl);
916 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
917
918 /*
919 * Lookup or create the exchange if we will be creating the sequence.
920 */
921 if (f_ctl & FC_FC_EX_CTX) {
922 xid = ntohs(fh->fh_ox_id); /* we originated exch */
923 ep = fc_exch_find(mp, xid);
924 if (!ep) {
925 atomic_inc(&mp->stats.xid_not_found);
926 reject = FC_RJT_OX_ID;
927 goto out;
928 }
929 if (ep->rxid == FC_XID_UNKNOWN)
930 ep->rxid = ntohs(fh->fh_rx_id);
931 else if (ep->rxid != ntohs(fh->fh_rx_id)) {
932 reject = FC_RJT_OX_ID;
933 goto rel;
934 }
935 } else {
936 xid = ntohs(fh->fh_rx_id); /* we are the responder */
937
938 /*
939 * Special case for MDS issuing an ELS TEST with a
940 * bad rxid of 0.
941 * XXX take this out once we do the proper reject.
942 */
943 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
944 fc_frame_payload_op(fp) == ELS_TEST) {
945 fh->fh_rx_id = htons(FC_XID_UNKNOWN);
946 xid = FC_XID_UNKNOWN;
947 }
948
949 /*
950 * new sequence - find the exchange
951 */
952 ep = fc_exch_find(mp, xid);
953 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
954 if (ep) {
955 atomic_inc(&mp->stats.xid_busy);
956 reject = FC_RJT_RX_ID;
957 goto rel;
958 }
959 ep = fc_exch_resp(lport, mp, fp);
960 if (!ep) {
961 reject = FC_RJT_EXCH_EST; /* XXX */
962 goto out;
963 }
964 xid = ep->xid; /* get our XID */
965 } else if (!ep) {
966 atomic_inc(&mp->stats.xid_not_found);
967 reject = FC_RJT_RX_ID; /* XID not found */
968 goto out;
969 }
970 }
971
972 /*
973 * At this point, we have the exchange held.
974 * Find or create the sequence.
975 */
976 if (fc_sof_is_init(fr_sof(fp))) {
977 sp = &ep->seq;
978 sp->ssb_stat |= SSB_ST_RESP;
979 sp->id = fh->fh_seq_id;
980 } else {
981 sp = &ep->seq;
982 if (sp->id != fh->fh_seq_id) {
983 atomic_inc(&mp->stats.seq_not_found);
984 if (f_ctl & FC_FC_END_SEQ) {
985 /*
986 * Update sequence_id based on incoming last
987 * frame of sequence exchange. This is needed
988 * for FCoE target where DDP has been used
989 * on target where, stack is indicated only
990 * about last frame's (payload _header) header.
991 * Whereas "seq_id" which is part of
992 * frame_header is allocated by initiator
993 * which is totally different from "seq_id"
994 * allocated when XFER_RDY was sent by target.
995 * To avoid false -ve which results into not
996 * sending RSP, hence write request on other
997 * end never finishes.
998 */
999 spin_lock_bh(&ep->ex_lock);
1000 sp->ssb_stat |= SSB_ST_RESP;
1001 sp->id = fh->fh_seq_id;
1002 spin_unlock_bh(&ep->ex_lock);
1003 } else {
1004 /* sequence/exch should exist */
1005 reject = FC_RJT_SEQ_ID;
1006 goto rel;
1007 }
1008 }
1009 }
1010 WARN_ON(ep != fc_seq_exch(sp));
1011
1012 if (f_ctl & FC_FC_SEQ_INIT)
1013 ep->esb_stat |= ESB_ST_SEQ_INIT;
1014
1015 fr_seq(fp) = sp;
1016out:
1017 return reject;
1018rel:
1019 fc_exch_done(&ep->seq);
1020 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */
1021 return reject;
1022}
1023
1024/**
1025 * fc_seq_lookup_orig() - Find a sequence where this end
1026 * originated the sequence
1027 * @mp: The Exchange Manager to lookup the exchange from
1028 * @fp: The frame associated with the sequence we're looking for
1029 *
1030 * Does not hold the sequence for the caller.
1031 */
1032static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1033 struct fc_frame *fp)
1034{
1035 struct fc_frame_header *fh = fc_frame_header_get(fp);
1036 struct fc_exch *ep;
1037 struct fc_seq *sp = NULL;
1038 u32 f_ctl;
1039 u16 xid;
1040
1041 f_ctl = ntoh24(fh->fh_f_ctl);
1042 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1043 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1044 ep = fc_exch_find(mp, xid);
1045 if (!ep)
1046 return NULL;
1047 if (ep->seq.id == fh->fh_seq_id) {
1048 /*
1049 * Save the RX_ID if we didn't previously know it.
1050 */
1051 sp = &ep->seq;
1052 if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1053 ep->rxid == FC_XID_UNKNOWN) {
1054 ep->rxid = ntohs(fh->fh_rx_id);
1055 }
1056 }
1057 fc_exch_release(ep);
1058 return sp;
1059}
1060
1061/**
1062 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1063 * @ep: The exchange to set the addresses for
1064 * @orig_id: The originator's ID
1065 * @resp_id: The responder's ID
1066 *
1067 * Note this must be done before the first sequence of the exchange is sent.
1068 */
1069static void fc_exch_set_addr(struct fc_exch *ep,
1070 u32 orig_id, u32 resp_id)
1071{
1072 ep->oid = orig_id;
1073 if (ep->esb_stat & ESB_ST_RESP) {
1074 ep->sid = resp_id;
1075 ep->did = orig_id;
1076 } else {
1077 ep->sid = orig_id;
1078 ep->did = resp_id;
1079 }
1080}
1081
1082/**
1083 * fc_seq_els_rsp_send() - Send an ELS response using information from
1084 * the existing sequence/exchange.
1085 * @fp: The received frame
1086 * @els_cmd: The ELS command to be sent
1087 * @els_data: The ELS data to be sent
1088 *
1089 * The received frame is not freed.
1090 */
1091static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1092 struct fc_seq_els_data *els_data)
1093{
1094 switch (els_cmd) {
1095 case ELS_LS_RJT:
1096 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1097 break;
1098 case ELS_LS_ACC:
1099 fc_seq_ls_acc(fp);
1100 break;
1101 case ELS_RRQ:
1102 fc_exch_els_rrq(fp);
1103 break;
1104 case ELS_REC:
1105 fc_exch_els_rec(fp);
1106 break;
1107 default:
1108 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1109 }
1110}
1111
1112/**
1113 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1114 * @sp: The sequence that is to be sent
1115 * @fp: The frame that will be sent on the sequence
1116 * @rctl: The R_CTL information to be sent
1117 * @fh_type: The frame header type
1118 */
1119static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1120 enum fc_rctl rctl, enum fc_fh_type fh_type)
1121{
1122 u32 f_ctl;
1123 struct fc_exch *ep = fc_seq_exch(sp);
1124
1125 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1126 f_ctl |= ep->f_ctl;
1127 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1128 fc_seq_send(ep->lp, sp, fp);
1129}
1130
1131/**
1132 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1133 * @sp: The sequence to send the ACK on
1134 * @rx_fp: The received frame that is being acknoledged
1135 *
1136 * Send ACK_1 (or equiv.) indicating we received something.
1137 */
1138static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1139{
1140 struct fc_frame *fp;
1141 struct fc_frame_header *rx_fh;
1142 struct fc_frame_header *fh;
1143 struct fc_exch *ep = fc_seq_exch(sp);
1144 struct fc_lport *lport = ep->lp;
1145 unsigned int f_ctl;
1146
1147 /*
1148 * Don't send ACKs for class 3.
1149 */
1150 if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1151 fp = fc_frame_alloc(lport, 0);
1152 if (!fp)
1153 return;
1154
1155 fh = fc_frame_header_get(fp);
1156 fh->fh_r_ctl = FC_RCTL_ACK_1;
1157 fh->fh_type = FC_TYPE_BLS;
1158
1159 /*
1160 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1161 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1162 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1163 * Last ACK uses bits 7-6 (continue sequence),
1164 * bits 5-4 are meaningful (what kind of ACK to use).
1165 */
1166 rx_fh = fc_frame_header_get(rx_fp);
1167 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1168 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1169 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1170 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1171 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1172 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1173 hton24(fh->fh_f_ctl, f_ctl);
1174
1175 fc_exch_setup_hdr(ep, fp, f_ctl);
1176 fh->fh_seq_id = rx_fh->fh_seq_id;
1177 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1178 fh->fh_parm_offset = htonl(1); /* ack single frame */
1179
1180 fr_sof(fp) = fr_sof(rx_fp);
1181 if (f_ctl & FC_FC_END_SEQ)
1182 fr_eof(fp) = FC_EOF_T;
1183 else
1184 fr_eof(fp) = FC_EOF_N;
1185
1186 lport->tt.frame_send(lport, fp);
1187 }
1188}
1189
1190/**
1191 * fc_exch_send_ba_rjt() - Send BLS Reject
1192 * @rx_fp: The frame being rejected
1193 * @reason: The reason the frame is being rejected
1194 * @explan: The explanation for the rejection
1195 *
1196 * This is for rejecting BA_ABTS only.
1197 */
1198static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1199 enum fc_ba_rjt_reason reason,
1200 enum fc_ba_rjt_explan explan)
1201{
1202 struct fc_frame *fp;
1203 struct fc_frame_header *rx_fh;
1204 struct fc_frame_header *fh;
1205 struct fc_ba_rjt *rp;
1206 struct fc_lport *lport;
1207 unsigned int f_ctl;
1208
1209 lport = fr_dev(rx_fp);
1210 fp = fc_frame_alloc(lport, sizeof(*rp));
1211 if (!fp)
1212 return;
1213 fh = fc_frame_header_get(fp);
1214 rx_fh = fc_frame_header_get(rx_fp);
1215
1216 memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1217
1218 rp = fc_frame_payload_get(fp, sizeof(*rp));
1219 rp->br_reason = reason;
1220 rp->br_explan = explan;
1221
1222 /*
1223 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1224 */
1225 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1226 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1227 fh->fh_ox_id = rx_fh->fh_ox_id;
1228 fh->fh_rx_id = rx_fh->fh_rx_id;
1229 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1230 fh->fh_r_ctl = FC_RCTL_BA_RJT;
1231 fh->fh_type = FC_TYPE_BLS;
1232
1233 /*
1234 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1235 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1236 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1237 * Last ACK uses bits 7-6 (continue sequence),
1238 * bits 5-4 are meaningful (what kind of ACK to use).
1239 * Always set LAST_SEQ, END_SEQ.
1240 */
1241 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1242 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1243 FC_FC_END_CONN | FC_FC_SEQ_INIT |
1244 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1245 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1246 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1247 f_ctl &= ~FC_FC_FIRST_SEQ;
1248 hton24(fh->fh_f_ctl, f_ctl);
1249
1250 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1251 fr_eof(fp) = FC_EOF_T;
1252 if (fc_sof_needs_ack(fr_sof(fp)))
1253 fr_eof(fp) = FC_EOF_N;
1254
1255 lport->tt.frame_send(lport, fp);
1256}
1257
1258/**
1259 * fc_exch_recv_abts() - Handle an incoming ABTS
1260 * @ep: The exchange the abort was on
1261 * @rx_fp: The ABTS frame
1262 *
1263 * This would be for target mode usually, but could be due to lost
1264 * FCP transfer ready, confirm or RRQ. We always handle this as an
1265 * exchange abort, ignoring the parameter.
1266 */
1267static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1268{
1269 struct fc_frame *fp;
1270 struct fc_ba_acc *ap;
1271 struct fc_frame_header *fh;
1272 struct fc_seq *sp;
1273
1274 if (!ep)
1275 goto reject;
1276 spin_lock_bh(&ep->ex_lock);
1277 if (ep->esb_stat & ESB_ST_COMPLETE) {
1278 spin_unlock_bh(&ep->ex_lock);
1279 goto reject;
1280 }
1281 if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1282 fc_exch_hold(ep); /* hold for REC_QUAL */
1283 ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1284 fc_exch_timer_set_locked(ep, ep->r_a_tov);
1285
1286 fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1287 if (!fp) {
1288 spin_unlock_bh(&ep->ex_lock);
1289 goto free;
1290 }
1291 fh = fc_frame_header_get(fp);
1292 ap = fc_frame_payload_get(fp, sizeof(*ap));
1293 memset(ap, 0, sizeof(*ap));
1294 sp = &ep->seq;
1295 ap->ba_high_seq_cnt = htons(0xffff);
1296 if (sp->ssb_stat & SSB_ST_RESP) {
1297 ap->ba_seq_id = sp->id;
1298 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1299 ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1300 ap->ba_low_seq_cnt = htons(sp->cnt);
1301 }
1302 sp = fc_seq_start_next_locked(sp);
1303 spin_unlock_bh(&ep->ex_lock);
1304 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1305 fc_frame_free(rx_fp);
1306 return;
1307
1308reject:
1309 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1310free:
1311 fc_frame_free(rx_fp);
1312}
1313
1314/**
1315 * fc_seq_assign() - Assign exchange and sequence for incoming request
1316 * @lport: The local port that received the request
1317 * @fp: The request frame
1318 *
1319 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1320 * A reference will be held on the exchange/sequence for the caller, which
1321 * must call fc_seq_release().
1322 */
1323static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1324{
1325 struct fc_exch_mgr_anchor *ema;
1326
1327 WARN_ON(lport != fr_dev(fp));
1328 WARN_ON(fr_seq(fp));
1329 fr_seq(fp) = NULL;
1330
1331 list_for_each_entry(ema, &lport->ema_list, ema_list)
1332 if ((!ema->match || ema->match(fp)) &&
1333 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1334 break;
1335 return fr_seq(fp);
1336}
1337
1338/**
1339 * fc_seq_release() - Release the hold
1340 * @sp: The sequence.
1341 */
1342static void fc_seq_release(struct fc_seq *sp)
1343{
1344 fc_exch_release(fc_seq_exch(sp));
1345}
1346
1347/**
1348 * fc_exch_recv_req() - Handler for an incoming request
1349 * @lport: The local port that received the request
1350 * @mp: The EM that the exchange is on
1351 * @fp: The request frame
1352 *
1353 * This is used when the other end is originating the exchange
1354 * and the sequence.
1355 */
1356static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1357 struct fc_frame *fp)
1358{
1359 struct fc_frame_header *fh = fc_frame_header_get(fp);
1360 struct fc_seq *sp = NULL;
1361 struct fc_exch *ep = NULL;
1362 enum fc_pf_rjt_reason reject;
1363
1364 /* We can have the wrong fc_lport at this point with NPIV, which is a
1365 * problem now that we know a new exchange needs to be allocated
1366 */
1367 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1368 if (!lport) {
1369 fc_frame_free(fp);
1370 return;
1371 }
1372 fr_dev(fp) = lport;
1373
1374 BUG_ON(fr_seq(fp)); /* XXX remove later */
1375
1376 /*
1377 * If the RX_ID is 0xffff, don't allocate an exchange.
1378 * The upper-level protocol may request one later, if needed.
1379 */
1380 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1381 return lport->tt.lport_recv(lport, fp);
1382
1383 reject = fc_seq_lookup_recip(lport, mp, fp);
1384 if (reject == FC_RJT_NONE) {
1385 sp = fr_seq(fp); /* sequence will be held */
1386 ep = fc_seq_exch(sp);
1387 fc_seq_send_ack(sp, fp);
1388 ep->encaps = fr_encaps(fp);
1389
1390 /*
1391 * Call the receive function.
1392 *
1393 * The receive function may allocate a new sequence
1394 * over the old one, so we shouldn't change the
1395 * sequence after this.
1396 *
1397 * The frame will be freed by the receive function.
1398 * If new exch resp handler is valid then call that
1399 * first.
1400 */
1401 if (ep->resp)
1402 ep->resp(sp, fp, ep->arg);
1403 else
1404 lport->tt.lport_recv(lport, fp);
1405 fc_exch_release(ep); /* release from lookup */
1406 } else {
1407 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1408 reject);
1409 fc_frame_free(fp);
1410 }
1411}
1412
1413/**
1414 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1415 * end is the originator of the sequence that is a
1416 * response to our initial exchange
1417 * @mp: The EM that the exchange is on
1418 * @fp: The response frame
1419 */
1420static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1421{
1422 struct fc_frame_header *fh = fc_frame_header_get(fp);
1423 struct fc_seq *sp;
1424 struct fc_exch *ep;
1425 enum fc_sof sof;
1426 u32 f_ctl;
1427 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1428 void *ex_resp_arg;
1429 int rc;
1430
1431 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1432 if (!ep) {
1433 atomic_inc(&mp->stats.xid_not_found);
1434 goto out;
1435 }
1436 if (ep->esb_stat & ESB_ST_COMPLETE) {
1437 atomic_inc(&mp->stats.xid_not_found);
1438 goto rel;
1439 }
1440 if (ep->rxid == FC_XID_UNKNOWN)
1441 ep->rxid = ntohs(fh->fh_rx_id);
1442 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1443 atomic_inc(&mp->stats.xid_not_found);
1444 goto rel;
1445 }
1446 if (ep->did != ntoh24(fh->fh_s_id) &&
1447 ep->did != FC_FID_FLOGI) {
1448 atomic_inc(&mp->stats.xid_not_found);
1449 goto rel;
1450 }
1451 sof = fr_sof(fp);
1452 sp = &ep->seq;
1453 if (fc_sof_is_init(sof)) {
1454 sp->ssb_stat |= SSB_ST_RESP;
1455 sp->id = fh->fh_seq_id;
1456 } else if (sp->id != fh->fh_seq_id) {
1457 atomic_inc(&mp->stats.seq_not_found);
1458 goto rel;
1459 }
1460
1461 f_ctl = ntoh24(fh->fh_f_ctl);
1462 fr_seq(fp) = sp;
1463 if (f_ctl & FC_FC_SEQ_INIT)
1464 ep->esb_stat |= ESB_ST_SEQ_INIT;
1465
1466 if (fc_sof_needs_ack(sof))
1467 fc_seq_send_ack(sp, fp);
1468 resp = ep->resp;
1469 ex_resp_arg = ep->arg;
1470
1471 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1472 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1473 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1474 spin_lock_bh(&ep->ex_lock);
1475 resp = ep->resp;
1476 rc = fc_exch_done_locked(ep);
1477 WARN_ON(fc_seq_exch(sp) != ep);
1478 spin_unlock_bh(&ep->ex_lock);
1479 if (!rc)
1480 fc_exch_delete(ep);
1481 }
1482
1483 /*
1484 * Call the receive function.
1485 * The sequence is held (has a refcnt) for us,
1486 * but not for the receive function.
1487 *
1488 * The receive function may allocate a new sequence
1489 * over the old one, so we shouldn't change the
1490 * sequence after this.
1491 *
1492 * The frame will be freed by the receive function.
1493 * If new exch resp handler is valid then call that
1494 * first.
1495 */
1496 if (resp)
1497 resp(sp, fp, ex_resp_arg);
1498 else
1499 fc_frame_free(fp);
1500 fc_exch_release(ep);
1501 return;
1502rel:
1503 fc_exch_release(ep);
1504out:
1505 fc_frame_free(fp);
1506}
1507
1508/**
1509 * fc_exch_recv_resp() - Handler for a sequence where other end is
1510 * responding to our sequence
1511 * @mp: The EM that the exchange is on
1512 * @fp: The response frame
1513 */
1514static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1515{
1516 struct fc_seq *sp;
1517
1518 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */
1519
1520 if (!sp)
1521 atomic_inc(&mp->stats.xid_not_found);
1522 else
1523 atomic_inc(&mp->stats.non_bls_resp);
1524
1525 fc_frame_free(fp);
1526}
1527
1528/**
1529 * fc_exch_abts_resp() - Handler for a response to an ABT
1530 * @ep: The exchange that the frame is on
1531 * @fp: The response frame
1532 *
1533 * This response would be to an ABTS cancelling an exchange or sequence.
1534 * The response can be either BA_ACC or BA_RJT
1535 */
1536static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1537{
1538 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1539 void *ex_resp_arg;
1540 struct fc_frame_header *fh;
1541 struct fc_ba_acc *ap;
1542 struct fc_seq *sp;
1543 u16 low;
1544 u16 high;
1545 int rc = 1, has_rec = 0;
1546
1547 fh = fc_frame_header_get(fp);
1548 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1549 fc_exch_rctl_name(fh->fh_r_ctl));
1550
1551 if (cancel_delayed_work_sync(&ep->timeout_work))
1552 fc_exch_release(ep); /* release from pending timer hold */
1553
1554 spin_lock_bh(&ep->ex_lock);
1555 switch (fh->fh_r_ctl) {
1556 case FC_RCTL_BA_ACC:
1557 ap = fc_frame_payload_get(fp, sizeof(*ap));
1558 if (!ap)
1559 break;
1560
1561 /*
1562 * Decide whether to establish a Recovery Qualifier.
1563 * We do this if there is a non-empty SEQ_CNT range and
1564 * SEQ_ID is the same as the one we aborted.
1565 */
1566 low = ntohs(ap->ba_low_seq_cnt);
1567 high = ntohs(ap->ba_high_seq_cnt);
1568 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1569 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1570 ap->ba_seq_id == ep->seq_id) && low != high) {
1571 ep->esb_stat |= ESB_ST_REC_QUAL;
1572 fc_exch_hold(ep); /* hold for recovery qualifier */
1573 has_rec = 1;
1574 }
1575 break;
1576 case FC_RCTL_BA_RJT:
1577 break;
1578 default:
1579 break;
1580 }
1581
1582 resp = ep->resp;
1583 ex_resp_arg = ep->arg;
1584
1585 /* do we need to do some other checks here. Can we reuse more of
1586 * fc_exch_recv_seq_resp
1587 */
1588 sp = &ep->seq;
1589 /*
1590 * do we want to check END_SEQ as well as LAST_SEQ here?
1591 */
1592 if (ep->fh_type != FC_TYPE_FCP &&
1593 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1594 rc = fc_exch_done_locked(ep);
1595 spin_unlock_bh(&ep->ex_lock);
1596 if (!rc)
1597 fc_exch_delete(ep);
1598
1599 if (resp)
1600 resp(sp, fp, ex_resp_arg);
1601 else
1602 fc_frame_free(fp);
1603
1604 if (has_rec)
1605 fc_exch_timer_set(ep, ep->r_a_tov);
1606
1607}
1608
1609/**
1610 * fc_exch_recv_bls() - Handler for a BLS sequence
1611 * @mp: The EM that the exchange is on
1612 * @fp: The request frame
1613 *
1614 * The BLS frame is always a sequence initiated by the remote side.
1615 * We may be either the originator or recipient of the exchange.
1616 */
1617static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1618{
1619 struct fc_frame_header *fh;
1620 struct fc_exch *ep;
1621 u32 f_ctl;
1622
1623 fh = fc_frame_header_get(fp);
1624 f_ctl = ntoh24(fh->fh_f_ctl);
1625 fr_seq(fp) = NULL;
1626
1627 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1628 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1629 if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1630 spin_lock_bh(&ep->ex_lock);
1631 ep->esb_stat |= ESB_ST_SEQ_INIT;
1632 spin_unlock_bh(&ep->ex_lock);
1633 }
1634 if (f_ctl & FC_FC_SEQ_CTX) {
1635 /*
1636 * A response to a sequence we initiated.
1637 * This should only be ACKs for class 2 or F.
1638 */
1639 switch (fh->fh_r_ctl) {
1640 case FC_RCTL_ACK_1:
1641 case FC_RCTL_ACK_0:
1642 break;
1643 default:
1644 FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1645 fh->fh_r_ctl,
1646 fc_exch_rctl_name(fh->fh_r_ctl));
1647 break;
1648 }
1649 fc_frame_free(fp);
1650 } else {
1651 switch (fh->fh_r_ctl) {
1652 case FC_RCTL_BA_RJT:
1653 case FC_RCTL_BA_ACC:
1654 if (ep)
1655 fc_exch_abts_resp(ep, fp);
1656 else
1657 fc_frame_free(fp);
1658 break;
1659 case FC_RCTL_BA_ABTS:
1660 fc_exch_recv_abts(ep, fp);
1661 break;
1662 default: /* ignore junk */
1663 fc_frame_free(fp);
1664 break;
1665 }
1666 }
1667 if (ep)
1668 fc_exch_release(ep); /* release hold taken by fc_exch_find */
1669}
1670
1671/**
1672 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1673 * @rx_fp: The received frame, not freed here.
1674 *
1675 * If this fails due to allocation or transmit congestion, assume the
1676 * originator will repeat the sequence.
1677 */
1678static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1679{
1680 struct fc_lport *lport;
1681 struct fc_els_ls_acc *acc;
1682 struct fc_frame *fp;
1683
1684 lport = fr_dev(rx_fp);
1685 fp = fc_frame_alloc(lport, sizeof(*acc));
1686 if (!fp)
1687 return;
1688 acc = fc_frame_payload_get(fp, sizeof(*acc));
1689 memset(acc, 0, sizeof(*acc));
1690 acc->la_cmd = ELS_LS_ACC;
1691 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1692 lport->tt.frame_send(lport, fp);
1693}
1694
1695/**
1696 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1697 * @rx_fp: The received frame, not freed here.
1698 * @reason: The reason the sequence is being rejected
1699 * @explan: The explanation for the rejection
1700 *
1701 * If this fails due to allocation or transmit congestion, assume the
1702 * originator will repeat the sequence.
1703 */
1704static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1705 enum fc_els_rjt_explan explan)
1706{
1707 struct fc_lport *lport;
1708 struct fc_els_ls_rjt *rjt;
1709 struct fc_frame *fp;
1710
1711 lport = fr_dev(rx_fp);
1712 fp = fc_frame_alloc(lport, sizeof(*rjt));
1713 if (!fp)
1714 return;
1715 rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1716 memset(rjt, 0, sizeof(*rjt));
1717 rjt->er_cmd = ELS_LS_RJT;
1718 rjt->er_reason = reason;
1719 rjt->er_explan = explan;
1720 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1721 lport->tt.frame_send(lport, fp);
1722}
1723
1724/**
1725 * fc_exch_reset() - Reset an exchange
1726 * @ep: The exchange to be reset
1727 */
1728static void fc_exch_reset(struct fc_exch *ep)
1729{
1730 struct fc_seq *sp;
1731 void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1732 void *arg;
1733 int rc = 1;
1734
1735 spin_lock_bh(&ep->ex_lock);
1736 fc_exch_abort_locked(ep, 0);
1737 ep->state |= FC_EX_RST_CLEANUP;
1738 if (cancel_delayed_work(&ep->timeout_work))
1739 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
1740 resp = ep->resp;
1741 ep->resp = NULL;
1742 if (ep->esb_stat & ESB_ST_REC_QUAL)
1743 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */
1744 ep->esb_stat &= ~ESB_ST_REC_QUAL;
1745 arg = ep->arg;
1746 sp = &ep->seq;
1747 rc = fc_exch_done_locked(ep);
1748 spin_unlock_bh(&ep->ex_lock);
1749 if (!rc)
1750 fc_exch_delete(ep);
1751
1752 if (resp)
1753 resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1754}
1755
1756/**
1757 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1758 * @lport: The local port that the exchange pool is on
1759 * @pool: The exchange pool to be reset
1760 * @sid: The source ID
1761 * @did: The destination ID
1762 *
1763 * Resets a per cpu exches pool, releasing all of its sequences
1764 * and exchanges. If sid is non-zero then reset only exchanges
1765 * we sourced from the local port's FID. If did is non-zero then
1766 * only reset exchanges destined for the local port's FID.
1767 */
1768static void fc_exch_pool_reset(struct fc_lport *lport,
1769 struct fc_exch_pool *pool,
1770 u32 sid, u32 did)
1771{
1772 struct fc_exch *ep;
1773 struct fc_exch *next;
1774
1775 spin_lock_bh(&pool->lock);
1776restart:
1777 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1778 if ((lport == ep->lp) &&
1779 (sid == 0 || sid == ep->sid) &&
1780 (did == 0 || did == ep->did)) {
1781 fc_exch_hold(ep);
1782 spin_unlock_bh(&pool->lock);
1783
1784 fc_exch_reset(ep);
1785
1786 fc_exch_release(ep);
1787 spin_lock_bh(&pool->lock);
1788
1789 /*
1790 * must restart loop incase while lock
1791 * was down multiple eps were released.
1792 */
1793 goto restart;
1794 }
1795 }
1796 spin_unlock_bh(&pool->lock);
1797}
1798
1799/**
1800 * fc_exch_mgr_reset() - Reset all EMs of a local port
1801 * @lport: The local port whose EMs are to be reset
1802 * @sid: The source ID
1803 * @did: The destination ID
1804 *
1805 * Reset all EMs associated with a given local port. Release all
1806 * sequences and exchanges. If sid is non-zero then reset only the
1807 * exchanges sent from the local port's FID. If did is non-zero then
1808 * reset only exchanges destined for the local port's FID.
1809 */
1810void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1811{
1812 struct fc_exch_mgr_anchor *ema;
1813 unsigned int cpu;
1814
1815 list_for_each_entry(ema, &lport->ema_list, ema_list) {
1816 for_each_possible_cpu(cpu)
1817 fc_exch_pool_reset(lport,
1818 per_cpu_ptr(ema->mp->pool, cpu),
1819 sid, did);
1820 }
1821}
1822EXPORT_SYMBOL(fc_exch_mgr_reset);
1823
1824/**
1825 * fc_exch_lookup() - find an exchange
1826 * @lport: The local port
1827 * @xid: The exchange ID
1828 *
1829 * Returns exchange pointer with hold for caller, or NULL if not found.
1830 */
1831static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1832{
1833 struct fc_exch_mgr_anchor *ema;
1834
1835 list_for_each_entry(ema, &lport->ema_list, ema_list)
1836 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1837 return fc_exch_find(ema->mp, xid);
1838 return NULL;
1839}
1840
1841/**
1842 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1843 * @rfp: The REC frame, not freed here.
1844 *
1845 * Note that the requesting port may be different than the S_ID in the request.
1846 */
1847static void fc_exch_els_rec(struct fc_frame *rfp)
1848{
1849 struct fc_lport *lport;
1850 struct fc_frame *fp;
1851 struct fc_exch *ep;
1852 struct fc_els_rec *rp;
1853 struct fc_els_rec_acc *acc;
1854 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1855 enum fc_els_rjt_explan explan;
1856 u32 sid;
1857 u16 rxid;
1858 u16 oxid;
1859
1860 lport = fr_dev(rfp);
1861 rp = fc_frame_payload_get(rfp, sizeof(*rp));
1862 explan = ELS_EXPL_INV_LEN;
1863 if (!rp)
1864 goto reject;
1865 sid = ntoh24(rp->rec_s_id);
1866 rxid = ntohs(rp->rec_rx_id);
1867 oxid = ntohs(rp->rec_ox_id);
1868
1869 ep = fc_exch_lookup(lport,
1870 sid == fc_host_port_id(lport->host) ? oxid : rxid);
1871 explan = ELS_EXPL_OXID_RXID;
1872 if (!ep)
1873 goto reject;
1874 if (ep->oid != sid || oxid != ep->oxid)
1875 goto rel;
1876 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1877 goto rel;
1878 fp = fc_frame_alloc(lport, sizeof(*acc));
1879 if (!fp)
1880 goto out;
1881
1882 acc = fc_frame_payload_get(fp, sizeof(*acc));
1883 memset(acc, 0, sizeof(*acc));
1884 acc->reca_cmd = ELS_LS_ACC;
1885 acc->reca_ox_id = rp->rec_ox_id;
1886 memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1887 acc->reca_rx_id = htons(ep->rxid);
1888 if (ep->sid == ep->oid)
1889 hton24(acc->reca_rfid, ep->did);
1890 else
1891 hton24(acc->reca_rfid, ep->sid);
1892 acc->reca_fc4value = htonl(ep->seq.rec_data);
1893 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1894 ESB_ST_SEQ_INIT |
1895 ESB_ST_COMPLETE));
1896 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1897 lport->tt.frame_send(lport, fp);
1898out:
1899 fc_exch_release(ep);
1900 return;
1901
1902rel:
1903 fc_exch_release(ep);
1904reject:
1905 fc_seq_ls_rjt(rfp, reason, explan);
1906}
1907
1908/**
1909 * fc_exch_rrq_resp() - Handler for RRQ responses
1910 * @sp: The sequence that the RRQ is on
1911 * @fp: The RRQ frame
1912 * @arg: The exchange that the RRQ is on
1913 *
1914 * TODO: fix error handler.
1915 */
1916static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1917{
1918 struct fc_exch *aborted_ep = arg;
1919 unsigned int op;
1920
1921 if (IS_ERR(fp)) {
1922 int err = PTR_ERR(fp);
1923
1924 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1925 goto cleanup;
1926 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1927 "frame error %d\n", err);
1928 return;
1929 }
1930
1931 op = fc_frame_payload_op(fp);
1932 fc_frame_free(fp);
1933
1934 switch (op) {
1935 case ELS_LS_RJT:
1936 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1937 /* fall through */
1938 case ELS_LS_ACC:
1939 goto cleanup;
1940 default:
1941 FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1942 "for RRQ", op);
1943 return;
1944 }
1945
1946cleanup:
1947 fc_exch_done(&aborted_ep->seq);
1948 /* drop hold for rec qual */
1949 fc_exch_release(aborted_ep);
1950}
1951
1952
1953/**
1954 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1955 * @lport: The local port to send the frame on
1956 * @fp: The frame to be sent
1957 * @resp: The response handler for this request
1958 * @destructor: The destructor for the exchange
1959 * @arg: The argument to be passed to the response handler
1960 * @timer_msec: The timeout period for the exchange
1961 *
1962 * The frame pointer with some of the header's fields must be
1963 * filled before calling this routine, those fields are:
1964 *
1965 * - routing control
1966 * - FC port did
1967 * - FC port sid
1968 * - FC header type
1969 * - frame control
1970 * - parameter or relative offset
1971 */
1972static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1973 struct fc_frame *fp,
1974 void (*resp)(struct fc_seq *,
1975 struct fc_frame *fp,
1976 void *arg),
1977 void (*destructor)(struct fc_seq *,
1978 void *),
1979 void *arg, u32 timer_msec)
1980{
1981 struct fc_exch *ep;
1982 struct fc_seq *sp = NULL;
1983 struct fc_frame_header *fh;
1984 struct fc_fcp_pkt *fsp = NULL;
1985 int rc = 1;
1986
1987 ep = fc_exch_alloc(lport, fp);
1988 if (!ep) {
1989 fc_frame_free(fp);
1990 return NULL;
1991 }
1992 ep->esb_stat |= ESB_ST_SEQ_INIT;
1993 fh = fc_frame_header_get(fp);
1994 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
1995 ep->resp = resp;
1996 ep->destructor = destructor;
1997 ep->arg = arg;
1998 ep->r_a_tov = FC_DEF_R_A_TOV;
1999 ep->lp = lport;
2000 sp = &ep->seq;
2001
2002 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2003 ep->f_ctl = ntoh24(fh->fh_f_ctl);
2004 fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2005 sp->cnt++;
2006
2007 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2008 fsp = fr_fsp(fp);
2009 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2010 }
2011
2012 if (unlikely(lport->tt.frame_send(lport, fp)))
2013 goto err;
2014
2015 if (timer_msec)
2016 fc_exch_timer_set_locked(ep, timer_msec);
2017 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */
2018
2019 if (ep->f_ctl & FC_FC_SEQ_INIT)
2020 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2021 spin_unlock_bh(&ep->ex_lock);
2022 return sp;
2023err:
2024 if (fsp)
2025 fc_fcp_ddp_done(fsp);
2026 rc = fc_exch_done_locked(ep);
2027 spin_unlock_bh(&ep->ex_lock);
2028 if (!rc)
2029 fc_exch_delete(ep);
2030 return NULL;
2031}
2032
2033/**
2034 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2035 * @ep: The exchange to send the RRQ on
2036 *
2037 * This tells the remote port to stop blocking the use of
2038 * the exchange and the seq_cnt range.
2039 */
2040static void fc_exch_rrq(struct fc_exch *ep)
2041{
2042 struct fc_lport *lport;
2043 struct fc_els_rrq *rrq;
2044 struct fc_frame *fp;
2045 u32 did;
2046
2047 lport = ep->lp;
2048
2049 fp = fc_frame_alloc(lport, sizeof(*rrq));
2050 if (!fp)
2051 goto retry;
2052
2053 rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2054 memset(rrq, 0, sizeof(*rrq));
2055 rrq->rrq_cmd = ELS_RRQ;
2056 hton24(rrq->rrq_s_id, ep->sid);
2057 rrq->rrq_ox_id = htons(ep->oxid);
2058 rrq->rrq_rx_id = htons(ep->rxid);
2059
2060 did = ep->did;
2061 if (ep->esb_stat & ESB_ST_RESP)
2062 did = ep->sid;
2063
2064 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2065 lport->port_id, FC_TYPE_ELS,
2066 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2067
2068 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2069 lport->e_d_tov))
2070 return;
2071
2072retry:
2073 spin_lock_bh(&ep->ex_lock);
2074 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2075 spin_unlock_bh(&ep->ex_lock);
2076 /* drop hold for rec qual */
2077 fc_exch_release(ep);
2078 return;
2079 }
2080 ep->esb_stat |= ESB_ST_REC_QUAL;
2081 fc_exch_timer_set_locked(ep, ep->r_a_tov);
2082 spin_unlock_bh(&ep->ex_lock);
2083}
2084
2085/**
2086 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2087 * @fp: The RRQ frame, not freed here.
2088 */
2089static void fc_exch_els_rrq(struct fc_frame *fp)
2090{
2091 struct fc_lport *lport;
2092 struct fc_exch *ep = NULL; /* request or subject exchange */
2093 struct fc_els_rrq *rp;
2094 u32 sid;
2095 u16 xid;
2096 enum fc_els_rjt_explan explan;
2097
2098 lport = fr_dev(fp);
2099 rp = fc_frame_payload_get(fp, sizeof(*rp));
2100 explan = ELS_EXPL_INV_LEN;
2101 if (!rp)
2102 goto reject;
2103
2104 /*
2105 * lookup subject exchange.
2106 */
2107 sid = ntoh24(rp->rrq_s_id); /* subject source */
2108 xid = fc_host_port_id(lport->host) == sid ?
2109 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2110 ep = fc_exch_lookup(lport, xid);
2111 explan = ELS_EXPL_OXID_RXID;
2112 if (!ep)
2113 goto reject;
2114 spin_lock_bh(&ep->ex_lock);
2115 if (ep->oxid != ntohs(rp->rrq_ox_id))
2116 goto unlock_reject;
2117 if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2118 ep->rxid != FC_XID_UNKNOWN)
2119 goto unlock_reject;
2120 explan = ELS_EXPL_SID;
2121 if (ep->sid != sid)
2122 goto unlock_reject;
2123
2124 /*
2125 * Clear Recovery Qualifier state, and cancel timer if complete.
2126 */
2127 if (ep->esb_stat & ESB_ST_REC_QUAL) {
2128 ep->esb_stat &= ~ESB_ST_REC_QUAL;
2129 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */
2130 }
2131 if (ep->esb_stat & ESB_ST_COMPLETE) {
2132 if (cancel_delayed_work(&ep->timeout_work))
2133 atomic_dec(&ep->ex_refcnt); /* drop timer hold */
2134 }
2135
2136 spin_unlock_bh(&ep->ex_lock);
2137
2138 /*
2139 * Send LS_ACC.
2140 */
2141 fc_seq_ls_acc(fp);
2142 goto out;
2143
2144unlock_reject:
2145 spin_unlock_bh(&ep->ex_lock);
2146reject:
2147 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2148out:
2149 if (ep)
2150 fc_exch_release(ep); /* drop hold from fc_exch_find */
2151}
2152
2153/**
2154 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2155 * @lport: The local port to add the exchange manager to
2156 * @mp: The exchange manager to be added to the local port
2157 * @match: The match routine that indicates when this EM should be used
2158 */
2159struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2160 struct fc_exch_mgr *mp,
2161 bool (*match)(struct fc_frame *))
2162{
2163 struct fc_exch_mgr_anchor *ema;
2164
2165 ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2166 if (!ema)
2167 return ema;
2168
2169 ema->mp = mp;
2170 ema->match = match;
2171 /* add EM anchor to EM anchors list */
2172 list_add_tail(&ema->ema_list, &lport->ema_list);
2173 kref_get(&mp->kref);
2174 return ema;
2175}
2176EXPORT_SYMBOL(fc_exch_mgr_add);
2177
2178/**
2179 * fc_exch_mgr_destroy() - Destroy an exchange manager
2180 * @kref: The reference to the EM to be destroyed
2181 */
2182static void fc_exch_mgr_destroy(struct kref *kref)
2183{
2184 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2185
2186 mempool_destroy(mp->ep_pool);
2187 free_percpu(mp->pool);
2188 kfree(mp);
2189}
2190
2191/**
2192 * fc_exch_mgr_del() - Delete an EM from a local port's list
2193 * @ema: The exchange manager anchor identifying the EM to be deleted
2194 */
2195void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2196{
2197 /* remove EM anchor from EM anchors list */
2198 list_del(&ema->ema_list);
2199 kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2200 kfree(ema);
2201}
2202EXPORT_SYMBOL(fc_exch_mgr_del);
2203
2204/**
2205 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2206 * @src: Source lport to clone exchange managers from
2207 * @dst: New lport that takes references to all the exchange managers
2208 */
2209int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2210{
2211 struct fc_exch_mgr_anchor *ema, *tmp;
2212
2213 list_for_each_entry(ema, &src->ema_list, ema_list) {
2214 if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2215 goto err;
2216 }
2217 return 0;
2218err:
2219 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2220 fc_exch_mgr_del(ema);
2221 return -ENOMEM;
2222}
2223EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2224
2225/**
2226 * fc_exch_mgr_alloc() - Allocate an exchange manager
2227 * @lport: The local port that the new EM will be associated with
2228 * @class: The default FC class for new exchanges
2229 * @min_xid: The minimum XID for exchanges from the new EM
2230 * @max_xid: The maximum XID for exchanges from the new EM
2231 * @match: The match routine for the new EM
2232 */
2233struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2234 enum fc_class class,
2235 u16 min_xid, u16 max_xid,
2236 bool (*match)(struct fc_frame *))
2237{
2238 struct fc_exch_mgr *mp;
2239 u16 pool_exch_range;
2240 size_t pool_size;
2241 unsigned int cpu;
2242 struct fc_exch_pool *pool;
2243
2244 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2245 (min_xid & fc_cpu_mask) != 0) {
2246 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2247 min_xid, max_xid);
2248 return NULL;
2249 }
2250
2251 /*
2252 * allocate memory for EM
2253 */
2254 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2255 if (!mp)
2256 return NULL;
2257
2258 mp->class = class;
2259 /* adjust em exch xid range for offload */
2260 mp->min_xid = min_xid;
2261 mp->max_xid = max_xid;
2262
2263 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2264 if (!mp->ep_pool)
2265 goto free_mp;
2266
2267 /*
2268 * Setup per cpu exch pool with entire exchange id range equally
2269 * divided across all cpus. The exch pointers array memory is
2270 * allocated for exch range per pool.
2271 */
2272 pool_exch_range = (mp->max_xid - mp->min_xid + 1) / (fc_cpu_mask + 1);
2273 mp->pool_max_index = pool_exch_range - 1;
2274
2275 /*
2276 * Allocate and initialize per cpu exch pool
2277 */
2278 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2279 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2280 if (!mp->pool)
2281 goto free_mempool;
2282 for_each_possible_cpu(cpu) {
2283 pool = per_cpu_ptr(mp->pool, cpu);
2284 pool->left = FC_XID_UNKNOWN;
2285 pool->right = FC_XID_UNKNOWN;
2286 spin_lock_init(&pool->lock);
2287 INIT_LIST_HEAD(&pool->ex_list);
2288 }
2289
2290 kref_init(&mp->kref);
2291 if (!fc_exch_mgr_add(lport, mp, match)) {
2292 free_percpu(mp->pool);
2293 goto free_mempool;
2294 }
2295
2296 /*
2297 * Above kref_init() sets mp->kref to 1 and then
2298 * call to fc_exch_mgr_add incremented mp->kref again,
2299 * so adjust that extra increment.
2300 */
2301 kref_put(&mp->kref, fc_exch_mgr_destroy);
2302 return mp;
2303
2304free_mempool:
2305 mempool_destroy(mp->ep_pool);
2306free_mp:
2307 kfree(mp);
2308 return NULL;
2309}
2310EXPORT_SYMBOL(fc_exch_mgr_alloc);
2311
2312/**
2313 * fc_exch_mgr_free() - Free all exchange managers on a local port
2314 * @lport: The local port whose EMs are to be freed
2315 */
2316void fc_exch_mgr_free(struct fc_lport *lport)
2317{
2318 struct fc_exch_mgr_anchor *ema, *next;
2319
2320 flush_workqueue(fc_exch_workqueue);
2321 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2322 fc_exch_mgr_del(ema);
2323}
2324EXPORT_SYMBOL(fc_exch_mgr_free);
2325
2326/**
2327 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2328 * upon 'xid'.
2329 * @f_ctl: f_ctl
2330 * @lport: The local port the frame was received on
2331 * @fh: The received frame header
2332 */
2333static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2334 struct fc_lport *lport,
2335 struct fc_frame_header *fh)
2336{
2337 struct fc_exch_mgr_anchor *ema;
2338 u16 xid;
2339
2340 if (f_ctl & FC_FC_EX_CTX)
2341 xid = ntohs(fh->fh_ox_id);
2342 else {
2343 xid = ntohs(fh->fh_rx_id);
2344 if (xid == FC_XID_UNKNOWN)
2345 return list_entry(lport->ema_list.prev,
2346 typeof(*ema), ema_list);
2347 }
2348
2349 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2350 if ((xid >= ema->mp->min_xid) &&
2351 (xid <= ema->mp->max_xid))
2352 return ema;
2353 }
2354 return NULL;
2355}
2356/**
2357 * fc_exch_recv() - Handler for received frames
2358 * @lport: The local port the frame was received on
2359 * @fp: The received frame
2360 */
2361void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2362{
2363 struct fc_frame_header *fh = fc_frame_header_get(fp);
2364 struct fc_exch_mgr_anchor *ema;
2365 u32 f_ctl;
2366
2367 /* lport lock ? */
2368 if (!lport || lport->state == LPORT_ST_DISABLED) {
2369 FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2370 "has not been initialized correctly\n");
2371 fc_frame_free(fp);
2372 return;
2373 }
2374
2375 f_ctl = ntoh24(fh->fh_f_ctl);
2376 ema = fc_find_ema(f_ctl, lport, fh);
2377 if (!ema) {
2378 FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2379 "fc_ctl <0x%x>, xid <0x%x>\n",
2380 f_ctl,
2381 (f_ctl & FC_FC_EX_CTX) ?
2382 ntohs(fh->fh_ox_id) :
2383 ntohs(fh->fh_rx_id));
2384 fc_frame_free(fp);
2385 return;
2386 }
2387
2388 /*
2389 * If frame is marked invalid, just drop it.
2390 */
2391 switch (fr_eof(fp)) {
2392 case FC_EOF_T:
2393 if (f_ctl & FC_FC_END_SEQ)
2394 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2395 /* fall through */
2396 case FC_EOF_N:
2397 if (fh->fh_type == FC_TYPE_BLS)
2398 fc_exch_recv_bls(ema->mp, fp);
2399 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2400 FC_FC_EX_CTX)
2401 fc_exch_recv_seq_resp(ema->mp, fp);
2402 else if (f_ctl & FC_FC_SEQ_CTX)
2403 fc_exch_recv_resp(ema->mp, fp);
2404 else /* no EX_CTX and no SEQ_CTX */
2405 fc_exch_recv_req(lport, ema->mp, fp);
2406 break;
2407 default:
2408 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2409 fr_eof(fp));
2410 fc_frame_free(fp);
2411 }
2412}
2413EXPORT_SYMBOL(fc_exch_recv);
2414
2415/**
2416 * fc_exch_init() - Initialize the exchange layer for a local port
2417 * @lport: The local port to initialize the exchange layer for
2418 */
2419int fc_exch_init(struct fc_lport *lport)
2420{
2421 if (!lport->tt.seq_start_next)
2422 lport->tt.seq_start_next = fc_seq_start_next;
2423
2424 if (!lport->tt.seq_set_resp)
2425 lport->tt.seq_set_resp = fc_seq_set_resp;
2426
2427 if (!lport->tt.exch_seq_send)
2428 lport->tt.exch_seq_send = fc_exch_seq_send;
2429
2430 if (!lport->tt.seq_send)
2431 lport->tt.seq_send = fc_seq_send;
2432
2433 if (!lport->tt.seq_els_rsp_send)
2434 lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2435
2436 if (!lport->tt.exch_done)
2437 lport->tt.exch_done = fc_exch_done;
2438
2439 if (!lport->tt.exch_mgr_reset)
2440 lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2441
2442 if (!lport->tt.seq_exch_abort)
2443 lport->tt.seq_exch_abort = fc_seq_exch_abort;
2444
2445 if (!lport->tt.seq_assign)
2446 lport->tt.seq_assign = fc_seq_assign;
2447
2448 if (!lport->tt.seq_release)
2449 lport->tt.seq_release = fc_seq_release;
2450
2451 return 0;
2452}
2453EXPORT_SYMBOL(fc_exch_init);
2454
2455/**
2456 * fc_setup_exch_mgr() - Setup an exchange manager
2457 */
2458int fc_setup_exch_mgr(void)
2459{
2460 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2461 0, SLAB_HWCACHE_ALIGN, NULL);
2462 if (!fc_em_cachep)
2463 return -ENOMEM;
2464
2465 /*
2466 * Initialize fc_cpu_mask and fc_cpu_order. The
2467 * fc_cpu_mask is set for nr_cpu_ids rounded up
2468 * to order of 2's * power and order is stored
2469 * in fc_cpu_order as this is later required in
2470 * mapping between an exch id and exch array index
2471 * in per cpu exch pool.
2472 *
2473 * This round up is required to align fc_cpu_mask
2474 * to exchange id's lower bits such that all incoming
2475 * frames of an exchange gets delivered to the same
2476 * cpu on which exchange originated by simple bitwise
2477 * AND operation between fc_cpu_mask and exchange id.
2478 */
2479 fc_cpu_mask = 1;
2480 fc_cpu_order = 0;
2481 while (fc_cpu_mask < nr_cpu_ids) {
2482 fc_cpu_mask <<= 1;
2483 fc_cpu_order++;
2484 }
2485 fc_cpu_mask--;
2486
2487 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2488 if (!fc_exch_workqueue)
2489 goto err;
2490 return 0;
2491err:
2492 kmem_cache_destroy(fc_em_cachep);
2493 return -ENOMEM;
2494}
2495
2496/**
2497 * fc_destroy_exch_mgr() - Destroy an exchange manager
2498 */
2499void fc_destroy_exch_mgr(void)
2500{
2501 destroy_workqueue(fc_exch_workqueue);
2502 kmem_cache_destroy(fc_em_cachep);
2503}
1/*
2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved.
4 * Copyright(c) 2008 Mike Christie
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Maintained at www.Open-FCoE.org
20 */
21
22/*
23 * Fibre Channel exchange and sequence handling.
24 */
25
26#include <linux/timer.h>
27#include <linux/slab.h>
28#include <linux/err.h>
29#include <linux/export.h>
30#include <linux/log2.h>
31
32#include <scsi/fc/fc_fc2.h>
33
34#include <scsi/libfc.h>
35#include <scsi/fc_encode.h>
36
37#include "fc_libfc.h"
38
39u16 fc_cpu_mask; /* cpu mask for possible cpus */
40EXPORT_SYMBOL(fc_cpu_mask);
41static u16 fc_cpu_order; /* 2's power to represent total possible cpus */
42static struct kmem_cache *fc_em_cachep; /* cache for exchanges */
43static struct workqueue_struct *fc_exch_workqueue;
44
45/*
46 * Structure and function definitions for managing Fibre Channel Exchanges
47 * and Sequences.
48 *
49 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
50 *
51 * fc_exch_mgr holds the exchange state for an N port
52 *
53 * fc_exch holds state for one exchange and links to its active sequence.
54 *
55 * fc_seq holds the state for an individual sequence.
56 */
57
58/**
59 * struct fc_exch_pool - Per cpu exchange pool
60 * @next_index: Next possible free exchange index
61 * @total_exches: Total allocated exchanges
62 * @lock: Exch pool lock
63 * @ex_list: List of exchanges
64 *
65 * This structure manages per cpu exchanges in array of exchange pointers.
66 * This array is allocated followed by struct fc_exch_pool memory for
67 * assigned range of exchanges to per cpu pool.
68 */
69struct fc_exch_pool {
70 spinlock_t lock;
71 struct list_head ex_list;
72 u16 next_index;
73 u16 total_exches;
74
75 /* two cache of free slot in exch array */
76 u16 left;
77 u16 right;
78} ____cacheline_aligned_in_smp;
79
80/**
81 * struct fc_exch_mgr - The Exchange Manager (EM).
82 * @class: Default class for new sequences
83 * @kref: Reference counter
84 * @min_xid: Minimum exchange ID
85 * @max_xid: Maximum exchange ID
86 * @ep_pool: Reserved exchange pointers
87 * @pool_max_index: Max exch array index in exch pool
88 * @pool: Per cpu exch pool
89 * @stats: Statistics structure
90 *
91 * This structure is the center for creating exchanges and sequences.
92 * It manages the allocation of exchange IDs.
93 */
94struct fc_exch_mgr {
95 struct fc_exch_pool __percpu *pool;
96 mempool_t *ep_pool;
97 struct fc_lport *lport;
98 enum fc_class class;
99 struct kref kref;
100 u16 min_xid;
101 u16 max_xid;
102 u16 pool_max_index;
103
104 struct {
105 atomic_t no_free_exch;
106 atomic_t no_free_exch_xid;
107 atomic_t xid_not_found;
108 atomic_t xid_busy;
109 atomic_t seq_not_found;
110 atomic_t non_bls_resp;
111 } stats;
112};
113
114/**
115 * struct fc_exch_mgr_anchor - primary structure for list of EMs
116 * @ema_list: Exchange Manager Anchor list
117 * @mp: Exchange Manager associated with this anchor
118 * @match: Routine to determine if this anchor's EM should be used
119 *
120 * When walking the list of anchors the match routine will be called
121 * for each anchor to determine if that EM should be used. The last
122 * anchor in the list will always match to handle any exchanges not
123 * handled by other EMs. The non-default EMs would be added to the
124 * anchor list by HW that provides offloads.
125 */
126struct fc_exch_mgr_anchor {
127 struct list_head ema_list;
128 struct fc_exch_mgr *mp;
129 bool (*match)(struct fc_frame *);
130};
131
132static void fc_exch_rrq(struct fc_exch *);
133static void fc_seq_ls_acc(struct fc_frame *);
134static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
135 enum fc_els_rjt_explan);
136static void fc_exch_els_rec(struct fc_frame *);
137static void fc_exch_els_rrq(struct fc_frame *);
138
139/*
140 * Internal implementation notes.
141 *
142 * The exchange manager is one by default in libfc but LLD may choose
143 * to have one per CPU. The sequence manager is one per exchange manager
144 * and currently never separated.
145 *
146 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field
147 * assigned by the Sequence Initiator that shall be unique for a specific
148 * D_ID and S_ID pair while the Sequence is open." Note that it isn't
149 * qualified by exchange ID, which one might think it would be.
150 * In practice this limits the number of open sequences and exchanges to 256
151 * per session. For most targets we could treat this limit as per exchange.
152 *
153 * The exchange and its sequence are freed when the last sequence is received.
154 * It's possible for the remote port to leave an exchange open without
155 * sending any sequences.
156 *
157 * Notes on reference counts:
158 *
159 * Exchanges are reference counted and exchange gets freed when the reference
160 * count becomes zero.
161 *
162 * Timeouts:
163 * Sequences are timed out for E_D_TOV and R_A_TOV.
164 *
165 * Sequence event handling:
166 *
167 * The following events may occur on initiator sequences:
168 *
169 * Send.
170 * For now, the whole thing is sent.
171 * Receive ACK
172 * This applies only to class F.
173 * The sequence is marked complete.
174 * ULP completion.
175 * The upper layer calls fc_exch_done() when done
176 * with exchange and sequence tuple.
177 * RX-inferred completion.
178 * When we receive the next sequence on the same exchange, we can
179 * retire the previous sequence ID. (XXX not implemented).
180 * Timeout.
181 * R_A_TOV frees the sequence ID. If we're waiting for ACK,
182 * E_D_TOV causes abort and calls upper layer response handler
183 * with FC_EX_TIMEOUT error.
184 * Receive RJT
185 * XXX defer.
186 * Send ABTS
187 * On timeout.
188 *
189 * The following events may occur on recipient sequences:
190 *
191 * Receive
192 * Allocate sequence for first frame received.
193 * Hold during receive handler.
194 * Release when final frame received.
195 * Keep status of last N of these for the ELS RES command. XXX TBD.
196 * Receive ABTS
197 * Deallocate sequence
198 * Send RJT
199 * Deallocate
200 *
201 * For now, we neglect conditions where only part of a sequence was
202 * received or transmitted, or where out-of-order receipt is detected.
203 */
204
205/*
206 * Locking notes:
207 *
208 * The EM code run in a per-CPU worker thread.
209 *
210 * To protect against concurrency between a worker thread code and timers,
211 * sequence allocation and deallocation must be locked.
212 * - exchange refcnt can be done atomicly without locks.
213 * - sequence allocation must be locked by exch lock.
214 * - If the EM pool lock and ex_lock must be taken at the same time, then the
215 * EM pool lock must be taken before the ex_lock.
216 */
217
218/*
219 * opcode names for debugging.
220 */
221static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
222
223/**
224 * fc_exch_name_lookup() - Lookup name by opcode
225 * @op: Opcode to be looked up
226 * @table: Opcode/name table
227 * @max_index: Index not to be exceeded
228 *
229 * This routine is used to determine a human-readable string identifying
230 * a R_CTL opcode.
231 */
232static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
233 unsigned int max_index)
234{
235 const char *name = NULL;
236
237 if (op < max_index)
238 name = table[op];
239 if (!name)
240 name = "unknown";
241 return name;
242}
243
244/**
245 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
246 * @op: The opcode to be looked up
247 */
248static const char *fc_exch_rctl_name(unsigned int op)
249{
250 return fc_exch_name_lookup(op, fc_exch_rctl_names,
251 ARRAY_SIZE(fc_exch_rctl_names));
252}
253
254/**
255 * fc_exch_hold() - Increment an exchange's reference count
256 * @ep: Echange to be held
257 */
258static inline void fc_exch_hold(struct fc_exch *ep)
259{
260 atomic_inc(&ep->ex_refcnt);
261}
262
263/**
264 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
265 * and determine SOF and EOF.
266 * @ep: The exchange to that will use the header
267 * @fp: The frame whose header is to be modified
268 * @f_ctl: F_CTL bits that will be used for the frame header
269 *
270 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
271 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
272 */
273static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
274 u32 f_ctl)
275{
276 struct fc_frame_header *fh = fc_frame_header_get(fp);
277 u16 fill;
278
279 fr_sof(fp) = ep->class;
280 if (ep->seq.cnt)
281 fr_sof(fp) = fc_sof_normal(ep->class);
282
283 if (f_ctl & FC_FC_END_SEQ) {
284 fr_eof(fp) = FC_EOF_T;
285 if (fc_sof_needs_ack(ep->class))
286 fr_eof(fp) = FC_EOF_N;
287 /*
288 * From F_CTL.
289 * The number of fill bytes to make the length a 4-byte
290 * multiple is the low order 2-bits of the f_ctl.
291 * The fill itself will have been cleared by the frame
292 * allocation.
293 * After this, the length will be even, as expected by
294 * the transport.
295 */
296 fill = fr_len(fp) & 3;
297 if (fill) {
298 fill = 4 - fill;
299 /* TODO, this may be a problem with fragmented skb */
300 skb_put(fp_skb(fp), fill);
301 hton24(fh->fh_f_ctl, f_ctl | fill);
302 }
303 } else {
304 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */
305 fr_eof(fp) = FC_EOF_N;
306 }
307
308 /* Initialize remaining fh fields from fc_fill_fc_hdr */
309 fh->fh_ox_id = htons(ep->oxid);
310 fh->fh_rx_id = htons(ep->rxid);
311 fh->fh_seq_id = ep->seq.id;
312 fh->fh_seq_cnt = htons(ep->seq.cnt);
313}
314
315/**
316 * fc_exch_release() - Decrement an exchange's reference count
317 * @ep: Exchange to be released
318 *
319 * If the reference count reaches zero and the exchange is complete,
320 * it is freed.
321 */
322static void fc_exch_release(struct fc_exch *ep)
323{
324 struct fc_exch_mgr *mp;
325
326 if (atomic_dec_and_test(&ep->ex_refcnt)) {
327 mp = ep->em;
328 if (ep->destructor)
329 ep->destructor(&ep->seq, ep->arg);
330 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
331 mempool_free(ep, mp->ep_pool);
332 }
333}
334
335/**
336 * fc_exch_timer_cancel() - cancel exch timer
337 * @ep: The exchange whose timer to be canceled
338 */
339static inline void fc_exch_timer_cancel(struct fc_exch *ep)
340{
341 if (cancel_delayed_work(&ep->timeout_work)) {
342 FC_EXCH_DBG(ep, "Exchange timer canceled\n");
343 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
344 }
345}
346
347/**
348 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
349 * the exchange lock held
350 * @ep: The exchange whose timer will start
351 * @timer_msec: The timeout period
352 *
353 * Used for upper level protocols to time out the exchange.
354 * The timer is cancelled when it fires or when the exchange completes.
355 */
356static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
357 unsigned int timer_msec)
358{
359 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
360 return;
361
362 FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
363
364 fc_exch_hold(ep); /* hold for timer */
365 if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
366 msecs_to_jiffies(timer_msec))) {
367 FC_EXCH_DBG(ep, "Exchange already queued\n");
368 fc_exch_release(ep);
369 }
370}
371
372/**
373 * fc_exch_timer_set() - Lock the exchange and set the timer
374 * @ep: The exchange whose timer will start
375 * @timer_msec: The timeout period
376 */
377static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
378{
379 spin_lock_bh(&ep->ex_lock);
380 fc_exch_timer_set_locked(ep, timer_msec);
381 spin_unlock_bh(&ep->ex_lock);
382}
383
384/**
385 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
386 * @ep: The exchange that is complete
387 *
388 * Note: May sleep if invoked from outside a response handler.
389 */
390static int fc_exch_done_locked(struct fc_exch *ep)
391{
392 int rc = 1;
393
394 /*
395 * We must check for completion in case there are two threads
396 * tyring to complete this. But the rrq code will reuse the
397 * ep, and in that case we only clear the resp and set it as
398 * complete, so it can be reused by the timer to send the rrq.
399 */
400 if (ep->state & FC_EX_DONE)
401 return rc;
402 ep->esb_stat |= ESB_ST_COMPLETE;
403
404 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
405 ep->state |= FC_EX_DONE;
406 fc_exch_timer_cancel(ep);
407 rc = 0;
408 }
409 return rc;
410}
411
412static struct fc_exch fc_quarantine_exch;
413
414/**
415 * fc_exch_ptr_get() - Return an exchange from an exchange pool
416 * @pool: Exchange Pool to get an exchange from
417 * @index: Index of the exchange within the pool
418 *
419 * Use the index to get an exchange from within an exchange pool. exches
420 * will point to an array of exchange pointers. The index will select
421 * the exchange within the array.
422 */
423static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
424 u16 index)
425{
426 struct fc_exch **exches = (struct fc_exch **)(pool + 1);
427 return exches[index];
428}
429
430/**
431 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
432 * @pool: The pool to assign the exchange to
433 * @index: The index in the pool where the exchange will be assigned
434 * @ep: The exchange to assign to the pool
435 */
436static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
437 struct fc_exch *ep)
438{
439 ((struct fc_exch **)(pool + 1))[index] = ep;
440}
441
442/**
443 * fc_exch_delete() - Delete an exchange
444 * @ep: The exchange to be deleted
445 */
446static void fc_exch_delete(struct fc_exch *ep)
447{
448 struct fc_exch_pool *pool;
449 u16 index;
450
451 pool = ep->pool;
452 spin_lock_bh(&pool->lock);
453 WARN_ON(pool->total_exches <= 0);
454 pool->total_exches--;
455
456 /* update cache of free slot */
457 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
458 if (!(ep->state & FC_EX_QUARANTINE)) {
459 if (pool->left == FC_XID_UNKNOWN)
460 pool->left = index;
461 else if (pool->right == FC_XID_UNKNOWN)
462 pool->right = index;
463 else
464 pool->next_index = index;
465 fc_exch_ptr_set(pool, index, NULL);
466 } else {
467 fc_exch_ptr_set(pool, index, &fc_quarantine_exch);
468 }
469 list_del(&ep->ex_list);
470 spin_unlock_bh(&pool->lock);
471 fc_exch_release(ep); /* drop hold for exch in mp */
472}
473
474static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
475 struct fc_frame *fp)
476{
477 struct fc_exch *ep;
478 struct fc_frame_header *fh = fc_frame_header_get(fp);
479 int error = -ENXIO;
480 u32 f_ctl;
481 u8 fh_type = fh->fh_type;
482
483 ep = fc_seq_exch(sp);
484
485 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) {
486 fc_frame_free(fp);
487 goto out;
488 }
489
490 WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
491
492 f_ctl = ntoh24(fh->fh_f_ctl);
493 fc_exch_setup_hdr(ep, fp, f_ctl);
494 fr_encaps(fp) = ep->encaps;
495
496 /*
497 * update sequence count if this frame is carrying
498 * multiple FC frames when sequence offload is enabled
499 * by LLD.
500 */
501 if (fr_max_payload(fp))
502 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
503 fr_max_payload(fp));
504 else
505 sp->cnt++;
506
507 /*
508 * Send the frame.
509 */
510 error = lport->tt.frame_send(lport, fp);
511
512 if (fh_type == FC_TYPE_BLS)
513 goto out;
514
515 /*
516 * Update the exchange and sequence flags,
517 * assuming all frames for the sequence have been sent.
518 * We can only be called to send once for each sequence.
519 */
520 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */
521 if (f_ctl & FC_FC_SEQ_INIT)
522 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
523out:
524 return error;
525}
526
527/**
528 * fc_seq_send() - Send a frame using existing sequence/exchange pair
529 * @lport: The local port that the exchange will be sent on
530 * @sp: The sequence to be sent
531 * @fp: The frame to be sent on the exchange
532 *
533 * Note: The frame will be freed either by a direct call to fc_frame_free(fp)
534 * or indirectly by calling libfc_function_template.frame_send().
535 */
536int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, struct fc_frame *fp)
537{
538 struct fc_exch *ep;
539 int error;
540 ep = fc_seq_exch(sp);
541 spin_lock_bh(&ep->ex_lock);
542 error = fc_seq_send_locked(lport, sp, fp);
543 spin_unlock_bh(&ep->ex_lock);
544 return error;
545}
546EXPORT_SYMBOL(fc_seq_send);
547
548/**
549 * fc_seq_alloc() - Allocate a sequence for a given exchange
550 * @ep: The exchange to allocate a new sequence for
551 * @seq_id: The sequence ID to be used
552 *
553 * We don't support multiple originated sequences on the same exchange.
554 * By implication, any previously originated sequence on this exchange
555 * is complete, and we reallocate the same sequence.
556 */
557static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
558{
559 struct fc_seq *sp;
560
561 sp = &ep->seq;
562 sp->ssb_stat = 0;
563 sp->cnt = 0;
564 sp->id = seq_id;
565 return sp;
566}
567
568/**
569 * fc_seq_start_next_locked() - Allocate a new sequence on the same
570 * exchange as the supplied sequence
571 * @sp: The sequence/exchange to get a new sequence for
572 */
573static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
574{
575 struct fc_exch *ep = fc_seq_exch(sp);
576
577 sp = fc_seq_alloc(ep, ep->seq_id++);
578 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
579 ep->f_ctl, sp->id);
580 return sp;
581}
582
583/**
584 * fc_seq_start_next() - Lock the exchange and get a new sequence
585 * for a given sequence/exchange pair
586 * @sp: The sequence/exchange to get a new exchange for
587 */
588struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
589{
590 struct fc_exch *ep = fc_seq_exch(sp);
591
592 spin_lock_bh(&ep->ex_lock);
593 sp = fc_seq_start_next_locked(sp);
594 spin_unlock_bh(&ep->ex_lock);
595
596 return sp;
597}
598EXPORT_SYMBOL(fc_seq_start_next);
599
600/*
601 * Set the response handler for the exchange associated with a sequence.
602 *
603 * Note: May sleep if invoked from outside a response handler.
604 */
605void fc_seq_set_resp(struct fc_seq *sp,
606 void (*resp)(struct fc_seq *, struct fc_frame *, void *),
607 void *arg)
608{
609 struct fc_exch *ep = fc_seq_exch(sp);
610 DEFINE_WAIT(wait);
611
612 spin_lock_bh(&ep->ex_lock);
613 while (ep->resp_active && ep->resp_task != current) {
614 prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE);
615 spin_unlock_bh(&ep->ex_lock);
616
617 schedule();
618
619 spin_lock_bh(&ep->ex_lock);
620 }
621 finish_wait(&ep->resp_wq, &wait);
622 ep->resp = resp;
623 ep->arg = arg;
624 spin_unlock_bh(&ep->ex_lock);
625}
626EXPORT_SYMBOL(fc_seq_set_resp);
627
628/**
629 * fc_exch_abort_locked() - Abort an exchange
630 * @ep: The exchange to be aborted
631 * @timer_msec: The period of time to wait before aborting
632 *
633 * Abort an exchange and sequence. Generally called because of a
634 * exchange timeout or an abort from the upper layer.
635 *
636 * A timer_msec can be specified for abort timeout, if non-zero
637 * timer_msec value is specified then exchange resp handler
638 * will be called with timeout error if no response to abort.
639 *
640 * Locking notes: Called with exch lock held
641 *
642 * Return value: 0 on success else error code
643 */
644static int fc_exch_abort_locked(struct fc_exch *ep,
645 unsigned int timer_msec)
646{
647 struct fc_seq *sp;
648 struct fc_frame *fp;
649 int error;
650
651 FC_EXCH_DBG(ep, "exch: abort, time %d msecs\n", timer_msec);
652 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
653 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
654 FC_EXCH_DBG(ep, "exch: already completed esb %x state %x\n",
655 ep->esb_stat, ep->state);
656 return -ENXIO;
657 }
658
659 /*
660 * Send the abort on a new sequence if possible.
661 */
662 sp = fc_seq_start_next_locked(&ep->seq);
663 if (!sp)
664 return -ENOMEM;
665
666 if (timer_msec)
667 fc_exch_timer_set_locked(ep, timer_msec);
668
669 if (ep->sid) {
670 /*
671 * Send an abort for the sequence that timed out.
672 */
673 fp = fc_frame_alloc(ep->lp, 0);
674 if (fp) {
675 ep->esb_stat |= ESB_ST_SEQ_INIT;
676 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
677 FC_TYPE_BLS, FC_FC_END_SEQ |
678 FC_FC_SEQ_INIT, 0);
679 error = fc_seq_send_locked(ep->lp, sp, fp);
680 } else {
681 error = -ENOBUFS;
682 }
683 } else {
684 /*
685 * If not logged into the fabric, don't send ABTS but leave
686 * sequence active until next timeout.
687 */
688 error = 0;
689 }
690 ep->esb_stat |= ESB_ST_ABNORMAL;
691 return error;
692}
693
694/**
695 * fc_seq_exch_abort() - Abort an exchange and sequence
696 * @req_sp: The sequence to be aborted
697 * @timer_msec: The period of time to wait before aborting
698 *
699 * Generally called because of a timeout or an abort from the upper layer.
700 *
701 * Return value: 0 on success else error code
702 */
703int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec)
704{
705 struct fc_exch *ep;
706 int error;
707
708 ep = fc_seq_exch(req_sp);
709 spin_lock_bh(&ep->ex_lock);
710 error = fc_exch_abort_locked(ep, timer_msec);
711 spin_unlock_bh(&ep->ex_lock);
712 return error;
713}
714
715/**
716 * fc_invoke_resp() - invoke ep->resp()
717 *
718 * Notes:
719 * It is assumed that after initialization finished (this means the
720 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are
721 * modified only via fc_seq_set_resp(). This guarantees that none of these
722 * two variables changes if ep->resp_active > 0.
723 *
724 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when
725 * this function is invoked, the first spin_lock_bh() call in this function
726 * will wait until fc_seq_set_resp() has finished modifying these variables.
727 *
728 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that
729 * ep->resp() won't be invoked after fc_exch_done() has returned.
730 *
731 * The response handler itself may invoke fc_exch_done(), which will clear the
732 * ep->resp pointer.
733 *
734 * Return value:
735 * Returns true if and only if ep->resp has been invoked.
736 */
737static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp,
738 struct fc_frame *fp)
739{
740 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
741 void *arg;
742 bool res = false;
743
744 spin_lock_bh(&ep->ex_lock);
745 ep->resp_active++;
746 if (ep->resp_task != current)
747 ep->resp_task = !ep->resp_task ? current : NULL;
748 resp = ep->resp;
749 arg = ep->arg;
750 spin_unlock_bh(&ep->ex_lock);
751
752 if (resp) {
753 resp(sp, fp, arg);
754 res = true;
755 }
756
757 spin_lock_bh(&ep->ex_lock);
758 if (--ep->resp_active == 0)
759 ep->resp_task = NULL;
760 spin_unlock_bh(&ep->ex_lock);
761
762 if (ep->resp_active == 0)
763 wake_up(&ep->resp_wq);
764
765 return res;
766}
767
768/**
769 * fc_exch_timeout() - Handle exchange timer expiration
770 * @work: The work_struct identifying the exchange that timed out
771 */
772static void fc_exch_timeout(struct work_struct *work)
773{
774 struct fc_exch *ep = container_of(work, struct fc_exch,
775 timeout_work.work);
776 struct fc_seq *sp = &ep->seq;
777 u32 e_stat;
778 int rc = 1;
779
780 FC_EXCH_DBG(ep, "Exchange timed out state %x\n", ep->state);
781
782 spin_lock_bh(&ep->ex_lock);
783 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
784 goto unlock;
785
786 e_stat = ep->esb_stat;
787 if (e_stat & ESB_ST_COMPLETE) {
788 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
789 spin_unlock_bh(&ep->ex_lock);
790 if (e_stat & ESB_ST_REC_QUAL)
791 fc_exch_rrq(ep);
792 goto done;
793 } else {
794 if (e_stat & ESB_ST_ABNORMAL)
795 rc = fc_exch_done_locked(ep);
796 spin_unlock_bh(&ep->ex_lock);
797 if (!rc)
798 fc_exch_delete(ep);
799 fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT));
800 fc_seq_set_resp(sp, NULL, ep->arg);
801 fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
802 goto done;
803 }
804unlock:
805 spin_unlock_bh(&ep->ex_lock);
806done:
807 /*
808 * This release matches the hold taken when the timer was set.
809 */
810 fc_exch_release(ep);
811}
812
813/**
814 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
815 * @lport: The local port that the exchange is for
816 * @mp: The exchange manager that will allocate the exchange
817 *
818 * Returns pointer to allocated fc_exch with exch lock held.
819 */
820static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
821 struct fc_exch_mgr *mp)
822{
823 struct fc_exch *ep;
824 unsigned int cpu;
825 u16 index;
826 struct fc_exch_pool *pool;
827
828 /* allocate memory for exchange */
829 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
830 if (!ep) {
831 atomic_inc(&mp->stats.no_free_exch);
832 goto out;
833 }
834 memset(ep, 0, sizeof(*ep));
835
836 cpu = get_cpu();
837 pool = per_cpu_ptr(mp->pool, cpu);
838 spin_lock_bh(&pool->lock);
839 put_cpu();
840
841 /* peek cache of free slot */
842 if (pool->left != FC_XID_UNKNOWN) {
843 if (!WARN_ON(fc_exch_ptr_get(pool, pool->left))) {
844 index = pool->left;
845 pool->left = FC_XID_UNKNOWN;
846 goto hit;
847 }
848 }
849 if (pool->right != FC_XID_UNKNOWN) {
850 if (!WARN_ON(fc_exch_ptr_get(pool, pool->right))) {
851 index = pool->right;
852 pool->right = FC_XID_UNKNOWN;
853 goto hit;
854 }
855 }
856
857 index = pool->next_index;
858 /* allocate new exch from pool */
859 while (fc_exch_ptr_get(pool, index)) {
860 index = index == mp->pool_max_index ? 0 : index + 1;
861 if (index == pool->next_index)
862 goto err;
863 }
864 pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
865hit:
866 fc_exch_hold(ep); /* hold for exch in mp */
867 spin_lock_init(&ep->ex_lock);
868 /*
869 * Hold exch lock for caller to prevent fc_exch_reset()
870 * from releasing exch while fc_exch_alloc() caller is
871 * still working on exch.
872 */
873 spin_lock_bh(&ep->ex_lock);
874
875 fc_exch_ptr_set(pool, index, ep);
876 list_add_tail(&ep->ex_list, &pool->ex_list);
877 fc_seq_alloc(ep, ep->seq_id++);
878 pool->total_exches++;
879 spin_unlock_bh(&pool->lock);
880
881 /*
882 * update exchange
883 */
884 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
885 ep->em = mp;
886 ep->pool = pool;
887 ep->lp = lport;
888 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */
889 ep->rxid = FC_XID_UNKNOWN;
890 ep->class = mp->class;
891 ep->resp_active = 0;
892 init_waitqueue_head(&ep->resp_wq);
893 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
894out:
895 return ep;
896err:
897 spin_unlock_bh(&pool->lock);
898 atomic_inc(&mp->stats.no_free_exch_xid);
899 mempool_free(ep, mp->ep_pool);
900 return NULL;
901}
902
903/**
904 * fc_exch_alloc() - Allocate an exchange from an EM on a
905 * local port's list of EMs.
906 * @lport: The local port that will own the exchange
907 * @fp: The FC frame that the exchange will be for
908 *
909 * This function walks the list of exchange manager(EM)
910 * anchors to select an EM for a new exchange allocation. The
911 * EM is selected when a NULL match function pointer is encountered
912 * or when a call to a match function returns true.
913 */
914static struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
915 struct fc_frame *fp)
916{
917 struct fc_exch_mgr_anchor *ema;
918 struct fc_exch *ep;
919
920 list_for_each_entry(ema, &lport->ema_list, ema_list) {
921 if (!ema->match || ema->match(fp)) {
922 ep = fc_exch_em_alloc(lport, ema->mp);
923 if (ep)
924 return ep;
925 }
926 }
927 return NULL;
928}
929
930/**
931 * fc_exch_find() - Lookup and hold an exchange
932 * @mp: The exchange manager to lookup the exchange from
933 * @xid: The XID of the exchange to look up
934 */
935static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
936{
937 struct fc_lport *lport = mp->lport;
938 struct fc_exch_pool *pool;
939 struct fc_exch *ep = NULL;
940 u16 cpu = xid & fc_cpu_mask;
941
942 if (xid == FC_XID_UNKNOWN)
943 return NULL;
944
945 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
946 pr_err("host%u: lport %6.6x: xid %d invalid CPU %d\n:",
947 lport->host->host_no, lport->port_id, xid, cpu);
948 return NULL;
949 }
950
951 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
952 pool = per_cpu_ptr(mp->pool, cpu);
953 spin_lock_bh(&pool->lock);
954 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
955 if (ep == &fc_quarantine_exch) {
956 FC_LPORT_DBG(lport, "xid %x quarantined\n", xid);
957 ep = NULL;
958 }
959 if (ep) {
960 WARN_ON(ep->xid != xid);
961 fc_exch_hold(ep);
962 }
963 spin_unlock_bh(&pool->lock);
964 }
965 return ep;
966}
967
968
969/**
970 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
971 * the memory allocated for the related objects may be freed.
972 * @sp: The sequence that has completed
973 *
974 * Note: May sleep if invoked from outside a response handler.
975 */
976void fc_exch_done(struct fc_seq *sp)
977{
978 struct fc_exch *ep = fc_seq_exch(sp);
979 int rc;
980
981 spin_lock_bh(&ep->ex_lock);
982 rc = fc_exch_done_locked(ep);
983 spin_unlock_bh(&ep->ex_lock);
984
985 fc_seq_set_resp(sp, NULL, ep->arg);
986 if (!rc)
987 fc_exch_delete(ep);
988}
989EXPORT_SYMBOL(fc_exch_done);
990
991/**
992 * fc_exch_resp() - Allocate a new exchange for a response frame
993 * @lport: The local port that the exchange was for
994 * @mp: The exchange manager to allocate the exchange from
995 * @fp: The response frame
996 *
997 * Sets the responder ID in the frame header.
998 */
999static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
1000 struct fc_exch_mgr *mp,
1001 struct fc_frame *fp)
1002{
1003 struct fc_exch *ep;
1004 struct fc_frame_header *fh;
1005
1006 ep = fc_exch_alloc(lport, fp);
1007 if (ep) {
1008 ep->class = fc_frame_class(fp);
1009
1010 /*
1011 * Set EX_CTX indicating we're responding on this exchange.
1012 */
1013 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */
1014 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */
1015 fh = fc_frame_header_get(fp);
1016 ep->sid = ntoh24(fh->fh_d_id);
1017 ep->did = ntoh24(fh->fh_s_id);
1018 ep->oid = ep->did;
1019
1020 /*
1021 * Allocated exchange has placed the XID in the
1022 * originator field. Move it to the responder field,
1023 * and set the originator XID from the frame.
1024 */
1025 ep->rxid = ep->xid;
1026 ep->oxid = ntohs(fh->fh_ox_id);
1027 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
1028 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
1029 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1030
1031 fc_exch_hold(ep); /* hold for caller */
1032 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */
1033 }
1034 return ep;
1035}
1036
1037/**
1038 * fc_seq_lookup_recip() - Find a sequence where the other end
1039 * originated the sequence
1040 * @lport: The local port that the frame was sent to
1041 * @mp: The Exchange Manager to lookup the exchange from
1042 * @fp: The frame associated with the sequence we're looking for
1043 *
1044 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
1045 * on the ep that should be released by the caller.
1046 */
1047static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
1048 struct fc_exch_mgr *mp,
1049 struct fc_frame *fp)
1050{
1051 struct fc_frame_header *fh = fc_frame_header_get(fp);
1052 struct fc_exch *ep = NULL;
1053 struct fc_seq *sp = NULL;
1054 enum fc_pf_rjt_reason reject = FC_RJT_NONE;
1055 u32 f_ctl;
1056 u16 xid;
1057
1058 f_ctl = ntoh24(fh->fh_f_ctl);
1059 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
1060
1061 /*
1062 * Lookup or create the exchange if we will be creating the sequence.
1063 */
1064 if (f_ctl & FC_FC_EX_CTX) {
1065 xid = ntohs(fh->fh_ox_id); /* we originated exch */
1066 ep = fc_exch_find(mp, xid);
1067 if (!ep) {
1068 atomic_inc(&mp->stats.xid_not_found);
1069 reject = FC_RJT_OX_ID;
1070 goto out;
1071 }
1072 if (ep->rxid == FC_XID_UNKNOWN)
1073 ep->rxid = ntohs(fh->fh_rx_id);
1074 else if (ep->rxid != ntohs(fh->fh_rx_id)) {
1075 reject = FC_RJT_OX_ID;
1076 goto rel;
1077 }
1078 } else {
1079 xid = ntohs(fh->fh_rx_id); /* we are the responder */
1080
1081 /*
1082 * Special case for MDS issuing an ELS TEST with a
1083 * bad rxid of 0.
1084 * XXX take this out once we do the proper reject.
1085 */
1086 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
1087 fc_frame_payload_op(fp) == ELS_TEST) {
1088 fh->fh_rx_id = htons(FC_XID_UNKNOWN);
1089 xid = FC_XID_UNKNOWN;
1090 }
1091
1092 /*
1093 * new sequence - find the exchange
1094 */
1095 ep = fc_exch_find(mp, xid);
1096 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
1097 if (ep) {
1098 atomic_inc(&mp->stats.xid_busy);
1099 reject = FC_RJT_RX_ID;
1100 goto rel;
1101 }
1102 ep = fc_exch_resp(lport, mp, fp);
1103 if (!ep) {
1104 reject = FC_RJT_EXCH_EST; /* XXX */
1105 goto out;
1106 }
1107 xid = ep->xid; /* get our XID */
1108 } else if (!ep) {
1109 atomic_inc(&mp->stats.xid_not_found);
1110 reject = FC_RJT_RX_ID; /* XID not found */
1111 goto out;
1112 }
1113 }
1114
1115 spin_lock_bh(&ep->ex_lock);
1116 /*
1117 * At this point, we have the exchange held.
1118 * Find or create the sequence.
1119 */
1120 if (fc_sof_is_init(fr_sof(fp))) {
1121 sp = &ep->seq;
1122 sp->ssb_stat |= SSB_ST_RESP;
1123 sp->id = fh->fh_seq_id;
1124 } else {
1125 sp = &ep->seq;
1126 if (sp->id != fh->fh_seq_id) {
1127 atomic_inc(&mp->stats.seq_not_found);
1128 if (f_ctl & FC_FC_END_SEQ) {
1129 /*
1130 * Update sequence_id based on incoming last
1131 * frame of sequence exchange. This is needed
1132 * for FC target where DDP has been used
1133 * on target where, stack is indicated only
1134 * about last frame's (payload _header) header.
1135 * Whereas "seq_id" which is part of
1136 * frame_header is allocated by initiator
1137 * which is totally different from "seq_id"
1138 * allocated when XFER_RDY was sent by target.
1139 * To avoid false -ve which results into not
1140 * sending RSP, hence write request on other
1141 * end never finishes.
1142 */
1143 sp->ssb_stat |= SSB_ST_RESP;
1144 sp->id = fh->fh_seq_id;
1145 } else {
1146 spin_unlock_bh(&ep->ex_lock);
1147
1148 /* sequence/exch should exist */
1149 reject = FC_RJT_SEQ_ID;
1150 goto rel;
1151 }
1152 }
1153 }
1154 WARN_ON(ep != fc_seq_exch(sp));
1155
1156 if (f_ctl & FC_FC_SEQ_INIT)
1157 ep->esb_stat |= ESB_ST_SEQ_INIT;
1158 spin_unlock_bh(&ep->ex_lock);
1159
1160 fr_seq(fp) = sp;
1161out:
1162 return reject;
1163rel:
1164 fc_exch_done(&ep->seq);
1165 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */
1166 return reject;
1167}
1168
1169/**
1170 * fc_seq_lookup_orig() - Find a sequence where this end
1171 * originated the sequence
1172 * @mp: The Exchange Manager to lookup the exchange from
1173 * @fp: The frame associated with the sequence we're looking for
1174 *
1175 * Does not hold the sequence for the caller.
1176 */
1177static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1178 struct fc_frame *fp)
1179{
1180 struct fc_frame_header *fh = fc_frame_header_get(fp);
1181 struct fc_exch *ep;
1182 struct fc_seq *sp = NULL;
1183 u32 f_ctl;
1184 u16 xid;
1185
1186 f_ctl = ntoh24(fh->fh_f_ctl);
1187 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1188 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1189 ep = fc_exch_find(mp, xid);
1190 if (!ep)
1191 return NULL;
1192 if (ep->seq.id == fh->fh_seq_id) {
1193 /*
1194 * Save the RX_ID if we didn't previously know it.
1195 */
1196 sp = &ep->seq;
1197 if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1198 ep->rxid == FC_XID_UNKNOWN) {
1199 ep->rxid = ntohs(fh->fh_rx_id);
1200 }
1201 }
1202 fc_exch_release(ep);
1203 return sp;
1204}
1205
1206/**
1207 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1208 * @ep: The exchange to set the addresses for
1209 * @orig_id: The originator's ID
1210 * @resp_id: The responder's ID
1211 *
1212 * Note this must be done before the first sequence of the exchange is sent.
1213 */
1214static void fc_exch_set_addr(struct fc_exch *ep,
1215 u32 orig_id, u32 resp_id)
1216{
1217 ep->oid = orig_id;
1218 if (ep->esb_stat & ESB_ST_RESP) {
1219 ep->sid = resp_id;
1220 ep->did = orig_id;
1221 } else {
1222 ep->sid = orig_id;
1223 ep->did = resp_id;
1224 }
1225}
1226
1227/**
1228 * fc_seq_els_rsp_send() - Send an ELS response using information from
1229 * the existing sequence/exchange.
1230 * @fp: The received frame
1231 * @els_cmd: The ELS command to be sent
1232 * @els_data: The ELS data to be sent
1233 *
1234 * The received frame is not freed.
1235 */
1236void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1237 struct fc_seq_els_data *els_data)
1238{
1239 switch (els_cmd) {
1240 case ELS_LS_RJT:
1241 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1242 break;
1243 case ELS_LS_ACC:
1244 fc_seq_ls_acc(fp);
1245 break;
1246 case ELS_RRQ:
1247 fc_exch_els_rrq(fp);
1248 break;
1249 case ELS_REC:
1250 fc_exch_els_rec(fp);
1251 break;
1252 default:
1253 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1254 }
1255}
1256EXPORT_SYMBOL_GPL(fc_seq_els_rsp_send);
1257
1258/**
1259 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1260 * @sp: The sequence that is to be sent
1261 * @fp: The frame that will be sent on the sequence
1262 * @rctl: The R_CTL information to be sent
1263 * @fh_type: The frame header type
1264 */
1265static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1266 enum fc_rctl rctl, enum fc_fh_type fh_type)
1267{
1268 u32 f_ctl;
1269 struct fc_exch *ep = fc_seq_exch(sp);
1270
1271 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1272 f_ctl |= ep->f_ctl;
1273 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1274 fc_seq_send_locked(ep->lp, sp, fp);
1275}
1276
1277/**
1278 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1279 * @sp: The sequence to send the ACK on
1280 * @rx_fp: The received frame that is being acknoledged
1281 *
1282 * Send ACK_1 (or equiv.) indicating we received something.
1283 */
1284static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1285{
1286 struct fc_frame *fp;
1287 struct fc_frame_header *rx_fh;
1288 struct fc_frame_header *fh;
1289 struct fc_exch *ep = fc_seq_exch(sp);
1290 struct fc_lport *lport = ep->lp;
1291 unsigned int f_ctl;
1292
1293 /*
1294 * Don't send ACKs for class 3.
1295 */
1296 if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1297 fp = fc_frame_alloc(lport, 0);
1298 if (!fp) {
1299 FC_EXCH_DBG(ep, "Drop ACK request, out of memory\n");
1300 return;
1301 }
1302
1303 fh = fc_frame_header_get(fp);
1304 fh->fh_r_ctl = FC_RCTL_ACK_1;
1305 fh->fh_type = FC_TYPE_BLS;
1306
1307 /*
1308 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1309 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1310 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1311 * Last ACK uses bits 7-6 (continue sequence),
1312 * bits 5-4 are meaningful (what kind of ACK to use).
1313 */
1314 rx_fh = fc_frame_header_get(rx_fp);
1315 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1316 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1317 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1318 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1319 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1320 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1321 hton24(fh->fh_f_ctl, f_ctl);
1322
1323 fc_exch_setup_hdr(ep, fp, f_ctl);
1324 fh->fh_seq_id = rx_fh->fh_seq_id;
1325 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1326 fh->fh_parm_offset = htonl(1); /* ack single frame */
1327
1328 fr_sof(fp) = fr_sof(rx_fp);
1329 if (f_ctl & FC_FC_END_SEQ)
1330 fr_eof(fp) = FC_EOF_T;
1331 else
1332 fr_eof(fp) = FC_EOF_N;
1333
1334 lport->tt.frame_send(lport, fp);
1335 }
1336}
1337
1338/**
1339 * fc_exch_send_ba_rjt() - Send BLS Reject
1340 * @rx_fp: The frame being rejected
1341 * @reason: The reason the frame is being rejected
1342 * @explan: The explanation for the rejection
1343 *
1344 * This is for rejecting BA_ABTS only.
1345 */
1346static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1347 enum fc_ba_rjt_reason reason,
1348 enum fc_ba_rjt_explan explan)
1349{
1350 struct fc_frame *fp;
1351 struct fc_frame_header *rx_fh;
1352 struct fc_frame_header *fh;
1353 struct fc_ba_rjt *rp;
1354 struct fc_seq *sp;
1355 struct fc_lport *lport;
1356 unsigned int f_ctl;
1357
1358 lport = fr_dev(rx_fp);
1359 sp = fr_seq(rx_fp);
1360 fp = fc_frame_alloc(lport, sizeof(*rp));
1361 if (!fp) {
1362 FC_EXCH_DBG(fc_seq_exch(sp),
1363 "Drop BA_RJT request, out of memory\n");
1364 return;
1365 }
1366 fh = fc_frame_header_get(fp);
1367 rx_fh = fc_frame_header_get(rx_fp);
1368
1369 memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1370
1371 rp = fc_frame_payload_get(fp, sizeof(*rp));
1372 rp->br_reason = reason;
1373 rp->br_explan = explan;
1374
1375 /*
1376 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1377 */
1378 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1379 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1380 fh->fh_ox_id = rx_fh->fh_ox_id;
1381 fh->fh_rx_id = rx_fh->fh_rx_id;
1382 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1383 fh->fh_r_ctl = FC_RCTL_BA_RJT;
1384 fh->fh_type = FC_TYPE_BLS;
1385
1386 /*
1387 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1388 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1389 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1390 * Last ACK uses bits 7-6 (continue sequence),
1391 * bits 5-4 are meaningful (what kind of ACK to use).
1392 * Always set LAST_SEQ, END_SEQ.
1393 */
1394 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1395 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1396 FC_FC_END_CONN | FC_FC_SEQ_INIT |
1397 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1398 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1399 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1400 f_ctl &= ~FC_FC_FIRST_SEQ;
1401 hton24(fh->fh_f_ctl, f_ctl);
1402
1403 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1404 fr_eof(fp) = FC_EOF_T;
1405 if (fc_sof_needs_ack(fr_sof(fp)))
1406 fr_eof(fp) = FC_EOF_N;
1407
1408 lport->tt.frame_send(lport, fp);
1409}
1410
1411/**
1412 * fc_exch_recv_abts() - Handle an incoming ABTS
1413 * @ep: The exchange the abort was on
1414 * @rx_fp: The ABTS frame
1415 *
1416 * This would be for target mode usually, but could be due to lost
1417 * FCP transfer ready, confirm or RRQ. We always handle this as an
1418 * exchange abort, ignoring the parameter.
1419 */
1420static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1421{
1422 struct fc_frame *fp;
1423 struct fc_ba_acc *ap;
1424 struct fc_frame_header *fh;
1425 struct fc_seq *sp;
1426
1427 if (!ep)
1428 goto reject;
1429
1430 FC_EXCH_DBG(ep, "exch: ABTS received\n");
1431 fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1432 if (!fp) {
1433 FC_EXCH_DBG(ep, "Drop ABTS request, out of memory\n");
1434 goto free;
1435 }
1436
1437 spin_lock_bh(&ep->ex_lock);
1438 if (ep->esb_stat & ESB_ST_COMPLETE) {
1439 spin_unlock_bh(&ep->ex_lock);
1440 FC_EXCH_DBG(ep, "exch: ABTS rejected, exchange complete\n");
1441 fc_frame_free(fp);
1442 goto reject;
1443 }
1444 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
1445 ep->esb_stat |= ESB_ST_REC_QUAL;
1446 fc_exch_hold(ep); /* hold for REC_QUAL */
1447 }
1448 fc_exch_timer_set_locked(ep, ep->r_a_tov);
1449 fh = fc_frame_header_get(fp);
1450 ap = fc_frame_payload_get(fp, sizeof(*ap));
1451 memset(ap, 0, sizeof(*ap));
1452 sp = &ep->seq;
1453 ap->ba_high_seq_cnt = htons(0xffff);
1454 if (sp->ssb_stat & SSB_ST_RESP) {
1455 ap->ba_seq_id = sp->id;
1456 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1457 ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1458 ap->ba_low_seq_cnt = htons(sp->cnt);
1459 }
1460 sp = fc_seq_start_next_locked(sp);
1461 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1462 ep->esb_stat |= ESB_ST_ABNORMAL;
1463 spin_unlock_bh(&ep->ex_lock);
1464
1465free:
1466 fc_frame_free(rx_fp);
1467 return;
1468
1469reject:
1470 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1471 goto free;
1472}
1473
1474/**
1475 * fc_seq_assign() - Assign exchange and sequence for incoming request
1476 * @lport: The local port that received the request
1477 * @fp: The request frame
1478 *
1479 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1480 * A reference will be held on the exchange/sequence for the caller, which
1481 * must call fc_seq_release().
1482 */
1483struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1484{
1485 struct fc_exch_mgr_anchor *ema;
1486
1487 WARN_ON(lport != fr_dev(fp));
1488 WARN_ON(fr_seq(fp));
1489 fr_seq(fp) = NULL;
1490
1491 list_for_each_entry(ema, &lport->ema_list, ema_list)
1492 if ((!ema->match || ema->match(fp)) &&
1493 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1494 break;
1495 return fr_seq(fp);
1496}
1497EXPORT_SYMBOL(fc_seq_assign);
1498
1499/**
1500 * fc_seq_release() - Release the hold
1501 * @sp: The sequence.
1502 */
1503void fc_seq_release(struct fc_seq *sp)
1504{
1505 fc_exch_release(fc_seq_exch(sp));
1506}
1507EXPORT_SYMBOL(fc_seq_release);
1508
1509/**
1510 * fc_exch_recv_req() - Handler for an incoming request
1511 * @lport: The local port that received the request
1512 * @mp: The EM that the exchange is on
1513 * @fp: The request frame
1514 *
1515 * This is used when the other end is originating the exchange
1516 * and the sequence.
1517 */
1518static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1519 struct fc_frame *fp)
1520{
1521 struct fc_frame_header *fh = fc_frame_header_get(fp);
1522 struct fc_seq *sp = NULL;
1523 struct fc_exch *ep = NULL;
1524 enum fc_pf_rjt_reason reject;
1525
1526 /* We can have the wrong fc_lport at this point with NPIV, which is a
1527 * problem now that we know a new exchange needs to be allocated
1528 */
1529 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1530 if (!lport) {
1531 fc_frame_free(fp);
1532 return;
1533 }
1534 fr_dev(fp) = lport;
1535
1536 BUG_ON(fr_seq(fp)); /* XXX remove later */
1537
1538 /*
1539 * If the RX_ID is 0xffff, don't allocate an exchange.
1540 * The upper-level protocol may request one later, if needed.
1541 */
1542 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1543 return fc_lport_recv(lport, fp);
1544
1545 reject = fc_seq_lookup_recip(lport, mp, fp);
1546 if (reject == FC_RJT_NONE) {
1547 sp = fr_seq(fp); /* sequence will be held */
1548 ep = fc_seq_exch(sp);
1549 fc_seq_send_ack(sp, fp);
1550 ep->encaps = fr_encaps(fp);
1551
1552 /*
1553 * Call the receive function.
1554 *
1555 * The receive function may allocate a new sequence
1556 * over the old one, so we shouldn't change the
1557 * sequence after this.
1558 *
1559 * The frame will be freed by the receive function.
1560 * If new exch resp handler is valid then call that
1561 * first.
1562 */
1563 if (!fc_invoke_resp(ep, sp, fp))
1564 fc_lport_recv(lport, fp);
1565 fc_exch_release(ep); /* release from lookup */
1566 } else {
1567 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1568 reject);
1569 fc_frame_free(fp);
1570 }
1571}
1572
1573/**
1574 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1575 * end is the originator of the sequence that is a
1576 * response to our initial exchange
1577 * @mp: The EM that the exchange is on
1578 * @fp: The response frame
1579 */
1580static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1581{
1582 struct fc_frame_header *fh = fc_frame_header_get(fp);
1583 struct fc_seq *sp;
1584 struct fc_exch *ep;
1585 enum fc_sof sof;
1586 u32 f_ctl;
1587 int rc;
1588
1589 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1590 if (!ep) {
1591 atomic_inc(&mp->stats.xid_not_found);
1592 goto out;
1593 }
1594 if (ep->esb_stat & ESB_ST_COMPLETE) {
1595 atomic_inc(&mp->stats.xid_not_found);
1596 goto rel;
1597 }
1598 if (ep->rxid == FC_XID_UNKNOWN)
1599 ep->rxid = ntohs(fh->fh_rx_id);
1600 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1601 atomic_inc(&mp->stats.xid_not_found);
1602 goto rel;
1603 }
1604 if (ep->did != ntoh24(fh->fh_s_id) &&
1605 ep->did != FC_FID_FLOGI) {
1606 atomic_inc(&mp->stats.xid_not_found);
1607 goto rel;
1608 }
1609 sof = fr_sof(fp);
1610 sp = &ep->seq;
1611 if (fc_sof_is_init(sof)) {
1612 sp->ssb_stat |= SSB_ST_RESP;
1613 sp->id = fh->fh_seq_id;
1614 }
1615
1616 f_ctl = ntoh24(fh->fh_f_ctl);
1617 fr_seq(fp) = sp;
1618
1619 spin_lock_bh(&ep->ex_lock);
1620 if (f_ctl & FC_FC_SEQ_INIT)
1621 ep->esb_stat |= ESB_ST_SEQ_INIT;
1622 spin_unlock_bh(&ep->ex_lock);
1623
1624 if (fc_sof_needs_ack(sof))
1625 fc_seq_send_ack(sp, fp);
1626
1627 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1628 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1629 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1630 spin_lock_bh(&ep->ex_lock);
1631 rc = fc_exch_done_locked(ep);
1632 WARN_ON(fc_seq_exch(sp) != ep);
1633 spin_unlock_bh(&ep->ex_lock);
1634 if (!rc)
1635 fc_exch_delete(ep);
1636 }
1637
1638 /*
1639 * Call the receive function.
1640 * The sequence is held (has a refcnt) for us,
1641 * but not for the receive function.
1642 *
1643 * The receive function may allocate a new sequence
1644 * over the old one, so we shouldn't change the
1645 * sequence after this.
1646 *
1647 * The frame will be freed by the receive function.
1648 * If new exch resp handler is valid then call that
1649 * first.
1650 */
1651 if (!fc_invoke_resp(ep, sp, fp))
1652 fc_frame_free(fp);
1653
1654 fc_exch_release(ep);
1655 return;
1656rel:
1657 fc_exch_release(ep);
1658out:
1659 fc_frame_free(fp);
1660}
1661
1662/**
1663 * fc_exch_recv_resp() - Handler for a sequence where other end is
1664 * responding to our sequence
1665 * @mp: The EM that the exchange is on
1666 * @fp: The response frame
1667 */
1668static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1669{
1670 struct fc_seq *sp;
1671
1672 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */
1673
1674 if (!sp)
1675 atomic_inc(&mp->stats.xid_not_found);
1676 else
1677 atomic_inc(&mp->stats.non_bls_resp);
1678
1679 fc_frame_free(fp);
1680}
1681
1682/**
1683 * fc_exch_abts_resp() - Handler for a response to an ABT
1684 * @ep: The exchange that the frame is on
1685 * @fp: The response frame
1686 *
1687 * This response would be to an ABTS cancelling an exchange or sequence.
1688 * The response can be either BA_ACC or BA_RJT
1689 */
1690static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1691{
1692 struct fc_frame_header *fh;
1693 struct fc_ba_acc *ap;
1694 struct fc_seq *sp;
1695 u16 low;
1696 u16 high;
1697 int rc = 1, has_rec = 0;
1698
1699 fh = fc_frame_header_get(fp);
1700 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1701 fc_exch_rctl_name(fh->fh_r_ctl));
1702
1703 if (cancel_delayed_work_sync(&ep->timeout_work)) {
1704 FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
1705 fc_exch_release(ep); /* release from pending timer hold */
1706 }
1707
1708 spin_lock_bh(&ep->ex_lock);
1709 switch (fh->fh_r_ctl) {
1710 case FC_RCTL_BA_ACC:
1711 ap = fc_frame_payload_get(fp, sizeof(*ap));
1712 if (!ap)
1713 break;
1714
1715 /*
1716 * Decide whether to establish a Recovery Qualifier.
1717 * We do this if there is a non-empty SEQ_CNT range and
1718 * SEQ_ID is the same as the one we aborted.
1719 */
1720 low = ntohs(ap->ba_low_seq_cnt);
1721 high = ntohs(ap->ba_high_seq_cnt);
1722 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1723 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1724 ap->ba_seq_id == ep->seq_id) && low != high) {
1725 ep->esb_stat |= ESB_ST_REC_QUAL;
1726 fc_exch_hold(ep); /* hold for recovery qualifier */
1727 has_rec = 1;
1728 }
1729 break;
1730 case FC_RCTL_BA_RJT:
1731 break;
1732 default:
1733 break;
1734 }
1735
1736 /* do we need to do some other checks here. Can we reuse more of
1737 * fc_exch_recv_seq_resp
1738 */
1739 sp = &ep->seq;
1740 /*
1741 * do we want to check END_SEQ as well as LAST_SEQ here?
1742 */
1743 if (ep->fh_type != FC_TYPE_FCP &&
1744 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1745 rc = fc_exch_done_locked(ep);
1746 spin_unlock_bh(&ep->ex_lock);
1747
1748 fc_exch_hold(ep);
1749 if (!rc)
1750 fc_exch_delete(ep);
1751 if (!fc_invoke_resp(ep, sp, fp))
1752 fc_frame_free(fp);
1753 if (has_rec)
1754 fc_exch_timer_set(ep, ep->r_a_tov);
1755 fc_exch_release(ep);
1756}
1757
1758/**
1759 * fc_exch_recv_bls() - Handler for a BLS sequence
1760 * @mp: The EM that the exchange is on
1761 * @fp: The request frame
1762 *
1763 * The BLS frame is always a sequence initiated by the remote side.
1764 * We may be either the originator or recipient of the exchange.
1765 */
1766static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1767{
1768 struct fc_frame_header *fh;
1769 struct fc_exch *ep;
1770 u32 f_ctl;
1771
1772 fh = fc_frame_header_get(fp);
1773 f_ctl = ntoh24(fh->fh_f_ctl);
1774 fr_seq(fp) = NULL;
1775
1776 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1777 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1778 if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1779 spin_lock_bh(&ep->ex_lock);
1780 ep->esb_stat |= ESB_ST_SEQ_INIT;
1781 spin_unlock_bh(&ep->ex_lock);
1782 }
1783 if (f_ctl & FC_FC_SEQ_CTX) {
1784 /*
1785 * A response to a sequence we initiated.
1786 * This should only be ACKs for class 2 or F.
1787 */
1788 switch (fh->fh_r_ctl) {
1789 case FC_RCTL_ACK_1:
1790 case FC_RCTL_ACK_0:
1791 break;
1792 default:
1793 if (ep)
1794 FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n",
1795 fh->fh_r_ctl,
1796 fc_exch_rctl_name(fh->fh_r_ctl));
1797 break;
1798 }
1799 fc_frame_free(fp);
1800 } else {
1801 switch (fh->fh_r_ctl) {
1802 case FC_RCTL_BA_RJT:
1803 case FC_RCTL_BA_ACC:
1804 if (ep)
1805 fc_exch_abts_resp(ep, fp);
1806 else
1807 fc_frame_free(fp);
1808 break;
1809 case FC_RCTL_BA_ABTS:
1810 if (ep)
1811 fc_exch_recv_abts(ep, fp);
1812 else
1813 fc_frame_free(fp);
1814 break;
1815 default: /* ignore junk */
1816 fc_frame_free(fp);
1817 break;
1818 }
1819 }
1820 if (ep)
1821 fc_exch_release(ep); /* release hold taken by fc_exch_find */
1822}
1823
1824/**
1825 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1826 * @rx_fp: The received frame, not freed here.
1827 *
1828 * If this fails due to allocation or transmit congestion, assume the
1829 * originator will repeat the sequence.
1830 */
1831static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1832{
1833 struct fc_lport *lport;
1834 struct fc_els_ls_acc *acc;
1835 struct fc_frame *fp;
1836 struct fc_seq *sp;
1837
1838 lport = fr_dev(rx_fp);
1839 sp = fr_seq(rx_fp);
1840 fp = fc_frame_alloc(lport, sizeof(*acc));
1841 if (!fp) {
1842 FC_EXCH_DBG(fc_seq_exch(sp),
1843 "exch: drop LS_ACC, out of memory\n");
1844 return;
1845 }
1846 acc = fc_frame_payload_get(fp, sizeof(*acc));
1847 memset(acc, 0, sizeof(*acc));
1848 acc->la_cmd = ELS_LS_ACC;
1849 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1850 lport->tt.frame_send(lport, fp);
1851}
1852
1853/**
1854 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1855 * @rx_fp: The received frame, not freed here.
1856 * @reason: The reason the sequence is being rejected
1857 * @explan: The explanation for the rejection
1858 *
1859 * If this fails due to allocation or transmit congestion, assume the
1860 * originator will repeat the sequence.
1861 */
1862static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1863 enum fc_els_rjt_explan explan)
1864{
1865 struct fc_lport *lport;
1866 struct fc_els_ls_rjt *rjt;
1867 struct fc_frame *fp;
1868 struct fc_seq *sp;
1869
1870 lport = fr_dev(rx_fp);
1871 sp = fr_seq(rx_fp);
1872 fp = fc_frame_alloc(lport, sizeof(*rjt));
1873 if (!fp) {
1874 FC_EXCH_DBG(fc_seq_exch(sp),
1875 "exch: drop LS_ACC, out of memory\n");
1876 return;
1877 }
1878 rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1879 memset(rjt, 0, sizeof(*rjt));
1880 rjt->er_cmd = ELS_LS_RJT;
1881 rjt->er_reason = reason;
1882 rjt->er_explan = explan;
1883 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1884 lport->tt.frame_send(lport, fp);
1885}
1886
1887/**
1888 * fc_exch_reset() - Reset an exchange
1889 * @ep: The exchange to be reset
1890 *
1891 * Note: May sleep if invoked from outside a response handler.
1892 */
1893static void fc_exch_reset(struct fc_exch *ep)
1894{
1895 struct fc_seq *sp;
1896 int rc = 1;
1897
1898 spin_lock_bh(&ep->ex_lock);
1899 ep->state |= FC_EX_RST_CLEANUP;
1900 fc_exch_timer_cancel(ep);
1901 if (ep->esb_stat & ESB_ST_REC_QUAL)
1902 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */
1903 ep->esb_stat &= ~ESB_ST_REC_QUAL;
1904 sp = &ep->seq;
1905 rc = fc_exch_done_locked(ep);
1906 spin_unlock_bh(&ep->ex_lock);
1907
1908 fc_exch_hold(ep);
1909
1910 if (!rc)
1911 fc_exch_delete(ep);
1912
1913 fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED));
1914 fc_seq_set_resp(sp, NULL, ep->arg);
1915 fc_exch_release(ep);
1916}
1917
1918/**
1919 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1920 * @lport: The local port that the exchange pool is on
1921 * @pool: The exchange pool to be reset
1922 * @sid: The source ID
1923 * @did: The destination ID
1924 *
1925 * Resets a per cpu exches pool, releasing all of its sequences
1926 * and exchanges. If sid is non-zero then reset only exchanges
1927 * we sourced from the local port's FID. If did is non-zero then
1928 * only reset exchanges destined for the local port's FID.
1929 */
1930static void fc_exch_pool_reset(struct fc_lport *lport,
1931 struct fc_exch_pool *pool,
1932 u32 sid, u32 did)
1933{
1934 struct fc_exch *ep;
1935 struct fc_exch *next;
1936
1937 spin_lock_bh(&pool->lock);
1938restart:
1939 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1940 if ((lport == ep->lp) &&
1941 (sid == 0 || sid == ep->sid) &&
1942 (did == 0 || did == ep->did)) {
1943 fc_exch_hold(ep);
1944 spin_unlock_bh(&pool->lock);
1945
1946 fc_exch_reset(ep);
1947
1948 fc_exch_release(ep);
1949 spin_lock_bh(&pool->lock);
1950
1951 /*
1952 * must restart loop incase while lock
1953 * was down multiple eps were released.
1954 */
1955 goto restart;
1956 }
1957 }
1958 pool->next_index = 0;
1959 pool->left = FC_XID_UNKNOWN;
1960 pool->right = FC_XID_UNKNOWN;
1961 spin_unlock_bh(&pool->lock);
1962}
1963
1964/**
1965 * fc_exch_mgr_reset() - Reset all EMs of a local port
1966 * @lport: The local port whose EMs are to be reset
1967 * @sid: The source ID
1968 * @did: The destination ID
1969 *
1970 * Reset all EMs associated with a given local port. Release all
1971 * sequences and exchanges. If sid is non-zero then reset only the
1972 * exchanges sent from the local port's FID. If did is non-zero then
1973 * reset only exchanges destined for the local port's FID.
1974 */
1975void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1976{
1977 struct fc_exch_mgr_anchor *ema;
1978 unsigned int cpu;
1979
1980 list_for_each_entry(ema, &lport->ema_list, ema_list) {
1981 for_each_possible_cpu(cpu)
1982 fc_exch_pool_reset(lport,
1983 per_cpu_ptr(ema->mp->pool, cpu),
1984 sid, did);
1985 }
1986}
1987EXPORT_SYMBOL(fc_exch_mgr_reset);
1988
1989/**
1990 * fc_exch_lookup() - find an exchange
1991 * @lport: The local port
1992 * @xid: The exchange ID
1993 *
1994 * Returns exchange pointer with hold for caller, or NULL if not found.
1995 */
1996static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1997{
1998 struct fc_exch_mgr_anchor *ema;
1999
2000 list_for_each_entry(ema, &lport->ema_list, ema_list)
2001 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
2002 return fc_exch_find(ema->mp, xid);
2003 return NULL;
2004}
2005
2006/**
2007 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
2008 * @rfp: The REC frame, not freed here.
2009 *
2010 * Note that the requesting port may be different than the S_ID in the request.
2011 */
2012static void fc_exch_els_rec(struct fc_frame *rfp)
2013{
2014 struct fc_lport *lport;
2015 struct fc_frame *fp;
2016 struct fc_exch *ep;
2017 struct fc_els_rec *rp;
2018 struct fc_els_rec_acc *acc;
2019 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
2020 enum fc_els_rjt_explan explan;
2021 u32 sid;
2022 u16 xid, rxid, oxid;
2023
2024 lport = fr_dev(rfp);
2025 rp = fc_frame_payload_get(rfp, sizeof(*rp));
2026 explan = ELS_EXPL_INV_LEN;
2027 if (!rp)
2028 goto reject;
2029 sid = ntoh24(rp->rec_s_id);
2030 rxid = ntohs(rp->rec_rx_id);
2031 oxid = ntohs(rp->rec_ox_id);
2032
2033 explan = ELS_EXPL_OXID_RXID;
2034 if (sid == fc_host_port_id(lport->host))
2035 xid = oxid;
2036 else
2037 xid = rxid;
2038 if (xid == FC_XID_UNKNOWN) {
2039 FC_LPORT_DBG(lport,
2040 "REC request from %x: invalid rxid %x oxid %x\n",
2041 sid, rxid, oxid);
2042 goto reject;
2043 }
2044 ep = fc_exch_lookup(lport, xid);
2045 if (!ep) {
2046 FC_LPORT_DBG(lport,
2047 "REC request from %x: rxid %x oxid %x not found\n",
2048 sid, rxid, oxid);
2049 goto reject;
2050 }
2051 FC_EXCH_DBG(ep, "REC request from %x: rxid %x oxid %x\n",
2052 sid, rxid, oxid);
2053 if (ep->oid != sid || oxid != ep->oxid)
2054 goto rel;
2055 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
2056 goto rel;
2057 fp = fc_frame_alloc(lport, sizeof(*acc));
2058 if (!fp) {
2059 FC_EXCH_DBG(ep, "Drop REC request, out of memory\n");
2060 goto out;
2061 }
2062
2063 acc = fc_frame_payload_get(fp, sizeof(*acc));
2064 memset(acc, 0, sizeof(*acc));
2065 acc->reca_cmd = ELS_LS_ACC;
2066 acc->reca_ox_id = rp->rec_ox_id;
2067 memcpy(acc->reca_ofid, rp->rec_s_id, 3);
2068 acc->reca_rx_id = htons(ep->rxid);
2069 if (ep->sid == ep->oid)
2070 hton24(acc->reca_rfid, ep->did);
2071 else
2072 hton24(acc->reca_rfid, ep->sid);
2073 acc->reca_fc4value = htonl(ep->seq.rec_data);
2074 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
2075 ESB_ST_SEQ_INIT |
2076 ESB_ST_COMPLETE));
2077 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
2078 lport->tt.frame_send(lport, fp);
2079out:
2080 fc_exch_release(ep);
2081 return;
2082
2083rel:
2084 fc_exch_release(ep);
2085reject:
2086 fc_seq_ls_rjt(rfp, reason, explan);
2087}
2088
2089/**
2090 * fc_exch_rrq_resp() - Handler for RRQ responses
2091 * @sp: The sequence that the RRQ is on
2092 * @fp: The RRQ frame
2093 * @arg: The exchange that the RRQ is on
2094 *
2095 * TODO: fix error handler.
2096 */
2097static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
2098{
2099 struct fc_exch *aborted_ep = arg;
2100 unsigned int op;
2101
2102 if (IS_ERR(fp)) {
2103 int err = PTR_ERR(fp);
2104
2105 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
2106 goto cleanup;
2107 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
2108 "frame error %d\n", err);
2109 return;
2110 }
2111
2112 op = fc_frame_payload_op(fp);
2113 fc_frame_free(fp);
2114
2115 switch (op) {
2116 case ELS_LS_RJT:
2117 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n");
2118 /* fall through */
2119 case ELS_LS_ACC:
2120 goto cleanup;
2121 default:
2122 FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n",
2123 op);
2124 return;
2125 }
2126
2127cleanup:
2128 fc_exch_done(&aborted_ep->seq);
2129 /* drop hold for rec qual */
2130 fc_exch_release(aborted_ep);
2131}
2132
2133
2134/**
2135 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
2136 * @lport: The local port to send the frame on
2137 * @fp: The frame to be sent
2138 * @resp: The response handler for this request
2139 * @destructor: The destructor for the exchange
2140 * @arg: The argument to be passed to the response handler
2141 * @timer_msec: The timeout period for the exchange
2142 *
2143 * The exchange response handler is set in this routine to resp()
2144 * function pointer. It can be called in two scenarios: if a timeout
2145 * occurs or if a response frame is received for the exchange. The
2146 * fc_frame pointer in response handler will also indicate timeout
2147 * as error using IS_ERR related macros.
2148 *
2149 * The exchange destructor handler is also set in this routine.
2150 * The destructor handler is invoked by EM layer when exchange
2151 * is about to free, this can be used by caller to free its
2152 * resources along with exchange free.
2153 *
2154 * The arg is passed back to resp and destructor handler.
2155 *
2156 * The timeout value (in msec) for an exchange is set if non zero
2157 * timer_msec argument is specified. The timer is canceled when
2158 * it fires or when the exchange is done. The exchange timeout handler
2159 * is registered by EM layer.
2160 *
2161 * The frame pointer with some of the header's fields must be
2162 * filled before calling this routine, those fields are:
2163 *
2164 * - routing control
2165 * - FC port did
2166 * - FC port sid
2167 * - FC header type
2168 * - frame control
2169 * - parameter or relative offset
2170 */
2171struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
2172 struct fc_frame *fp,
2173 void (*resp)(struct fc_seq *,
2174 struct fc_frame *fp,
2175 void *arg),
2176 void (*destructor)(struct fc_seq *, void *),
2177 void *arg, u32 timer_msec)
2178{
2179 struct fc_exch *ep;
2180 struct fc_seq *sp = NULL;
2181 struct fc_frame_header *fh;
2182 struct fc_fcp_pkt *fsp = NULL;
2183 int rc = 1;
2184
2185 ep = fc_exch_alloc(lport, fp);
2186 if (!ep) {
2187 fc_frame_free(fp);
2188 return NULL;
2189 }
2190 ep->esb_stat |= ESB_ST_SEQ_INIT;
2191 fh = fc_frame_header_get(fp);
2192 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2193 ep->resp = resp;
2194 ep->destructor = destructor;
2195 ep->arg = arg;
2196 ep->r_a_tov = lport->r_a_tov;
2197 ep->lp = lport;
2198 sp = &ep->seq;
2199
2200 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2201 ep->f_ctl = ntoh24(fh->fh_f_ctl);
2202 fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2203 sp->cnt++;
2204
2205 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2206 fsp = fr_fsp(fp);
2207 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2208 }
2209
2210 if (unlikely(lport->tt.frame_send(lport, fp)))
2211 goto err;
2212
2213 if (timer_msec)
2214 fc_exch_timer_set_locked(ep, timer_msec);
2215 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */
2216
2217 if (ep->f_ctl & FC_FC_SEQ_INIT)
2218 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2219 spin_unlock_bh(&ep->ex_lock);
2220 return sp;
2221err:
2222 if (fsp)
2223 fc_fcp_ddp_done(fsp);
2224 rc = fc_exch_done_locked(ep);
2225 spin_unlock_bh(&ep->ex_lock);
2226 if (!rc)
2227 fc_exch_delete(ep);
2228 return NULL;
2229}
2230EXPORT_SYMBOL(fc_exch_seq_send);
2231
2232/**
2233 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2234 * @ep: The exchange to send the RRQ on
2235 *
2236 * This tells the remote port to stop blocking the use of
2237 * the exchange and the seq_cnt range.
2238 */
2239static void fc_exch_rrq(struct fc_exch *ep)
2240{
2241 struct fc_lport *lport;
2242 struct fc_els_rrq *rrq;
2243 struct fc_frame *fp;
2244 u32 did;
2245
2246 lport = ep->lp;
2247
2248 fp = fc_frame_alloc(lport, sizeof(*rrq));
2249 if (!fp)
2250 goto retry;
2251
2252 rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2253 memset(rrq, 0, sizeof(*rrq));
2254 rrq->rrq_cmd = ELS_RRQ;
2255 hton24(rrq->rrq_s_id, ep->sid);
2256 rrq->rrq_ox_id = htons(ep->oxid);
2257 rrq->rrq_rx_id = htons(ep->rxid);
2258
2259 did = ep->did;
2260 if (ep->esb_stat & ESB_ST_RESP)
2261 did = ep->sid;
2262
2263 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2264 lport->port_id, FC_TYPE_ELS,
2265 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2266
2267 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2268 lport->e_d_tov))
2269 return;
2270
2271retry:
2272 FC_EXCH_DBG(ep, "exch: RRQ send failed\n");
2273 spin_lock_bh(&ep->ex_lock);
2274 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2275 spin_unlock_bh(&ep->ex_lock);
2276 /* drop hold for rec qual */
2277 fc_exch_release(ep);
2278 return;
2279 }
2280 ep->esb_stat |= ESB_ST_REC_QUAL;
2281 fc_exch_timer_set_locked(ep, ep->r_a_tov);
2282 spin_unlock_bh(&ep->ex_lock);
2283}
2284
2285/**
2286 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2287 * @fp: The RRQ frame, not freed here.
2288 */
2289static void fc_exch_els_rrq(struct fc_frame *fp)
2290{
2291 struct fc_lport *lport;
2292 struct fc_exch *ep = NULL; /* request or subject exchange */
2293 struct fc_els_rrq *rp;
2294 u32 sid;
2295 u16 xid;
2296 enum fc_els_rjt_explan explan;
2297
2298 lport = fr_dev(fp);
2299 rp = fc_frame_payload_get(fp, sizeof(*rp));
2300 explan = ELS_EXPL_INV_LEN;
2301 if (!rp)
2302 goto reject;
2303
2304 /*
2305 * lookup subject exchange.
2306 */
2307 sid = ntoh24(rp->rrq_s_id); /* subject source */
2308 xid = fc_host_port_id(lport->host) == sid ?
2309 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2310 ep = fc_exch_lookup(lport, xid);
2311 explan = ELS_EXPL_OXID_RXID;
2312 if (!ep)
2313 goto reject;
2314 spin_lock_bh(&ep->ex_lock);
2315 FC_EXCH_DBG(ep, "RRQ request from %x: xid %x rxid %x oxid %x\n",
2316 sid, xid, ntohs(rp->rrq_rx_id), ntohs(rp->rrq_ox_id));
2317 if (ep->oxid != ntohs(rp->rrq_ox_id))
2318 goto unlock_reject;
2319 if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2320 ep->rxid != FC_XID_UNKNOWN)
2321 goto unlock_reject;
2322 explan = ELS_EXPL_SID;
2323 if (ep->sid != sid)
2324 goto unlock_reject;
2325
2326 /*
2327 * Clear Recovery Qualifier state, and cancel timer if complete.
2328 */
2329 if (ep->esb_stat & ESB_ST_REC_QUAL) {
2330 ep->esb_stat &= ~ESB_ST_REC_QUAL;
2331 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */
2332 }
2333 if (ep->esb_stat & ESB_ST_COMPLETE)
2334 fc_exch_timer_cancel(ep);
2335
2336 spin_unlock_bh(&ep->ex_lock);
2337
2338 /*
2339 * Send LS_ACC.
2340 */
2341 fc_seq_ls_acc(fp);
2342 goto out;
2343
2344unlock_reject:
2345 spin_unlock_bh(&ep->ex_lock);
2346reject:
2347 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2348out:
2349 if (ep)
2350 fc_exch_release(ep); /* drop hold from fc_exch_find */
2351}
2352
2353/**
2354 * fc_exch_update_stats() - update exches stats to lport
2355 * @lport: The local port to update exchange manager stats
2356 */
2357void fc_exch_update_stats(struct fc_lport *lport)
2358{
2359 struct fc_host_statistics *st;
2360 struct fc_exch_mgr_anchor *ema;
2361 struct fc_exch_mgr *mp;
2362
2363 st = &lport->host_stats;
2364
2365 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2366 mp = ema->mp;
2367 st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2368 st->fc_no_free_exch_xid +=
2369 atomic_read(&mp->stats.no_free_exch_xid);
2370 st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2371 st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2372 st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2373 st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2374 }
2375}
2376EXPORT_SYMBOL(fc_exch_update_stats);
2377
2378/**
2379 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2380 * @lport: The local port to add the exchange manager to
2381 * @mp: The exchange manager to be added to the local port
2382 * @match: The match routine that indicates when this EM should be used
2383 */
2384struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2385 struct fc_exch_mgr *mp,
2386 bool (*match)(struct fc_frame *))
2387{
2388 struct fc_exch_mgr_anchor *ema;
2389
2390 ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2391 if (!ema)
2392 return ema;
2393
2394 ema->mp = mp;
2395 ema->match = match;
2396 /* add EM anchor to EM anchors list */
2397 list_add_tail(&ema->ema_list, &lport->ema_list);
2398 kref_get(&mp->kref);
2399 return ema;
2400}
2401EXPORT_SYMBOL(fc_exch_mgr_add);
2402
2403/**
2404 * fc_exch_mgr_destroy() - Destroy an exchange manager
2405 * @kref: The reference to the EM to be destroyed
2406 */
2407static void fc_exch_mgr_destroy(struct kref *kref)
2408{
2409 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2410
2411 mempool_destroy(mp->ep_pool);
2412 free_percpu(mp->pool);
2413 kfree(mp);
2414}
2415
2416/**
2417 * fc_exch_mgr_del() - Delete an EM from a local port's list
2418 * @ema: The exchange manager anchor identifying the EM to be deleted
2419 */
2420void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2421{
2422 /* remove EM anchor from EM anchors list */
2423 list_del(&ema->ema_list);
2424 kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2425 kfree(ema);
2426}
2427EXPORT_SYMBOL(fc_exch_mgr_del);
2428
2429/**
2430 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2431 * @src: Source lport to clone exchange managers from
2432 * @dst: New lport that takes references to all the exchange managers
2433 */
2434int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2435{
2436 struct fc_exch_mgr_anchor *ema, *tmp;
2437
2438 list_for_each_entry(ema, &src->ema_list, ema_list) {
2439 if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2440 goto err;
2441 }
2442 return 0;
2443err:
2444 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2445 fc_exch_mgr_del(ema);
2446 return -ENOMEM;
2447}
2448EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2449
2450/**
2451 * fc_exch_mgr_alloc() - Allocate an exchange manager
2452 * @lport: The local port that the new EM will be associated with
2453 * @class: The default FC class for new exchanges
2454 * @min_xid: The minimum XID for exchanges from the new EM
2455 * @max_xid: The maximum XID for exchanges from the new EM
2456 * @match: The match routine for the new EM
2457 */
2458struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2459 enum fc_class class,
2460 u16 min_xid, u16 max_xid,
2461 bool (*match)(struct fc_frame *))
2462{
2463 struct fc_exch_mgr *mp;
2464 u16 pool_exch_range;
2465 size_t pool_size;
2466 unsigned int cpu;
2467 struct fc_exch_pool *pool;
2468
2469 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2470 (min_xid & fc_cpu_mask) != 0) {
2471 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2472 min_xid, max_xid);
2473 return NULL;
2474 }
2475
2476 /*
2477 * allocate memory for EM
2478 */
2479 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2480 if (!mp)
2481 return NULL;
2482
2483 mp->class = class;
2484 mp->lport = lport;
2485 /* adjust em exch xid range for offload */
2486 mp->min_xid = min_xid;
2487
2488 /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2489 pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2490 sizeof(struct fc_exch *);
2491 if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2492 mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2493 min_xid - 1;
2494 } else {
2495 mp->max_xid = max_xid;
2496 pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2497 (fc_cpu_mask + 1);
2498 }
2499
2500 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2501 if (!mp->ep_pool)
2502 goto free_mp;
2503
2504 /*
2505 * Setup per cpu exch pool with entire exchange id range equally
2506 * divided across all cpus. The exch pointers array memory is
2507 * allocated for exch range per pool.
2508 */
2509 mp->pool_max_index = pool_exch_range - 1;
2510
2511 /*
2512 * Allocate and initialize per cpu exch pool
2513 */
2514 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2515 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2516 if (!mp->pool)
2517 goto free_mempool;
2518 for_each_possible_cpu(cpu) {
2519 pool = per_cpu_ptr(mp->pool, cpu);
2520 pool->next_index = 0;
2521 pool->left = FC_XID_UNKNOWN;
2522 pool->right = FC_XID_UNKNOWN;
2523 spin_lock_init(&pool->lock);
2524 INIT_LIST_HEAD(&pool->ex_list);
2525 }
2526
2527 kref_init(&mp->kref);
2528 if (!fc_exch_mgr_add(lport, mp, match)) {
2529 free_percpu(mp->pool);
2530 goto free_mempool;
2531 }
2532
2533 /*
2534 * Above kref_init() sets mp->kref to 1 and then
2535 * call to fc_exch_mgr_add incremented mp->kref again,
2536 * so adjust that extra increment.
2537 */
2538 kref_put(&mp->kref, fc_exch_mgr_destroy);
2539 return mp;
2540
2541free_mempool:
2542 mempool_destroy(mp->ep_pool);
2543free_mp:
2544 kfree(mp);
2545 return NULL;
2546}
2547EXPORT_SYMBOL(fc_exch_mgr_alloc);
2548
2549/**
2550 * fc_exch_mgr_free() - Free all exchange managers on a local port
2551 * @lport: The local port whose EMs are to be freed
2552 */
2553void fc_exch_mgr_free(struct fc_lport *lport)
2554{
2555 struct fc_exch_mgr_anchor *ema, *next;
2556
2557 flush_workqueue(fc_exch_workqueue);
2558 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2559 fc_exch_mgr_del(ema);
2560}
2561EXPORT_SYMBOL(fc_exch_mgr_free);
2562
2563/**
2564 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2565 * upon 'xid'.
2566 * @f_ctl: f_ctl
2567 * @lport: The local port the frame was received on
2568 * @fh: The received frame header
2569 */
2570static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2571 struct fc_lport *lport,
2572 struct fc_frame_header *fh)
2573{
2574 struct fc_exch_mgr_anchor *ema;
2575 u16 xid;
2576
2577 if (f_ctl & FC_FC_EX_CTX)
2578 xid = ntohs(fh->fh_ox_id);
2579 else {
2580 xid = ntohs(fh->fh_rx_id);
2581 if (xid == FC_XID_UNKNOWN)
2582 return list_entry(lport->ema_list.prev,
2583 typeof(*ema), ema_list);
2584 }
2585
2586 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2587 if ((xid >= ema->mp->min_xid) &&
2588 (xid <= ema->mp->max_xid))
2589 return ema;
2590 }
2591 return NULL;
2592}
2593/**
2594 * fc_exch_recv() - Handler for received frames
2595 * @lport: The local port the frame was received on
2596 * @fp: The received frame
2597 */
2598void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2599{
2600 struct fc_frame_header *fh = fc_frame_header_get(fp);
2601 struct fc_exch_mgr_anchor *ema;
2602 u32 f_ctl;
2603
2604 /* lport lock ? */
2605 if (!lport || lport->state == LPORT_ST_DISABLED) {
2606 FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2607 "has not been initialized correctly\n");
2608 fc_frame_free(fp);
2609 return;
2610 }
2611
2612 f_ctl = ntoh24(fh->fh_f_ctl);
2613 ema = fc_find_ema(f_ctl, lport, fh);
2614 if (!ema) {
2615 FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2616 "fc_ctl <0x%x>, xid <0x%x>\n",
2617 f_ctl,
2618 (f_ctl & FC_FC_EX_CTX) ?
2619 ntohs(fh->fh_ox_id) :
2620 ntohs(fh->fh_rx_id));
2621 fc_frame_free(fp);
2622 return;
2623 }
2624
2625 /*
2626 * If frame is marked invalid, just drop it.
2627 */
2628 switch (fr_eof(fp)) {
2629 case FC_EOF_T:
2630 if (f_ctl & FC_FC_END_SEQ)
2631 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2632 /* fall through */
2633 case FC_EOF_N:
2634 if (fh->fh_type == FC_TYPE_BLS)
2635 fc_exch_recv_bls(ema->mp, fp);
2636 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2637 FC_FC_EX_CTX)
2638 fc_exch_recv_seq_resp(ema->mp, fp);
2639 else if (f_ctl & FC_FC_SEQ_CTX)
2640 fc_exch_recv_resp(ema->mp, fp);
2641 else /* no EX_CTX and no SEQ_CTX */
2642 fc_exch_recv_req(lport, ema->mp, fp);
2643 break;
2644 default:
2645 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2646 fr_eof(fp));
2647 fc_frame_free(fp);
2648 }
2649}
2650EXPORT_SYMBOL(fc_exch_recv);
2651
2652/**
2653 * fc_exch_init() - Initialize the exchange layer for a local port
2654 * @lport: The local port to initialize the exchange layer for
2655 */
2656int fc_exch_init(struct fc_lport *lport)
2657{
2658 if (!lport->tt.exch_mgr_reset)
2659 lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2660
2661 return 0;
2662}
2663EXPORT_SYMBOL(fc_exch_init);
2664
2665/**
2666 * fc_setup_exch_mgr() - Setup an exchange manager
2667 */
2668int fc_setup_exch_mgr(void)
2669{
2670 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2671 0, SLAB_HWCACHE_ALIGN, NULL);
2672 if (!fc_em_cachep)
2673 return -ENOMEM;
2674
2675 /*
2676 * Initialize fc_cpu_mask and fc_cpu_order. The
2677 * fc_cpu_mask is set for nr_cpu_ids rounded up
2678 * to order of 2's * power and order is stored
2679 * in fc_cpu_order as this is later required in
2680 * mapping between an exch id and exch array index
2681 * in per cpu exch pool.
2682 *
2683 * This round up is required to align fc_cpu_mask
2684 * to exchange id's lower bits such that all incoming
2685 * frames of an exchange gets delivered to the same
2686 * cpu on which exchange originated by simple bitwise
2687 * AND operation between fc_cpu_mask and exchange id.
2688 */
2689 fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids));
2690 fc_cpu_mask = (1 << fc_cpu_order) - 1;
2691
2692 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2693 if (!fc_exch_workqueue)
2694 goto err;
2695 return 0;
2696err:
2697 kmem_cache_destroy(fc_em_cachep);
2698 return -ENOMEM;
2699}
2700
2701/**
2702 * fc_destroy_exch_mgr() - Destroy an exchange manager
2703 */
2704void fc_destroy_exch_mgr(void)
2705{
2706 destroy_workqueue(fc_exch_workqueue);
2707 kmem_cache_destroy(fc_em_cachep);
2708}