Loading...
1/*
2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved.
4 * Copyright(c) 2008 Mike Christie
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Maintained at www.Open-FCoE.org
20 */
21
22/*
23 * Fibre Channel exchange and sequence handling.
24 */
25
26#include <linux/timer.h>
27#include <linux/slab.h>
28#include <linux/err.h>
29
30#include <scsi/fc/fc_fc2.h>
31
32#include <scsi/libfc.h>
33#include <scsi/fc_encode.h>
34
35#include "fc_libfc.h"
36
37u16 fc_cpu_mask; /* cpu mask for possible cpus */
38EXPORT_SYMBOL(fc_cpu_mask);
39static u16 fc_cpu_order; /* 2's power to represent total possible cpus */
40static struct kmem_cache *fc_em_cachep; /* cache for exchanges */
41static struct workqueue_struct *fc_exch_workqueue;
42
43/*
44 * Structure and function definitions for managing Fibre Channel Exchanges
45 * and Sequences.
46 *
47 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
48 *
49 * fc_exch_mgr holds the exchange state for an N port
50 *
51 * fc_exch holds state for one exchange and links to its active sequence.
52 *
53 * fc_seq holds the state for an individual sequence.
54 */
55
56/**
57 * struct fc_exch_pool - Per cpu exchange pool
58 * @next_index: Next possible free exchange index
59 * @total_exches: Total allocated exchanges
60 * @lock: Exch pool lock
61 * @ex_list: List of exchanges
62 *
63 * This structure manages per cpu exchanges in array of exchange pointers.
64 * This array is allocated followed by struct fc_exch_pool memory for
65 * assigned range of exchanges to per cpu pool.
66 */
67struct fc_exch_pool {
68 u16 next_index;
69 u16 total_exches;
70
71 /* two cache of free slot in exch array */
72 u16 left;
73 u16 right;
74
75 spinlock_t lock;
76 struct list_head ex_list;
77};
78
79/**
80 * struct fc_exch_mgr - The Exchange Manager (EM).
81 * @class: Default class for new sequences
82 * @kref: Reference counter
83 * @min_xid: Minimum exchange ID
84 * @max_xid: Maximum exchange ID
85 * @ep_pool: Reserved exchange pointers
86 * @pool_max_index: Max exch array index in exch pool
87 * @pool: Per cpu exch pool
88 * @stats: Statistics structure
89 *
90 * This structure is the center for creating exchanges and sequences.
91 * It manages the allocation of exchange IDs.
92 */
93struct fc_exch_mgr {
94 enum fc_class class;
95 struct kref kref;
96 u16 min_xid;
97 u16 max_xid;
98 mempool_t *ep_pool;
99 u16 pool_max_index;
100 struct fc_exch_pool *pool;
101
102 /*
103 * currently exchange mgr stats are updated but not used.
104 * either stats can be expose via sysfs or remove them
105 * all together if not used XXX
106 */
107 struct {
108 atomic_t no_free_exch;
109 atomic_t no_free_exch_xid;
110 atomic_t xid_not_found;
111 atomic_t xid_busy;
112 atomic_t seq_not_found;
113 atomic_t non_bls_resp;
114 } stats;
115};
116
117/**
118 * struct fc_exch_mgr_anchor - primary structure for list of EMs
119 * @ema_list: Exchange Manager Anchor list
120 * @mp: Exchange Manager associated with this anchor
121 * @match: Routine to determine if this anchor's EM should be used
122 *
123 * When walking the list of anchors the match routine will be called
124 * for each anchor to determine if that EM should be used. The last
125 * anchor in the list will always match to handle any exchanges not
126 * handled by other EMs. The non-default EMs would be added to the
127 * anchor list by HW that provides FCoE offloads.
128 */
129struct fc_exch_mgr_anchor {
130 struct list_head ema_list;
131 struct fc_exch_mgr *mp;
132 bool (*match)(struct fc_frame *);
133};
134
135static void fc_exch_rrq(struct fc_exch *);
136static void fc_seq_ls_acc(struct fc_frame *);
137static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
138 enum fc_els_rjt_explan);
139static void fc_exch_els_rec(struct fc_frame *);
140static void fc_exch_els_rrq(struct fc_frame *);
141
142/*
143 * Internal implementation notes.
144 *
145 * The exchange manager is one by default in libfc but LLD may choose
146 * to have one per CPU. The sequence manager is one per exchange manager
147 * and currently never separated.
148 *
149 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field
150 * assigned by the Sequence Initiator that shall be unique for a specific
151 * D_ID and S_ID pair while the Sequence is open." Note that it isn't
152 * qualified by exchange ID, which one might think it would be.
153 * In practice this limits the number of open sequences and exchanges to 256
154 * per session. For most targets we could treat this limit as per exchange.
155 *
156 * The exchange and its sequence are freed when the last sequence is received.
157 * It's possible for the remote port to leave an exchange open without
158 * sending any sequences.
159 *
160 * Notes on reference counts:
161 *
162 * Exchanges are reference counted and exchange gets freed when the reference
163 * count becomes zero.
164 *
165 * Timeouts:
166 * Sequences are timed out for E_D_TOV and R_A_TOV.
167 *
168 * Sequence event handling:
169 *
170 * The following events may occur on initiator sequences:
171 *
172 * Send.
173 * For now, the whole thing is sent.
174 * Receive ACK
175 * This applies only to class F.
176 * The sequence is marked complete.
177 * ULP completion.
178 * The upper layer calls fc_exch_done() when done
179 * with exchange and sequence tuple.
180 * RX-inferred completion.
181 * When we receive the next sequence on the same exchange, we can
182 * retire the previous sequence ID. (XXX not implemented).
183 * Timeout.
184 * R_A_TOV frees the sequence ID. If we're waiting for ACK,
185 * E_D_TOV causes abort and calls upper layer response handler
186 * with FC_EX_TIMEOUT error.
187 * Receive RJT
188 * XXX defer.
189 * Send ABTS
190 * On timeout.
191 *
192 * The following events may occur on recipient sequences:
193 *
194 * Receive
195 * Allocate sequence for first frame received.
196 * Hold during receive handler.
197 * Release when final frame received.
198 * Keep status of last N of these for the ELS RES command. XXX TBD.
199 * Receive ABTS
200 * Deallocate sequence
201 * Send RJT
202 * Deallocate
203 *
204 * For now, we neglect conditions where only part of a sequence was
205 * received or transmitted, or where out-of-order receipt is detected.
206 */
207
208/*
209 * Locking notes:
210 *
211 * The EM code run in a per-CPU worker thread.
212 *
213 * To protect against concurrency between a worker thread code and timers,
214 * sequence allocation and deallocation must be locked.
215 * - exchange refcnt can be done atomicly without locks.
216 * - sequence allocation must be locked by exch lock.
217 * - If the EM pool lock and ex_lock must be taken at the same time, then the
218 * EM pool lock must be taken before the ex_lock.
219 */
220
221/*
222 * opcode names for debugging.
223 */
224static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
225
226/**
227 * fc_exch_name_lookup() - Lookup name by opcode
228 * @op: Opcode to be looked up
229 * @table: Opcode/name table
230 * @max_index: Index not to be exceeded
231 *
232 * This routine is used to determine a human-readable string identifying
233 * a R_CTL opcode.
234 */
235static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
236 unsigned int max_index)
237{
238 const char *name = NULL;
239
240 if (op < max_index)
241 name = table[op];
242 if (!name)
243 name = "unknown";
244 return name;
245}
246
247/**
248 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
249 * @op: The opcode to be looked up
250 */
251static const char *fc_exch_rctl_name(unsigned int op)
252{
253 return fc_exch_name_lookup(op, fc_exch_rctl_names,
254 ARRAY_SIZE(fc_exch_rctl_names));
255}
256
257/**
258 * fc_exch_hold() - Increment an exchange's reference count
259 * @ep: Echange to be held
260 */
261static inline void fc_exch_hold(struct fc_exch *ep)
262{
263 atomic_inc(&ep->ex_refcnt);
264}
265
266/**
267 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
268 * and determine SOF and EOF.
269 * @ep: The exchange to that will use the header
270 * @fp: The frame whose header is to be modified
271 * @f_ctl: F_CTL bits that will be used for the frame header
272 *
273 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
274 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
275 */
276static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
277 u32 f_ctl)
278{
279 struct fc_frame_header *fh = fc_frame_header_get(fp);
280 u16 fill;
281
282 fr_sof(fp) = ep->class;
283 if (ep->seq.cnt)
284 fr_sof(fp) = fc_sof_normal(ep->class);
285
286 if (f_ctl & FC_FC_END_SEQ) {
287 fr_eof(fp) = FC_EOF_T;
288 if (fc_sof_needs_ack(ep->class))
289 fr_eof(fp) = FC_EOF_N;
290 /*
291 * From F_CTL.
292 * The number of fill bytes to make the length a 4-byte
293 * multiple is the low order 2-bits of the f_ctl.
294 * The fill itself will have been cleared by the frame
295 * allocation.
296 * After this, the length will be even, as expected by
297 * the transport.
298 */
299 fill = fr_len(fp) & 3;
300 if (fill) {
301 fill = 4 - fill;
302 /* TODO, this may be a problem with fragmented skb */
303 skb_put(fp_skb(fp), fill);
304 hton24(fh->fh_f_ctl, f_ctl | fill);
305 }
306 } else {
307 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */
308 fr_eof(fp) = FC_EOF_N;
309 }
310
311 /*
312 * Initialize remainig fh fields
313 * from fc_fill_fc_hdr
314 */
315 fh->fh_ox_id = htons(ep->oxid);
316 fh->fh_rx_id = htons(ep->rxid);
317 fh->fh_seq_id = ep->seq.id;
318 fh->fh_seq_cnt = htons(ep->seq.cnt);
319}
320
321/**
322 * fc_exch_release() - Decrement an exchange's reference count
323 * @ep: Exchange to be released
324 *
325 * If the reference count reaches zero and the exchange is complete,
326 * it is freed.
327 */
328static void fc_exch_release(struct fc_exch *ep)
329{
330 struct fc_exch_mgr *mp;
331
332 if (atomic_dec_and_test(&ep->ex_refcnt)) {
333 mp = ep->em;
334 if (ep->destructor)
335 ep->destructor(&ep->seq, ep->arg);
336 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
337 mempool_free(ep, mp->ep_pool);
338 }
339}
340
341/**
342 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
343 * @ep: The exchange that is complete
344 */
345static int fc_exch_done_locked(struct fc_exch *ep)
346{
347 int rc = 1;
348
349 /*
350 * We must check for completion in case there are two threads
351 * tyring to complete this. But the rrq code will reuse the
352 * ep, and in that case we only clear the resp and set it as
353 * complete, so it can be reused by the timer to send the rrq.
354 */
355 ep->resp = NULL;
356 if (ep->state & FC_EX_DONE)
357 return rc;
358 ep->esb_stat |= ESB_ST_COMPLETE;
359
360 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
361 ep->state |= FC_EX_DONE;
362 if (cancel_delayed_work(&ep->timeout_work))
363 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
364 rc = 0;
365 }
366 return rc;
367}
368
369/**
370 * fc_exch_ptr_get() - Return an exchange from an exchange pool
371 * @pool: Exchange Pool to get an exchange from
372 * @index: Index of the exchange within the pool
373 *
374 * Use the index to get an exchange from within an exchange pool. exches
375 * will point to an array of exchange pointers. The index will select
376 * the exchange within the array.
377 */
378static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
379 u16 index)
380{
381 struct fc_exch **exches = (struct fc_exch **)(pool + 1);
382 return exches[index];
383}
384
385/**
386 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
387 * @pool: The pool to assign the exchange to
388 * @index: The index in the pool where the exchange will be assigned
389 * @ep: The exchange to assign to the pool
390 */
391static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
392 struct fc_exch *ep)
393{
394 ((struct fc_exch **)(pool + 1))[index] = ep;
395}
396
397/**
398 * fc_exch_delete() - Delete an exchange
399 * @ep: The exchange to be deleted
400 */
401static void fc_exch_delete(struct fc_exch *ep)
402{
403 struct fc_exch_pool *pool;
404 u16 index;
405
406 pool = ep->pool;
407 spin_lock_bh(&pool->lock);
408 WARN_ON(pool->total_exches <= 0);
409 pool->total_exches--;
410
411 /* update cache of free slot */
412 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
413 if (pool->left == FC_XID_UNKNOWN)
414 pool->left = index;
415 else if (pool->right == FC_XID_UNKNOWN)
416 pool->right = index;
417 else
418 pool->next_index = index;
419
420 fc_exch_ptr_set(pool, index, NULL);
421 list_del(&ep->ex_list);
422 spin_unlock_bh(&pool->lock);
423 fc_exch_release(ep); /* drop hold for exch in mp */
424}
425
426/**
427 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
428 * the exchange lock held
429 * @ep: The exchange whose timer will start
430 * @timer_msec: The timeout period
431 *
432 * Used for upper level protocols to time out the exchange.
433 * The timer is cancelled when it fires or when the exchange completes.
434 */
435static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
436 unsigned int timer_msec)
437{
438 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
439 return;
440
441 FC_EXCH_DBG(ep, "Exchange timer armed\n");
442
443 if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
444 msecs_to_jiffies(timer_msec)))
445 fc_exch_hold(ep); /* hold for timer */
446}
447
448/**
449 * fc_exch_timer_set() - Lock the exchange and set the timer
450 * @ep: The exchange whose timer will start
451 * @timer_msec: The timeout period
452 */
453static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
454{
455 spin_lock_bh(&ep->ex_lock);
456 fc_exch_timer_set_locked(ep, timer_msec);
457 spin_unlock_bh(&ep->ex_lock);
458}
459
460/**
461 * fc_seq_send() - Send a frame using existing sequence/exchange pair
462 * @lport: The local port that the exchange will be sent on
463 * @sp: The sequence to be sent
464 * @fp: The frame to be sent on the exchange
465 */
466static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
467 struct fc_frame *fp)
468{
469 struct fc_exch *ep;
470 struct fc_frame_header *fh = fc_frame_header_get(fp);
471 int error;
472 u32 f_ctl;
473
474 ep = fc_seq_exch(sp);
475 WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);
476
477 f_ctl = ntoh24(fh->fh_f_ctl);
478 fc_exch_setup_hdr(ep, fp, f_ctl);
479 fr_encaps(fp) = ep->encaps;
480
481 /*
482 * update sequence count if this frame is carrying
483 * multiple FC frames when sequence offload is enabled
484 * by LLD.
485 */
486 if (fr_max_payload(fp))
487 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
488 fr_max_payload(fp));
489 else
490 sp->cnt++;
491
492 /*
493 * Send the frame.
494 */
495 error = lport->tt.frame_send(lport, fp);
496
497 if (fh->fh_type == FC_TYPE_BLS)
498 return error;
499
500 /*
501 * Update the exchange and sequence flags,
502 * assuming all frames for the sequence have been sent.
503 * We can only be called to send once for each sequence.
504 */
505 spin_lock_bh(&ep->ex_lock);
506 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */
507 if (f_ctl & FC_FC_SEQ_INIT)
508 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
509 spin_unlock_bh(&ep->ex_lock);
510 return error;
511}
512
513/**
514 * fc_seq_alloc() - Allocate a sequence for a given exchange
515 * @ep: The exchange to allocate a new sequence for
516 * @seq_id: The sequence ID to be used
517 *
518 * We don't support multiple originated sequences on the same exchange.
519 * By implication, any previously originated sequence on this exchange
520 * is complete, and we reallocate the same sequence.
521 */
522static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
523{
524 struct fc_seq *sp;
525
526 sp = &ep->seq;
527 sp->ssb_stat = 0;
528 sp->cnt = 0;
529 sp->id = seq_id;
530 return sp;
531}
532
533/**
534 * fc_seq_start_next_locked() - Allocate a new sequence on the same
535 * exchange as the supplied sequence
536 * @sp: The sequence/exchange to get a new sequence for
537 */
538static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
539{
540 struct fc_exch *ep = fc_seq_exch(sp);
541
542 sp = fc_seq_alloc(ep, ep->seq_id++);
543 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
544 ep->f_ctl, sp->id);
545 return sp;
546}
547
548/**
549 * fc_seq_start_next() - Lock the exchange and get a new sequence
550 * for a given sequence/exchange pair
551 * @sp: The sequence/exchange to get a new exchange for
552 */
553static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
554{
555 struct fc_exch *ep = fc_seq_exch(sp);
556
557 spin_lock_bh(&ep->ex_lock);
558 sp = fc_seq_start_next_locked(sp);
559 spin_unlock_bh(&ep->ex_lock);
560
561 return sp;
562}
563
564/*
565 * Set the response handler for the exchange associated with a sequence.
566 */
567static void fc_seq_set_resp(struct fc_seq *sp,
568 void (*resp)(struct fc_seq *, struct fc_frame *,
569 void *),
570 void *arg)
571{
572 struct fc_exch *ep = fc_seq_exch(sp);
573
574 spin_lock_bh(&ep->ex_lock);
575 ep->resp = resp;
576 ep->arg = arg;
577 spin_unlock_bh(&ep->ex_lock);
578}
579
580/**
581 * fc_exch_abort_locked() - Abort an exchange
582 * @ep: The exchange to be aborted
583 * @timer_msec: The period of time to wait before aborting
584 *
585 * Locking notes: Called with exch lock held
586 *
587 * Return value: 0 on success else error code
588 */
589static int fc_exch_abort_locked(struct fc_exch *ep,
590 unsigned int timer_msec)
591{
592 struct fc_seq *sp;
593 struct fc_frame *fp;
594 int error;
595
596 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
597 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP))
598 return -ENXIO;
599
600 /*
601 * Send the abort on a new sequence if possible.
602 */
603 sp = fc_seq_start_next_locked(&ep->seq);
604 if (!sp)
605 return -ENOMEM;
606
607 ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
608 if (timer_msec)
609 fc_exch_timer_set_locked(ep, timer_msec);
610
611 /*
612 * If not logged into the fabric, don't send ABTS but leave
613 * sequence active until next timeout.
614 */
615 if (!ep->sid)
616 return 0;
617
618 /*
619 * Send an abort for the sequence that timed out.
620 */
621 fp = fc_frame_alloc(ep->lp, 0);
622 if (fp) {
623 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
624 FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
625 error = fc_seq_send(ep->lp, sp, fp);
626 } else
627 error = -ENOBUFS;
628 return error;
629}
630
631/**
632 * fc_seq_exch_abort() - Abort an exchange and sequence
633 * @req_sp: The sequence to be aborted
634 * @timer_msec: The period of time to wait before aborting
635 *
636 * Generally called because of a timeout or an abort from the upper layer.
637 *
638 * Return value: 0 on success else error code
639 */
640static int fc_seq_exch_abort(const struct fc_seq *req_sp,
641 unsigned int timer_msec)
642{
643 struct fc_exch *ep;
644 int error;
645
646 ep = fc_seq_exch(req_sp);
647 spin_lock_bh(&ep->ex_lock);
648 error = fc_exch_abort_locked(ep, timer_msec);
649 spin_unlock_bh(&ep->ex_lock);
650 return error;
651}
652
653/**
654 * fc_exch_timeout() - Handle exchange timer expiration
655 * @work: The work_struct identifying the exchange that timed out
656 */
657static void fc_exch_timeout(struct work_struct *work)
658{
659 struct fc_exch *ep = container_of(work, struct fc_exch,
660 timeout_work.work);
661 struct fc_seq *sp = &ep->seq;
662 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
663 void *arg;
664 u32 e_stat;
665 int rc = 1;
666
667 FC_EXCH_DBG(ep, "Exchange timed out\n");
668
669 spin_lock_bh(&ep->ex_lock);
670 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
671 goto unlock;
672
673 e_stat = ep->esb_stat;
674 if (e_stat & ESB_ST_COMPLETE) {
675 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
676 spin_unlock_bh(&ep->ex_lock);
677 if (e_stat & ESB_ST_REC_QUAL)
678 fc_exch_rrq(ep);
679 goto done;
680 } else {
681 resp = ep->resp;
682 arg = ep->arg;
683 ep->resp = NULL;
684 if (e_stat & ESB_ST_ABNORMAL)
685 rc = fc_exch_done_locked(ep);
686 spin_unlock_bh(&ep->ex_lock);
687 if (!rc)
688 fc_exch_delete(ep);
689 if (resp)
690 resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
691 fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
692 goto done;
693 }
694unlock:
695 spin_unlock_bh(&ep->ex_lock);
696done:
697 /*
698 * This release matches the hold taken when the timer was set.
699 */
700 fc_exch_release(ep);
701}
702
703/**
704 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
705 * @lport: The local port that the exchange is for
706 * @mp: The exchange manager that will allocate the exchange
707 *
708 * Returns pointer to allocated fc_exch with exch lock held.
709 */
710static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
711 struct fc_exch_mgr *mp)
712{
713 struct fc_exch *ep;
714 unsigned int cpu;
715 u16 index;
716 struct fc_exch_pool *pool;
717
718 /* allocate memory for exchange */
719 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
720 if (!ep) {
721 atomic_inc(&mp->stats.no_free_exch);
722 goto out;
723 }
724 memset(ep, 0, sizeof(*ep));
725
726 cpu = get_cpu();
727 pool = per_cpu_ptr(mp->pool, cpu);
728 spin_lock_bh(&pool->lock);
729 put_cpu();
730
731 /* peek cache of free slot */
732 if (pool->left != FC_XID_UNKNOWN) {
733 index = pool->left;
734 pool->left = FC_XID_UNKNOWN;
735 goto hit;
736 }
737 if (pool->right != FC_XID_UNKNOWN) {
738 index = pool->right;
739 pool->right = FC_XID_UNKNOWN;
740 goto hit;
741 }
742
743 index = pool->next_index;
744 /* allocate new exch from pool */
745 while (fc_exch_ptr_get(pool, index)) {
746 index = index == mp->pool_max_index ? 0 : index + 1;
747 if (index == pool->next_index)
748 goto err;
749 }
750 pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
751hit:
752 fc_exch_hold(ep); /* hold for exch in mp */
753 spin_lock_init(&ep->ex_lock);
754 /*
755 * Hold exch lock for caller to prevent fc_exch_reset()
756 * from releasing exch while fc_exch_alloc() caller is
757 * still working on exch.
758 */
759 spin_lock_bh(&ep->ex_lock);
760
761 fc_exch_ptr_set(pool, index, ep);
762 list_add_tail(&ep->ex_list, &pool->ex_list);
763 fc_seq_alloc(ep, ep->seq_id++);
764 pool->total_exches++;
765 spin_unlock_bh(&pool->lock);
766
767 /*
768 * update exchange
769 */
770 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
771 ep->em = mp;
772 ep->pool = pool;
773 ep->lp = lport;
774 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */
775 ep->rxid = FC_XID_UNKNOWN;
776 ep->class = mp->class;
777 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
778out:
779 return ep;
780err:
781 spin_unlock_bh(&pool->lock);
782 atomic_inc(&mp->stats.no_free_exch_xid);
783 mempool_free(ep, mp->ep_pool);
784 return NULL;
785}
786
787/**
788 * fc_exch_alloc() - Allocate an exchange from an EM on a
789 * local port's list of EMs.
790 * @lport: The local port that will own the exchange
791 * @fp: The FC frame that the exchange will be for
792 *
793 * This function walks the list of exchange manager(EM)
794 * anchors to select an EM for a new exchange allocation. The
795 * EM is selected when a NULL match function pointer is encountered
796 * or when a call to a match function returns true.
797 */
798static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
799 struct fc_frame *fp)
800{
801 struct fc_exch_mgr_anchor *ema;
802
803 list_for_each_entry(ema, &lport->ema_list, ema_list)
804 if (!ema->match || ema->match(fp))
805 return fc_exch_em_alloc(lport, ema->mp);
806 return NULL;
807}
808
809/**
810 * fc_exch_find() - Lookup and hold an exchange
811 * @mp: The exchange manager to lookup the exchange from
812 * @xid: The XID of the exchange to look up
813 */
814static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
815{
816 struct fc_exch_pool *pool;
817 struct fc_exch *ep = NULL;
818
819 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
820 pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
821 spin_lock_bh(&pool->lock);
822 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
823 if (ep && ep->xid == xid)
824 fc_exch_hold(ep);
825 spin_unlock_bh(&pool->lock);
826 }
827 return ep;
828}
829
830
831/**
832 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
833 * the memory allocated for the related objects may be freed.
834 * @sp: The sequence that has completed
835 */
836static void fc_exch_done(struct fc_seq *sp)
837{
838 struct fc_exch *ep = fc_seq_exch(sp);
839 int rc;
840
841 spin_lock_bh(&ep->ex_lock);
842 rc = fc_exch_done_locked(ep);
843 spin_unlock_bh(&ep->ex_lock);
844 if (!rc)
845 fc_exch_delete(ep);
846}
847
848/**
849 * fc_exch_resp() - Allocate a new exchange for a response frame
850 * @lport: The local port that the exchange was for
851 * @mp: The exchange manager to allocate the exchange from
852 * @fp: The response frame
853 *
854 * Sets the responder ID in the frame header.
855 */
856static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
857 struct fc_exch_mgr *mp,
858 struct fc_frame *fp)
859{
860 struct fc_exch *ep;
861 struct fc_frame_header *fh;
862
863 ep = fc_exch_alloc(lport, fp);
864 if (ep) {
865 ep->class = fc_frame_class(fp);
866
867 /*
868 * Set EX_CTX indicating we're responding on this exchange.
869 */
870 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */
871 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */
872 fh = fc_frame_header_get(fp);
873 ep->sid = ntoh24(fh->fh_d_id);
874 ep->did = ntoh24(fh->fh_s_id);
875 ep->oid = ep->did;
876
877 /*
878 * Allocated exchange has placed the XID in the
879 * originator field. Move it to the responder field,
880 * and set the originator XID from the frame.
881 */
882 ep->rxid = ep->xid;
883 ep->oxid = ntohs(fh->fh_ox_id);
884 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
885 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
886 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
887
888 fc_exch_hold(ep); /* hold for caller */
889 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */
890 }
891 return ep;
892}
893
894/**
895 * fc_seq_lookup_recip() - Find a sequence where the other end
896 * originated the sequence
897 * @lport: The local port that the frame was sent to
898 * @mp: The Exchange Manager to lookup the exchange from
899 * @fp: The frame associated with the sequence we're looking for
900 *
901 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
902 * on the ep that should be released by the caller.
903 */
904static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
905 struct fc_exch_mgr *mp,
906 struct fc_frame *fp)
907{
908 struct fc_frame_header *fh = fc_frame_header_get(fp);
909 struct fc_exch *ep = NULL;
910 struct fc_seq *sp = NULL;
911 enum fc_pf_rjt_reason reject = FC_RJT_NONE;
912 u32 f_ctl;
913 u16 xid;
914
915 f_ctl = ntoh24(fh->fh_f_ctl);
916 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
917
918 /*
919 * Lookup or create the exchange if we will be creating the sequence.
920 */
921 if (f_ctl & FC_FC_EX_CTX) {
922 xid = ntohs(fh->fh_ox_id); /* we originated exch */
923 ep = fc_exch_find(mp, xid);
924 if (!ep) {
925 atomic_inc(&mp->stats.xid_not_found);
926 reject = FC_RJT_OX_ID;
927 goto out;
928 }
929 if (ep->rxid == FC_XID_UNKNOWN)
930 ep->rxid = ntohs(fh->fh_rx_id);
931 else if (ep->rxid != ntohs(fh->fh_rx_id)) {
932 reject = FC_RJT_OX_ID;
933 goto rel;
934 }
935 } else {
936 xid = ntohs(fh->fh_rx_id); /* we are the responder */
937
938 /*
939 * Special case for MDS issuing an ELS TEST with a
940 * bad rxid of 0.
941 * XXX take this out once we do the proper reject.
942 */
943 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
944 fc_frame_payload_op(fp) == ELS_TEST) {
945 fh->fh_rx_id = htons(FC_XID_UNKNOWN);
946 xid = FC_XID_UNKNOWN;
947 }
948
949 /*
950 * new sequence - find the exchange
951 */
952 ep = fc_exch_find(mp, xid);
953 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
954 if (ep) {
955 atomic_inc(&mp->stats.xid_busy);
956 reject = FC_RJT_RX_ID;
957 goto rel;
958 }
959 ep = fc_exch_resp(lport, mp, fp);
960 if (!ep) {
961 reject = FC_RJT_EXCH_EST; /* XXX */
962 goto out;
963 }
964 xid = ep->xid; /* get our XID */
965 } else if (!ep) {
966 atomic_inc(&mp->stats.xid_not_found);
967 reject = FC_RJT_RX_ID; /* XID not found */
968 goto out;
969 }
970 }
971
972 /*
973 * At this point, we have the exchange held.
974 * Find or create the sequence.
975 */
976 if (fc_sof_is_init(fr_sof(fp))) {
977 sp = &ep->seq;
978 sp->ssb_stat |= SSB_ST_RESP;
979 sp->id = fh->fh_seq_id;
980 } else {
981 sp = &ep->seq;
982 if (sp->id != fh->fh_seq_id) {
983 atomic_inc(&mp->stats.seq_not_found);
984 if (f_ctl & FC_FC_END_SEQ) {
985 /*
986 * Update sequence_id based on incoming last
987 * frame of sequence exchange. This is needed
988 * for FCoE target where DDP has been used
989 * on target where, stack is indicated only
990 * about last frame's (payload _header) header.
991 * Whereas "seq_id" which is part of
992 * frame_header is allocated by initiator
993 * which is totally different from "seq_id"
994 * allocated when XFER_RDY was sent by target.
995 * To avoid false -ve which results into not
996 * sending RSP, hence write request on other
997 * end never finishes.
998 */
999 spin_lock_bh(&ep->ex_lock);
1000 sp->ssb_stat |= SSB_ST_RESP;
1001 sp->id = fh->fh_seq_id;
1002 spin_unlock_bh(&ep->ex_lock);
1003 } else {
1004 /* sequence/exch should exist */
1005 reject = FC_RJT_SEQ_ID;
1006 goto rel;
1007 }
1008 }
1009 }
1010 WARN_ON(ep != fc_seq_exch(sp));
1011
1012 if (f_ctl & FC_FC_SEQ_INIT)
1013 ep->esb_stat |= ESB_ST_SEQ_INIT;
1014
1015 fr_seq(fp) = sp;
1016out:
1017 return reject;
1018rel:
1019 fc_exch_done(&ep->seq);
1020 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */
1021 return reject;
1022}
1023
1024/**
1025 * fc_seq_lookup_orig() - Find a sequence where this end
1026 * originated the sequence
1027 * @mp: The Exchange Manager to lookup the exchange from
1028 * @fp: The frame associated with the sequence we're looking for
1029 *
1030 * Does not hold the sequence for the caller.
1031 */
1032static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1033 struct fc_frame *fp)
1034{
1035 struct fc_frame_header *fh = fc_frame_header_get(fp);
1036 struct fc_exch *ep;
1037 struct fc_seq *sp = NULL;
1038 u32 f_ctl;
1039 u16 xid;
1040
1041 f_ctl = ntoh24(fh->fh_f_ctl);
1042 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1043 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1044 ep = fc_exch_find(mp, xid);
1045 if (!ep)
1046 return NULL;
1047 if (ep->seq.id == fh->fh_seq_id) {
1048 /*
1049 * Save the RX_ID if we didn't previously know it.
1050 */
1051 sp = &ep->seq;
1052 if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1053 ep->rxid == FC_XID_UNKNOWN) {
1054 ep->rxid = ntohs(fh->fh_rx_id);
1055 }
1056 }
1057 fc_exch_release(ep);
1058 return sp;
1059}
1060
1061/**
1062 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1063 * @ep: The exchange to set the addresses for
1064 * @orig_id: The originator's ID
1065 * @resp_id: The responder's ID
1066 *
1067 * Note this must be done before the first sequence of the exchange is sent.
1068 */
1069static void fc_exch_set_addr(struct fc_exch *ep,
1070 u32 orig_id, u32 resp_id)
1071{
1072 ep->oid = orig_id;
1073 if (ep->esb_stat & ESB_ST_RESP) {
1074 ep->sid = resp_id;
1075 ep->did = orig_id;
1076 } else {
1077 ep->sid = orig_id;
1078 ep->did = resp_id;
1079 }
1080}
1081
1082/**
1083 * fc_seq_els_rsp_send() - Send an ELS response using information from
1084 * the existing sequence/exchange.
1085 * @fp: The received frame
1086 * @els_cmd: The ELS command to be sent
1087 * @els_data: The ELS data to be sent
1088 *
1089 * The received frame is not freed.
1090 */
1091static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1092 struct fc_seq_els_data *els_data)
1093{
1094 switch (els_cmd) {
1095 case ELS_LS_RJT:
1096 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1097 break;
1098 case ELS_LS_ACC:
1099 fc_seq_ls_acc(fp);
1100 break;
1101 case ELS_RRQ:
1102 fc_exch_els_rrq(fp);
1103 break;
1104 case ELS_REC:
1105 fc_exch_els_rec(fp);
1106 break;
1107 default:
1108 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1109 }
1110}
1111
1112/**
1113 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1114 * @sp: The sequence that is to be sent
1115 * @fp: The frame that will be sent on the sequence
1116 * @rctl: The R_CTL information to be sent
1117 * @fh_type: The frame header type
1118 */
1119static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1120 enum fc_rctl rctl, enum fc_fh_type fh_type)
1121{
1122 u32 f_ctl;
1123 struct fc_exch *ep = fc_seq_exch(sp);
1124
1125 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1126 f_ctl |= ep->f_ctl;
1127 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1128 fc_seq_send(ep->lp, sp, fp);
1129}
1130
1131/**
1132 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1133 * @sp: The sequence to send the ACK on
1134 * @rx_fp: The received frame that is being acknoledged
1135 *
1136 * Send ACK_1 (or equiv.) indicating we received something.
1137 */
1138static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1139{
1140 struct fc_frame *fp;
1141 struct fc_frame_header *rx_fh;
1142 struct fc_frame_header *fh;
1143 struct fc_exch *ep = fc_seq_exch(sp);
1144 struct fc_lport *lport = ep->lp;
1145 unsigned int f_ctl;
1146
1147 /*
1148 * Don't send ACKs for class 3.
1149 */
1150 if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1151 fp = fc_frame_alloc(lport, 0);
1152 if (!fp)
1153 return;
1154
1155 fh = fc_frame_header_get(fp);
1156 fh->fh_r_ctl = FC_RCTL_ACK_1;
1157 fh->fh_type = FC_TYPE_BLS;
1158
1159 /*
1160 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1161 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1162 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1163 * Last ACK uses bits 7-6 (continue sequence),
1164 * bits 5-4 are meaningful (what kind of ACK to use).
1165 */
1166 rx_fh = fc_frame_header_get(rx_fp);
1167 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1168 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1169 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1170 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1171 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1172 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1173 hton24(fh->fh_f_ctl, f_ctl);
1174
1175 fc_exch_setup_hdr(ep, fp, f_ctl);
1176 fh->fh_seq_id = rx_fh->fh_seq_id;
1177 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1178 fh->fh_parm_offset = htonl(1); /* ack single frame */
1179
1180 fr_sof(fp) = fr_sof(rx_fp);
1181 if (f_ctl & FC_FC_END_SEQ)
1182 fr_eof(fp) = FC_EOF_T;
1183 else
1184 fr_eof(fp) = FC_EOF_N;
1185
1186 lport->tt.frame_send(lport, fp);
1187 }
1188}
1189
1190/**
1191 * fc_exch_send_ba_rjt() - Send BLS Reject
1192 * @rx_fp: The frame being rejected
1193 * @reason: The reason the frame is being rejected
1194 * @explan: The explanation for the rejection
1195 *
1196 * This is for rejecting BA_ABTS only.
1197 */
1198static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1199 enum fc_ba_rjt_reason reason,
1200 enum fc_ba_rjt_explan explan)
1201{
1202 struct fc_frame *fp;
1203 struct fc_frame_header *rx_fh;
1204 struct fc_frame_header *fh;
1205 struct fc_ba_rjt *rp;
1206 struct fc_lport *lport;
1207 unsigned int f_ctl;
1208
1209 lport = fr_dev(rx_fp);
1210 fp = fc_frame_alloc(lport, sizeof(*rp));
1211 if (!fp)
1212 return;
1213 fh = fc_frame_header_get(fp);
1214 rx_fh = fc_frame_header_get(rx_fp);
1215
1216 memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1217
1218 rp = fc_frame_payload_get(fp, sizeof(*rp));
1219 rp->br_reason = reason;
1220 rp->br_explan = explan;
1221
1222 /*
1223 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1224 */
1225 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1226 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1227 fh->fh_ox_id = rx_fh->fh_ox_id;
1228 fh->fh_rx_id = rx_fh->fh_rx_id;
1229 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1230 fh->fh_r_ctl = FC_RCTL_BA_RJT;
1231 fh->fh_type = FC_TYPE_BLS;
1232
1233 /*
1234 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1235 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1236 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1237 * Last ACK uses bits 7-6 (continue sequence),
1238 * bits 5-4 are meaningful (what kind of ACK to use).
1239 * Always set LAST_SEQ, END_SEQ.
1240 */
1241 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1242 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1243 FC_FC_END_CONN | FC_FC_SEQ_INIT |
1244 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1245 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1246 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1247 f_ctl &= ~FC_FC_FIRST_SEQ;
1248 hton24(fh->fh_f_ctl, f_ctl);
1249
1250 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1251 fr_eof(fp) = FC_EOF_T;
1252 if (fc_sof_needs_ack(fr_sof(fp)))
1253 fr_eof(fp) = FC_EOF_N;
1254
1255 lport->tt.frame_send(lport, fp);
1256}
1257
1258/**
1259 * fc_exch_recv_abts() - Handle an incoming ABTS
1260 * @ep: The exchange the abort was on
1261 * @rx_fp: The ABTS frame
1262 *
1263 * This would be for target mode usually, but could be due to lost
1264 * FCP transfer ready, confirm or RRQ. We always handle this as an
1265 * exchange abort, ignoring the parameter.
1266 */
1267static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1268{
1269 struct fc_frame *fp;
1270 struct fc_ba_acc *ap;
1271 struct fc_frame_header *fh;
1272 struct fc_seq *sp;
1273
1274 if (!ep)
1275 goto reject;
1276 spin_lock_bh(&ep->ex_lock);
1277 if (ep->esb_stat & ESB_ST_COMPLETE) {
1278 spin_unlock_bh(&ep->ex_lock);
1279 goto reject;
1280 }
1281 if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1282 fc_exch_hold(ep); /* hold for REC_QUAL */
1283 ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1284 fc_exch_timer_set_locked(ep, ep->r_a_tov);
1285
1286 fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1287 if (!fp) {
1288 spin_unlock_bh(&ep->ex_lock);
1289 goto free;
1290 }
1291 fh = fc_frame_header_get(fp);
1292 ap = fc_frame_payload_get(fp, sizeof(*ap));
1293 memset(ap, 0, sizeof(*ap));
1294 sp = &ep->seq;
1295 ap->ba_high_seq_cnt = htons(0xffff);
1296 if (sp->ssb_stat & SSB_ST_RESP) {
1297 ap->ba_seq_id = sp->id;
1298 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1299 ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1300 ap->ba_low_seq_cnt = htons(sp->cnt);
1301 }
1302 sp = fc_seq_start_next_locked(sp);
1303 spin_unlock_bh(&ep->ex_lock);
1304 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1305 fc_frame_free(rx_fp);
1306 return;
1307
1308reject:
1309 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1310free:
1311 fc_frame_free(rx_fp);
1312}
1313
1314/**
1315 * fc_seq_assign() - Assign exchange and sequence for incoming request
1316 * @lport: The local port that received the request
1317 * @fp: The request frame
1318 *
1319 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1320 * A reference will be held on the exchange/sequence for the caller, which
1321 * must call fc_seq_release().
1322 */
1323static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1324{
1325 struct fc_exch_mgr_anchor *ema;
1326
1327 WARN_ON(lport != fr_dev(fp));
1328 WARN_ON(fr_seq(fp));
1329 fr_seq(fp) = NULL;
1330
1331 list_for_each_entry(ema, &lport->ema_list, ema_list)
1332 if ((!ema->match || ema->match(fp)) &&
1333 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1334 break;
1335 return fr_seq(fp);
1336}
1337
1338/**
1339 * fc_seq_release() - Release the hold
1340 * @sp: The sequence.
1341 */
1342static void fc_seq_release(struct fc_seq *sp)
1343{
1344 fc_exch_release(fc_seq_exch(sp));
1345}
1346
1347/**
1348 * fc_exch_recv_req() - Handler for an incoming request
1349 * @lport: The local port that received the request
1350 * @mp: The EM that the exchange is on
1351 * @fp: The request frame
1352 *
1353 * This is used when the other end is originating the exchange
1354 * and the sequence.
1355 */
1356static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1357 struct fc_frame *fp)
1358{
1359 struct fc_frame_header *fh = fc_frame_header_get(fp);
1360 struct fc_seq *sp = NULL;
1361 struct fc_exch *ep = NULL;
1362 enum fc_pf_rjt_reason reject;
1363
1364 /* We can have the wrong fc_lport at this point with NPIV, which is a
1365 * problem now that we know a new exchange needs to be allocated
1366 */
1367 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1368 if (!lport) {
1369 fc_frame_free(fp);
1370 return;
1371 }
1372 fr_dev(fp) = lport;
1373
1374 BUG_ON(fr_seq(fp)); /* XXX remove later */
1375
1376 /*
1377 * If the RX_ID is 0xffff, don't allocate an exchange.
1378 * The upper-level protocol may request one later, if needed.
1379 */
1380 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1381 return lport->tt.lport_recv(lport, fp);
1382
1383 reject = fc_seq_lookup_recip(lport, mp, fp);
1384 if (reject == FC_RJT_NONE) {
1385 sp = fr_seq(fp); /* sequence will be held */
1386 ep = fc_seq_exch(sp);
1387 fc_seq_send_ack(sp, fp);
1388 ep->encaps = fr_encaps(fp);
1389
1390 /*
1391 * Call the receive function.
1392 *
1393 * The receive function may allocate a new sequence
1394 * over the old one, so we shouldn't change the
1395 * sequence after this.
1396 *
1397 * The frame will be freed by the receive function.
1398 * If new exch resp handler is valid then call that
1399 * first.
1400 */
1401 if (ep->resp)
1402 ep->resp(sp, fp, ep->arg);
1403 else
1404 lport->tt.lport_recv(lport, fp);
1405 fc_exch_release(ep); /* release from lookup */
1406 } else {
1407 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1408 reject);
1409 fc_frame_free(fp);
1410 }
1411}
1412
1413/**
1414 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1415 * end is the originator of the sequence that is a
1416 * response to our initial exchange
1417 * @mp: The EM that the exchange is on
1418 * @fp: The response frame
1419 */
1420static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1421{
1422 struct fc_frame_header *fh = fc_frame_header_get(fp);
1423 struct fc_seq *sp;
1424 struct fc_exch *ep;
1425 enum fc_sof sof;
1426 u32 f_ctl;
1427 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1428 void *ex_resp_arg;
1429 int rc;
1430
1431 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1432 if (!ep) {
1433 atomic_inc(&mp->stats.xid_not_found);
1434 goto out;
1435 }
1436 if (ep->esb_stat & ESB_ST_COMPLETE) {
1437 atomic_inc(&mp->stats.xid_not_found);
1438 goto rel;
1439 }
1440 if (ep->rxid == FC_XID_UNKNOWN)
1441 ep->rxid = ntohs(fh->fh_rx_id);
1442 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1443 atomic_inc(&mp->stats.xid_not_found);
1444 goto rel;
1445 }
1446 if (ep->did != ntoh24(fh->fh_s_id) &&
1447 ep->did != FC_FID_FLOGI) {
1448 atomic_inc(&mp->stats.xid_not_found);
1449 goto rel;
1450 }
1451 sof = fr_sof(fp);
1452 sp = &ep->seq;
1453 if (fc_sof_is_init(sof)) {
1454 sp->ssb_stat |= SSB_ST_RESP;
1455 sp->id = fh->fh_seq_id;
1456 } else if (sp->id != fh->fh_seq_id) {
1457 atomic_inc(&mp->stats.seq_not_found);
1458 goto rel;
1459 }
1460
1461 f_ctl = ntoh24(fh->fh_f_ctl);
1462 fr_seq(fp) = sp;
1463 if (f_ctl & FC_FC_SEQ_INIT)
1464 ep->esb_stat |= ESB_ST_SEQ_INIT;
1465
1466 if (fc_sof_needs_ack(sof))
1467 fc_seq_send_ack(sp, fp);
1468 resp = ep->resp;
1469 ex_resp_arg = ep->arg;
1470
1471 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1472 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1473 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1474 spin_lock_bh(&ep->ex_lock);
1475 resp = ep->resp;
1476 rc = fc_exch_done_locked(ep);
1477 WARN_ON(fc_seq_exch(sp) != ep);
1478 spin_unlock_bh(&ep->ex_lock);
1479 if (!rc)
1480 fc_exch_delete(ep);
1481 }
1482
1483 /*
1484 * Call the receive function.
1485 * The sequence is held (has a refcnt) for us,
1486 * but not for the receive function.
1487 *
1488 * The receive function may allocate a new sequence
1489 * over the old one, so we shouldn't change the
1490 * sequence after this.
1491 *
1492 * The frame will be freed by the receive function.
1493 * If new exch resp handler is valid then call that
1494 * first.
1495 */
1496 if (resp)
1497 resp(sp, fp, ex_resp_arg);
1498 else
1499 fc_frame_free(fp);
1500 fc_exch_release(ep);
1501 return;
1502rel:
1503 fc_exch_release(ep);
1504out:
1505 fc_frame_free(fp);
1506}
1507
1508/**
1509 * fc_exch_recv_resp() - Handler for a sequence where other end is
1510 * responding to our sequence
1511 * @mp: The EM that the exchange is on
1512 * @fp: The response frame
1513 */
1514static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1515{
1516 struct fc_seq *sp;
1517
1518 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */
1519
1520 if (!sp)
1521 atomic_inc(&mp->stats.xid_not_found);
1522 else
1523 atomic_inc(&mp->stats.non_bls_resp);
1524
1525 fc_frame_free(fp);
1526}
1527
1528/**
1529 * fc_exch_abts_resp() - Handler for a response to an ABT
1530 * @ep: The exchange that the frame is on
1531 * @fp: The response frame
1532 *
1533 * This response would be to an ABTS cancelling an exchange or sequence.
1534 * The response can be either BA_ACC or BA_RJT
1535 */
1536static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1537{
1538 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1539 void *ex_resp_arg;
1540 struct fc_frame_header *fh;
1541 struct fc_ba_acc *ap;
1542 struct fc_seq *sp;
1543 u16 low;
1544 u16 high;
1545 int rc = 1, has_rec = 0;
1546
1547 fh = fc_frame_header_get(fp);
1548 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1549 fc_exch_rctl_name(fh->fh_r_ctl));
1550
1551 if (cancel_delayed_work_sync(&ep->timeout_work))
1552 fc_exch_release(ep); /* release from pending timer hold */
1553
1554 spin_lock_bh(&ep->ex_lock);
1555 switch (fh->fh_r_ctl) {
1556 case FC_RCTL_BA_ACC:
1557 ap = fc_frame_payload_get(fp, sizeof(*ap));
1558 if (!ap)
1559 break;
1560
1561 /*
1562 * Decide whether to establish a Recovery Qualifier.
1563 * We do this if there is a non-empty SEQ_CNT range and
1564 * SEQ_ID is the same as the one we aborted.
1565 */
1566 low = ntohs(ap->ba_low_seq_cnt);
1567 high = ntohs(ap->ba_high_seq_cnt);
1568 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1569 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1570 ap->ba_seq_id == ep->seq_id) && low != high) {
1571 ep->esb_stat |= ESB_ST_REC_QUAL;
1572 fc_exch_hold(ep); /* hold for recovery qualifier */
1573 has_rec = 1;
1574 }
1575 break;
1576 case FC_RCTL_BA_RJT:
1577 break;
1578 default:
1579 break;
1580 }
1581
1582 resp = ep->resp;
1583 ex_resp_arg = ep->arg;
1584
1585 /* do we need to do some other checks here. Can we reuse more of
1586 * fc_exch_recv_seq_resp
1587 */
1588 sp = &ep->seq;
1589 /*
1590 * do we want to check END_SEQ as well as LAST_SEQ here?
1591 */
1592 if (ep->fh_type != FC_TYPE_FCP &&
1593 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1594 rc = fc_exch_done_locked(ep);
1595 spin_unlock_bh(&ep->ex_lock);
1596 if (!rc)
1597 fc_exch_delete(ep);
1598
1599 if (resp)
1600 resp(sp, fp, ex_resp_arg);
1601 else
1602 fc_frame_free(fp);
1603
1604 if (has_rec)
1605 fc_exch_timer_set(ep, ep->r_a_tov);
1606
1607}
1608
1609/**
1610 * fc_exch_recv_bls() - Handler for a BLS sequence
1611 * @mp: The EM that the exchange is on
1612 * @fp: The request frame
1613 *
1614 * The BLS frame is always a sequence initiated by the remote side.
1615 * We may be either the originator or recipient of the exchange.
1616 */
1617static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1618{
1619 struct fc_frame_header *fh;
1620 struct fc_exch *ep;
1621 u32 f_ctl;
1622
1623 fh = fc_frame_header_get(fp);
1624 f_ctl = ntoh24(fh->fh_f_ctl);
1625 fr_seq(fp) = NULL;
1626
1627 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1628 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1629 if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1630 spin_lock_bh(&ep->ex_lock);
1631 ep->esb_stat |= ESB_ST_SEQ_INIT;
1632 spin_unlock_bh(&ep->ex_lock);
1633 }
1634 if (f_ctl & FC_FC_SEQ_CTX) {
1635 /*
1636 * A response to a sequence we initiated.
1637 * This should only be ACKs for class 2 or F.
1638 */
1639 switch (fh->fh_r_ctl) {
1640 case FC_RCTL_ACK_1:
1641 case FC_RCTL_ACK_0:
1642 break;
1643 default:
1644 FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1645 fh->fh_r_ctl,
1646 fc_exch_rctl_name(fh->fh_r_ctl));
1647 break;
1648 }
1649 fc_frame_free(fp);
1650 } else {
1651 switch (fh->fh_r_ctl) {
1652 case FC_RCTL_BA_RJT:
1653 case FC_RCTL_BA_ACC:
1654 if (ep)
1655 fc_exch_abts_resp(ep, fp);
1656 else
1657 fc_frame_free(fp);
1658 break;
1659 case FC_RCTL_BA_ABTS:
1660 fc_exch_recv_abts(ep, fp);
1661 break;
1662 default: /* ignore junk */
1663 fc_frame_free(fp);
1664 break;
1665 }
1666 }
1667 if (ep)
1668 fc_exch_release(ep); /* release hold taken by fc_exch_find */
1669}
1670
1671/**
1672 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1673 * @rx_fp: The received frame, not freed here.
1674 *
1675 * If this fails due to allocation or transmit congestion, assume the
1676 * originator will repeat the sequence.
1677 */
1678static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1679{
1680 struct fc_lport *lport;
1681 struct fc_els_ls_acc *acc;
1682 struct fc_frame *fp;
1683
1684 lport = fr_dev(rx_fp);
1685 fp = fc_frame_alloc(lport, sizeof(*acc));
1686 if (!fp)
1687 return;
1688 acc = fc_frame_payload_get(fp, sizeof(*acc));
1689 memset(acc, 0, sizeof(*acc));
1690 acc->la_cmd = ELS_LS_ACC;
1691 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1692 lport->tt.frame_send(lport, fp);
1693}
1694
1695/**
1696 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1697 * @rx_fp: The received frame, not freed here.
1698 * @reason: The reason the sequence is being rejected
1699 * @explan: The explanation for the rejection
1700 *
1701 * If this fails due to allocation or transmit congestion, assume the
1702 * originator will repeat the sequence.
1703 */
1704static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1705 enum fc_els_rjt_explan explan)
1706{
1707 struct fc_lport *lport;
1708 struct fc_els_ls_rjt *rjt;
1709 struct fc_frame *fp;
1710
1711 lport = fr_dev(rx_fp);
1712 fp = fc_frame_alloc(lport, sizeof(*rjt));
1713 if (!fp)
1714 return;
1715 rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1716 memset(rjt, 0, sizeof(*rjt));
1717 rjt->er_cmd = ELS_LS_RJT;
1718 rjt->er_reason = reason;
1719 rjt->er_explan = explan;
1720 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1721 lport->tt.frame_send(lport, fp);
1722}
1723
1724/**
1725 * fc_exch_reset() - Reset an exchange
1726 * @ep: The exchange to be reset
1727 */
1728static void fc_exch_reset(struct fc_exch *ep)
1729{
1730 struct fc_seq *sp;
1731 void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1732 void *arg;
1733 int rc = 1;
1734
1735 spin_lock_bh(&ep->ex_lock);
1736 fc_exch_abort_locked(ep, 0);
1737 ep->state |= FC_EX_RST_CLEANUP;
1738 if (cancel_delayed_work(&ep->timeout_work))
1739 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
1740 resp = ep->resp;
1741 ep->resp = NULL;
1742 if (ep->esb_stat & ESB_ST_REC_QUAL)
1743 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */
1744 ep->esb_stat &= ~ESB_ST_REC_QUAL;
1745 arg = ep->arg;
1746 sp = &ep->seq;
1747 rc = fc_exch_done_locked(ep);
1748 spin_unlock_bh(&ep->ex_lock);
1749 if (!rc)
1750 fc_exch_delete(ep);
1751
1752 if (resp)
1753 resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1754}
1755
1756/**
1757 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1758 * @lport: The local port that the exchange pool is on
1759 * @pool: The exchange pool to be reset
1760 * @sid: The source ID
1761 * @did: The destination ID
1762 *
1763 * Resets a per cpu exches pool, releasing all of its sequences
1764 * and exchanges. If sid is non-zero then reset only exchanges
1765 * we sourced from the local port's FID. If did is non-zero then
1766 * only reset exchanges destined for the local port's FID.
1767 */
1768static void fc_exch_pool_reset(struct fc_lport *lport,
1769 struct fc_exch_pool *pool,
1770 u32 sid, u32 did)
1771{
1772 struct fc_exch *ep;
1773 struct fc_exch *next;
1774
1775 spin_lock_bh(&pool->lock);
1776restart:
1777 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1778 if ((lport == ep->lp) &&
1779 (sid == 0 || sid == ep->sid) &&
1780 (did == 0 || did == ep->did)) {
1781 fc_exch_hold(ep);
1782 spin_unlock_bh(&pool->lock);
1783
1784 fc_exch_reset(ep);
1785
1786 fc_exch_release(ep);
1787 spin_lock_bh(&pool->lock);
1788
1789 /*
1790 * must restart loop incase while lock
1791 * was down multiple eps were released.
1792 */
1793 goto restart;
1794 }
1795 }
1796 spin_unlock_bh(&pool->lock);
1797}
1798
1799/**
1800 * fc_exch_mgr_reset() - Reset all EMs of a local port
1801 * @lport: The local port whose EMs are to be reset
1802 * @sid: The source ID
1803 * @did: The destination ID
1804 *
1805 * Reset all EMs associated with a given local port. Release all
1806 * sequences and exchanges. If sid is non-zero then reset only the
1807 * exchanges sent from the local port's FID. If did is non-zero then
1808 * reset only exchanges destined for the local port's FID.
1809 */
1810void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1811{
1812 struct fc_exch_mgr_anchor *ema;
1813 unsigned int cpu;
1814
1815 list_for_each_entry(ema, &lport->ema_list, ema_list) {
1816 for_each_possible_cpu(cpu)
1817 fc_exch_pool_reset(lport,
1818 per_cpu_ptr(ema->mp->pool, cpu),
1819 sid, did);
1820 }
1821}
1822EXPORT_SYMBOL(fc_exch_mgr_reset);
1823
1824/**
1825 * fc_exch_lookup() - find an exchange
1826 * @lport: The local port
1827 * @xid: The exchange ID
1828 *
1829 * Returns exchange pointer with hold for caller, or NULL if not found.
1830 */
1831static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1832{
1833 struct fc_exch_mgr_anchor *ema;
1834
1835 list_for_each_entry(ema, &lport->ema_list, ema_list)
1836 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1837 return fc_exch_find(ema->mp, xid);
1838 return NULL;
1839}
1840
1841/**
1842 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1843 * @rfp: The REC frame, not freed here.
1844 *
1845 * Note that the requesting port may be different than the S_ID in the request.
1846 */
1847static void fc_exch_els_rec(struct fc_frame *rfp)
1848{
1849 struct fc_lport *lport;
1850 struct fc_frame *fp;
1851 struct fc_exch *ep;
1852 struct fc_els_rec *rp;
1853 struct fc_els_rec_acc *acc;
1854 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1855 enum fc_els_rjt_explan explan;
1856 u32 sid;
1857 u16 rxid;
1858 u16 oxid;
1859
1860 lport = fr_dev(rfp);
1861 rp = fc_frame_payload_get(rfp, sizeof(*rp));
1862 explan = ELS_EXPL_INV_LEN;
1863 if (!rp)
1864 goto reject;
1865 sid = ntoh24(rp->rec_s_id);
1866 rxid = ntohs(rp->rec_rx_id);
1867 oxid = ntohs(rp->rec_ox_id);
1868
1869 ep = fc_exch_lookup(lport,
1870 sid == fc_host_port_id(lport->host) ? oxid : rxid);
1871 explan = ELS_EXPL_OXID_RXID;
1872 if (!ep)
1873 goto reject;
1874 if (ep->oid != sid || oxid != ep->oxid)
1875 goto rel;
1876 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1877 goto rel;
1878 fp = fc_frame_alloc(lport, sizeof(*acc));
1879 if (!fp)
1880 goto out;
1881
1882 acc = fc_frame_payload_get(fp, sizeof(*acc));
1883 memset(acc, 0, sizeof(*acc));
1884 acc->reca_cmd = ELS_LS_ACC;
1885 acc->reca_ox_id = rp->rec_ox_id;
1886 memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1887 acc->reca_rx_id = htons(ep->rxid);
1888 if (ep->sid == ep->oid)
1889 hton24(acc->reca_rfid, ep->did);
1890 else
1891 hton24(acc->reca_rfid, ep->sid);
1892 acc->reca_fc4value = htonl(ep->seq.rec_data);
1893 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1894 ESB_ST_SEQ_INIT |
1895 ESB_ST_COMPLETE));
1896 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1897 lport->tt.frame_send(lport, fp);
1898out:
1899 fc_exch_release(ep);
1900 return;
1901
1902rel:
1903 fc_exch_release(ep);
1904reject:
1905 fc_seq_ls_rjt(rfp, reason, explan);
1906}
1907
1908/**
1909 * fc_exch_rrq_resp() - Handler for RRQ responses
1910 * @sp: The sequence that the RRQ is on
1911 * @fp: The RRQ frame
1912 * @arg: The exchange that the RRQ is on
1913 *
1914 * TODO: fix error handler.
1915 */
1916static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1917{
1918 struct fc_exch *aborted_ep = arg;
1919 unsigned int op;
1920
1921 if (IS_ERR(fp)) {
1922 int err = PTR_ERR(fp);
1923
1924 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1925 goto cleanup;
1926 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1927 "frame error %d\n", err);
1928 return;
1929 }
1930
1931 op = fc_frame_payload_op(fp);
1932 fc_frame_free(fp);
1933
1934 switch (op) {
1935 case ELS_LS_RJT:
1936 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1937 /* fall through */
1938 case ELS_LS_ACC:
1939 goto cleanup;
1940 default:
1941 FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1942 "for RRQ", op);
1943 return;
1944 }
1945
1946cleanup:
1947 fc_exch_done(&aborted_ep->seq);
1948 /* drop hold for rec qual */
1949 fc_exch_release(aborted_ep);
1950}
1951
1952
1953/**
1954 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1955 * @lport: The local port to send the frame on
1956 * @fp: The frame to be sent
1957 * @resp: The response handler for this request
1958 * @destructor: The destructor for the exchange
1959 * @arg: The argument to be passed to the response handler
1960 * @timer_msec: The timeout period for the exchange
1961 *
1962 * The frame pointer with some of the header's fields must be
1963 * filled before calling this routine, those fields are:
1964 *
1965 * - routing control
1966 * - FC port did
1967 * - FC port sid
1968 * - FC header type
1969 * - frame control
1970 * - parameter or relative offset
1971 */
1972static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1973 struct fc_frame *fp,
1974 void (*resp)(struct fc_seq *,
1975 struct fc_frame *fp,
1976 void *arg),
1977 void (*destructor)(struct fc_seq *,
1978 void *),
1979 void *arg, u32 timer_msec)
1980{
1981 struct fc_exch *ep;
1982 struct fc_seq *sp = NULL;
1983 struct fc_frame_header *fh;
1984 struct fc_fcp_pkt *fsp = NULL;
1985 int rc = 1;
1986
1987 ep = fc_exch_alloc(lport, fp);
1988 if (!ep) {
1989 fc_frame_free(fp);
1990 return NULL;
1991 }
1992 ep->esb_stat |= ESB_ST_SEQ_INIT;
1993 fh = fc_frame_header_get(fp);
1994 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
1995 ep->resp = resp;
1996 ep->destructor = destructor;
1997 ep->arg = arg;
1998 ep->r_a_tov = FC_DEF_R_A_TOV;
1999 ep->lp = lport;
2000 sp = &ep->seq;
2001
2002 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2003 ep->f_ctl = ntoh24(fh->fh_f_ctl);
2004 fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2005 sp->cnt++;
2006
2007 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2008 fsp = fr_fsp(fp);
2009 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2010 }
2011
2012 if (unlikely(lport->tt.frame_send(lport, fp)))
2013 goto err;
2014
2015 if (timer_msec)
2016 fc_exch_timer_set_locked(ep, timer_msec);
2017 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */
2018
2019 if (ep->f_ctl & FC_FC_SEQ_INIT)
2020 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2021 spin_unlock_bh(&ep->ex_lock);
2022 return sp;
2023err:
2024 if (fsp)
2025 fc_fcp_ddp_done(fsp);
2026 rc = fc_exch_done_locked(ep);
2027 spin_unlock_bh(&ep->ex_lock);
2028 if (!rc)
2029 fc_exch_delete(ep);
2030 return NULL;
2031}
2032
2033/**
2034 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2035 * @ep: The exchange to send the RRQ on
2036 *
2037 * This tells the remote port to stop blocking the use of
2038 * the exchange and the seq_cnt range.
2039 */
2040static void fc_exch_rrq(struct fc_exch *ep)
2041{
2042 struct fc_lport *lport;
2043 struct fc_els_rrq *rrq;
2044 struct fc_frame *fp;
2045 u32 did;
2046
2047 lport = ep->lp;
2048
2049 fp = fc_frame_alloc(lport, sizeof(*rrq));
2050 if (!fp)
2051 goto retry;
2052
2053 rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2054 memset(rrq, 0, sizeof(*rrq));
2055 rrq->rrq_cmd = ELS_RRQ;
2056 hton24(rrq->rrq_s_id, ep->sid);
2057 rrq->rrq_ox_id = htons(ep->oxid);
2058 rrq->rrq_rx_id = htons(ep->rxid);
2059
2060 did = ep->did;
2061 if (ep->esb_stat & ESB_ST_RESP)
2062 did = ep->sid;
2063
2064 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2065 lport->port_id, FC_TYPE_ELS,
2066 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2067
2068 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2069 lport->e_d_tov))
2070 return;
2071
2072retry:
2073 spin_lock_bh(&ep->ex_lock);
2074 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2075 spin_unlock_bh(&ep->ex_lock);
2076 /* drop hold for rec qual */
2077 fc_exch_release(ep);
2078 return;
2079 }
2080 ep->esb_stat |= ESB_ST_REC_QUAL;
2081 fc_exch_timer_set_locked(ep, ep->r_a_tov);
2082 spin_unlock_bh(&ep->ex_lock);
2083}
2084
2085/**
2086 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2087 * @fp: The RRQ frame, not freed here.
2088 */
2089static void fc_exch_els_rrq(struct fc_frame *fp)
2090{
2091 struct fc_lport *lport;
2092 struct fc_exch *ep = NULL; /* request or subject exchange */
2093 struct fc_els_rrq *rp;
2094 u32 sid;
2095 u16 xid;
2096 enum fc_els_rjt_explan explan;
2097
2098 lport = fr_dev(fp);
2099 rp = fc_frame_payload_get(fp, sizeof(*rp));
2100 explan = ELS_EXPL_INV_LEN;
2101 if (!rp)
2102 goto reject;
2103
2104 /*
2105 * lookup subject exchange.
2106 */
2107 sid = ntoh24(rp->rrq_s_id); /* subject source */
2108 xid = fc_host_port_id(lport->host) == sid ?
2109 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2110 ep = fc_exch_lookup(lport, xid);
2111 explan = ELS_EXPL_OXID_RXID;
2112 if (!ep)
2113 goto reject;
2114 spin_lock_bh(&ep->ex_lock);
2115 if (ep->oxid != ntohs(rp->rrq_ox_id))
2116 goto unlock_reject;
2117 if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2118 ep->rxid != FC_XID_UNKNOWN)
2119 goto unlock_reject;
2120 explan = ELS_EXPL_SID;
2121 if (ep->sid != sid)
2122 goto unlock_reject;
2123
2124 /*
2125 * Clear Recovery Qualifier state, and cancel timer if complete.
2126 */
2127 if (ep->esb_stat & ESB_ST_REC_QUAL) {
2128 ep->esb_stat &= ~ESB_ST_REC_QUAL;
2129 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */
2130 }
2131 if (ep->esb_stat & ESB_ST_COMPLETE) {
2132 if (cancel_delayed_work(&ep->timeout_work))
2133 atomic_dec(&ep->ex_refcnt); /* drop timer hold */
2134 }
2135
2136 spin_unlock_bh(&ep->ex_lock);
2137
2138 /*
2139 * Send LS_ACC.
2140 */
2141 fc_seq_ls_acc(fp);
2142 goto out;
2143
2144unlock_reject:
2145 spin_unlock_bh(&ep->ex_lock);
2146reject:
2147 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2148out:
2149 if (ep)
2150 fc_exch_release(ep); /* drop hold from fc_exch_find */
2151}
2152
2153/**
2154 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2155 * @lport: The local port to add the exchange manager to
2156 * @mp: The exchange manager to be added to the local port
2157 * @match: The match routine that indicates when this EM should be used
2158 */
2159struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2160 struct fc_exch_mgr *mp,
2161 bool (*match)(struct fc_frame *))
2162{
2163 struct fc_exch_mgr_anchor *ema;
2164
2165 ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2166 if (!ema)
2167 return ema;
2168
2169 ema->mp = mp;
2170 ema->match = match;
2171 /* add EM anchor to EM anchors list */
2172 list_add_tail(&ema->ema_list, &lport->ema_list);
2173 kref_get(&mp->kref);
2174 return ema;
2175}
2176EXPORT_SYMBOL(fc_exch_mgr_add);
2177
2178/**
2179 * fc_exch_mgr_destroy() - Destroy an exchange manager
2180 * @kref: The reference to the EM to be destroyed
2181 */
2182static void fc_exch_mgr_destroy(struct kref *kref)
2183{
2184 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2185
2186 mempool_destroy(mp->ep_pool);
2187 free_percpu(mp->pool);
2188 kfree(mp);
2189}
2190
2191/**
2192 * fc_exch_mgr_del() - Delete an EM from a local port's list
2193 * @ema: The exchange manager anchor identifying the EM to be deleted
2194 */
2195void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2196{
2197 /* remove EM anchor from EM anchors list */
2198 list_del(&ema->ema_list);
2199 kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2200 kfree(ema);
2201}
2202EXPORT_SYMBOL(fc_exch_mgr_del);
2203
2204/**
2205 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2206 * @src: Source lport to clone exchange managers from
2207 * @dst: New lport that takes references to all the exchange managers
2208 */
2209int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2210{
2211 struct fc_exch_mgr_anchor *ema, *tmp;
2212
2213 list_for_each_entry(ema, &src->ema_list, ema_list) {
2214 if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2215 goto err;
2216 }
2217 return 0;
2218err:
2219 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2220 fc_exch_mgr_del(ema);
2221 return -ENOMEM;
2222}
2223EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2224
2225/**
2226 * fc_exch_mgr_alloc() - Allocate an exchange manager
2227 * @lport: The local port that the new EM will be associated with
2228 * @class: The default FC class for new exchanges
2229 * @min_xid: The minimum XID for exchanges from the new EM
2230 * @max_xid: The maximum XID for exchanges from the new EM
2231 * @match: The match routine for the new EM
2232 */
2233struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2234 enum fc_class class,
2235 u16 min_xid, u16 max_xid,
2236 bool (*match)(struct fc_frame *))
2237{
2238 struct fc_exch_mgr *mp;
2239 u16 pool_exch_range;
2240 size_t pool_size;
2241 unsigned int cpu;
2242 struct fc_exch_pool *pool;
2243
2244 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2245 (min_xid & fc_cpu_mask) != 0) {
2246 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2247 min_xid, max_xid);
2248 return NULL;
2249 }
2250
2251 /*
2252 * allocate memory for EM
2253 */
2254 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2255 if (!mp)
2256 return NULL;
2257
2258 mp->class = class;
2259 /* adjust em exch xid range for offload */
2260 mp->min_xid = min_xid;
2261 mp->max_xid = max_xid;
2262
2263 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2264 if (!mp->ep_pool)
2265 goto free_mp;
2266
2267 /*
2268 * Setup per cpu exch pool with entire exchange id range equally
2269 * divided across all cpus. The exch pointers array memory is
2270 * allocated for exch range per pool.
2271 */
2272 pool_exch_range = (mp->max_xid - mp->min_xid + 1) / (fc_cpu_mask + 1);
2273 mp->pool_max_index = pool_exch_range - 1;
2274
2275 /*
2276 * Allocate and initialize per cpu exch pool
2277 */
2278 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2279 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2280 if (!mp->pool)
2281 goto free_mempool;
2282 for_each_possible_cpu(cpu) {
2283 pool = per_cpu_ptr(mp->pool, cpu);
2284 pool->left = FC_XID_UNKNOWN;
2285 pool->right = FC_XID_UNKNOWN;
2286 spin_lock_init(&pool->lock);
2287 INIT_LIST_HEAD(&pool->ex_list);
2288 }
2289
2290 kref_init(&mp->kref);
2291 if (!fc_exch_mgr_add(lport, mp, match)) {
2292 free_percpu(mp->pool);
2293 goto free_mempool;
2294 }
2295
2296 /*
2297 * Above kref_init() sets mp->kref to 1 and then
2298 * call to fc_exch_mgr_add incremented mp->kref again,
2299 * so adjust that extra increment.
2300 */
2301 kref_put(&mp->kref, fc_exch_mgr_destroy);
2302 return mp;
2303
2304free_mempool:
2305 mempool_destroy(mp->ep_pool);
2306free_mp:
2307 kfree(mp);
2308 return NULL;
2309}
2310EXPORT_SYMBOL(fc_exch_mgr_alloc);
2311
2312/**
2313 * fc_exch_mgr_free() - Free all exchange managers on a local port
2314 * @lport: The local port whose EMs are to be freed
2315 */
2316void fc_exch_mgr_free(struct fc_lport *lport)
2317{
2318 struct fc_exch_mgr_anchor *ema, *next;
2319
2320 flush_workqueue(fc_exch_workqueue);
2321 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2322 fc_exch_mgr_del(ema);
2323}
2324EXPORT_SYMBOL(fc_exch_mgr_free);
2325
2326/**
2327 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2328 * upon 'xid'.
2329 * @f_ctl: f_ctl
2330 * @lport: The local port the frame was received on
2331 * @fh: The received frame header
2332 */
2333static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2334 struct fc_lport *lport,
2335 struct fc_frame_header *fh)
2336{
2337 struct fc_exch_mgr_anchor *ema;
2338 u16 xid;
2339
2340 if (f_ctl & FC_FC_EX_CTX)
2341 xid = ntohs(fh->fh_ox_id);
2342 else {
2343 xid = ntohs(fh->fh_rx_id);
2344 if (xid == FC_XID_UNKNOWN)
2345 return list_entry(lport->ema_list.prev,
2346 typeof(*ema), ema_list);
2347 }
2348
2349 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2350 if ((xid >= ema->mp->min_xid) &&
2351 (xid <= ema->mp->max_xid))
2352 return ema;
2353 }
2354 return NULL;
2355}
2356/**
2357 * fc_exch_recv() - Handler for received frames
2358 * @lport: The local port the frame was received on
2359 * @fp: The received frame
2360 */
2361void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2362{
2363 struct fc_frame_header *fh = fc_frame_header_get(fp);
2364 struct fc_exch_mgr_anchor *ema;
2365 u32 f_ctl;
2366
2367 /* lport lock ? */
2368 if (!lport || lport->state == LPORT_ST_DISABLED) {
2369 FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2370 "has not been initialized correctly\n");
2371 fc_frame_free(fp);
2372 return;
2373 }
2374
2375 f_ctl = ntoh24(fh->fh_f_ctl);
2376 ema = fc_find_ema(f_ctl, lport, fh);
2377 if (!ema) {
2378 FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2379 "fc_ctl <0x%x>, xid <0x%x>\n",
2380 f_ctl,
2381 (f_ctl & FC_FC_EX_CTX) ?
2382 ntohs(fh->fh_ox_id) :
2383 ntohs(fh->fh_rx_id));
2384 fc_frame_free(fp);
2385 return;
2386 }
2387
2388 /*
2389 * If frame is marked invalid, just drop it.
2390 */
2391 switch (fr_eof(fp)) {
2392 case FC_EOF_T:
2393 if (f_ctl & FC_FC_END_SEQ)
2394 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2395 /* fall through */
2396 case FC_EOF_N:
2397 if (fh->fh_type == FC_TYPE_BLS)
2398 fc_exch_recv_bls(ema->mp, fp);
2399 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2400 FC_FC_EX_CTX)
2401 fc_exch_recv_seq_resp(ema->mp, fp);
2402 else if (f_ctl & FC_FC_SEQ_CTX)
2403 fc_exch_recv_resp(ema->mp, fp);
2404 else /* no EX_CTX and no SEQ_CTX */
2405 fc_exch_recv_req(lport, ema->mp, fp);
2406 break;
2407 default:
2408 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2409 fr_eof(fp));
2410 fc_frame_free(fp);
2411 }
2412}
2413EXPORT_SYMBOL(fc_exch_recv);
2414
2415/**
2416 * fc_exch_init() - Initialize the exchange layer for a local port
2417 * @lport: The local port to initialize the exchange layer for
2418 */
2419int fc_exch_init(struct fc_lport *lport)
2420{
2421 if (!lport->tt.seq_start_next)
2422 lport->tt.seq_start_next = fc_seq_start_next;
2423
2424 if (!lport->tt.seq_set_resp)
2425 lport->tt.seq_set_resp = fc_seq_set_resp;
2426
2427 if (!lport->tt.exch_seq_send)
2428 lport->tt.exch_seq_send = fc_exch_seq_send;
2429
2430 if (!lport->tt.seq_send)
2431 lport->tt.seq_send = fc_seq_send;
2432
2433 if (!lport->tt.seq_els_rsp_send)
2434 lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2435
2436 if (!lport->tt.exch_done)
2437 lport->tt.exch_done = fc_exch_done;
2438
2439 if (!lport->tt.exch_mgr_reset)
2440 lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2441
2442 if (!lport->tt.seq_exch_abort)
2443 lport->tt.seq_exch_abort = fc_seq_exch_abort;
2444
2445 if (!lport->tt.seq_assign)
2446 lport->tt.seq_assign = fc_seq_assign;
2447
2448 if (!lport->tt.seq_release)
2449 lport->tt.seq_release = fc_seq_release;
2450
2451 return 0;
2452}
2453EXPORT_SYMBOL(fc_exch_init);
2454
2455/**
2456 * fc_setup_exch_mgr() - Setup an exchange manager
2457 */
2458int fc_setup_exch_mgr(void)
2459{
2460 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2461 0, SLAB_HWCACHE_ALIGN, NULL);
2462 if (!fc_em_cachep)
2463 return -ENOMEM;
2464
2465 /*
2466 * Initialize fc_cpu_mask and fc_cpu_order. The
2467 * fc_cpu_mask is set for nr_cpu_ids rounded up
2468 * to order of 2's * power and order is stored
2469 * in fc_cpu_order as this is later required in
2470 * mapping between an exch id and exch array index
2471 * in per cpu exch pool.
2472 *
2473 * This round up is required to align fc_cpu_mask
2474 * to exchange id's lower bits such that all incoming
2475 * frames of an exchange gets delivered to the same
2476 * cpu on which exchange originated by simple bitwise
2477 * AND operation between fc_cpu_mask and exchange id.
2478 */
2479 fc_cpu_mask = 1;
2480 fc_cpu_order = 0;
2481 while (fc_cpu_mask < nr_cpu_ids) {
2482 fc_cpu_mask <<= 1;
2483 fc_cpu_order++;
2484 }
2485 fc_cpu_mask--;
2486
2487 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2488 if (!fc_exch_workqueue)
2489 goto err;
2490 return 0;
2491err:
2492 kmem_cache_destroy(fc_em_cachep);
2493 return -ENOMEM;
2494}
2495
2496/**
2497 * fc_destroy_exch_mgr() - Destroy an exchange manager
2498 */
2499void fc_destroy_exch_mgr(void)
2500{
2501 destroy_workqueue(fc_exch_workqueue);
2502 kmem_cache_destroy(fc_em_cachep);
2503}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright(c) 2007 Intel Corporation. All rights reserved.
4 * Copyright(c) 2008 Red Hat, Inc. All rights reserved.
5 * Copyright(c) 2008 Mike Christie
6 *
7 * Maintained at www.Open-FCoE.org
8 */
9
10/*
11 * Fibre Channel exchange and sequence handling.
12 */
13
14#include <linux/timer.h>
15#include <linux/slab.h>
16#include <linux/err.h>
17#include <linux/export.h>
18#include <linux/log2.h>
19
20#include <scsi/fc/fc_fc2.h>
21
22#include <scsi/libfc.h>
23#include <scsi/fc_encode.h>
24
25#include "fc_libfc.h"
26
27u16 fc_cpu_mask; /* cpu mask for possible cpus */
28EXPORT_SYMBOL(fc_cpu_mask);
29static u16 fc_cpu_order; /* 2's power to represent total possible cpus */
30static struct kmem_cache *fc_em_cachep; /* cache for exchanges */
31static struct workqueue_struct *fc_exch_workqueue;
32
33/*
34 * Structure and function definitions for managing Fibre Channel Exchanges
35 * and Sequences.
36 *
37 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
38 *
39 * fc_exch_mgr holds the exchange state for an N port
40 *
41 * fc_exch holds state for one exchange and links to its active sequence.
42 *
43 * fc_seq holds the state for an individual sequence.
44 */
45
46/**
47 * struct fc_exch_pool - Per cpu exchange pool
48 * @next_index: Next possible free exchange index
49 * @total_exches: Total allocated exchanges
50 * @lock: Exch pool lock
51 * @ex_list: List of exchanges
52 * @left: Cache of free slot in exch array
53 * @right: Cache of free slot in exch array
54 *
55 * This structure manages per cpu exchanges in array of exchange pointers.
56 * This array is allocated followed by struct fc_exch_pool memory for
57 * assigned range of exchanges to per cpu pool.
58 */
59struct fc_exch_pool {
60 spinlock_t lock;
61 struct list_head ex_list;
62 u16 next_index;
63 u16 total_exches;
64
65 u16 left;
66 u16 right;
67} ____cacheline_aligned_in_smp;
68
69/**
70 * struct fc_exch_mgr - The Exchange Manager (EM).
71 * @class: Default class for new sequences
72 * @kref: Reference counter
73 * @min_xid: Minimum exchange ID
74 * @max_xid: Maximum exchange ID
75 * @ep_pool: Reserved exchange pointers
76 * @pool_max_index: Max exch array index in exch pool
77 * @pool: Per cpu exch pool
78 * @lport: Local exchange port
79 * @stats: Statistics structure
80 *
81 * This structure is the center for creating exchanges and sequences.
82 * It manages the allocation of exchange IDs.
83 */
84struct fc_exch_mgr {
85 struct fc_exch_pool __percpu *pool;
86 mempool_t *ep_pool;
87 struct fc_lport *lport;
88 enum fc_class class;
89 struct kref kref;
90 u16 min_xid;
91 u16 max_xid;
92 u16 pool_max_index;
93
94 struct {
95 atomic_t no_free_exch;
96 atomic_t no_free_exch_xid;
97 atomic_t xid_not_found;
98 atomic_t xid_busy;
99 atomic_t seq_not_found;
100 atomic_t non_bls_resp;
101 } stats;
102};
103
104/**
105 * struct fc_exch_mgr_anchor - primary structure for list of EMs
106 * @ema_list: Exchange Manager Anchor list
107 * @mp: Exchange Manager associated with this anchor
108 * @match: Routine to determine if this anchor's EM should be used
109 *
110 * When walking the list of anchors the match routine will be called
111 * for each anchor to determine if that EM should be used. The last
112 * anchor in the list will always match to handle any exchanges not
113 * handled by other EMs. The non-default EMs would be added to the
114 * anchor list by HW that provides offloads.
115 */
116struct fc_exch_mgr_anchor {
117 struct list_head ema_list;
118 struct fc_exch_mgr *mp;
119 bool (*match)(struct fc_frame *);
120};
121
122static void fc_exch_rrq(struct fc_exch *);
123static void fc_seq_ls_acc(struct fc_frame *);
124static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
125 enum fc_els_rjt_explan);
126static void fc_exch_els_rec(struct fc_frame *);
127static void fc_exch_els_rrq(struct fc_frame *);
128
129/*
130 * Internal implementation notes.
131 *
132 * The exchange manager is one by default in libfc but LLD may choose
133 * to have one per CPU. The sequence manager is one per exchange manager
134 * and currently never separated.
135 *
136 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field
137 * assigned by the Sequence Initiator that shall be unique for a specific
138 * D_ID and S_ID pair while the Sequence is open." Note that it isn't
139 * qualified by exchange ID, which one might think it would be.
140 * In practice this limits the number of open sequences and exchanges to 256
141 * per session. For most targets we could treat this limit as per exchange.
142 *
143 * The exchange and its sequence are freed when the last sequence is received.
144 * It's possible for the remote port to leave an exchange open without
145 * sending any sequences.
146 *
147 * Notes on reference counts:
148 *
149 * Exchanges are reference counted and exchange gets freed when the reference
150 * count becomes zero.
151 *
152 * Timeouts:
153 * Sequences are timed out for E_D_TOV and R_A_TOV.
154 *
155 * Sequence event handling:
156 *
157 * The following events may occur on initiator sequences:
158 *
159 * Send.
160 * For now, the whole thing is sent.
161 * Receive ACK
162 * This applies only to class F.
163 * The sequence is marked complete.
164 * ULP completion.
165 * The upper layer calls fc_exch_done() when done
166 * with exchange and sequence tuple.
167 * RX-inferred completion.
168 * When we receive the next sequence on the same exchange, we can
169 * retire the previous sequence ID. (XXX not implemented).
170 * Timeout.
171 * R_A_TOV frees the sequence ID. If we're waiting for ACK,
172 * E_D_TOV causes abort and calls upper layer response handler
173 * with FC_EX_TIMEOUT error.
174 * Receive RJT
175 * XXX defer.
176 * Send ABTS
177 * On timeout.
178 *
179 * The following events may occur on recipient sequences:
180 *
181 * Receive
182 * Allocate sequence for first frame received.
183 * Hold during receive handler.
184 * Release when final frame received.
185 * Keep status of last N of these for the ELS RES command. XXX TBD.
186 * Receive ABTS
187 * Deallocate sequence
188 * Send RJT
189 * Deallocate
190 *
191 * For now, we neglect conditions where only part of a sequence was
192 * received or transmitted, or where out-of-order receipt is detected.
193 */
194
195/*
196 * Locking notes:
197 *
198 * The EM code run in a per-CPU worker thread.
199 *
200 * To protect against concurrency between a worker thread code and timers,
201 * sequence allocation and deallocation must be locked.
202 * - exchange refcnt can be done atomicly without locks.
203 * - sequence allocation must be locked by exch lock.
204 * - If the EM pool lock and ex_lock must be taken at the same time, then the
205 * EM pool lock must be taken before the ex_lock.
206 */
207
208/*
209 * opcode names for debugging.
210 */
211static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
212
213/**
214 * fc_exch_name_lookup() - Lookup name by opcode
215 * @op: Opcode to be looked up
216 * @table: Opcode/name table
217 * @max_index: Index not to be exceeded
218 *
219 * This routine is used to determine a human-readable string identifying
220 * a R_CTL opcode.
221 */
222static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
223 unsigned int max_index)
224{
225 const char *name = NULL;
226
227 if (op < max_index)
228 name = table[op];
229 if (!name)
230 name = "unknown";
231 return name;
232}
233
234/**
235 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
236 * @op: The opcode to be looked up
237 */
238static const char *fc_exch_rctl_name(unsigned int op)
239{
240 return fc_exch_name_lookup(op, fc_exch_rctl_names,
241 ARRAY_SIZE(fc_exch_rctl_names));
242}
243
244/**
245 * fc_exch_hold() - Increment an exchange's reference count
246 * @ep: Echange to be held
247 */
248static inline void fc_exch_hold(struct fc_exch *ep)
249{
250 atomic_inc(&ep->ex_refcnt);
251}
252
253/**
254 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
255 * and determine SOF and EOF.
256 * @ep: The exchange to that will use the header
257 * @fp: The frame whose header is to be modified
258 * @f_ctl: F_CTL bits that will be used for the frame header
259 *
260 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
261 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
262 */
263static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
264 u32 f_ctl)
265{
266 struct fc_frame_header *fh = fc_frame_header_get(fp);
267 u16 fill;
268
269 fr_sof(fp) = ep->class;
270 if (ep->seq.cnt)
271 fr_sof(fp) = fc_sof_normal(ep->class);
272
273 if (f_ctl & FC_FC_END_SEQ) {
274 fr_eof(fp) = FC_EOF_T;
275 if (fc_sof_needs_ack(ep->class))
276 fr_eof(fp) = FC_EOF_N;
277 /*
278 * From F_CTL.
279 * The number of fill bytes to make the length a 4-byte
280 * multiple is the low order 2-bits of the f_ctl.
281 * The fill itself will have been cleared by the frame
282 * allocation.
283 * After this, the length will be even, as expected by
284 * the transport.
285 */
286 fill = fr_len(fp) & 3;
287 if (fill) {
288 fill = 4 - fill;
289 /* TODO, this may be a problem with fragmented skb */
290 skb_put(fp_skb(fp), fill);
291 hton24(fh->fh_f_ctl, f_ctl | fill);
292 }
293 } else {
294 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */
295 fr_eof(fp) = FC_EOF_N;
296 }
297
298 /* Initialize remaining fh fields from fc_fill_fc_hdr */
299 fh->fh_ox_id = htons(ep->oxid);
300 fh->fh_rx_id = htons(ep->rxid);
301 fh->fh_seq_id = ep->seq.id;
302 fh->fh_seq_cnt = htons(ep->seq.cnt);
303}
304
305/**
306 * fc_exch_release() - Decrement an exchange's reference count
307 * @ep: Exchange to be released
308 *
309 * If the reference count reaches zero and the exchange is complete,
310 * it is freed.
311 */
312static void fc_exch_release(struct fc_exch *ep)
313{
314 struct fc_exch_mgr *mp;
315
316 if (atomic_dec_and_test(&ep->ex_refcnt)) {
317 mp = ep->em;
318 if (ep->destructor)
319 ep->destructor(&ep->seq, ep->arg);
320 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
321 mempool_free(ep, mp->ep_pool);
322 }
323}
324
325/**
326 * fc_exch_timer_cancel() - cancel exch timer
327 * @ep: The exchange whose timer to be canceled
328 */
329static inline void fc_exch_timer_cancel(struct fc_exch *ep)
330{
331 if (cancel_delayed_work(&ep->timeout_work)) {
332 FC_EXCH_DBG(ep, "Exchange timer canceled\n");
333 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
334 }
335}
336
337/**
338 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
339 * the exchange lock held
340 * @ep: The exchange whose timer will start
341 * @timer_msec: The timeout period
342 *
343 * Used for upper level protocols to time out the exchange.
344 * The timer is cancelled when it fires or when the exchange completes.
345 */
346static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
347 unsigned int timer_msec)
348{
349 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
350 return;
351
352 FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
353
354 fc_exch_hold(ep); /* hold for timer */
355 if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
356 msecs_to_jiffies(timer_msec))) {
357 FC_EXCH_DBG(ep, "Exchange already queued\n");
358 fc_exch_release(ep);
359 }
360}
361
362/**
363 * fc_exch_timer_set() - Lock the exchange and set the timer
364 * @ep: The exchange whose timer will start
365 * @timer_msec: The timeout period
366 */
367static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
368{
369 spin_lock_bh(&ep->ex_lock);
370 fc_exch_timer_set_locked(ep, timer_msec);
371 spin_unlock_bh(&ep->ex_lock);
372}
373
374/**
375 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
376 * @ep: The exchange that is complete
377 *
378 * Note: May sleep if invoked from outside a response handler.
379 */
380static int fc_exch_done_locked(struct fc_exch *ep)
381{
382 int rc = 1;
383
384 /*
385 * We must check for completion in case there are two threads
386 * tyring to complete this. But the rrq code will reuse the
387 * ep, and in that case we only clear the resp and set it as
388 * complete, so it can be reused by the timer to send the rrq.
389 */
390 if (ep->state & FC_EX_DONE)
391 return rc;
392 ep->esb_stat |= ESB_ST_COMPLETE;
393
394 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
395 ep->state |= FC_EX_DONE;
396 fc_exch_timer_cancel(ep);
397 rc = 0;
398 }
399 return rc;
400}
401
402static struct fc_exch fc_quarantine_exch;
403
404/**
405 * fc_exch_ptr_get() - Return an exchange from an exchange pool
406 * @pool: Exchange Pool to get an exchange from
407 * @index: Index of the exchange within the pool
408 *
409 * Use the index to get an exchange from within an exchange pool. exches
410 * will point to an array of exchange pointers. The index will select
411 * the exchange within the array.
412 */
413static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
414 u16 index)
415{
416 struct fc_exch **exches = (struct fc_exch **)(pool + 1);
417 return exches[index];
418}
419
420/**
421 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
422 * @pool: The pool to assign the exchange to
423 * @index: The index in the pool where the exchange will be assigned
424 * @ep: The exchange to assign to the pool
425 */
426static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
427 struct fc_exch *ep)
428{
429 ((struct fc_exch **)(pool + 1))[index] = ep;
430}
431
432/**
433 * fc_exch_delete() - Delete an exchange
434 * @ep: The exchange to be deleted
435 */
436static void fc_exch_delete(struct fc_exch *ep)
437{
438 struct fc_exch_pool *pool;
439 u16 index;
440
441 pool = ep->pool;
442 spin_lock_bh(&pool->lock);
443 WARN_ON(pool->total_exches <= 0);
444 pool->total_exches--;
445
446 /* update cache of free slot */
447 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
448 if (!(ep->state & FC_EX_QUARANTINE)) {
449 if (pool->left == FC_XID_UNKNOWN)
450 pool->left = index;
451 else if (pool->right == FC_XID_UNKNOWN)
452 pool->right = index;
453 else
454 pool->next_index = index;
455 fc_exch_ptr_set(pool, index, NULL);
456 } else {
457 fc_exch_ptr_set(pool, index, &fc_quarantine_exch);
458 }
459 list_del(&ep->ex_list);
460 spin_unlock_bh(&pool->lock);
461 fc_exch_release(ep); /* drop hold for exch in mp */
462}
463
464static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
465 struct fc_frame *fp)
466{
467 struct fc_exch *ep;
468 struct fc_frame_header *fh = fc_frame_header_get(fp);
469 int error = -ENXIO;
470 u32 f_ctl;
471 u8 fh_type = fh->fh_type;
472
473 ep = fc_seq_exch(sp);
474
475 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) {
476 fc_frame_free(fp);
477 goto out;
478 }
479
480 WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
481
482 f_ctl = ntoh24(fh->fh_f_ctl);
483 fc_exch_setup_hdr(ep, fp, f_ctl);
484 fr_encaps(fp) = ep->encaps;
485
486 /*
487 * update sequence count if this frame is carrying
488 * multiple FC frames when sequence offload is enabled
489 * by LLD.
490 */
491 if (fr_max_payload(fp))
492 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
493 fr_max_payload(fp));
494 else
495 sp->cnt++;
496
497 /*
498 * Send the frame.
499 */
500 error = lport->tt.frame_send(lport, fp);
501
502 if (fh_type == FC_TYPE_BLS)
503 goto out;
504
505 /*
506 * Update the exchange and sequence flags,
507 * assuming all frames for the sequence have been sent.
508 * We can only be called to send once for each sequence.
509 */
510 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */
511 if (f_ctl & FC_FC_SEQ_INIT)
512 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
513out:
514 return error;
515}
516
517/**
518 * fc_seq_send() - Send a frame using existing sequence/exchange pair
519 * @lport: The local port that the exchange will be sent on
520 * @sp: The sequence to be sent
521 * @fp: The frame to be sent on the exchange
522 *
523 * Note: The frame will be freed either by a direct call to fc_frame_free(fp)
524 * or indirectly by calling libfc_function_template.frame_send().
525 */
526int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp, struct fc_frame *fp)
527{
528 struct fc_exch *ep;
529 int error;
530 ep = fc_seq_exch(sp);
531 spin_lock_bh(&ep->ex_lock);
532 error = fc_seq_send_locked(lport, sp, fp);
533 spin_unlock_bh(&ep->ex_lock);
534 return error;
535}
536EXPORT_SYMBOL(fc_seq_send);
537
538/**
539 * fc_seq_alloc() - Allocate a sequence for a given exchange
540 * @ep: The exchange to allocate a new sequence for
541 * @seq_id: The sequence ID to be used
542 *
543 * We don't support multiple originated sequences on the same exchange.
544 * By implication, any previously originated sequence on this exchange
545 * is complete, and we reallocate the same sequence.
546 */
547static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
548{
549 struct fc_seq *sp;
550
551 sp = &ep->seq;
552 sp->ssb_stat = 0;
553 sp->cnt = 0;
554 sp->id = seq_id;
555 return sp;
556}
557
558/**
559 * fc_seq_start_next_locked() - Allocate a new sequence on the same
560 * exchange as the supplied sequence
561 * @sp: The sequence/exchange to get a new sequence for
562 */
563static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
564{
565 struct fc_exch *ep = fc_seq_exch(sp);
566
567 sp = fc_seq_alloc(ep, ep->seq_id++);
568 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
569 ep->f_ctl, sp->id);
570 return sp;
571}
572
573/**
574 * fc_seq_start_next() - Lock the exchange and get a new sequence
575 * for a given sequence/exchange pair
576 * @sp: The sequence/exchange to get a new exchange for
577 */
578struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
579{
580 struct fc_exch *ep = fc_seq_exch(sp);
581
582 spin_lock_bh(&ep->ex_lock);
583 sp = fc_seq_start_next_locked(sp);
584 spin_unlock_bh(&ep->ex_lock);
585
586 return sp;
587}
588EXPORT_SYMBOL(fc_seq_start_next);
589
590/*
591 * Set the response handler for the exchange associated with a sequence.
592 *
593 * Note: May sleep if invoked from outside a response handler.
594 */
595void fc_seq_set_resp(struct fc_seq *sp,
596 void (*resp)(struct fc_seq *, struct fc_frame *, void *),
597 void *arg)
598{
599 struct fc_exch *ep = fc_seq_exch(sp);
600 DEFINE_WAIT(wait);
601
602 spin_lock_bh(&ep->ex_lock);
603 while (ep->resp_active && ep->resp_task != current) {
604 prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE);
605 spin_unlock_bh(&ep->ex_lock);
606
607 schedule();
608
609 spin_lock_bh(&ep->ex_lock);
610 }
611 finish_wait(&ep->resp_wq, &wait);
612 ep->resp = resp;
613 ep->arg = arg;
614 spin_unlock_bh(&ep->ex_lock);
615}
616EXPORT_SYMBOL(fc_seq_set_resp);
617
618/**
619 * fc_exch_abort_locked() - Abort an exchange
620 * @ep: The exchange to be aborted
621 * @timer_msec: The period of time to wait before aborting
622 *
623 * Abort an exchange and sequence. Generally called because of a
624 * exchange timeout or an abort from the upper layer.
625 *
626 * A timer_msec can be specified for abort timeout, if non-zero
627 * timer_msec value is specified then exchange resp handler
628 * will be called with timeout error if no response to abort.
629 *
630 * Locking notes: Called with exch lock held
631 *
632 * Return value: 0 on success else error code
633 */
634static int fc_exch_abort_locked(struct fc_exch *ep,
635 unsigned int timer_msec)
636{
637 struct fc_seq *sp;
638 struct fc_frame *fp;
639 int error;
640
641 FC_EXCH_DBG(ep, "exch: abort, time %d msecs\n", timer_msec);
642 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
643 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP)) {
644 FC_EXCH_DBG(ep, "exch: already completed esb %x state %x\n",
645 ep->esb_stat, ep->state);
646 return -ENXIO;
647 }
648
649 /*
650 * Send the abort on a new sequence if possible.
651 */
652 sp = fc_seq_start_next_locked(&ep->seq);
653 if (!sp)
654 return -ENOMEM;
655
656 if (timer_msec)
657 fc_exch_timer_set_locked(ep, timer_msec);
658
659 if (ep->sid) {
660 /*
661 * Send an abort for the sequence that timed out.
662 */
663 fp = fc_frame_alloc(ep->lp, 0);
664 if (fp) {
665 ep->esb_stat |= ESB_ST_SEQ_INIT;
666 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
667 FC_TYPE_BLS, FC_FC_END_SEQ |
668 FC_FC_SEQ_INIT, 0);
669 error = fc_seq_send_locked(ep->lp, sp, fp);
670 } else {
671 error = -ENOBUFS;
672 }
673 } else {
674 /*
675 * If not logged into the fabric, don't send ABTS but leave
676 * sequence active until next timeout.
677 */
678 error = 0;
679 }
680 ep->esb_stat |= ESB_ST_ABNORMAL;
681 return error;
682}
683
684/**
685 * fc_seq_exch_abort() - Abort an exchange and sequence
686 * @req_sp: The sequence to be aborted
687 * @timer_msec: The period of time to wait before aborting
688 *
689 * Generally called because of a timeout or an abort from the upper layer.
690 *
691 * Return value: 0 on success else error code
692 */
693int fc_seq_exch_abort(const struct fc_seq *req_sp, unsigned int timer_msec)
694{
695 struct fc_exch *ep;
696 int error;
697
698 ep = fc_seq_exch(req_sp);
699 spin_lock_bh(&ep->ex_lock);
700 error = fc_exch_abort_locked(ep, timer_msec);
701 spin_unlock_bh(&ep->ex_lock);
702 return error;
703}
704
705/**
706 * fc_invoke_resp() - invoke ep->resp()
707 * @ep: The exchange to be operated on
708 * @fp: The frame pointer to pass through to ->resp()
709 * @sp: The sequence pointer to pass through to ->resp()
710 *
711 * Notes:
712 * It is assumed that after initialization finished (this means the
713 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are
714 * modified only via fc_seq_set_resp(). This guarantees that none of these
715 * two variables changes if ep->resp_active > 0.
716 *
717 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when
718 * this function is invoked, the first spin_lock_bh() call in this function
719 * will wait until fc_seq_set_resp() has finished modifying these variables.
720 *
721 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that
722 * ep->resp() won't be invoked after fc_exch_done() has returned.
723 *
724 * The response handler itself may invoke fc_exch_done(), which will clear the
725 * ep->resp pointer.
726 *
727 * Return value:
728 * Returns true if and only if ep->resp has been invoked.
729 */
730static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp,
731 struct fc_frame *fp)
732{
733 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
734 void *arg;
735 bool res = false;
736
737 spin_lock_bh(&ep->ex_lock);
738 ep->resp_active++;
739 if (ep->resp_task != current)
740 ep->resp_task = !ep->resp_task ? current : NULL;
741 resp = ep->resp;
742 arg = ep->arg;
743 spin_unlock_bh(&ep->ex_lock);
744
745 if (resp) {
746 resp(sp, fp, arg);
747 res = true;
748 }
749
750 spin_lock_bh(&ep->ex_lock);
751 if (--ep->resp_active == 0)
752 ep->resp_task = NULL;
753 spin_unlock_bh(&ep->ex_lock);
754
755 if (ep->resp_active == 0)
756 wake_up(&ep->resp_wq);
757
758 return res;
759}
760
761/**
762 * fc_exch_timeout() - Handle exchange timer expiration
763 * @work: The work_struct identifying the exchange that timed out
764 */
765static void fc_exch_timeout(struct work_struct *work)
766{
767 struct fc_exch *ep = container_of(work, struct fc_exch,
768 timeout_work.work);
769 struct fc_seq *sp = &ep->seq;
770 u32 e_stat;
771 int rc = 1;
772
773 FC_EXCH_DBG(ep, "Exchange timed out state %x\n", ep->state);
774
775 spin_lock_bh(&ep->ex_lock);
776 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
777 goto unlock;
778
779 e_stat = ep->esb_stat;
780 if (e_stat & ESB_ST_COMPLETE) {
781 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
782 spin_unlock_bh(&ep->ex_lock);
783 if (e_stat & ESB_ST_REC_QUAL)
784 fc_exch_rrq(ep);
785 goto done;
786 } else {
787 if (e_stat & ESB_ST_ABNORMAL)
788 rc = fc_exch_done_locked(ep);
789 spin_unlock_bh(&ep->ex_lock);
790 if (!rc)
791 fc_exch_delete(ep);
792 fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT));
793 fc_seq_set_resp(sp, NULL, ep->arg);
794 fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
795 goto done;
796 }
797unlock:
798 spin_unlock_bh(&ep->ex_lock);
799done:
800 /*
801 * This release matches the hold taken when the timer was set.
802 */
803 fc_exch_release(ep);
804}
805
806/**
807 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
808 * @lport: The local port that the exchange is for
809 * @mp: The exchange manager that will allocate the exchange
810 *
811 * Returns pointer to allocated fc_exch with exch lock held.
812 */
813static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
814 struct fc_exch_mgr *mp)
815{
816 struct fc_exch *ep;
817 unsigned int cpu;
818 u16 index;
819 struct fc_exch_pool *pool;
820
821 /* allocate memory for exchange */
822 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
823 if (!ep) {
824 atomic_inc(&mp->stats.no_free_exch);
825 goto out;
826 }
827 memset(ep, 0, sizeof(*ep));
828
829 cpu = get_cpu();
830 pool = per_cpu_ptr(mp->pool, cpu);
831 spin_lock_bh(&pool->lock);
832 put_cpu();
833
834 /* peek cache of free slot */
835 if (pool->left != FC_XID_UNKNOWN) {
836 if (!WARN_ON(fc_exch_ptr_get(pool, pool->left))) {
837 index = pool->left;
838 pool->left = FC_XID_UNKNOWN;
839 goto hit;
840 }
841 }
842 if (pool->right != FC_XID_UNKNOWN) {
843 if (!WARN_ON(fc_exch_ptr_get(pool, pool->right))) {
844 index = pool->right;
845 pool->right = FC_XID_UNKNOWN;
846 goto hit;
847 }
848 }
849
850 index = pool->next_index;
851 /* allocate new exch from pool */
852 while (fc_exch_ptr_get(pool, index)) {
853 index = index == mp->pool_max_index ? 0 : index + 1;
854 if (index == pool->next_index)
855 goto err;
856 }
857 pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
858hit:
859 fc_exch_hold(ep); /* hold for exch in mp */
860 spin_lock_init(&ep->ex_lock);
861 /*
862 * Hold exch lock for caller to prevent fc_exch_reset()
863 * from releasing exch while fc_exch_alloc() caller is
864 * still working on exch.
865 */
866 spin_lock_bh(&ep->ex_lock);
867
868 fc_exch_ptr_set(pool, index, ep);
869 list_add_tail(&ep->ex_list, &pool->ex_list);
870 fc_seq_alloc(ep, ep->seq_id++);
871 pool->total_exches++;
872 spin_unlock_bh(&pool->lock);
873
874 /*
875 * update exchange
876 */
877 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
878 ep->em = mp;
879 ep->pool = pool;
880 ep->lp = lport;
881 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */
882 ep->rxid = FC_XID_UNKNOWN;
883 ep->class = mp->class;
884 ep->resp_active = 0;
885 init_waitqueue_head(&ep->resp_wq);
886 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
887out:
888 return ep;
889err:
890 spin_unlock_bh(&pool->lock);
891 atomic_inc(&mp->stats.no_free_exch_xid);
892 mempool_free(ep, mp->ep_pool);
893 return NULL;
894}
895
896/**
897 * fc_exch_alloc() - Allocate an exchange from an EM on a
898 * local port's list of EMs.
899 * @lport: The local port that will own the exchange
900 * @fp: The FC frame that the exchange will be for
901 *
902 * This function walks the list of exchange manager(EM)
903 * anchors to select an EM for a new exchange allocation. The
904 * EM is selected when a NULL match function pointer is encountered
905 * or when a call to a match function returns true.
906 */
907static struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
908 struct fc_frame *fp)
909{
910 struct fc_exch_mgr_anchor *ema;
911 struct fc_exch *ep;
912
913 list_for_each_entry(ema, &lport->ema_list, ema_list) {
914 if (!ema->match || ema->match(fp)) {
915 ep = fc_exch_em_alloc(lport, ema->mp);
916 if (ep)
917 return ep;
918 }
919 }
920 return NULL;
921}
922
923/**
924 * fc_exch_find() - Lookup and hold an exchange
925 * @mp: The exchange manager to lookup the exchange from
926 * @xid: The XID of the exchange to look up
927 */
928static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
929{
930 struct fc_lport *lport = mp->lport;
931 struct fc_exch_pool *pool;
932 struct fc_exch *ep = NULL;
933 u16 cpu = xid & fc_cpu_mask;
934
935 if (xid == FC_XID_UNKNOWN)
936 return NULL;
937
938 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
939 pr_err("host%u: lport %6.6x: xid %d invalid CPU %d\n:",
940 lport->host->host_no, lport->port_id, xid, cpu);
941 return NULL;
942 }
943
944 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
945 pool = per_cpu_ptr(mp->pool, cpu);
946 spin_lock_bh(&pool->lock);
947 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
948 if (ep == &fc_quarantine_exch) {
949 FC_LPORT_DBG(lport, "xid %x quarantined\n", xid);
950 ep = NULL;
951 }
952 if (ep) {
953 WARN_ON(ep->xid != xid);
954 fc_exch_hold(ep);
955 }
956 spin_unlock_bh(&pool->lock);
957 }
958 return ep;
959}
960
961
962/**
963 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
964 * the memory allocated for the related objects may be freed.
965 * @sp: The sequence that has completed
966 *
967 * Note: May sleep if invoked from outside a response handler.
968 */
969void fc_exch_done(struct fc_seq *sp)
970{
971 struct fc_exch *ep = fc_seq_exch(sp);
972 int rc;
973
974 spin_lock_bh(&ep->ex_lock);
975 rc = fc_exch_done_locked(ep);
976 spin_unlock_bh(&ep->ex_lock);
977
978 fc_seq_set_resp(sp, NULL, ep->arg);
979 if (!rc)
980 fc_exch_delete(ep);
981}
982EXPORT_SYMBOL(fc_exch_done);
983
984/**
985 * fc_exch_resp() - Allocate a new exchange for a response frame
986 * @lport: The local port that the exchange was for
987 * @mp: The exchange manager to allocate the exchange from
988 * @fp: The response frame
989 *
990 * Sets the responder ID in the frame header.
991 */
992static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
993 struct fc_exch_mgr *mp,
994 struct fc_frame *fp)
995{
996 struct fc_exch *ep;
997 struct fc_frame_header *fh;
998
999 ep = fc_exch_alloc(lport, fp);
1000 if (ep) {
1001 ep->class = fc_frame_class(fp);
1002
1003 /*
1004 * Set EX_CTX indicating we're responding on this exchange.
1005 */
1006 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */
1007 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */
1008 fh = fc_frame_header_get(fp);
1009 ep->sid = ntoh24(fh->fh_d_id);
1010 ep->did = ntoh24(fh->fh_s_id);
1011 ep->oid = ep->did;
1012
1013 /*
1014 * Allocated exchange has placed the XID in the
1015 * originator field. Move it to the responder field,
1016 * and set the originator XID from the frame.
1017 */
1018 ep->rxid = ep->xid;
1019 ep->oxid = ntohs(fh->fh_ox_id);
1020 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
1021 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
1022 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
1023
1024 fc_exch_hold(ep); /* hold for caller */
1025 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */
1026 }
1027 return ep;
1028}
1029
1030/**
1031 * fc_seq_lookup_recip() - Find a sequence where the other end
1032 * originated the sequence
1033 * @lport: The local port that the frame was sent to
1034 * @mp: The Exchange Manager to lookup the exchange from
1035 * @fp: The frame associated with the sequence we're looking for
1036 *
1037 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
1038 * on the ep that should be released by the caller.
1039 */
1040static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
1041 struct fc_exch_mgr *mp,
1042 struct fc_frame *fp)
1043{
1044 struct fc_frame_header *fh = fc_frame_header_get(fp);
1045 struct fc_exch *ep = NULL;
1046 struct fc_seq *sp = NULL;
1047 enum fc_pf_rjt_reason reject = FC_RJT_NONE;
1048 u32 f_ctl;
1049 u16 xid;
1050
1051 f_ctl = ntoh24(fh->fh_f_ctl);
1052 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
1053
1054 /*
1055 * Lookup or create the exchange if we will be creating the sequence.
1056 */
1057 if (f_ctl & FC_FC_EX_CTX) {
1058 xid = ntohs(fh->fh_ox_id); /* we originated exch */
1059 ep = fc_exch_find(mp, xid);
1060 if (!ep) {
1061 atomic_inc(&mp->stats.xid_not_found);
1062 reject = FC_RJT_OX_ID;
1063 goto out;
1064 }
1065 if (ep->rxid == FC_XID_UNKNOWN)
1066 ep->rxid = ntohs(fh->fh_rx_id);
1067 else if (ep->rxid != ntohs(fh->fh_rx_id)) {
1068 reject = FC_RJT_OX_ID;
1069 goto rel;
1070 }
1071 } else {
1072 xid = ntohs(fh->fh_rx_id); /* we are the responder */
1073
1074 /*
1075 * Special case for MDS issuing an ELS TEST with a
1076 * bad rxid of 0.
1077 * XXX take this out once we do the proper reject.
1078 */
1079 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
1080 fc_frame_payload_op(fp) == ELS_TEST) {
1081 fh->fh_rx_id = htons(FC_XID_UNKNOWN);
1082 xid = FC_XID_UNKNOWN;
1083 }
1084
1085 /*
1086 * new sequence - find the exchange
1087 */
1088 ep = fc_exch_find(mp, xid);
1089 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
1090 if (ep) {
1091 atomic_inc(&mp->stats.xid_busy);
1092 reject = FC_RJT_RX_ID;
1093 goto rel;
1094 }
1095 ep = fc_exch_resp(lport, mp, fp);
1096 if (!ep) {
1097 reject = FC_RJT_EXCH_EST; /* XXX */
1098 goto out;
1099 }
1100 xid = ep->xid; /* get our XID */
1101 } else if (!ep) {
1102 atomic_inc(&mp->stats.xid_not_found);
1103 reject = FC_RJT_RX_ID; /* XID not found */
1104 goto out;
1105 }
1106 }
1107
1108 spin_lock_bh(&ep->ex_lock);
1109 /*
1110 * At this point, we have the exchange held.
1111 * Find or create the sequence.
1112 */
1113 if (fc_sof_is_init(fr_sof(fp))) {
1114 sp = &ep->seq;
1115 sp->ssb_stat |= SSB_ST_RESP;
1116 sp->id = fh->fh_seq_id;
1117 } else {
1118 sp = &ep->seq;
1119 if (sp->id != fh->fh_seq_id) {
1120 atomic_inc(&mp->stats.seq_not_found);
1121 if (f_ctl & FC_FC_END_SEQ) {
1122 /*
1123 * Update sequence_id based on incoming last
1124 * frame of sequence exchange. This is needed
1125 * for FC target where DDP has been used
1126 * on target where, stack is indicated only
1127 * about last frame's (payload _header) header.
1128 * Whereas "seq_id" which is part of
1129 * frame_header is allocated by initiator
1130 * which is totally different from "seq_id"
1131 * allocated when XFER_RDY was sent by target.
1132 * To avoid false -ve which results into not
1133 * sending RSP, hence write request on other
1134 * end never finishes.
1135 */
1136 sp->ssb_stat |= SSB_ST_RESP;
1137 sp->id = fh->fh_seq_id;
1138 } else {
1139 spin_unlock_bh(&ep->ex_lock);
1140
1141 /* sequence/exch should exist */
1142 reject = FC_RJT_SEQ_ID;
1143 goto rel;
1144 }
1145 }
1146 }
1147 WARN_ON(ep != fc_seq_exch(sp));
1148
1149 if (f_ctl & FC_FC_SEQ_INIT)
1150 ep->esb_stat |= ESB_ST_SEQ_INIT;
1151 spin_unlock_bh(&ep->ex_lock);
1152
1153 fr_seq(fp) = sp;
1154out:
1155 return reject;
1156rel:
1157 fc_exch_done(&ep->seq);
1158 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */
1159 return reject;
1160}
1161
1162/**
1163 * fc_seq_lookup_orig() - Find a sequence where this end
1164 * originated the sequence
1165 * @mp: The Exchange Manager to lookup the exchange from
1166 * @fp: The frame associated with the sequence we're looking for
1167 *
1168 * Does not hold the sequence for the caller.
1169 */
1170static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1171 struct fc_frame *fp)
1172{
1173 struct fc_frame_header *fh = fc_frame_header_get(fp);
1174 struct fc_exch *ep;
1175 struct fc_seq *sp = NULL;
1176 u32 f_ctl;
1177 u16 xid;
1178
1179 f_ctl = ntoh24(fh->fh_f_ctl);
1180 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1181 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1182 ep = fc_exch_find(mp, xid);
1183 if (!ep)
1184 return NULL;
1185 if (ep->seq.id == fh->fh_seq_id) {
1186 /*
1187 * Save the RX_ID if we didn't previously know it.
1188 */
1189 sp = &ep->seq;
1190 if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1191 ep->rxid == FC_XID_UNKNOWN) {
1192 ep->rxid = ntohs(fh->fh_rx_id);
1193 }
1194 }
1195 fc_exch_release(ep);
1196 return sp;
1197}
1198
1199/**
1200 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1201 * @ep: The exchange to set the addresses for
1202 * @orig_id: The originator's ID
1203 * @resp_id: The responder's ID
1204 *
1205 * Note this must be done before the first sequence of the exchange is sent.
1206 */
1207static void fc_exch_set_addr(struct fc_exch *ep,
1208 u32 orig_id, u32 resp_id)
1209{
1210 ep->oid = orig_id;
1211 if (ep->esb_stat & ESB_ST_RESP) {
1212 ep->sid = resp_id;
1213 ep->did = orig_id;
1214 } else {
1215 ep->sid = orig_id;
1216 ep->did = resp_id;
1217 }
1218}
1219
1220/**
1221 * fc_seq_els_rsp_send() - Send an ELS response using information from
1222 * the existing sequence/exchange.
1223 * @fp: The received frame
1224 * @els_cmd: The ELS command to be sent
1225 * @els_data: The ELS data to be sent
1226 *
1227 * The received frame is not freed.
1228 */
1229void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1230 struct fc_seq_els_data *els_data)
1231{
1232 switch (els_cmd) {
1233 case ELS_LS_RJT:
1234 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1235 break;
1236 case ELS_LS_ACC:
1237 fc_seq_ls_acc(fp);
1238 break;
1239 case ELS_RRQ:
1240 fc_exch_els_rrq(fp);
1241 break;
1242 case ELS_REC:
1243 fc_exch_els_rec(fp);
1244 break;
1245 default:
1246 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1247 }
1248}
1249EXPORT_SYMBOL_GPL(fc_seq_els_rsp_send);
1250
1251/**
1252 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1253 * @sp: The sequence that is to be sent
1254 * @fp: The frame that will be sent on the sequence
1255 * @rctl: The R_CTL information to be sent
1256 * @fh_type: The frame header type
1257 */
1258static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1259 enum fc_rctl rctl, enum fc_fh_type fh_type)
1260{
1261 u32 f_ctl;
1262 struct fc_exch *ep = fc_seq_exch(sp);
1263
1264 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1265 f_ctl |= ep->f_ctl;
1266 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1267 fc_seq_send_locked(ep->lp, sp, fp);
1268}
1269
1270/**
1271 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1272 * @sp: The sequence to send the ACK on
1273 * @rx_fp: The received frame that is being acknoledged
1274 *
1275 * Send ACK_1 (or equiv.) indicating we received something.
1276 */
1277static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1278{
1279 struct fc_frame *fp;
1280 struct fc_frame_header *rx_fh;
1281 struct fc_frame_header *fh;
1282 struct fc_exch *ep = fc_seq_exch(sp);
1283 struct fc_lport *lport = ep->lp;
1284 unsigned int f_ctl;
1285
1286 /*
1287 * Don't send ACKs for class 3.
1288 */
1289 if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1290 fp = fc_frame_alloc(lport, 0);
1291 if (!fp) {
1292 FC_EXCH_DBG(ep, "Drop ACK request, out of memory\n");
1293 return;
1294 }
1295
1296 fh = fc_frame_header_get(fp);
1297 fh->fh_r_ctl = FC_RCTL_ACK_1;
1298 fh->fh_type = FC_TYPE_BLS;
1299
1300 /*
1301 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1302 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1303 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1304 * Last ACK uses bits 7-6 (continue sequence),
1305 * bits 5-4 are meaningful (what kind of ACK to use).
1306 */
1307 rx_fh = fc_frame_header_get(rx_fp);
1308 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1309 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1310 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1311 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1312 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1313 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1314 hton24(fh->fh_f_ctl, f_ctl);
1315
1316 fc_exch_setup_hdr(ep, fp, f_ctl);
1317 fh->fh_seq_id = rx_fh->fh_seq_id;
1318 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1319 fh->fh_parm_offset = htonl(1); /* ack single frame */
1320
1321 fr_sof(fp) = fr_sof(rx_fp);
1322 if (f_ctl & FC_FC_END_SEQ)
1323 fr_eof(fp) = FC_EOF_T;
1324 else
1325 fr_eof(fp) = FC_EOF_N;
1326
1327 lport->tt.frame_send(lport, fp);
1328 }
1329}
1330
1331/**
1332 * fc_exch_send_ba_rjt() - Send BLS Reject
1333 * @rx_fp: The frame being rejected
1334 * @reason: The reason the frame is being rejected
1335 * @explan: The explanation for the rejection
1336 *
1337 * This is for rejecting BA_ABTS only.
1338 */
1339static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1340 enum fc_ba_rjt_reason reason,
1341 enum fc_ba_rjt_explan explan)
1342{
1343 struct fc_frame *fp;
1344 struct fc_frame_header *rx_fh;
1345 struct fc_frame_header *fh;
1346 struct fc_ba_rjt *rp;
1347 struct fc_seq *sp;
1348 struct fc_lport *lport;
1349 unsigned int f_ctl;
1350
1351 lport = fr_dev(rx_fp);
1352 sp = fr_seq(rx_fp);
1353 fp = fc_frame_alloc(lport, sizeof(*rp));
1354 if (!fp) {
1355 FC_EXCH_DBG(fc_seq_exch(sp),
1356 "Drop BA_RJT request, out of memory\n");
1357 return;
1358 }
1359 fh = fc_frame_header_get(fp);
1360 rx_fh = fc_frame_header_get(rx_fp);
1361
1362 memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1363
1364 rp = fc_frame_payload_get(fp, sizeof(*rp));
1365 rp->br_reason = reason;
1366 rp->br_explan = explan;
1367
1368 /*
1369 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1370 */
1371 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1372 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1373 fh->fh_ox_id = rx_fh->fh_ox_id;
1374 fh->fh_rx_id = rx_fh->fh_rx_id;
1375 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1376 fh->fh_r_ctl = FC_RCTL_BA_RJT;
1377 fh->fh_type = FC_TYPE_BLS;
1378
1379 /*
1380 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1381 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1382 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1383 * Last ACK uses bits 7-6 (continue sequence),
1384 * bits 5-4 are meaningful (what kind of ACK to use).
1385 * Always set LAST_SEQ, END_SEQ.
1386 */
1387 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1388 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1389 FC_FC_END_CONN | FC_FC_SEQ_INIT |
1390 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1391 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1392 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1393 f_ctl &= ~FC_FC_FIRST_SEQ;
1394 hton24(fh->fh_f_ctl, f_ctl);
1395
1396 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1397 fr_eof(fp) = FC_EOF_T;
1398 if (fc_sof_needs_ack(fr_sof(fp)))
1399 fr_eof(fp) = FC_EOF_N;
1400
1401 lport->tt.frame_send(lport, fp);
1402}
1403
1404/**
1405 * fc_exch_recv_abts() - Handle an incoming ABTS
1406 * @ep: The exchange the abort was on
1407 * @rx_fp: The ABTS frame
1408 *
1409 * This would be for target mode usually, but could be due to lost
1410 * FCP transfer ready, confirm or RRQ. We always handle this as an
1411 * exchange abort, ignoring the parameter.
1412 */
1413static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1414{
1415 struct fc_frame *fp;
1416 struct fc_ba_acc *ap;
1417 struct fc_frame_header *fh;
1418 struct fc_seq *sp;
1419
1420 if (!ep)
1421 goto reject;
1422
1423 FC_EXCH_DBG(ep, "exch: ABTS received\n");
1424 fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1425 if (!fp) {
1426 FC_EXCH_DBG(ep, "Drop ABTS request, out of memory\n");
1427 goto free;
1428 }
1429
1430 spin_lock_bh(&ep->ex_lock);
1431 if (ep->esb_stat & ESB_ST_COMPLETE) {
1432 spin_unlock_bh(&ep->ex_lock);
1433 FC_EXCH_DBG(ep, "exch: ABTS rejected, exchange complete\n");
1434 fc_frame_free(fp);
1435 goto reject;
1436 }
1437 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
1438 ep->esb_stat |= ESB_ST_REC_QUAL;
1439 fc_exch_hold(ep); /* hold for REC_QUAL */
1440 }
1441 fc_exch_timer_set_locked(ep, ep->r_a_tov);
1442 fh = fc_frame_header_get(fp);
1443 ap = fc_frame_payload_get(fp, sizeof(*ap));
1444 memset(ap, 0, sizeof(*ap));
1445 sp = &ep->seq;
1446 ap->ba_high_seq_cnt = htons(0xffff);
1447 if (sp->ssb_stat & SSB_ST_RESP) {
1448 ap->ba_seq_id = sp->id;
1449 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1450 ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1451 ap->ba_low_seq_cnt = htons(sp->cnt);
1452 }
1453 sp = fc_seq_start_next_locked(sp);
1454 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1455 ep->esb_stat |= ESB_ST_ABNORMAL;
1456 spin_unlock_bh(&ep->ex_lock);
1457
1458free:
1459 fc_frame_free(rx_fp);
1460 return;
1461
1462reject:
1463 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1464 goto free;
1465}
1466
1467/**
1468 * fc_seq_assign() - Assign exchange and sequence for incoming request
1469 * @lport: The local port that received the request
1470 * @fp: The request frame
1471 *
1472 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1473 * A reference will be held on the exchange/sequence for the caller, which
1474 * must call fc_seq_release().
1475 */
1476struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1477{
1478 struct fc_exch_mgr_anchor *ema;
1479
1480 WARN_ON(lport != fr_dev(fp));
1481 WARN_ON(fr_seq(fp));
1482 fr_seq(fp) = NULL;
1483
1484 list_for_each_entry(ema, &lport->ema_list, ema_list)
1485 if ((!ema->match || ema->match(fp)) &&
1486 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1487 break;
1488 return fr_seq(fp);
1489}
1490EXPORT_SYMBOL(fc_seq_assign);
1491
1492/**
1493 * fc_seq_release() - Release the hold
1494 * @sp: The sequence.
1495 */
1496void fc_seq_release(struct fc_seq *sp)
1497{
1498 fc_exch_release(fc_seq_exch(sp));
1499}
1500EXPORT_SYMBOL(fc_seq_release);
1501
1502/**
1503 * fc_exch_recv_req() - Handler for an incoming request
1504 * @lport: The local port that received the request
1505 * @mp: The EM that the exchange is on
1506 * @fp: The request frame
1507 *
1508 * This is used when the other end is originating the exchange
1509 * and the sequence.
1510 */
1511static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1512 struct fc_frame *fp)
1513{
1514 struct fc_frame_header *fh = fc_frame_header_get(fp);
1515 struct fc_seq *sp = NULL;
1516 struct fc_exch *ep = NULL;
1517 enum fc_pf_rjt_reason reject;
1518
1519 /* We can have the wrong fc_lport at this point with NPIV, which is a
1520 * problem now that we know a new exchange needs to be allocated
1521 */
1522 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1523 if (!lport) {
1524 fc_frame_free(fp);
1525 return;
1526 }
1527 fr_dev(fp) = lport;
1528
1529 BUG_ON(fr_seq(fp)); /* XXX remove later */
1530
1531 /*
1532 * If the RX_ID is 0xffff, don't allocate an exchange.
1533 * The upper-level protocol may request one later, if needed.
1534 */
1535 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1536 return fc_lport_recv(lport, fp);
1537
1538 reject = fc_seq_lookup_recip(lport, mp, fp);
1539 if (reject == FC_RJT_NONE) {
1540 sp = fr_seq(fp); /* sequence will be held */
1541 ep = fc_seq_exch(sp);
1542 fc_seq_send_ack(sp, fp);
1543 ep->encaps = fr_encaps(fp);
1544
1545 /*
1546 * Call the receive function.
1547 *
1548 * The receive function may allocate a new sequence
1549 * over the old one, so we shouldn't change the
1550 * sequence after this.
1551 *
1552 * The frame will be freed by the receive function.
1553 * If new exch resp handler is valid then call that
1554 * first.
1555 */
1556 if (!fc_invoke_resp(ep, sp, fp))
1557 fc_lport_recv(lport, fp);
1558 fc_exch_release(ep); /* release from lookup */
1559 } else {
1560 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1561 reject);
1562 fc_frame_free(fp);
1563 }
1564}
1565
1566/**
1567 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1568 * end is the originator of the sequence that is a
1569 * response to our initial exchange
1570 * @mp: The EM that the exchange is on
1571 * @fp: The response frame
1572 */
1573static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1574{
1575 struct fc_frame_header *fh = fc_frame_header_get(fp);
1576 struct fc_seq *sp;
1577 struct fc_exch *ep;
1578 enum fc_sof sof;
1579 u32 f_ctl;
1580 int rc;
1581
1582 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1583 if (!ep) {
1584 atomic_inc(&mp->stats.xid_not_found);
1585 goto out;
1586 }
1587 if (ep->esb_stat & ESB_ST_COMPLETE) {
1588 atomic_inc(&mp->stats.xid_not_found);
1589 goto rel;
1590 }
1591 if (ep->rxid == FC_XID_UNKNOWN)
1592 ep->rxid = ntohs(fh->fh_rx_id);
1593 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1594 atomic_inc(&mp->stats.xid_not_found);
1595 goto rel;
1596 }
1597 if (ep->did != ntoh24(fh->fh_s_id) &&
1598 ep->did != FC_FID_FLOGI) {
1599 atomic_inc(&mp->stats.xid_not_found);
1600 goto rel;
1601 }
1602 sof = fr_sof(fp);
1603 sp = &ep->seq;
1604 if (fc_sof_is_init(sof)) {
1605 sp->ssb_stat |= SSB_ST_RESP;
1606 sp->id = fh->fh_seq_id;
1607 }
1608
1609 f_ctl = ntoh24(fh->fh_f_ctl);
1610 fr_seq(fp) = sp;
1611
1612 spin_lock_bh(&ep->ex_lock);
1613 if (f_ctl & FC_FC_SEQ_INIT)
1614 ep->esb_stat |= ESB_ST_SEQ_INIT;
1615 spin_unlock_bh(&ep->ex_lock);
1616
1617 if (fc_sof_needs_ack(sof))
1618 fc_seq_send_ack(sp, fp);
1619
1620 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1621 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1622 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1623 spin_lock_bh(&ep->ex_lock);
1624 rc = fc_exch_done_locked(ep);
1625 WARN_ON(fc_seq_exch(sp) != ep);
1626 spin_unlock_bh(&ep->ex_lock);
1627 if (!rc)
1628 fc_exch_delete(ep);
1629 }
1630
1631 /*
1632 * Call the receive function.
1633 * The sequence is held (has a refcnt) for us,
1634 * but not for the receive function.
1635 *
1636 * The receive function may allocate a new sequence
1637 * over the old one, so we shouldn't change the
1638 * sequence after this.
1639 *
1640 * The frame will be freed by the receive function.
1641 * If new exch resp handler is valid then call that
1642 * first.
1643 */
1644 if (!fc_invoke_resp(ep, sp, fp))
1645 fc_frame_free(fp);
1646
1647 fc_exch_release(ep);
1648 return;
1649rel:
1650 fc_exch_release(ep);
1651out:
1652 fc_frame_free(fp);
1653}
1654
1655/**
1656 * fc_exch_recv_resp() - Handler for a sequence where other end is
1657 * responding to our sequence
1658 * @mp: The EM that the exchange is on
1659 * @fp: The response frame
1660 */
1661static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1662{
1663 struct fc_seq *sp;
1664
1665 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */
1666
1667 if (!sp)
1668 atomic_inc(&mp->stats.xid_not_found);
1669 else
1670 atomic_inc(&mp->stats.non_bls_resp);
1671
1672 fc_frame_free(fp);
1673}
1674
1675/**
1676 * fc_exch_abts_resp() - Handler for a response to an ABT
1677 * @ep: The exchange that the frame is on
1678 * @fp: The response frame
1679 *
1680 * This response would be to an ABTS cancelling an exchange or sequence.
1681 * The response can be either BA_ACC or BA_RJT
1682 */
1683static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1684{
1685 struct fc_frame_header *fh;
1686 struct fc_ba_acc *ap;
1687 struct fc_seq *sp;
1688 u16 low;
1689 u16 high;
1690 int rc = 1, has_rec = 0;
1691
1692 fh = fc_frame_header_get(fp);
1693 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1694 fc_exch_rctl_name(fh->fh_r_ctl));
1695
1696 if (cancel_delayed_work_sync(&ep->timeout_work)) {
1697 FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
1698 fc_exch_release(ep); /* release from pending timer hold */
1699 }
1700
1701 spin_lock_bh(&ep->ex_lock);
1702 switch (fh->fh_r_ctl) {
1703 case FC_RCTL_BA_ACC:
1704 ap = fc_frame_payload_get(fp, sizeof(*ap));
1705 if (!ap)
1706 break;
1707
1708 /*
1709 * Decide whether to establish a Recovery Qualifier.
1710 * We do this if there is a non-empty SEQ_CNT range and
1711 * SEQ_ID is the same as the one we aborted.
1712 */
1713 low = ntohs(ap->ba_low_seq_cnt);
1714 high = ntohs(ap->ba_high_seq_cnt);
1715 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1716 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1717 ap->ba_seq_id == ep->seq_id) && low != high) {
1718 ep->esb_stat |= ESB_ST_REC_QUAL;
1719 fc_exch_hold(ep); /* hold for recovery qualifier */
1720 has_rec = 1;
1721 }
1722 break;
1723 case FC_RCTL_BA_RJT:
1724 break;
1725 default:
1726 break;
1727 }
1728
1729 /* do we need to do some other checks here. Can we reuse more of
1730 * fc_exch_recv_seq_resp
1731 */
1732 sp = &ep->seq;
1733 /*
1734 * do we want to check END_SEQ as well as LAST_SEQ here?
1735 */
1736 if (ep->fh_type != FC_TYPE_FCP &&
1737 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1738 rc = fc_exch_done_locked(ep);
1739 spin_unlock_bh(&ep->ex_lock);
1740
1741 fc_exch_hold(ep);
1742 if (!rc)
1743 fc_exch_delete(ep);
1744 if (!fc_invoke_resp(ep, sp, fp))
1745 fc_frame_free(fp);
1746 if (has_rec)
1747 fc_exch_timer_set(ep, ep->r_a_tov);
1748 fc_exch_release(ep);
1749}
1750
1751/**
1752 * fc_exch_recv_bls() - Handler for a BLS sequence
1753 * @mp: The EM that the exchange is on
1754 * @fp: The request frame
1755 *
1756 * The BLS frame is always a sequence initiated by the remote side.
1757 * We may be either the originator or recipient of the exchange.
1758 */
1759static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1760{
1761 struct fc_frame_header *fh;
1762 struct fc_exch *ep;
1763 u32 f_ctl;
1764
1765 fh = fc_frame_header_get(fp);
1766 f_ctl = ntoh24(fh->fh_f_ctl);
1767 fr_seq(fp) = NULL;
1768
1769 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1770 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1771 if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1772 spin_lock_bh(&ep->ex_lock);
1773 ep->esb_stat |= ESB_ST_SEQ_INIT;
1774 spin_unlock_bh(&ep->ex_lock);
1775 }
1776 if (f_ctl & FC_FC_SEQ_CTX) {
1777 /*
1778 * A response to a sequence we initiated.
1779 * This should only be ACKs for class 2 or F.
1780 */
1781 switch (fh->fh_r_ctl) {
1782 case FC_RCTL_ACK_1:
1783 case FC_RCTL_ACK_0:
1784 break;
1785 default:
1786 if (ep)
1787 FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n",
1788 fh->fh_r_ctl,
1789 fc_exch_rctl_name(fh->fh_r_ctl));
1790 break;
1791 }
1792 fc_frame_free(fp);
1793 } else {
1794 switch (fh->fh_r_ctl) {
1795 case FC_RCTL_BA_RJT:
1796 case FC_RCTL_BA_ACC:
1797 if (ep)
1798 fc_exch_abts_resp(ep, fp);
1799 else
1800 fc_frame_free(fp);
1801 break;
1802 case FC_RCTL_BA_ABTS:
1803 if (ep)
1804 fc_exch_recv_abts(ep, fp);
1805 else
1806 fc_frame_free(fp);
1807 break;
1808 default: /* ignore junk */
1809 fc_frame_free(fp);
1810 break;
1811 }
1812 }
1813 if (ep)
1814 fc_exch_release(ep); /* release hold taken by fc_exch_find */
1815}
1816
1817/**
1818 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1819 * @rx_fp: The received frame, not freed here.
1820 *
1821 * If this fails due to allocation or transmit congestion, assume the
1822 * originator will repeat the sequence.
1823 */
1824static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1825{
1826 struct fc_lport *lport;
1827 struct fc_els_ls_acc *acc;
1828 struct fc_frame *fp;
1829 struct fc_seq *sp;
1830
1831 lport = fr_dev(rx_fp);
1832 sp = fr_seq(rx_fp);
1833 fp = fc_frame_alloc(lport, sizeof(*acc));
1834 if (!fp) {
1835 FC_EXCH_DBG(fc_seq_exch(sp),
1836 "exch: drop LS_ACC, out of memory\n");
1837 return;
1838 }
1839 acc = fc_frame_payload_get(fp, sizeof(*acc));
1840 memset(acc, 0, sizeof(*acc));
1841 acc->la_cmd = ELS_LS_ACC;
1842 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1843 lport->tt.frame_send(lport, fp);
1844}
1845
1846/**
1847 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1848 * @rx_fp: The received frame, not freed here.
1849 * @reason: The reason the sequence is being rejected
1850 * @explan: The explanation for the rejection
1851 *
1852 * If this fails due to allocation or transmit congestion, assume the
1853 * originator will repeat the sequence.
1854 */
1855static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1856 enum fc_els_rjt_explan explan)
1857{
1858 struct fc_lport *lport;
1859 struct fc_els_ls_rjt *rjt;
1860 struct fc_frame *fp;
1861 struct fc_seq *sp;
1862
1863 lport = fr_dev(rx_fp);
1864 sp = fr_seq(rx_fp);
1865 fp = fc_frame_alloc(lport, sizeof(*rjt));
1866 if (!fp) {
1867 FC_EXCH_DBG(fc_seq_exch(sp),
1868 "exch: drop LS_ACC, out of memory\n");
1869 return;
1870 }
1871 rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1872 memset(rjt, 0, sizeof(*rjt));
1873 rjt->er_cmd = ELS_LS_RJT;
1874 rjt->er_reason = reason;
1875 rjt->er_explan = explan;
1876 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1877 lport->tt.frame_send(lport, fp);
1878}
1879
1880/**
1881 * fc_exch_reset() - Reset an exchange
1882 * @ep: The exchange to be reset
1883 *
1884 * Note: May sleep if invoked from outside a response handler.
1885 */
1886static void fc_exch_reset(struct fc_exch *ep)
1887{
1888 struct fc_seq *sp;
1889 int rc = 1;
1890
1891 spin_lock_bh(&ep->ex_lock);
1892 ep->state |= FC_EX_RST_CLEANUP;
1893 fc_exch_timer_cancel(ep);
1894 if (ep->esb_stat & ESB_ST_REC_QUAL)
1895 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */
1896 ep->esb_stat &= ~ESB_ST_REC_QUAL;
1897 sp = &ep->seq;
1898 rc = fc_exch_done_locked(ep);
1899 spin_unlock_bh(&ep->ex_lock);
1900
1901 fc_exch_hold(ep);
1902
1903 if (!rc)
1904 fc_exch_delete(ep);
1905
1906 fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED));
1907 fc_seq_set_resp(sp, NULL, ep->arg);
1908 fc_exch_release(ep);
1909}
1910
1911/**
1912 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1913 * @lport: The local port that the exchange pool is on
1914 * @pool: The exchange pool to be reset
1915 * @sid: The source ID
1916 * @did: The destination ID
1917 *
1918 * Resets a per cpu exches pool, releasing all of its sequences
1919 * and exchanges. If sid is non-zero then reset only exchanges
1920 * we sourced from the local port's FID. If did is non-zero then
1921 * only reset exchanges destined for the local port's FID.
1922 */
1923static void fc_exch_pool_reset(struct fc_lport *lport,
1924 struct fc_exch_pool *pool,
1925 u32 sid, u32 did)
1926{
1927 struct fc_exch *ep;
1928 struct fc_exch *next;
1929
1930 spin_lock_bh(&pool->lock);
1931restart:
1932 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1933 if ((lport == ep->lp) &&
1934 (sid == 0 || sid == ep->sid) &&
1935 (did == 0 || did == ep->did)) {
1936 fc_exch_hold(ep);
1937 spin_unlock_bh(&pool->lock);
1938
1939 fc_exch_reset(ep);
1940
1941 fc_exch_release(ep);
1942 spin_lock_bh(&pool->lock);
1943
1944 /*
1945 * must restart loop incase while lock
1946 * was down multiple eps were released.
1947 */
1948 goto restart;
1949 }
1950 }
1951 pool->next_index = 0;
1952 pool->left = FC_XID_UNKNOWN;
1953 pool->right = FC_XID_UNKNOWN;
1954 spin_unlock_bh(&pool->lock);
1955}
1956
1957/**
1958 * fc_exch_mgr_reset() - Reset all EMs of a local port
1959 * @lport: The local port whose EMs are to be reset
1960 * @sid: The source ID
1961 * @did: The destination ID
1962 *
1963 * Reset all EMs associated with a given local port. Release all
1964 * sequences and exchanges. If sid is non-zero then reset only the
1965 * exchanges sent from the local port's FID. If did is non-zero then
1966 * reset only exchanges destined for the local port's FID.
1967 */
1968void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1969{
1970 struct fc_exch_mgr_anchor *ema;
1971 unsigned int cpu;
1972
1973 list_for_each_entry(ema, &lport->ema_list, ema_list) {
1974 for_each_possible_cpu(cpu)
1975 fc_exch_pool_reset(lport,
1976 per_cpu_ptr(ema->mp->pool, cpu),
1977 sid, did);
1978 }
1979}
1980EXPORT_SYMBOL(fc_exch_mgr_reset);
1981
1982/**
1983 * fc_exch_lookup() - find an exchange
1984 * @lport: The local port
1985 * @xid: The exchange ID
1986 *
1987 * Returns exchange pointer with hold for caller, or NULL if not found.
1988 */
1989static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1990{
1991 struct fc_exch_mgr_anchor *ema;
1992
1993 list_for_each_entry(ema, &lport->ema_list, ema_list)
1994 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1995 return fc_exch_find(ema->mp, xid);
1996 return NULL;
1997}
1998
1999/**
2000 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
2001 * @rfp: The REC frame, not freed here.
2002 *
2003 * Note that the requesting port may be different than the S_ID in the request.
2004 */
2005static void fc_exch_els_rec(struct fc_frame *rfp)
2006{
2007 struct fc_lport *lport;
2008 struct fc_frame *fp;
2009 struct fc_exch *ep;
2010 struct fc_els_rec *rp;
2011 struct fc_els_rec_acc *acc;
2012 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
2013 enum fc_els_rjt_explan explan;
2014 u32 sid;
2015 u16 xid, rxid, oxid;
2016
2017 lport = fr_dev(rfp);
2018 rp = fc_frame_payload_get(rfp, sizeof(*rp));
2019 explan = ELS_EXPL_INV_LEN;
2020 if (!rp)
2021 goto reject;
2022 sid = ntoh24(rp->rec_s_id);
2023 rxid = ntohs(rp->rec_rx_id);
2024 oxid = ntohs(rp->rec_ox_id);
2025
2026 explan = ELS_EXPL_OXID_RXID;
2027 if (sid == fc_host_port_id(lport->host))
2028 xid = oxid;
2029 else
2030 xid = rxid;
2031 if (xid == FC_XID_UNKNOWN) {
2032 FC_LPORT_DBG(lport,
2033 "REC request from %x: invalid rxid %x oxid %x\n",
2034 sid, rxid, oxid);
2035 goto reject;
2036 }
2037 ep = fc_exch_lookup(lport, xid);
2038 if (!ep) {
2039 FC_LPORT_DBG(lport,
2040 "REC request from %x: rxid %x oxid %x not found\n",
2041 sid, rxid, oxid);
2042 goto reject;
2043 }
2044 FC_EXCH_DBG(ep, "REC request from %x: rxid %x oxid %x\n",
2045 sid, rxid, oxid);
2046 if (ep->oid != sid || oxid != ep->oxid)
2047 goto rel;
2048 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
2049 goto rel;
2050 fp = fc_frame_alloc(lport, sizeof(*acc));
2051 if (!fp) {
2052 FC_EXCH_DBG(ep, "Drop REC request, out of memory\n");
2053 goto out;
2054 }
2055
2056 acc = fc_frame_payload_get(fp, sizeof(*acc));
2057 memset(acc, 0, sizeof(*acc));
2058 acc->reca_cmd = ELS_LS_ACC;
2059 acc->reca_ox_id = rp->rec_ox_id;
2060 memcpy(acc->reca_ofid, rp->rec_s_id, 3);
2061 acc->reca_rx_id = htons(ep->rxid);
2062 if (ep->sid == ep->oid)
2063 hton24(acc->reca_rfid, ep->did);
2064 else
2065 hton24(acc->reca_rfid, ep->sid);
2066 acc->reca_fc4value = htonl(ep->seq.rec_data);
2067 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
2068 ESB_ST_SEQ_INIT |
2069 ESB_ST_COMPLETE));
2070 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
2071 lport->tt.frame_send(lport, fp);
2072out:
2073 fc_exch_release(ep);
2074 return;
2075
2076rel:
2077 fc_exch_release(ep);
2078reject:
2079 fc_seq_ls_rjt(rfp, reason, explan);
2080}
2081
2082/**
2083 * fc_exch_rrq_resp() - Handler for RRQ responses
2084 * @sp: The sequence that the RRQ is on
2085 * @fp: The RRQ frame
2086 * @arg: The exchange that the RRQ is on
2087 *
2088 * TODO: fix error handler.
2089 */
2090static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
2091{
2092 struct fc_exch *aborted_ep = arg;
2093 unsigned int op;
2094
2095 if (IS_ERR(fp)) {
2096 int err = PTR_ERR(fp);
2097
2098 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
2099 goto cleanup;
2100 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
2101 "frame error %d\n", err);
2102 return;
2103 }
2104
2105 op = fc_frame_payload_op(fp);
2106 fc_frame_free(fp);
2107
2108 switch (op) {
2109 case ELS_LS_RJT:
2110 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n");
2111 fallthrough;
2112 case ELS_LS_ACC:
2113 goto cleanup;
2114 default:
2115 FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n",
2116 op);
2117 return;
2118 }
2119
2120cleanup:
2121 fc_exch_done(&aborted_ep->seq);
2122 /* drop hold for rec qual */
2123 fc_exch_release(aborted_ep);
2124}
2125
2126
2127/**
2128 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
2129 * @lport: The local port to send the frame on
2130 * @fp: The frame to be sent
2131 * @resp: The response handler for this request
2132 * @destructor: The destructor for the exchange
2133 * @arg: The argument to be passed to the response handler
2134 * @timer_msec: The timeout period for the exchange
2135 *
2136 * The exchange response handler is set in this routine to resp()
2137 * function pointer. It can be called in two scenarios: if a timeout
2138 * occurs or if a response frame is received for the exchange. The
2139 * fc_frame pointer in response handler will also indicate timeout
2140 * as error using IS_ERR related macros.
2141 *
2142 * The exchange destructor handler is also set in this routine.
2143 * The destructor handler is invoked by EM layer when exchange
2144 * is about to free, this can be used by caller to free its
2145 * resources along with exchange free.
2146 *
2147 * The arg is passed back to resp and destructor handler.
2148 *
2149 * The timeout value (in msec) for an exchange is set if non zero
2150 * timer_msec argument is specified. The timer is canceled when
2151 * it fires or when the exchange is done. The exchange timeout handler
2152 * is registered by EM layer.
2153 *
2154 * The frame pointer with some of the header's fields must be
2155 * filled before calling this routine, those fields are:
2156 *
2157 * - routing control
2158 * - FC port did
2159 * - FC port sid
2160 * - FC header type
2161 * - frame control
2162 * - parameter or relative offset
2163 */
2164struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
2165 struct fc_frame *fp,
2166 void (*resp)(struct fc_seq *,
2167 struct fc_frame *fp,
2168 void *arg),
2169 void (*destructor)(struct fc_seq *, void *),
2170 void *arg, u32 timer_msec)
2171{
2172 struct fc_exch *ep;
2173 struct fc_seq *sp = NULL;
2174 struct fc_frame_header *fh;
2175 struct fc_fcp_pkt *fsp = NULL;
2176 int rc = 1;
2177
2178 ep = fc_exch_alloc(lport, fp);
2179 if (!ep) {
2180 fc_frame_free(fp);
2181 return NULL;
2182 }
2183 ep->esb_stat |= ESB_ST_SEQ_INIT;
2184 fh = fc_frame_header_get(fp);
2185 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2186 ep->resp = resp;
2187 ep->destructor = destructor;
2188 ep->arg = arg;
2189 ep->r_a_tov = lport->r_a_tov;
2190 ep->lp = lport;
2191 sp = &ep->seq;
2192
2193 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2194 ep->f_ctl = ntoh24(fh->fh_f_ctl);
2195 fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2196 sp->cnt++;
2197
2198 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2199 fsp = fr_fsp(fp);
2200 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2201 }
2202
2203 if (unlikely(lport->tt.frame_send(lport, fp)))
2204 goto err;
2205
2206 if (timer_msec)
2207 fc_exch_timer_set_locked(ep, timer_msec);
2208 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */
2209
2210 if (ep->f_ctl & FC_FC_SEQ_INIT)
2211 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2212 spin_unlock_bh(&ep->ex_lock);
2213 return sp;
2214err:
2215 if (fsp)
2216 fc_fcp_ddp_done(fsp);
2217 rc = fc_exch_done_locked(ep);
2218 spin_unlock_bh(&ep->ex_lock);
2219 if (!rc)
2220 fc_exch_delete(ep);
2221 return NULL;
2222}
2223EXPORT_SYMBOL(fc_exch_seq_send);
2224
2225/**
2226 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2227 * @ep: The exchange to send the RRQ on
2228 *
2229 * This tells the remote port to stop blocking the use of
2230 * the exchange and the seq_cnt range.
2231 */
2232static void fc_exch_rrq(struct fc_exch *ep)
2233{
2234 struct fc_lport *lport;
2235 struct fc_els_rrq *rrq;
2236 struct fc_frame *fp;
2237 u32 did;
2238
2239 lport = ep->lp;
2240
2241 fp = fc_frame_alloc(lport, sizeof(*rrq));
2242 if (!fp)
2243 goto retry;
2244
2245 rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2246 memset(rrq, 0, sizeof(*rrq));
2247 rrq->rrq_cmd = ELS_RRQ;
2248 hton24(rrq->rrq_s_id, ep->sid);
2249 rrq->rrq_ox_id = htons(ep->oxid);
2250 rrq->rrq_rx_id = htons(ep->rxid);
2251
2252 did = ep->did;
2253 if (ep->esb_stat & ESB_ST_RESP)
2254 did = ep->sid;
2255
2256 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2257 lport->port_id, FC_TYPE_ELS,
2258 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2259
2260 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2261 lport->e_d_tov))
2262 return;
2263
2264retry:
2265 FC_EXCH_DBG(ep, "exch: RRQ send failed\n");
2266 spin_lock_bh(&ep->ex_lock);
2267 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2268 spin_unlock_bh(&ep->ex_lock);
2269 /* drop hold for rec qual */
2270 fc_exch_release(ep);
2271 return;
2272 }
2273 ep->esb_stat |= ESB_ST_REC_QUAL;
2274 fc_exch_timer_set_locked(ep, ep->r_a_tov);
2275 spin_unlock_bh(&ep->ex_lock);
2276}
2277
2278/**
2279 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2280 * @fp: The RRQ frame, not freed here.
2281 */
2282static void fc_exch_els_rrq(struct fc_frame *fp)
2283{
2284 struct fc_lport *lport;
2285 struct fc_exch *ep = NULL; /* request or subject exchange */
2286 struct fc_els_rrq *rp;
2287 u32 sid;
2288 u16 xid;
2289 enum fc_els_rjt_explan explan;
2290
2291 lport = fr_dev(fp);
2292 rp = fc_frame_payload_get(fp, sizeof(*rp));
2293 explan = ELS_EXPL_INV_LEN;
2294 if (!rp)
2295 goto reject;
2296
2297 /*
2298 * lookup subject exchange.
2299 */
2300 sid = ntoh24(rp->rrq_s_id); /* subject source */
2301 xid = fc_host_port_id(lport->host) == sid ?
2302 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2303 ep = fc_exch_lookup(lport, xid);
2304 explan = ELS_EXPL_OXID_RXID;
2305 if (!ep)
2306 goto reject;
2307 spin_lock_bh(&ep->ex_lock);
2308 FC_EXCH_DBG(ep, "RRQ request from %x: xid %x rxid %x oxid %x\n",
2309 sid, xid, ntohs(rp->rrq_rx_id), ntohs(rp->rrq_ox_id));
2310 if (ep->oxid != ntohs(rp->rrq_ox_id))
2311 goto unlock_reject;
2312 if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2313 ep->rxid != FC_XID_UNKNOWN)
2314 goto unlock_reject;
2315 explan = ELS_EXPL_SID;
2316 if (ep->sid != sid)
2317 goto unlock_reject;
2318
2319 /*
2320 * Clear Recovery Qualifier state, and cancel timer if complete.
2321 */
2322 if (ep->esb_stat & ESB_ST_REC_QUAL) {
2323 ep->esb_stat &= ~ESB_ST_REC_QUAL;
2324 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */
2325 }
2326 if (ep->esb_stat & ESB_ST_COMPLETE)
2327 fc_exch_timer_cancel(ep);
2328
2329 spin_unlock_bh(&ep->ex_lock);
2330
2331 /*
2332 * Send LS_ACC.
2333 */
2334 fc_seq_ls_acc(fp);
2335 goto out;
2336
2337unlock_reject:
2338 spin_unlock_bh(&ep->ex_lock);
2339reject:
2340 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2341out:
2342 if (ep)
2343 fc_exch_release(ep); /* drop hold from fc_exch_find */
2344}
2345
2346/**
2347 * fc_exch_update_stats() - update exches stats to lport
2348 * @lport: The local port to update exchange manager stats
2349 */
2350void fc_exch_update_stats(struct fc_lport *lport)
2351{
2352 struct fc_host_statistics *st;
2353 struct fc_exch_mgr_anchor *ema;
2354 struct fc_exch_mgr *mp;
2355
2356 st = &lport->host_stats;
2357
2358 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2359 mp = ema->mp;
2360 st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2361 st->fc_no_free_exch_xid +=
2362 atomic_read(&mp->stats.no_free_exch_xid);
2363 st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2364 st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2365 st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2366 st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2367 }
2368}
2369EXPORT_SYMBOL(fc_exch_update_stats);
2370
2371/**
2372 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2373 * @lport: The local port to add the exchange manager to
2374 * @mp: The exchange manager to be added to the local port
2375 * @match: The match routine that indicates when this EM should be used
2376 */
2377struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2378 struct fc_exch_mgr *mp,
2379 bool (*match)(struct fc_frame *))
2380{
2381 struct fc_exch_mgr_anchor *ema;
2382
2383 ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2384 if (!ema)
2385 return ema;
2386
2387 ema->mp = mp;
2388 ema->match = match;
2389 /* add EM anchor to EM anchors list */
2390 list_add_tail(&ema->ema_list, &lport->ema_list);
2391 kref_get(&mp->kref);
2392 return ema;
2393}
2394EXPORT_SYMBOL(fc_exch_mgr_add);
2395
2396/**
2397 * fc_exch_mgr_destroy() - Destroy an exchange manager
2398 * @kref: The reference to the EM to be destroyed
2399 */
2400static void fc_exch_mgr_destroy(struct kref *kref)
2401{
2402 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2403
2404 mempool_destroy(mp->ep_pool);
2405 free_percpu(mp->pool);
2406 kfree(mp);
2407}
2408
2409/**
2410 * fc_exch_mgr_del() - Delete an EM from a local port's list
2411 * @ema: The exchange manager anchor identifying the EM to be deleted
2412 */
2413void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2414{
2415 /* remove EM anchor from EM anchors list */
2416 list_del(&ema->ema_list);
2417 kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2418 kfree(ema);
2419}
2420EXPORT_SYMBOL(fc_exch_mgr_del);
2421
2422/**
2423 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2424 * @src: Source lport to clone exchange managers from
2425 * @dst: New lport that takes references to all the exchange managers
2426 */
2427int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2428{
2429 struct fc_exch_mgr_anchor *ema, *tmp;
2430
2431 list_for_each_entry(ema, &src->ema_list, ema_list) {
2432 if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2433 goto err;
2434 }
2435 return 0;
2436err:
2437 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2438 fc_exch_mgr_del(ema);
2439 return -ENOMEM;
2440}
2441EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2442
2443/**
2444 * fc_exch_mgr_alloc() - Allocate an exchange manager
2445 * @lport: The local port that the new EM will be associated with
2446 * @class: The default FC class for new exchanges
2447 * @min_xid: The minimum XID for exchanges from the new EM
2448 * @max_xid: The maximum XID for exchanges from the new EM
2449 * @match: The match routine for the new EM
2450 */
2451struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2452 enum fc_class class,
2453 u16 min_xid, u16 max_xid,
2454 bool (*match)(struct fc_frame *))
2455{
2456 struct fc_exch_mgr *mp;
2457 u16 pool_exch_range;
2458 size_t pool_size;
2459 unsigned int cpu;
2460 struct fc_exch_pool *pool;
2461
2462 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2463 (min_xid & fc_cpu_mask) != 0) {
2464 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2465 min_xid, max_xid);
2466 return NULL;
2467 }
2468
2469 /*
2470 * allocate memory for EM
2471 */
2472 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2473 if (!mp)
2474 return NULL;
2475
2476 mp->class = class;
2477 mp->lport = lport;
2478 /* adjust em exch xid range for offload */
2479 mp->min_xid = min_xid;
2480
2481 /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2482 pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2483 sizeof(struct fc_exch *);
2484 if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2485 mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2486 min_xid - 1;
2487 } else {
2488 mp->max_xid = max_xid;
2489 pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2490 (fc_cpu_mask + 1);
2491 }
2492
2493 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2494 if (!mp->ep_pool)
2495 goto free_mp;
2496
2497 /*
2498 * Setup per cpu exch pool with entire exchange id range equally
2499 * divided across all cpus. The exch pointers array memory is
2500 * allocated for exch range per pool.
2501 */
2502 mp->pool_max_index = pool_exch_range - 1;
2503
2504 /*
2505 * Allocate and initialize per cpu exch pool
2506 */
2507 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2508 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2509 if (!mp->pool)
2510 goto free_mempool;
2511 for_each_possible_cpu(cpu) {
2512 pool = per_cpu_ptr(mp->pool, cpu);
2513 pool->next_index = 0;
2514 pool->left = FC_XID_UNKNOWN;
2515 pool->right = FC_XID_UNKNOWN;
2516 spin_lock_init(&pool->lock);
2517 INIT_LIST_HEAD(&pool->ex_list);
2518 }
2519
2520 kref_init(&mp->kref);
2521 if (!fc_exch_mgr_add(lport, mp, match)) {
2522 free_percpu(mp->pool);
2523 goto free_mempool;
2524 }
2525
2526 /*
2527 * Above kref_init() sets mp->kref to 1 and then
2528 * call to fc_exch_mgr_add incremented mp->kref again,
2529 * so adjust that extra increment.
2530 */
2531 kref_put(&mp->kref, fc_exch_mgr_destroy);
2532 return mp;
2533
2534free_mempool:
2535 mempool_destroy(mp->ep_pool);
2536free_mp:
2537 kfree(mp);
2538 return NULL;
2539}
2540EXPORT_SYMBOL(fc_exch_mgr_alloc);
2541
2542/**
2543 * fc_exch_mgr_free() - Free all exchange managers on a local port
2544 * @lport: The local port whose EMs are to be freed
2545 */
2546void fc_exch_mgr_free(struct fc_lport *lport)
2547{
2548 struct fc_exch_mgr_anchor *ema, *next;
2549
2550 flush_workqueue(fc_exch_workqueue);
2551 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2552 fc_exch_mgr_del(ema);
2553}
2554EXPORT_SYMBOL(fc_exch_mgr_free);
2555
2556/**
2557 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2558 * upon 'xid'.
2559 * @f_ctl: f_ctl
2560 * @lport: The local port the frame was received on
2561 * @fh: The received frame header
2562 */
2563static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2564 struct fc_lport *lport,
2565 struct fc_frame_header *fh)
2566{
2567 struct fc_exch_mgr_anchor *ema;
2568 u16 xid;
2569
2570 if (f_ctl & FC_FC_EX_CTX)
2571 xid = ntohs(fh->fh_ox_id);
2572 else {
2573 xid = ntohs(fh->fh_rx_id);
2574 if (xid == FC_XID_UNKNOWN)
2575 return list_entry(lport->ema_list.prev,
2576 typeof(*ema), ema_list);
2577 }
2578
2579 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2580 if ((xid >= ema->mp->min_xid) &&
2581 (xid <= ema->mp->max_xid))
2582 return ema;
2583 }
2584 return NULL;
2585}
2586/**
2587 * fc_exch_recv() - Handler for received frames
2588 * @lport: The local port the frame was received on
2589 * @fp: The received frame
2590 */
2591void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2592{
2593 struct fc_frame_header *fh = fc_frame_header_get(fp);
2594 struct fc_exch_mgr_anchor *ema;
2595 u32 f_ctl;
2596
2597 /* lport lock ? */
2598 if (!lport || lport->state == LPORT_ST_DISABLED) {
2599 FC_LIBFC_DBG("Receiving frames for an lport that "
2600 "has not been initialized correctly\n");
2601 fc_frame_free(fp);
2602 return;
2603 }
2604
2605 f_ctl = ntoh24(fh->fh_f_ctl);
2606 ema = fc_find_ema(f_ctl, lport, fh);
2607 if (!ema) {
2608 FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2609 "fc_ctl <0x%x>, xid <0x%x>\n",
2610 f_ctl,
2611 (f_ctl & FC_FC_EX_CTX) ?
2612 ntohs(fh->fh_ox_id) :
2613 ntohs(fh->fh_rx_id));
2614 fc_frame_free(fp);
2615 return;
2616 }
2617
2618 /*
2619 * If frame is marked invalid, just drop it.
2620 */
2621 switch (fr_eof(fp)) {
2622 case FC_EOF_T:
2623 if (f_ctl & FC_FC_END_SEQ)
2624 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2625 fallthrough;
2626 case FC_EOF_N:
2627 if (fh->fh_type == FC_TYPE_BLS)
2628 fc_exch_recv_bls(ema->mp, fp);
2629 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2630 FC_FC_EX_CTX)
2631 fc_exch_recv_seq_resp(ema->mp, fp);
2632 else if (f_ctl & FC_FC_SEQ_CTX)
2633 fc_exch_recv_resp(ema->mp, fp);
2634 else /* no EX_CTX and no SEQ_CTX */
2635 fc_exch_recv_req(lport, ema->mp, fp);
2636 break;
2637 default:
2638 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2639 fr_eof(fp));
2640 fc_frame_free(fp);
2641 }
2642}
2643EXPORT_SYMBOL(fc_exch_recv);
2644
2645/**
2646 * fc_exch_init() - Initialize the exchange layer for a local port
2647 * @lport: The local port to initialize the exchange layer for
2648 */
2649int fc_exch_init(struct fc_lport *lport)
2650{
2651 if (!lport->tt.exch_mgr_reset)
2652 lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2653
2654 return 0;
2655}
2656EXPORT_SYMBOL(fc_exch_init);
2657
2658/**
2659 * fc_setup_exch_mgr() - Setup an exchange manager
2660 */
2661int fc_setup_exch_mgr(void)
2662{
2663 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2664 0, SLAB_HWCACHE_ALIGN, NULL);
2665 if (!fc_em_cachep)
2666 return -ENOMEM;
2667
2668 /*
2669 * Initialize fc_cpu_mask and fc_cpu_order. The
2670 * fc_cpu_mask is set for nr_cpu_ids rounded up
2671 * to order of 2's * power and order is stored
2672 * in fc_cpu_order as this is later required in
2673 * mapping between an exch id and exch array index
2674 * in per cpu exch pool.
2675 *
2676 * This round up is required to align fc_cpu_mask
2677 * to exchange id's lower bits such that all incoming
2678 * frames of an exchange gets delivered to the same
2679 * cpu on which exchange originated by simple bitwise
2680 * AND operation between fc_cpu_mask and exchange id.
2681 */
2682 fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids));
2683 fc_cpu_mask = (1 << fc_cpu_order) - 1;
2684
2685 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2686 if (!fc_exch_workqueue)
2687 goto err;
2688 return 0;
2689err:
2690 kmem_cache_destroy(fc_em_cachep);
2691 return -ENOMEM;
2692}
2693
2694/**
2695 * fc_destroy_exch_mgr() - Destroy an exchange manager
2696 */
2697void fc_destroy_exch_mgr(void)
2698{
2699 destroy_workqueue(fc_exch_workqueue);
2700 kmem_cache_destroy(fc_em_cachep);
2701}