Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/slab.h>
  35#include <linux/delay.h>
  36#include <linux/blkdev.h>
 
  37#include <linux/seq_file.h>
  38#include <linux/ratelimit.h>
 
 
 
  39#include "md.h"
  40#include "raid1.h"
  41#include "bitmap.h"
  42
  43#define DEBUG 0
  44#define PRINTK(x...) do { if (DEBUG) printk(x); } while (0)
 
 
 
  45
  46/*
  47 * Number of guaranteed r1bios in case of extreme VM load:
  48 */
  49#define	NR_RAID1_BIOS 256
  50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51
  52static void allow_barrier(conf_t *conf);
  53static void lower_barrier(conf_t *conf);
 
 
 
 
 
 
 
 
  54
  55static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  56{
  57	struct pool_info *pi = data;
  58	int size = offsetof(r1bio_t, bios[pi->raid_disks]);
  59
  60	/* allocate a r1bio with room for raid_disks entries in the bios array */
  61	return kzalloc(size, gfp_flags);
  62}
  63
  64static void r1bio_pool_free(void *r1_bio, void *data)
  65{
  66	kfree(r1_bio);
  67}
  68
  69#define RESYNC_BLOCK_SIZE (64*1024)
  70//#define RESYNC_BLOCK_SIZE PAGE_SIZE
  71#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  72#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  73#define RESYNC_WINDOW (2048*1024)
 
 
  74
  75static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  76{
  77	struct pool_info *pi = data;
  78	struct page *page;
  79	r1bio_t *r1_bio;
  80	struct bio *bio;
  81	int i, j;
 
 
  82
  83	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
  84	if (!r1_bio)
  85		return NULL;
  86
 
 
 
 
 
  87	/*
  88	 * Allocate bios : 1 for reading, n-1 for writing
  89	 */
  90	for (j = pi->raid_disks ; j-- ; ) {
  91		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
  92		if (!bio)
  93			goto out_free_bio;
  94		r1_bio->bios[j] = bio;
  95	}
  96	/*
  97	 * Allocate RESYNC_PAGES data pages and attach them to
  98	 * the first bio.
  99	 * If this is a user-requested check/repair, allocate
 100	 * RESYNC_PAGES for each bio.
 101	 */
 102	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 103		j = pi->raid_disks;
 104	else
 105		j = 1;
 106	while(j--) {
 
 
 107		bio = r1_bio->bios[j];
 108		for (i = 0; i < RESYNC_PAGES; i++) {
 109			page = alloc_page(gfp_flags);
 110			if (unlikely(!page))
 111				goto out_free_pages;
 112
 113			bio->bi_io_vec[i].bv_page = page;
 114			bio->bi_vcnt = i+1;
 
 
 
 
 115		}
 116	}
 117	/* If not user-requests, copy the page pointers to all bios */
 118	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
 119		for (i=0; i<RESYNC_PAGES ; i++)
 120			for (j=1; j<pi->raid_disks; j++)
 121				r1_bio->bios[j]->bi_io_vec[i].bv_page =
 122					r1_bio->bios[0]->bi_io_vec[i].bv_page;
 123	}
 124
 125	r1_bio->master_bio = NULL;
 126
 127	return r1_bio;
 128
 129out_free_pages:
 130	for (j=0 ; j < pi->raid_disks; j++)
 131		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
 132			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
 133	j = -1;
 134out_free_bio:
 135	while ( ++j < pi->raid_disks )
 136		bio_put(r1_bio->bios[j]);
 
 
 
 137	r1bio_pool_free(r1_bio, data);
 138	return NULL;
 139}
 140
 141static void r1buf_pool_free(void *__r1_bio, void *data)
 142{
 143	struct pool_info *pi = data;
 144	int i,j;
 145	r1bio_t *r1bio = __r1_bio;
 
 146
 147	for (i = 0; i < RESYNC_PAGES; i++)
 148		for (j = pi->raid_disks; j-- ;) {
 149			if (j == 0 ||
 150			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
 151			    r1bio->bios[0]->bi_io_vec[i].bv_page)
 152				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
 153		}
 154	for (i=0 ; i < pi->raid_disks; i++)
 155		bio_put(r1bio->bios[i]);
 
 
 
 
 156
 157	r1bio_pool_free(r1bio, data);
 158}
 159
 160static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
 161{
 162	int i;
 163
 164	for (i = 0; i < conf->raid_disks; i++) {
 165		struct bio **bio = r1_bio->bios + i;
 166		if (!BIO_SPECIAL(*bio))
 167			bio_put(*bio);
 168		*bio = NULL;
 169	}
 170}
 171
 172static void free_r1bio(r1bio_t *r1_bio)
 173{
 174	conf_t *conf = r1_bio->mddev->private;
 175
 176	put_all_bios(conf, r1_bio);
 177	mempool_free(r1_bio, conf->r1bio_pool);
 178}
 179
 180static void put_buf(r1bio_t *r1_bio)
 181{
 182	conf_t *conf = r1_bio->mddev->private;
 
 183	int i;
 184
 185	for (i=0; i<conf->raid_disks; i++) {
 186		struct bio *bio = r1_bio->bios[i];
 187		if (bio->bi_end_io)
 188			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 189	}
 190
 191	mempool_free(r1_bio, conf->r1buf_pool);
 192
 193	lower_barrier(conf);
 194}
 195
 196static void reschedule_retry(r1bio_t *r1_bio)
 197{
 198	unsigned long flags;
 199	mddev_t *mddev = r1_bio->mddev;
 200	conf_t *conf = mddev->private;
 
 201
 
 202	spin_lock_irqsave(&conf->device_lock, flags);
 203	list_add(&r1_bio->retry_list, &conf->retry_list);
 204	conf->nr_queued ++;
 205	spin_unlock_irqrestore(&conf->device_lock, flags);
 206
 207	wake_up(&conf->wait_barrier);
 208	md_wakeup_thread(mddev->thread);
 209}
 210
 211/*
 212 * raid_end_bio_io() is called when we have finished servicing a mirrored
 213 * operation and are ready to return a success/failure code to the buffer
 214 * cache layer.
 215 */
 216static void call_bio_endio(r1bio_t *r1_bio)
 217{
 218	struct bio *bio = r1_bio->master_bio;
 219	int done;
 220	conf_t *conf = r1_bio->mddev->private;
 221
 222	if (bio->bi_phys_segments) {
 223		unsigned long flags;
 224		spin_lock_irqsave(&conf->device_lock, flags);
 225		bio->bi_phys_segments--;
 226		done = (bio->bi_phys_segments == 0);
 227		spin_unlock_irqrestore(&conf->device_lock, flags);
 228	} else
 229		done = 1;
 230
 231	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 232		clear_bit(BIO_UPTODATE, &bio->bi_flags);
 233	if (done) {
 234		bio_endio(bio, 0);
 235		/*
 236		 * Wake up any possible resync thread that waits for the device
 237		 * to go idle.
 238		 */
 239		allow_barrier(conf);
 240	}
 241}
 242
 243static void raid_end_bio_io(r1bio_t *r1_bio)
 244{
 245	struct bio *bio = r1_bio->master_bio;
 246
 247	/* if nobody has done the final endio yet, do it now */
 248	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 249		PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
 250			(bio_data_dir(bio) == WRITE) ? "write" : "read",
 251			(unsigned long long) bio->bi_sector,
 252			(unsigned long long) bio->bi_sector +
 253				(bio->bi_size >> 9) - 1);
 254
 255		call_bio_endio(r1_bio);
 256	}
 257	free_r1bio(r1_bio);
 258}
 259
 260/*
 261 * Update disk head position estimator based on IRQ completion info.
 262 */
 263static inline void update_head_pos(int disk, r1bio_t *r1_bio)
 264{
 265	conf_t *conf = r1_bio->mddev->private;
 266
 267	conf->mirrors[disk].head_position =
 268		r1_bio->sector + (r1_bio->sectors);
 269}
 270
 271static void raid1_end_read_request(struct bio *bio, int error)
 
 
 
 272{
 273	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 274	r1bio_t *r1_bio = bio->bi_private;
 275	int mirror;
 276	conf_t *conf = r1_bio->mddev->private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 277
 278	mirror = r1_bio->read_disk;
 279	/*
 280	 * this branch is our 'one mirror IO has finished' event handler:
 281	 */
 282	update_head_pos(mirror, r1_bio);
 283
 284	if (uptodate)
 285		set_bit(R1BIO_Uptodate, &r1_bio->state);
 
 
 
 
 
 286	else {
 287		/* If all other devices have failed, we want to return
 288		 * the error upwards rather than fail the last device.
 289		 * Here we redefine "uptodate" to mean "Don't want to retry"
 290		 */
 291		unsigned long flags;
 292		spin_lock_irqsave(&conf->device_lock, flags);
 293		if (r1_bio->mddev->degraded == conf->raid_disks ||
 294		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 295		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
 296			uptodate = 1;
 297		spin_unlock_irqrestore(&conf->device_lock, flags);
 298	}
 299
 300	if (uptodate)
 301		raid_end_bio_io(r1_bio);
 302	else {
 
 303		/*
 304		 * oops, read error:
 305		 */
 306		char b[BDEVNAME_SIZE];
 307		printk_ratelimited(
 308			KERN_ERR "md/raid1:%s: %s: "
 309			"rescheduling sector %llu\n",
 310			mdname(conf->mddev),
 311			bdevname(conf->mirrors[mirror].rdev->bdev,
 312				 b),
 313			(unsigned long long)r1_bio->sector);
 314		set_bit(R1BIO_ReadError, &r1_bio->state);
 315		reschedule_retry(r1_bio);
 
 316	}
 317
 318	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
 319}
 320
 321static void close_write(r1bio_t *r1_bio)
 322{
 323	/* it really is the end of this request */
 324	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 325		/* free extra copy of the data pages */
 326		int i = r1_bio->behind_page_count;
 327		while (i--)
 328			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
 329		kfree(r1_bio->behind_bvecs);
 330		r1_bio->behind_bvecs = NULL;
 331	}
 332	/* clear the bitmap if all writes complete successfully */
 333	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 334			r1_bio->sectors,
 335			!test_bit(R1BIO_Degraded, &r1_bio->state),
 336			test_bit(R1BIO_BehindIO, &r1_bio->state));
 337	md_write_end(r1_bio->mddev);
 338}
 339
 340static void r1_bio_write_done(r1bio_t *r1_bio)
 341{
 342	if (!atomic_dec_and_test(&r1_bio->remaining))
 343		return;
 344
 345	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 346		reschedule_retry(r1_bio);
 347	else {
 348		close_write(r1_bio);
 349		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 350			reschedule_retry(r1_bio);
 351		else
 352			raid_end_bio_io(r1_bio);
 353	}
 354}
 355
 356static void raid1_end_write_request(struct bio *bio, int error)
 357{
 358	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 359	r1bio_t *r1_bio = bio->bi_private;
 360	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 361	conf_t *conf = r1_bio->mddev->private;
 362	struct bio *to_put = NULL;
 
 
 
 363
 364
 365	for (mirror = 0; mirror < conf->raid_disks; mirror++)
 366		if (r1_bio->bios[mirror] == bio)
 367			break;
 368
 369	/*
 370	 * 'one mirror IO has finished' event handler:
 371	 */
 372	if (!uptodate) {
 373		set_bit(WriteErrorSeen,
 374			&conf->mirrors[mirror].rdev->flags);
 375		set_bit(R1BIO_WriteError, &r1_bio->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 376	} else {
 377		/*
 378		 * Set R1BIO_Uptodate in our master bio, so that we
 379		 * will return a good error code for to the higher
 380		 * levels even if IO on some other mirrored buffer
 381		 * fails.
 382		 *
 383		 * The 'master' represents the composite IO operation
 384		 * to user-side. So if something waits for IO, then it
 385		 * will wait for the 'master' bio.
 386		 */
 387		sector_t first_bad;
 388		int bad_sectors;
 389
 390		r1_bio->bios[mirror] = NULL;
 391		to_put = bio;
 392		set_bit(R1BIO_Uptodate, &r1_bio->state);
 
 
 
 
 
 
 
 
 
 
 393
 394		/* Maybe we can clear some bad blocks. */
 395		if (is_badblock(conf->mirrors[mirror].rdev,
 396				r1_bio->sector, r1_bio->sectors,
 397				&first_bad, &bad_sectors)) {
 398			r1_bio->bios[mirror] = IO_MADE_GOOD;
 399			set_bit(R1BIO_MadeGood, &r1_bio->state);
 400		}
 401	}
 402
 403	update_head_pos(mirror, r1_bio);
 404
 405	if (behind) {
 406		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
 407			atomic_dec(&r1_bio->behind_remaining);
 408
 409		/*
 410		 * In behind mode, we ACK the master bio once the I/O
 411		 * has safely reached all non-writemostly
 412		 * disks. Setting the Returned bit ensures that this
 413		 * gets done only once -- we don't ever want to return
 414		 * -EIO here, instead we'll wait
 415		 */
 416		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 417		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 418			/* Maybe we can return now */
 419			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 420				struct bio *mbio = r1_bio->master_bio;
 421				PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
 422				       (unsigned long long) mbio->bi_sector,
 423				       (unsigned long long) mbio->bi_sector +
 424				       (mbio->bi_size >> 9) - 1);
 425				call_bio_endio(r1_bio);
 426			}
 427		}
 428	}
 429	if (r1_bio->bios[mirror] == NULL)
 430		rdev_dec_pending(conf->mirrors[mirror].rdev,
 431				 conf->mddev);
 432
 433	/*
 434	 * Let's see if all mirrored write operations have finished
 435	 * already.
 436	 */
 437	r1_bio_write_done(r1_bio);
 438
 439	if (to_put)
 440		bio_put(to_put);
 441}
 442
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 443
 444/*
 445 * This routine returns the disk from which the requested read should
 446 * be done. There is a per-array 'next expected sequential IO' sector
 447 * number - if this matches on the next IO then we use the last disk.
 448 * There is also a per-disk 'last know head position' sector that is
 449 * maintained from IRQ contexts, both the normal and the resync IO
 450 * completion handlers update this position correctly. If there is no
 451 * perfect sequential match then we pick the disk whose head is closest.
 452 *
 453 * If there are 2 mirrors in the same 2 devices, performance degrades
 454 * because position is mirror, not device based.
 455 *
 456 * The rdev for the device selected will have nr_pending incremented.
 457 */
 458static int read_balance(conf_t *conf, r1bio_t *r1_bio, int *max_sectors)
 459{
 460	const sector_t this_sector = r1_bio->sector;
 461	int sectors;
 462	int best_good_sectors;
 463	int start_disk;
 464	int best_disk;
 465	int i;
 466	sector_t best_dist;
 467	mdk_rdev_t *rdev;
 
 468	int choose_first;
 
 469
 470	rcu_read_lock();
 471	/*
 472	 * Check if we can balance. We can balance on the whole
 473	 * device if no resync is going on, or below the resync window.
 474	 * We take the first readable disk when above the resync window.
 475	 */
 476 retry:
 477	sectors = r1_bio->sectors;
 478	best_disk = -1;
 
 479	best_dist = MaxSector;
 
 
 480	best_good_sectors = 0;
 481
 482	if (conf->mddev->recovery_cp < MaxSector &&
 483	    (this_sector + sectors >= conf->next_resync)) {
 
 
 
 
 
 484		choose_first = 1;
 485		start_disk = 0;
 486	} else {
 487		choose_first = 0;
 488		start_disk = conf->last_used;
 489	}
 490
 491	for (i = 0 ; i < conf->raid_disks ; i++) {
 492		sector_t dist;
 493		sector_t first_bad;
 494		int bad_sectors;
 495
 496		int disk = start_disk + i;
 497		if (disk >= conf->raid_disks)
 498			disk -= conf->raid_disks;
 499
 500		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 501		if (r1_bio->bios[disk] == IO_BLOCKED
 502		    || rdev == NULL
 503		    || test_bit(Faulty, &rdev->flags))
 504			continue;
 505		if (!test_bit(In_sync, &rdev->flags) &&
 506		    rdev->recovery_offset < this_sector + sectors)
 507			continue;
 508		if (test_bit(WriteMostly, &rdev->flags)) {
 509			/* Don't balance among write-mostly, just
 510			 * use the first as a last resort */
 511			if (best_disk < 0)
 512				best_disk = disk;
 
 
 
 
 
 
 
 
 
 
 513			continue;
 514		}
 515		/* This is a reasonable device to use.  It might
 516		 * even be best.
 517		 */
 518		if (is_badblock(rdev, this_sector, sectors,
 519				&first_bad, &bad_sectors)) {
 520			if (best_dist < MaxSector)
 521				/* already have a better device */
 522				continue;
 523			if (first_bad <= this_sector) {
 524				/* cannot read here. If this is the 'primary'
 525				 * device, then we must not read beyond
 526				 * bad_sectors from another device..
 527				 */
 528				bad_sectors -= (this_sector - first_bad);
 529				if (choose_first && sectors > bad_sectors)
 530					sectors = bad_sectors;
 531				if (best_good_sectors > sectors)
 532					best_good_sectors = sectors;
 533
 534			} else {
 535				sector_t good_sectors = first_bad - this_sector;
 536				if (good_sectors > best_good_sectors) {
 537					best_good_sectors = good_sectors;
 538					best_disk = disk;
 539				}
 540				if (choose_first)
 541					break;
 542			}
 543			continue;
 544		} else
 
 
 545			best_good_sectors = sectors;
 
 546
 
 
 
 
 
 
 
 547		dist = abs(this_sector - conf->mirrors[disk].head_position);
 548		if (choose_first
 549		    /* Don't change to another disk for sequential reads */
 550		    || conf->next_seq_sect == this_sector
 551		    || dist == 0
 552		    /* If device is idle, use it */
 553		    || atomic_read(&rdev->nr_pending) == 0) {
 
 
 
 
 554			best_disk = disk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555			break;
 556		}
 
 
 
 
 
 
 
 
 
 557		if (dist < best_dist) {
 558			best_dist = dist;
 559			best_disk = disk;
 560		}
 561	}
 562
 
 
 
 
 
 
 
 
 
 
 
 
 
 563	if (best_disk >= 0) {
 564		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 565		if (!rdev)
 566			goto retry;
 567		atomic_inc(&rdev->nr_pending);
 568		if (test_bit(Faulty, &rdev->flags)) {
 569			/* cannot risk returning a device that failed
 570			 * before we inc'ed nr_pending
 571			 */
 572			rdev_dec_pending(rdev, conf->mddev);
 573			goto retry;
 574		}
 575		sectors = best_good_sectors;
 576		conf->next_seq_sect = this_sector + sectors;
 577		conf->last_used = best_disk;
 
 
 
 578	}
 579	rcu_read_unlock();
 580	*max_sectors = sectors;
 581
 582	return best_disk;
 583}
 584
 585int md_raid1_congested(mddev_t *mddev, int bits)
 586{
 587	conf_t *conf = mddev->private;
 588	int i, ret = 0;
 589
 
 
 
 
 590	rcu_read_lock();
 591	for (i = 0; i < mddev->raid_disks; i++) {
 592		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
 593		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 594			struct request_queue *q = bdev_get_queue(rdev->bdev);
 595
 596			BUG_ON(!q);
 597
 598			/* Note the '|| 1' - when read_balance prefers
 599			 * non-congested targets, it can be removed
 600			 */
 601			if ((bits & (1<<BDI_async_congested)) || 1)
 602				ret |= bdi_congested(&q->backing_dev_info, bits);
 603			else
 604				ret &= bdi_congested(&q->backing_dev_info, bits);
 605		}
 606	}
 607	rcu_read_unlock();
 608	return ret;
 609}
 610EXPORT_SYMBOL_GPL(md_raid1_congested);
 611
 612static int raid1_congested(void *data, int bits)
 613{
 614	mddev_t *mddev = data;
 
 
 615
 616	return mddev_congested(mddev, bits) ||
 617		md_raid1_congested(mddev, bits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 618}
 619
 620static void flush_pending_writes(conf_t *conf)
 621{
 622	/* Any writes that have been queued but are awaiting
 623	 * bitmap updates get flushed here.
 624	 */
 625	spin_lock_irq(&conf->device_lock);
 626
 627	if (conf->pending_bio_list.head) {
 
 628		struct bio *bio;
 
 629		bio = bio_list_get(&conf->pending_bio_list);
 
 630		spin_unlock_irq(&conf->device_lock);
 631		/* flush any pending bitmap writes to
 632		 * disk before proceeding w/ I/O */
 633		bitmap_unplug(conf->mddev->bitmap);
 634
 635		while (bio) { /* submit pending writes */
 636			struct bio *next = bio->bi_next;
 637			bio->bi_next = NULL;
 638			generic_make_request(bio);
 639			bio = next;
 640		}
 
 
 
 
 641	} else
 642		spin_unlock_irq(&conf->device_lock);
 643}
 644
 645/* Barriers....
 646 * Sometimes we need to suspend IO while we do something else,
 647 * either some resync/recovery, or reconfigure the array.
 648 * To do this we raise a 'barrier'.
 649 * The 'barrier' is a counter that can be raised multiple times
 650 * to count how many activities are happening which preclude
 651 * normal IO.
 652 * We can only raise the barrier if there is no pending IO.
 653 * i.e. if nr_pending == 0.
 654 * We choose only to raise the barrier if no-one is waiting for the
 655 * barrier to go down.  This means that as soon as an IO request
 656 * is ready, no other operations which require a barrier will start
 657 * until the IO request has had a chance.
 658 *
 659 * So: regular IO calls 'wait_barrier'.  When that returns there
 660 *    is no backgroup IO happening,  It must arrange to call
 661 *    allow_barrier when it has finished its IO.
 662 * backgroup IO calls must call raise_barrier.  Once that returns
 663 *    there is no normal IO happeing.  It must arrange to call
 664 *    lower_barrier when the particular background IO completes.
 665 */
 666#define RESYNC_DEPTH 32
 667
 668static void raise_barrier(conf_t *conf)
 669{
 
 
 670	spin_lock_irq(&conf->resync_lock);
 671
 672	/* Wait until no block IO is waiting */
 673	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
 674			    conf->resync_lock, );
 
 675
 676	/* block any new IO from starting */
 677	conf->barrier++;
 678
 679	/* Now wait for all pending IO to complete */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 680	wait_event_lock_irq(conf->wait_barrier,
 681			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
 682			    conf->resync_lock, );
 
 
 
 
 
 
 
 
 
 
 683
 
 684	spin_unlock_irq(&conf->resync_lock);
 
 
 685}
 686
 687static void lower_barrier(conf_t *conf)
 688{
 689	unsigned long flags;
 690	BUG_ON(conf->barrier <= 0);
 691	spin_lock_irqsave(&conf->resync_lock, flags);
 692	conf->barrier--;
 693	spin_unlock_irqrestore(&conf->resync_lock, flags);
 
 694	wake_up(&conf->wait_barrier);
 695}
 696
 697static void wait_barrier(conf_t *conf)
 698{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699	spin_lock_irq(&conf->resync_lock);
 700	if (conf->barrier) {
 701		conf->nr_waiting++;
 702		wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
 703				    conf->resync_lock,
 704				    );
 705		conf->nr_waiting--;
 706	}
 707	conf->nr_pending++;
 
 
 
 
 
 
 708	spin_unlock_irq(&conf->resync_lock);
 709}
 710
 711static void allow_barrier(conf_t *conf)
 712{
 713	unsigned long flags;
 714	spin_lock_irqsave(&conf->resync_lock, flags);
 715	conf->nr_pending--;
 716	spin_unlock_irqrestore(&conf->resync_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 717	wake_up(&conf->wait_barrier);
 718}
 719
 720static void freeze_array(conf_t *conf)
 721{
 722	/* stop syncio and normal IO and wait for everything to
 723	 * go quite.
 724	 * We increment barrier and nr_waiting, and then
 725	 * wait until nr_pending match nr_queued+1
 726	 * This is called in the context of one normal IO request
 727	 * that has failed. Thus any sync request that might be pending
 728	 * will be blocked by nr_pending, and we need to wait for
 729	 * pending IO requests to complete or be queued for re-try.
 730	 * Thus the number queued (nr_queued) plus this request (1)
 731	 * must match the number of pending IOs (nr_pending) before
 732	 * we continue.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 733	 */
 734	spin_lock_irq(&conf->resync_lock);
 735	conf->barrier++;
 736	conf->nr_waiting++;
 737	wait_event_lock_irq(conf->wait_barrier,
 738			    conf->nr_pending == conf->nr_queued+1,
 739			    conf->resync_lock,
 740			    flush_pending_writes(conf));
 
 741	spin_unlock_irq(&conf->resync_lock);
 742}
 743static void unfreeze_array(conf_t *conf)
 744{
 745	/* reverse the effect of the freeze */
 746	spin_lock_irq(&conf->resync_lock);
 747	conf->barrier--;
 748	conf->nr_waiting--;
 749	wake_up(&conf->wait_barrier);
 750	spin_unlock_irq(&conf->resync_lock);
 
 751}
 752
 753
 754/* duplicate the data pages for behind I/O 
 755 */
 756static void alloc_behind_pages(struct bio *bio, r1bio_t *r1_bio)
 757{
 758	int i;
 759	struct bio_vec *bvec;
 760	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
 761					GFP_NOIO);
 762	if (unlikely(!bvecs))
 
 
 763		return;
 764
 765	bio_for_each_segment(bvec, bio, i) {
 766		bvecs[i] = *bvec;
 767		bvecs[i].bv_page = alloc_page(GFP_NOIO);
 768		if (unlikely(!bvecs[i].bv_page))
 769			goto do_sync_io;
 770		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
 771		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
 772		kunmap(bvecs[i].bv_page);
 773		kunmap(bvec->bv_page);
 774	}
 775	r1_bio->behind_bvecs = bvecs;
 776	r1_bio->behind_page_count = bio->bi_vcnt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 777	set_bit(R1BIO_BehindIO, &r1_bio->state);
 
 778	return;
 779
 780do_sync_io:
 781	for (i = 0; i < bio->bi_vcnt; i++)
 782		if (bvecs[i].bv_page)
 783			put_page(bvecs[i].bv_page);
 784	kfree(bvecs);
 785	PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786}
 787
 788static int make_request(mddev_t *mddev, struct bio * bio)
 789{
 790	conf_t *conf = mddev->private;
 791	mirror_info_t *mirror;
 792	r1bio_t *r1_bio;
 793	struct bio *read_bio;
 794	int i, disks;
 795	struct bitmap *bitmap;
 796	unsigned long flags;
 797	const int rw = bio_data_dir(bio);
 798	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
 799	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
 800	mdk_rdev_t *blocked_rdev;
 801	int plugged;
 802	int first_clone;
 803	int sectors_handled;
 804	int max_sectors;
 
 
 
 805
 806	/*
 807	 * Register the new request and wait if the reconstruction
 808	 * thread has put up a bar for new requests.
 809	 * Continue immediately if no resync is active currently.
 810	 */
 811
 812	md_write_start(mddev, bio); /* wait on superblock update early */
 813
 814	if (bio_data_dir(bio) == WRITE &&
 815	    bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
 816	    bio->bi_sector < mddev->suspend_hi) {
 817		/* As the suspend_* range is controlled by
 818		 * userspace, we want an interruptible
 819		 * wait.
 820		 */
 821		DEFINE_WAIT(w);
 822		for (;;) {
 823			flush_signals(current);
 824			prepare_to_wait(&conf->wait_barrier,
 825					&w, TASK_INTERRUPTIBLE);
 826			if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
 827			    bio->bi_sector >= mddev->suspend_hi)
 828				break;
 829			schedule();
 830		}
 831		finish_wait(&conf->wait_barrier, &w);
 832	}
 833
 834	wait_barrier(conf);
 
 
 
 
 835
 836	bitmap = mddev->bitmap;
 
 
 
 
 837
 838	/*
 839	 * make_request() can abort the operation when READA is being
 840	 * used and no empty request is available.
 841	 *
 842	 */
 843	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
 844
 845	r1_bio->master_bio = bio;
 846	r1_bio->sectors = bio->bi_size >> 9;
 847	r1_bio->state = 0;
 848	r1_bio->mddev = mddev;
 849	r1_bio->sector = bio->bi_sector;
 
 
 
 
 
 
 
 850
 851	/* We might need to issue multiple reads to different
 852	 * devices if there are bad blocks around, so we keep
 853	 * track of the number of reads in bio->bi_phys_segments.
 854	 * If this is 0, there is only one r1_bio and no locking
 855	 * will be needed when requests complete.  If it is
 856	 * non-zero, then it is the number of not-completed requests.
 857	 */
 858	bio->bi_phys_segments = 0;
 859	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
 860
 861	if (rw == READ) {
 
 862		/*
 863		 * read balancing logic:
 
 864		 */
 865		int rdisk;
 
 
 
 866
 867read_again:
 868		rdisk = read_balance(conf, r1_bio, &max_sectors);
 
 
 
 
 
 
 
 869
 870		if (rdisk < 0) {
 871			/* couldn't find anywhere to read from */
 872			raid_end_bio_io(r1_bio);
 873			return 0;
 874		}
 875		mirror = conf->mirrors + rdisk;
 876
 877		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
 878		    bitmap) {
 879			/* Reading from a write-mostly device must
 880			 * take care not to over-take any writes
 881			 * that are 'behind'
 882			 */
 883			wait_event(bitmap->behind_wait,
 884				   atomic_read(&bitmap->behind_writes) == 0);
 885		}
 886		r1_bio->read_disk = rdisk;
 887
 888		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
 889		md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
 890			    max_sectors);
 891
 892		r1_bio->bios[rdisk] = read_bio;
 893
 894		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
 895		read_bio->bi_bdev = mirror->rdev->bdev;
 896		read_bio->bi_end_io = raid1_end_read_request;
 897		read_bio->bi_rw = READ | do_sync;
 898		read_bio->bi_private = r1_bio;
 899
 900		if (max_sectors < r1_bio->sectors) {
 901			/* could not read all from this device, so we will
 902			 * need another r1_bio.
 903			 */
 904
 905			sectors_handled = (r1_bio->sector + max_sectors
 906					   - bio->bi_sector);
 907			r1_bio->sectors = max_sectors;
 908			spin_lock_irq(&conf->device_lock);
 909			if (bio->bi_phys_segments == 0)
 910				bio->bi_phys_segments = 2;
 911			else
 912				bio->bi_phys_segments++;
 913			spin_unlock_irq(&conf->device_lock);
 914			/* Cannot call generic_make_request directly
 915			 * as that will be queued in __make_request
 916			 * and subsequent mempool_alloc might block waiting
 917			 * for it.  So hand bio over to raid1d.
 918			 */
 919			reschedule_retry(r1_bio);
 920
 921			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
 
 
 922
 923			r1_bio->master_bio = bio;
 924			r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
 925			r1_bio->state = 0;
 926			r1_bio->mddev = mddev;
 927			r1_bio->sector = bio->bi_sector + sectors_handled;
 928			goto read_again;
 929		} else
 930			generic_make_request(read_bio);
 931		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 932	}
 933
 934	/*
 935	 * WRITE:
 
 
 936	 */
 
 
 
 
 
 
 
 
 
 
 
 937	/* first select target devices under rcu_lock and
 938	 * inc refcount on their rdev.  Record them by setting
 939	 * bios[x] to bio
 940	 * If there are known/acknowledged bad blocks on any device on
 941	 * which we have seen a write error, we want to avoid writing those
 942	 * blocks.
 943	 * This potentially requires several writes to write around
 944	 * the bad blocks.  Each set of writes gets it's own r1bio
 945	 * with a set of bios attached.
 946	 */
 947	plugged = mddev_check_plugged(mddev);
 948
 949	disks = conf->raid_disks;
 950 retry_write:
 951	blocked_rdev = NULL;
 952	rcu_read_lock();
 953	max_sectors = r1_bio->sectors;
 954	for (i = 0;  i < disks; i++) {
 955		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
 956		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
 957			atomic_inc(&rdev->nr_pending);
 958			blocked_rdev = rdev;
 959			break;
 960		}
 961		r1_bio->bios[i] = NULL;
 962		if (!rdev || test_bit(Faulty, &rdev->flags)) {
 963			set_bit(R1BIO_Degraded, &r1_bio->state);
 
 964			continue;
 965		}
 966
 967		atomic_inc(&rdev->nr_pending);
 968		if (test_bit(WriteErrorSeen, &rdev->flags)) {
 969			sector_t first_bad;
 970			int bad_sectors;
 971			int is_bad;
 972
 973			is_bad = is_badblock(rdev, r1_bio->sector,
 974					     max_sectors,
 975					     &first_bad, &bad_sectors);
 976			if (is_bad < 0) {
 977				/* mustn't write here until the bad block is
 978				 * acknowledged*/
 979				set_bit(BlockedBadBlocks, &rdev->flags);
 980				blocked_rdev = rdev;
 981				break;
 982			}
 983			if (is_bad && first_bad <= r1_bio->sector) {
 984				/* Cannot write here at all */
 985				bad_sectors -= (r1_bio->sector - first_bad);
 986				if (bad_sectors < max_sectors)
 987					/* mustn't write more than bad_sectors
 988					 * to other devices yet
 989					 */
 990					max_sectors = bad_sectors;
 991				rdev_dec_pending(rdev, mddev);
 992				/* We don't set R1BIO_Degraded as that
 993				 * only applies if the disk is
 994				 * missing, so it might be re-added,
 995				 * and we want to know to recover this
 996				 * chunk.
 997				 * In this case the device is here,
 998				 * and the fact that this chunk is not
 999				 * in-sync is recorded in the bad
1000				 * block log
1001				 */
1002				continue;
1003			}
1004			if (is_bad) {
1005				int good_sectors = first_bad - r1_bio->sector;
1006				if (good_sectors < max_sectors)
1007					max_sectors = good_sectors;
1008			}
1009		}
1010		r1_bio->bios[i] = bio;
1011	}
1012	rcu_read_unlock();
1013
1014	if (unlikely(blocked_rdev)) {
1015		/* Wait for this device to become unblocked */
1016		int j;
1017
1018		for (j = 0; j < i; j++)
1019			if (r1_bio->bios[j])
1020				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1021		r1_bio->state = 0;
1022		allow_barrier(conf);
 
1023		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1024		wait_barrier(conf);
1025		goto retry_write;
1026	}
1027
1028	if (max_sectors < r1_bio->sectors) {
1029		/* We are splitting this write into multiple parts, so
1030		 * we need to prepare for allocating another r1_bio.
1031		 */
 
 
 
1032		r1_bio->sectors = max_sectors;
1033		spin_lock_irq(&conf->device_lock);
1034		if (bio->bi_phys_segments == 0)
1035			bio->bi_phys_segments = 2;
1036		else
1037			bio->bi_phys_segments++;
1038		spin_unlock_irq(&conf->device_lock);
1039	}
1040	sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1041
1042	atomic_set(&r1_bio->remaining, 1);
1043	atomic_set(&r1_bio->behind_remaining, 0);
1044
1045	first_clone = 1;
 
1046	for (i = 0; i < disks; i++) {
1047		struct bio *mbio;
1048		if (!r1_bio->bios[i])
1049			continue;
1050
1051		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1052		md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1053
1054		if (first_clone) {
1055			/* do behind I/O ?
1056			 * Not if there are too many, or cannot
1057			 * allocate memory, or a reader on WriteMostly
1058			 * is waiting for behind writes to flush */
1059			if (bitmap &&
1060			    (atomic_read(&bitmap->behind_writes)
1061			     < mddev->bitmap_info.max_write_behind) &&
1062			    !waitqueue_active(&bitmap->behind_wait))
1063				alloc_behind_pages(mbio, r1_bio);
 
1064
1065			bitmap_startwrite(bitmap, r1_bio->sector,
1066					  r1_bio->sectors,
1067					  test_bit(R1BIO_BehindIO,
1068						   &r1_bio->state));
1069			first_clone = 0;
1070		}
1071		if (r1_bio->behind_bvecs) {
1072			struct bio_vec *bvec;
1073			int j;
1074
1075			/* Yes, I really want the '__' version so that
1076			 * we clear any unused pointer in the io_vec, rather
1077			 * than leave them unchanged.  This is important
1078			 * because when we come to free the pages, we won't
1079			 * know the original bi_idx, so we just free
1080			 * them all
1081			 */
1082			__bio_for_each_segment(bvec, mbio, j, 0)
1083				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1084			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1085				atomic_inc(&r1_bio->behind_remaining);
1086		}
1087
1088		r1_bio->bios[i] = mbio;
1089
1090		mbio->bi_sector	= (r1_bio->sector +
1091				   conf->mirrors[i].rdev->data_offset);
1092		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1093		mbio->bi_end_io	= raid1_end_write_request;
1094		mbio->bi_rw = WRITE | do_flush_fua | do_sync;
 
 
 
 
1095		mbio->bi_private = r1_bio;
1096
1097		atomic_inc(&r1_bio->remaining);
1098		spin_lock_irqsave(&conf->device_lock, flags);
1099		bio_list_add(&conf->pending_bio_list, mbio);
1100		spin_unlock_irqrestore(&conf->device_lock, flags);
1101	}
1102	/* Mustn't call r1_bio_write_done before this next test,
1103	 * as it could result in the bio being freed.
1104	 */
1105	if (sectors_handled < (bio->bi_size >> 9)) {
1106		r1_bio_write_done(r1_bio);
1107		/* We need another r1_bio.  It has already been counted
1108		 * in bio->bi_phys_segments
1109		 */
1110		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1111		r1_bio->master_bio = bio;
1112		r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1113		r1_bio->state = 0;
1114		r1_bio->mddev = mddev;
1115		r1_bio->sector = bio->bi_sector + sectors_handled;
1116		goto retry_write;
 
 
 
 
1117	}
1118
1119	r1_bio_write_done(r1_bio);
1120
1121	/* In case raid1d snuck in to freeze_array */
1122	wake_up(&conf->wait_barrier);
 
1123
1124	if (do_sync || !bitmap || !plugged)
1125		md_wakeup_thread(mddev->thread);
 
1126
1127	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128}
1129
1130static void status(struct seq_file *seq, mddev_t *mddev)
1131{
1132	conf_t *conf = mddev->private;
1133	int i;
1134
1135	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1136		   conf->raid_disks - mddev->degraded);
1137	rcu_read_lock();
1138	for (i = 0; i < conf->raid_disks; i++) {
1139		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1140		seq_printf(seq, "%s",
1141			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1142	}
1143	rcu_read_unlock();
1144	seq_printf(seq, "]");
1145}
1146
1147
1148static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1149{
1150	char b[BDEVNAME_SIZE];
1151	conf_t *conf = mddev->private;
 
1152
1153	/*
1154	 * If it is not operational, then we have already marked it as dead
1155	 * else if it is the last working disks, ignore the error, let the
1156	 * next level up know.
1157	 * else mark the drive as failed
1158	 */
 
1159	if (test_bit(In_sync, &rdev->flags)
1160	    && (conf->raid_disks - mddev->degraded) == 1) {
1161		/*
1162		 * Don't fail the drive, act as though we were just a
1163		 * normal single drive.
1164		 * However don't try a recovery from this drive as
1165		 * it is very likely to fail.
1166		 */
1167		conf->recovery_disabled = mddev->recovery_disabled;
 
1168		return;
1169	}
1170	set_bit(Blocked, &rdev->flags);
1171	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1172		unsigned long flags;
1173		spin_lock_irqsave(&conf->device_lock, flags);
1174		mddev->degraded++;
1175		set_bit(Faulty, &rdev->flags);
1176		spin_unlock_irqrestore(&conf->device_lock, flags);
1177		/*
1178		 * if recovery is running, make sure it aborts.
1179		 */
1180		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1181	} else
1182		set_bit(Faulty, &rdev->flags);
1183	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1184	printk(KERN_ALERT
1185	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1186	       "md/raid1:%s: Operation continuing on %d devices.\n",
1187	       mdname(mddev), bdevname(rdev->bdev, b),
1188	       mdname(mddev), conf->raid_disks - mddev->degraded);
 
 
 
 
 
1189}
1190
1191static void print_conf(conf_t *conf)
1192{
1193	int i;
1194
1195	printk(KERN_DEBUG "RAID1 conf printout:\n");
1196	if (!conf) {
1197		printk(KERN_DEBUG "(!conf)\n");
1198		return;
1199	}
1200	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1201		conf->raid_disks);
1202
1203	rcu_read_lock();
1204	for (i = 0; i < conf->raid_disks; i++) {
1205		char b[BDEVNAME_SIZE];
1206		mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1207		if (rdev)
1208			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1209			       i, !test_bit(In_sync, &rdev->flags),
1210			       !test_bit(Faulty, &rdev->flags),
1211			       bdevname(rdev->bdev,b));
1212	}
1213	rcu_read_unlock();
1214}
1215
1216static void close_sync(conf_t *conf)
1217{
1218	wait_barrier(conf);
1219	allow_barrier(conf);
 
 
 
 
1220
1221	mempool_destroy(conf->r1buf_pool);
1222	conf->r1buf_pool = NULL;
1223}
1224
1225static int raid1_spare_active(mddev_t *mddev)
1226{
1227	int i;
1228	conf_t *conf = mddev->private;
1229	int count = 0;
1230	unsigned long flags;
1231
1232	/*
1233	 * Find all failed disks within the RAID1 configuration 
1234	 * and mark them readable.
1235	 * Called under mddev lock, so rcu protection not needed.
 
 
1236	 */
 
1237	for (i = 0; i < conf->raid_disks; i++) {
1238		mdk_rdev_t *rdev = conf->mirrors[i].rdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1239		if (rdev
 
1240		    && !test_bit(Faulty, &rdev->flags)
1241		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1242			count++;
1243			sysfs_notify_dirent_safe(rdev->sysfs_state);
1244		}
1245	}
1246	spin_lock_irqsave(&conf->device_lock, flags);
1247	mddev->degraded -= count;
1248	spin_unlock_irqrestore(&conf->device_lock, flags);
1249
1250	print_conf(conf);
1251	return count;
1252}
1253
1254
1255static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1256{
1257	conf_t *conf = mddev->private;
1258	int err = -EEXIST;
1259	int mirror = 0;
1260	mirror_info_t *p;
1261	int first = 0;
1262	int last = mddev->raid_disks - 1;
1263
1264	if (mddev->recovery_disabled == conf->recovery_disabled)
1265		return -EBUSY;
1266
 
 
 
1267	if (rdev->raid_disk >= 0)
1268		first = last = rdev->raid_disk;
1269
1270	for (mirror = first; mirror <= last; mirror++)
1271		if ( !(p=conf->mirrors+mirror)->rdev) {
1272
1273			disk_stack_limits(mddev->gendisk, rdev->bdev,
1274					  rdev->data_offset << 9);
1275			/* as we don't honour merge_bvec_fn, we must
1276			 * never risk violating it, so limit
1277			 * ->max_segments to one lying with a single
1278			 * page, as a one page request is never in
1279			 * violation.
1280			 */
1281			if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1282				blk_queue_max_segments(mddev->queue, 1);
1283				blk_queue_segment_boundary(mddev->queue,
1284							   PAGE_CACHE_SIZE - 1);
1285			}
1286
1287			p->head_position = 0;
1288			rdev->raid_disk = mirror;
1289			err = 0;
1290			/* As all devices are equivalent, we don't need a full recovery
1291			 * if this was recently any drive of the array
1292			 */
1293			if (rdev->saved_raid_disk < 0)
1294				conf->fullsync = 1;
1295			rcu_assign_pointer(p->rdev, rdev);
1296			break;
1297		}
1298	md_integrity_add_rdev(rdev, mddev);
 
 
 
 
 
 
 
 
 
 
 
 
 
1299	print_conf(conf);
1300	return err;
1301}
1302
1303static int raid1_remove_disk(mddev_t *mddev, int number)
1304{
1305	conf_t *conf = mddev->private;
1306	int err = 0;
1307	mdk_rdev_t *rdev;
1308	mirror_info_t *p = conf->mirrors+ number;
 
 
 
1309
1310	print_conf(conf);
1311	rdev = p->rdev;
1312	if (rdev) {
1313		if (test_bit(In_sync, &rdev->flags) ||
1314		    atomic_read(&rdev->nr_pending)) {
1315			err = -EBUSY;
1316			goto abort;
1317		}
1318		/* Only remove non-faulty devices if recovery
1319		 * is not possible.
1320		 */
1321		if (!test_bit(Faulty, &rdev->flags) &&
1322		    mddev->recovery_disabled != conf->recovery_disabled &&
1323		    mddev->degraded < conf->raid_disks) {
1324			err = -EBUSY;
1325			goto abort;
1326		}
1327		p->rdev = NULL;
1328		synchronize_rcu();
1329		if (atomic_read(&rdev->nr_pending)) {
1330			/* lost the race, try later */
1331			err = -EBUSY;
1332			p->rdev = rdev;
1333			goto abort;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1334		}
 
 
1335		err = md_integrity_register(mddev);
1336	}
1337abort:
1338
1339	print_conf(conf);
1340	return err;
1341}
1342
1343
1344static void end_sync_read(struct bio *bio, int error)
1345{
1346	r1bio_t *r1_bio = bio->bi_private;
1347	int i;
 
1348
1349	for (i=r1_bio->mddev->raid_disks; i--; )
1350		if (r1_bio->bios[i] == bio)
1351			break;
1352	BUG_ON(i < 0);
1353	update_head_pos(i, r1_bio);
1354	/*
1355	 * we have read a block, now it needs to be re-written,
1356	 * or re-read if the read failed.
1357	 * We don't do much here, just schedule handling by raid1d
1358	 */
1359	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1360		set_bit(R1BIO_Uptodate, &r1_bio->state);
1361
1362	if (atomic_dec_and_test(&r1_bio->remaining))
1363		reschedule_retry(r1_bio);
1364}
1365
1366static void end_sync_write(struct bio *bio, int error)
1367{
1368	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1369	r1bio_t *r1_bio = bio->bi_private;
1370	mddev_t *mddev = r1_bio->mddev;
1371	conf_t *conf = mddev->private;
1372	int i;
1373	int mirror=0;
1374	sector_t first_bad;
1375	int bad_sectors;
 
1376
1377	for (i = 0; i < conf->raid_disks; i++)
1378		if (r1_bio->bios[i] == bio) {
1379			mirror = i;
1380			break;
1381		}
1382	if (!uptodate) {
1383		sector_t sync_blocks = 0;
1384		sector_t s = r1_bio->sector;
1385		long sectors_to_go = r1_bio->sectors;
1386		/* make sure these bits doesn't get cleared. */
1387		do {
1388			bitmap_end_sync(mddev->bitmap, s,
1389					&sync_blocks, 1);
1390			s += sync_blocks;
1391			sectors_to_go -= sync_blocks;
1392		} while (sectors_to_go > 0);
1393		set_bit(WriteErrorSeen,
1394			&conf->mirrors[mirror].rdev->flags);
 
 
1395		set_bit(R1BIO_WriteError, &r1_bio->state);
1396	} else if (is_badblock(conf->mirrors[mirror].rdev,
1397			       r1_bio->sector,
1398			       r1_bio->sectors,
1399			       &first_bad, &bad_sectors) &&
1400		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1401				r1_bio->sector,
1402				r1_bio->sectors,
1403				&first_bad, &bad_sectors)
1404		)
1405		set_bit(R1BIO_MadeGood, &r1_bio->state);
1406
1407	update_head_pos(mirror, r1_bio);
1408
1409	if (atomic_dec_and_test(&r1_bio->remaining)) {
1410		int s = r1_bio->sectors;
1411		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1412		    test_bit(R1BIO_WriteError, &r1_bio->state))
1413			reschedule_retry(r1_bio);
1414		else {
1415			put_buf(r1_bio);
1416			md_done_sync(mddev, s, uptodate);
1417		}
1418	}
1419}
1420
1421static int r1_sync_page_io(mdk_rdev_t *rdev, sector_t sector,
1422			    int sectors, struct page *page, int rw)
1423{
1424	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1425		/* success */
1426		return 1;
1427	if (rw == WRITE)
1428		set_bit(WriteErrorSeen, &rdev->flags);
 
 
 
 
 
1429	/* need to record an error - either for the block or the device */
1430	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1431		md_error(rdev->mddev, rdev);
1432	return 0;
1433}
1434
1435static int fix_sync_read_error(r1bio_t *r1_bio)
1436{
1437	/* Try some synchronous reads of other devices to get
1438	 * good data, much like with normal read errors.  Only
1439	 * read into the pages we already have so we don't
1440	 * need to re-issue the read request.
1441	 * We don't need to freeze the array, because being in an
1442	 * active sync request, there is no normal IO, and
1443	 * no overlapping syncs.
1444	 * We don't need to check is_badblock() again as we
1445	 * made sure that anything with a bad block in range
1446	 * will have bi_end_io clear.
1447	 */
1448	mddev_t *mddev = r1_bio->mddev;
1449	conf_t *conf = mddev->private;
1450	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
 
1451	sector_t sect = r1_bio->sector;
1452	int sectors = r1_bio->sectors;
1453	int idx = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1454
1455	while(sectors) {
1456		int s = sectors;
1457		int d = r1_bio->read_disk;
1458		int success = 0;
1459		mdk_rdev_t *rdev;
1460		int start;
1461
1462		if (s > (PAGE_SIZE>>9))
1463			s = PAGE_SIZE >> 9;
1464		do {
1465			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1466				/* No rcu protection needed here devices
1467				 * can only be removed when no resync is
1468				 * active, and resync is currently active
1469				 */
1470				rdev = conf->mirrors[d].rdev;
1471				if (sync_page_io(rdev, sect, s<<9,
1472						 bio->bi_io_vec[idx].bv_page,
1473						 READ, false)) {
1474					success = 1;
1475					break;
1476				}
1477			}
1478			d++;
1479			if (d == conf->raid_disks)
1480				d = 0;
1481		} while (!success && d != r1_bio->read_disk);
1482
1483		if (!success) {
1484			char b[BDEVNAME_SIZE];
1485			int abort = 0;
1486			/* Cannot read from anywhere, this block is lost.
1487			 * Record a bad block on each device.  If that doesn't
1488			 * work just disable and interrupt the recovery.
1489			 * Don't fail devices as that won't really help.
1490			 */
1491			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1492			       " for block %llu\n",
1493			       mdname(mddev),
1494			       bdevname(bio->bi_bdev, b),
1495			       (unsigned long long)r1_bio->sector);
1496			for (d = 0; d < conf->raid_disks; d++) {
1497				rdev = conf->mirrors[d].rdev;
1498				if (!rdev || test_bit(Faulty, &rdev->flags))
1499					continue;
1500				if (!rdev_set_badblocks(rdev, sect, s, 0))
1501					abort = 1;
1502			}
1503			if (abort) {
1504				mddev->recovery_disabled = 1;
 
1505				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1506				md_done_sync(mddev, r1_bio->sectors, 0);
1507				put_buf(r1_bio);
1508				return 0;
1509			}
1510			/* Try next page */
1511			sectors -= s;
1512			sect += s;
1513			idx++;
1514			continue;
1515		}
1516
1517		start = d;
1518		/* write it back and re-read */
1519		while (d != r1_bio->read_disk) {
1520			if (d == 0)
1521				d = conf->raid_disks;
1522			d--;
1523			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1524				continue;
1525			rdev = conf->mirrors[d].rdev;
1526			if (r1_sync_page_io(rdev, sect, s,
1527					    bio->bi_io_vec[idx].bv_page,
1528					    WRITE) == 0) {
1529				r1_bio->bios[d]->bi_end_io = NULL;
1530				rdev_dec_pending(rdev, mddev);
1531			}
1532		}
1533		d = start;
1534		while (d != r1_bio->read_disk) {
1535			if (d == 0)
1536				d = conf->raid_disks;
1537			d--;
1538			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1539				continue;
1540			rdev = conf->mirrors[d].rdev;
1541			if (r1_sync_page_io(rdev, sect, s,
1542					    bio->bi_io_vec[idx].bv_page,
1543					    READ) != 0)
1544				atomic_add(s, &rdev->corrected_errors);
1545		}
1546		sectors -= s;
1547		sect += s;
1548		idx ++;
1549	}
1550	set_bit(R1BIO_Uptodate, &r1_bio->state);
1551	set_bit(BIO_UPTODATE, &bio->bi_flags);
1552	return 1;
1553}
1554
1555static int process_checks(r1bio_t *r1_bio)
1556{
1557	/* We have read all readable devices.  If we haven't
1558	 * got the block, then there is no hope left.
1559	 * If we have, then we want to do a comparison
1560	 * and skip the write if everything is the same.
1561	 * If any blocks failed to read, then we need to
1562	 * attempt an over-write
1563	 */
1564	mddev_t *mddev = r1_bio->mddev;
1565	conf_t *conf = mddev->private;
1566	int primary;
1567	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1568
1569	for (primary = 0; primary < conf->raid_disks; primary++)
 
 
 
1570		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1571		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1572			r1_bio->bios[primary]->bi_end_io = NULL;
1573			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1574			break;
1575		}
1576	r1_bio->read_disk = primary;
1577	for (i = 0; i < conf->raid_disks; i++) {
1578		int j;
1579		int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1580		struct bio *pbio = r1_bio->bios[primary];
1581		struct bio *sbio = r1_bio->bios[i];
1582		int size;
 
 
 
 
1583
1584		if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1585			continue;
 
 
1586
1587		if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
 
 
 
1588			for (j = vcnt; j-- ; ) {
1589				struct page *p, *s;
1590				p = pbio->bi_io_vec[j].bv_page;
1591				s = sbio->bi_io_vec[j].bv_page;
1592				if (memcmp(page_address(p),
1593					   page_address(s),
1594					   PAGE_SIZE))
1595					break;
1596			}
1597		} else
1598			j = 0;
1599		if (j >= 0)
1600			mddev->resync_mismatches += r1_bio->sectors;
1601		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1602			      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1603			/* No need to write to this device. */
1604			sbio->bi_end_io = NULL;
1605			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1606			continue;
1607		}
1608		/* fixup the bio for reuse */
1609		sbio->bi_vcnt = vcnt;
1610		sbio->bi_size = r1_bio->sectors << 9;
1611		sbio->bi_idx = 0;
1612		sbio->bi_phys_segments = 0;
1613		sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1614		sbio->bi_flags |= 1 << BIO_UPTODATE;
1615		sbio->bi_next = NULL;
1616		sbio->bi_sector = r1_bio->sector +
1617			conf->mirrors[i].rdev->data_offset;
1618		sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1619		size = sbio->bi_size;
1620		for (j = 0; j < vcnt ; j++) {
1621			struct bio_vec *bi;
1622			bi = &sbio->bi_io_vec[j];
1623			bi->bv_offset = 0;
1624			if (size > PAGE_SIZE)
1625				bi->bv_len = PAGE_SIZE;
1626			else
1627				bi->bv_len = size;
1628			size -= PAGE_SIZE;
1629			memcpy(page_address(bi->bv_page),
1630			       page_address(pbio->bi_io_vec[j].bv_page),
1631			       PAGE_SIZE);
1632		}
1633	}
1634	return 0;
1635}
1636
1637static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1638{
1639	conf_t *conf = mddev->private;
1640	int i;
1641	int disks = conf->raid_disks;
1642	struct bio *bio, *wbio;
1643
1644	bio = r1_bio->bios[r1_bio->read_disk];
1645
1646	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1647		/* ouch - failed to read all of that. */
1648		if (!fix_sync_read_error(r1_bio))
1649			return;
1650
1651	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1652		if (process_checks(r1_bio) < 0)
1653			return;
1654	/*
1655	 * schedule writes
1656	 */
1657	atomic_set(&r1_bio->remaining, 1);
1658	for (i = 0; i < disks ; i++) {
1659		wbio = r1_bio->bios[i];
1660		if (wbio->bi_end_io == NULL ||
1661		    (wbio->bi_end_io == end_sync_read &&
1662		     (i == r1_bio->read_disk ||
1663		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1664			continue;
 
 
 
 
 
 
1665
1666		wbio->bi_rw = WRITE;
1667		wbio->bi_end_io = end_sync_write;
1668		atomic_inc(&r1_bio->remaining);
1669		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1670
1671		generic_make_request(wbio);
1672	}
1673
1674	if (atomic_dec_and_test(&r1_bio->remaining)) {
1675		/* if we're here, all write(s) have completed, so clean up */
1676		md_done_sync(mddev, r1_bio->sectors, 1);
1677		put_buf(r1_bio);
 
 
 
 
 
 
1678	}
1679}
1680
1681/*
1682 * This is a kernel thread which:
1683 *
1684 *	1.	Retries failed read operations on working mirrors.
1685 *	2.	Updates the raid superblock when problems encounter.
1686 *	3.	Performs writes following reads for array synchronising.
1687 */
1688
1689static void fix_read_error(conf_t *conf, int read_disk,
1690			   sector_t sect, int sectors)
1691{
1692	mddev_t *mddev = conf->mddev;
1693	while(sectors) {
1694		int s = sectors;
1695		int d = read_disk;
1696		int success = 0;
1697		int start;
1698		mdk_rdev_t *rdev;
1699
1700		if (s > (PAGE_SIZE>>9))
1701			s = PAGE_SIZE >> 9;
1702
1703		do {
1704			/* Note: no rcu protection needed here
1705			 * as this is synchronous in the raid1d thread
1706			 * which is the thread that might remove
1707			 * a device.  If raid1d ever becomes multi-threaded....
1708			 */
1709			sector_t first_bad;
1710			int bad_sectors;
1711
1712			rdev = conf->mirrors[d].rdev;
 
1713			if (rdev &&
1714			    test_bit(In_sync, &rdev->flags) &&
 
 
1715			    is_badblock(rdev, sect, s,
1716					&first_bad, &bad_sectors) == 0 &&
1717			    sync_page_io(rdev, sect, s<<9,
1718					 conf->tmppage, READ, false))
1719				success = 1;
1720			else {
1721				d++;
1722				if (d == conf->raid_disks)
1723					d = 0;
1724			}
 
 
 
 
 
1725		} while (!success && d != read_disk);
1726
1727		if (!success) {
1728			/* Cannot read from anywhere - mark it bad */
1729			mdk_rdev_t *rdev = conf->mirrors[read_disk].rdev;
1730			if (!rdev_set_badblocks(rdev, sect, s, 0))
1731				md_error(mddev, rdev);
1732			break;
1733		}
1734		/* write it back and re-read */
1735		start = d;
1736		while (d != read_disk) {
1737			if (d==0)
1738				d = conf->raid_disks;
1739			d--;
1740			rdev = conf->mirrors[d].rdev;
 
1741			if (rdev &&
1742			    test_bit(In_sync, &rdev->flags))
 
 
1743				r1_sync_page_io(rdev, sect, s,
1744						conf->tmppage, WRITE);
 
 
 
1745		}
1746		d = start;
1747		while (d != read_disk) {
1748			char b[BDEVNAME_SIZE];
1749			if (d==0)
1750				d = conf->raid_disks;
1751			d--;
1752			rdev = conf->mirrors[d].rdev;
 
1753			if (rdev &&
1754			    test_bit(In_sync, &rdev->flags)) {
 
 
1755				if (r1_sync_page_io(rdev, sect, s,
1756						    conf->tmppage, READ)) {
1757					atomic_add(s, &rdev->corrected_errors);
1758					printk(KERN_INFO
1759					       "md/raid1:%s: read error corrected "
1760					       "(%d sectors at %llu on %s)\n",
1761					       mdname(mddev), s,
1762					       (unsigned long long)(sect +
1763					           rdev->data_offset),
1764					       bdevname(rdev->bdev, b));
1765				}
1766			}
 
 
1767		}
1768		sectors -= s;
1769		sect += s;
1770	}
1771}
1772
1773static void bi_complete(struct bio *bio, int error)
1774{
1775	complete((struct completion *)bio->bi_private);
1776}
1777
1778static int submit_bio_wait(int rw, struct bio *bio)
1779{
1780	struct completion event;
1781	rw |= REQ_SYNC;
1782
1783	init_completion(&event);
1784	bio->bi_private = &event;
1785	bio->bi_end_io = bi_complete;
1786	submit_bio(rw, bio);
1787	wait_for_completion(&event);
1788
1789	return test_bit(BIO_UPTODATE, &bio->bi_flags);
1790}
1791
1792static int narrow_write_error(r1bio_t *r1_bio, int i)
1793{
1794	mddev_t *mddev = r1_bio->mddev;
1795	conf_t *conf = mddev->private;
1796	mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1797	int vcnt, idx;
1798	struct bio_vec *vec;
1799
1800	/* bio has the data to be written to device 'i' where
1801	 * we just recently had a write error.
1802	 * We repeatedly clone the bio and trim down to one block,
1803	 * then try the write.  Where the write fails we record
1804	 * a bad block.
1805	 * It is conceivable that the bio doesn't exactly align with
1806	 * blocks.  We must handle this somehow.
1807	 *
1808	 * We currently own a reference on the rdev.
1809	 */
1810
1811	int block_sectors;
1812	sector_t sector;
1813	int sectors;
1814	int sect_to_write = r1_bio->sectors;
1815	int ok = 1;
1816
1817	if (rdev->badblocks.shift < 0)
1818		return 0;
1819
1820	block_sectors = 1 << rdev->badblocks.shift;
 
1821	sector = r1_bio->sector;
1822	sectors = ((sector + block_sectors)
1823		   & ~(sector_t)(block_sectors - 1))
1824		- sector;
1825
1826	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1827		vcnt = r1_bio->behind_page_count;
1828		vec = r1_bio->behind_bvecs;
1829		idx = 0;
1830		while (vec[idx].bv_page == NULL)
1831			idx++;
1832	} else {
1833		vcnt = r1_bio->master_bio->bi_vcnt;
1834		vec = r1_bio->master_bio->bi_io_vec;
1835		idx = r1_bio->master_bio->bi_idx;
1836	}
1837	while (sect_to_write) {
1838		struct bio *wbio;
1839		if (sectors > sect_to_write)
1840			sectors = sect_to_write;
1841		/* Write at 'sector' for 'sectors'*/
1842
1843		wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1844		memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1845		wbio->bi_sector = r1_bio->sector;
1846		wbio->bi_rw = WRITE;
1847		wbio->bi_vcnt = vcnt;
1848		wbio->bi_size = r1_bio->sectors << 9;
1849		wbio->bi_idx = idx;
1850
1851		md_trim_bio(wbio, sector - r1_bio->sector, sectors);
1852		wbio->bi_sector += rdev->data_offset;
1853		wbio->bi_bdev = rdev->bdev;
1854		if (submit_bio_wait(WRITE, wbio) == 0)
 
 
 
 
 
 
1855			/* failure! */
1856			ok = rdev_set_badblocks(rdev, sector,
1857						sectors, 0)
1858				&& ok;
1859
1860		bio_put(wbio);
1861		sect_to_write -= sectors;
1862		sector += sectors;
1863		sectors = block_sectors;
1864	}
1865	return ok;
1866}
1867
1868static void handle_sync_write_finished(conf_t *conf, r1bio_t *r1_bio)
1869{
1870	int m;
1871	int s = r1_bio->sectors;
1872	for (m = 0; m < conf->raid_disks ; m++) {
1873		mdk_rdev_t *rdev = conf->mirrors[m].rdev;
1874		struct bio *bio = r1_bio->bios[m];
1875		if (bio->bi_end_io == NULL)
1876			continue;
1877		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1878		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
1879			rdev_clear_badblocks(rdev, r1_bio->sector, s);
1880		}
1881		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1882		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
1883			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
1884				md_error(conf->mddev, rdev);
1885		}
1886	}
1887	put_buf(r1_bio);
1888	md_done_sync(conf->mddev, s, 1);
1889}
1890
1891static void handle_write_finished(conf_t *conf, r1bio_t *r1_bio)
1892{
1893	int m;
1894	for (m = 0; m < conf->raid_disks ; m++)
 
 
1895		if (r1_bio->bios[m] == IO_MADE_GOOD) {
1896			mdk_rdev_t *rdev = conf->mirrors[m].rdev;
1897			rdev_clear_badblocks(rdev,
1898					     r1_bio->sector,
1899					     r1_bio->sectors);
1900			rdev_dec_pending(rdev, conf->mddev);
1901		} else if (r1_bio->bios[m] != NULL) {
1902			/* This drive got a write error.  We need to
1903			 * narrow down and record precise write
1904			 * errors.
1905			 */
 
1906			if (!narrow_write_error(r1_bio, m)) {
1907				md_error(conf->mddev,
1908					 conf->mirrors[m].rdev);
1909				/* an I/O failed, we can't clear the bitmap */
1910				set_bit(R1BIO_Degraded, &r1_bio->state);
1911			}
1912			rdev_dec_pending(conf->mirrors[m].rdev,
1913					 conf->mddev);
1914		}
1915	if (test_bit(R1BIO_WriteError, &r1_bio->state))
1916		close_write(r1_bio);
1917	raid_end_bio_io(r1_bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1918}
1919
1920static void handle_read_error(conf_t *conf, r1bio_t *r1_bio)
1921{
1922	int disk;
1923	int max_sectors;
1924	mddev_t *mddev = conf->mddev;
1925	struct bio *bio;
1926	char b[BDEVNAME_SIZE];
1927	mdk_rdev_t *rdev;
1928
1929	clear_bit(R1BIO_ReadError, &r1_bio->state);
1930	/* we got a read error. Maybe the drive is bad.  Maybe just
1931	 * the block and we can fix it.
1932	 * We freeze all other IO, and try reading the block from
1933	 * other devices.  When we find one, we re-write
1934	 * and check it that fixes the read error.
1935	 * This is all done synchronously while the array is
1936	 * frozen
1937	 */
1938	if (mddev->ro == 0) {
1939		freeze_array(conf);
 
 
 
 
 
 
 
 
1940		fix_read_error(conf, r1_bio->read_disk,
1941			       r1_bio->sector, r1_bio->sectors);
1942		unfreeze_array(conf);
1943	} else
1944		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1945
1946	bio = r1_bio->bios[r1_bio->read_disk];
1947	bdevname(bio->bi_bdev, b);
1948read_more:
1949	disk = read_balance(conf, r1_bio, &max_sectors);
1950	if (disk == -1) {
1951		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1952		       " read error for block %llu\n",
1953		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
1954		raid_end_bio_io(r1_bio);
1955	} else {
1956		const unsigned long do_sync
1957			= r1_bio->master_bio->bi_rw & REQ_SYNC;
1958		if (bio) {
1959			r1_bio->bios[r1_bio->read_disk] =
1960				mddev->ro ? IO_BLOCKED : NULL;
1961			bio_put(bio);
1962		}
1963		r1_bio->read_disk = disk;
1964		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
1965		md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
1966		r1_bio->bios[r1_bio->read_disk] = bio;
1967		rdev = conf->mirrors[disk].rdev;
1968		printk_ratelimited(KERN_ERR
1969				   "md/raid1:%s: redirecting sector %llu"
1970				   " to other mirror: %s\n",
1971				   mdname(mddev),
1972				   (unsigned long long)r1_bio->sector,
1973				   bdevname(rdev->bdev, b));
1974		bio->bi_sector = r1_bio->sector + rdev->data_offset;
1975		bio->bi_bdev = rdev->bdev;
1976		bio->bi_end_io = raid1_end_read_request;
1977		bio->bi_rw = READ | do_sync;
1978		bio->bi_private = r1_bio;
1979		if (max_sectors < r1_bio->sectors) {
1980			/* Drat - have to split this up more */
1981			struct bio *mbio = r1_bio->master_bio;
1982			int sectors_handled = (r1_bio->sector + max_sectors
1983					       - mbio->bi_sector);
1984			r1_bio->sectors = max_sectors;
1985			spin_lock_irq(&conf->device_lock);
1986			if (mbio->bi_phys_segments == 0)
1987				mbio->bi_phys_segments = 2;
1988			else
1989				mbio->bi_phys_segments++;
1990			spin_unlock_irq(&conf->device_lock);
1991			generic_make_request(bio);
1992			bio = NULL;
1993
1994			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1995
1996			r1_bio->master_bio = mbio;
1997			r1_bio->sectors = (mbio->bi_size >> 9)
1998					  - sectors_handled;
1999			r1_bio->state = 0;
2000			set_bit(R1BIO_ReadError, &r1_bio->state);
2001			r1_bio->mddev = mddev;
2002			r1_bio->sector = mbio->bi_sector + sectors_handled;
2003
2004			goto read_more;
2005		} else
2006			generic_make_request(bio);
2007	}
2008}
2009
2010static void raid1d(mddev_t *mddev)
2011{
2012	r1bio_t *r1_bio;
 
2013	unsigned long flags;
2014	conf_t *conf = mddev->private;
2015	struct list_head *head = &conf->retry_list;
2016	struct blk_plug plug;
 
2017
2018	md_check_recovery(mddev);
2019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2020	blk_start_plug(&plug);
2021	for (;;) {
2022
2023		if (atomic_read(&mddev->plug_cnt) == 0)
2024			flush_pending_writes(conf);
2025
2026		spin_lock_irqsave(&conf->device_lock, flags);
2027		if (list_empty(head)) {
2028			spin_unlock_irqrestore(&conf->device_lock, flags);
2029			break;
2030		}
2031		r1_bio = list_entry(head->prev, r1bio_t, retry_list);
2032		list_del(head->prev);
2033		conf->nr_queued--;
 
2034		spin_unlock_irqrestore(&conf->device_lock, flags);
2035
2036		mddev = r1_bio->mddev;
2037		conf = mddev->private;
2038		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2039			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2040			    test_bit(R1BIO_WriteError, &r1_bio->state))
2041				handle_sync_write_finished(conf, r1_bio);
2042			else
2043				sync_request_write(mddev, r1_bio);
2044		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2045			   test_bit(R1BIO_WriteError, &r1_bio->state))
2046			handle_write_finished(conf, r1_bio);
2047		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2048			handle_read_error(conf, r1_bio);
2049		else
2050			/* just a partial read to be scheduled from separate
2051			 * context
2052			 */
2053			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2054
2055		cond_resched();
2056		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2057			md_check_recovery(mddev);
2058	}
2059	blk_finish_plug(&plug);
2060}
2061
2062
2063static int init_resync(conf_t *conf)
2064{
2065	int buffs;
2066
2067	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2068	BUG_ON(conf->r1buf_pool);
2069	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2070					  conf->poolinfo);
2071	if (!conf->r1buf_pool)
2072		return -ENOMEM;
2073	conf->next_resync = 0;
2074	return 0;
2075}
2076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2077/*
2078 * perform a "sync" on one "block"
2079 *
2080 * We need to make sure that no normal I/O request - particularly write
2081 * requests - conflict with active sync requests.
2082 *
2083 * This is achieved by tracking pending requests and a 'barrier' concept
2084 * that can be installed to exclude normal IO requests.
2085 */
2086
2087static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
 
2088{
2089	conf_t *conf = mddev->private;
2090	r1bio_t *r1_bio;
2091	struct bio *bio;
2092	sector_t max_sector, nr_sectors;
2093	int disk = -1;
2094	int i;
2095	int wonly = -1;
2096	int write_targets = 0, read_targets = 0;
2097	sector_t sync_blocks;
2098	int still_degraded = 0;
2099	int good_sectors = RESYNC_SECTORS;
2100	int min_bad = 0; /* number of sectors that are bad in all devices */
 
 
2101
2102	if (!conf->r1buf_pool)
2103		if (init_resync(conf))
2104			return 0;
2105
2106	max_sector = mddev->dev_sectors;
2107	if (sector_nr >= max_sector) {
2108		/* If we aborted, we need to abort the
2109		 * sync on the 'current' bitmap chunk (there will
2110		 * only be one in raid1 resync.
2111		 * We can find the current addess in mddev->curr_resync
2112		 */
2113		if (mddev->curr_resync < max_sector) /* aborted */
2114			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2115						&sync_blocks, 1);
2116		else /* completed sync */
2117			conf->fullsync = 0;
2118
2119		bitmap_close_sync(mddev->bitmap);
2120		close_sync(conf);
 
 
 
 
 
2121		return 0;
2122	}
2123
2124	if (mddev->bitmap == NULL &&
2125	    mddev->recovery_cp == MaxSector &&
2126	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2127	    conf->fullsync == 0) {
2128		*skipped = 1;
2129		return max_sector - sector_nr;
2130	}
2131	/* before building a request, check if we can skip these blocks..
2132	 * This call the bitmap_start_sync doesn't actually record anything
2133	 */
2134	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2135	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2136		/* We can skip this block, and probably several more */
2137		*skipped = 1;
2138		return sync_blocks;
2139	}
 
2140	/*
2141	 * If there is non-resync activity waiting for a turn,
2142	 * and resync is going fast enough,
2143	 * then let it though before starting on this new sync request.
2144	 */
2145	if (!go_faster && conf->nr_waiting)
2146		msleep_interruptible(1000);
2147
2148	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2149	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2150	raise_barrier(conf);
 
 
 
2151
2152	conf->next_resync = sector_nr;
 
 
 
2153
2154	rcu_read_lock();
2155	/*
2156	 * If we get a correctably read error during resync or recovery,
2157	 * we might want to read from a different device.  So we
2158	 * flag all drives that could conceivably be read from for READ,
2159	 * and any others (which will be non-In_sync devices) for WRITE.
2160	 * If a read fails, we try reading from something else for which READ
2161	 * is OK.
2162	 */
2163
2164	r1_bio->mddev = mddev;
2165	r1_bio->sector = sector_nr;
2166	r1_bio->state = 0;
2167	set_bit(R1BIO_IsSync, &r1_bio->state);
 
 
2168
2169	for (i=0; i < conf->raid_disks; i++) {
2170		mdk_rdev_t *rdev;
2171		bio = r1_bio->bios[i];
2172
2173		/* take from bio_init */
2174		bio->bi_next = NULL;
2175		bio->bi_flags &= ~(BIO_POOL_MASK-1);
2176		bio->bi_flags |= 1 << BIO_UPTODATE;
2177		bio->bi_comp_cpu = -1;
2178		bio->bi_rw = READ;
2179		bio->bi_vcnt = 0;
2180		bio->bi_idx = 0;
2181		bio->bi_phys_segments = 0;
2182		bio->bi_size = 0;
2183		bio->bi_end_io = NULL;
2184		bio->bi_private = NULL;
2185
2186		rdev = rcu_dereference(conf->mirrors[i].rdev);
2187		if (rdev == NULL ||
2188		    test_bit(Faulty, &rdev->flags)) {
2189			still_degraded = 1;
 
2190		} else if (!test_bit(In_sync, &rdev->flags)) {
2191			bio->bi_rw = WRITE;
2192			bio->bi_end_io = end_sync_write;
2193			write_targets ++;
2194		} else {
2195			/* may need to read from here */
2196			sector_t first_bad = MaxSector;
2197			int bad_sectors;
2198
2199			if (is_badblock(rdev, sector_nr, good_sectors,
2200					&first_bad, &bad_sectors)) {
2201				if (first_bad > sector_nr)
2202					good_sectors = first_bad - sector_nr;
2203				else {
2204					bad_sectors -= (sector_nr - first_bad);
2205					if (min_bad == 0 ||
2206					    min_bad > bad_sectors)
2207						min_bad = bad_sectors;
2208				}
2209			}
2210			if (sector_nr < first_bad) {
2211				if (test_bit(WriteMostly, &rdev->flags)) {
2212					if (wonly < 0)
2213						wonly = i;
2214				} else {
2215					if (disk < 0)
2216						disk = i;
2217				}
2218				bio->bi_rw = READ;
2219				bio->bi_end_io = end_sync_read;
2220				read_targets++;
 
 
 
 
 
 
 
 
 
 
 
 
2221			}
2222		}
2223		if (bio->bi_end_io) {
2224			atomic_inc(&rdev->nr_pending);
2225			bio->bi_sector = sector_nr + rdev->data_offset;
2226			bio->bi_bdev = rdev->bdev;
2227			bio->bi_private = r1_bio;
 
2228		}
2229	}
2230	rcu_read_unlock();
2231	if (disk < 0)
2232		disk = wonly;
2233	r1_bio->read_disk = disk;
2234
2235	if (read_targets == 0 && min_bad > 0) {
2236		/* These sectors are bad on all InSync devices, so we
2237		 * need to mark them bad on all write targets
2238		 */
2239		int ok = 1;
2240		for (i = 0 ; i < conf->raid_disks ; i++)
2241			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2242				mdk_rdev_t *rdev =
2243					rcu_dereference(conf->mirrors[i].rdev);
2244				ok = rdev_set_badblocks(rdev, sector_nr,
2245							min_bad, 0
2246					) && ok;
2247			}
2248		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2249		*skipped = 1;
2250		put_buf(r1_bio);
2251
2252		if (!ok) {
2253			/* Cannot record the badblocks, so need to
2254			 * abort the resync.
2255			 * If there are multiple read targets, could just
2256			 * fail the really bad ones ???
2257			 */
2258			conf->recovery_disabled = mddev->recovery_disabled;
2259			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2260			return 0;
2261		} else
2262			return min_bad;
2263
2264	}
2265	if (min_bad > 0 && min_bad < good_sectors) {
2266		/* only resync enough to reach the next bad->good
2267		 * transition */
2268		good_sectors = min_bad;
2269	}
2270
2271	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2272		/* extra read targets are also write targets */
2273		write_targets += read_targets-1;
2274
2275	if (write_targets == 0 || read_targets == 0) {
2276		/* There is nowhere to write, so all non-sync
2277		 * drives must be failed - so we are finished
2278		 */
2279		sector_t rv = max_sector - sector_nr;
 
 
 
2280		*skipped = 1;
2281		put_buf(r1_bio);
2282		return rv;
2283	}
2284
2285	if (max_sector > mddev->resync_max)
2286		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2287	if (max_sector > sector_nr + good_sectors)
2288		max_sector = sector_nr + good_sectors;
2289	nr_sectors = 0;
2290	sync_blocks = 0;
2291	do {
2292		struct page *page;
2293		int len = PAGE_SIZE;
2294		if (sector_nr + (len>>9) > max_sector)
2295			len = (max_sector - sector_nr) << 9;
2296		if (len == 0)
2297			break;
2298		if (sync_blocks == 0) {
2299			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2300					       &sync_blocks, still_degraded) &&
2301			    !conf->fullsync &&
2302			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2303				break;
2304			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2305			if ((len >> 9) > sync_blocks)
2306				len = sync_blocks<<9;
2307		}
2308
2309		for (i=0 ; i < conf->raid_disks; i++) {
 
 
2310			bio = r1_bio->bios[i];
 
2311			if (bio->bi_end_io) {
2312				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2313				if (bio_add_page(bio, page, len, 0) == 0) {
2314					/* stop here */
2315					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2316					while (i > 0) {
2317						i--;
2318						bio = r1_bio->bios[i];
2319						if (bio->bi_end_io==NULL)
2320							continue;
2321						/* remove last page from this bio */
2322						bio->bi_vcnt--;
2323						bio->bi_size -= len;
2324						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2325					}
2326					goto bio_full;
2327				}
2328			}
2329		}
2330		nr_sectors += len>>9;
2331		sector_nr += len>>9;
2332		sync_blocks -= (len>>9);
2333	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2334 bio_full:
2335	r1_bio->sectors = nr_sectors;
2336
 
 
 
 
 
 
 
 
 
 
2337	/* For a user-requested sync, we read all readable devices and do a
2338	 * compare
2339	 */
2340	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2341		atomic_set(&r1_bio->remaining, read_targets);
2342		for (i=0; i<conf->raid_disks; i++) {
2343			bio = r1_bio->bios[i];
2344			if (bio->bi_end_io == end_sync_read) {
2345				md_sync_acct(bio->bi_bdev, nr_sectors);
 
 
 
2346				generic_make_request(bio);
2347			}
2348		}
2349	} else {
2350		atomic_set(&r1_bio->remaining, 1);
2351		bio = r1_bio->bios[r1_bio->read_disk];
2352		md_sync_acct(bio->bi_bdev, nr_sectors);
 
 
2353		generic_make_request(bio);
2354
2355	}
2356	return nr_sectors;
2357}
2358
2359static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2360{
2361	if (sectors)
2362		return sectors;
2363
2364	return mddev->dev_sectors;
2365}
2366
2367static conf_t *setup_conf(mddev_t *mddev)
2368{
2369	conf_t *conf;
2370	int i;
2371	mirror_info_t *disk;
2372	mdk_rdev_t *rdev;
2373	int err = -ENOMEM;
2374
2375	conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2376	if (!conf)
2377		goto abort;
2378
2379	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2380				 GFP_KERNEL);
2381	if (!conf->mirrors)
2382		goto abort;
2383
2384	conf->tmppage = alloc_page(GFP_KERNEL);
2385	if (!conf->tmppage)
2386		goto abort;
2387
2388	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2389	if (!conf->poolinfo)
2390		goto abort;
2391	conf->poolinfo->raid_disks = mddev->raid_disks;
2392	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2393					  r1bio_pool_free,
2394					  conf->poolinfo);
2395	if (!conf->r1bio_pool)
2396		goto abort;
2397
 
 
 
 
2398	conf->poolinfo->mddev = mddev;
2399
 
2400	spin_lock_init(&conf->device_lock);
2401	list_for_each_entry(rdev, &mddev->disks, same_set) {
2402		int disk_idx = rdev->raid_disk;
2403		if (disk_idx >= mddev->raid_disks
2404		    || disk_idx < 0)
2405			continue;
2406		disk = conf->mirrors + disk_idx;
 
 
 
2407
 
 
2408		disk->rdev = rdev;
2409
2410		disk->head_position = 0;
 
2411	}
2412	conf->raid_disks = mddev->raid_disks;
2413	conf->mddev = mddev;
2414	INIT_LIST_HEAD(&conf->retry_list);
 
2415
2416	spin_lock_init(&conf->resync_lock);
2417	init_waitqueue_head(&conf->wait_barrier);
2418
2419	bio_list_init(&conf->pending_bio_list);
 
 
2420
2421	conf->last_used = -1;
2422	for (i = 0; i < conf->raid_disks; i++) {
2423
2424		disk = conf->mirrors + i;
2425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2426		if (!disk->rdev ||
2427		    !test_bit(In_sync, &disk->rdev->flags)) {
2428			disk->head_position = 0;
2429			if (disk->rdev)
 
2430				conf->fullsync = 1;
2431		} else if (conf->last_used < 0)
2432			/*
2433			 * The first working device is used as a
2434			 * starting point to read balancing.
2435			 */
2436			conf->last_used = i;
2437	}
2438
2439	err = -EIO;
2440	if (conf->last_used < 0) {
2441		printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2442		       mdname(mddev));
2443		goto abort;
2444	}
2445	err = -ENOMEM;
2446	conf->thread = md_register_thread(raid1d, mddev, NULL);
2447	if (!conf->thread) {
2448		printk(KERN_ERR
2449		       "md/raid1:%s: couldn't allocate thread\n",
2450		       mdname(mddev));
2451		goto abort;
2452	}
2453
2454	return conf;
2455
2456 abort:
2457	if (conf) {
2458		if (conf->r1bio_pool)
2459			mempool_destroy(conf->r1bio_pool);
2460		kfree(conf->mirrors);
2461		safe_put_page(conf->tmppage);
2462		kfree(conf->poolinfo);
 
 
 
 
 
 
2463		kfree(conf);
2464	}
2465	return ERR_PTR(err);
2466}
2467
2468static int run(mddev_t *mddev)
 
2469{
2470	conf_t *conf;
2471	int i;
2472	mdk_rdev_t *rdev;
 
 
2473
2474	if (mddev->level != 1) {
2475		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2476		       mdname(mddev), mddev->level);
2477		return -EIO;
2478	}
2479	if (mddev->reshape_position != MaxSector) {
2480		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2481		       mdname(mddev));
2482		return -EIO;
2483	}
 
 
2484	/*
2485	 * copy the already verified devices into our private RAID1
2486	 * bookkeeping area. [whatever we allocate in run(),
2487	 * should be freed in stop()]
2488	 */
2489	if (mddev->private == NULL)
2490		conf = setup_conf(mddev);
2491	else
2492		conf = mddev->private;
2493
2494	if (IS_ERR(conf))
2495		return PTR_ERR(conf);
2496
2497	list_for_each_entry(rdev, &mddev->disks, same_set) {
 
 
 
 
 
2498		if (!mddev->gendisk)
2499			continue;
2500		disk_stack_limits(mddev->gendisk, rdev->bdev,
2501				  rdev->data_offset << 9);
2502		/* as we don't honour merge_bvec_fn, we must never risk
2503		 * violating it, so limit ->max_segments to 1 lying within
2504		 * a single page, as a one page request is never in violation.
2505		 */
2506		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2507			blk_queue_max_segments(mddev->queue, 1);
2508			blk_queue_segment_boundary(mddev->queue,
2509						   PAGE_CACHE_SIZE - 1);
2510		}
2511	}
2512
2513	mddev->degraded = 0;
2514	for (i=0; i < conf->raid_disks; i++)
2515		if (conf->mirrors[i].rdev == NULL ||
2516		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2517		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2518			mddev->degraded++;
2519
2520	if (conf->raid_disks - mddev->degraded == 1)
2521		mddev->recovery_cp = MaxSector;
2522
2523	if (mddev->recovery_cp != MaxSector)
2524		printk(KERN_NOTICE "md/raid1:%s: not clean"
2525		       " -- starting background reconstruction\n",
2526		       mdname(mddev));
2527	printk(KERN_INFO 
2528		"md/raid1:%s: active with %d out of %d mirrors\n",
2529		mdname(mddev), mddev->raid_disks - mddev->degraded, 
2530		mddev->raid_disks);
2531
2532	/*
2533	 * Ok, everything is just fine now
2534	 */
2535	mddev->thread = conf->thread;
2536	conf->thread = NULL;
2537	mddev->private = conf;
 
2538
2539	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2540
2541	if (mddev->queue) {
2542		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2543		mddev->queue->backing_dev_info.congested_data = mddev;
 
 
 
 
2544	}
2545	return md_integrity_register(mddev);
2546}
2547
2548static int stop(mddev_t *mddev)
2549{
2550	conf_t *conf = mddev->private;
2551	struct bitmap *bitmap = mddev->bitmap;
2552
2553	/* wait for behind writes to complete */
2554	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2555		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2556		       mdname(mddev));
2557		/* need to kick something here to make sure I/O goes? */
2558		wait_event(bitmap->behind_wait,
2559			   atomic_read(&bitmap->behind_writes) == 0);
2560	}
 
 
2561
2562	raise_barrier(conf);
2563	lower_barrier(conf);
 
2564
2565	md_unregister_thread(&mddev->thread);
2566	if (conf->r1bio_pool)
2567		mempool_destroy(conf->r1bio_pool);
2568	kfree(conf->mirrors);
 
2569	kfree(conf->poolinfo);
 
 
 
 
 
 
2570	kfree(conf);
2571	mddev->private = NULL;
2572	return 0;
2573}
2574
2575static int raid1_resize(mddev_t *mddev, sector_t sectors)
2576{
2577	/* no resync is happening, and there is enough space
2578	 * on all devices, so we can resize.
2579	 * We need to make sure resync covers any new space.
2580	 * If the array is shrinking we should possibly wait until
2581	 * any io in the removed space completes, but it hardly seems
2582	 * worth it.
2583	 */
2584	md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2585	if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
 
2586		return -EINVAL;
2587	set_capacity(mddev->gendisk, mddev->array_sectors);
2588	revalidate_disk(mddev->gendisk);
 
 
 
 
2589	if (sectors > mddev->dev_sectors &&
2590	    mddev->recovery_cp > mddev->dev_sectors) {
2591		mddev->recovery_cp = mddev->dev_sectors;
2592		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2593	}
2594	mddev->dev_sectors = sectors;
2595	mddev->resync_max_sectors = sectors;
2596	return 0;
2597}
2598
2599static int raid1_reshape(mddev_t *mddev)
2600{
2601	/* We need to:
2602	 * 1/ resize the r1bio_pool
2603	 * 2/ resize conf->mirrors
2604	 *
2605	 * We allocate a new r1bio_pool if we can.
2606	 * Then raise a device barrier and wait until all IO stops.
2607	 * Then resize conf->mirrors and swap in the new r1bio pool.
2608	 *
2609	 * At the same time, we "pack" the devices so that all the missing
2610	 * devices have the higher raid_disk numbers.
2611	 */
2612	mempool_t *newpool, *oldpool;
2613	struct pool_info *newpoolinfo;
2614	mirror_info_t *newmirrors;
2615	conf_t *conf = mddev->private;
2616	int cnt, raid_disks;
2617	unsigned long flags;
2618	int d, d2, err;
2619
2620	/* Cannot change chunk_size, layout, or level */
2621	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2622	    mddev->layout != mddev->new_layout ||
2623	    mddev->level != mddev->new_level) {
2624		mddev->new_chunk_sectors = mddev->chunk_sectors;
2625		mddev->new_layout = mddev->layout;
2626		mddev->new_level = mddev->level;
2627		return -EINVAL;
2628	}
2629
2630	err = md_allow_write(mddev);
2631	if (err)
2632		return err;
2633
2634	raid_disks = mddev->raid_disks + mddev->delta_disks;
2635
2636	if (raid_disks < conf->raid_disks) {
2637		cnt=0;
2638		for (d= 0; d < conf->raid_disks; d++)
2639			if (conf->mirrors[d].rdev)
2640				cnt++;
2641		if (cnt > raid_disks)
2642			return -EBUSY;
2643	}
2644
2645	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2646	if (!newpoolinfo)
2647		return -ENOMEM;
2648	newpoolinfo->mddev = mddev;
2649	newpoolinfo->raid_disks = raid_disks;
2650
2651	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2652				 r1bio_pool_free, newpoolinfo);
2653	if (!newpool) {
2654		kfree(newpoolinfo);
2655		return -ENOMEM;
2656	}
2657	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
 
2658	if (!newmirrors) {
2659		kfree(newpoolinfo);
2660		mempool_destroy(newpool);
2661		return -ENOMEM;
2662	}
2663
2664	raise_barrier(conf);
2665
2666	/* ok, everything is stopped */
2667	oldpool = conf->r1bio_pool;
2668	conf->r1bio_pool = newpool;
2669
2670	for (d = d2 = 0; d < conf->raid_disks; d++) {
2671		mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2672		if (rdev && rdev->raid_disk != d2) {
2673			sysfs_unlink_rdev(mddev, rdev);
2674			rdev->raid_disk = d2;
2675			sysfs_unlink_rdev(mddev, rdev);
2676			if (sysfs_link_rdev(mddev, rdev))
2677				printk(KERN_WARNING
2678				       "md/raid1:%s: cannot register rd%d\n",
2679				       mdname(mddev), rdev->raid_disk);
2680		}
2681		if (rdev)
2682			newmirrors[d2++].rdev = rdev;
2683	}
2684	kfree(conf->mirrors);
2685	conf->mirrors = newmirrors;
2686	kfree(conf->poolinfo);
2687	conf->poolinfo = newpoolinfo;
2688
2689	spin_lock_irqsave(&conf->device_lock, flags);
2690	mddev->degraded += (raid_disks - conf->raid_disks);
2691	spin_unlock_irqrestore(&conf->device_lock, flags);
2692	conf->raid_disks = mddev->raid_disks = raid_disks;
2693	mddev->delta_disks = 0;
2694
2695	conf->last_used = 0; /* just make sure it is in-range */
2696	lower_barrier(conf);
2697
 
2698	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2699	md_wakeup_thread(mddev->thread);
2700
2701	mempool_destroy(oldpool);
2702	return 0;
2703}
2704
2705static void raid1_quiesce(mddev_t *mddev, int state)
2706{
2707	conf_t *conf = mddev->private;
2708
2709	switch(state) {
2710	case 2: /* wake for suspend */
2711		wake_up(&conf->wait_barrier);
2712		break;
2713	case 1:
2714		raise_barrier(conf);
2715		break;
2716	case 0:
2717		lower_barrier(conf);
2718		break;
2719	}
2720}
2721
2722static void *raid1_takeover(mddev_t *mddev)
2723{
2724	/* raid1 can take over:
2725	 *  raid5 with 2 devices, any layout or chunk size
2726	 */
2727	if (mddev->level == 5 && mddev->raid_disks == 2) {
2728		conf_t *conf;
2729		mddev->new_level = 1;
2730		mddev->new_layout = 0;
2731		mddev->new_chunk_sectors = 0;
2732		conf = setup_conf(mddev);
2733		if (!IS_ERR(conf))
2734			conf->barrier = 1;
 
 
 
 
2735		return conf;
2736	}
2737	return ERR_PTR(-EINVAL);
2738}
2739
2740static struct mdk_personality raid1_personality =
2741{
2742	.name		= "raid1",
2743	.level		= 1,
2744	.owner		= THIS_MODULE,
2745	.make_request	= make_request,
2746	.run		= run,
2747	.stop		= stop,
2748	.status		= status,
2749	.error_handler	= error,
2750	.hot_add_disk	= raid1_add_disk,
2751	.hot_remove_disk= raid1_remove_disk,
2752	.spare_active	= raid1_spare_active,
2753	.sync_request	= sync_request,
2754	.resize		= raid1_resize,
2755	.size		= raid1_size,
2756	.check_reshape	= raid1_reshape,
2757	.quiesce	= raid1_quiesce,
2758	.takeover	= raid1_takeover,
 
2759};
2760
2761static int __init raid_init(void)
2762{
2763	return register_md_personality(&raid1_personality);
2764}
2765
2766static void raid_exit(void)
2767{
2768	unregister_md_personality(&raid1_personality);
2769}
2770
2771module_init(raid_init);
2772module_exit(raid_exit);
2773MODULE_LICENSE("GPL");
2774MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2775MODULE_ALIAS("md-personality-3"); /* RAID1 */
2776MODULE_ALIAS("md-raid1");
2777MODULE_ALIAS("md-level-1");
v4.17
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/slab.h>
  35#include <linux/delay.h>
  36#include <linux/blkdev.h>
  37#include <linux/module.h>
  38#include <linux/seq_file.h>
  39#include <linux/ratelimit.h>
  40
  41#include <trace/events/block.h>
  42
  43#include "md.h"
  44#include "raid1.h"
  45#include "md-bitmap.h"
  46
  47#define UNSUPPORTED_MDDEV_FLAGS		\
  48	((1L << MD_HAS_JOURNAL) |	\
  49	 (1L << MD_JOURNAL_CLEAN) |	\
  50	 (1L << MD_HAS_PPL) |		\
  51	 (1L << MD_HAS_MULTIPLE_PPLS))
  52
  53/*
  54 * Number of guaranteed r1bios in case of extreme VM load:
  55 */
  56#define	NR_RAID1_BIOS 256
  57
  58/* when we get a read error on a read-only array, we redirect to another
  59 * device without failing the first device, or trying to over-write to
  60 * correct the read error.  To keep track of bad blocks on a per-bio
  61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  62 */
  63#define IO_BLOCKED ((struct bio *)1)
  64/* When we successfully write to a known bad-block, we need to remove the
  65 * bad-block marking which must be done from process context.  So we record
  66 * the success by setting devs[n].bio to IO_MADE_GOOD
  67 */
  68#define IO_MADE_GOOD ((struct bio *)2)
  69
  70#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  71
  72/* When there are this many requests queue to be written by
  73 * the raid1 thread, we become 'congested' to provide back-pressure
  74 * for writeback.
  75 */
  76static int max_queued_requests = 1024;
  77
  78static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
  79static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
  80
  81#define raid1_log(md, fmt, args...)				\
  82	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
  83
  84#include "raid1-10.c"
  85
  86/*
  87 * for resync bio, r1bio pointer can be retrieved from the per-bio
  88 * 'struct resync_pages'.
  89 */
  90static inline struct r1bio *get_resync_r1bio(struct bio *bio)
  91{
  92	return get_resync_pages(bio)->raid_bio;
  93}
  94
  95static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  96{
  97	struct pool_info *pi = data;
  98	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  99
 100	/* allocate a r1bio with room for raid_disks entries in the bios array */
 101	return kzalloc(size, gfp_flags);
 102}
 103
 104static void r1bio_pool_free(void *r1_bio, void *data)
 105{
 106	kfree(r1_bio);
 107}
 108
 109#define RESYNC_DEPTH 32
 
 110#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 111#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
 112#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
 113#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
 114#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 115
 116static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
 117{
 118	struct pool_info *pi = data;
 119	struct r1bio *r1_bio;
 
 120	struct bio *bio;
 121	int need_pages;
 122	int j;
 123	struct resync_pages *rps;
 124
 125	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 126	if (!r1_bio)
 127		return NULL;
 128
 129	rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
 130		      gfp_flags);
 131	if (!rps)
 132		goto out_free_r1bio;
 133
 134	/*
 135	 * Allocate bios : 1 for reading, n-1 for writing
 136	 */
 137	for (j = pi->raid_disks ; j-- ; ) {
 138		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 139		if (!bio)
 140			goto out_free_bio;
 141		r1_bio->bios[j] = bio;
 142	}
 143	/*
 144	 * Allocate RESYNC_PAGES data pages and attach them to
 145	 * the first bio.
 146	 * If this is a user-requested check/repair, allocate
 147	 * RESYNC_PAGES for each bio.
 148	 */
 149	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 150		need_pages = pi->raid_disks;
 151	else
 152		need_pages = 1;
 153	for (j = 0; j < pi->raid_disks; j++) {
 154		struct resync_pages *rp = &rps[j];
 155
 156		bio = r1_bio->bios[j];
 
 
 
 
 157
 158		if (j < need_pages) {
 159			if (resync_alloc_pages(rp, gfp_flags))
 160				goto out_free_pages;
 161		} else {
 162			memcpy(rp, &rps[0], sizeof(*rp));
 163			resync_get_all_pages(rp);
 164		}
 165
 166		rp->raid_bio = r1_bio;
 167		bio->bi_private = rp;
 
 
 
 
 168	}
 169
 170	r1_bio->master_bio = NULL;
 171
 172	return r1_bio;
 173
 174out_free_pages:
 175	while (--j >= 0)
 176		resync_free_pages(&rps[j]);
 177
 
 178out_free_bio:
 179	while (++j < pi->raid_disks)
 180		bio_put(r1_bio->bios[j]);
 181	kfree(rps);
 182
 183out_free_r1bio:
 184	r1bio_pool_free(r1_bio, data);
 185	return NULL;
 186}
 187
 188static void r1buf_pool_free(void *__r1_bio, void *data)
 189{
 190	struct pool_info *pi = data;
 191	int i;
 192	struct r1bio *r1bio = __r1_bio;
 193	struct resync_pages *rp = NULL;
 194
 195	for (i = pi->raid_disks; i--; ) {
 196		rp = get_resync_pages(r1bio->bios[i]);
 197		resync_free_pages(rp);
 
 
 
 
 
 198		bio_put(r1bio->bios[i]);
 199	}
 200
 201	/* resync pages array stored in the 1st bio's .bi_private */
 202	kfree(rp);
 203
 204	r1bio_pool_free(r1bio, data);
 205}
 206
 207static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 208{
 209	int i;
 210
 211	for (i = 0; i < conf->raid_disks * 2; i++) {
 212		struct bio **bio = r1_bio->bios + i;
 213		if (!BIO_SPECIAL(*bio))
 214			bio_put(*bio);
 215		*bio = NULL;
 216	}
 217}
 218
 219static void free_r1bio(struct r1bio *r1_bio)
 220{
 221	struct r1conf *conf = r1_bio->mddev->private;
 222
 223	put_all_bios(conf, r1_bio);
 224	mempool_free(r1_bio, conf->r1bio_pool);
 225}
 226
 227static void put_buf(struct r1bio *r1_bio)
 228{
 229	struct r1conf *conf = r1_bio->mddev->private;
 230	sector_t sect = r1_bio->sector;
 231	int i;
 232
 233	for (i = 0; i < conf->raid_disks * 2; i++) {
 234		struct bio *bio = r1_bio->bios[i];
 235		if (bio->bi_end_io)
 236			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 237	}
 238
 239	mempool_free(r1_bio, conf->r1buf_pool);
 240
 241	lower_barrier(conf, sect);
 242}
 243
 244static void reschedule_retry(struct r1bio *r1_bio)
 245{
 246	unsigned long flags;
 247	struct mddev *mddev = r1_bio->mddev;
 248	struct r1conf *conf = mddev->private;
 249	int idx;
 250
 251	idx = sector_to_idx(r1_bio->sector);
 252	spin_lock_irqsave(&conf->device_lock, flags);
 253	list_add(&r1_bio->retry_list, &conf->retry_list);
 254	atomic_inc(&conf->nr_queued[idx]);
 255	spin_unlock_irqrestore(&conf->device_lock, flags);
 256
 257	wake_up(&conf->wait_barrier);
 258	md_wakeup_thread(mddev->thread);
 259}
 260
 261/*
 262 * raid_end_bio_io() is called when we have finished servicing a mirrored
 263 * operation and are ready to return a success/failure code to the buffer
 264 * cache layer.
 265 */
 266static void call_bio_endio(struct r1bio *r1_bio)
 267{
 268	struct bio *bio = r1_bio->master_bio;
 269	struct r1conf *conf = r1_bio->mddev->private;
 
 
 
 
 
 
 
 
 
 
 270
 271	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 272		bio->bi_status = BLK_STS_IOERR;
 273
 274	bio_endio(bio);
 275	/*
 276	 * Wake up any possible resync thread that waits for the device
 277	 * to go idle.
 278	 */
 279	allow_barrier(conf, r1_bio->sector);
 
 280}
 281
 282static void raid_end_bio_io(struct r1bio *r1_bio)
 283{
 284	struct bio *bio = r1_bio->master_bio;
 285
 286	/* if nobody has done the final endio yet, do it now */
 287	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 288		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 289			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 290			 (unsigned long long) bio->bi_iter.bi_sector,
 291			 (unsigned long long) bio_end_sector(bio) - 1);
 
 292
 293		call_bio_endio(r1_bio);
 294	}
 295	free_r1bio(r1_bio);
 296}
 297
 298/*
 299 * Update disk head position estimator based on IRQ completion info.
 300 */
 301static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 302{
 303	struct r1conf *conf = r1_bio->mddev->private;
 304
 305	conf->mirrors[disk].head_position =
 306		r1_bio->sector + (r1_bio->sectors);
 307}
 308
 309/*
 310 * Find the disk number which triggered given bio
 311 */
 312static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 313{
 
 
 314	int mirror;
 315	struct r1conf *conf = r1_bio->mddev->private;
 316	int raid_disks = conf->raid_disks;
 317
 318	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 319		if (r1_bio->bios[mirror] == bio)
 320			break;
 321
 322	BUG_ON(mirror == raid_disks * 2);
 323	update_head_pos(mirror, r1_bio);
 324
 325	return mirror;
 326}
 327
 328static void raid1_end_read_request(struct bio *bio)
 329{
 330	int uptodate = !bio->bi_status;
 331	struct r1bio *r1_bio = bio->bi_private;
 332	struct r1conf *conf = r1_bio->mddev->private;
 333	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
 334
 
 335	/*
 336	 * this branch is our 'one mirror IO has finished' event handler:
 337	 */
 338	update_head_pos(r1_bio->read_disk, r1_bio);
 339
 340	if (uptodate)
 341		set_bit(R1BIO_Uptodate, &r1_bio->state);
 342	else if (test_bit(FailFast, &rdev->flags) &&
 343		 test_bit(R1BIO_FailFast, &r1_bio->state))
 344		/* This was a fail-fast read so we definitely
 345		 * want to retry */
 346		;
 347	else {
 348		/* If all other devices have failed, we want to return
 349		 * the error upwards rather than fail the last device.
 350		 * Here we redefine "uptodate" to mean "Don't want to retry"
 351		 */
 352		unsigned long flags;
 353		spin_lock_irqsave(&conf->device_lock, flags);
 354		if (r1_bio->mddev->degraded == conf->raid_disks ||
 355		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 356		     test_bit(In_sync, &rdev->flags)))
 357			uptodate = 1;
 358		spin_unlock_irqrestore(&conf->device_lock, flags);
 359	}
 360
 361	if (uptodate) {
 362		raid_end_bio_io(r1_bio);
 363		rdev_dec_pending(rdev, conf->mddev);
 364	} else {
 365		/*
 366		 * oops, read error:
 367		 */
 368		char b[BDEVNAME_SIZE];
 369		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
 370				   mdname(conf->mddev),
 371				   bdevname(rdev->bdev, b),
 372				   (unsigned long long)r1_bio->sector);
 
 
 
 373		set_bit(R1BIO_ReadError, &r1_bio->state);
 374		reschedule_retry(r1_bio);
 375		/* don't drop the reference on read_disk yet */
 376	}
 
 
 377}
 378
 379static void close_write(struct r1bio *r1_bio)
 380{
 381	/* it really is the end of this request */
 382	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 383		bio_free_pages(r1_bio->behind_master_bio);
 384		bio_put(r1_bio->behind_master_bio);
 385		r1_bio->behind_master_bio = NULL;
 
 
 
 386	}
 387	/* clear the bitmap if all writes complete successfully */
 388	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 389			r1_bio->sectors,
 390			!test_bit(R1BIO_Degraded, &r1_bio->state),
 391			test_bit(R1BIO_BehindIO, &r1_bio->state));
 392	md_write_end(r1_bio->mddev);
 393}
 394
 395static void r1_bio_write_done(struct r1bio *r1_bio)
 396{
 397	if (!atomic_dec_and_test(&r1_bio->remaining))
 398		return;
 399
 400	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 401		reschedule_retry(r1_bio);
 402	else {
 403		close_write(r1_bio);
 404		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 405			reschedule_retry(r1_bio);
 406		else
 407			raid_end_bio_io(r1_bio);
 408	}
 409}
 410
 411static void raid1_end_write_request(struct bio *bio)
 412{
 413	struct r1bio *r1_bio = bio->bi_private;
 414	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 415	struct r1conf *conf = r1_bio->mddev->private;
 
 416	struct bio *to_put = NULL;
 417	int mirror = find_bio_disk(r1_bio, bio);
 418	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
 419	bool discard_error;
 420
 421	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 
 
 
 422
 423	/*
 424	 * 'one mirror IO has finished' event handler:
 425	 */
 426	if (bio->bi_status && !discard_error) {
 427		set_bit(WriteErrorSeen,	&rdev->flags);
 428		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 429			set_bit(MD_RECOVERY_NEEDED, &
 430				conf->mddev->recovery);
 431
 432		if (test_bit(FailFast, &rdev->flags) &&
 433		    (bio->bi_opf & MD_FAILFAST) &&
 434		    /* We never try FailFast to WriteMostly devices */
 435		    !test_bit(WriteMostly, &rdev->flags)) {
 436			md_error(r1_bio->mddev, rdev);
 437			if (!test_bit(Faulty, &rdev->flags))
 438				/* This is the only remaining device,
 439				 * We need to retry the write without
 440				 * FailFast
 441				 */
 442				set_bit(R1BIO_WriteError, &r1_bio->state);
 443			else {
 444				/* Finished with this branch */
 445				r1_bio->bios[mirror] = NULL;
 446				to_put = bio;
 447			}
 448		} else
 449			set_bit(R1BIO_WriteError, &r1_bio->state);
 450	} else {
 451		/*
 452		 * Set R1BIO_Uptodate in our master bio, so that we
 453		 * will return a good error code for to the higher
 454		 * levels even if IO on some other mirrored buffer
 455		 * fails.
 456		 *
 457		 * The 'master' represents the composite IO operation
 458		 * to user-side. So if something waits for IO, then it
 459		 * will wait for the 'master' bio.
 460		 */
 461		sector_t first_bad;
 462		int bad_sectors;
 463
 464		r1_bio->bios[mirror] = NULL;
 465		to_put = bio;
 466		/*
 467		 * Do not set R1BIO_Uptodate if the current device is
 468		 * rebuilding or Faulty. This is because we cannot use
 469		 * such device for properly reading the data back (we could
 470		 * potentially use it, if the current write would have felt
 471		 * before rdev->recovery_offset, but for simplicity we don't
 472		 * check this here.
 473		 */
 474		if (test_bit(In_sync, &rdev->flags) &&
 475		    !test_bit(Faulty, &rdev->flags))
 476			set_bit(R1BIO_Uptodate, &r1_bio->state);
 477
 478		/* Maybe we can clear some bad blocks. */
 479		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 480				&first_bad, &bad_sectors) && !discard_error) {
 
 481			r1_bio->bios[mirror] = IO_MADE_GOOD;
 482			set_bit(R1BIO_MadeGood, &r1_bio->state);
 483		}
 484	}
 485
 
 
 486	if (behind) {
 487		if (test_bit(WriteMostly, &rdev->flags))
 488			atomic_dec(&r1_bio->behind_remaining);
 489
 490		/*
 491		 * In behind mode, we ACK the master bio once the I/O
 492		 * has safely reached all non-writemostly
 493		 * disks. Setting the Returned bit ensures that this
 494		 * gets done only once -- we don't ever want to return
 495		 * -EIO here, instead we'll wait
 496		 */
 497		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 498		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 499			/* Maybe we can return now */
 500			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 501				struct bio *mbio = r1_bio->master_bio;
 502				pr_debug("raid1: behind end write sectors"
 503					 " %llu-%llu\n",
 504					 (unsigned long long) mbio->bi_iter.bi_sector,
 505					 (unsigned long long) bio_end_sector(mbio) - 1);
 506				call_bio_endio(r1_bio);
 507			}
 508		}
 509	}
 510	if (r1_bio->bios[mirror] == NULL)
 511		rdev_dec_pending(rdev, conf->mddev);
 
 512
 513	/*
 514	 * Let's see if all mirrored write operations have finished
 515	 * already.
 516	 */
 517	r1_bio_write_done(r1_bio);
 518
 519	if (to_put)
 520		bio_put(to_put);
 521}
 522
 523static sector_t align_to_barrier_unit_end(sector_t start_sector,
 524					  sector_t sectors)
 525{
 526	sector_t len;
 527
 528	WARN_ON(sectors == 0);
 529	/*
 530	 * len is the number of sectors from start_sector to end of the
 531	 * barrier unit which start_sector belongs to.
 532	 */
 533	len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
 534	      start_sector;
 535
 536	if (len > sectors)
 537		len = sectors;
 538
 539	return len;
 540}
 541
 542/*
 543 * This routine returns the disk from which the requested read should
 544 * be done. There is a per-array 'next expected sequential IO' sector
 545 * number - if this matches on the next IO then we use the last disk.
 546 * There is also a per-disk 'last know head position' sector that is
 547 * maintained from IRQ contexts, both the normal and the resync IO
 548 * completion handlers update this position correctly. If there is no
 549 * perfect sequential match then we pick the disk whose head is closest.
 550 *
 551 * If there are 2 mirrors in the same 2 devices, performance degrades
 552 * because position is mirror, not device based.
 553 *
 554 * The rdev for the device selected will have nr_pending incremented.
 555 */
 556static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 557{
 558	const sector_t this_sector = r1_bio->sector;
 559	int sectors;
 560	int best_good_sectors;
 561	int best_disk, best_dist_disk, best_pending_disk;
 562	int has_nonrot_disk;
 563	int disk;
 564	sector_t best_dist;
 565	unsigned int min_pending;
 566	struct md_rdev *rdev;
 567	int choose_first;
 568	int choose_next_idle;
 569
 570	rcu_read_lock();
 571	/*
 572	 * Check if we can balance. We can balance on the whole
 573	 * device if no resync is going on, or below the resync window.
 574	 * We take the first readable disk when above the resync window.
 575	 */
 576 retry:
 577	sectors = r1_bio->sectors;
 578	best_disk = -1;
 579	best_dist_disk = -1;
 580	best_dist = MaxSector;
 581	best_pending_disk = -1;
 582	min_pending = UINT_MAX;
 583	best_good_sectors = 0;
 584	has_nonrot_disk = 0;
 585	choose_next_idle = 0;
 586	clear_bit(R1BIO_FailFast, &r1_bio->state);
 587
 588	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 589	    (mddev_is_clustered(conf->mddev) &&
 590	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 591		    this_sector + sectors)))
 592		choose_first = 1;
 593	else
 
 594		choose_first = 0;
 
 
 595
 596	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 597		sector_t dist;
 598		sector_t first_bad;
 599		int bad_sectors;
 600		unsigned int pending;
 601		bool nonrot;
 
 
 602
 603		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 604		if (r1_bio->bios[disk] == IO_BLOCKED
 605		    || rdev == NULL
 606		    || test_bit(Faulty, &rdev->flags))
 607			continue;
 608		if (!test_bit(In_sync, &rdev->flags) &&
 609		    rdev->recovery_offset < this_sector + sectors)
 610			continue;
 611		if (test_bit(WriteMostly, &rdev->flags)) {
 612			/* Don't balance among write-mostly, just
 613			 * use the first as a last resort */
 614			if (best_dist_disk < 0) {
 615				if (is_badblock(rdev, this_sector, sectors,
 616						&first_bad, &bad_sectors)) {
 617					if (first_bad <= this_sector)
 618						/* Cannot use this */
 619						continue;
 620					best_good_sectors = first_bad - this_sector;
 621				} else
 622					best_good_sectors = sectors;
 623				best_dist_disk = disk;
 624				best_pending_disk = disk;
 625			}
 626			continue;
 627		}
 628		/* This is a reasonable device to use.  It might
 629		 * even be best.
 630		 */
 631		if (is_badblock(rdev, this_sector, sectors,
 632				&first_bad, &bad_sectors)) {
 633			if (best_dist < MaxSector)
 634				/* already have a better device */
 635				continue;
 636			if (first_bad <= this_sector) {
 637				/* cannot read here. If this is the 'primary'
 638				 * device, then we must not read beyond
 639				 * bad_sectors from another device..
 640				 */
 641				bad_sectors -= (this_sector - first_bad);
 642				if (choose_first && sectors > bad_sectors)
 643					sectors = bad_sectors;
 644				if (best_good_sectors > sectors)
 645					best_good_sectors = sectors;
 646
 647			} else {
 648				sector_t good_sectors = first_bad - this_sector;
 649				if (good_sectors > best_good_sectors) {
 650					best_good_sectors = good_sectors;
 651					best_disk = disk;
 652				}
 653				if (choose_first)
 654					break;
 655			}
 656			continue;
 657		} else {
 658			if ((sectors > best_good_sectors) && (best_disk >= 0))
 659				best_disk = -1;
 660			best_good_sectors = sectors;
 661		}
 662
 663		if (best_disk >= 0)
 664			/* At least two disks to choose from so failfast is OK */
 665			set_bit(R1BIO_FailFast, &r1_bio->state);
 666
 667		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 668		has_nonrot_disk |= nonrot;
 669		pending = atomic_read(&rdev->nr_pending);
 670		dist = abs(this_sector - conf->mirrors[disk].head_position);
 671		if (choose_first) {
 672			best_disk = disk;
 673			break;
 674		}
 675		/* Don't change to another disk for sequential reads */
 676		if (conf->mirrors[disk].next_seq_sect == this_sector
 677		    || dist == 0) {
 678			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 679			struct raid1_info *mirror = &conf->mirrors[disk];
 680
 681			best_disk = disk;
 682			/*
 683			 * If buffered sequential IO size exceeds optimal
 684			 * iosize, check if there is idle disk. If yes, choose
 685			 * the idle disk. read_balance could already choose an
 686			 * idle disk before noticing it's a sequential IO in
 687			 * this disk. This doesn't matter because this disk
 688			 * will idle, next time it will be utilized after the
 689			 * first disk has IO size exceeds optimal iosize. In
 690			 * this way, iosize of the first disk will be optimal
 691			 * iosize at least. iosize of the second disk might be
 692			 * small, but not a big deal since when the second disk
 693			 * starts IO, the first disk is likely still busy.
 694			 */
 695			if (nonrot && opt_iosize > 0 &&
 696			    mirror->seq_start != MaxSector &&
 697			    mirror->next_seq_sect > opt_iosize &&
 698			    mirror->next_seq_sect - opt_iosize >=
 699			    mirror->seq_start) {
 700				choose_next_idle = 1;
 701				continue;
 702			}
 703			break;
 704		}
 705
 706		if (choose_next_idle)
 707			continue;
 708
 709		if (min_pending > pending) {
 710			min_pending = pending;
 711			best_pending_disk = disk;
 712		}
 713
 714		if (dist < best_dist) {
 715			best_dist = dist;
 716			best_dist_disk = disk;
 717		}
 718	}
 719
 720	/*
 721	 * If all disks are rotational, choose the closest disk. If any disk is
 722	 * non-rotational, choose the disk with less pending request even the
 723	 * disk is rotational, which might/might not be optimal for raids with
 724	 * mixed ratation/non-rotational disks depending on workload.
 725	 */
 726	if (best_disk == -1) {
 727		if (has_nonrot_disk || min_pending == 0)
 728			best_disk = best_pending_disk;
 729		else
 730			best_disk = best_dist_disk;
 731	}
 732
 733	if (best_disk >= 0) {
 734		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 735		if (!rdev)
 736			goto retry;
 737		atomic_inc(&rdev->nr_pending);
 
 
 
 
 
 
 
 738		sectors = best_good_sectors;
 739
 740		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 741			conf->mirrors[best_disk].seq_start = this_sector;
 742
 743		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 744	}
 745	rcu_read_unlock();
 746	*max_sectors = sectors;
 747
 748	return best_disk;
 749}
 750
 751static int raid1_congested(struct mddev *mddev, int bits)
 752{
 753	struct r1conf *conf = mddev->private;
 754	int i, ret = 0;
 755
 756	if ((bits & (1 << WB_async_congested)) &&
 757	    conf->pending_count >= max_queued_requests)
 758		return 1;
 759
 760	rcu_read_lock();
 761	for (i = 0; i < conf->raid_disks * 2; i++) {
 762		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 763		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 764			struct request_queue *q = bdev_get_queue(rdev->bdev);
 765
 766			BUG_ON(!q);
 767
 768			/* Note the '|| 1' - when read_balance prefers
 769			 * non-congested targets, it can be removed
 770			 */
 771			if ((bits & (1 << WB_async_congested)) || 1)
 772				ret |= bdi_congested(q->backing_dev_info, bits);
 773			else
 774				ret &= bdi_congested(q->backing_dev_info, bits);
 775		}
 776	}
 777	rcu_read_unlock();
 778	return ret;
 779}
 
 780
 781static void flush_bio_list(struct r1conf *conf, struct bio *bio)
 782{
 783	/* flush any pending bitmap writes to disk before proceeding w/ I/O */
 784	bitmap_unplug(conf->mddev->bitmap);
 785	wake_up(&conf->wait_barrier);
 786
 787	while (bio) { /* submit pending writes */
 788		struct bio *next = bio->bi_next;
 789		struct md_rdev *rdev = (void *)bio->bi_disk;
 790		bio->bi_next = NULL;
 791		bio_set_dev(bio, rdev->bdev);
 792		if (test_bit(Faulty, &rdev->flags)) {
 793			bio_io_error(bio);
 794		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
 795				    !blk_queue_discard(bio->bi_disk->queue)))
 796			/* Just ignore it */
 797			bio_endio(bio);
 798		else
 799			generic_make_request(bio);
 800		bio = next;
 801	}
 802}
 803
 804static void flush_pending_writes(struct r1conf *conf)
 805{
 806	/* Any writes that have been queued but are awaiting
 807	 * bitmap updates get flushed here.
 808	 */
 809	spin_lock_irq(&conf->device_lock);
 810
 811	if (conf->pending_bio_list.head) {
 812		struct blk_plug plug;
 813		struct bio *bio;
 814
 815		bio = bio_list_get(&conf->pending_bio_list);
 816		conf->pending_count = 0;
 817		spin_unlock_irq(&conf->device_lock);
 818
 819		/*
 820		 * As this is called in a wait_event() loop (see freeze_array),
 821		 * current->state might be TASK_UNINTERRUPTIBLE which will
 822		 * cause a warning when we prepare to wait again.  As it is
 823		 * rare that this path is taken, it is perfectly safe to force
 824		 * us to go around the wait_event() loop again, so the warning
 825		 * is a false-positive.  Silence the warning by resetting
 826		 * thread state
 827		 */
 828		__set_current_state(TASK_RUNNING);
 829		blk_start_plug(&plug);
 830		flush_bio_list(conf, bio);
 831		blk_finish_plug(&plug);
 832	} else
 833		spin_unlock_irq(&conf->device_lock);
 834}
 835
 836/* Barriers....
 837 * Sometimes we need to suspend IO while we do something else,
 838 * either some resync/recovery, or reconfigure the array.
 839 * To do this we raise a 'barrier'.
 840 * The 'barrier' is a counter that can be raised multiple times
 841 * to count how many activities are happening which preclude
 842 * normal IO.
 843 * We can only raise the barrier if there is no pending IO.
 844 * i.e. if nr_pending == 0.
 845 * We choose only to raise the barrier if no-one is waiting for the
 846 * barrier to go down.  This means that as soon as an IO request
 847 * is ready, no other operations which require a barrier will start
 848 * until the IO request has had a chance.
 849 *
 850 * So: regular IO calls 'wait_barrier'.  When that returns there
 851 *    is no backgroup IO happening,  It must arrange to call
 852 *    allow_barrier when it has finished its IO.
 853 * backgroup IO calls must call raise_barrier.  Once that returns
 854 *    there is no normal IO happeing.  It must arrange to call
 855 *    lower_barrier when the particular background IO completes.
 856 */
 857static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr)
 
 
 858{
 859	int idx = sector_to_idx(sector_nr);
 860
 861	spin_lock_irq(&conf->resync_lock);
 862
 863	/* Wait until no block IO is waiting */
 864	wait_event_lock_irq(conf->wait_barrier,
 865			    !atomic_read(&conf->nr_waiting[idx]),
 866			    conf->resync_lock);
 867
 868	/* block any new IO from starting */
 869	atomic_inc(&conf->barrier[idx]);
 870	/*
 871	 * In raise_barrier() we firstly increase conf->barrier[idx] then
 872	 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
 873	 * increase conf->nr_pending[idx] then check conf->barrier[idx].
 874	 * A memory barrier here to make sure conf->nr_pending[idx] won't
 875	 * be fetched before conf->barrier[idx] is increased. Otherwise
 876	 * there will be a race between raise_barrier() and _wait_barrier().
 877	 */
 878	smp_mb__after_atomic();
 879
 880	/* For these conditions we must wait:
 881	 * A: while the array is in frozen state
 882	 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
 883	 *    existing in corresponding I/O barrier bucket.
 884	 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
 885	 *    max resync count which allowed on current I/O barrier bucket.
 886	 */
 887	wait_event_lock_irq(conf->wait_barrier,
 888			    (!conf->array_frozen &&
 889			     !atomic_read(&conf->nr_pending[idx]) &&
 890			     atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
 891				test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
 892			    conf->resync_lock);
 893
 894	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
 895		atomic_dec(&conf->barrier[idx]);
 896		spin_unlock_irq(&conf->resync_lock);
 897		wake_up(&conf->wait_barrier);
 898		return -EINTR;
 899	}
 900
 901	atomic_inc(&conf->nr_sync_pending);
 902	spin_unlock_irq(&conf->resync_lock);
 903
 904	return 0;
 905}
 906
 907static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
 908{
 909	int idx = sector_to_idx(sector_nr);
 910
 911	BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
 912
 913	atomic_dec(&conf->barrier[idx]);
 914	atomic_dec(&conf->nr_sync_pending);
 915	wake_up(&conf->wait_barrier);
 916}
 917
 918static void _wait_barrier(struct r1conf *conf, int idx)
 919{
 920	/*
 921	 * We need to increase conf->nr_pending[idx] very early here,
 922	 * then raise_barrier() can be blocked when it waits for
 923	 * conf->nr_pending[idx] to be 0. Then we can avoid holding
 924	 * conf->resync_lock when there is no barrier raised in same
 925	 * barrier unit bucket. Also if the array is frozen, I/O
 926	 * should be blocked until array is unfrozen.
 927	 */
 928	atomic_inc(&conf->nr_pending[idx]);
 929	/*
 930	 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
 931	 * check conf->barrier[idx]. In raise_barrier() we firstly increase
 932	 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
 933	 * barrier is necessary here to make sure conf->barrier[idx] won't be
 934	 * fetched before conf->nr_pending[idx] is increased. Otherwise there
 935	 * will be a race between _wait_barrier() and raise_barrier().
 936	 */
 937	smp_mb__after_atomic();
 938
 939	/*
 940	 * Don't worry about checking two atomic_t variables at same time
 941	 * here. If during we check conf->barrier[idx], the array is
 942	 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
 943	 * 0, it is safe to return and make the I/O continue. Because the
 944	 * array is frozen, all I/O returned here will eventually complete
 945	 * or be queued, no race will happen. See code comment in
 946	 * frozen_array().
 947	 */
 948	if (!READ_ONCE(conf->array_frozen) &&
 949	    !atomic_read(&conf->barrier[idx]))
 950		return;
 951
 952	/*
 953	 * After holding conf->resync_lock, conf->nr_pending[idx]
 954	 * should be decreased before waiting for barrier to drop.
 955	 * Otherwise, we may encounter a race condition because
 956	 * raise_barrer() might be waiting for conf->nr_pending[idx]
 957	 * to be 0 at same time.
 958	 */
 959	spin_lock_irq(&conf->resync_lock);
 960	atomic_inc(&conf->nr_waiting[idx]);
 961	atomic_dec(&conf->nr_pending[idx]);
 962	/*
 963	 * In case freeze_array() is waiting for
 964	 * get_unqueued_pending() == extra
 965	 */
 966	wake_up(&conf->wait_barrier);
 967	/* Wait for the barrier in same barrier unit bucket to drop. */
 968	wait_event_lock_irq(conf->wait_barrier,
 969			    !conf->array_frozen &&
 970			     !atomic_read(&conf->barrier[idx]),
 971			    conf->resync_lock);
 972	atomic_inc(&conf->nr_pending[idx]);
 973	atomic_dec(&conf->nr_waiting[idx]);
 974	spin_unlock_irq(&conf->resync_lock);
 975}
 976
 977static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
 978{
 979	int idx = sector_to_idx(sector_nr);
 980
 981	/*
 982	 * Very similar to _wait_barrier(). The difference is, for read
 983	 * I/O we don't need wait for sync I/O, but if the whole array
 984	 * is frozen, the read I/O still has to wait until the array is
 985	 * unfrozen. Since there is no ordering requirement with
 986	 * conf->barrier[idx] here, memory barrier is unnecessary as well.
 987	 */
 988	atomic_inc(&conf->nr_pending[idx]);
 989
 990	if (!READ_ONCE(conf->array_frozen))
 991		return;
 992
 993	spin_lock_irq(&conf->resync_lock);
 994	atomic_inc(&conf->nr_waiting[idx]);
 995	atomic_dec(&conf->nr_pending[idx]);
 996	/*
 997	 * In case freeze_array() is waiting for
 998	 * get_unqueued_pending() == extra
 999	 */
1000	wake_up(&conf->wait_barrier);
1001	/* Wait for array to be unfrozen */
1002	wait_event_lock_irq(conf->wait_barrier,
1003			    !conf->array_frozen,
1004			    conf->resync_lock);
1005	atomic_inc(&conf->nr_pending[idx]);
1006	atomic_dec(&conf->nr_waiting[idx]);
1007	spin_unlock_irq(&conf->resync_lock);
1008}
1009
1010static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1011{
1012	int idx = sector_to_idx(sector_nr);
1013
1014	_wait_barrier(conf, idx);
1015}
1016
1017static void _allow_barrier(struct r1conf *conf, int idx)
1018{
1019	atomic_dec(&conf->nr_pending[idx]);
1020	wake_up(&conf->wait_barrier);
1021}
1022
1023static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1024{
1025	int idx = sector_to_idx(sector_nr);
1026
1027	_allow_barrier(conf, idx);
1028}
1029
1030/* conf->resync_lock should be held */
1031static int get_unqueued_pending(struct r1conf *conf)
1032{
1033	int idx, ret;
1034
1035	ret = atomic_read(&conf->nr_sync_pending);
1036	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1037		ret += atomic_read(&conf->nr_pending[idx]) -
1038			atomic_read(&conf->nr_queued[idx]);
1039
1040	return ret;
1041}
1042
1043static void freeze_array(struct r1conf *conf, int extra)
1044{
1045	/* Stop sync I/O and normal I/O and wait for everything to
1046	 * go quiet.
1047	 * This is called in two situations:
1048	 * 1) management command handlers (reshape, remove disk, quiesce).
1049	 * 2) one normal I/O request failed.
1050
1051	 * After array_frozen is set to 1, new sync IO will be blocked at
1052	 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1053	 * or wait_read_barrier(). The flying I/Os will either complete or be
1054	 * queued. When everything goes quite, there are only queued I/Os left.
1055
1056	 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1057	 * barrier bucket index which this I/O request hits. When all sync and
1058	 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1059	 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1060	 * in handle_read_error(), we may call freeze_array() before trying to
1061	 * fix the read error. In this case, the error read I/O is not queued,
1062	 * so get_unqueued_pending() == 1.
1063	 *
1064	 * Therefore before this function returns, we need to wait until
1065	 * get_unqueued_pendings(conf) gets equal to extra. For
1066	 * normal I/O context, extra is 1, in rested situations extra is 0.
1067	 */
1068	spin_lock_irq(&conf->resync_lock);
1069	conf->array_frozen = 1;
1070	raid1_log(conf->mddev, "wait freeze");
1071	wait_event_lock_irq_cmd(
1072		conf->wait_barrier,
1073		get_unqueued_pending(conf) == extra,
1074		conf->resync_lock,
1075		flush_pending_writes(conf));
1076	spin_unlock_irq(&conf->resync_lock);
1077}
1078static void unfreeze_array(struct r1conf *conf)
1079{
1080	/* reverse the effect of the freeze */
1081	spin_lock_irq(&conf->resync_lock);
1082	conf->array_frozen = 0;
 
 
1083	spin_unlock_irq(&conf->resync_lock);
1084	wake_up(&conf->wait_barrier);
1085}
1086
1087static void alloc_behind_master_bio(struct r1bio *r1_bio,
1088					   struct bio *bio)
 
 
1089{
1090	int size = bio->bi_iter.bi_size;
1091	unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1092	int i = 0;
1093	struct bio *behind_bio = NULL;
1094
1095	behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1096	if (!behind_bio)
1097		return;
1098
1099	/* discard op, we don't support writezero/writesame yet */
1100	if (!bio_has_data(bio)) {
1101		behind_bio->bi_iter.bi_size = size;
1102		goto skip_copy;
 
 
 
 
 
1103	}
1104
1105	behind_bio->bi_write_hint = bio->bi_write_hint;
1106
1107	while (i < vcnt && size) {
1108		struct page *page;
1109		int len = min_t(int, PAGE_SIZE, size);
1110
1111		page = alloc_page(GFP_NOIO);
1112		if (unlikely(!page))
1113			goto free_pages;
1114
1115		bio_add_page(behind_bio, page, len, 0);
1116
1117		size -= len;
1118		i++;
1119	}
1120
1121	bio_copy_data(behind_bio, bio);
1122skip_copy:
1123	r1_bio->behind_master_bio = behind_bio;
1124	set_bit(R1BIO_BehindIO, &r1_bio->state);
1125
1126	return;
1127
1128free_pages:
1129	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1130		 bio->bi_iter.bi_size);
1131	bio_free_pages(behind_bio);
1132	bio_put(behind_bio);
1133}
1134
1135struct raid1_plug_cb {
1136	struct blk_plug_cb	cb;
1137	struct bio_list		pending;
1138	int			pending_cnt;
1139};
1140
1141static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1142{
1143	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1144						  cb);
1145	struct mddev *mddev = plug->cb.data;
1146	struct r1conf *conf = mddev->private;
1147	struct bio *bio;
1148
1149	if (from_schedule || current->bio_list) {
1150		spin_lock_irq(&conf->device_lock);
1151		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1152		conf->pending_count += plug->pending_cnt;
1153		spin_unlock_irq(&conf->device_lock);
1154		wake_up(&conf->wait_barrier);
1155		md_wakeup_thread(mddev->thread);
1156		kfree(plug);
1157		return;
1158	}
1159
1160	/* we aren't scheduling, so we can do the write-out directly. */
1161	bio = bio_list_get(&plug->pending);
1162	flush_bio_list(conf, bio);
1163	kfree(plug);
1164}
1165
1166static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1167{
1168	r1_bio->master_bio = bio;
1169	r1_bio->sectors = bio_sectors(bio);
1170	r1_bio->state = 0;
1171	r1_bio->mddev = mddev;
1172	r1_bio->sector = bio->bi_iter.bi_sector;
1173}
1174
1175static inline struct r1bio *
1176alloc_r1bio(struct mddev *mddev, struct bio *bio)
1177{
1178	struct r1conf *conf = mddev->private;
1179	struct r1bio *r1_bio;
1180
1181	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1182	/* Ensure no bio records IO_BLOCKED */
1183	memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1184	init_r1bio(r1_bio, mddev, bio);
1185	return r1_bio;
1186}
1187
1188static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1189			       int max_read_sectors, struct r1bio *r1_bio)
1190{
1191	struct r1conf *conf = mddev->private;
1192	struct raid1_info *mirror;
1193	struct bio *read_bio;
1194	struct bitmap *bitmap = mddev->bitmap;
1195	const int op = bio_op(bio);
1196	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
 
 
 
 
 
 
 
1197	int max_sectors;
1198	int rdisk;
1199	bool print_msg = !!r1_bio;
1200	char b[BDEVNAME_SIZE];
1201
1202	/*
1203	 * If r1_bio is set, we are blocking the raid1d thread
1204	 * so there is a tiny risk of deadlock.  So ask for
1205	 * emergency memory if needed.
1206	 */
1207	gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1208
1209	if (print_msg) {
1210		/* Need to get the block device name carefully */
1211		struct md_rdev *rdev;
1212		rcu_read_lock();
1213		rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1214		if (rdev)
1215			bdevname(rdev->bdev, b);
1216		else
1217			strcpy(b, "???");
1218		rcu_read_unlock();
 
 
 
 
 
 
 
 
 
1219	}
1220
1221	/*
1222	 * Still need barrier for READ in case that whole
1223	 * array is frozen.
1224	 */
1225	wait_read_barrier(conf, bio->bi_iter.bi_sector);
1226
1227	if (!r1_bio)
1228		r1_bio = alloc_r1bio(mddev, bio);
1229	else
1230		init_r1bio(r1_bio, mddev, bio);
1231	r1_bio->sectors = max_read_sectors;
1232
1233	/*
1234	 * make_request() can abort the operation when read-ahead is being
1235	 * used and no empty request is available.
 
1236	 */
1237	rdisk = read_balance(conf, r1_bio, &max_sectors);
1238
1239	if (rdisk < 0) {
1240		/* couldn't find anywhere to read from */
1241		if (print_msg) {
1242			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1243					    mdname(mddev),
1244					    b,
1245					    (unsigned long long)r1_bio->sector);
1246		}
1247		raid_end_bio_io(r1_bio);
1248		return;
1249	}
1250	mirror = conf->mirrors + rdisk;
1251
1252	if (print_msg)
1253		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1254				    mdname(mddev),
1255				    (unsigned long long)r1_bio->sector,
1256				    bdevname(mirror->rdev->bdev, b));
 
 
 
 
1257
1258	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1259	    bitmap) {
1260		/*
1261		 * Reading from a write-mostly device must take care not to
1262		 * over-take any writes that are 'behind'
1263		 */
1264		raid1_log(mddev, "wait behind writes");
1265		wait_event(bitmap->behind_wait,
1266			   atomic_read(&bitmap->behind_writes) == 0);
1267	}
1268
1269	if (max_sectors < bio_sectors(bio)) {
1270		struct bio *split = bio_split(bio, max_sectors,
1271					      gfp, conf->bio_split);
1272		bio_chain(split, bio);
1273		generic_make_request(bio);
1274		bio = split;
1275		r1_bio->master_bio = bio;
1276		r1_bio->sectors = max_sectors;
1277	}
1278
1279	r1_bio->read_disk = rdisk;
 
 
 
 
 
1280
1281	read_bio = bio_clone_fast(bio, gfp, mddev->bio_set);
 
 
 
 
 
 
 
 
 
1282
1283	r1_bio->bios[rdisk] = read_bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1284
1285	read_bio->bi_iter.bi_sector = r1_bio->sector +
1286		mirror->rdev->data_offset;
1287	bio_set_dev(read_bio, mirror->rdev->bdev);
1288	read_bio->bi_end_io = raid1_end_read_request;
1289	bio_set_op_attrs(read_bio, op, do_sync);
1290	if (test_bit(FailFast, &mirror->rdev->flags) &&
1291	    test_bit(R1BIO_FailFast, &r1_bio->state))
1292	        read_bio->bi_opf |= MD_FAILFAST;
1293	read_bio->bi_private = r1_bio;
 
 
 
 
 
 
1294
1295	if (mddev->gendisk)
1296	        trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1297				disk_devt(mddev->gendisk), r1_bio->sector);
1298
1299	generic_make_request(read_bio);
1300}
1301
1302static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1303				int max_write_sectors)
1304{
1305	struct r1conf *conf = mddev->private;
1306	struct r1bio *r1_bio;
1307	int i, disks;
1308	struct bitmap *bitmap = mddev->bitmap;
1309	unsigned long flags;
1310	struct md_rdev *blocked_rdev;
1311	struct blk_plug_cb *cb;
1312	struct raid1_plug_cb *plug = NULL;
1313	int first_clone;
1314	int max_sectors;
1315
1316	if (mddev_is_clustered(mddev) &&
1317	     md_cluster_ops->area_resyncing(mddev, WRITE,
1318		     bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1319
1320		DEFINE_WAIT(w);
1321		for (;;) {
1322			prepare_to_wait(&conf->wait_barrier,
1323					&w, TASK_IDLE);
1324			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1325							bio->bi_iter.bi_sector,
1326							bio_end_sector(bio)))
1327				break;
1328			schedule();
1329		}
1330		finish_wait(&conf->wait_barrier, &w);
1331	}
1332
1333	/*
1334	 * Register the new request and wait if the reconstruction
1335	 * thread has put up a bar for new requests.
1336	 * Continue immediately if no resync is active currently.
1337	 */
1338	wait_barrier(conf, bio->bi_iter.bi_sector);
1339
1340	r1_bio = alloc_r1bio(mddev, bio);
1341	r1_bio->sectors = max_write_sectors;
1342
1343	if (conf->pending_count >= max_queued_requests) {
1344		md_wakeup_thread(mddev->thread);
1345		raid1_log(mddev, "wait queued");
1346		wait_event(conf->wait_barrier,
1347			   conf->pending_count < max_queued_requests);
1348	}
1349	/* first select target devices under rcu_lock and
1350	 * inc refcount on their rdev.  Record them by setting
1351	 * bios[x] to bio
1352	 * If there are known/acknowledged bad blocks on any device on
1353	 * which we have seen a write error, we want to avoid writing those
1354	 * blocks.
1355	 * This potentially requires several writes to write around
1356	 * the bad blocks.  Each set of writes gets it's own r1bio
1357	 * with a set of bios attached.
1358	 */
 
1359
1360	disks = conf->raid_disks * 2;
1361 retry_write:
1362	blocked_rdev = NULL;
1363	rcu_read_lock();
1364	max_sectors = r1_bio->sectors;
1365	for (i = 0;  i < disks; i++) {
1366		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1367		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1368			atomic_inc(&rdev->nr_pending);
1369			blocked_rdev = rdev;
1370			break;
1371		}
1372		r1_bio->bios[i] = NULL;
1373		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1374			if (i < conf->raid_disks)
1375				set_bit(R1BIO_Degraded, &r1_bio->state);
1376			continue;
1377		}
1378
1379		atomic_inc(&rdev->nr_pending);
1380		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1381			sector_t first_bad;
1382			int bad_sectors;
1383			int is_bad;
1384
1385			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
 
1386					     &first_bad, &bad_sectors);
1387			if (is_bad < 0) {
1388				/* mustn't write here until the bad block is
1389				 * acknowledged*/
1390				set_bit(BlockedBadBlocks, &rdev->flags);
1391				blocked_rdev = rdev;
1392				break;
1393			}
1394			if (is_bad && first_bad <= r1_bio->sector) {
1395				/* Cannot write here at all */
1396				bad_sectors -= (r1_bio->sector - first_bad);
1397				if (bad_sectors < max_sectors)
1398					/* mustn't write more than bad_sectors
1399					 * to other devices yet
1400					 */
1401					max_sectors = bad_sectors;
1402				rdev_dec_pending(rdev, mddev);
1403				/* We don't set R1BIO_Degraded as that
1404				 * only applies if the disk is
1405				 * missing, so it might be re-added,
1406				 * and we want to know to recover this
1407				 * chunk.
1408				 * In this case the device is here,
1409				 * and the fact that this chunk is not
1410				 * in-sync is recorded in the bad
1411				 * block log
1412				 */
1413				continue;
1414			}
1415			if (is_bad) {
1416				int good_sectors = first_bad - r1_bio->sector;
1417				if (good_sectors < max_sectors)
1418					max_sectors = good_sectors;
1419			}
1420		}
1421		r1_bio->bios[i] = bio;
1422	}
1423	rcu_read_unlock();
1424
1425	if (unlikely(blocked_rdev)) {
1426		/* Wait for this device to become unblocked */
1427		int j;
1428
1429		for (j = 0; j < i; j++)
1430			if (r1_bio->bios[j])
1431				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1432		r1_bio->state = 0;
1433		allow_barrier(conf, bio->bi_iter.bi_sector);
1434		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1435		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1436		wait_barrier(conf, bio->bi_iter.bi_sector);
1437		goto retry_write;
1438	}
1439
1440	if (max_sectors < bio_sectors(bio)) {
1441		struct bio *split = bio_split(bio, max_sectors,
1442					      GFP_NOIO, conf->bio_split);
1443		bio_chain(split, bio);
1444		generic_make_request(bio);
1445		bio = split;
1446		r1_bio->master_bio = bio;
1447		r1_bio->sectors = max_sectors;
 
 
 
 
 
 
1448	}
 
1449
1450	atomic_set(&r1_bio->remaining, 1);
1451	atomic_set(&r1_bio->behind_remaining, 0);
1452
1453	first_clone = 1;
1454
1455	for (i = 0; i < disks; i++) {
1456		struct bio *mbio = NULL;
1457		if (!r1_bio->bios[i])
1458			continue;
1459
 
 
1460
1461		if (first_clone) {
1462			/* do behind I/O ?
1463			 * Not if there are too many, or cannot
1464			 * allocate memory, or a reader on WriteMostly
1465			 * is waiting for behind writes to flush */
1466			if (bitmap &&
1467			    (atomic_read(&bitmap->behind_writes)
1468			     < mddev->bitmap_info.max_write_behind) &&
1469			    !waitqueue_active(&bitmap->behind_wait)) {
1470				alloc_behind_master_bio(r1_bio, bio);
1471			}
1472
1473			bitmap_startwrite(bitmap, r1_bio->sector,
1474					  r1_bio->sectors,
1475					  test_bit(R1BIO_BehindIO,
1476						   &r1_bio->state));
1477			first_clone = 0;
1478		}
1479
1480		if (r1_bio->behind_master_bio)
1481			mbio = bio_clone_fast(r1_bio->behind_master_bio,
1482					      GFP_NOIO, mddev->bio_set);
1483		else
1484			mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1485
1486		if (r1_bio->behind_master_bio) {
 
 
 
 
 
1487			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1488				atomic_inc(&r1_bio->behind_remaining);
1489		}
1490
1491		r1_bio->bios[i] = mbio;
1492
1493		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1494				   conf->mirrors[i].rdev->data_offset);
1495		bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1496		mbio->bi_end_io	= raid1_end_write_request;
1497		mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1498		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1499		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1500		    conf->raid_disks - mddev->degraded > 1)
1501			mbio->bi_opf |= MD_FAILFAST;
1502		mbio->bi_private = r1_bio;
1503
1504		atomic_inc(&r1_bio->remaining);
1505
1506		if (mddev->gendisk)
1507			trace_block_bio_remap(mbio->bi_disk->queue,
1508					      mbio, disk_devt(mddev->gendisk),
1509					      r1_bio->sector);
1510		/* flush_pending_writes() needs access to the rdev so...*/
1511		mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1512
1513		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1514		if (cb)
1515			plug = container_of(cb, struct raid1_plug_cb, cb);
1516		else
1517			plug = NULL;
1518		if (plug) {
1519			bio_list_add(&plug->pending, mbio);
1520			plug->pending_cnt++;
1521		} else {
1522			spin_lock_irqsave(&conf->device_lock, flags);
1523			bio_list_add(&conf->pending_bio_list, mbio);
1524			conf->pending_count++;
1525			spin_unlock_irqrestore(&conf->device_lock, flags);
1526			md_wakeup_thread(mddev->thread);
1527		}
1528	}
1529
1530	r1_bio_write_done(r1_bio);
1531
1532	/* In case raid1d snuck in to freeze_array */
1533	wake_up(&conf->wait_barrier);
1534}
1535
1536static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1537{
1538	sector_t sectors;
1539
1540	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1541		md_flush_request(mddev, bio);
1542		return true;
1543	}
1544
1545	/*
1546	 * There is a limit to the maximum size, but
1547	 * the read/write handler might find a lower limit
1548	 * due to bad blocks.  To avoid multiple splits,
1549	 * we pass the maximum number of sectors down
1550	 * and let the lower level perform the split.
1551	 */
1552	sectors = align_to_barrier_unit_end(
1553		bio->bi_iter.bi_sector, bio_sectors(bio));
1554
1555	if (bio_data_dir(bio) == READ)
1556		raid1_read_request(mddev, bio, sectors, NULL);
1557	else {
1558		if (!md_write_start(mddev,bio))
1559			return false;
1560		raid1_write_request(mddev, bio, sectors);
1561	}
1562	return true;
1563}
1564
1565static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1566{
1567	struct r1conf *conf = mddev->private;
1568	int i;
1569
1570	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1571		   conf->raid_disks - mddev->degraded);
1572	rcu_read_lock();
1573	for (i = 0; i < conf->raid_disks; i++) {
1574		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1575		seq_printf(seq, "%s",
1576			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1577	}
1578	rcu_read_unlock();
1579	seq_printf(seq, "]");
1580}
1581
1582static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
 
1583{
1584	char b[BDEVNAME_SIZE];
1585	struct r1conf *conf = mddev->private;
1586	unsigned long flags;
1587
1588	/*
1589	 * If it is not operational, then we have already marked it as dead
1590	 * else if it is the last working disks, ignore the error, let the
1591	 * next level up know.
1592	 * else mark the drive as failed
1593	 */
1594	spin_lock_irqsave(&conf->device_lock, flags);
1595	if (test_bit(In_sync, &rdev->flags)
1596	    && (conf->raid_disks - mddev->degraded) == 1) {
1597		/*
1598		 * Don't fail the drive, act as though we were just a
1599		 * normal single drive.
1600		 * However don't try a recovery from this drive as
1601		 * it is very likely to fail.
1602		 */
1603		conf->recovery_disabled = mddev->recovery_disabled;
1604		spin_unlock_irqrestore(&conf->device_lock, flags);
1605		return;
1606	}
1607	set_bit(Blocked, &rdev->flags);
1608	if (test_and_clear_bit(In_sync, &rdev->flags)) {
 
 
1609		mddev->degraded++;
1610		set_bit(Faulty, &rdev->flags);
 
 
 
 
 
1611	} else
1612		set_bit(Faulty, &rdev->flags);
1613	spin_unlock_irqrestore(&conf->device_lock, flags);
1614	/*
1615	 * if recovery is running, make sure it aborts.
1616	 */
1617	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1618	set_mask_bits(&mddev->sb_flags, 0,
1619		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1620	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1621		"md/raid1:%s: Operation continuing on %d devices.\n",
1622		mdname(mddev), bdevname(rdev->bdev, b),
1623		mdname(mddev), conf->raid_disks - mddev->degraded);
1624}
1625
1626static void print_conf(struct r1conf *conf)
1627{
1628	int i;
1629
1630	pr_debug("RAID1 conf printout:\n");
1631	if (!conf) {
1632		pr_debug("(!conf)\n");
1633		return;
1634	}
1635	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1636		 conf->raid_disks);
1637
1638	rcu_read_lock();
1639	for (i = 0; i < conf->raid_disks; i++) {
1640		char b[BDEVNAME_SIZE];
1641		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1642		if (rdev)
1643			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1644				 i, !test_bit(In_sync, &rdev->flags),
1645				 !test_bit(Faulty, &rdev->flags),
1646				 bdevname(rdev->bdev,b));
1647	}
1648	rcu_read_unlock();
1649}
1650
1651static void close_sync(struct r1conf *conf)
1652{
1653	int idx;
1654
1655	for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1656		_wait_barrier(conf, idx);
1657		_allow_barrier(conf, idx);
1658	}
1659
1660	mempool_destroy(conf->r1buf_pool);
1661	conf->r1buf_pool = NULL;
1662}
1663
1664static int raid1_spare_active(struct mddev *mddev)
1665{
1666	int i;
1667	struct r1conf *conf = mddev->private;
1668	int count = 0;
1669	unsigned long flags;
1670
1671	/*
1672	 * Find all failed disks within the RAID1 configuration
1673	 * and mark them readable.
1674	 * Called under mddev lock, so rcu protection not needed.
1675	 * device_lock used to avoid races with raid1_end_read_request
1676	 * which expects 'In_sync' flags and ->degraded to be consistent.
1677	 */
1678	spin_lock_irqsave(&conf->device_lock, flags);
1679	for (i = 0; i < conf->raid_disks; i++) {
1680		struct md_rdev *rdev = conf->mirrors[i].rdev;
1681		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1682		if (repl
1683		    && !test_bit(Candidate, &repl->flags)
1684		    && repl->recovery_offset == MaxSector
1685		    && !test_bit(Faulty, &repl->flags)
1686		    && !test_and_set_bit(In_sync, &repl->flags)) {
1687			/* replacement has just become active */
1688			if (!rdev ||
1689			    !test_and_clear_bit(In_sync, &rdev->flags))
1690				count++;
1691			if (rdev) {
1692				/* Replaced device not technically
1693				 * faulty, but we need to be sure
1694				 * it gets removed and never re-added
1695				 */
1696				set_bit(Faulty, &rdev->flags);
1697				sysfs_notify_dirent_safe(
1698					rdev->sysfs_state);
1699			}
1700		}
1701		if (rdev
1702		    && rdev->recovery_offset == MaxSector
1703		    && !test_bit(Faulty, &rdev->flags)
1704		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1705			count++;
1706			sysfs_notify_dirent_safe(rdev->sysfs_state);
1707		}
1708	}
 
1709	mddev->degraded -= count;
1710	spin_unlock_irqrestore(&conf->device_lock, flags);
1711
1712	print_conf(conf);
1713	return count;
1714}
1715
1716static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
 
1717{
1718	struct r1conf *conf = mddev->private;
1719	int err = -EEXIST;
1720	int mirror = 0;
1721	struct raid1_info *p;
1722	int first = 0;
1723	int last = conf->raid_disks - 1;
1724
1725	if (mddev->recovery_disabled == conf->recovery_disabled)
1726		return -EBUSY;
1727
1728	if (md_integrity_add_rdev(rdev, mddev))
1729		return -ENXIO;
1730
1731	if (rdev->raid_disk >= 0)
1732		first = last = rdev->raid_disk;
1733
1734	/*
1735	 * find the disk ... but prefer rdev->saved_raid_disk
1736	 * if possible.
1737	 */
1738	if (rdev->saved_raid_disk >= 0 &&
1739	    rdev->saved_raid_disk >= first &&
1740	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1741		first = last = rdev->saved_raid_disk;
1742
1743	for (mirror = first; mirror <= last; mirror++) {
1744		p = conf->mirrors+mirror;
1745		if (!p->rdev) {
1746
1747			if (mddev->gendisk)
1748				disk_stack_limits(mddev->gendisk, rdev->bdev,
1749						  rdev->data_offset << 9);
1750
1751			p->head_position = 0;
1752			rdev->raid_disk = mirror;
1753			err = 0;
1754			/* As all devices are equivalent, we don't need a full recovery
1755			 * if this was recently any drive of the array
1756			 */
1757			if (rdev->saved_raid_disk < 0)
1758				conf->fullsync = 1;
1759			rcu_assign_pointer(p->rdev, rdev);
1760			break;
1761		}
1762		if (test_bit(WantReplacement, &p->rdev->flags) &&
1763		    p[conf->raid_disks].rdev == NULL) {
1764			/* Add this device as a replacement */
1765			clear_bit(In_sync, &rdev->flags);
1766			set_bit(Replacement, &rdev->flags);
1767			rdev->raid_disk = mirror;
1768			err = 0;
1769			conf->fullsync = 1;
1770			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1771			break;
1772		}
1773	}
1774	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1775		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1776	print_conf(conf);
1777	return err;
1778}
1779
1780static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1781{
1782	struct r1conf *conf = mddev->private;
1783	int err = 0;
1784	int number = rdev->raid_disk;
1785	struct raid1_info *p = conf->mirrors + number;
1786
1787	if (rdev != p->rdev)
1788		p = conf->mirrors + conf->raid_disks + number;
1789
1790	print_conf(conf);
1791	if (rdev == p->rdev) {
 
1792		if (test_bit(In_sync, &rdev->flags) ||
1793		    atomic_read(&rdev->nr_pending)) {
1794			err = -EBUSY;
1795			goto abort;
1796		}
1797		/* Only remove non-faulty devices if recovery
1798		 * is not possible.
1799		 */
1800		if (!test_bit(Faulty, &rdev->flags) &&
1801		    mddev->recovery_disabled != conf->recovery_disabled &&
1802		    mddev->degraded < conf->raid_disks) {
1803			err = -EBUSY;
1804			goto abort;
1805		}
1806		p->rdev = NULL;
1807		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1808			synchronize_rcu();
1809			if (atomic_read(&rdev->nr_pending)) {
1810				/* lost the race, try later */
1811				err = -EBUSY;
1812				p->rdev = rdev;
1813				goto abort;
1814			}
1815		}
1816		if (conf->mirrors[conf->raid_disks + number].rdev) {
1817			/* We just removed a device that is being replaced.
1818			 * Move down the replacement.  We drain all IO before
1819			 * doing this to avoid confusion.
1820			 */
1821			struct md_rdev *repl =
1822				conf->mirrors[conf->raid_disks + number].rdev;
1823			freeze_array(conf, 0);
1824			if (atomic_read(&repl->nr_pending)) {
1825				/* It means that some queued IO of retry_list
1826				 * hold repl. Thus, we cannot set replacement
1827				 * as NULL, avoiding rdev NULL pointer
1828				 * dereference in sync_request_write and
1829				 * handle_write_finished.
1830				 */
1831				err = -EBUSY;
1832				unfreeze_array(conf);
1833				goto abort;
1834			}
1835			clear_bit(Replacement, &repl->flags);
1836			p->rdev = repl;
1837			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1838			unfreeze_array(conf);
1839		}
1840
1841		clear_bit(WantReplacement, &rdev->flags);
1842		err = md_integrity_register(mddev);
1843	}
1844abort:
1845
1846	print_conf(conf);
1847	return err;
1848}
1849
1850static void end_sync_read(struct bio *bio)
 
1851{
1852	struct r1bio *r1_bio = get_resync_r1bio(bio);
1853
1854	update_head_pos(r1_bio->read_disk, r1_bio);
1855
 
 
 
 
 
1856	/*
1857	 * we have read a block, now it needs to be re-written,
1858	 * or re-read if the read failed.
1859	 * We don't do much here, just schedule handling by raid1d
1860	 */
1861	if (!bio->bi_status)
1862		set_bit(R1BIO_Uptodate, &r1_bio->state);
1863
1864	if (atomic_dec_and_test(&r1_bio->remaining))
1865		reschedule_retry(r1_bio);
1866}
1867
1868static void end_sync_write(struct bio *bio)
1869{
1870	int uptodate = !bio->bi_status;
1871	struct r1bio *r1_bio = get_resync_r1bio(bio);
1872	struct mddev *mddev = r1_bio->mddev;
1873	struct r1conf *conf = mddev->private;
 
 
1874	sector_t first_bad;
1875	int bad_sectors;
1876	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1877
 
 
 
 
 
1878	if (!uptodate) {
1879		sector_t sync_blocks = 0;
1880		sector_t s = r1_bio->sector;
1881		long sectors_to_go = r1_bio->sectors;
1882		/* make sure these bits doesn't get cleared. */
1883		do {
1884			bitmap_end_sync(mddev->bitmap, s,
1885					&sync_blocks, 1);
1886			s += sync_blocks;
1887			sectors_to_go -= sync_blocks;
1888		} while (sectors_to_go > 0);
1889		set_bit(WriteErrorSeen, &rdev->flags);
1890		if (!test_and_set_bit(WantReplacement, &rdev->flags))
1891			set_bit(MD_RECOVERY_NEEDED, &
1892				mddev->recovery);
1893		set_bit(R1BIO_WriteError, &r1_bio->state);
1894	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 
 
1895			       &first_bad, &bad_sectors) &&
1896		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1897				r1_bio->sector,
1898				r1_bio->sectors,
1899				&first_bad, &bad_sectors)
1900		)
1901		set_bit(R1BIO_MadeGood, &r1_bio->state);
1902
 
 
1903	if (atomic_dec_and_test(&r1_bio->remaining)) {
1904		int s = r1_bio->sectors;
1905		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1906		    test_bit(R1BIO_WriteError, &r1_bio->state))
1907			reschedule_retry(r1_bio);
1908		else {
1909			put_buf(r1_bio);
1910			md_done_sync(mddev, s, uptodate);
1911		}
1912	}
1913}
1914
1915static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1916			    int sectors, struct page *page, int rw)
1917{
1918	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1919		/* success */
1920		return 1;
1921	if (rw == WRITE) {
1922		set_bit(WriteErrorSeen, &rdev->flags);
1923		if (!test_and_set_bit(WantReplacement,
1924				      &rdev->flags))
1925			set_bit(MD_RECOVERY_NEEDED, &
1926				rdev->mddev->recovery);
1927	}
1928	/* need to record an error - either for the block or the device */
1929	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1930		md_error(rdev->mddev, rdev);
1931	return 0;
1932}
1933
1934static int fix_sync_read_error(struct r1bio *r1_bio)
1935{
1936	/* Try some synchronous reads of other devices to get
1937	 * good data, much like with normal read errors.  Only
1938	 * read into the pages we already have so we don't
1939	 * need to re-issue the read request.
1940	 * We don't need to freeze the array, because being in an
1941	 * active sync request, there is no normal IO, and
1942	 * no overlapping syncs.
1943	 * We don't need to check is_badblock() again as we
1944	 * made sure that anything with a bad block in range
1945	 * will have bi_end_io clear.
1946	 */
1947	struct mddev *mddev = r1_bio->mddev;
1948	struct r1conf *conf = mddev->private;
1949	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1950	struct page **pages = get_resync_pages(bio)->pages;
1951	sector_t sect = r1_bio->sector;
1952	int sectors = r1_bio->sectors;
1953	int idx = 0;
1954	struct md_rdev *rdev;
1955
1956	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1957	if (test_bit(FailFast, &rdev->flags)) {
1958		/* Don't try recovering from here - just fail it
1959		 * ... unless it is the last working device of course */
1960		md_error(mddev, rdev);
1961		if (test_bit(Faulty, &rdev->flags))
1962			/* Don't try to read from here, but make sure
1963			 * put_buf does it's thing
1964			 */
1965			bio->bi_end_io = end_sync_write;
1966	}
1967
1968	while(sectors) {
1969		int s = sectors;
1970		int d = r1_bio->read_disk;
1971		int success = 0;
 
1972		int start;
1973
1974		if (s > (PAGE_SIZE>>9))
1975			s = PAGE_SIZE >> 9;
1976		do {
1977			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1978				/* No rcu protection needed here devices
1979				 * can only be removed when no resync is
1980				 * active, and resync is currently active
1981				 */
1982				rdev = conf->mirrors[d].rdev;
1983				if (sync_page_io(rdev, sect, s<<9,
1984						 pages[idx],
1985						 REQ_OP_READ, 0, false)) {
1986					success = 1;
1987					break;
1988				}
1989			}
1990			d++;
1991			if (d == conf->raid_disks * 2)
1992				d = 0;
1993		} while (!success && d != r1_bio->read_disk);
1994
1995		if (!success) {
1996			char b[BDEVNAME_SIZE];
1997			int abort = 0;
1998			/* Cannot read from anywhere, this block is lost.
1999			 * Record a bad block on each device.  If that doesn't
2000			 * work just disable and interrupt the recovery.
2001			 * Don't fail devices as that won't really help.
2002			 */
2003			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2004					    mdname(mddev), bio_devname(bio, b),
2005					    (unsigned long long)r1_bio->sector);
2006			for (d = 0; d < conf->raid_disks * 2; d++) {
 
 
2007				rdev = conf->mirrors[d].rdev;
2008				if (!rdev || test_bit(Faulty, &rdev->flags))
2009					continue;
2010				if (!rdev_set_badblocks(rdev, sect, s, 0))
2011					abort = 1;
2012			}
2013			if (abort) {
2014				conf->recovery_disabled =
2015					mddev->recovery_disabled;
2016				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2017				md_done_sync(mddev, r1_bio->sectors, 0);
2018				put_buf(r1_bio);
2019				return 0;
2020			}
2021			/* Try next page */
2022			sectors -= s;
2023			sect += s;
2024			idx++;
2025			continue;
2026		}
2027
2028		start = d;
2029		/* write it back and re-read */
2030		while (d != r1_bio->read_disk) {
2031			if (d == 0)
2032				d = conf->raid_disks * 2;
2033			d--;
2034			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2035				continue;
2036			rdev = conf->mirrors[d].rdev;
2037			if (r1_sync_page_io(rdev, sect, s,
2038					    pages[idx],
2039					    WRITE) == 0) {
2040				r1_bio->bios[d]->bi_end_io = NULL;
2041				rdev_dec_pending(rdev, mddev);
2042			}
2043		}
2044		d = start;
2045		while (d != r1_bio->read_disk) {
2046			if (d == 0)
2047				d = conf->raid_disks * 2;
2048			d--;
2049			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2050				continue;
2051			rdev = conf->mirrors[d].rdev;
2052			if (r1_sync_page_io(rdev, sect, s,
2053					    pages[idx],
2054					    READ) != 0)
2055				atomic_add(s, &rdev->corrected_errors);
2056		}
2057		sectors -= s;
2058		sect += s;
2059		idx ++;
2060	}
2061	set_bit(R1BIO_Uptodate, &r1_bio->state);
2062	bio->bi_status = 0;
2063	return 1;
2064}
2065
2066static void process_checks(struct r1bio *r1_bio)
2067{
2068	/* We have read all readable devices.  If we haven't
2069	 * got the block, then there is no hope left.
2070	 * If we have, then we want to do a comparison
2071	 * and skip the write if everything is the same.
2072	 * If any blocks failed to read, then we need to
2073	 * attempt an over-write
2074	 */
2075	struct mddev *mddev = r1_bio->mddev;
2076	struct r1conf *conf = mddev->private;
2077	int primary;
2078	int i;
2079	int vcnt;
2080
2081	/* Fix variable parts of all bios */
2082	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2083	for (i = 0; i < conf->raid_disks * 2; i++) {
2084		blk_status_t status;
2085		struct bio *b = r1_bio->bios[i];
2086		struct resync_pages *rp = get_resync_pages(b);
2087		if (b->bi_end_io != end_sync_read)
2088			continue;
2089		/* fixup the bio for reuse, but preserve errno */
2090		status = b->bi_status;
2091		bio_reset(b);
2092		b->bi_status = status;
2093		b->bi_iter.bi_sector = r1_bio->sector +
2094			conf->mirrors[i].rdev->data_offset;
2095		bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2096		b->bi_end_io = end_sync_read;
2097		rp->raid_bio = r1_bio;
2098		b->bi_private = rp;
2099
2100		/* initialize bvec table again */
2101		md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2102	}
2103	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2104		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2105		    !r1_bio->bios[primary]->bi_status) {
2106			r1_bio->bios[primary]->bi_end_io = NULL;
2107			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2108			break;
2109		}
2110	r1_bio->read_disk = primary;
2111	for (i = 0; i < conf->raid_disks * 2; i++) {
2112		int j;
 
2113		struct bio *pbio = r1_bio->bios[primary];
2114		struct bio *sbio = r1_bio->bios[i];
2115		blk_status_t status = sbio->bi_status;
2116		struct page **ppages = get_resync_pages(pbio)->pages;
2117		struct page **spages = get_resync_pages(sbio)->pages;
2118		struct bio_vec *bi;
2119		int page_len[RESYNC_PAGES] = { 0 };
2120
2121		if (sbio->bi_end_io != end_sync_read)
2122			continue;
2123		/* Now we can 'fixup' the error value */
2124		sbio->bi_status = 0;
2125
2126		bio_for_each_segment_all(bi, sbio, j)
2127			page_len[j] = bi->bv_len;
2128
2129		if (!status) {
2130			for (j = vcnt; j-- ; ) {
2131				if (memcmp(page_address(ppages[j]),
2132					   page_address(spages[j]),
2133					   page_len[j]))
 
 
 
2134					break;
2135			}
2136		} else
2137			j = 0;
2138		if (j >= 0)
2139			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2140		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2141			      && !status)) {
2142			/* No need to write to this device. */
2143			sbio->bi_end_io = NULL;
2144			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2145			continue;
2146		}
2147
2148		bio_copy_data(sbio, pbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2149	}
 
2150}
2151
2152static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2153{
2154	struct r1conf *conf = mddev->private;
2155	int i;
2156	int disks = conf->raid_disks * 2;
2157	struct bio *wbio;
 
 
2158
2159	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2160		/* ouch - failed to read all of that. */
2161		if (!fix_sync_read_error(r1_bio))
2162			return;
2163
2164	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2165		process_checks(r1_bio);
2166
2167	/*
2168	 * schedule writes
2169	 */
2170	atomic_set(&r1_bio->remaining, 1);
2171	for (i = 0; i < disks ; i++) {
2172		wbio = r1_bio->bios[i];
2173		if (wbio->bi_end_io == NULL ||
2174		    (wbio->bi_end_io == end_sync_read &&
2175		     (i == r1_bio->read_disk ||
2176		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2177			continue;
2178		if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2179			continue;
2180
2181		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2182		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2183			wbio->bi_opf |= MD_FAILFAST;
2184
 
2185		wbio->bi_end_io = end_sync_write;
2186		atomic_inc(&r1_bio->remaining);
2187		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2188
2189		generic_make_request(wbio);
2190	}
2191
2192	if (atomic_dec_and_test(&r1_bio->remaining)) {
2193		/* if we're here, all write(s) have completed, so clean up */
2194		int s = r1_bio->sectors;
2195		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2196		    test_bit(R1BIO_WriteError, &r1_bio->state))
2197			reschedule_retry(r1_bio);
2198		else {
2199			put_buf(r1_bio);
2200			md_done_sync(mddev, s, 1);
2201		}
2202	}
2203}
2204
2205/*
2206 * This is a kernel thread which:
2207 *
2208 *	1.	Retries failed read operations on working mirrors.
2209 *	2.	Updates the raid superblock when problems encounter.
2210 *	3.	Performs writes following reads for array synchronising.
2211 */
2212
2213static void fix_read_error(struct r1conf *conf, int read_disk,
2214			   sector_t sect, int sectors)
2215{
2216	struct mddev *mddev = conf->mddev;
2217	while(sectors) {
2218		int s = sectors;
2219		int d = read_disk;
2220		int success = 0;
2221		int start;
2222		struct md_rdev *rdev;
2223
2224		if (s > (PAGE_SIZE>>9))
2225			s = PAGE_SIZE >> 9;
2226
2227		do {
 
 
 
 
 
2228			sector_t first_bad;
2229			int bad_sectors;
2230
2231			rcu_read_lock();
2232			rdev = rcu_dereference(conf->mirrors[d].rdev);
2233			if (rdev &&
2234			    (test_bit(In_sync, &rdev->flags) ||
2235			     (!test_bit(Faulty, &rdev->flags) &&
2236			      rdev->recovery_offset >= sect + s)) &&
2237			    is_badblock(rdev, sect, s,
2238					&first_bad, &bad_sectors) == 0) {
2239				atomic_inc(&rdev->nr_pending);
2240				rcu_read_unlock();
2241				if (sync_page_io(rdev, sect, s<<9,
2242					 conf->tmppage, REQ_OP_READ, 0, false))
2243					success = 1;
2244				rdev_dec_pending(rdev, mddev);
2245				if (success)
2246					break;
2247			} else
2248				rcu_read_unlock();
2249			d++;
2250			if (d == conf->raid_disks * 2)
2251				d = 0;
2252		} while (!success && d != read_disk);
2253
2254		if (!success) {
2255			/* Cannot read from anywhere - mark it bad */
2256			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2257			if (!rdev_set_badblocks(rdev, sect, s, 0))
2258				md_error(mddev, rdev);
2259			break;
2260		}
2261		/* write it back and re-read */
2262		start = d;
2263		while (d != read_disk) {
2264			if (d==0)
2265				d = conf->raid_disks * 2;
2266			d--;
2267			rcu_read_lock();
2268			rdev = rcu_dereference(conf->mirrors[d].rdev);
2269			if (rdev &&
2270			    !test_bit(Faulty, &rdev->flags)) {
2271				atomic_inc(&rdev->nr_pending);
2272				rcu_read_unlock();
2273				r1_sync_page_io(rdev, sect, s,
2274						conf->tmppage, WRITE);
2275				rdev_dec_pending(rdev, mddev);
2276			} else
2277				rcu_read_unlock();
2278		}
2279		d = start;
2280		while (d != read_disk) {
2281			char b[BDEVNAME_SIZE];
2282			if (d==0)
2283				d = conf->raid_disks * 2;
2284			d--;
2285			rcu_read_lock();
2286			rdev = rcu_dereference(conf->mirrors[d].rdev);
2287			if (rdev &&
2288			    !test_bit(Faulty, &rdev->flags)) {
2289				atomic_inc(&rdev->nr_pending);
2290				rcu_read_unlock();
2291				if (r1_sync_page_io(rdev, sect, s,
2292						    conf->tmppage, READ)) {
2293					atomic_add(s, &rdev->corrected_errors);
2294					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2295						mdname(mddev), s,
2296						(unsigned long long)(sect +
2297								     rdev->data_offset),
2298						bdevname(rdev->bdev, b));
 
 
2299				}
2300				rdev_dec_pending(rdev, mddev);
2301			} else
2302				rcu_read_unlock();
2303		}
2304		sectors -= s;
2305		sect += s;
2306	}
2307}
2308
2309static int narrow_write_error(struct r1bio *r1_bio, int i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2310{
2311	struct mddev *mddev = r1_bio->mddev;
2312	struct r1conf *conf = mddev->private;
2313	struct md_rdev *rdev = conf->mirrors[i].rdev;
 
 
2314
2315	/* bio has the data to be written to device 'i' where
2316	 * we just recently had a write error.
2317	 * We repeatedly clone the bio and trim down to one block,
2318	 * then try the write.  Where the write fails we record
2319	 * a bad block.
2320	 * It is conceivable that the bio doesn't exactly align with
2321	 * blocks.  We must handle this somehow.
2322	 *
2323	 * We currently own a reference on the rdev.
2324	 */
2325
2326	int block_sectors;
2327	sector_t sector;
2328	int sectors;
2329	int sect_to_write = r1_bio->sectors;
2330	int ok = 1;
2331
2332	if (rdev->badblocks.shift < 0)
2333		return 0;
2334
2335	block_sectors = roundup(1 << rdev->badblocks.shift,
2336				bdev_logical_block_size(rdev->bdev) >> 9);
2337	sector = r1_bio->sector;
2338	sectors = ((sector + block_sectors)
2339		   & ~(sector_t)(block_sectors - 1))
2340		- sector;
2341
 
 
 
 
 
 
 
 
 
 
 
2342	while (sect_to_write) {
2343		struct bio *wbio;
2344		if (sectors > sect_to_write)
2345			sectors = sect_to_write;
2346		/* Write at 'sector' for 'sectors'*/
2347
2348		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2349			wbio = bio_clone_fast(r1_bio->behind_master_bio,
2350					      GFP_NOIO,
2351					      mddev->bio_set);
2352		} else {
2353			wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2354					      mddev->bio_set);
2355		}
2356
2357		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2358		wbio->bi_iter.bi_sector = r1_bio->sector;
2359		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2360
2361		bio_trim(wbio, sector - r1_bio->sector, sectors);
2362		wbio->bi_iter.bi_sector += rdev->data_offset;
2363		bio_set_dev(wbio, rdev->bdev);
2364
2365		if (submit_bio_wait(wbio) < 0)
2366			/* failure! */
2367			ok = rdev_set_badblocks(rdev, sector,
2368						sectors, 0)
2369				&& ok;
2370
2371		bio_put(wbio);
2372		sect_to_write -= sectors;
2373		sector += sectors;
2374		sectors = block_sectors;
2375	}
2376	return ok;
2377}
2378
2379static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2380{
2381	int m;
2382	int s = r1_bio->sectors;
2383	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2384		struct md_rdev *rdev = conf->mirrors[m].rdev;
2385		struct bio *bio = r1_bio->bios[m];
2386		if (bio->bi_end_io == NULL)
2387			continue;
2388		if (!bio->bi_status &&
2389		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2390			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2391		}
2392		if (bio->bi_status &&
2393		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2394			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2395				md_error(conf->mddev, rdev);
2396		}
2397	}
2398	put_buf(r1_bio);
2399	md_done_sync(conf->mddev, s, 1);
2400}
2401
2402static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2403{
2404	int m, idx;
2405	bool fail = false;
2406
2407	for (m = 0; m < conf->raid_disks * 2 ; m++)
2408		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2409			struct md_rdev *rdev = conf->mirrors[m].rdev;
2410			rdev_clear_badblocks(rdev,
2411					     r1_bio->sector,
2412					     r1_bio->sectors, 0);
2413			rdev_dec_pending(rdev, conf->mddev);
2414		} else if (r1_bio->bios[m] != NULL) {
2415			/* This drive got a write error.  We need to
2416			 * narrow down and record precise write
2417			 * errors.
2418			 */
2419			fail = true;
2420			if (!narrow_write_error(r1_bio, m)) {
2421				md_error(conf->mddev,
2422					 conf->mirrors[m].rdev);
2423				/* an I/O failed, we can't clear the bitmap */
2424				set_bit(R1BIO_Degraded, &r1_bio->state);
2425			}
2426			rdev_dec_pending(conf->mirrors[m].rdev,
2427					 conf->mddev);
2428		}
2429	if (fail) {
2430		spin_lock_irq(&conf->device_lock);
2431		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2432		idx = sector_to_idx(r1_bio->sector);
2433		atomic_inc(&conf->nr_queued[idx]);
2434		spin_unlock_irq(&conf->device_lock);
2435		/*
2436		 * In case freeze_array() is waiting for condition
2437		 * get_unqueued_pending() == extra to be true.
2438		 */
2439		wake_up(&conf->wait_barrier);
2440		md_wakeup_thread(conf->mddev->thread);
2441	} else {
2442		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2443			close_write(r1_bio);
2444		raid_end_bio_io(r1_bio);
2445	}
2446}
2447
2448static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2449{
2450	struct mddev *mddev = conf->mddev;
 
 
2451	struct bio *bio;
2452	struct md_rdev *rdev;
2453	sector_t bio_sector;
2454
2455	clear_bit(R1BIO_ReadError, &r1_bio->state);
2456	/* we got a read error. Maybe the drive is bad.  Maybe just
2457	 * the block and we can fix it.
2458	 * We freeze all other IO, and try reading the block from
2459	 * other devices.  When we find one, we re-write
2460	 * and check it that fixes the read error.
2461	 * This is all done synchronously while the array is
2462	 * frozen
2463	 */
2464
2465	bio = r1_bio->bios[r1_bio->read_disk];
2466	bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2467	bio_put(bio);
2468	r1_bio->bios[r1_bio->read_disk] = NULL;
2469
2470	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2471	if (mddev->ro == 0
2472	    && !test_bit(FailFast, &rdev->flags)) {
2473		freeze_array(conf, 1);
2474		fix_read_error(conf, r1_bio->read_disk,
2475			       r1_bio->sector, r1_bio->sectors);
2476		unfreeze_array(conf);
 
 
 
 
 
 
 
 
 
 
 
 
2477	} else {
2478		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2479	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2480
2481	rdev_dec_pending(rdev, conf->mddev);
2482	allow_barrier(conf, r1_bio->sector);
2483	bio = r1_bio->master_bio;
 
 
 
 
2484
2485	/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2486	r1_bio->state = 0;
2487	raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
 
2488}
2489
2490static void raid1d(struct md_thread *thread)
2491{
2492	struct mddev *mddev = thread->mddev;
2493	struct r1bio *r1_bio;
2494	unsigned long flags;
2495	struct r1conf *conf = mddev->private;
2496	struct list_head *head = &conf->retry_list;
2497	struct blk_plug plug;
2498	int idx;
2499
2500	md_check_recovery(mddev);
2501
2502	if (!list_empty_careful(&conf->bio_end_io_list) &&
2503	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2504		LIST_HEAD(tmp);
2505		spin_lock_irqsave(&conf->device_lock, flags);
2506		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2507			list_splice_init(&conf->bio_end_io_list, &tmp);
2508		spin_unlock_irqrestore(&conf->device_lock, flags);
2509		while (!list_empty(&tmp)) {
2510			r1_bio = list_first_entry(&tmp, struct r1bio,
2511						  retry_list);
2512			list_del(&r1_bio->retry_list);
2513			idx = sector_to_idx(r1_bio->sector);
2514			atomic_dec(&conf->nr_queued[idx]);
2515			if (mddev->degraded)
2516				set_bit(R1BIO_Degraded, &r1_bio->state);
2517			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2518				close_write(r1_bio);
2519			raid_end_bio_io(r1_bio);
2520		}
2521	}
2522
2523	blk_start_plug(&plug);
2524	for (;;) {
2525
2526		flush_pending_writes(conf);
 
2527
2528		spin_lock_irqsave(&conf->device_lock, flags);
2529		if (list_empty(head)) {
2530			spin_unlock_irqrestore(&conf->device_lock, flags);
2531			break;
2532		}
2533		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2534		list_del(head->prev);
2535		idx = sector_to_idx(r1_bio->sector);
2536		atomic_dec(&conf->nr_queued[idx]);
2537		spin_unlock_irqrestore(&conf->device_lock, flags);
2538
2539		mddev = r1_bio->mddev;
2540		conf = mddev->private;
2541		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2542			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2543			    test_bit(R1BIO_WriteError, &r1_bio->state))
2544				handle_sync_write_finished(conf, r1_bio);
2545			else
2546				sync_request_write(mddev, r1_bio);
2547		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2548			   test_bit(R1BIO_WriteError, &r1_bio->state))
2549			handle_write_finished(conf, r1_bio);
2550		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2551			handle_read_error(conf, r1_bio);
2552		else
2553			WARN_ON_ONCE(1);
 
 
 
2554
2555		cond_resched();
2556		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2557			md_check_recovery(mddev);
2558	}
2559	blk_finish_plug(&plug);
2560}
2561
2562static int init_resync(struct r1conf *conf)
 
2563{
2564	int buffs;
2565
2566	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2567	BUG_ON(conf->r1buf_pool);
2568	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2569					  conf->poolinfo);
2570	if (!conf->r1buf_pool)
2571		return -ENOMEM;
 
2572	return 0;
2573}
2574
2575static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2576{
2577	struct r1bio *r1bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2578	struct resync_pages *rps;
2579	struct bio *bio;
2580	int i;
2581
2582	for (i = conf->poolinfo->raid_disks; i--; ) {
2583		bio = r1bio->bios[i];
2584		rps = bio->bi_private;
2585		bio_reset(bio);
2586		bio->bi_private = rps;
2587	}
2588	r1bio->master_bio = NULL;
2589	return r1bio;
2590}
2591
2592/*
2593 * perform a "sync" on one "block"
2594 *
2595 * We need to make sure that no normal I/O request - particularly write
2596 * requests - conflict with active sync requests.
2597 *
2598 * This is achieved by tracking pending requests and a 'barrier' concept
2599 * that can be installed to exclude normal IO requests.
2600 */
2601
2602static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2603				   int *skipped)
2604{
2605	struct r1conf *conf = mddev->private;
2606	struct r1bio *r1_bio;
2607	struct bio *bio;
2608	sector_t max_sector, nr_sectors;
2609	int disk = -1;
2610	int i;
2611	int wonly = -1;
2612	int write_targets = 0, read_targets = 0;
2613	sector_t sync_blocks;
2614	int still_degraded = 0;
2615	int good_sectors = RESYNC_SECTORS;
2616	int min_bad = 0; /* number of sectors that are bad in all devices */
2617	int idx = sector_to_idx(sector_nr);
2618	int page_idx = 0;
2619
2620	if (!conf->r1buf_pool)
2621		if (init_resync(conf))
2622			return 0;
2623
2624	max_sector = mddev->dev_sectors;
2625	if (sector_nr >= max_sector) {
2626		/* If we aborted, we need to abort the
2627		 * sync on the 'current' bitmap chunk (there will
2628		 * only be one in raid1 resync.
2629		 * We can find the current addess in mddev->curr_resync
2630		 */
2631		if (mddev->curr_resync < max_sector) /* aborted */
2632			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2633						&sync_blocks, 1);
2634		else /* completed sync */
2635			conf->fullsync = 0;
2636
2637		bitmap_close_sync(mddev->bitmap);
2638		close_sync(conf);
2639
2640		if (mddev_is_clustered(mddev)) {
2641			conf->cluster_sync_low = 0;
2642			conf->cluster_sync_high = 0;
2643		}
2644		return 0;
2645	}
2646
2647	if (mddev->bitmap == NULL &&
2648	    mddev->recovery_cp == MaxSector &&
2649	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2650	    conf->fullsync == 0) {
2651		*skipped = 1;
2652		return max_sector - sector_nr;
2653	}
2654	/* before building a request, check if we can skip these blocks..
2655	 * This call the bitmap_start_sync doesn't actually record anything
2656	 */
2657	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2658	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2659		/* We can skip this block, and probably several more */
2660		*skipped = 1;
2661		return sync_blocks;
2662	}
2663
2664	/*
2665	 * If there is non-resync activity waiting for a turn, then let it
2666	 * though before starting on this new sync request.
2667	 */
2668	if (atomic_read(&conf->nr_waiting[idx]))
2669		schedule_timeout_uninterruptible(1);
2670
2671	/* we are incrementing sector_nr below. To be safe, we check against
2672	 * sector_nr + two times RESYNC_SECTORS
2673	 */
2674
2675	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2676		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2677
2678
2679	if (raise_barrier(conf, sector_nr))
2680		return 0;
2681
2682	r1_bio = raid1_alloc_init_r1buf(conf);
2683
2684	rcu_read_lock();
2685	/*
2686	 * If we get a correctably read error during resync or recovery,
2687	 * we might want to read from a different device.  So we
2688	 * flag all drives that could conceivably be read from for READ,
2689	 * and any others (which will be non-In_sync devices) for WRITE.
2690	 * If a read fails, we try reading from something else for which READ
2691	 * is OK.
2692	 */
2693
2694	r1_bio->mddev = mddev;
2695	r1_bio->sector = sector_nr;
2696	r1_bio->state = 0;
2697	set_bit(R1BIO_IsSync, &r1_bio->state);
2698	/* make sure good_sectors won't go across barrier unit boundary */
2699	good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2700
2701	for (i = 0; i < conf->raid_disks * 2; i++) {
2702		struct md_rdev *rdev;
2703		bio = r1_bio->bios[i];
2704
 
 
 
 
 
 
 
 
 
 
 
 
 
2705		rdev = rcu_dereference(conf->mirrors[i].rdev);
2706		if (rdev == NULL ||
2707		    test_bit(Faulty, &rdev->flags)) {
2708			if (i < conf->raid_disks)
2709				still_degraded = 1;
2710		} else if (!test_bit(In_sync, &rdev->flags)) {
2711			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2712			bio->bi_end_io = end_sync_write;
2713			write_targets ++;
2714		} else {
2715			/* may need to read from here */
2716			sector_t first_bad = MaxSector;
2717			int bad_sectors;
2718
2719			if (is_badblock(rdev, sector_nr, good_sectors,
2720					&first_bad, &bad_sectors)) {
2721				if (first_bad > sector_nr)
2722					good_sectors = first_bad - sector_nr;
2723				else {
2724					bad_sectors -= (sector_nr - first_bad);
2725					if (min_bad == 0 ||
2726					    min_bad > bad_sectors)
2727						min_bad = bad_sectors;
2728				}
2729			}
2730			if (sector_nr < first_bad) {
2731				if (test_bit(WriteMostly, &rdev->flags)) {
2732					if (wonly < 0)
2733						wonly = i;
2734				} else {
2735					if (disk < 0)
2736						disk = i;
2737				}
2738				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2739				bio->bi_end_io = end_sync_read;
2740				read_targets++;
2741			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2742				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2743				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2744				/*
2745				 * The device is suitable for reading (InSync),
2746				 * but has bad block(s) here. Let's try to correct them,
2747				 * if we are doing resync or repair. Otherwise, leave
2748				 * this device alone for this sync request.
2749				 */
2750				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2751				bio->bi_end_io = end_sync_write;
2752				write_targets++;
2753			}
2754		}
2755		if (bio->bi_end_io) {
2756			atomic_inc(&rdev->nr_pending);
2757			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2758			bio_set_dev(bio, rdev->bdev);
2759			if (test_bit(FailFast, &rdev->flags))
2760				bio->bi_opf |= MD_FAILFAST;
2761		}
2762	}
2763	rcu_read_unlock();
2764	if (disk < 0)
2765		disk = wonly;
2766	r1_bio->read_disk = disk;
2767
2768	if (read_targets == 0 && min_bad > 0) {
2769		/* These sectors are bad on all InSync devices, so we
2770		 * need to mark them bad on all write targets
2771		 */
2772		int ok = 1;
2773		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2774			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2775				struct md_rdev *rdev = conf->mirrors[i].rdev;
 
2776				ok = rdev_set_badblocks(rdev, sector_nr,
2777							min_bad, 0
2778					) && ok;
2779			}
2780		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2781		*skipped = 1;
2782		put_buf(r1_bio);
2783
2784		if (!ok) {
2785			/* Cannot record the badblocks, so need to
2786			 * abort the resync.
2787			 * If there are multiple read targets, could just
2788			 * fail the really bad ones ???
2789			 */
2790			conf->recovery_disabled = mddev->recovery_disabled;
2791			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2792			return 0;
2793		} else
2794			return min_bad;
2795
2796	}
2797	if (min_bad > 0 && min_bad < good_sectors) {
2798		/* only resync enough to reach the next bad->good
2799		 * transition */
2800		good_sectors = min_bad;
2801	}
2802
2803	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2804		/* extra read targets are also write targets */
2805		write_targets += read_targets-1;
2806
2807	if (write_targets == 0 || read_targets == 0) {
2808		/* There is nowhere to write, so all non-sync
2809		 * drives must be failed - so we are finished
2810		 */
2811		sector_t rv;
2812		if (min_bad > 0)
2813			max_sector = sector_nr + min_bad;
2814		rv = max_sector - sector_nr;
2815		*skipped = 1;
2816		put_buf(r1_bio);
2817		return rv;
2818	}
2819
2820	if (max_sector > mddev->resync_max)
2821		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2822	if (max_sector > sector_nr + good_sectors)
2823		max_sector = sector_nr + good_sectors;
2824	nr_sectors = 0;
2825	sync_blocks = 0;
2826	do {
2827		struct page *page;
2828		int len = PAGE_SIZE;
2829		if (sector_nr + (len>>9) > max_sector)
2830			len = (max_sector - sector_nr) << 9;
2831		if (len == 0)
2832			break;
2833		if (sync_blocks == 0) {
2834			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2835					       &sync_blocks, still_degraded) &&
2836			    !conf->fullsync &&
2837			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2838				break;
 
2839			if ((len >> 9) > sync_blocks)
2840				len = sync_blocks<<9;
2841		}
2842
2843		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2844			struct resync_pages *rp;
2845
2846			bio = r1_bio->bios[i];
2847			rp = get_resync_pages(bio);
2848			if (bio->bi_end_io) {
2849				page = resync_fetch_page(rp, page_idx);
2850
2851				/*
2852				 * won't fail because the vec table is big
2853				 * enough to hold all these pages
2854				 */
2855				bio_add_page(bio, page, len, 0);
 
 
 
 
 
 
 
 
 
2856			}
2857		}
2858		nr_sectors += len>>9;
2859		sector_nr += len>>9;
2860		sync_blocks -= (len>>9);
2861	} while (++page_idx < RESYNC_PAGES);
2862
2863	r1_bio->sectors = nr_sectors;
2864
2865	if (mddev_is_clustered(mddev) &&
2866			conf->cluster_sync_high < sector_nr + nr_sectors) {
2867		conf->cluster_sync_low = mddev->curr_resync_completed;
2868		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2869		/* Send resync message */
2870		md_cluster_ops->resync_info_update(mddev,
2871				conf->cluster_sync_low,
2872				conf->cluster_sync_high);
2873	}
2874
2875	/* For a user-requested sync, we read all readable devices and do a
2876	 * compare
2877	 */
2878	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2879		atomic_set(&r1_bio->remaining, read_targets);
2880		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2881			bio = r1_bio->bios[i];
2882			if (bio->bi_end_io == end_sync_read) {
2883				read_targets--;
2884				md_sync_acct_bio(bio, nr_sectors);
2885				if (read_targets == 1)
2886					bio->bi_opf &= ~MD_FAILFAST;
2887				generic_make_request(bio);
2888			}
2889		}
2890	} else {
2891		atomic_set(&r1_bio->remaining, 1);
2892		bio = r1_bio->bios[r1_bio->read_disk];
2893		md_sync_acct_bio(bio, nr_sectors);
2894		if (read_targets == 1)
2895			bio->bi_opf &= ~MD_FAILFAST;
2896		generic_make_request(bio);
2897
2898	}
2899	return nr_sectors;
2900}
2901
2902static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2903{
2904	if (sectors)
2905		return sectors;
2906
2907	return mddev->dev_sectors;
2908}
2909
2910static struct r1conf *setup_conf(struct mddev *mddev)
2911{
2912	struct r1conf *conf;
2913	int i;
2914	struct raid1_info *disk;
2915	struct md_rdev *rdev;
2916	int err = -ENOMEM;
2917
2918	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2919	if (!conf)
2920		goto abort;
2921
2922	conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2923				   sizeof(atomic_t), GFP_KERNEL);
2924	if (!conf->nr_pending)
2925		goto abort;
2926
2927	conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2928				   sizeof(atomic_t), GFP_KERNEL);
2929	if (!conf->nr_waiting)
2930		goto abort;
2931
2932	conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2933				  sizeof(atomic_t), GFP_KERNEL);
2934	if (!conf->nr_queued)
2935		goto abort;
2936
2937	conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2938				sizeof(atomic_t), GFP_KERNEL);
2939	if (!conf->barrier)
2940		goto abort;
2941
2942	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2943				* mddev->raid_disks * 2,
2944				 GFP_KERNEL);
2945	if (!conf->mirrors)
2946		goto abort;
2947
2948	conf->tmppage = alloc_page(GFP_KERNEL);
2949	if (!conf->tmppage)
2950		goto abort;
2951
2952	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2953	if (!conf->poolinfo)
2954		goto abort;
2955	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2956	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2957					  r1bio_pool_free,
2958					  conf->poolinfo);
2959	if (!conf->r1bio_pool)
2960		goto abort;
2961
2962	conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
2963	if (!conf->bio_split)
2964		goto abort;
2965
2966	conf->poolinfo->mddev = mddev;
2967
2968	err = -EINVAL;
2969	spin_lock_init(&conf->device_lock);
2970	rdev_for_each(rdev, mddev) {
2971		int disk_idx = rdev->raid_disk;
2972		if (disk_idx >= mddev->raid_disks
2973		    || disk_idx < 0)
2974			continue;
2975		if (test_bit(Replacement, &rdev->flags))
2976			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2977		else
2978			disk = conf->mirrors + disk_idx;
2979
2980		if (disk->rdev)
2981			goto abort;
2982		disk->rdev = rdev;
 
2983		disk->head_position = 0;
2984		disk->seq_start = MaxSector;
2985	}
2986	conf->raid_disks = mddev->raid_disks;
2987	conf->mddev = mddev;
2988	INIT_LIST_HEAD(&conf->retry_list);
2989	INIT_LIST_HEAD(&conf->bio_end_io_list);
2990
2991	spin_lock_init(&conf->resync_lock);
2992	init_waitqueue_head(&conf->wait_barrier);
2993
2994	bio_list_init(&conf->pending_bio_list);
2995	conf->pending_count = 0;
2996	conf->recovery_disabled = mddev->recovery_disabled - 1;
2997
2998	err = -EIO;
2999	for (i = 0; i < conf->raid_disks * 2; i++) {
3000
3001		disk = conf->mirrors + i;
3002
3003		if (i < conf->raid_disks &&
3004		    disk[conf->raid_disks].rdev) {
3005			/* This slot has a replacement. */
3006			if (!disk->rdev) {
3007				/* No original, just make the replacement
3008				 * a recovering spare
3009				 */
3010				disk->rdev =
3011					disk[conf->raid_disks].rdev;
3012				disk[conf->raid_disks].rdev = NULL;
3013			} else if (!test_bit(In_sync, &disk->rdev->flags))
3014				/* Original is not in_sync - bad */
3015				goto abort;
3016		}
3017
3018		if (!disk->rdev ||
3019		    !test_bit(In_sync, &disk->rdev->flags)) {
3020			disk->head_position = 0;
3021			if (disk->rdev &&
3022			    (disk->rdev->saved_raid_disk < 0))
3023				conf->fullsync = 1;
3024		}
 
 
 
 
 
3025	}
3026
 
 
 
 
 
 
3027	err = -ENOMEM;
3028	conf->thread = md_register_thread(raid1d, mddev, "raid1");
3029	if (!conf->thread)
 
 
 
3030		goto abort;
 
3031
3032	return conf;
3033
3034 abort:
3035	if (conf) {
3036		mempool_destroy(conf->r1bio_pool);
 
3037		kfree(conf->mirrors);
3038		safe_put_page(conf->tmppage);
3039		kfree(conf->poolinfo);
3040		kfree(conf->nr_pending);
3041		kfree(conf->nr_waiting);
3042		kfree(conf->nr_queued);
3043		kfree(conf->barrier);
3044		if (conf->bio_split)
3045			bioset_free(conf->bio_split);
3046		kfree(conf);
3047	}
3048	return ERR_PTR(err);
3049}
3050
3051static void raid1_free(struct mddev *mddev, void *priv);
3052static int raid1_run(struct mddev *mddev)
3053{
3054	struct r1conf *conf;
3055	int i;
3056	struct md_rdev *rdev;
3057	int ret;
3058	bool discard_supported = false;
3059
3060	if (mddev->level != 1) {
3061		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3062			mdname(mddev), mddev->level);
3063		return -EIO;
3064	}
3065	if (mddev->reshape_position != MaxSector) {
3066		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3067			mdname(mddev));
3068		return -EIO;
3069	}
3070	if (mddev_init_writes_pending(mddev) < 0)
3071		return -ENOMEM;
3072	/*
3073	 * copy the already verified devices into our private RAID1
3074	 * bookkeeping area. [whatever we allocate in run(),
3075	 * should be freed in raid1_free()]
3076	 */
3077	if (mddev->private == NULL)
3078		conf = setup_conf(mddev);
3079	else
3080		conf = mddev->private;
3081
3082	if (IS_ERR(conf))
3083		return PTR_ERR(conf);
3084
3085	if (mddev->queue) {
3086		blk_queue_max_write_same_sectors(mddev->queue, 0);
3087		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3088	}
3089
3090	rdev_for_each(rdev, mddev) {
3091		if (!mddev->gendisk)
3092			continue;
3093		disk_stack_limits(mddev->gendisk, rdev->bdev,
3094				  rdev->data_offset << 9);
3095		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3096			discard_supported = true;
 
 
 
 
 
 
 
3097	}
3098
3099	mddev->degraded = 0;
3100	for (i=0; i < conf->raid_disks; i++)
3101		if (conf->mirrors[i].rdev == NULL ||
3102		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3103		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3104			mddev->degraded++;
3105
3106	if (conf->raid_disks - mddev->degraded == 1)
3107		mddev->recovery_cp = MaxSector;
3108
3109	if (mddev->recovery_cp != MaxSector)
3110		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3111			mdname(mddev));
3112	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3113		mdname(mddev), mddev->raid_disks - mddev->degraded,
 
 
3114		mddev->raid_disks);
3115
3116	/*
3117	 * Ok, everything is just fine now
3118	 */
3119	mddev->thread = conf->thread;
3120	conf->thread = NULL;
3121	mddev->private = conf;
3122	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3123
3124	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3125
3126	if (mddev->queue) {
3127		if (discard_supported)
3128			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3129						mddev->queue);
3130		else
3131			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3132						  mddev->queue);
3133	}
 
 
3134
3135	ret =  md_integrity_register(mddev);
3136	if (ret) {
3137		md_unregister_thread(&mddev->thread);
3138		raid1_free(mddev, conf);
 
 
 
 
 
 
 
 
3139	}
3140	return ret;
3141}
3142
3143static void raid1_free(struct mddev *mddev, void *priv)
3144{
3145	struct r1conf *conf = priv;
3146
3147	mempool_destroy(conf->r1bio_pool);
 
 
3148	kfree(conf->mirrors);
3149	safe_put_page(conf->tmppage);
3150	kfree(conf->poolinfo);
3151	kfree(conf->nr_pending);
3152	kfree(conf->nr_waiting);
3153	kfree(conf->nr_queued);
3154	kfree(conf->barrier);
3155	if (conf->bio_split)
3156		bioset_free(conf->bio_split);
3157	kfree(conf);
 
 
3158}
3159
3160static int raid1_resize(struct mddev *mddev, sector_t sectors)
3161{
3162	/* no resync is happening, and there is enough space
3163	 * on all devices, so we can resize.
3164	 * We need to make sure resync covers any new space.
3165	 * If the array is shrinking we should possibly wait until
3166	 * any io in the removed space completes, but it hardly seems
3167	 * worth it.
3168	 */
3169	sector_t newsize = raid1_size(mddev, sectors, 0);
3170	if (mddev->external_size &&
3171	    mddev->array_sectors > newsize)
3172		return -EINVAL;
3173	if (mddev->bitmap) {
3174		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3175		if (ret)
3176			return ret;
3177	}
3178	md_set_array_sectors(mddev, newsize);
3179	if (sectors > mddev->dev_sectors &&
3180	    mddev->recovery_cp > mddev->dev_sectors) {
3181		mddev->recovery_cp = mddev->dev_sectors;
3182		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3183	}
3184	mddev->dev_sectors = sectors;
3185	mddev->resync_max_sectors = sectors;
3186	return 0;
3187}
3188
3189static int raid1_reshape(struct mddev *mddev)
3190{
3191	/* We need to:
3192	 * 1/ resize the r1bio_pool
3193	 * 2/ resize conf->mirrors
3194	 *
3195	 * We allocate a new r1bio_pool if we can.
3196	 * Then raise a device barrier and wait until all IO stops.
3197	 * Then resize conf->mirrors and swap in the new r1bio pool.
3198	 *
3199	 * At the same time, we "pack" the devices so that all the missing
3200	 * devices have the higher raid_disk numbers.
3201	 */
3202	mempool_t *newpool, *oldpool;
3203	struct pool_info *newpoolinfo;
3204	struct raid1_info *newmirrors;
3205	struct r1conf *conf = mddev->private;
3206	int cnt, raid_disks;
3207	unsigned long flags;
3208	int d, d2;
3209
3210	/* Cannot change chunk_size, layout, or level */
3211	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3212	    mddev->layout != mddev->new_layout ||
3213	    mddev->level != mddev->new_level) {
3214		mddev->new_chunk_sectors = mddev->chunk_sectors;
3215		mddev->new_layout = mddev->layout;
3216		mddev->new_level = mddev->level;
3217		return -EINVAL;
3218	}
3219
3220	if (!mddev_is_clustered(mddev))
3221		md_allow_write(mddev);
 
3222
3223	raid_disks = mddev->raid_disks + mddev->delta_disks;
3224
3225	if (raid_disks < conf->raid_disks) {
3226		cnt=0;
3227		for (d= 0; d < conf->raid_disks; d++)
3228			if (conf->mirrors[d].rdev)
3229				cnt++;
3230		if (cnt > raid_disks)
3231			return -EBUSY;
3232	}
3233
3234	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3235	if (!newpoolinfo)
3236		return -ENOMEM;
3237	newpoolinfo->mddev = mddev;
3238	newpoolinfo->raid_disks = raid_disks * 2;
3239
3240	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3241				 r1bio_pool_free, newpoolinfo);
3242	if (!newpool) {
3243		kfree(newpoolinfo);
3244		return -ENOMEM;
3245	}
3246	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3247			     GFP_KERNEL);
3248	if (!newmirrors) {
3249		kfree(newpoolinfo);
3250		mempool_destroy(newpool);
3251		return -ENOMEM;
3252	}
3253
3254	freeze_array(conf, 0);
3255
3256	/* ok, everything is stopped */
3257	oldpool = conf->r1bio_pool;
3258	conf->r1bio_pool = newpool;
3259
3260	for (d = d2 = 0; d < conf->raid_disks; d++) {
3261		struct md_rdev *rdev = conf->mirrors[d].rdev;
3262		if (rdev && rdev->raid_disk != d2) {
3263			sysfs_unlink_rdev(mddev, rdev);
3264			rdev->raid_disk = d2;
3265			sysfs_unlink_rdev(mddev, rdev);
3266			if (sysfs_link_rdev(mddev, rdev))
3267				pr_warn("md/raid1:%s: cannot register rd%d\n",
3268					mdname(mddev), rdev->raid_disk);
 
3269		}
3270		if (rdev)
3271			newmirrors[d2++].rdev = rdev;
3272	}
3273	kfree(conf->mirrors);
3274	conf->mirrors = newmirrors;
3275	kfree(conf->poolinfo);
3276	conf->poolinfo = newpoolinfo;
3277
3278	spin_lock_irqsave(&conf->device_lock, flags);
3279	mddev->degraded += (raid_disks - conf->raid_disks);
3280	spin_unlock_irqrestore(&conf->device_lock, flags);
3281	conf->raid_disks = mddev->raid_disks = raid_disks;
3282	mddev->delta_disks = 0;
3283
3284	unfreeze_array(conf);
 
3285
3286	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3287	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3288	md_wakeup_thread(mddev->thread);
3289
3290	mempool_destroy(oldpool);
3291	return 0;
3292}
3293
3294static void raid1_quiesce(struct mddev *mddev, int quiesce)
3295{
3296	struct r1conf *conf = mddev->private;
3297
3298	if (quiesce)
3299		freeze_array(conf, 0);
3300	else
3301		unfreeze_array(conf);
 
 
 
 
 
 
 
3302}
3303
3304static void *raid1_takeover(struct mddev *mddev)
3305{
3306	/* raid1 can take over:
3307	 *  raid5 with 2 devices, any layout or chunk size
3308	 */
3309	if (mddev->level == 5 && mddev->raid_disks == 2) {
3310		struct r1conf *conf;
3311		mddev->new_level = 1;
3312		mddev->new_layout = 0;
3313		mddev->new_chunk_sectors = 0;
3314		conf = setup_conf(mddev);
3315		if (!IS_ERR(conf)) {
3316			/* Array must appear to be quiesced */
3317			conf->array_frozen = 1;
3318			mddev_clear_unsupported_flags(mddev,
3319				UNSUPPORTED_MDDEV_FLAGS);
3320		}
3321		return conf;
3322	}
3323	return ERR_PTR(-EINVAL);
3324}
3325
3326static struct md_personality raid1_personality =
3327{
3328	.name		= "raid1",
3329	.level		= 1,
3330	.owner		= THIS_MODULE,
3331	.make_request	= raid1_make_request,
3332	.run		= raid1_run,
3333	.free		= raid1_free,
3334	.status		= raid1_status,
3335	.error_handler	= raid1_error,
3336	.hot_add_disk	= raid1_add_disk,
3337	.hot_remove_disk= raid1_remove_disk,
3338	.spare_active	= raid1_spare_active,
3339	.sync_request	= raid1_sync_request,
3340	.resize		= raid1_resize,
3341	.size		= raid1_size,
3342	.check_reshape	= raid1_reshape,
3343	.quiesce	= raid1_quiesce,
3344	.takeover	= raid1_takeover,
3345	.congested	= raid1_congested,
3346};
3347
3348static int __init raid_init(void)
3349{
3350	return register_md_personality(&raid1_personality);
3351}
3352
3353static void raid_exit(void)
3354{
3355	unregister_md_personality(&raid1_personality);
3356}
3357
3358module_init(raid_init);
3359module_exit(raid_exit);
3360MODULE_LICENSE("GPL");
3361MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3362MODULE_ALIAS("md-personality-3"); /* RAID1 */
3363MODULE_ALIAS("md-raid1");
3364MODULE_ALIAS("md-level-1");
3365
3366module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);