Loading...
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34#include <linux/slab.h>
35#include <linux/delay.h>
36#include <linux/blkdev.h>
37#include <linux/seq_file.h>
38#include <linux/ratelimit.h>
39#include "md.h"
40#include "raid1.h"
41#include "bitmap.h"
42
43#define DEBUG 0
44#define PRINTK(x...) do { if (DEBUG) printk(x); } while (0)
45
46/*
47 * Number of guaranteed r1bios in case of extreme VM load:
48 */
49#define NR_RAID1_BIOS 256
50
51
52static void allow_barrier(conf_t *conf);
53static void lower_barrier(conf_t *conf);
54
55static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
56{
57 struct pool_info *pi = data;
58 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
59
60 /* allocate a r1bio with room for raid_disks entries in the bios array */
61 return kzalloc(size, gfp_flags);
62}
63
64static void r1bio_pool_free(void *r1_bio, void *data)
65{
66 kfree(r1_bio);
67}
68
69#define RESYNC_BLOCK_SIZE (64*1024)
70//#define RESYNC_BLOCK_SIZE PAGE_SIZE
71#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
72#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
73#define RESYNC_WINDOW (2048*1024)
74
75static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
76{
77 struct pool_info *pi = data;
78 struct page *page;
79 r1bio_t *r1_bio;
80 struct bio *bio;
81 int i, j;
82
83 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
84 if (!r1_bio)
85 return NULL;
86
87 /*
88 * Allocate bios : 1 for reading, n-1 for writing
89 */
90 for (j = pi->raid_disks ; j-- ; ) {
91 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
92 if (!bio)
93 goto out_free_bio;
94 r1_bio->bios[j] = bio;
95 }
96 /*
97 * Allocate RESYNC_PAGES data pages and attach them to
98 * the first bio.
99 * If this is a user-requested check/repair, allocate
100 * RESYNC_PAGES for each bio.
101 */
102 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
103 j = pi->raid_disks;
104 else
105 j = 1;
106 while(j--) {
107 bio = r1_bio->bios[j];
108 for (i = 0; i < RESYNC_PAGES; i++) {
109 page = alloc_page(gfp_flags);
110 if (unlikely(!page))
111 goto out_free_pages;
112
113 bio->bi_io_vec[i].bv_page = page;
114 bio->bi_vcnt = i+1;
115 }
116 }
117 /* If not user-requests, copy the page pointers to all bios */
118 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
119 for (i=0; i<RESYNC_PAGES ; i++)
120 for (j=1; j<pi->raid_disks; j++)
121 r1_bio->bios[j]->bi_io_vec[i].bv_page =
122 r1_bio->bios[0]->bi_io_vec[i].bv_page;
123 }
124
125 r1_bio->master_bio = NULL;
126
127 return r1_bio;
128
129out_free_pages:
130 for (j=0 ; j < pi->raid_disks; j++)
131 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
132 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
133 j = -1;
134out_free_bio:
135 while ( ++j < pi->raid_disks )
136 bio_put(r1_bio->bios[j]);
137 r1bio_pool_free(r1_bio, data);
138 return NULL;
139}
140
141static void r1buf_pool_free(void *__r1_bio, void *data)
142{
143 struct pool_info *pi = data;
144 int i,j;
145 r1bio_t *r1bio = __r1_bio;
146
147 for (i = 0; i < RESYNC_PAGES; i++)
148 for (j = pi->raid_disks; j-- ;) {
149 if (j == 0 ||
150 r1bio->bios[j]->bi_io_vec[i].bv_page !=
151 r1bio->bios[0]->bi_io_vec[i].bv_page)
152 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
153 }
154 for (i=0 ; i < pi->raid_disks; i++)
155 bio_put(r1bio->bios[i]);
156
157 r1bio_pool_free(r1bio, data);
158}
159
160static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
161{
162 int i;
163
164 for (i = 0; i < conf->raid_disks; i++) {
165 struct bio **bio = r1_bio->bios + i;
166 if (!BIO_SPECIAL(*bio))
167 bio_put(*bio);
168 *bio = NULL;
169 }
170}
171
172static void free_r1bio(r1bio_t *r1_bio)
173{
174 conf_t *conf = r1_bio->mddev->private;
175
176 put_all_bios(conf, r1_bio);
177 mempool_free(r1_bio, conf->r1bio_pool);
178}
179
180static void put_buf(r1bio_t *r1_bio)
181{
182 conf_t *conf = r1_bio->mddev->private;
183 int i;
184
185 for (i=0; i<conf->raid_disks; i++) {
186 struct bio *bio = r1_bio->bios[i];
187 if (bio->bi_end_io)
188 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
189 }
190
191 mempool_free(r1_bio, conf->r1buf_pool);
192
193 lower_barrier(conf);
194}
195
196static void reschedule_retry(r1bio_t *r1_bio)
197{
198 unsigned long flags;
199 mddev_t *mddev = r1_bio->mddev;
200 conf_t *conf = mddev->private;
201
202 spin_lock_irqsave(&conf->device_lock, flags);
203 list_add(&r1_bio->retry_list, &conf->retry_list);
204 conf->nr_queued ++;
205 spin_unlock_irqrestore(&conf->device_lock, flags);
206
207 wake_up(&conf->wait_barrier);
208 md_wakeup_thread(mddev->thread);
209}
210
211/*
212 * raid_end_bio_io() is called when we have finished servicing a mirrored
213 * operation and are ready to return a success/failure code to the buffer
214 * cache layer.
215 */
216static void call_bio_endio(r1bio_t *r1_bio)
217{
218 struct bio *bio = r1_bio->master_bio;
219 int done;
220 conf_t *conf = r1_bio->mddev->private;
221
222 if (bio->bi_phys_segments) {
223 unsigned long flags;
224 spin_lock_irqsave(&conf->device_lock, flags);
225 bio->bi_phys_segments--;
226 done = (bio->bi_phys_segments == 0);
227 spin_unlock_irqrestore(&conf->device_lock, flags);
228 } else
229 done = 1;
230
231 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
232 clear_bit(BIO_UPTODATE, &bio->bi_flags);
233 if (done) {
234 bio_endio(bio, 0);
235 /*
236 * Wake up any possible resync thread that waits for the device
237 * to go idle.
238 */
239 allow_barrier(conf);
240 }
241}
242
243static void raid_end_bio_io(r1bio_t *r1_bio)
244{
245 struct bio *bio = r1_bio->master_bio;
246
247 /* if nobody has done the final endio yet, do it now */
248 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
249 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
250 (bio_data_dir(bio) == WRITE) ? "write" : "read",
251 (unsigned long long) bio->bi_sector,
252 (unsigned long long) bio->bi_sector +
253 (bio->bi_size >> 9) - 1);
254
255 call_bio_endio(r1_bio);
256 }
257 free_r1bio(r1_bio);
258}
259
260/*
261 * Update disk head position estimator based on IRQ completion info.
262 */
263static inline void update_head_pos(int disk, r1bio_t *r1_bio)
264{
265 conf_t *conf = r1_bio->mddev->private;
266
267 conf->mirrors[disk].head_position =
268 r1_bio->sector + (r1_bio->sectors);
269}
270
271static void raid1_end_read_request(struct bio *bio, int error)
272{
273 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
274 r1bio_t *r1_bio = bio->bi_private;
275 int mirror;
276 conf_t *conf = r1_bio->mddev->private;
277
278 mirror = r1_bio->read_disk;
279 /*
280 * this branch is our 'one mirror IO has finished' event handler:
281 */
282 update_head_pos(mirror, r1_bio);
283
284 if (uptodate)
285 set_bit(R1BIO_Uptodate, &r1_bio->state);
286 else {
287 /* If all other devices have failed, we want to return
288 * the error upwards rather than fail the last device.
289 * Here we redefine "uptodate" to mean "Don't want to retry"
290 */
291 unsigned long flags;
292 spin_lock_irqsave(&conf->device_lock, flags);
293 if (r1_bio->mddev->degraded == conf->raid_disks ||
294 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
295 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
296 uptodate = 1;
297 spin_unlock_irqrestore(&conf->device_lock, flags);
298 }
299
300 if (uptodate)
301 raid_end_bio_io(r1_bio);
302 else {
303 /*
304 * oops, read error:
305 */
306 char b[BDEVNAME_SIZE];
307 printk_ratelimited(
308 KERN_ERR "md/raid1:%s: %s: "
309 "rescheduling sector %llu\n",
310 mdname(conf->mddev),
311 bdevname(conf->mirrors[mirror].rdev->bdev,
312 b),
313 (unsigned long long)r1_bio->sector);
314 set_bit(R1BIO_ReadError, &r1_bio->state);
315 reschedule_retry(r1_bio);
316 }
317
318 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
319}
320
321static void close_write(r1bio_t *r1_bio)
322{
323 /* it really is the end of this request */
324 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
325 /* free extra copy of the data pages */
326 int i = r1_bio->behind_page_count;
327 while (i--)
328 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
329 kfree(r1_bio->behind_bvecs);
330 r1_bio->behind_bvecs = NULL;
331 }
332 /* clear the bitmap if all writes complete successfully */
333 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
334 r1_bio->sectors,
335 !test_bit(R1BIO_Degraded, &r1_bio->state),
336 test_bit(R1BIO_BehindIO, &r1_bio->state));
337 md_write_end(r1_bio->mddev);
338}
339
340static void r1_bio_write_done(r1bio_t *r1_bio)
341{
342 if (!atomic_dec_and_test(&r1_bio->remaining))
343 return;
344
345 if (test_bit(R1BIO_WriteError, &r1_bio->state))
346 reschedule_retry(r1_bio);
347 else {
348 close_write(r1_bio);
349 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
350 reschedule_retry(r1_bio);
351 else
352 raid_end_bio_io(r1_bio);
353 }
354}
355
356static void raid1_end_write_request(struct bio *bio, int error)
357{
358 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
359 r1bio_t *r1_bio = bio->bi_private;
360 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
361 conf_t *conf = r1_bio->mddev->private;
362 struct bio *to_put = NULL;
363
364
365 for (mirror = 0; mirror < conf->raid_disks; mirror++)
366 if (r1_bio->bios[mirror] == bio)
367 break;
368
369 /*
370 * 'one mirror IO has finished' event handler:
371 */
372 if (!uptodate) {
373 set_bit(WriteErrorSeen,
374 &conf->mirrors[mirror].rdev->flags);
375 set_bit(R1BIO_WriteError, &r1_bio->state);
376 } else {
377 /*
378 * Set R1BIO_Uptodate in our master bio, so that we
379 * will return a good error code for to the higher
380 * levels even if IO on some other mirrored buffer
381 * fails.
382 *
383 * The 'master' represents the composite IO operation
384 * to user-side. So if something waits for IO, then it
385 * will wait for the 'master' bio.
386 */
387 sector_t first_bad;
388 int bad_sectors;
389
390 r1_bio->bios[mirror] = NULL;
391 to_put = bio;
392 set_bit(R1BIO_Uptodate, &r1_bio->state);
393
394 /* Maybe we can clear some bad blocks. */
395 if (is_badblock(conf->mirrors[mirror].rdev,
396 r1_bio->sector, r1_bio->sectors,
397 &first_bad, &bad_sectors)) {
398 r1_bio->bios[mirror] = IO_MADE_GOOD;
399 set_bit(R1BIO_MadeGood, &r1_bio->state);
400 }
401 }
402
403 update_head_pos(mirror, r1_bio);
404
405 if (behind) {
406 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
407 atomic_dec(&r1_bio->behind_remaining);
408
409 /*
410 * In behind mode, we ACK the master bio once the I/O
411 * has safely reached all non-writemostly
412 * disks. Setting the Returned bit ensures that this
413 * gets done only once -- we don't ever want to return
414 * -EIO here, instead we'll wait
415 */
416 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
417 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
418 /* Maybe we can return now */
419 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
420 struct bio *mbio = r1_bio->master_bio;
421 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
422 (unsigned long long) mbio->bi_sector,
423 (unsigned long long) mbio->bi_sector +
424 (mbio->bi_size >> 9) - 1);
425 call_bio_endio(r1_bio);
426 }
427 }
428 }
429 if (r1_bio->bios[mirror] == NULL)
430 rdev_dec_pending(conf->mirrors[mirror].rdev,
431 conf->mddev);
432
433 /*
434 * Let's see if all mirrored write operations have finished
435 * already.
436 */
437 r1_bio_write_done(r1_bio);
438
439 if (to_put)
440 bio_put(to_put);
441}
442
443
444/*
445 * This routine returns the disk from which the requested read should
446 * be done. There is a per-array 'next expected sequential IO' sector
447 * number - if this matches on the next IO then we use the last disk.
448 * There is also a per-disk 'last know head position' sector that is
449 * maintained from IRQ contexts, both the normal and the resync IO
450 * completion handlers update this position correctly. If there is no
451 * perfect sequential match then we pick the disk whose head is closest.
452 *
453 * If there are 2 mirrors in the same 2 devices, performance degrades
454 * because position is mirror, not device based.
455 *
456 * The rdev for the device selected will have nr_pending incremented.
457 */
458static int read_balance(conf_t *conf, r1bio_t *r1_bio, int *max_sectors)
459{
460 const sector_t this_sector = r1_bio->sector;
461 int sectors;
462 int best_good_sectors;
463 int start_disk;
464 int best_disk;
465 int i;
466 sector_t best_dist;
467 mdk_rdev_t *rdev;
468 int choose_first;
469
470 rcu_read_lock();
471 /*
472 * Check if we can balance. We can balance on the whole
473 * device if no resync is going on, or below the resync window.
474 * We take the first readable disk when above the resync window.
475 */
476 retry:
477 sectors = r1_bio->sectors;
478 best_disk = -1;
479 best_dist = MaxSector;
480 best_good_sectors = 0;
481
482 if (conf->mddev->recovery_cp < MaxSector &&
483 (this_sector + sectors >= conf->next_resync)) {
484 choose_first = 1;
485 start_disk = 0;
486 } else {
487 choose_first = 0;
488 start_disk = conf->last_used;
489 }
490
491 for (i = 0 ; i < conf->raid_disks ; i++) {
492 sector_t dist;
493 sector_t first_bad;
494 int bad_sectors;
495
496 int disk = start_disk + i;
497 if (disk >= conf->raid_disks)
498 disk -= conf->raid_disks;
499
500 rdev = rcu_dereference(conf->mirrors[disk].rdev);
501 if (r1_bio->bios[disk] == IO_BLOCKED
502 || rdev == NULL
503 || test_bit(Faulty, &rdev->flags))
504 continue;
505 if (!test_bit(In_sync, &rdev->flags) &&
506 rdev->recovery_offset < this_sector + sectors)
507 continue;
508 if (test_bit(WriteMostly, &rdev->flags)) {
509 /* Don't balance among write-mostly, just
510 * use the first as a last resort */
511 if (best_disk < 0)
512 best_disk = disk;
513 continue;
514 }
515 /* This is a reasonable device to use. It might
516 * even be best.
517 */
518 if (is_badblock(rdev, this_sector, sectors,
519 &first_bad, &bad_sectors)) {
520 if (best_dist < MaxSector)
521 /* already have a better device */
522 continue;
523 if (first_bad <= this_sector) {
524 /* cannot read here. If this is the 'primary'
525 * device, then we must not read beyond
526 * bad_sectors from another device..
527 */
528 bad_sectors -= (this_sector - first_bad);
529 if (choose_first && sectors > bad_sectors)
530 sectors = bad_sectors;
531 if (best_good_sectors > sectors)
532 best_good_sectors = sectors;
533
534 } else {
535 sector_t good_sectors = first_bad - this_sector;
536 if (good_sectors > best_good_sectors) {
537 best_good_sectors = good_sectors;
538 best_disk = disk;
539 }
540 if (choose_first)
541 break;
542 }
543 continue;
544 } else
545 best_good_sectors = sectors;
546
547 dist = abs(this_sector - conf->mirrors[disk].head_position);
548 if (choose_first
549 /* Don't change to another disk for sequential reads */
550 || conf->next_seq_sect == this_sector
551 || dist == 0
552 /* If device is idle, use it */
553 || atomic_read(&rdev->nr_pending) == 0) {
554 best_disk = disk;
555 break;
556 }
557 if (dist < best_dist) {
558 best_dist = dist;
559 best_disk = disk;
560 }
561 }
562
563 if (best_disk >= 0) {
564 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
565 if (!rdev)
566 goto retry;
567 atomic_inc(&rdev->nr_pending);
568 if (test_bit(Faulty, &rdev->flags)) {
569 /* cannot risk returning a device that failed
570 * before we inc'ed nr_pending
571 */
572 rdev_dec_pending(rdev, conf->mddev);
573 goto retry;
574 }
575 sectors = best_good_sectors;
576 conf->next_seq_sect = this_sector + sectors;
577 conf->last_used = best_disk;
578 }
579 rcu_read_unlock();
580 *max_sectors = sectors;
581
582 return best_disk;
583}
584
585int md_raid1_congested(mddev_t *mddev, int bits)
586{
587 conf_t *conf = mddev->private;
588 int i, ret = 0;
589
590 rcu_read_lock();
591 for (i = 0; i < mddev->raid_disks; i++) {
592 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
593 if (rdev && !test_bit(Faulty, &rdev->flags)) {
594 struct request_queue *q = bdev_get_queue(rdev->bdev);
595
596 BUG_ON(!q);
597
598 /* Note the '|| 1' - when read_balance prefers
599 * non-congested targets, it can be removed
600 */
601 if ((bits & (1<<BDI_async_congested)) || 1)
602 ret |= bdi_congested(&q->backing_dev_info, bits);
603 else
604 ret &= bdi_congested(&q->backing_dev_info, bits);
605 }
606 }
607 rcu_read_unlock();
608 return ret;
609}
610EXPORT_SYMBOL_GPL(md_raid1_congested);
611
612static int raid1_congested(void *data, int bits)
613{
614 mddev_t *mddev = data;
615
616 return mddev_congested(mddev, bits) ||
617 md_raid1_congested(mddev, bits);
618}
619
620static void flush_pending_writes(conf_t *conf)
621{
622 /* Any writes that have been queued but are awaiting
623 * bitmap updates get flushed here.
624 */
625 spin_lock_irq(&conf->device_lock);
626
627 if (conf->pending_bio_list.head) {
628 struct bio *bio;
629 bio = bio_list_get(&conf->pending_bio_list);
630 spin_unlock_irq(&conf->device_lock);
631 /* flush any pending bitmap writes to
632 * disk before proceeding w/ I/O */
633 bitmap_unplug(conf->mddev->bitmap);
634
635 while (bio) { /* submit pending writes */
636 struct bio *next = bio->bi_next;
637 bio->bi_next = NULL;
638 generic_make_request(bio);
639 bio = next;
640 }
641 } else
642 spin_unlock_irq(&conf->device_lock);
643}
644
645/* Barriers....
646 * Sometimes we need to suspend IO while we do something else,
647 * either some resync/recovery, or reconfigure the array.
648 * To do this we raise a 'barrier'.
649 * The 'barrier' is a counter that can be raised multiple times
650 * to count how many activities are happening which preclude
651 * normal IO.
652 * We can only raise the barrier if there is no pending IO.
653 * i.e. if nr_pending == 0.
654 * We choose only to raise the barrier if no-one is waiting for the
655 * barrier to go down. This means that as soon as an IO request
656 * is ready, no other operations which require a barrier will start
657 * until the IO request has had a chance.
658 *
659 * So: regular IO calls 'wait_barrier'. When that returns there
660 * is no backgroup IO happening, It must arrange to call
661 * allow_barrier when it has finished its IO.
662 * backgroup IO calls must call raise_barrier. Once that returns
663 * there is no normal IO happeing. It must arrange to call
664 * lower_barrier when the particular background IO completes.
665 */
666#define RESYNC_DEPTH 32
667
668static void raise_barrier(conf_t *conf)
669{
670 spin_lock_irq(&conf->resync_lock);
671
672 /* Wait until no block IO is waiting */
673 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
674 conf->resync_lock, );
675
676 /* block any new IO from starting */
677 conf->barrier++;
678
679 /* Now wait for all pending IO to complete */
680 wait_event_lock_irq(conf->wait_barrier,
681 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
682 conf->resync_lock, );
683
684 spin_unlock_irq(&conf->resync_lock);
685}
686
687static void lower_barrier(conf_t *conf)
688{
689 unsigned long flags;
690 BUG_ON(conf->barrier <= 0);
691 spin_lock_irqsave(&conf->resync_lock, flags);
692 conf->barrier--;
693 spin_unlock_irqrestore(&conf->resync_lock, flags);
694 wake_up(&conf->wait_barrier);
695}
696
697static void wait_barrier(conf_t *conf)
698{
699 spin_lock_irq(&conf->resync_lock);
700 if (conf->barrier) {
701 conf->nr_waiting++;
702 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
703 conf->resync_lock,
704 );
705 conf->nr_waiting--;
706 }
707 conf->nr_pending++;
708 spin_unlock_irq(&conf->resync_lock);
709}
710
711static void allow_barrier(conf_t *conf)
712{
713 unsigned long flags;
714 spin_lock_irqsave(&conf->resync_lock, flags);
715 conf->nr_pending--;
716 spin_unlock_irqrestore(&conf->resync_lock, flags);
717 wake_up(&conf->wait_barrier);
718}
719
720static void freeze_array(conf_t *conf)
721{
722 /* stop syncio and normal IO and wait for everything to
723 * go quite.
724 * We increment barrier and nr_waiting, and then
725 * wait until nr_pending match nr_queued+1
726 * This is called in the context of one normal IO request
727 * that has failed. Thus any sync request that might be pending
728 * will be blocked by nr_pending, and we need to wait for
729 * pending IO requests to complete or be queued for re-try.
730 * Thus the number queued (nr_queued) plus this request (1)
731 * must match the number of pending IOs (nr_pending) before
732 * we continue.
733 */
734 spin_lock_irq(&conf->resync_lock);
735 conf->barrier++;
736 conf->nr_waiting++;
737 wait_event_lock_irq(conf->wait_barrier,
738 conf->nr_pending == conf->nr_queued+1,
739 conf->resync_lock,
740 flush_pending_writes(conf));
741 spin_unlock_irq(&conf->resync_lock);
742}
743static void unfreeze_array(conf_t *conf)
744{
745 /* reverse the effect of the freeze */
746 spin_lock_irq(&conf->resync_lock);
747 conf->barrier--;
748 conf->nr_waiting--;
749 wake_up(&conf->wait_barrier);
750 spin_unlock_irq(&conf->resync_lock);
751}
752
753
754/* duplicate the data pages for behind I/O
755 */
756static void alloc_behind_pages(struct bio *bio, r1bio_t *r1_bio)
757{
758 int i;
759 struct bio_vec *bvec;
760 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
761 GFP_NOIO);
762 if (unlikely(!bvecs))
763 return;
764
765 bio_for_each_segment(bvec, bio, i) {
766 bvecs[i] = *bvec;
767 bvecs[i].bv_page = alloc_page(GFP_NOIO);
768 if (unlikely(!bvecs[i].bv_page))
769 goto do_sync_io;
770 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
771 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
772 kunmap(bvecs[i].bv_page);
773 kunmap(bvec->bv_page);
774 }
775 r1_bio->behind_bvecs = bvecs;
776 r1_bio->behind_page_count = bio->bi_vcnt;
777 set_bit(R1BIO_BehindIO, &r1_bio->state);
778 return;
779
780do_sync_io:
781 for (i = 0; i < bio->bi_vcnt; i++)
782 if (bvecs[i].bv_page)
783 put_page(bvecs[i].bv_page);
784 kfree(bvecs);
785 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
786}
787
788static int make_request(mddev_t *mddev, struct bio * bio)
789{
790 conf_t *conf = mddev->private;
791 mirror_info_t *mirror;
792 r1bio_t *r1_bio;
793 struct bio *read_bio;
794 int i, disks;
795 struct bitmap *bitmap;
796 unsigned long flags;
797 const int rw = bio_data_dir(bio);
798 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
799 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
800 mdk_rdev_t *blocked_rdev;
801 int plugged;
802 int first_clone;
803 int sectors_handled;
804 int max_sectors;
805
806 /*
807 * Register the new request and wait if the reconstruction
808 * thread has put up a bar for new requests.
809 * Continue immediately if no resync is active currently.
810 */
811
812 md_write_start(mddev, bio); /* wait on superblock update early */
813
814 if (bio_data_dir(bio) == WRITE &&
815 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
816 bio->bi_sector < mddev->suspend_hi) {
817 /* As the suspend_* range is controlled by
818 * userspace, we want an interruptible
819 * wait.
820 */
821 DEFINE_WAIT(w);
822 for (;;) {
823 flush_signals(current);
824 prepare_to_wait(&conf->wait_barrier,
825 &w, TASK_INTERRUPTIBLE);
826 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
827 bio->bi_sector >= mddev->suspend_hi)
828 break;
829 schedule();
830 }
831 finish_wait(&conf->wait_barrier, &w);
832 }
833
834 wait_barrier(conf);
835
836 bitmap = mddev->bitmap;
837
838 /*
839 * make_request() can abort the operation when READA is being
840 * used and no empty request is available.
841 *
842 */
843 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
844
845 r1_bio->master_bio = bio;
846 r1_bio->sectors = bio->bi_size >> 9;
847 r1_bio->state = 0;
848 r1_bio->mddev = mddev;
849 r1_bio->sector = bio->bi_sector;
850
851 /* We might need to issue multiple reads to different
852 * devices if there are bad blocks around, so we keep
853 * track of the number of reads in bio->bi_phys_segments.
854 * If this is 0, there is only one r1_bio and no locking
855 * will be needed when requests complete. If it is
856 * non-zero, then it is the number of not-completed requests.
857 */
858 bio->bi_phys_segments = 0;
859 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
860
861 if (rw == READ) {
862 /*
863 * read balancing logic:
864 */
865 int rdisk;
866
867read_again:
868 rdisk = read_balance(conf, r1_bio, &max_sectors);
869
870 if (rdisk < 0) {
871 /* couldn't find anywhere to read from */
872 raid_end_bio_io(r1_bio);
873 return 0;
874 }
875 mirror = conf->mirrors + rdisk;
876
877 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
878 bitmap) {
879 /* Reading from a write-mostly device must
880 * take care not to over-take any writes
881 * that are 'behind'
882 */
883 wait_event(bitmap->behind_wait,
884 atomic_read(&bitmap->behind_writes) == 0);
885 }
886 r1_bio->read_disk = rdisk;
887
888 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
889 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
890 max_sectors);
891
892 r1_bio->bios[rdisk] = read_bio;
893
894 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
895 read_bio->bi_bdev = mirror->rdev->bdev;
896 read_bio->bi_end_io = raid1_end_read_request;
897 read_bio->bi_rw = READ | do_sync;
898 read_bio->bi_private = r1_bio;
899
900 if (max_sectors < r1_bio->sectors) {
901 /* could not read all from this device, so we will
902 * need another r1_bio.
903 */
904
905 sectors_handled = (r1_bio->sector + max_sectors
906 - bio->bi_sector);
907 r1_bio->sectors = max_sectors;
908 spin_lock_irq(&conf->device_lock);
909 if (bio->bi_phys_segments == 0)
910 bio->bi_phys_segments = 2;
911 else
912 bio->bi_phys_segments++;
913 spin_unlock_irq(&conf->device_lock);
914 /* Cannot call generic_make_request directly
915 * as that will be queued in __make_request
916 * and subsequent mempool_alloc might block waiting
917 * for it. So hand bio over to raid1d.
918 */
919 reschedule_retry(r1_bio);
920
921 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
922
923 r1_bio->master_bio = bio;
924 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
925 r1_bio->state = 0;
926 r1_bio->mddev = mddev;
927 r1_bio->sector = bio->bi_sector + sectors_handled;
928 goto read_again;
929 } else
930 generic_make_request(read_bio);
931 return 0;
932 }
933
934 /*
935 * WRITE:
936 */
937 /* first select target devices under rcu_lock and
938 * inc refcount on their rdev. Record them by setting
939 * bios[x] to bio
940 * If there are known/acknowledged bad blocks on any device on
941 * which we have seen a write error, we want to avoid writing those
942 * blocks.
943 * This potentially requires several writes to write around
944 * the bad blocks. Each set of writes gets it's own r1bio
945 * with a set of bios attached.
946 */
947 plugged = mddev_check_plugged(mddev);
948
949 disks = conf->raid_disks;
950 retry_write:
951 blocked_rdev = NULL;
952 rcu_read_lock();
953 max_sectors = r1_bio->sectors;
954 for (i = 0; i < disks; i++) {
955 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
956 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
957 atomic_inc(&rdev->nr_pending);
958 blocked_rdev = rdev;
959 break;
960 }
961 r1_bio->bios[i] = NULL;
962 if (!rdev || test_bit(Faulty, &rdev->flags)) {
963 set_bit(R1BIO_Degraded, &r1_bio->state);
964 continue;
965 }
966
967 atomic_inc(&rdev->nr_pending);
968 if (test_bit(WriteErrorSeen, &rdev->flags)) {
969 sector_t first_bad;
970 int bad_sectors;
971 int is_bad;
972
973 is_bad = is_badblock(rdev, r1_bio->sector,
974 max_sectors,
975 &first_bad, &bad_sectors);
976 if (is_bad < 0) {
977 /* mustn't write here until the bad block is
978 * acknowledged*/
979 set_bit(BlockedBadBlocks, &rdev->flags);
980 blocked_rdev = rdev;
981 break;
982 }
983 if (is_bad && first_bad <= r1_bio->sector) {
984 /* Cannot write here at all */
985 bad_sectors -= (r1_bio->sector - first_bad);
986 if (bad_sectors < max_sectors)
987 /* mustn't write more than bad_sectors
988 * to other devices yet
989 */
990 max_sectors = bad_sectors;
991 rdev_dec_pending(rdev, mddev);
992 /* We don't set R1BIO_Degraded as that
993 * only applies if the disk is
994 * missing, so it might be re-added,
995 * and we want to know to recover this
996 * chunk.
997 * In this case the device is here,
998 * and the fact that this chunk is not
999 * in-sync is recorded in the bad
1000 * block log
1001 */
1002 continue;
1003 }
1004 if (is_bad) {
1005 int good_sectors = first_bad - r1_bio->sector;
1006 if (good_sectors < max_sectors)
1007 max_sectors = good_sectors;
1008 }
1009 }
1010 r1_bio->bios[i] = bio;
1011 }
1012 rcu_read_unlock();
1013
1014 if (unlikely(blocked_rdev)) {
1015 /* Wait for this device to become unblocked */
1016 int j;
1017
1018 for (j = 0; j < i; j++)
1019 if (r1_bio->bios[j])
1020 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1021 r1_bio->state = 0;
1022 allow_barrier(conf);
1023 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1024 wait_barrier(conf);
1025 goto retry_write;
1026 }
1027
1028 if (max_sectors < r1_bio->sectors) {
1029 /* We are splitting this write into multiple parts, so
1030 * we need to prepare for allocating another r1_bio.
1031 */
1032 r1_bio->sectors = max_sectors;
1033 spin_lock_irq(&conf->device_lock);
1034 if (bio->bi_phys_segments == 0)
1035 bio->bi_phys_segments = 2;
1036 else
1037 bio->bi_phys_segments++;
1038 spin_unlock_irq(&conf->device_lock);
1039 }
1040 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1041
1042 atomic_set(&r1_bio->remaining, 1);
1043 atomic_set(&r1_bio->behind_remaining, 0);
1044
1045 first_clone = 1;
1046 for (i = 0; i < disks; i++) {
1047 struct bio *mbio;
1048 if (!r1_bio->bios[i])
1049 continue;
1050
1051 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1052 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1053
1054 if (first_clone) {
1055 /* do behind I/O ?
1056 * Not if there are too many, or cannot
1057 * allocate memory, or a reader on WriteMostly
1058 * is waiting for behind writes to flush */
1059 if (bitmap &&
1060 (atomic_read(&bitmap->behind_writes)
1061 < mddev->bitmap_info.max_write_behind) &&
1062 !waitqueue_active(&bitmap->behind_wait))
1063 alloc_behind_pages(mbio, r1_bio);
1064
1065 bitmap_startwrite(bitmap, r1_bio->sector,
1066 r1_bio->sectors,
1067 test_bit(R1BIO_BehindIO,
1068 &r1_bio->state));
1069 first_clone = 0;
1070 }
1071 if (r1_bio->behind_bvecs) {
1072 struct bio_vec *bvec;
1073 int j;
1074
1075 /* Yes, I really want the '__' version so that
1076 * we clear any unused pointer in the io_vec, rather
1077 * than leave them unchanged. This is important
1078 * because when we come to free the pages, we won't
1079 * know the original bi_idx, so we just free
1080 * them all
1081 */
1082 __bio_for_each_segment(bvec, mbio, j, 0)
1083 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1084 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1085 atomic_inc(&r1_bio->behind_remaining);
1086 }
1087
1088 r1_bio->bios[i] = mbio;
1089
1090 mbio->bi_sector = (r1_bio->sector +
1091 conf->mirrors[i].rdev->data_offset);
1092 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1093 mbio->bi_end_io = raid1_end_write_request;
1094 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1095 mbio->bi_private = r1_bio;
1096
1097 atomic_inc(&r1_bio->remaining);
1098 spin_lock_irqsave(&conf->device_lock, flags);
1099 bio_list_add(&conf->pending_bio_list, mbio);
1100 spin_unlock_irqrestore(&conf->device_lock, flags);
1101 }
1102 /* Mustn't call r1_bio_write_done before this next test,
1103 * as it could result in the bio being freed.
1104 */
1105 if (sectors_handled < (bio->bi_size >> 9)) {
1106 r1_bio_write_done(r1_bio);
1107 /* We need another r1_bio. It has already been counted
1108 * in bio->bi_phys_segments
1109 */
1110 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1111 r1_bio->master_bio = bio;
1112 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1113 r1_bio->state = 0;
1114 r1_bio->mddev = mddev;
1115 r1_bio->sector = bio->bi_sector + sectors_handled;
1116 goto retry_write;
1117 }
1118
1119 r1_bio_write_done(r1_bio);
1120
1121 /* In case raid1d snuck in to freeze_array */
1122 wake_up(&conf->wait_barrier);
1123
1124 if (do_sync || !bitmap || !plugged)
1125 md_wakeup_thread(mddev->thread);
1126
1127 return 0;
1128}
1129
1130static void status(struct seq_file *seq, mddev_t *mddev)
1131{
1132 conf_t *conf = mddev->private;
1133 int i;
1134
1135 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1136 conf->raid_disks - mddev->degraded);
1137 rcu_read_lock();
1138 for (i = 0; i < conf->raid_disks; i++) {
1139 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1140 seq_printf(seq, "%s",
1141 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1142 }
1143 rcu_read_unlock();
1144 seq_printf(seq, "]");
1145}
1146
1147
1148static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1149{
1150 char b[BDEVNAME_SIZE];
1151 conf_t *conf = mddev->private;
1152
1153 /*
1154 * If it is not operational, then we have already marked it as dead
1155 * else if it is the last working disks, ignore the error, let the
1156 * next level up know.
1157 * else mark the drive as failed
1158 */
1159 if (test_bit(In_sync, &rdev->flags)
1160 && (conf->raid_disks - mddev->degraded) == 1) {
1161 /*
1162 * Don't fail the drive, act as though we were just a
1163 * normal single drive.
1164 * However don't try a recovery from this drive as
1165 * it is very likely to fail.
1166 */
1167 conf->recovery_disabled = mddev->recovery_disabled;
1168 return;
1169 }
1170 set_bit(Blocked, &rdev->flags);
1171 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1172 unsigned long flags;
1173 spin_lock_irqsave(&conf->device_lock, flags);
1174 mddev->degraded++;
1175 set_bit(Faulty, &rdev->flags);
1176 spin_unlock_irqrestore(&conf->device_lock, flags);
1177 /*
1178 * if recovery is running, make sure it aborts.
1179 */
1180 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1181 } else
1182 set_bit(Faulty, &rdev->flags);
1183 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1184 printk(KERN_ALERT
1185 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1186 "md/raid1:%s: Operation continuing on %d devices.\n",
1187 mdname(mddev), bdevname(rdev->bdev, b),
1188 mdname(mddev), conf->raid_disks - mddev->degraded);
1189}
1190
1191static void print_conf(conf_t *conf)
1192{
1193 int i;
1194
1195 printk(KERN_DEBUG "RAID1 conf printout:\n");
1196 if (!conf) {
1197 printk(KERN_DEBUG "(!conf)\n");
1198 return;
1199 }
1200 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1201 conf->raid_disks);
1202
1203 rcu_read_lock();
1204 for (i = 0; i < conf->raid_disks; i++) {
1205 char b[BDEVNAME_SIZE];
1206 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1207 if (rdev)
1208 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1209 i, !test_bit(In_sync, &rdev->flags),
1210 !test_bit(Faulty, &rdev->flags),
1211 bdevname(rdev->bdev,b));
1212 }
1213 rcu_read_unlock();
1214}
1215
1216static void close_sync(conf_t *conf)
1217{
1218 wait_barrier(conf);
1219 allow_barrier(conf);
1220
1221 mempool_destroy(conf->r1buf_pool);
1222 conf->r1buf_pool = NULL;
1223}
1224
1225static int raid1_spare_active(mddev_t *mddev)
1226{
1227 int i;
1228 conf_t *conf = mddev->private;
1229 int count = 0;
1230 unsigned long flags;
1231
1232 /*
1233 * Find all failed disks within the RAID1 configuration
1234 * and mark them readable.
1235 * Called under mddev lock, so rcu protection not needed.
1236 */
1237 for (i = 0; i < conf->raid_disks; i++) {
1238 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1239 if (rdev
1240 && !test_bit(Faulty, &rdev->flags)
1241 && !test_and_set_bit(In_sync, &rdev->flags)) {
1242 count++;
1243 sysfs_notify_dirent_safe(rdev->sysfs_state);
1244 }
1245 }
1246 spin_lock_irqsave(&conf->device_lock, flags);
1247 mddev->degraded -= count;
1248 spin_unlock_irqrestore(&conf->device_lock, flags);
1249
1250 print_conf(conf);
1251 return count;
1252}
1253
1254
1255static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1256{
1257 conf_t *conf = mddev->private;
1258 int err = -EEXIST;
1259 int mirror = 0;
1260 mirror_info_t *p;
1261 int first = 0;
1262 int last = mddev->raid_disks - 1;
1263
1264 if (mddev->recovery_disabled == conf->recovery_disabled)
1265 return -EBUSY;
1266
1267 if (rdev->raid_disk >= 0)
1268 first = last = rdev->raid_disk;
1269
1270 for (mirror = first; mirror <= last; mirror++)
1271 if ( !(p=conf->mirrors+mirror)->rdev) {
1272
1273 disk_stack_limits(mddev->gendisk, rdev->bdev,
1274 rdev->data_offset << 9);
1275 /* as we don't honour merge_bvec_fn, we must
1276 * never risk violating it, so limit
1277 * ->max_segments to one lying with a single
1278 * page, as a one page request is never in
1279 * violation.
1280 */
1281 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1282 blk_queue_max_segments(mddev->queue, 1);
1283 blk_queue_segment_boundary(mddev->queue,
1284 PAGE_CACHE_SIZE - 1);
1285 }
1286
1287 p->head_position = 0;
1288 rdev->raid_disk = mirror;
1289 err = 0;
1290 /* As all devices are equivalent, we don't need a full recovery
1291 * if this was recently any drive of the array
1292 */
1293 if (rdev->saved_raid_disk < 0)
1294 conf->fullsync = 1;
1295 rcu_assign_pointer(p->rdev, rdev);
1296 break;
1297 }
1298 md_integrity_add_rdev(rdev, mddev);
1299 print_conf(conf);
1300 return err;
1301}
1302
1303static int raid1_remove_disk(mddev_t *mddev, int number)
1304{
1305 conf_t *conf = mddev->private;
1306 int err = 0;
1307 mdk_rdev_t *rdev;
1308 mirror_info_t *p = conf->mirrors+ number;
1309
1310 print_conf(conf);
1311 rdev = p->rdev;
1312 if (rdev) {
1313 if (test_bit(In_sync, &rdev->flags) ||
1314 atomic_read(&rdev->nr_pending)) {
1315 err = -EBUSY;
1316 goto abort;
1317 }
1318 /* Only remove non-faulty devices if recovery
1319 * is not possible.
1320 */
1321 if (!test_bit(Faulty, &rdev->flags) &&
1322 mddev->recovery_disabled != conf->recovery_disabled &&
1323 mddev->degraded < conf->raid_disks) {
1324 err = -EBUSY;
1325 goto abort;
1326 }
1327 p->rdev = NULL;
1328 synchronize_rcu();
1329 if (atomic_read(&rdev->nr_pending)) {
1330 /* lost the race, try later */
1331 err = -EBUSY;
1332 p->rdev = rdev;
1333 goto abort;
1334 }
1335 err = md_integrity_register(mddev);
1336 }
1337abort:
1338
1339 print_conf(conf);
1340 return err;
1341}
1342
1343
1344static void end_sync_read(struct bio *bio, int error)
1345{
1346 r1bio_t *r1_bio = bio->bi_private;
1347 int i;
1348
1349 for (i=r1_bio->mddev->raid_disks; i--; )
1350 if (r1_bio->bios[i] == bio)
1351 break;
1352 BUG_ON(i < 0);
1353 update_head_pos(i, r1_bio);
1354 /*
1355 * we have read a block, now it needs to be re-written,
1356 * or re-read if the read failed.
1357 * We don't do much here, just schedule handling by raid1d
1358 */
1359 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1360 set_bit(R1BIO_Uptodate, &r1_bio->state);
1361
1362 if (atomic_dec_and_test(&r1_bio->remaining))
1363 reschedule_retry(r1_bio);
1364}
1365
1366static void end_sync_write(struct bio *bio, int error)
1367{
1368 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1369 r1bio_t *r1_bio = bio->bi_private;
1370 mddev_t *mddev = r1_bio->mddev;
1371 conf_t *conf = mddev->private;
1372 int i;
1373 int mirror=0;
1374 sector_t first_bad;
1375 int bad_sectors;
1376
1377 for (i = 0; i < conf->raid_disks; i++)
1378 if (r1_bio->bios[i] == bio) {
1379 mirror = i;
1380 break;
1381 }
1382 if (!uptodate) {
1383 sector_t sync_blocks = 0;
1384 sector_t s = r1_bio->sector;
1385 long sectors_to_go = r1_bio->sectors;
1386 /* make sure these bits doesn't get cleared. */
1387 do {
1388 bitmap_end_sync(mddev->bitmap, s,
1389 &sync_blocks, 1);
1390 s += sync_blocks;
1391 sectors_to_go -= sync_blocks;
1392 } while (sectors_to_go > 0);
1393 set_bit(WriteErrorSeen,
1394 &conf->mirrors[mirror].rdev->flags);
1395 set_bit(R1BIO_WriteError, &r1_bio->state);
1396 } else if (is_badblock(conf->mirrors[mirror].rdev,
1397 r1_bio->sector,
1398 r1_bio->sectors,
1399 &first_bad, &bad_sectors) &&
1400 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1401 r1_bio->sector,
1402 r1_bio->sectors,
1403 &first_bad, &bad_sectors)
1404 )
1405 set_bit(R1BIO_MadeGood, &r1_bio->state);
1406
1407 update_head_pos(mirror, r1_bio);
1408
1409 if (atomic_dec_and_test(&r1_bio->remaining)) {
1410 int s = r1_bio->sectors;
1411 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1412 test_bit(R1BIO_WriteError, &r1_bio->state))
1413 reschedule_retry(r1_bio);
1414 else {
1415 put_buf(r1_bio);
1416 md_done_sync(mddev, s, uptodate);
1417 }
1418 }
1419}
1420
1421static int r1_sync_page_io(mdk_rdev_t *rdev, sector_t sector,
1422 int sectors, struct page *page, int rw)
1423{
1424 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1425 /* success */
1426 return 1;
1427 if (rw == WRITE)
1428 set_bit(WriteErrorSeen, &rdev->flags);
1429 /* need to record an error - either for the block or the device */
1430 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1431 md_error(rdev->mddev, rdev);
1432 return 0;
1433}
1434
1435static int fix_sync_read_error(r1bio_t *r1_bio)
1436{
1437 /* Try some synchronous reads of other devices to get
1438 * good data, much like with normal read errors. Only
1439 * read into the pages we already have so we don't
1440 * need to re-issue the read request.
1441 * We don't need to freeze the array, because being in an
1442 * active sync request, there is no normal IO, and
1443 * no overlapping syncs.
1444 * We don't need to check is_badblock() again as we
1445 * made sure that anything with a bad block in range
1446 * will have bi_end_io clear.
1447 */
1448 mddev_t *mddev = r1_bio->mddev;
1449 conf_t *conf = mddev->private;
1450 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1451 sector_t sect = r1_bio->sector;
1452 int sectors = r1_bio->sectors;
1453 int idx = 0;
1454
1455 while(sectors) {
1456 int s = sectors;
1457 int d = r1_bio->read_disk;
1458 int success = 0;
1459 mdk_rdev_t *rdev;
1460 int start;
1461
1462 if (s > (PAGE_SIZE>>9))
1463 s = PAGE_SIZE >> 9;
1464 do {
1465 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1466 /* No rcu protection needed here devices
1467 * can only be removed when no resync is
1468 * active, and resync is currently active
1469 */
1470 rdev = conf->mirrors[d].rdev;
1471 if (sync_page_io(rdev, sect, s<<9,
1472 bio->bi_io_vec[idx].bv_page,
1473 READ, false)) {
1474 success = 1;
1475 break;
1476 }
1477 }
1478 d++;
1479 if (d == conf->raid_disks)
1480 d = 0;
1481 } while (!success && d != r1_bio->read_disk);
1482
1483 if (!success) {
1484 char b[BDEVNAME_SIZE];
1485 int abort = 0;
1486 /* Cannot read from anywhere, this block is lost.
1487 * Record a bad block on each device. If that doesn't
1488 * work just disable and interrupt the recovery.
1489 * Don't fail devices as that won't really help.
1490 */
1491 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1492 " for block %llu\n",
1493 mdname(mddev),
1494 bdevname(bio->bi_bdev, b),
1495 (unsigned long long)r1_bio->sector);
1496 for (d = 0; d < conf->raid_disks; d++) {
1497 rdev = conf->mirrors[d].rdev;
1498 if (!rdev || test_bit(Faulty, &rdev->flags))
1499 continue;
1500 if (!rdev_set_badblocks(rdev, sect, s, 0))
1501 abort = 1;
1502 }
1503 if (abort) {
1504 mddev->recovery_disabled = 1;
1505 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1506 md_done_sync(mddev, r1_bio->sectors, 0);
1507 put_buf(r1_bio);
1508 return 0;
1509 }
1510 /* Try next page */
1511 sectors -= s;
1512 sect += s;
1513 idx++;
1514 continue;
1515 }
1516
1517 start = d;
1518 /* write it back and re-read */
1519 while (d != r1_bio->read_disk) {
1520 if (d == 0)
1521 d = conf->raid_disks;
1522 d--;
1523 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1524 continue;
1525 rdev = conf->mirrors[d].rdev;
1526 if (r1_sync_page_io(rdev, sect, s,
1527 bio->bi_io_vec[idx].bv_page,
1528 WRITE) == 0) {
1529 r1_bio->bios[d]->bi_end_io = NULL;
1530 rdev_dec_pending(rdev, mddev);
1531 }
1532 }
1533 d = start;
1534 while (d != r1_bio->read_disk) {
1535 if (d == 0)
1536 d = conf->raid_disks;
1537 d--;
1538 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1539 continue;
1540 rdev = conf->mirrors[d].rdev;
1541 if (r1_sync_page_io(rdev, sect, s,
1542 bio->bi_io_vec[idx].bv_page,
1543 READ) != 0)
1544 atomic_add(s, &rdev->corrected_errors);
1545 }
1546 sectors -= s;
1547 sect += s;
1548 idx ++;
1549 }
1550 set_bit(R1BIO_Uptodate, &r1_bio->state);
1551 set_bit(BIO_UPTODATE, &bio->bi_flags);
1552 return 1;
1553}
1554
1555static int process_checks(r1bio_t *r1_bio)
1556{
1557 /* We have read all readable devices. If we haven't
1558 * got the block, then there is no hope left.
1559 * If we have, then we want to do a comparison
1560 * and skip the write if everything is the same.
1561 * If any blocks failed to read, then we need to
1562 * attempt an over-write
1563 */
1564 mddev_t *mddev = r1_bio->mddev;
1565 conf_t *conf = mddev->private;
1566 int primary;
1567 int i;
1568
1569 for (primary = 0; primary < conf->raid_disks; primary++)
1570 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1571 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1572 r1_bio->bios[primary]->bi_end_io = NULL;
1573 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1574 break;
1575 }
1576 r1_bio->read_disk = primary;
1577 for (i = 0; i < conf->raid_disks; i++) {
1578 int j;
1579 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1580 struct bio *pbio = r1_bio->bios[primary];
1581 struct bio *sbio = r1_bio->bios[i];
1582 int size;
1583
1584 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1585 continue;
1586
1587 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1588 for (j = vcnt; j-- ; ) {
1589 struct page *p, *s;
1590 p = pbio->bi_io_vec[j].bv_page;
1591 s = sbio->bi_io_vec[j].bv_page;
1592 if (memcmp(page_address(p),
1593 page_address(s),
1594 PAGE_SIZE))
1595 break;
1596 }
1597 } else
1598 j = 0;
1599 if (j >= 0)
1600 mddev->resync_mismatches += r1_bio->sectors;
1601 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1602 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1603 /* No need to write to this device. */
1604 sbio->bi_end_io = NULL;
1605 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1606 continue;
1607 }
1608 /* fixup the bio for reuse */
1609 sbio->bi_vcnt = vcnt;
1610 sbio->bi_size = r1_bio->sectors << 9;
1611 sbio->bi_idx = 0;
1612 sbio->bi_phys_segments = 0;
1613 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1614 sbio->bi_flags |= 1 << BIO_UPTODATE;
1615 sbio->bi_next = NULL;
1616 sbio->bi_sector = r1_bio->sector +
1617 conf->mirrors[i].rdev->data_offset;
1618 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1619 size = sbio->bi_size;
1620 for (j = 0; j < vcnt ; j++) {
1621 struct bio_vec *bi;
1622 bi = &sbio->bi_io_vec[j];
1623 bi->bv_offset = 0;
1624 if (size > PAGE_SIZE)
1625 bi->bv_len = PAGE_SIZE;
1626 else
1627 bi->bv_len = size;
1628 size -= PAGE_SIZE;
1629 memcpy(page_address(bi->bv_page),
1630 page_address(pbio->bi_io_vec[j].bv_page),
1631 PAGE_SIZE);
1632 }
1633 }
1634 return 0;
1635}
1636
1637static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1638{
1639 conf_t *conf = mddev->private;
1640 int i;
1641 int disks = conf->raid_disks;
1642 struct bio *bio, *wbio;
1643
1644 bio = r1_bio->bios[r1_bio->read_disk];
1645
1646 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1647 /* ouch - failed to read all of that. */
1648 if (!fix_sync_read_error(r1_bio))
1649 return;
1650
1651 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1652 if (process_checks(r1_bio) < 0)
1653 return;
1654 /*
1655 * schedule writes
1656 */
1657 atomic_set(&r1_bio->remaining, 1);
1658 for (i = 0; i < disks ; i++) {
1659 wbio = r1_bio->bios[i];
1660 if (wbio->bi_end_io == NULL ||
1661 (wbio->bi_end_io == end_sync_read &&
1662 (i == r1_bio->read_disk ||
1663 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1664 continue;
1665
1666 wbio->bi_rw = WRITE;
1667 wbio->bi_end_io = end_sync_write;
1668 atomic_inc(&r1_bio->remaining);
1669 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1670
1671 generic_make_request(wbio);
1672 }
1673
1674 if (atomic_dec_and_test(&r1_bio->remaining)) {
1675 /* if we're here, all write(s) have completed, so clean up */
1676 md_done_sync(mddev, r1_bio->sectors, 1);
1677 put_buf(r1_bio);
1678 }
1679}
1680
1681/*
1682 * This is a kernel thread which:
1683 *
1684 * 1. Retries failed read operations on working mirrors.
1685 * 2. Updates the raid superblock when problems encounter.
1686 * 3. Performs writes following reads for array synchronising.
1687 */
1688
1689static void fix_read_error(conf_t *conf, int read_disk,
1690 sector_t sect, int sectors)
1691{
1692 mddev_t *mddev = conf->mddev;
1693 while(sectors) {
1694 int s = sectors;
1695 int d = read_disk;
1696 int success = 0;
1697 int start;
1698 mdk_rdev_t *rdev;
1699
1700 if (s > (PAGE_SIZE>>9))
1701 s = PAGE_SIZE >> 9;
1702
1703 do {
1704 /* Note: no rcu protection needed here
1705 * as this is synchronous in the raid1d thread
1706 * which is the thread that might remove
1707 * a device. If raid1d ever becomes multi-threaded....
1708 */
1709 sector_t first_bad;
1710 int bad_sectors;
1711
1712 rdev = conf->mirrors[d].rdev;
1713 if (rdev &&
1714 test_bit(In_sync, &rdev->flags) &&
1715 is_badblock(rdev, sect, s,
1716 &first_bad, &bad_sectors) == 0 &&
1717 sync_page_io(rdev, sect, s<<9,
1718 conf->tmppage, READ, false))
1719 success = 1;
1720 else {
1721 d++;
1722 if (d == conf->raid_disks)
1723 d = 0;
1724 }
1725 } while (!success && d != read_disk);
1726
1727 if (!success) {
1728 /* Cannot read from anywhere - mark it bad */
1729 mdk_rdev_t *rdev = conf->mirrors[read_disk].rdev;
1730 if (!rdev_set_badblocks(rdev, sect, s, 0))
1731 md_error(mddev, rdev);
1732 break;
1733 }
1734 /* write it back and re-read */
1735 start = d;
1736 while (d != read_disk) {
1737 if (d==0)
1738 d = conf->raid_disks;
1739 d--;
1740 rdev = conf->mirrors[d].rdev;
1741 if (rdev &&
1742 test_bit(In_sync, &rdev->flags))
1743 r1_sync_page_io(rdev, sect, s,
1744 conf->tmppage, WRITE);
1745 }
1746 d = start;
1747 while (d != read_disk) {
1748 char b[BDEVNAME_SIZE];
1749 if (d==0)
1750 d = conf->raid_disks;
1751 d--;
1752 rdev = conf->mirrors[d].rdev;
1753 if (rdev &&
1754 test_bit(In_sync, &rdev->flags)) {
1755 if (r1_sync_page_io(rdev, sect, s,
1756 conf->tmppage, READ)) {
1757 atomic_add(s, &rdev->corrected_errors);
1758 printk(KERN_INFO
1759 "md/raid1:%s: read error corrected "
1760 "(%d sectors at %llu on %s)\n",
1761 mdname(mddev), s,
1762 (unsigned long long)(sect +
1763 rdev->data_offset),
1764 bdevname(rdev->bdev, b));
1765 }
1766 }
1767 }
1768 sectors -= s;
1769 sect += s;
1770 }
1771}
1772
1773static void bi_complete(struct bio *bio, int error)
1774{
1775 complete((struct completion *)bio->bi_private);
1776}
1777
1778static int submit_bio_wait(int rw, struct bio *bio)
1779{
1780 struct completion event;
1781 rw |= REQ_SYNC;
1782
1783 init_completion(&event);
1784 bio->bi_private = &event;
1785 bio->bi_end_io = bi_complete;
1786 submit_bio(rw, bio);
1787 wait_for_completion(&event);
1788
1789 return test_bit(BIO_UPTODATE, &bio->bi_flags);
1790}
1791
1792static int narrow_write_error(r1bio_t *r1_bio, int i)
1793{
1794 mddev_t *mddev = r1_bio->mddev;
1795 conf_t *conf = mddev->private;
1796 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1797 int vcnt, idx;
1798 struct bio_vec *vec;
1799
1800 /* bio has the data to be written to device 'i' where
1801 * we just recently had a write error.
1802 * We repeatedly clone the bio and trim down to one block,
1803 * then try the write. Where the write fails we record
1804 * a bad block.
1805 * It is conceivable that the bio doesn't exactly align with
1806 * blocks. We must handle this somehow.
1807 *
1808 * We currently own a reference on the rdev.
1809 */
1810
1811 int block_sectors;
1812 sector_t sector;
1813 int sectors;
1814 int sect_to_write = r1_bio->sectors;
1815 int ok = 1;
1816
1817 if (rdev->badblocks.shift < 0)
1818 return 0;
1819
1820 block_sectors = 1 << rdev->badblocks.shift;
1821 sector = r1_bio->sector;
1822 sectors = ((sector + block_sectors)
1823 & ~(sector_t)(block_sectors - 1))
1824 - sector;
1825
1826 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1827 vcnt = r1_bio->behind_page_count;
1828 vec = r1_bio->behind_bvecs;
1829 idx = 0;
1830 while (vec[idx].bv_page == NULL)
1831 idx++;
1832 } else {
1833 vcnt = r1_bio->master_bio->bi_vcnt;
1834 vec = r1_bio->master_bio->bi_io_vec;
1835 idx = r1_bio->master_bio->bi_idx;
1836 }
1837 while (sect_to_write) {
1838 struct bio *wbio;
1839 if (sectors > sect_to_write)
1840 sectors = sect_to_write;
1841 /* Write at 'sector' for 'sectors'*/
1842
1843 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
1844 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
1845 wbio->bi_sector = r1_bio->sector;
1846 wbio->bi_rw = WRITE;
1847 wbio->bi_vcnt = vcnt;
1848 wbio->bi_size = r1_bio->sectors << 9;
1849 wbio->bi_idx = idx;
1850
1851 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
1852 wbio->bi_sector += rdev->data_offset;
1853 wbio->bi_bdev = rdev->bdev;
1854 if (submit_bio_wait(WRITE, wbio) == 0)
1855 /* failure! */
1856 ok = rdev_set_badblocks(rdev, sector,
1857 sectors, 0)
1858 && ok;
1859
1860 bio_put(wbio);
1861 sect_to_write -= sectors;
1862 sector += sectors;
1863 sectors = block_sectors;
1864 }
1865 return ok;
1866}
1867
1868static void handle_sync_write_finished(conf_t *conf, r1bio_t *r1_bio)
1869{
1870 int m;
1871 int s = r1_bio->sectors;
1872 for (m = 0; m < conf->raid_disks ; m++) {
1873 mdk_rdev_t *rdev = conf->mirrors[m].rdev;
1874 struct bio *bio = r1_bio->bios[m];
1875 if (bio->bi_end_io == NULL)
1876 continue;
1877 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1878 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
1879 rdev_clear_badblocks(rdev, r1_bio->sector, s);
1880 }
1881 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
1882 test_bit(R1BIO_WriteError, &r1_bio->state)) {
1883 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
1884 md_error(conf->mddev, rdev);
1885 }
1886 }
1887 put_buf(r1_bio);
1888 md_done_sync(conf->mddev, s, 1);
1889}
1890
1891static void handle_write_finished(conf_t *conf, r1bio_t *r1_bio)
1892{
1893 int m;
1894 for (m = 0; m < conf->raid_disks ; m++)
1895 if (r1_bio->bios[m] == IO_MADE_GOOD) {
1896 mdk_rdev_t *rdev = conf->mirrors[m].rdev;
1897 rdev_clear_badblocks(rdev,
1898 r1_bio->sector,
1899 r1_bio->sectors);
1900 rdev_dec_pending(rdev, conf->mddev);
1901 } else if (r1_bio->bios[m] != NULL) {
1902 /* This drive got a write error. We need to
1903 * narrow down and record precise write
1904 * errors.
1905 */
1906 if (!narrow_write_error(r1_bio, m)) {
1907 md_error(conf->mddev,
1908 conf->mirrors[m].rdev);
1909 /* an I/O failed, we can't clear the bitmap */
1910 set_bit(R1BIO_Degraded, &r1_bio->state);
1911 }
1912 rdev_dec_pending(conf->mirrors[m].rdev,
1913 conf->mddev);
1914 }
1915 if (test_bit(R1BIO_WriteError, &r1_bio->state))
1916 close_write(r1_bio);
1917 raid_end_bio_io(r1_bio);
1918}
1919
1920static void handle_read_error(conf_t *conf, r1bio_t *r1_bio)
1921{
1922 int disk;
1923 int max_sectors;
1924 mddev_t *mddev = conf->mddev;
1925 struct bio *bio;
1926 char b[BDEVNAME_SIZE];
1927 mdk_rdev_t *rdev;
1928
1929 clear_bit(R1BIO_ReadError, &r1_bio->state);
1930 /* we got a read error. Maybe the drive is bad. Maybe just
1931 * the block and we can fix it.
1932 * We freeze all other IO, and try reading the block from
1933 * other devices. When we find one, we re-write
1934 * and check it that fixes the read error.
1935 * This is all done synchronously while the array is
1936 * frozen
1937 */
1938 if (mddev->ro == 0) {
1939 freeze_array(conf);
1940 fix_read_error(conf, r1_bio->read_disk,
1941 r1_bio->sector, r1_bio->sectors);
1942 unfreeze_array(conf);
1943 } else
1944 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1945
1946 bio = r1_bio->bios[r1_bio->read_disk];
1947 bdevname(bio->bi_bdev, b);
1948read_more:
1949 disk = read_balance(conf, r1_bio, &max_sectors);
1950 if (disk == -1) {
1951 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1952 " read error for block %llu\n",
1953 mdname(mddev), b, (unsigned long long)r1_bio->sector);
1954 raid_end_bio_io(r1_bio);
1955 } else {
1956 const unsigned long do_sync
1957 = r1_bio->master_bio->bi_rw & REQ_SYNC;
1958 if (bio) {
1959 r1_bio->bios[r1_bio->read_disk] =
1960 mddev->ro ? IO_BLOCKED : NULL;
1961 bio_put(bio);
1962 }
1963 r1_bio->read_disk = disk;
1964 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
1965 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
1966 r1_bio->bios[r1_bio->read_disk] = bio;
1967 rdev = conf->mirrors[disk].rdev;
1968 printk_ratelimited(KERN_ERR
1969 "md/raid1:%s: redirecting sector %llu"
1970 " to other mirror: %s\n",
1971 mdname(mddev),
1972 (unsigned long long)r1_bio->sector,
1973 bdevname(rdev->bdev, b));
1974 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1975 bio->bi_bdev = rdev->bdev;
1976 bio->bi_end_io = raid1_end_read_request;
1977 bio->bi_rw = READ | do_sync;
1978 bio->bi_private = r1_bio;
1979 if (max_sectors < r1_bio->sectors) {
1980 /* Drat - have to split this up more */
1981 struct bio *mbio = r1_bio->master_bio;
1982 int sectors_handled = (r1_bio->sector + max_sectors
1983 - mbio->bi_sector);
1984 r1_bio->sectors = max_sectors;
1985 spin_lock_irq(&conf->device_lock);
1986 if (mbio->bi_phys_segments == 0)
1987 mbio->bi_phys_segments = 2;
1988 else
1989 mbio->bi_phys_segments++;
1990 spin_unlock_irq(&conf->device_lock);
1991 generic_make_request(bio);
1992 bio = NULL;
1993
1994 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1995
1996 r1_bio->master_bio = mbio;
1997 r1_bio->sectors = (mbio->bi_size >> 9)
1998 - sectors_handled;
1999 r1_bio->state = 0;
2000 set_bit(R1BIO_ReadError, &r1_bio->state);
2001 r1_bio->mddev = mddev;
2002 r1_bio->sector = mbio->bi_sector + sectors_handled;
2003
2004 goto read_more;
2005 } else
2006 generic_make_request(bio);
2007 }
2008}
2009
2010static void raid1d(mddev_t *mddev)
2011{
2012 r1bio_t *r1_bio;
2013 unsigned long flags;
2014 conf_t *conf = mddev->private;
2015 struct list_head *head = &conf->retry_list;
2016 struct blk_plug plug;
2017
2018 md_check_recovery(mddev);
2019
2020 blk_start_plug(&plug);
2021 for (;;) {
2022
2023 if (atomic_read(&mddev->plug_cnt) == 0)
2024 flush_pending_writes(conf);
2025
2026 spin_lock_irqsave(&conf->device_lock, flags);
2027 if (list_empty(head)) {
2028 spin_unlock_irqrestore(&conf->device_lock, flags);
2029 break;
2030 }
2031 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
2032 list_del(head->prev);
2033 conf->nr_queued--;
2034 spin_unlock_irqrestore(&conf->device_lock, flags);
2035
2036 mddev = r1_bio->mddev;
2037 conf = mddev->private;
2038 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2039 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2040 test_bit(R1BIO_WriteError, &r1_bio->state))
2041 handle_sync_write_finished(conf, r1_bio);
2042 else
2043 sync_request_write(mddev, r1_bio);
2044 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2045 test_bit(R1BIO_WriteError, &r1_bio->state))
2046 handle_write_finished(conf, r1_bio);
2047 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2048 handle_read_error(conf, r1_bio);
2049 else
2050 /* just a partial read to be scheduled from separate
2051 * context
2052 */
2053 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2054
2055 cond_resched();
2056 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2057 md_check_recovery(mddev);
2058 }
2059 blk_finish_plug(&plug);
2060}
2061
2062
2063static int init_resync(conf_t *conf)
2064{
2065 int buffs;
2066
2067 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2068 BUG_ON(conf->r1buf_pool);
2069 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2070 conf->poolinfo);
2071 if (!conf->r1buf_pool)
2072 return -ENOMEM;
2073 conf->next_resync = 0;
2074 return 0;
2075}
2076
2077/*
2078 * perform a "sync" on one "block"
2079 *
2080 * We need to make sure that no normal I/O request - particularly write
2081 * requests - conflict with active sync requests.
2082 *
2083 * This is achieved by tracking pending requests and a 'barrier' concept
2084 * that can be installed to exclude normal IO requests.
2085 */
2086
2087static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
2088{
2089 conf_t *conf = mddev->private;
2090 r1bio_t *r1_bio;
2091 struct bio *bio;
2092 sector_t max_sector, nr_sectors;
2093 int disk = -1;
2094 int i;
2095 int wonly = -1;
2096 int write_targets = 0, read_targets = 0;
2097 sector_t sync_blocks;
2098 int still_degraded = 0;
2099 int good_sectors = RESYNC_SECTORS;
2100 int min_bad = 0; /* number of sectors that are bad in all devices */
2101
2102 if (!conf->r1buf_pool)
2103 if (init_resync(conf))
2104 return 0;
2105
2106 max_sector = mddev->dev_sectors;
2107 if (sector_nr >= max_sector) {
2108 /* If we aborted, we need to abort the
2109 * sync on the 'current' bitmap chunk (there will
2110 * only be one in raid1 resync.
2111 * We can find the current addess in mddev->curr_resync
2112 */
2113 if (mddev->curr_resync < max_sector) /* aborted */
2114 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2115 &sync_blocks, 1);
2116 else /* completed sync */
2117 conf->fullsync = 0;
2118
2119 bitmap_close_sync(mddev->bitmap);
2120 close_sync(conf);
2121 return 0;
2122 }
2123
2124 if (mddev->bitmap == NULL &&
2125 mddev->recovery_cp == MaxSector &&
2126 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2127 conf->fullsync == 0) {
2128 *skipped = 1;
2129 return max_sector - sector_nr;
2130 }
2131 /* before building a request, check if we can skip these blocks..
2132 * This call the bitmap_start_sync doesn't actually record anything
2133 */
2134 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2135 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2136 /* We can skip this block, and probably several more */
2137 *skipped = 1;
2138 return sync_blocks;
2139 }
2140 /*
2141 * If there is non-resync activity waiting for a turn,
2142 * and resync is going fast enough,
2143 * then let it though before starting on this new sync request.
2144 */
2145 if (!go_faster && conf->nr_waiting)
2146 msleep_interruptible(1000);
2147
2148 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2149 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2150 raise_barrier(conf);
2151
2152 conf->next_resync = sector_nr;
2153
2154 rcu_read_lock();
2155 /*
2156 * If we get a correctably read error during resync or recovery,
2157 * we might want to read from a different device. So we
2158 * flag all drives that could conceivably be read from for READ,
2159 * and any others (which will be non-In_sync devices) for WRITE.
2160 * If a read fails, we try reading from something else for which READ
2161 * is OK.
2162 */
2163
2164 r1_bio->mddev = mddev;
2165 r1_bio->sector = sector_nr;
2166 r1_bio->state = 0;
2167 set_bit(R1BIO_IsSync, &r1_bio->state);
2168
2169 for (i=0; i < conf->raid_disks; i++) {
2170 mdk_rdev_t *rdev;
2171 bio = r1_bio->bios[i];
2172
2173 /* take from bio_init */
2174 bio->bi_next = NULL;
2175 bio->bi_flags &= ~(BIO_POOL_MASK-1);
2176 bio->bi_flags |= 1 << BIO_UPTODATE;
2177 bio->bi_comp_cpu = -1;
2178 bio->bi_rw = READ;
2179 bio->bi_vcnt = 0;
2180 bio->bi_idx = 0;
2181 bio->bi_phys_segments = 0;
2182 bio->bi_size = 0;
2183 bio->bi_end_io = NULL;
2184 bio->bi_private = NULL;
2185
2186 rdev = rcu_dereference(conf->mirrors[i].rdev);
2187 if (rdev == NULL ||
2188 test_bit(Faulty, &rdev->flags)) {
2189 still_degraded = 1;
2190 } else if (!test_bit(In_sync, &rdev->flags)) {
2191 bio->bi_rw = WRITE;
2192 bio->bi_end_io = end_sync_write;
2193 write_targets ++;
2194 } else {
2195 /* may need to read from here */
2196 sector_t first_bad = MaxSector;
2197 int bad_sectors;
2198
2199 if (is_badblock(rdev, sector_nr, good_sectors,
2200 &first_bad, &bad_sectors)) {
2201 if (first_bad > sector_nr)
2202 good_sectors = first_bad - sector_nr;
2203 else {
2204 bad_sectors -= (sector_nr - first_bad);
2205 if (min_bad == 0 ||
2206 min_bad > bad_sectors)
2207 min_bad = bad_sectors;
2208 }
2209 }
2210 if (sector_nr < first_bad) {
2211 if (test_bit(WriteMostly, &rdev->flags)) {
2212 if (wonly < 0)
2213 wonly = i;
2214 } else {
2215 if (disk < 0)
2216 disk = i;
2217 }
2218 bio->bi_rw = READ;
2219 bio->bi_end_io = end_sync_read;
2220 read_targets++;
2221 }
2222 }
2223 if (bio->bi_end_io) {
2224 atomic_inc(&rdev->nr_pending);
2225 bio->bi_sector = sector_nr + rdev->data_offset;
2226 bio->bi_bdev = rdev->bdev;
2227 bio->bi_private = r1_bio;
2228 }
2229 }
2230 rcu_read_unlock();
2231 if (disk < 0)
2232 disk = wonly;
2233 r1_bio->read_disk = disk;
2234
2235 if (read_targets == 0 && min_bad > 0) {
2236 /* These sectors are bad on all InSync devices, so we
2237 * need to mark them bad on all write targets
2238 */
2239 int ok = 1;
2240 for (i = 0 ; i < conf->raid_disks ; i++)
2241 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2242 mdk_rdev_t *rdev =
2243 rcu_dereference(conf->mirrors[i].rdev);
2244 ok = rdev_set_badblocks(rdev, sector_nr,
2245 min_bad, 0
2246 ) && ok;
2247 }
2248 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2249 *skipped = 1;
2250 put_buf(r1_bio);
2251
2252 if (!ok) {
2253 /* Cannot record the badblocks, so need to
2254 * abort the resync.
2255 * If there are multiple read targets, could just
2256 * fail the really bad ones ???
2257 */
2258 conf->recovery_disabled = mddev->recovery_disabled;
2259 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2260 return 0;
2261 } else
2262 return min_bad;
2263
2264 }
2265 if (min_bad > 0 && min_bad < good_sectors) {
2266 /* only resync enough to reach the next bad->good
2267 * transition */
2268 good_sectors = min_bad;
2269 }
2270
2271 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2272 /* extra read targets are also write targets */
2273 write_targets += read_targets-1;
2274
2275 if (write_targets == 0 || read_targets == 0) {
2276 /* There is nowhere to write, so all non-sync
2277 * drives must be failed - so we are finished
2278 */
2279 sector_t rv = max_sector - sector_nr;
2280 *skipped = 1;
2281 put_buf(r1_bio);
2282 return rv;
2283 }
2284
2285 if (max_sector > mddev->resync_max)
2286 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2287 if (max_sector > sector_nr + good_sectors)
2288 max_sector = sector_nr + good_sectors;
2289 nr_sectors = 0;
2290 sync_blocks = 0;
2291 do {
2292 struct page *page;
2293 int len = PAGE_SIZE;
2294 if (sector_nr + (len>>9) > max_sector)
2295 len = (max_sector - sector_nr) << 9;
2296 if (len == 0)
2297 break;
2298 if (sync_blocks == 0) {
2299 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2300 &sync_blocks, still_degraded) &&
2301 !conf->fullsync &&
2302 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2303 break;
2304 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2305 if ((len >> 9) > sync_blocks)
2306 len = sync_blocks<<9;
2307 }
2308
2309 for (i=0 ; i < conf->raid_disks; i++) {
2310 bio = r1_bio->bios[i];
2311 if (bio->bi_end_io) {
2312 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2313 if (bio_add_page(bio, page, len, 0) == 0) {
2314 /* stop here */
2315 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2316 while (i > 0) {
2317 i--;
2318 bio = r1_bio->bios[i];
2319 if (bio->bi_end_io==NULL)
2320 continue;
2321 /* remove last page from this bio */
2322 bio->bi_vcnt--;
2323 bio->bi_size -= len;
2324 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2325 }
2326 goto bio_full;
2327 }
2328 }
2329 }
2330 nr_sectors += len>>9;
2331 sector_nr += len>>9;
2332 sync_blocks -= (len>>9);
2333 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2334 bio_full:
2335 r1_bio->sectors = nr_sectors;
2336
2337 /* For a user-requested sync, we read all readable devices and do a
2338 * compare
2339 */
2340 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2341 atomic_set(&r1_bio->remaining, read_targets);
2342 for (i=0; i<conf->raid_disks; i++) {
2343 bio = r1_bio->bios[i];
2344 if (bio->bi_end_io == end_sync_read) {
2345 md_sync_acct(bio->bi_bdev, nr_sectors);
2346 generic_make_request(bio);
2347 }
2348 }
2349 } else {
2350 atomic_set(&r1_bio->remaining, 1);
2351 bio = r1_bio->bios[r1_bio->read_disk];
2352 md_sync_acct(bio->bi_bdev, nr_sectors);
2353 generic_make_request(bio);
2354
2355 }
2356 return nr_sectors;
2357}
2358
2359static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2360{
2361 if (sectors)
2362 return sectors;
2363
2364 return mddev->dev_sectors;
2365}
2366
2367static conf_t *setup_conf(mddev_t *mddev)
2368{
2369 conf_t *conf;
2370 int i;
2371 mirror_info_t *disk;
2372 mdk_rdev_t *rdev;
2373 int err = -ENOMEM;
2374
2375 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2376 if (!conf)
2377 goto abort;
2378
2379 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2380 GFP_KERNEL);
2381 if (!conf->mirrors)
2382 goto abort;
2383
2384 conf->tmppage = alloc_page(GFP_KERNEL);
2385 if (!conf->tmppage)
2386 goto abort;
2387
2388 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2389 if (!conf->poolinfo)
2390 goto abort;
2391 conf->poolinfo->raid_disks = mddev->raid_disks;
2392 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2393 r1bio_pool_free,
2394 conf->poolinfo);
2395 if (!conf->r1bio_pool)
2396 goto abort;
2397
2398 conf->poolinfo->mddev = mddev;
2399
2400 spin_lock_init(&conf->device_lock);
2401 list_for_each_entry(rdev, &mddev->disks, same_set) {
2402 int disk_idx = rdev->raid_disk;
2403 if (disk_idx >= mddev->raid_disks
2404 || disk_idx < 0)
2405 continue;
2406 disk = conf->mirrors + disk_idx;
2407
2408 disk->rdev = rdev;
2409
2410 disk->head_position = 0;
2411 }
2412 conf->raid_disks = mddev->raid_disks;
2413 conf->mddev = mddev;
2414 INIT_LIST_HEAD(&conf->retry_list);
2415
2416 spin_lock_init(&conf->resync_lock);
2417 init_waitqueue_head(&conf->wait_barrier);
2418
2419 bio_list_init(&conf->pending_bio_list);
2420
2421 conf->last_used = -1;
2422 for (i = 0; i < conf->raid_disks; i++) {
2423
2424 disk = conf->mirrors + i;
2425
2426 if (!disk->rdev ||
2427 !test_bit(In_sync, &disk->rdev->flags)) {
2428 disk->head_position = 0;
2429 if (disk->rdev)
2430 conf->fullsync = 1;
2431 } else if (conf->last_used < 0)
2432 /*
2433 * The first working device is used as a
2434 * starting point to read balancing.
2435 */
2436 conf->last_used = i;
2437 }
2438
2439 err = -EIO;
2440 if (conf->last_used < 0) {
2441 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2442 mdname(mddev));
2443 goto abort;
2444 }
2445 err = -ENOMEM;
2446 conf->thread = md_register_thread(raid1d, mddev, NULL);
2447 if (!conf->thread) {
2448 printk(KERN_ERR
2449 "md/raid1:%s: couldn't allocate thread\n",
2450 mdname(mddev));
2451 goto abort;
2452 }
2453
2454 return conf;
2455
2456 abort:
2457 if (conf) {
2458 if (conf->r1bio_pool)
2459 mempool_destroy(conf->r1bio_pool);
2460 kfree(conf->mirrors);
2461 safe_put_page(conf->tmppage);
2462 kfree(conf->poolinfo);
2463 kfree(conf);
2464 }
2465 return ERR_PTR(err);
2466}
2467
2468static int run(mddev_t *mddev)
2469{
2470 conf_t *conf;
2471 int i;
2472 mdk_rdev_t *rdev;
2473
2474 if (mddev->level != 1) {
2475 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2476 mdname(mddev), mddev->level);
2477 return -EIO;
2478 }
2479 if (mddev->reshape_position != MaxSector) {
2480 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2481 mdname(mddev));
2482 return -EIO;
2483 }
2484 /*
2485 * copy the already verified devices into our private RAID1
2486 * bookkeeping area. [whatever we allocate in run(),
2487 * should be freed in stop()]
2488 */
2489 if (mddev->private == NULL)
2490 conf = setup_conf(mddev);
2491 else
2492 conf = mddev->private;
2493
2494 if (IS_ERR(conf))
2495 return PTR_ERR(conf);
2496
2497 list_for_each_entry(rdev, &mddev->disks, same_set) {
2498 if (!mddev->gendisk)
2499 continue;
2500 disk_stack_limits(mddev->gendisk, rdev->bdev,
2501 rdev->data_offset << 9);
2502 /* as we don't honour merge_bvec_fn, we must never risk
2503 * violating it, so limit ->max_segments to 1 lying within
2504 * a single page, as a one page request is never in violation.
2505 */
2506 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2507 blk_queue_max_segments(mddev->queue, 1);
2508 blk_queue_segment_boundary(mddev->queue,
2509 PAGE_CACHE_SIZE - 1);
2510 }
2511 }
2512
2513 mddev->degraded = 0;
2514 for (i=0; i < conf->raid_disks; i++)
2515 if (conf->mirrors[i].rdev == NULL ||
2516 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2517 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2518 mddev->degraded++;
2519
2520 if (conf->raid_disks - mddev->degraded == 1)
2521 mddev->recovery_cp = MaxSector;
2522
2523 if (mddev->recovery_cp != MaxSector)
2524 printk(KERN_NOTICE "md/raid1:%s: not clean"
2525 " -- starting background reconstruction\n",
2526 mdname(mddev));
2527 printk(KERN_INFO
2528 "md/raid1:%s: active with %d out of %d mirrors\n",
2529 mdname(mddev), mddev->raid_disks - mddev->degraded,
2530 mddev->raid_disks);
2531
2532 /*
2533 * Ok, everything is just fine now
2534 */
2535 mddev->thread = conf->thread;
2536 conf->thread = NULL;
2537 mddev->private = conf;
2538
2539 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2540
2541 if (mddev->queue) {
2542 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2543 mddev->queue->backing_dev_info.congested_data = mddev;
2544 }
2545 return md_integrity_register(mddev);
2546}
2547
2548static int stop(mddev_t *mddev)
2549{
2550 conf_t *conf = mddev->private;
2551 struct bitmap *bitmap = mddev->bitmap;
2552
2553 /* wait for behind writes to complete */
2554 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2555 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2556 mdname(mddev));
2557 /* need to kick something here to make sure I/O goes? */
2558 wait_event(bitmap->behind_wait,
2559 atomic_read(&bitmap->behind_writes) == 0);
2560 }
2561
2562 raise_barrier(conf);
2563 lower_barrier(conf);
2564
2565 md_unregister_thread(&mddev->thread);
2566 if (conf->r1bio_pool)
2567 mempool_destroy(conf->r1bio_pool);
2568 kfree(conf->mirrors);
2569 kfree(conf->poolinfo);
2570 kfree(conf);
2571 mddev->private = NULL;
2572 return 0;
2573}
2574
2575static int raid1_resize(mddev_t *mddev, sector_t sectors)
2576{
2577 /* no resync is happening, and there is enough space
2578 * on all devices, so we can resize.
2579 * We need to make sure resync covers any new space.
2580 * If the array is shrinking we should possibly wait until
2581 * any io in the removed space completes, but it hardly seems
2582 * worth it.
2583 */
2584 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2585 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2586 return -EINVAL;
2587 set_capacity(mddev->gendisk, mddev->array_sectors);
2588 revalidate_disk(mddev->gendisk);
2589 if (sectors > mddev->dev_sectors &&
2590 mddev->recovery_cp > mddev->dev_sectors) {
2591 mddev->recovery_cp = mddev->dev_sectors;
2592 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2593 }
2594 mddev->dev_sectors = sectors;
2595 mddev->resync_max_sectors = sectors;
2596 return 0;
2597}
2598
2599static int raid1_reshape(mddev_t *mddev)
2600{
2601 /* We need to:
2602 * 1/ resize the r1bio_pool
2603 * 2/ resize conf->mirrors
2604 *
2605 * We allocate a new r1bio_pool if we can.
2606 * Then raise a device barrier and wait until all IO stops.
2607 * Then resize conf->mirrors and swap in the new r1bio pool.
2608 *
2609 * At the same time, we "pack" the devices so that all the missing
2610 * devices have the higher raid_disk numbers.
2611 */
2612 mempool_t *newpool, *oldpool;
2613 struct pool_info *newpoolinfo;
2614 mirror_info_t *newmirrors;
2615 conf_t *conf = mddev->private;
2616 int cnt, raid_disks;
2617 unsigned long flags;
2618 int d, d2, err;
2619
2620 /* Cannot change chunk_size, layout, or level */
2621 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2622 mddev->layout != mddev->new_layout ||
2623 mddev->level != mddev->new_level) {
2624 mddev->new_chunk_sectors = mddev->chunk_sectors;
2625 mddev->new_layout = mddev->layout;
2626 mddev->new_level = mddev->level;
2627 return -EINVAL;
2628 }
2629
2630 err = md_allow_write(mddev);
2631 if (err)
2632 return err;
2633
2634 raid_disks = mddev->raid_disks + mddev->delta_disks;
2635
2636 if (raid_disks < conf->raid_disks) {
2637 cnt=0;
2638 for (d= 0; d < conf->raid_disks; d++)
2639 if (conf->mirrors[d].rdev)
2640 cnt++;
2641 if (cnt > raid_disks)
2642 return -EBUSY;
2643 }
2644
2645 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2646 if (!newpoolinfo)
2647 return -ENOMEM;
2648 newpoolinfo->mddev = mddev;
2649 newpoolinfo->raid_disks = raid_disks;
2650
2651 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2652 r1bio_pool_free, newpoolinfo);
2653 if (!newpool) {
2654 kfree(newpoolinfo);
2655 return -ENOMEM;
2656 }
2657 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2658 if (!newmirrors) {
2659 kfree(newpoolinfo);
2660 mempool_destroy(newpool);
2661 return -ENOMEM;
2662 }
2663
2664 raise_barrier(conf);
2665
2666 /* ok, everything is stopped */
2667 oldpool = conf->r1bio_pool;
2668 conf->r1bio_pool = newpool;
2669
2670 for (d = d2 = 0; d < conf->raid_disks; d++) {
2671 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2672 if (rdev && rdev->raid_disk != d2) {
2673 sysfs_unlink_rdev(mddev, rdev);
2674 rdev->raid_disk = d2;
2675 sysfs_unlink_rdev(mddev, rdev);
2676 if (sysfs_link_rdev(mddev, rdev))
2677 printk(KERN_WARNING
2678 "md/raid1:%s: cannot register rd%d\n",
2679 mdname(mddev), rdev->raid_disk);
2680 }
2681 if (rdev)
2682 newmirrors[d2++].rdev = rdev;
2683 }
2684 kfree(conf->mirrors);
2685 conf->mirrors = newmirrors;
2686 kfree(conf->poolinfo);
2687 conf->poolinfo = newpoolinfo;
2688
2689 spin_lock_irqsave(&conf->device_lock, flags);
2690 mddev->degraded += (raid_disks - conf->raid_disks);
2691 spin_unlock_irqrestore(&conf->device_lock, flags);
2692 conf->raid_disks = mddev->raid_disks = raid_disks;
2693 mddev->delta_disks = 0;
2694
2695 conf->last_used = 0; /* just make sure it is in-range */
2696 lower_barrier(conf);
2697
2698 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2699 md_wakeup_thread(mddev->thread);
2700
2701 mempool_destroy(oldpool);
2702 return 0;
2703}
2704
2705static void raid1_quiesce(mddev_t *mddev, int state)
2706{
2707 conf_t *conf = mddev->private;
2708
2709 switch(state) {
2710 case 2: /* wake for suspend */
2711 wake_up(&conf->wait_barrier);
2712 break;
2713 case 1:
2714 raise_barrier(conf);
2715 break;
2716 case 0:
2717 lower_barrier(conf);
2718 break;
2719 }
2720}
2721
2722static void *raid1_takeover(mddev_t *mddev)
2723{
2724 /* raid1 can take over:
2725 * raid5 with 2 devices, any layout or chunk size
2726 */
2727 if (mddev->level == 5 && mddev->raid_disks == 2) {
2728 conf_t *conf;
2729 mddev->new_level = 1;
2730 mddev->new_layout = 0;
2731 mddev->new_chunk_sectors = 0;
2732 conf = setup_conf(mddev);
2733 if (!IS_ERR(conf))
2734 conf->barrier = 1;
2735 return conf;
2736 }
2737 return ERR_PTR(-EINVAL);
2738}
2739
2740static struct mdk_personality raid1_personality =
2741{
2742 .name = "raid1",
2743 .level = 1,
2744 .owner = THIS_MODULE,
2745 .make_request = make_request,
2746 .run = run,
2747 .stop = stop,
2748 .status = status,
2749 .error_handler = error,
2750 .hot_add_disk = raid1_add_disk,
2751 .hot_remove_disk= raid1_remove_disk,
2752 .spare_active = raid1_spare_active,
2753 .sync_request = sync_request,
2754 .resize = raid1_resize,
2755 .size = raid1_size,
2756 .check_reshape = raid1_reshape,
2757 .quiesce = raid1_quiesce,
2758 .takeover = raid1_takeover,
2759};
2760
2761static int __init raid_init(void)
2762{
2763 return register_md_personality(&raid1_personality);
2764}
2765
2766static void raid_exit(void)
2767{
2768 unregister_md_personality(&raid1_personality);
2769}
2770
2771module_init(raid_init);
2772module_exit(raid_exit);
2773MODULE_LICENSE("GPL");
2774MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2775MODULE_ALIAS("md-personality-3"); /* RAID1 */
2776MODULE_ALIAS("md-raid1");
2777MODULE_ALIAS("md-level-1");
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34#include <linux/slab.h>
35#include <linux/delay.h>
36#include <linux/blkdev.h>
37#include <linux/module.h>
38#include <linux/seq_file.h>
39#include <linux/ratelimit.h>
40#include <trace/events/block.h>
41#include "md.h"
42#include "raid1.h"
43#include "bitmap.h"
44
45#define UNSUPPORTED_MDDEV_FLAGS \
46 ((1L << MD_HAS_JOURNAL) | \
47 (1L << MD_JOURNAL_CLEAN))
48
49/*
50 * Number of guaranteed r1bios in case of extreme VM load:
51 */
52#define NR_RAID1_BIOS 256
53
54/* when we get a read error on a read-only array, we redirect to another
55 * device without failing the first device, or trying to over-write to
56 * correct the read error. To keep track of bad blocks on a per-bio
57 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
58 */
59#define IO_BLOCKED ((struct bio *)1)
60/* When we successfully write to a known bad-block, we need to remove the
61 * bad-block marking which must be done from process context. So we record
62 * the success by setting devs[n].bio to IO_MADE_GOOD
63 */
64#define IO_MADE_GOOD ((struct bio *)2)
65
66#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
67
68/* When there are this many requests queue to be written by
69 * the raid1 thread, we become 'congested' to provide back-pressure
70 * for writeback.
71 */
72static int max_queued_requests = 1024;
73
74static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
75 sector_t bi_sector);
76static void lower_barrier(struct r1conf *conf);
77
78#define raid1_log(md, fmt, args...) \
79 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
80
81static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
82{
83 struct pool_info *pi = data;
84 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
85
86 /* allocate a r1bio with room for raid_disks entries in the bios array */
87 return kzalloc(size, gfp_flags);
88}
89
90static void r1bio_pool_free(void *r1_bio, void *data)
91{
92 kfree(r1_bio);
93}
94
95#define RESYNC_BLOCK_SIZE (64*1024)
96#define RESYNC_DEPTH 32
97#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
98#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
99#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
100#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
101#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
102#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
103#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
104
105static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
106{
107 struct pool_info *pi = data;
108 struct r1bio *r1_bio;
109 struct bio *bio;
110 int need_pages;
111 int i, j;
112
113 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
114 if (!r1_bio)
115 return NULL;
116
117 /*
118 * Allocate bios : 1 for reading, n-1 for writing
119 */
120 for (j = pi->raid_disks ; j-- ; ) {
121 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
122 if (!bio)
123 goto out_free_bio;
124 r1_bio->bios[j] = bio;
125 }
126 /*
127 * Allocate RESYNC_PAGES data pages and attach them to
128 * the first bio.
129 * If this is a user-requested check/repair, allocate
130 * RESYNC_PAGES for each bio.
131 */
132 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
133 need_pages = pi->raid_disks;
134 else
135 need_pages = 1;
136 for (j = 0; j < need_pages; j++) {
137 bio = r1_bio->bios[j];
138 bio->bi_vcnt = RESYNC_PAGES;
139
140 if (bio_alloc_pages(bio, gfp_flags))
141 goto out_free_pages;
142 }
143 /* If not user-requests, copy the page pointers to all bios */
144 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
145 for (i=0; i<RESYNC_PAGES ; i++)
146 for (j=1; j<pi->raid_disks; j++)
147 r1_bio->bios[j]->bi_io_vec[i].bv_page =
148 r1_bio->bios[0]->bi_io_vec[i].bv_page;
149 }
150
151 r1_bio->master_bio = NULL;
152
153 return r1_bio;
154
155out_free_pages:
156 while (--j >= 0)
157 bio_free_pages(r1_bio->bios[j]);
158
159out_free_bio:
160 while (++j < pi->raid_disks)
161 bio_put(r1_bio->bios[j]);
162 r1bio_pool_free(r1_bio, data);
163 return NULL;
164}
165
166static void r1buf_pool_free(void *__r1_bio, void *data)
167{
168 struct pool_info *pi = data;
169 int i,j;
170 struct r1bio *r1bio = __r1_bio;
171
172 for (i = 0; i < RESYNC_PAGES; i++)
173 for (j = pi->raid_disks; j-- ;) {
174 if (j == 0 ||
175 r1bio->bios[j]->bi_io_vec[i].bv_page !=
176 r1bio->bios[0]->bi_io_vec[i].bv_page)
177 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
178 }
179 for (i=0 ; i < pi->raid_disks; i++)
180 bio_put(r1bio->bios[i]);
181
182 r1bio_pool_free(r1bio, data);
183}
184
185static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
186{
187 int i;
188
189 for (i = 0; i < conf->raid_disks * 2; i++) {
190 struct bio **bio = r1_bio->bios + i;
191 if (!BIO_SPECIAL(*bio))
192 bio_put(*bio);
193 *bio = NULL;
194 }
195}
196
197static void free_r1bio(struct r1bio *r1_bio)
198{
199 struct r1conf *conf = r1_bio->mddev->private;
200
201 put_all_bios(conf, r1_bio);
202 mempool_free(r1_bio, conf->r1bio_pool);
203}
204
205static void put_buf(struct r1bio *r1_bio)
206{
207 struct r1conf *conf = r1_bio->mddev->private;
208 int i;
209
210 for (i = 0; i < conf->raid_disks * 2; i++) {
211 struct bio *bio = r1_bio->bios[i];
212 if (bio->bi_end_io)
213 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
214 }
215
216 mempool_free(r1_bio, conf->r1buf_pool);
217
218 lower_barrier(conf);
219}
220
221static void reschedule_retry(struct r1bio *r1_bio)
222{
223 unsigned long flags;
224 struct mddev *mddev = r1_bio->mddev;
225 struct r1conf *conf = mddev->private;
226
227 spin_lock_irqsave(&conf->device_lock, flags);
228 list_add(&r1_bio->retry_list, &conf->retry_list);
229 conf->nr_queued ++;
230 spin_unlock_irqrestore(&conf->device_lock, flags);
231
232 wake_up(&conf->wait_barrier);
233 md_wakeup_thread(mddev->thread);
234}
235
236/*
237 * raid_end_bio_io() is called when we have finished servicing a mirrored
238 * operation and are ready to return a success/failure code to the buffer
239 * cache layer.
240 */
241static void call_bio_endio(struct r1bio *r1_bio)
242{
243 struct bio *bio = r1_bio->master_bio;
244 int done;
245 struct r1conf *conf = r1_bio->mddev->private;
246 sector_t start_next_window = r1_bio->start_next_window;
247 sector_t bi_sector = bio->bi_iter.bi_sector;
248
249 if (bio->bi_phys_segments) {
250 unsigned long flags;
251 spin_lock_irqsave(&conf->device_lock, flags);
252 bio->bi_phys_segments--;
253 done = (bio->bi_phys_segments == 0);
254 spin_unlock_irqrestore(&conf->device_lock, flags);
255 /*
256 * make_request() might be waiting for
257 * bi_phys_segments to decrease
258 */
259 wake_up(&conf->wait_barrier);
260 } else
261 done = 1;
262
263 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
264 bio->bi_error = -EIO;
265
266 if (done) {
267 bio_endio(bio);
268 /*
269 * Wake up any possible resync thread that waits for the device
270 * to go idle.
271 */
272 allow_barrier(conf, start_next_window, bi_sector);
273 }
274}
275
276static void raid_end_bio_io(struct r1bio *r1_bio)
277{
278 struct bio *bio = r1_bio->master_bio;
279
280 /* if nobody has done the final endio yet, do it now */
281 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
282 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
283 (bio_data_dir(bio) == WRITE) ? "write" : "read",
284 (unsigned long long) bio->bi_iter.bi_sector,
285 (unsigned long long) bio_end_sector(bio) - 1);
286
287 call_bio_endio(r1_bio);
288 }
289 free_r1bio(r1_bio);
290}
291
292/*
293 * Update disk head position estimator based on IRQ completion info.
294 */
295static inline void update_head_pos(int disk, struct r1bio *r1_bio)
296{
297 struct r1conf *conf = r1_bio->mddev->private;
298
299 conf->mirrors[disk].head_position =
300 r1_bio->sector + (r1_bio->sectors);
301}
302
303/*
304 * Find the disk number which triggered given bio
305 */
306static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
307{
308 int mirror;
309 struct r1conf *conf = r1_bio->mddev->private;
310 int raid_disks = conf->raid_disks;
311
312 for (mirror = 0; mirror < raid_disks * 2; mirror++)
313 if (r1_bio->bios[mirror] == bio)
314 break;
315
316 BUG_ON(mirror == raid_disks * 2);
317 update_head_pos(mirror, r1_bio);
318
319 return mirror;
320}
321
322static void raid1_end_read_request(struct bio *bio)
323{
324 int uptodate = !bio->bi_error;
325 struct r1bio *r1_bio = bio->bi_private;
326 struct r1conf *conf = r1_bio->mddev->private;
327 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
328
329 /*
330 * this branch is our 'one mirror IO has finished' event handler:
331 */
332 update_head_pos(r1_bio->read_disk, r1_bio);
333
334 if (uptodate)
335 set_bit(R1BIO_Uptodate, &r1_bio->state);
336 else if (test_bit(FailFast, &rdev->flags) &&
337 test_bit(R1BIO_FailFast, &r1_bio->state))
338 /* This was a fail-fast read so we definitely
339 * want to retry */
340 ;
341 else {
342 /* If all other devices have failed, we want to return
343 * the error upwards rather than fail the last device.
344 * Here we redefine "uptodate" to mean "Don't want to retry"
345 */
346 unsigned long flags;
347 spin_lock_irqsave(&conf->device_lock, flags);
348 if (r1_bio->mddev->degraded == conf->raid_disks ||
349 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
350 test_bit(In_sync, &rdev->flags)))
351 uptodate = 1;
352 spin_unlock_irqrestore(&conf->device_lock, flags);
353 }
354
355 if (uptodate) {
356 raid_end_bio_io(r1_bio);
357 rdev_dec_pending(rdev, conf->mddev);
358 } else {
359 /*
360 * oops, read error:
361 */
362 char b[BDEVNAME_SIZE];
363 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
364 mdname(conf->mddev),
365 bdevname(rdev->bdev, b),
366 (unsigned long long)r1_bio->sector);
367 set_bit(R1BIO_ReadError, &r1_bio->state);
368 reschedule_retry(r1_bio);
369 /* don't drop the reference on read_disk yet */
370 }
371}
372
373static void close_write(struct r1bio *r1_bio)
374{
375 /* it really is the end of this request */
376 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
377 /* free extra copy of the data pages */
378 int i = r1_bio->behind_page_count;
379 while (i--)
380 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
381 kfree(r1_bio->behind_bvecs);
382 r1_bio->behind_bvecs = NULL;
383 }
384 /* clear the bitmap if all writes complete successfully */
385 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
386 r1_bio->sectors,
387 !test_bit(R1BIO_Degraded, &r1_bio->state),
388 test_bit(R1BIO_BehindIO, &r1_bio->state));
389 md_write_end(r1_bio->mddev);
390}
391
392static void r1_bio_write_done(struct r1bio *r1_bio)
393{
394 if (!atomic_dec_and_test(&r1_bio->remaining))
395 return;
396
397 if (test_bit(R1BIO_WriteError, &r1_bio->state))
398 reschedule_retry(r1_bio);
399 else {
400 close_write(r1_bio);
401 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
402 reschedule_retry(r1_bio);
403 else
404 raid_end_bio_io(r1_bio);
405 }
406}
407
408static void raid1_end_write_request(struct bio *bio)
409{
410 struct r1bio *r1_bio = bio->bi_private;
411 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
412 struct r1conf *conf = r1_bio->mddev->private;
413 struct bio *to_put = NULL;
414 int mirror = find_bio_disk(r1_bio, bio);
415 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
416 bool discard_error;
417
418 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
419
420 /*
421 * 'one mirror IO has finished' event handler:
422 */
423 if (bio->bi_error && !discard_error) {
424 set_bit(WriteErrorSeen, &rdev->flags);
425 if (!test_and_set_bit(WantReplacement, &rdev->flags))
426 set_bit(MD_RECOVERY_NEEDED, &
427 conf->mddev->recovery);
428
429 if (test_bit(FailFast, &rdev->flags) &&
430 (bio->bi_opf & MD_FAILFAST) &&
431 /* We never try FailFast to WriteMostly devices */
432 !test_bit(WriteMostly, &rdev->flags)) {
433 md_error(r1_bio->mddev, rdev);
434 if (!test_bit(Faulty, &rdev->flags))
435 /* This is the only remaining device,
436 * We need to retry the write without
437 * FailFast
438 */
439 set_bit(R1BIO_WriteError, &r1_bio->state);
440 else {
441 /* Finished with this branch */
442 r1_bio->bios[mirror] = NULL;
443 to_put = bio;
444 }
445 } else
446 set_bit(R1BIO_WriteError, &r1_bio->state);
447 } else {
448 /*
449 * Set R1BIO_Uptodate in our master bio, so that we
450 * will return a good error code for to the higher
451 * levels even if IO on some other mirrored buffer
452 * fails.
453 *
454 * The 'master' represents the composite IO operation
455 * to user-side. So if something waits for IO, then it
456 * will wait for the 'master' bio.
457 */
458 sector_t first_bad;
459 int bad_sectors;
460
461 r1_bio->bios[mirror] = NULL;
462 to_put = bio;
463 /*
464 * Do not set R1BIO_Uptodate if the current device is
465 * rebuilding or Faulty. This is because we cannot use
466 * such device for properly reading the data back (we could
467 * potentially use it, if the current write would have felt
468 * before rdev->recovery_offset, but for simplicity we don't
469 * check this here.
470 */
471 if (test_bit(In_sync, &rdev->flags) &&
472 !test_bit(Faulty, &rdev->flags))
473 set_bit(R1BIO_Uptodate, &r1_bio->state);
474
475 /* Maybe we can clear some bad blocks. */
476 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
477 &first_bad, &bad_sectors) && !discard_error) {
478 r1_bio->bios[mirror] = IO_MADE_GOOD;
479 set_bit(R1BIO_MadeGood, &r1_bio->state);
480 }
481 }
482
483 if (behind) {
484 if (test_bit(WriteMostly, &rdev->flags))
485 atomic_dec(&r1_bio->behind_remaining);
486
487 /*
488 * In behind mode, we ACK the master bio once the I/O
489 * has safely reached all non-writemostly
490 * disks. Setting the Returned bit ensures that this
491 * gets done only once -- we don't ever want to return
492 * -EIO here, instead we'll wait
493 */
494 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
495 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
496 /* Maybe we can return now */
497 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
498 struct bio *mbio = r1_bio->master_bio;
499 pr_debug("raid1: behind end write sectors"
500 " %llu-%llu\n",
501 (unsigned long long) mbio->bi_iter.bi_sector,
502 (unsigned long long) bio_end_sector(mbio) - 1);
503 call_bio_endio(r1_bio);
504 }
505 }
506 }
507 if (r1_bio->bios[mirror] == NULL)
508 rdev_dec_pending(rdev, conf->mddev);
509
510 /*
511 * Let's see if all mirrored write operations have finished
512 * already.
513 */
514 r1_bio_write_done(r1_bio);
515
516 if (to_put)
517 bio_put(to_put);
518}
519
520/*
521 * This routine returns the disk from which the requested read should
522 * be done. There is a per-array 'next expected sequential IO' sector
523 * number - if this matches on the next IO then we use the last disk.
524 * There is also a per-disk 'last know head position' sector that is
525 * maintained from IRQ contexts, both the normal and the resync IO
526 * completion handlers update this position correctly. If there is no
527 * perfect sequential match then we pick the disk whose head is closest.
528 *
529 * If there are 2 mirrors in the same 2 devices, performance degrades
530 * because position is mirror, not device based.
531 *
532 * The rdev for the device selected will have nr_pending incremented.
533 */
534static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
535{
536 const sector_t this_sector = r1_bio->sector;
537 int sectors;
538 int best_good_sectors;
539 int best_disk, best_dist_disk, best_pending_disk;
540 int has_nonrot_disk;
541 int disk;
542 sector_t best_dist;
543 unsigned int min_pending;
544 struct md_rdev *rdev;
545 int choose_first;
546 int choose_next_idle;
547
548 rcu_read_lock();
549 /*
550 * Check if we can balance. We can balance on the whole
551 * device if no resync is going on, or below the resync window.
552 * We take the first readable disk when above the resync window.
553 */
554 retry:
555 sectors = r1_bio->sectors;
556 best_disk = -1;
557 best_dist_disk = -1;
558 best_dist = MaxSector;
559 best_pending_disk = -1;
560 min_pending = UINT_MAX;
561 best_good_sectors = 0;
562 has_nonrot_disk = 0;
563 choose_next_idle = 0;
564 clear_bit(R1BIO_FailFast, &r1_bio->state);
565
566 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
567 (mddev_is_clustered(conf->mddev) &&
568 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
569 this_sector + sectors)))
570 choose_first = 1;
571 else
572 choose_first = 0;
573
574 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
575 sector_t dist;
576 sector_t first_bad;
577 int bad_sectors;
578 unsigned int pending;
579 bool nonrot;
580
581 rdev = rcu_dereference(conf->mirrors[disk].rdev);
582 if (r1_bio->bios[disk] == IO_BLOCKED
583 || rdev == NULL
584 || test_bit(Faulty, &rdev->flags))
585 continue;
586 if (!test_bit(In_sync, &rdev->flags) &&
587 rdev->recovery_offset < this_sector + sectors)
588 continue;
589 if (test_bit(WriteMostly, &rdev->flags)) {
590 /* Don't balance among write-mostly, just
591 * use the first as a last resort */
592 if (best_dist_disk < 0) {
593 if (is_badblock(rdev, this_sector, sectors,
594 &first_bad, &bad_sectors)) {
595 if (first_bad <= this_sector)
596 /* Cannot use this */
597 continue;
598 best_good_sectors = first_bad - this_sector;
599 } else
600 best_good_sectors = sectors;
601 best_dist_disk = disk;
602 best_pending_disk = disk;
603 }
604 continue;
605 }
606 /* This is a reasonable device to use. It might
607 * even be best.
608 */
609 if (is_badblock(rdev, this_sector, sectors,
610 &first_bad, &bad_sectors)) {
611 if (best_dist < MaxSector)
612 /* already have a better device */
613 continue;
614 if (first_bad <= this_sector) {
615 /* cannot read here. If this is the 'primary'
616 * device, then we must not read beyond
617 * bad_sectors from another device..
618 */
619 bad_sectors -= (this_sector - first_bad);
620 if (choose_first && sectors > bad_sectors)
621 sectors = bad_sectors;
622 if (best_good_sectors > sectors)
623 best_good_sectors = sectors;
624
625 } else {
626 sector_t good_sectors = first_bad - this_sector;
627 if (good_sectors > best_good_sectors) {
628 best_good_sectors = good_sectors;
629 best_disk = disk;
630 }
631 if (choose_first)
632 break;
633 }
634 continue;
635 } else
636 best_good_sectors = sectors;
637
638 if (best_disk >= 0)
639 /* At least two disks to choose from so failfast is OK */
640 set_bit(R1BIO_FailFast, &r1_bio->state);
641
642 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
643 has_nonrot_disk |= nonrot;
644 pending = atomic_read(&rdev->nr_pending);
645 dist = abs(this_sector - conf->mirrors[disk].head_position);
646 if (choose_first) {
647 best_disk = disk;
648 break;
649 }
650 /* Don't change to another disk for sequential reads */
651 if (conf->mirrors[disk].next_seq_sect == this_sector
652 || dist == 0) {
653 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
654 struct raid1_info *mirror = &conf->mirrors[disk];
655
656 best_disk = disk;
657 /*
658 * If buffered sequential IO size exceeds optimal
659 * iosize, check if there is idle disk. If yes, choose
660 * the idle disk. read_balance could already choose an
661 * idle disk before noticing it's a sequential IO in
662 * this disk. This doesn't matter because this disk
663 * will idle, next time it will be utilized after the
664 * first disk has IO size exceeds optimal iosize. In
665 * this way, iosize of the first disk will be optimal
666 * iosize at least. iosize of the second disk might be
667 * small, but not a big deal since when the second disk
668 * starts IO, the first disk is likely still busy.
669 */
670 if (nonrot && opt_iosize > 0 &&
671 mirror->seq_start != MaxSector &&
672 mirror->next_seq_sect > opt_iosize &&
673 mirror->next_seq_sect - opt_iosize >=
674 mirror->seq_start) {
675 choose_next_idle = 1;
676 continue;
677 }
678 break;
679 }
680
681 if (choose_next_idle)
682 continue;
683
684 if (min_pending > pending) {
685 min_pending = pending;
686 best_pending_disk = disk;
687 }
688
689 if (dist < best_dist) {
690 best_dist = dist;
691 best_dist_disk = disk;
692 }
693 }
694
695 /*
696 * If all disks are rotational, choose the closest disk. If any disk is
697 * non-rotational, choose the disk with less pending request even the
698 * disk is rotational, which might/might not be optimal for raids with
699 * mixed ratation/non-rotational disks depending on workload.
700 */
701 if (best_disk == -1) {
702 if (has_nonrot_disk || min_pending == 0)
703 best_disk = best_pending_disk;
704 else
705 best_disk = best_dist_disk;
706 }
707
708 if (best_disk >= 0) {
709 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
710 if (!rdev)
711 goto retry;
712 atomic_inc(&rdev->nr_pending);
713 sectors = best_good_sectors;
714
715 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
716 conf->mirrors[best_disk].seq_start = this_sector;
717
718 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
719 }
720 rcu_read_unlock();
721 *max_sectors = sectors;
722
723 return best_disk;
724}
725
726static int raid1_congested(struct mddev *mddev, int bits)
727{
728 struct r1conf *conf = mddev->private;
729 int i, ret = 0;
730
731 if ((bits & (1 << WB_async_congested)) &&
732 conf->pending_count >= max_queued_requests)
733 return 1;
734
735 rcu_read_lock();
736 for (i = 0; i < conf->raid_disks * 2; i++) {
737 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
738 if (rdev && !test_bit(Faulty, &rdev->flags)) {
739 struct request_queue *q = bdev_get_queue(rdev->bdev);
740
741 BUG_ON(!q);
742
743 /* Note the '|| 1' - when read_balance prefers
744 * non-congested targets, it can be removed
745 */
746 if ((bits & (1 << WB_async_congested)) || 1)
747 ret |= bdi_congested(&q->backing_dev_info, bits);
748 else
749 ret &= bdi_congested(&q->backing_dev_info, bits);
750 }
751 }
752 rcu_read_unlock();
753 return ret;
754}
755
756static void flush_pending_writes(struct r1conf *conf)
757{
758 /* Any writes that have been queued but are awaiting
759 * bitmap updates get flushed here.
760 */
761 spin_lock_irq(&conf->device_lock);
762
763 if (conf->pending_bio_list.head) {
764 struct bio *bio;
765 bio = bio_list_get(&conf->pending_bio_list);
766 conf->pending_count = 0;
767 spin_unlock_irq(&conf->device_lock);
768 /* flush any pending bitmap writes to
769 * disk before proceeding w/ I/O */
770 bitmap_unplug(conf->mddev->bitmap);
771 wake_up(&conf->wait_barrier);
772
773 while (bio) { /* submit pending writes */
774 struct bio *next = bio->bi_next;
775 struct md_rdev *rdev = (void*)bio->bi_bdev;
776 bio->bi_next = NULL;
777 bio->bi_bdev = rdev->bdev;
778 if (test_bit(Faulty, &rdev->flags)) {
779 bio->bi_error = -EIO;
780 bio_endio(bio);
781 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
782 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
783 /* Just ignore it */
784 bio_endio(bio);
785 else
786 generic_make_request(bio);
787 bio = next;
788 }
789 } else
790 spin_unlock_irq(&conf->device_lock);
791}
792
793/* Barriers....
794 * Sometimes we need to suspend IO while we do something else,
795 * either some resync/recovery, or reconfigure the array.
796 * To do this we raise a 'barrier'.
797 * The 'barrier' is a counter that can be raised multiple times
798 * to count how many activities are happening which preclude
799 * normal IO.
800 * We can only raise the barrier if there is no pending IO.
801 * i.e. if nr_pending == 0.
802 * We choose only to raise the barrier if no-one is waiting for the
803 * barrier to go down. This means that as soon as an IO request
804 * is ready, no other operations which require a barrier will start
805 * until the IO request has had a chance.
806 *
807 * So: regular IO calls 'wait_barrier'. When that returns there
808 * is no backgroup IO happening, It must arrange to call
809 * allow_barrier when it has finished its IO.
810 * backgroup IO calls must call raise_barrier. Once that returns
811 * there is no normal IO happeing. It must arrange to call
812 * lower_barrier when the particular background IO completes.
813 */
814static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
815{
816 spin_lock_irq(&conf->resync_lock);
817
818 /* Wait until no block IO is waiting */
819 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
820 conf->resync_lock);
821
822 /* block any new IO from starting */
823 conf->barrier++;
824 conf->next_resync = sector_nr;
825
826 /* For these conditions we must wait:
827 * A: while the array is in frozen state
828 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
829 * the max count which allowed.
830 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
831 * next resync will reach to the window which normal bios are
832 * handling.
833 * D: while there are any active requests in the current window.
834 */
835 wait_event_lock_irq(conf->wait_barrier,
836 !conf->array_frozen &&
837 conf->barrier < RESYNC_DEPTH &&
838 conf->current_window_requests == 0 &&
839 (conf->start_next_window >=
840 conf->next_resync + RESYNC_SECTORS),
841 conf->resync_lock);
842
843 conf->nr_pending++;
844 spin_unlock_irq(&conf->resync_lock);
845}
846
847static void lower_barrier(struct r1conf *conf)
848{
849 unsigned long flags;
850 BUG_ON(conf->barrier <= 0);
851 spin_lock_irqsave(&conf->resync_lock, flags);
852 conf->barrier--;
853 conf->nr_pending--;
854 spin_unlock_irqrestore(&conf->resync_lock, flags);
855 wake_up(&conf->wait_barrier);
856}
857
858static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
859{
860 bool wait = false;
861
862 if (conf->array_frozen || !bio)
863 wait = true;
864 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
865 if ((conf->mddev->curr_resync_completed
866 >= bio_end_sector(bio)) ||
867 (conf->start_next_window + NEXT_NORMALIO_DISTANCE
868 <= bio->bi_iter.bi_sector))
869 wait = false;
870 else
871 wait = true;
872 }
873
874 return wait;
875}
876
877static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
878{
879 sector_t sector = 0;
880
881 spin_lock_irq(&conf->resync_lock);
882 if (need_to_wait_for_sync(conf, bio)) {
883 conf->nr_waiting++;
884 /* Wait for the barrier to drop.
885 * However if there are already pending
886 * requests (preventing the barrier from
887 * rising completely), and the
888 * per-process bio queue isn't empty,
889 * then don't wait, as we need to empty
890 * that queue to allow conf->start_next_window
891 * to increase.
892 */
893 raid1_log(conf->mddev, "wait barrier");
894 wait_event_lock_irq(conf->wait_barrier,
895 !conf->array_frozen &&
896 (!conf->barrier ||
897 ((conf->start_next_window <
898 conf->next_resync + RESYNC_SECTORS) &&
899 current->bio_list &&
900 !bio_list_empty(current->bio_list))),
901 conf->resync_lock);
902 conf->nr_waiting--;
903 }
904
905 if (bio && bio_data_dir(bio) == WRITE) {
906 if (bio->bi_iter.bi_sector >= conf->next_resync) {
907 if (conf->start_next_window == MaxSector)
908 conf->start_next_window =
909 conf->next_resync +
910 NEXT_NORMALIO_DISTANCE;
911
912 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
913 <= bio->bi_iter.bi_sector)
914 conf->next_window_requests++;
915 else
916 conf->current_window_requests++;
917 sector = conf->start_next_window;
918 }
919 }
920
921 conf->nr_pending++;
922 spin_unlock_irq(&conf->resync_lock);
923 return sector;
924}
925
926static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
927 sector_t bi_sector)
928{
929 unsigned long flags;
930
931 spin_lock_irqsave(&conf->resync_lock, flags);
932 conf->nr_pending--;
933 if (start_next_window) {
934 if (start_next_window == conf->start_next_window) {
935 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
936 <= bi_sector)
937 conf->next_window_requests--;
938 else
939 conf->current_window_requests--;
940 } else
941 conf->current_window_requests--;
942
943 if (!conf->current_window_requests) {
944 if (conf->next_window_requests) {
945 conf->current_window_requests =
946 conf->next_window_requests;
947 conf->next_window_requests = 0;
948 conf->start_next_window +=
949 NEXT_NORMALIO_DISTANCE;
950 } else
951 conf->start_next_window = MaxSector;
952 }
953 }
954 spin_unlock_irqrestore(&conf->resync_lock, flags);
955 wake_up(&conf->wait_barrier);
956}
957
958static void freeze_array(struct r1conf *conf, int extra)
959{
960 /* stop syncio and normal IO and wait for everything to
961 * go quite.
962 * We wait until nr_pending match nr_queued+extra
963 * This is called in the context of one normal IO request
964 * that has failed. Thus any sync request that might be pending
965 * will be blocked by nr_pending, and we need to wait for
966 * pending IO requests to complete or be queued for re-try.
967 * Thus the number queued (nr_queued) plus this request (extra)
968 * must match the number of pending IOs (nr_pending) before
969 * we continue.
970 */
971 spin_lock_irq(&conf->resync_lock);
972 conf->array_frozen = 1;
973 raid1_log(conf->mddev, "wait freeze");
974 wait_event_lock_irq_cmd(conf->wait_barrier,
975 conf->nr_pending == conf->nr_queued+extra,
976 conf->resync_lock,
977 flush_pending_writes(conf));
978 spin_unlock_irq(&conf->resync_lock);
979}
980static void unfreeze_array(struct r1conf *conf)
981{
982 /* reverse the effect of the freeze */
983 spin_lock_irq(&conf->resync_lock);
984 conf->array_frozen = 0;
985 wake_up(&conf->wait_barrier);
986 spin_unlock_irq(&conf->resync_lock);
987}
988
989/* duplicate the data pages for behind I/O
990 */
991static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
992{
993 int i;
994 struct bio_vec *bvec;
995 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
996 GFP_NOIO);
997 if (unlikely(!bvecs))
998 return;
999
1000 bio_for_each_segment_all(bvec, bio, i) {
1001 bvecs[i] = *bvec;
1002 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1003 if (unlikely(!bvecs[i].bv_page))
1004 goto do_sync_io;
1005 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1006 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1007 kunmap(bvecs[i].bv_page);
1008 kunmap(bvec->bv_page);
1009 }
1010 r1_bio->behind_bvecs = bvecs;
1011 r1_bio->behind_page_count = bio->bi_vcnt;
1012 set_bit(R1BIO_BehindIO, &r1_bio->state);
1013 return;
1014
1015do_sync_io:
1016 for (i = 0; i < bio->bi_vcnt; i++)
1017 if (bvecs[i].bv_page)
1018 put_page(bvecs[i].bv_page);
1019 kfree(bvecs);
1020 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1021 bio->bi_iter.bi_size);
1022}
1023
1024struct raid1_plug_cb {
1025 struct blk_plug_cb cb;
1026 struct bio_list pending;
1027 int pending_cnt;
1028};
1029
1030static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1031{
1032 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1033 cb);
1034 struct mddev *mddev = plug->cb.data;
1035 struct r1conf *conf = mddev->private;
1036 struct bio *bio;
1037
1038 if (from_schedule || current->bio_list) {
1039 spin_lock_irq(&conf->device_lock);
1040 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1041 conf->pending_count += plug->pending_cnt;
1042 spin_unlock_irq(&conf->device_lock);
1043 wake_up(&conf->wait_barrier);
1044 md_wakeup_thread(mddev->thread);
1045 kfree(plug);
1046 return;
1047 }
1048
1049 /* we aren't scheduling, so we can do the write-out directly. */
1050 bio = bio_list_get(&plug->pending);
1051 bitmap_unplug(mddev->bitmap);
1052 wake_up(&conf->wait_barrier);
1053
1054 while (bio) { /* submit pending writes */
1055 struct bio *next = bio->bi_next;
1056 struct md_rdev *rdev = (void*)bio->bi_bdev;
1057 bio->bi_next = NULL;
1058 bio->bi_bdev = rdev->bdev;
1059 if (test_bit(Faulty, &rdev->flags)) {
1060 bio->bi_error = -EIO;
1061 bio_endio(bio);
1062 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1063 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1064 /* Just ignore it */
1065 bio_endio(bio);
1066 else
1067 generic_make_request(bio);
1068 bio = next;
1069 }
1070 kfree(plug);
1071}
1072
1073static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1074 struct r1bio *r1_bio)
1075{
1076 struct r1conf *conf = mddev->private;
1077 struct raid1_info *mirror;
1078 struct bio *read_bio;
1079 struct bitmap *bitmap = mddev->bitmap;
1080 const int op = bio_op(bio);
1081 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1082 int sectors_handled;
1083 int max_sectors;
1084 int rdisk;
1085
1086 wait_barrier(conf, bio);
1087
1088read_again:
1089 rdisk = read_balance(conf, r1_bio, &max_sectors);
1090
1091 if (rdisk < 0) {
1092 /* couldn't find anywhere to read from */
1093 raid_end_bio_io(r1_bio);
1094 return;
1095 }
1096 mirror = conf->mirrors + rdisk;
1097
1098 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1099 bitmap) {
1100 /*
1101 * Reading from a write-mostly device must take care not to
1102 * over-take any writes that are 'behind'
1103 */
1104 raid1_log(mddev, "wait behind writes");
1105 wait_event(bitmap->behind_wait,
1106 atomic_read(&bitmap->behind_writes) == 0);
1107 }
1108 r1_bio->read_disk = rdisk;
1109 r1_bio->start_next_window = 0;
1110
1111 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1112 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1113 max_sectors);
1114
1115 r1_bio->bios[rdisk] = read_bio;
1116
1117 read_bio->bi_iter.bi_sector = r1_bio->sector +
1118 mirror->rdev->data_offset;
1119 read_bio->bi_bdev = mirror->rdev->bdev;
1120 read_bio->bi_end_io = raid1_end_read_request;
1121 bio_set_op_attrs(read_bio, op, do_sync);
1122 if (test_bit(FailFast, &mirror->rdev->flags) &&
1123 test_bit(R1BIO_FailFast, &r1_bio->state))
1124 read_bio->bi_opf |= MD_FAILFAST;
1125 read_bio->bi_private = r1_bio;
1126
1127 if (mddev->gendisk)
1128 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1129 read_bio, disk_devt(mddev->gendisk),
1130 r1_bio->sector);
1131
1132 if (max_sectors < r1_bio->sectors) {
1133 /*
1134 * could not read all from this device, so we will need another
1135 * r1_bio.
1136 */
1137 sectors_handled = (r1_bio->sector + max_sectors
1138 - bio->bi_iter.bi_sector);
1139 r1_bio->sectors = max_sectors;
1140 spin_lock_irq(&conf->device_lock);
1141 if (bio->bi_phys_segments == 0)
1142 bio->bi_phys_segments = 2;
1143 else
1144 bio->bi_phys_segments++;
1145 spin_unlock_irq(&conf->device_lock);
1146
1147 /*
1148 * Cannot call generic_make_request directly as that will be
1149 * queued in __make_request and subsequent mempool_alloc might
1150 * block waiting for it. So hand bio over to raid1d.
1151 */
1152 reschedule_retry(r1_bio);
1153
1154 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1155
1156 r1_bio->master_bio = bio;
1157 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1158 r1_bio->state = 0;
1159 r1_bio->mddev = mddev;
1160 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1161 goto read_again;
1162 } else
1163 generic_make_request(read_bio);
1164}
1165
1166static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1167 struct r1bio *r1_bio)
1168{
1169 struct r1conf *conf = mddev->private;
1170 int i, disks;
1171 struct bitmap *bitmap = mddev->bitmap;
1172 unsigned long flags;
1173 const int op = bio_op(bio);
1174 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1175 const unsigned long do_flush_fua = (bio->bi_opf &
1176 (REQ_PREFLUSH | REQ_FUA));
1177 struct md_rdev *blocked_rdev;
1178 struct blk_plug_cb *cb;
1179 struct raid1_plug_cb *plug = NULL;
1180 int first_clone;
1181 int sectors_handled;
1182 int max_sectors;
1183 sector_t start_next_window;
1184
1185 /*
1186 * Register the new request and wait if the reconstruction
1187 * thread has put up a bar for new requests.
1188 * Continue immediately if no resync is active currently.
1189 */
1190
1191 md_write_start(mddev, bio); /* wait on superblock update early */
1192
1193 if ((bio_end_sector(bio) > mddev->suspend_lo &&
1194 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1195 (mddev_is_clustered(mddev) &&
1196 md_cluster_ops->area_resyncing(mddev, WRITE,
1197 bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1198
1199 /*
1200 * As the suspend_* range is controlled by userspace, we want
1201 * an interruptible wait.
1202 */
1203 DEFINE_WAIT(w);
1204 for (;;) {
1205 flush_signals(current);
1206 prepare_to_wait(&conf->wait_barrier,
1207 &w, TASK_INTERRUPTIBLE);
1208 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1209 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1210 (mddev_is_clustered(mddev) &&
1211 !md_cluster_ops->area_resyncing(mddev, WRITE,
1212 bio->bi_iter.bi_sector,
1213 bio_end_sector(bio))))
1214 break;
1215 schedule();
1216 }
1217 finish_wait(&conf->wait_barrier, &w);
1218 }
1219 start_next_window = wait_barrier(conf, bio);
1220
1221 if (conf->pending_count >= max_queued_requests) {
1222 md_wakeup_thread(mddev->thread);
1223 raid1_log(mddev, "wait queued");
1224 wait_event(conf->wait_barrier,
1225 conf->pending_count < max_queued_requests);
1226 }
1227 /* first select target devices under rcu_lock and
1228 * inc refcount on their rdev. Record them by setting
1229 * bios[x] to bio
1230 * If there are known/acknowledged bad blocks on any device on
1231 * which we have seen a write error, we want to avoid writing those
1232 * blocks.
1233 * This potentially requires several writes to write around
1234 * the bad blocks. Each set of writes gets it's own r1bio
1235 * with a set of bios attached.
1236 */
1237
1238 disks = conf->raid_disks * 2;
1239 retry_write:
1240 r1_bio->start_next_window = start_next_window;
1241 blocked_rdev = NULL;
1242 rcu_read_lock();
1243 max_sectors = r1_bio->sectors;
1244 for (i = 0; i < disks; i++) {
1245 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1246 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1247 atomic_inc(&rdev->nr_pending);
1248 blocked_rdev = rdev;
1249 break;
1250 }
1251 r1_bio->bios[i] = NULL;
1252 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1253 if (i < conf->raid_disks)
1254 set_bit(R1BIO_Degraded, &r1_bio->state);
1255 continue;
1256 }
1257
1258 atomic_inc(&rdev->nr_pending);
1259 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1260 sector_t first_bad;
1261 int bad_sectors;
1262 int is_bad;
1263
1264 is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1265 &first_bad, &bad_sectors);
1266 if (is_bad < 0) {
1267 /* mustn't write here until the bad block is
1268 * acknowledged*/
1269 set_bit(BlockedBadBlocks, &rdev->flags);
1270 blocked_rdev = rdev;
1271 break;
1272 }
1273 if (is_bad && first_bad <= r1_bio->sector) {
1274 /* Cannot write here at all */
1275 bad_sectors -= (r1_bio->sector - first_bad);
1276 if (bad_sectors < max_sectors)
1277 /* mustn't write more than bad_sectors
1278 * to other devices yet
1279 */
1280 max_sectors = bad_sectors;
1281 rdev_dec_pending(rdev, mddev);
1282 /* We don't set R1BIO_Degraded as that
1283 * only applies if the disk is
1284 * missing, so it might be re-added,
1285 * and we want to know to recover this
1286 * chunk.
1287 * In this case the device is here,
1288 * and the fact that this chunk is not
1289 * in-sync is recorded in the bad
1290 * block log
1291 */
1292 continue;
1293 }
1294 if (is_bad) {
1295 int good_sectors = first_bad - r1_bio->sector;
1296 if (good_sectors < max_sectors)
1297 max_sectors = good_sectors;
1298 }
1299 }
1300 r1_bio->bios[i] = bio;
1301 }
1302 rcu_read_unlock();
1303
1304 if (unlikely(blocked_rdev)) {
1305 /* Wait for this device to become unblocked */
1306 int j;
1307 sector_t old = start_next_window;
1308
1309 for (j = 0; j < i; j++)
1310 if (r1_bio->bios[j])
1311 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1312 r1_bio->state = 0;
1313 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1314 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1315 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1316 start_next_window = wait_barrier(conf, bio);
1317 /*
1318 * We must make sure the multi r1bios of bio have
1319 * the same value of bi_phys_segments
1320 */
1321 if (bio->bi_phys_segments && old &&
1322 old != start_next_window)
1323 /* Wait for the former r1bio(s) to complete */
1324 wait_event(conf->wait_barrier,
1325 bio->bi_phys_segments == 1);
1326 goto retry_write;
1327 }
1328
1329 if (max_sectors < r1_bio->sectors) {
1330 /* We are splitting this write into multiple parts, so
1331 * we need to prepare for allocating another r1_bio.
1332 */
1333 r1_bio->sectors = max_sectors;
1334 spin_lock_irq(&conf->device_lock);
1335 if (bio->bi_phys_segments == 0)
1336 bio->bi_phys_segments = 2;
1337 else
1338 bio->bi_phys_segments++;
1339 spin_unlock_irq(&conf->device_lock);
1340 }
1341 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1342
1343 atomic_set(&r1_bio->remaining, 1);
1344 atomic_set(&r1_bio->behind_remaining, 0);
1345
1346 first_clone = 1;
1347 for (i = 0; i < disks; i++) {
1348 struct bio *mbio;
1349 if (!r1_bio->bios[i])
1350 continue;
1351
1352 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1353 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector,
1354 max_sectors);
1355
1356 if (first_clone) {
1357 /* do behind I/O ?
1358 * Not if there are too many, or cannot
1359 * allocate memory, or a reader on WriteMostly
1360 * is waiting for behind writes to flush */
1361 if (bitmap &&
1362 (atomic_read(&bitmap->behind_writes)
1363 < mddev->bitmap_info.max_write_behind) &&
1364 !waitqueue_active(&bitmap->behind_wait))
1365 alloc_behind_pages(mbio, r1_bio);
1366
1367 bitmap_startwrite(bitmap, r1_bio->sector,
1368 r1_bio->sectors,
1369 test_bit(R1BIO_BehindIO,
1370 &r1_bio->state));
1371 first_clone = 0;
1372 }
1373 if (r1_bio->behind_bvecs) {
1374 struct bio_vec *bvec;
1375 int j;
1376
1377 /*
1378 * We trimmed the bio, so _all is legit
1379 */
1380 bio_for_each_segment_all(bvec, mbio, j)
1381 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1382 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1383 atomic_inc(&r1_bio->behind_remaining);
1384 }
1385
1386 r1_bio->bios[i] = mbio;
1387
1388 mbio->bi_iter.bi_sector = (r1_bio->sector +
1389 conf->mirrors[i].rdev->data_offset);
1390 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1391 mbio->bi_end_io = raid1_end_write_request;
1392 bio_set_op_attrs(mbio, op, do_flush_fua | do_sync);
1393 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1394 !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1395 conf->raid_disks - mddev->degraded > 1)
1396 mbio->bi_opf |= MD_FAILFAST;
1397 mbio->bi_private = r1_bio;
1398
1399 atomic_inc(&r1_bio->remaining);
1400
1401 if (mddev->gendisk)
1402 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1403 mbio, disk_devt(mddev->gendisk),
1404 r1_bio->sector);
1405 /* flush_pending_writes() needs access to the rdev so...*/
1406 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1407
1408 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1409 if (cb)
1410 plug = container_of(cb, struct raid1_plug_cb, cb);
1411 else
1412 plug = NULL;
1413 spin_lock_irqsave(&conf->device_lock, flags);
1414 if (plug) {
1415 bio_list_add(&plug->pending, mbio);
1416 plug->pending_cnt++;
1417 } else {
1418 bio_list_add(&conf->pending_bio_list, mbio);
1419 conf->pending_count++;
1420 }
1421 spin_unlock_irqrestore(&conf->device_lock, flags);
1422 if (!plug)
1423 md_wakeup_thread(mddev->thread);
1424 }
1425 /* Mustn't call r1_bio_write_done before this next test,
1426 * as it could result in the bio being freed.
1427 */
1428 if (sectors_handled < bio_sectors(bio)) {
1429 r1_bio_write_done(r1_bio);
1430 /* We need another r1_bio. It has already been counted
1431 * in bio->bi_phys_segments
1432 */
1433 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1434 r1_bio->master_bio = bio;
1435 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1436 r1_bio->state = 0;
1437 r1_bio->mddev = mddev;
1438 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1439 goto retry_write;
1440 }
1441
1442 r1_bio_write_done(r1_bio);
1443
1444 /* In case raid1d snuck in to freeze_array */
1445 wake_up(&conf->wait_barrier);
1446}
1447
1448static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1449{
1450 struct r1conf *conf = mddev->private;
1451 struct r1bio *r1_bio;
1452
1453 /*
1454 * make_request() can abort the operation when read-ahead is being
1455 * used and no empty request is available.
1456 *
1457 */
1458 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1459
1460 r1_bio->master_bio = bio;
1461 r1_bio->sectors = bio_sectors(bio);
1462 r1_bio->state = 0;
1463 r1_bio->mddev = mddev;
1464 r1_bio->sector = bio->bi_iter.bi_sector;
1465
1466 /*
1467 * We might need to issue multiple reads to different devices if there
1468 * are bad blocks around, so we keep track of the number of reads in
1469 * bio->bi_phys_segments. If this is 0, there is only one r1_bio and
1470 * no locking will be needed when requests complete. If it is
1471 * non-zero, then it is the number of not-completed requests.
1472 */
1473 bio->bi_phys_segments = 0;
1474 bio_clear_flag(bio, BIO_SEG_VALID);
1475
1476 if (bio_data_dir(bio) == READ)
1477 raid1_read_request(mddev, bio, r1_bio);
1478 else
1479 raid1_write_request(mddev, bio, r1_bio);
1480}
1481
1482static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1483{
1484 struct r1conf *conf = mddev->private;
1485 int i;
1486
1487 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1488 conf->raid_disks - mddev->degraded);
1489 rcu_read_lock();
1490 for (i = 0; i < conf->raid_disks; i++) {
1491 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1492 seq_printf(seq, "%s",
1493 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1494 }
1495 rcu_read_unlock();
1496 seq_printf(seq, "]");
1497}
1498
1499static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1500{
1501 char b[BDEVNAME_SIZE];
1502 struct r1conf *conf = mddev->private;
1503 unsigned long flags;
1504
1505 /*
1506 * If it is not operational, then we have already marked it as dead
1507 * else if it is the last working disks, ignore the error, let the
1508 * next level up know.
1509 * else mark the drive as failed
1510 */
1511 spin_lock_irqsave(&conf->device_lock, flags);
1512 if (test_bit(In_sync, &rdev->flags)
1513 && (conf->raid_disks - mddev->degraded) == 1) {
1514 /*
1515 * Don't fail the drive, act as though we were just a
1516 * normal single drive.
1517 * However don't try a recovery from this drive as
1518 * it is very likely to fail.
1519 */
1520 conf->recovery_disabled = mddev->recovery_disabled;
1521 spin_unlock_irqrestore(&conf->device_lock, flags);
1522 return;
1523 }
1524 set_bit(Blocked, &rdev->flags);
1525 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1526 mddev->degraded++;
1527 set_bit(Faulty, &rdev->flags);
1528 } else
1529 set_bit(Faulty, &rdev->flags);
1530 spin_unlock_irqrestore(&conf->device_lock, flags);
1531 /*
1532 * if recovery is running, make sure it aborts.
1533 */
1534 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1535 set_mask_bits(&mddev->sb_flags, 0,
1536 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1537 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1538 "md/raid1:%s: Operation continuing on %d devices.\n",
1539 mdname(mddev), bdevname(rdev->bdev, b),
1540 mdname(mddev), conf->raid_disks - mddev->degraded);
1541}
1542
1543static void print_conf(struct r1conf *conf)
1544{
1545 int i;
1546
1547 pr_debug("RAID1 conf printout:\n");
1548 if (!conf) {
1549 pr_debug("(!conf)\n");
1550 return;
1551 }
1552 pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1553 conf->raid_disks);
1554
1555 rcu_read_lock();
1556 for (i = 0; i < conf->raid_disks; i++) {
1557 char b[BDEVNAME_SIZE];
1558 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1559 if (rdev)
1560 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1561 i, !test_bit(In_sync, &rdev->flags),
1562 !test_bit(Faulty, &rdev->flags),
1563 bdevname(rdev->bdev,b));
1564 }
1565 rcu_read_unlock();
1566}
1567
1568static void close_sync(struct r1conf *conf)
1569{
1570 wait_barrier(conf, NULL);
1571 allow_barrier(conf, 0, 0);
1572
1573 mempool_destroy(conf->r1buf_pool);
1574 conf->r1buf_pool = NULL;
1575
1576 spin_lock_irq(&conf->resync_lock);
1577 conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1578 conf->start_next_window = MaxSector;
1579 conf->current_window_requests +=
1580 conf->next_window_requests;
1581 conf->next_window_requests = 0;
1582 spin_unlock_irq(&conf->resync_lock);
1583}
1584
1585static int raid1_spare_active(struct mddev *mddev)
1586{
1587 int i;
1588 struct r1conf *conf = mddev->private;
1589 int count = 0;
1590 unsigned long flags;
1591
1592 /*
1593 * Find all failed disks within the RAID1 configuration
1594 * and mark them readable.
1595 * Called under mddev lock, so rcu protection not needed.
1596 * device_lock used to avoid races with raid1_end_read_request
1597 * which expects 'In_sync' flags and ->degraded to be consistent.
1598 */
1599 spin_lock_irqsave(&conf->device_lock, flags);
1600 for (i = 0; i < conf->raid_disks; i++) {
1601 struct md_rdev *rdev = conf->mirrors[i].rdev;
1602 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1603 if (repl
1604 && !test_bit(Candidate, &repl->flags)
1605 && repl->recovery_offset == MaxSector
1606 && !test_bit(Faulty, &repl->flags)
1607 && !test_and_set_bit(In_sync, &repl->flags)) {
1608 /* replacement has just become active */
1609 if (!rdev ||
1610 !test_and_clear_bit(In_sync, &rdev->flags))
1611 count++;
1612 if (rdev) {
1613 /* Replaced device not technically
1614 * faulty, but we need to be sure
1615 * it gets removed and never re-added
1616 */
1617 set_bit(Faulty, &rdev->flags);
1618 sysfs_notify_dirent_safe(
1619 rdev->sysfs_state);
1620 }
1621 }
1622 if (rdev
1623 && rdev->recovery_offset == MaxSector
1624 && !test_bit(Faulty, &rdev->flags)
1625 && !test_and_set_bit(In_sync, &rdev->flags)) {
1626 count++;
1627 sysfs_notify_dirent_safe(rdev->sysfs_state);
1628 }
1629 }
1630 mddev->degraded -= count;
1631 spin_unlock_irqrestore(&conf->device_lock, flags);
1632
1633 print_conf(conf);
1634 return count;
1635}
1636
1637static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1638{
1639 struct r1conf *conf = mddev->private;
1640 int err = -EEXIST;
1641 int mirror = 0;
1642 struct raid1_info *p;
1643 int first = 0;
1644 int last = conf->raid_disks - 1;
1645
1646 if (mddev->recovery_disabled == conf->recovery_disabled)
1647 return -EBUSY;
1648
1649 if (md_integrity_add_rdev(rdev, mddev))
1650 return -ENXIO;
1651
1652 if (rdev->raid_disk >= 0)
1653 first = last = rdev->raid_disk;
1654
1655 /*
1656 * find the disk ... but prefer rdev->saved_raid_disk
1657 * if possible.
1658 */
1659 if (rdev->saved_raid_disk >= 0 &&
1660 rdev->saved_raid_disk >= first &&
1661 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1662 first = last = rdev->saved_raid_disk;
1663
1664 for (mirror = first; mirror <= last; mirror++) {
1665 p = conf->mirrors+mirror;
1666 if (!p->rdev) {
1667
1668 if (mddev->gendisk)
1669 disk_stack_limits(mddev->gendisk, rdev->bdev,
1670 rdev->data_offset << 9);
1671
1672 p->head_position = 0;
1673 rdev->raid_disk = mirror;
1674 err = 0;
1675 /* As all devices are equivalent, we don't need a full recovery
1676 * if this was recently any drive of the array
1677 */
1678 if (rdev->saved_raid_disk < 0)
1679 conf->fullsync = 1;
1680 rcu_assign_pointer(p->rdev, rdev);
1681 break;
1682 }
1683 if (test_bit(WantReplacement, &p->rdev->flags) &&
1684 p[conf->raid_disks].rdev == NULL) {
1685 /* Add this device as a replacement */
1686 clear_bit(In_sync, &rdev->flags);
1687 set_bit(Replacement, &rdev->flags);
1688 rdev->raid_disk = mirror;
1689 err = 0;
1690 conf->fullsync = 1;
1691 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1692 break;
1693 }
1694 }
1695 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1696 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1697 print_conf(conf);
1698 return err;
1699}
1700
1701static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1702{
1703 struct r1conf *conf = mddev->private;
1704 int err = 0;
1705 int number = rdev->raid_disk;
1706 struct raid1_info *p = conf->mirrors + number;
1707
1708 if (rdev != p->rdev)
1709 p = conf->mirrors + conf->raid_disks + number;
1710
1711 print_conf(conf);
1712 if (rdev == p->rdev) {
1713 if (test_bit(In_sync, &rdev->flags) ||
1714 atomic_read(&rdev->nr_pending)) {
1715 err = -EBUSY;
1716 goto abort;
1717 }
1718 /* Only remove non-faulty devices if recovery
1719 * is not possible.
1720 */
1721 if (!test_bit(Faulty, &rdev->flags) &&
1722 mddev->recovery_disabled != conf->recovery_disabled &&
1723 mddev->degraded < conf->raid_disks) {
1724 err = -EBUSY;
1725 goto abort;
1726 }
1727 p->rdev = NULL;
1728 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1729 synchronize_rcu();
1730 if (atomic_read(&rdev->nr_pending)) {
1731 /* lost the race, try later */
1732 err = -EBUSY;
1733 p->rdev = rdev;
1734 goto abort;
1735 }
1736 }
1737 if (conf->mirrors[conf->raid_disks + number].rdev) {
1738 /* We just removed a device that is being replaced.
1739 * Move down the replacement. We drain all IO before
1740 * doing this to avoid confusion.
1741 */
1742 struct md_rdev *repl =
1743 conf->mirrors[conf->raid_disks + number].rdev;
1744 freeze_array(conf, 0);
1745 clear_bit(Replacement, &repl->flags);
1746 p->rdev = repl;
1747 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1748 unfreeze_array(conf);
1749 clear_bit(WantReplacement, &rdev->flags);
1750 } else
1751 clear_bit(WantReplacement, &rdev->flags);
1752 err = md_integrity_register(mddev);
1753 }
1754abort:
1755
1756 print_conf(conf);
1757 return err;
1758}
1759
1760static void end_sync_read(struct bio *bio)
1761{
1762 struct r1bio *r1_bio = bio->bi_private;
1763
1764 update_head_pos(r1_bio->read_disk, r1_bio);
1765
1766 /*
1767 * we have read a block, now it needs to be re-written,
1768 * or re-read if the read failed.
1769 * We don't do much here, just schedule handling by raid1d
1770 */
1771 if (!bio->bi_error)
1772 set_bit(R1BIO_Uptodate, &r1_bio->state);
1773
1774 if (atomic_dec_and_test(&r1_bio->remaining))
1775 reschedule_retry(r1_bio);
1776}
1777
1778static void end_sync_write(struct bio *bio)
1779{
1780 int uptodate = !bio->bi_error;
1781 struct r1bio *r1_bio = bio->bi_private;
1782 struct mddev *mddev = r1_bio->mddev;
1783 struct r1conf *conf = mddev->private;
1784 sector_t first_bad;
1785 int bad_sectors;
1786 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1787
1788 if (!uptodate) {
1789 sector_t sync_blocks = 0;
1790 sector_t s = r1_bio->sector;
1791 long sectors_to_go = r1_bio->sectors;
1792 /* make sure these bits doesn't get cleared. */
1793 do {
1794 bitmap_end_sync(mddev->bitmap, s,
1795 &sync_blocks, 1);
1796 s += sync_blocks;
1797 sectors_to_go -= sync_blocks;
1798 } while (sectors_to_go > 0);
1799 set_bit(WriteErrorSeen, &rdev->flags);
1800 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1801 set_bit(MD_RECOVERY_NEEDED, &
1802 mddev->recovery);
1803 set_bit(R1BIO_WriteError, &r1_bio->state);
1804 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1805 &first_bad, &bad_sectors) &&
1806 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1807 r1_bio->sector,
1808 r1_bio->sectors,
1809 &first_bad, &bad_sectors)
1810 )
1811 set_bit(R1BIO_MadeGood, &r1_bio->state);
1812
1813 if (atomic_dec_and_test(&r1_bio->remaining)) {
1814 int s = r1_bio->sectors;
1815 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1816 test_bit(R1BIO_WriteError, &r1_bio->state))
1817 reschedule_retry(r1_bio);
1818 else {
1819 put_buf(r1_bio);
1820 md_done_sync(mddev, s, uptodate);
1821 }
1822 }
1823}
1824
1825static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1826 int sectors, struct page *page, int rw)
1827{
1828 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1829 /* success */
1830 return 1;
1831 if (rw == WRITE) {
1832 set_bit(WriteErrorSeen, &rdev->flags);
1833 if (!test_and_set_bit(WantReplacement,
1834 &rdev->flags))
1835 set_bit(MD_RECOVERY_NEEDED, &
1836 rdev->mddev->recovery);
1837 }
1838 /* need to record an error - either for the block or the device */
1839 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1840 md_error(rdev->mddev, rdev);
1841 return 0;
1842}
1843
1844static int fix_sync_read_error(struct r1bio *r1_bio)
1845{
1846 /* Try some synchronous reads of other devices to get
1847 * good data, much like with normal read errors. Only
1848 * read into the pages we already have so we don't
1849 * need to re-issue the read request.
1850 * We don't need to freeze the array, because being in an
1851 * active sync request, there is no normal IO, and
1852 * no overlapping syncs.
1853 * We don't need to check is_badblock() again as we
1854 * made sure that anything with a bad block in range
1855 * will have bi_end_io clear.
1856 */
1857 struct mddev *mddev = r1_bio->mddev;
1858 struct r1conf *conf = mddev->private;
1859 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1860 sector_t sect = r1_bio->sector;
1861 int sectors = r1_bio->sectors;
1862 int idx = 0;
1863 struct md_rdev *rdev;
1864
1865 rdev = conf->mirrors[r1_bio->read_disk].rdev;
1866 if (test_bit(FailFast, &rdev->flags)) {
1867 /* Don't try recovering from here - just fail it
1868 * ... unless it is the last working device of course */
1869 md_error(mddev, rdev);
1870 if (test_bit(Faulty, &rdev->flags))
1871 /* Don't try to read from here, but make sure
1872 * put_buf does it's thing
1873 */
1874 bio->bi_end_io = end_sync_write;
1875 }
1876
1877 while(sectors) {
1878 int s = sectors;
1879 int d = r1_bio->read_disk;
1880 int success = 0;
1881 int start;
1882
1883 if (s > (PAGE_SIZE>>9))
1884 s = PAGE_SIZE >> 9;
1885 do {
1886 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1887 /* No rcu protection needed here devices
1888 * can only be removed when no resync is
1889 * active, and resync is currently active
1890 */
1891 rdev = conf->mirrors[d].rdev;
1892 if (sync_page_io(rdev, sect, s<<9,
1893 bio->bi_io_vec[idx].bv_page,
1894 REQ_OP_READ, 0, false)) {
1895 success = 1;
1896 break;
1897 }
1898 }
1899 d++;
1900 if (d == conf->raid_disks * 2)
1901 d = 0;
1902 } while (!success && d != r1_bio->read_disk);
1903
1904 if (!success) {
1905 char b[BDEVNAME_SIZE];
1906 int abort = 0;
1907 /* Cannot read from anywhere, this block is lost.
1908 * Record a bad block on each device. If that doesn't
1909 * work just disable and interrupt the recovery.
1910 * Don't fail devices as that won't really help.
1911 */
1912 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1913 mdname(mddev),
1914 bdevname(bio->bi_bdev, b),
1915 (unsigned long long)r1_bio->sector);
1916 for (d = 0; d < conf->raid_disks * 2; d++) {
1917 rdev = conf->mirrors[d].rdev;
1918 if (!rdev || test_bit(Faulty, &rdev->flags))
1919 continue;
1920 if (!rdev_set_badblocks(rdev, sect, s, 0))
1921 abort = 1;
1922 }
1923 if (abort) {
1924 conf->recovery_disabled =
1925 mddev->recovery_disabled;
1926 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1927 md_done_sync(mddev, r1_bio->sectors, 0);
1928 put_buf(r1_bio);
1929 return 0;
1930 }
1931 /* Try next page */
1932 sectors -= s;
1933 sect += s;
1934 idx++;
1935 continue;
1936 }
1937
1938 start = d;
1939 /* write it back and re-read */
1940 while (d != r1_bio->read_disk) {
1941 if (d == 0)
1942 d = conf->raid_disks * 2;
1943 d--;
1944 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1945 continue;
1946 rdev = conf->mirrors[d].rdev;
1947 if (r1_sync_page_io(rdev, sect, s,
1948 bio->bi_io_vec[idx].bv_page,
1949 WRITE) == 0) {
1950 r1_bio->bios[d]->bi_end_io = NULL;
1951 rdev_dec_pending(rdev, mddev);
1952 }
1953 }
1954 d = start;
1955 while (d != r1_bio->read_disk) {
1956 if (d == 0)
1957 d = conf->raid_disks * 2;
1958 d--;
1959 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1960 continue;
1961 rdev = conf->mirrors[d].rdev;
1962 if (r1_sync_page_io(rdev, sect, s,
1963 bio->bi_io_vec[idx].bv_page,
1964 READ) != 0)
1965 atomic_add(s, &rdev->corrected_errors);
1966 }
1967 sectors -= s;
1968 sect += s;
1969 idx ++;
1970 }
1971 set_bit(R1BIO_Uptodate, &r1_bio->state);
1972 bio->bi_error = 0;
1973 return 1;
1974}
1975
1976static void process_checks(struct r1bio *r1_bio)
1977{
1978 /* We have read all readable devices. If we haven't
1979 * got the block, then there is no hope left.
1980 * If we have, then we want to do a comparison
1981 * and skip the write if everything is the same.
1982 * If any blocks failed to read, then we need to
1983 * attempt an over-write
1984 */
1985 struct mddev *mddev = r1_bio->mddev;
1986 struct r1conf *conf = mddev->private;
1987 int primary;
1988 int i;
1989 int vcnt;
1990
1991 /* Fix variable parts of all bios */
1992 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1993 for (i = 0; i < conf->raid_disks * 2; i++) {
1994 int j;
1995 int size;
1996 int error;
1997 struct bio *b = r1_bio->bios[i];
1998 if (b->bi_end_io != end_sync_read)
1999 continue;
2000 /* fixup the bio for reuse, but preserve errno */
2001 error = b->bi_error;
2002 bio_reset(b);
2003 b->bi_error = error;
2004 b->bi_vcnt = vcnt;
2005 b->bi_iter.bi_size = r1_bio->sectors << 9;
2006 b->bi_iter.bi_sector = r1_bio->sector +
2007 conf->mirrors[i].rdev->data_offset;
2008 b->bi_bdev = conf->mirrors[i].rdev->bdev;
2009 b->bi_end_io = end_sync_read;
2010 b->bi_private = r1_bio;
2011
2012 size = b->bi_iter.bi_size;
2013 for (j = 0; j < vcnt ; j++) {
2014 struct bio_vec *bi;
2015 bi = &b->bi_io_vec[j];
2016 bi->bv_offset = 0;
2017 if (size > PAGE_SIZE)
2018 bi->bv_len = PAGE_SIZE;
2019 else
2020 bi->bv_len = size;
2021 size -= PAGE_SIZE;
2022 }
2023 }
2024 for (primary = 0; primary < conf->raid_disks * 2; primary++)
2025 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2026 !r1_bio->bios[primary]->bi_error) {
2027 r1_bio->bios[primary]->bi_end_io = NULL;
2028 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2029 break;
2030 }
2031 r1_bio->read_disk = primary;
2032 for (i = 0; i < conf->raid_disks * 2; i++) {
2033 int j;
2034 struct bio *pbio = r1_bio->bios[primary];
2035 struct bio *sbio = r1_bio->bios[i];
2036 int error = sbio->bi_error;
2037
2038 if (sbio->bi_end_io != end_sync_read)
2039 continue;
2040 /* Now we can 'fixup' the error value */
2041 sbio->bi_error = 0;
2042
2043 if (!error) {
2044 for (j = vcnt; j-- ; ) {
2045 struct page *p, *s;
2046 p = pbio->bi_io_vec[j].bv_page;
2047 s = sbio->bi_io_vec[j].bv_page;
2048 if (memcmp(page_address(p),
2049 page_address(s),
2050 sbio->bi_io_vec[j].bv_len))
2051 break;
2052 }
2053 } else
2054 j = 0;
2055 if (j >= 0)
2056 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2057 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2058 && !error)) {
2059 /* No need to write to this device. */
2060 sbio->bi_end_io = NULL;
2061 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2062 continue;
2063 }
2064
2065 bio_copy_data(sbio, pbio);
2066 }
2067}
2068
2069static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2070{
2071 struct r1conf *conf = mddev->private;
2072 int i;
2073 int disks = conf->raid_disks * 2;
2074 struct bio *bio, *wbio;
2075
2076 bio = r1_bio->bios[r1_bio->read_disk];
2077
2078 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2079 /* ouch - failed to read all of that. */
2080 if (!fix_sync_read_error(r1_bio))
2081 return;
2082
2083 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2084 process_checks(r1_bio);
2085
2086 /*
2087 * schedule writes
2088 */
2089 atomic_set(&r1_bio->remaining, 1);
2090 for (i = 0; i < disks ; i++) {
2091 wbio = r1_bio->bios[i];
2092 if (wbio->bi_end_io == NULL ||
2093 (wbio->bi_end_io == end_sync_read &&
2094 (i == r1_bio->read_disk ||
2095 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2096 continue;
2097
2098 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2099 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2100 wbio->bi_opf |= MD_FAILFAST;
2101
2102 wbio->bi_end_io = end_sync_write;
2103 atomic_inc(&r1_bio->remaining);
2104 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2105
2106 generic_make_request(wbio);
2107 }
2108
2109 if (atomic_dec_and_test(&r1_bio->remaining)) {
2110 /* if we're here, all write(s) have completed, so clean up */
2111 int s = r1_bio->sectors;
2112 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2113 test_bit(R1BIO_WriteError, &r1_bio->state))
2114 reschedule_retry(r1_bio);
2115 else {
2116 put_buf(r1_bio);
2117 md_done_sync(mddev, s, 1);
2118 }
2119 }
2120}
2121
2122/*
2123 * This is a kernel thread which:
2124 *
2125 * 1. Retries failed read operations on working mirrors.
2126 * 2. Updates the raid superblock when problems encounter.
2127 * 3. Performs writes following reads for array synchronising.
2128 */
2129
2130static void fix_read_error(struct r1conf *conf, int read_disk,
2131 sector_t sect, int sectors)
2132{
2133 struct mddev *mddev = conf->mddev;
2134 while(sectors) {
2135 int s = sectors;
2136 int d = read_disk;
2137 int success = 0;
2138 int start;
2139 struct md_rdev *rdev;
2140
2141 if (s > (PAGE_SIZE>>9))
2142 s = PAGE_SIZE >> 9;
2143
2144 do {
2145 sector_t first_bad;
2146 int bad_sectors;
2147
2148 rcu_read_lock();
2149 rdev = rcu_dereference(conf->mirrors[d].rdev);
2150 if (rdev &&
2151 (test_bit(In_sync, &rdev->flags) ||
2152 (!test_bit(Faulty, &rdev->flags) &&
2153 rdev->recovery_offset >= sect + s)) &&
2154 is_badblock(rdev, sect, s,
2155 &first_bad, &bad_sectors) == 0) {
2156 atomic_inc(&rdev->nr_pending);
2157 rcu_read_unlock();
2158 if (sync_page_io(rdev, sect, s<<9,
2159 conf->tmppage, REQ_OP_READ, 0, false))
2160 success = 1;
2161 rdev_dec_pending(rdev, mddev);
2162 if (success)
2163 break;
2164 } else
2165 rcu_read_unlock();
2166 d++;
2167 if (d == conf->raid_disks * 2)
2168 d = 0;
2169 } while (!success && d != read_disk);
2170
2171 if (!success) {
2172 /* Cannot read from anywhere - mark it bad */
2173 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2174 if (!rdev_set_badblocks(rdev, sect, s, 0))
2175 md_error(mddev, rdev);
2176 break;
2177 }
2178 /* write it back and re-read */
2179 start = d;
2180 while (d != read_disk) {
2181 if (d==0)
2182 d = conf->raid_disks * 2;
2183 d--;
2184 rcu_read_lock();
2185 rdev = rcu_dereference(conf->mirrors[d].rdev);
2186 if (rdev &&
2187 !test_bit(Faulty, &rdev->flags)) {
2188 atomic_inc(&rdev->nr_pending);
2189 rcu_read_unlock();
2190 r1_sync_page_io(rdev, sect, s,
2191 conf->tmppage, WRITE);
2192 rdev_dec_pending(rdev, mddev);
2193 } else
2194 rcu_read_unlock();
2195 }
2196 d = start;
2197 while (d != read_disk) {
2198 char b[BDEVNAME_SIZE];
2199 if (d==0)
2200 d = conf->raid_disks * 2;
2201 d--;
2202 rcu_read_lock();
2203 rdev = rcu_dereference(conf->mirrors[d].rdev);
2204 if (rdev &&
2205 !test_bit(Faulty, &rdev->flags)) {
2206 atomic_inc(&rdev->nr_pending);
2207 rcu_read_unlock();
2208 if (r1_sync_page_io(rdev, sect, s,
2209 conf->tmppage, READ)) {
2210 atomic_add(s, &rdev->corrected_errors);
2211 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2212 mdname(mddev), s,
2213 (unsigned long long)(sect +
2214 rdev->data_offset),
2215 bdevname(rdev->bdev, b));
2216 }
2217 rdev_dec_pending(rdev, mddev);
2218 } else
2219 rcu_read_unlock();
2220 }
2221 sectors -= s;
2222 sect += s;
2223 }
2224}
2225
2226static int narrow_write_error(struct r1bio *r1_bio, int i)
2227{
2228 struct mddev *mddev = r1_bio->mddev;
2229 struct r1conf *conf = mddev->private;
2230 struct md_rdev *rdev = conf->mirrors[i].rdev;
2231
2232 /* bio has the data to be written to device 'i' where
2233 * we just recently had a write error.
2234 * We repeatedly clone the bio and trim down to one block,
2235 * then try the write. Where the write fails we record
2236 * a bad block.
2237 * It is conceivable that the bio doesn't exactly align with
2238 * blocks. We must handle this somehow.
2239 *
2240 * We currently own a reference on the rdev.
2241 */
2242
2243 int block_sectors;
2244 sector_t sector;
2245 int sectors;
2246 int sect_to_write = r1_bio->sectors;
2247 int ok = 1;
2248
2249 if (rdev->badblocks.shift < 0)
2250 return 0;
2251
2252 block_sectors = roundup(1 << rdev->badblocks.shift,
2253 bdev_logical_block_size(rdev->bdev) >> 9);
2254 sector = r1_bio->sector;
2255 sectors = ((sector + block_sectors)
2256 & ~(sector_t)(block_sectors - 1))
2257 - sector;
2258
2259 while (sect_to_write) {
2260 struct bio *wbio;
2261 if (sectors > sect_to_write)
2262 sectors = sect_to_write;
2263 /* Write at 'sector' for 'sectors'*/
2264
2265 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2266 unsigned vcnt = r1_bio->behind_page_count;
2267 struct bio_vec *vec = r1_bio->behind_bvecs;
2268
2269 while (!vec->bv_page) {
2270 vec++;
2271 vcnt--;
2272 }
2273
2274 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2275 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2276
2277 wbio->bi_vcnt = vcnt;
2278 } else {
2279 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2280 }
2281
2282 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2283 wbio->bi_iter.bi_sector = r1_bio->sector;
2284 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2285
2286 bio_trim(wbio, sector - r1_bio->sector, sectors);
2287 wbio->bi_iter.bi_sector += rdev->data_offset;
2288 wbio->bi_bdev = rdev->bdev;
2289
2290 if (submit_bio_wait(wbio) < 0)
2291 /* failure! */
2292 ok = rdev_set_badblocks(rdev, sector,
2293 sectors, 0)
2294 && ok;
2295
2296 bio_put(wbio);
2297 sect_to_write -= sectors;
2298 sector += sectors;
2299 sectors = block_sectors;
2300 }
2301 return ok;
2302}
2303
2304static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2305{
2306 int m;
2307 int s = r1_bio->sectors;
2308 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2309 struct md_rdev *rdev = conf->mirrors[m].rdev;
2310 struct bio *bio = r1_bio->bios[m];
2311 if (bio->bi_end_io == NULL)
2312 continue;
2313 if (!bio->bi_error &&
2314 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2315 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2316 }
2317 if (bio->bi_error &&
2318 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2319 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2320 md_error(conf->mddev, rdev);
2321 }
2322 }
2323 put_buf(r1_bio);
2324 md_done_sync(conf->mddev, s, 1);
2325}
2326
2327static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2328{
2329 int m;
2330 bool fail = false;
2331 for (m = 0; m < conf->raid_disks * 2 ; m++)
2332 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2333 struct md_rdev *rdev = conf->mirrors[m].rdev;
2334 rdev_clear_badblocks(rdev,
2335 r1_bio->sector,
2336 r1_bio->sectors, 0);
2337 rdev_dec_pending(rdev, conf->mddev);
2338 } else if (r1_bio->bios[m] != NULL) {
2339 /* This drive got a write error. We need to
2340 * narrow down and record precise write
2341 * errors.
2342 */
2343 fail = true;
2344 if (!narrow_write_error(r1_bio, m)) {
2345 md_error(conf->mddev,
2346 conf->mirrors[m].rdev);
2347 /* an I/O failed, we can't clear the bitmap */
2348 set_bit(R1BIO_Degraded, &r1_bio->state);
2349 }
2350 rdev_dec_pending(conf->mirrors[m].rdev,
2351 conf->mddev);
2352 }
2353 if (fail) {
2354 spin_lock_irq(&conf->device_lock);
2355 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2356 conf->nr_queued++;
2357 spin_unlock_irq(&conf->device_lock);
2358 md_wakeup_thread(conf->mddev->thread);
2359 } else {
2360 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2361 close_write(r1_bio);
2362 raid_end_bio_io(r1_bio);
2363 }
2364}
2365
2366static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2367{
2368 int disk;
2369 int max_sectors;
2370 struct mddev *mddev = conf->mddev;
2371 struct bio *bio;
2372 char b[BDEVNAME_SIZE];
2373 struct md_rdev *rdev;
2374 dev_t bio_dev;
2375 sector_t bio_sector;
2376
2377 clear_bit(R1BIO_ReadError, &r1_bio->state);
2378 /* we got a read error. Maybe the drive is bad. Maybe just
2379 * the block and we can fix it.
2380 * We freeze all other IO, and try reading the block from
2381 * other devices. When we find one, we re-write
2382 * and check it that fixes the read error.
2383 * This is all done synchronously while the array is
2384 * frozen
2385 */
2386
2387 bio = r1_bio->bios[r1_bio->read_disk];
2388 bdevname(bio->bi_bdev, b);
2389 bio_dev = bio->bi_bdev->bd_dev;
2390 bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2391 bio_put(bio);
2392 r1_bio->bios[r1_bio->read_disk] = NULL;
2393
2394 rdev = conf->mirrors[r1_bio->read_disk].rdev;
2395 if (mddev->ro == 0
2396 && !test_bit(FailFast, &rdev->flags)) {
2397 freeze_array(conf, 1);
2398 fix_read_error(conf, r1_bio->read_disk,
2399 r1_bio->sector, r1_bio->sectors);
2400 unfreeze_array(conf);
2401 } else {
2402 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2403 }
2404
2405 rdev_dec_pending(rdev, conf->mddev);
2406
2407read_more:
2408 disk = read_balance(conf, r1_bio, &max_sectors);
2409 if (disk == -1) {
2410 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2411 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2412 raid_end_bio_io(r1_bio);
2413 } else {
2414 const unsigned long do_sync
2415 = r1_bio->master_bio->bi_opf & REQ_SYNC;
2416 r1_bio->read_disk = disk;
2417 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2418 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2419 max_sectors);
2420 r1_bio->bios[r1_bio->read_disk] = bio;
2421 rdev = conf->mirrors[disk].rdev;
2422 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2423 mdname(mddev),
2424 (unsigned long long)r1_bio->sector,
2425 bdevname(rdev->bdev, b));
2426 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2427 bio->bi_bdev = rdev->bdev;
2428 bio->bi_end_io = raid1_end_read_request;
2429 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2430 if (test_bit(FailFast, &rdev->flags) &&
2431 test_bit(R1BIO_FailFast, &r1_bio->state))
2432 bio->bi_opf |= MD_FAILFAST;
2433 bio->bi_private = r1_bio;
2434 if (max_sectors < r1_bio->sectors) {
2435 /* Drat - have to split this up more */
2436 struct bio *mbio = r1_bio->master_bio;
2437 int sectors_handled = (r1_bio->sector + max_sectors
2438 - mbio->bi_iter.bi_sector);
2439 r1_bio->sectors = max_sectors;
2440 spin_lock_irq(&conf->device_lock);
2441 if (mbio->bi_phys_segments == 0)
2442 mbio->bi_phys_segments = 2;
2443 else
2444 mbio->bi_phys_segments++;
2445 spin_unlock_irq(&conf->device_lock);
2446 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2447 bio, bio_dev, bio_sector);
2448 generic_make_request(bio);
2449 bio = NULL;
2450
2451 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2452
2453 r1_bio->master_bio = mbio;
2454 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2455 r1_bio->state = 0;
2456 set_bit(R1BIO_ReadError, &r1_bio->state);
2457 r1_bio->mddev = mddev;
2458 r1_bio->sector = mbio->bi_iter.bi_sector +
2459 sectors_handled;
2460
2461 goto read_more;
2462 } else {
2463 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2464 bio, bio_dev, bio_sector);
2465 generic_make_request(bio);
2466 }
2467 }
2468}
2469
2470static void raid1d(struct md_thread *thread)
2471{
2472 struct mddev *mddev = thread->mddev;
2473 struct r1bio *r1_bio;
2474 unsigned long flags;
2475 struct r1conf *conf = mddev->private;
2476 struct list_head *head = &conf->retry_list;
2477 struct blk_plug plug;
2478
2479 md_check_recovery(mddev);
2480
2481 if (!list_empty_careful(&conf->bio_end_io_list) &&
2482 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2483 LIST_HEAD(tmp);
2484 spin_lock_irqsave(&conf->device_lock, flags);
2485 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2486 while (!list_empty(&conf->bio_end_io_list)) {
2487 list_move(conf->bio_end_io_list.prev, &tmp);
2488 conf->nr_queued--;
2489 }
2490 }
2491 spin_unlock_irqrestore(&conf->device_lock, flags);
2492 while (!list_empty(&tmp)) {
2493 r1_bio = list_first_entry(&tmp, struct r1bio,
2494 retry_list);
2495 list_del(&r1_bio->retry_list);
2496 if (mddev->degraded)
2497 set_bit(R1BIO_Degraded, &r1_bio->state);
2498 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2499 close_write(r1_bio);
2500 raid_end_bio_io(r1_bio);
2501 }
2502 }
2503
2504 blk_start_plug(&plug);
2505 for (;;) {
2506
2507 flush_pending_writes(conf);
2508
2509 spin_lock_irqsave(&conf->device_lock, flags);
2510 if (list_empty(head)) {
2511 spin_unlock_irqrestore(&conf->device_lock, flags);
2512 break;
2513 }
2514 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2515 list_del(head->prev);
2516 conf->nr_queued--;
2517 spin_unlock_irqrestore(&conf->device_lock, flags);
2518
2519 mddev = r1_bio->mddev;
2520 conf = mddev->private;
2521 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2522 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2523 test_bit(R1BIO_WriteError, &r1_bio->state))
2524 handle_sync_write_finished(conf, r1_bio);
2525 else
2526 sync_request_write(mddev, r1_bio);
2527 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2528 test_bit(R1BIO_WriteError, &r1_bio->state))
2529 handle_write_finished(conf, r1_bio);
2530 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2531 handle_read_error(conf, r1_bio);
2532 else
2533 /* just a partial read to be scheduled from separate
2534 * context
2535 */
2536 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2537
2538 cond_resched();
2539 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2540 md_check_recovery(mddev);
2541 }
2542 blk_finish_plug(&plug);
2543}
2544
2545static int init_resync(struct r1conf *conf)
2546{
2547 int buffs;
2548
2549 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2550 BUG_ON(conf->r1buf_pool);
2551 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2552 conf->poolinfo);
2553 if (!conf->r1buf_pool)
2554 return -ENOMEM;
2555 conf->next_resync = 0;
2556 return 0;
2557}
2558
2559/*
2560 * perform a "sync" on one "block"
2561 *
2562 * We need to make sure that no normal I/O request - particularly write
2563 * requests - conflict with active sync requests.
2564 *
2565 * This is achieved by tracking pending requests and a 'barrier' concept
2566 * that can be installed to exclude normal IO requests.
2567 */
2568
2569static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2570 int *skipped)
2571{
2572 struct r1conf *conf = mddev->private;
2573 struct r1bio *r1_bio;
2574 struct bio *bio;
2575 sector_t max_sector, nr_sectors;
2576 int disk = -1;
2577 int i;
2578 int wonly = -1;
2579 int write_targets = 0, read_targets = 0;
2580 sector_t sync_blocks;
2581 int still_degraded = 0;
2582 int good_sectors = RESYNC_SECTORS;
2583 int min_bad = 0; /* number of sectors that are bad in all devices */
2584
2585 if (!conf->r1buf_pool)
2586 if (init_resync(conf))
2587 return 0;
2588
2589 max_sector = mddev->dev_sectors;
2590 if (sector_nr >= max_sector) {
2591 /* If we aborted, we need to abort the
2592 * sync on the 'current' bitmap chunk (there will
2593 * only be one in raid1 resync.
2594 * We can find the current addess in mddev->curr_resync
2595 */
2596 if (mddev->curr_resync < max_sector) /* aborted */
2597 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2598 &sync_blocks, 1);
2599 else /* completed sync */
2600 conf->fullsync = 0;
2601
2602 bitmap_close_sync(mddev->bitmap);
2603 close_sync(conf);
2604
2605 if (mddev_is_clustered(mddev)) {
2606 conf->cluster_sync_low = 0;
2607 conf->cluster_sync_high = 0;
2608 }
2609 return 0;
2610 }
2611
2612 if (mddev->bitmap == NULL &&
2613 mddev->recovery_cp == MaxSector &&
2614 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2615 conf->fullsync == 0) {
2616 *skipped = 1;
2617 return max_sector - sector_nr;
2618 }
2619 /* before building a request, check if we can skip these blocks..
2620 * This call the bitmap_start_sync doesn't actually record anything
2621 */
2622 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2623 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2624 /* We can skip this block, and probably several more */
2625 *skipped = 1;
2626 return sync_blocks;
2627 }
2628
2629 /*
2630 * If there is non-resync activity waiting for a turn, then let it
2631 * though before starting on this new sync request.
2632 */
2633 if (conf->nr_waiting)
2634 schedule_timeout_uninterruptible(1);
2635
2636 /* we are incrementing sector_nr below. To be safe, we check against
2637 * sector_nr + two times RESYNC_SECTORS
2638 */
2639
2640 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2641 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2642 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2643
2644 raise_barrier(conf, sector_nr);
2645
2646 rcu_read_lock();
2647 /*
2648 * If we get a correctably read error during resync or recovery,
2649 * we might want to read from a different device. So we
2650 * flag all drives that could conceivably be read from for READ,
2651 * and any others (which will be non-In_sync devices) for WRITE.
2652 * If a read fails, we try reading from something else for which READ
2653 * is OK.
2654 */
2655
2656 r1_bio->mddev = mddev;
2657 r1_bio->sector = sector_nr;
2658 r1_bio->state = 0;
2659 set_bit(R1BIO_IsSync, &r1_bio->state);
2660
2661 for (i = 0; i < conf->raid_disks * 2; i++) {
2662 struct md_rdev *rdev;
2663 bio = r1_bio->bios[i];
2664 bio_reset(bio);
2665
2666 rdev = rcu_dereference(conf->mirrors[i].rdev);
2667 if (rdev == NULL ||
2668 test_bit(Faulty, &rdev->flags)) {
2669 if (i < conf->raid_disks)
2670 still_degraded = 1;
2671 } else if (!test_bit(In_sync, &rdev->flags)) {
2672 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2673 bio->bi_end_io = end_sync_write;
2674 write_targets ++;
2675 } else {
2676 /* may need to read from here */
2677 sector_t first_bad = MaxSector;
2678 int bad_sectors;
2679
2680 if (is_badblock(rdev, sector_nr, good_sectors,
2681 &first_bad, &bad_sectors)) {
2682 if (first_bad > sector_nr)
2683 good_sectors = first_bad - sector_nr;
2684 else {
2685 bad_sectors -= (sector_nr - first_bad);
2686 if (min_bad == 0 ||
2687 min_bad > bad_sectors)
2688 min_bad = bad_sectors;
2689 }
2690 }
2691 if (sector_nr < first_bad) {
2692 if (test_bit(WriteMostly, &rdev->flags)) {
2693 if (wonly < 0)
2694 wonly = i;
2695 } else {
2696 if (disk < 0)
2697 disk = i;
2698 }
2699 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2700 bio->bi_end_io = end_sync_read;
2701 read_targets++;
2702 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2703 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2704 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2705 /*
2706 * The device is suitable for reading (InSync),
2707 * but has bad block(s) here. Let's try to correct them,
2708 * if we are doing resync or repair. Otherwise, leave
2709 * this device alone for this sync request.
2710 */
2711 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2712 bio->bi_end_io = end_sync_write;
2713 write_targets++;
2714 }
2715 }
2716 if (bio->bi_end_io) {
2717 atomic_inc(&rdev->nr_pending);
2718 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2719 bio->bi_bdev = rdev->bdev;
2720 bio->bi_private = r1_bio;
2721 if (test_bit(FailFast, &rdev->flags))
2722 bio->bi_opf |= MD_FAILFAST;
2723 }
2724 }
2725 rcu_read_unlock();
2726 if (disk < 0)
2727 disk = wonly;
2728 r1_bio->read_disk = disk;
2729
2730 if (read_targets == 0 && min_bad > 0) {
2731 /* These sectors are bad on all InSync devices, so we
2732 * need to mark them bad on all write targets
2733 */
2734 int ok = 1;
2735 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2736 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2737 struct md_rdev *rdev = conf->mirrors[i].rdev;
2738 ok = rdev_set_badblocks(rdev, sector_nr,
2739 min_bad, 0
2740 ) && ok;
2741 }
2742 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2743 *skipped = 1;
2744 put_buf(r1_bio);
2745
2746 if (!ok) {
2747 /* Cannot record the badblocks, so need to
2748 * abort the resync.
2749 * If there are multiple read targets, could just
2750 * fail the really bad ones ???
2751 */
2752 conf->recovery_disabled = mddev->recovery_disabled;
2753 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2754 return 0;
2755 } else
2756 return min_bad;
2757
2758 }
2759 if (min_bad > 0 && min_bad < good_sectors) {
2760 /* only resync enough to reach the next bad->good
2761 * transition */
2762 good_sectors = min_bad;
2763 }
2764
2765 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2766 /* extra read targets are also write targets */
2767 write_targets += read_targets-1;
2768
2769 if (write_targets == 0 || read_targets == 0) {
2770 /* There is nowhere to write, so all non-sync
2771 * drives must be failed - so we are finished
2772 */
2773 sector_t rv;
2774 if (min_bad > 0)
2775 max_sector = sector_nr + min_bad;
2776 rv = max_sector - sector_nr;
2777 *skipped = 1;
2778 put_buf(r1_bio);
2779 return rv;
2780 }
2781
2782 if (max_sector > mddev->resync_max)
2783 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2784 if (max_sector > sector_nr + good_sectors)
2785 max_sector = sector_nr + good_sectors;
2786 nr_sectors = 0;
2787 sync_blocks = 0;
2788 do {
2789 struct page *page;
2790 int len = PAGE_SIZE;
2791 if (sector_nr + (len>>9) > max_sector)
2792 len = (max_sector - sector_nr) << 9;
2793 if (len == 0)
2794 break;
2795 if (sync_blocks == 0) {
2796 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2797 &sync_blocks, still_degraded) &&
2798 !conf->fullsync &&
2799 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2800 break;
2801 if ((len >> 9) > sync_blocks)
2802 len = sync_blocks<<9;
2803 }
2804
2805 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2806 bio = r1_bio->bios[i];
2807 if (bio->bi_end_io) {
2808 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2809 if (bio_add_page(bio, page, len, 0) == 0) {
2810 /* stop here */
2811 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2812 while (i > 0) {
2813 i--;
2814 bio = r1_bio->bios[i];
2815 if (bio->bi_end_io==NULL)
2816 continue;
2817 /* remove last page from this bio */
2818 bio->bi_vcnt--;
2819 bio->bi_iter.bi_size -= len;
2820 bio_clear_flag(bio, BIO_SEG_VALID);
2821 }
2822 goto bio_full;
2823 }
2824 }
2825 }
2826 nr_sectors += len>>9;
2827 sector_nr += len>>9;
2828 sync_blocks -= (len>>9);
2829 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2830 bio_full:
2831 r1_bio->sectors = nr_sectors;
2832
2833 if (mddev_is_clustered(mddev) &&
2834 conf->cluster_sync_high < sector_nr + nr_sectors) {
2835 conf->cluster_sync_low = mddev->curr_resync_completed;
2836 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2837 /* Send resync message */
2838 md_cluster_ops->resync_info_update(mddev,
2839 conf->cluster_sync_low,
2840 conf->cluster_sync_high);
2841 }
2842
2843 /* For a user-requested sync, we read all readable devices and do a
2844 * compare
2845 */
2846 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2847 atomic_set(&r1_bio->remaining, read_targets);
2848 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2849 bio = r1_bio->bios[i];
2850 if (bio->bi_end_io == end_sync_read) {
2851 read_targets--;
2852 md_sync_acct(bio->bi_bdev, nr_sectors);
2853 if (read_targets == 1)
2854 bio->bi_opf &= ~MD_FAILFAST;
2855 generic_make_request(bio);
2856 }
2857 }
2858 } else {
2859 atomic_set(&r1_bio->remaining, 1);
2860 bio = r1_bio->bios[r1_bio->read_disk];
2861 md_sync_acct(bio->bi_bdev, nr_sectors);
2862 if (read_targets == 1)
2863 bio->bi_opf &= ~MD_FAILFAST;
2864 generic_make_request(bio);
2865
2866 }
2867 return nr_sectors;
2868}
2869
2870static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2871{
2872 if (sectors)
2873 return sectors;
2874
2875 return mddev->dev_sectors;
2876}
2877
2878static struct r1conf *setup_conf(struct mddev *mddev)
2879{
2880 struct r1conf *conf;
2881 int i;
2882 struct raid1_info *disk;
2883 struct md_rdev *rdev;
2884 int err = -ENOMEM;
2885
2886 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2887 if (!conf)
2888 goto abort;
2889
2890 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2891 * mddev->raid_disks * 2,
2892 GFP_KERNEL);
2893 if (!conf->mirrors)
2894 goto abort;
2895
2896 conf->tmppage = alloc_page(GFP_KERNEL);
2897 if (!conf->tmppage)
2898 goto abort;
2899
2900 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2901 if (!conf->poolinfo)
2902 goto abort;
2903 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2904 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2905 r1bio_pool_free,
2906 conf->poolinfo);
2907 if (!conf->r1bio_pool)
2908 goto abort;
2909
2910 conf->poolinfo->mddev = mddev;
2911
2912 err = -EINVAL;
2913 spin_lock_init(&conf->device_lock);
2914 rdev_for_each(rdev, mddev) {
2915 struct request_queue *q;
2916 int disk_idx = rdev->raid_disk;
2917 if (disk_idx >= mddev->raid_disks
2918 || disk_idx < 0)
2919 continue;
2920 if (test_bit(Replacement, &rdev->flags))
2921 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2922 else
2923 disk = conf->mirrors + disk_idx;
2924
2925 if (disk->rdev)
2926 goto abort;
2927 disk->rdev = rdev;
2928 q = bdev_get_queue(rdev->bdev);
2929
2930 disk->head_position = 0;
2931 disk->seq_start = MaxSector;
2932 }
2933 conf->raid_disks = mddev->raid_disks;
2934 conf->mddev = mddev;
2935 INIT_LIST_HEAD(&conf->retry_list);
2936 INIT_LIST_HEAD(&conf->bio_end_io_list);
2937
2938 spin_lock_init(&conf->resync_lock);
2939 init_waitqueue_head(&conf->wait_barrier);
2940
2941 bio_list_init(&conf->pending_bio_list);
2942 conf->pending_count = 0;
2943 conf->recovery_disabled = mddev->recovery_disabled - 1;
2944
2945 conf->start_next_window = MaxSector;
2946 conf->current_window_requests = conf->next_window_requests = 0;
2947
2948 err = -EIO;
2949 for (i = 0; i < conf->raid_disks * 2; i++) {
2950
2951 disk = conf->mirrors + i;
2952
2953 if (i < conf->raid_disks &&
2954 disk[conf->raid_disks].rdev) {
2955 /* This slot has a replacement. */
2956 if (!disk->rdev) {
2957 /* No original, just make the replacement
2958 * a recovering spare
2959 */
2960 disk->rdev =
2961 disk[conf->raid_disks].rdev;
2962 disk[conf->raid_disks].rdev = NULL;
2963 } else if (!test_bit(In_sync, &disk->rdev->flags))
2964 /* Original is not in_sync - bad */
2965 goto abort;
2966 }
2967
2968 if (!disk->rdev ||
2969 !test_bit(In_sync, &disk->rdev->flags)) {
2970 disk->head_position = 0;
2971 if (disk->rdev &&
2972 (disk->rdev->saved_raid_disk < 0))
2973 conf->fullsync = 1;
2974 }
2975 }
2976
2977 err = -ENOMEM;
2978 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2979 if (!conf->thread)
2980 goto abort;
2981
2982 return conf;
2983
2984 abort:
2985 if (conf) {
2986 mempool_destroy(conf->r1bio_pool);
2987 kfree(conf->mirrors);
2988 safe_put_page(conf->tmppage);
2989 kfree(conf->poolinfo);
2990 kfree(conf);
2991 }
2992 return ERR_PTR(err);
2993}
2994
2995static void raid1_free(struct mddev *mddev, void *priv);
2996static int raid1_run(struct mddev *mddev)
2997{
2998 struct r1conf *conf;
2999 int i;
3000 struct md_rdev *rdev;
3001 int ret;
3002 bool discard_supported = false;
3003
3004 if (mddev->level != 1) {
3005 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3006 mdname(mddev), mddev->level);
3007 return -EIO;
3008 }
3009 if (mddev->reshape_position != MaxSector) {
3010 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3011 mdname(mddev));
3012 return -EIO;
3013 }
3014 /*
3015 * copy the already verified devices into our private RAID1
3016 * bookkeeping area. [whatever we allocate in run(),
3017 * should be freed in raid1_free()]
3018 */
3019 if (mddev->private == NULL)
3020 conf = setup_conf(mddev);
3021 else
3022 conf = mddev->private;
3023
3024 if (IS_ERR(conf))
3025 return PTR_ERR(conf);
3026
3027 if (mddev->queue)
3028 blk_queue_max_write_same_sectors(mddev->queue, 0);
3029
3030 rdev_for_each(rdev, mddev) {
3031 if (!mddev->gendisk)
3032 continue;
3033 disk_stack_limits(mddev->gendisk, rdev->bdev,
3034 rdev->data_offset << 9);
3035 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3036 discard_supported = true;
3037 }
3038
3039 mddev->degraded = 0;
3040 for (i=0; i < conf->raid_disks; i++)
3041 if (conf->mirrors[i].rdev == NULL ||
3042 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3043 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3044 mddev->degraded++;
3045
3046 if (conf->raid_disks - mddev->degraded == 1)
3047 mddev->recovery_cp = MaxSector;
3048
3049 if (mddev->recovery_cp != MaxSector)
3050 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3051 mdname(mddev));
3052 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3053 mdname(mddev), mddev->raid_disks - mddev->degraded,
3054 mddev->raid_disks);
3055
3056 /*
3057 * Ok, everything is just fine now
3058 */
3059 mddev->thread = conf->thread;
3060 conf->thread = NULL;
3061 mddev->private = conf;
3062 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3063
3064 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3065
3066 if (mddev->queue) {
3067 if (discard_supported)
3068 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3069 mddev->queue);
3070 else
3071 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3072 mddev->queue);
3073 }
3074
3075 ret = md_integrity_register(mddev);
3076 if (ret) {
3077 md_unregister_thread(&mddev->thread);
3078 raid1_free(mddev, conf);
3079 }
3080 return ret;
3081}
3082
3083static void raid1_free(struct mddev *mddev, void *priv)
3084{
3085 struct r1conf *conf = priv;
3086
3087 mempool_destroy(conf->r1bio_pool);
3088 kfree(conf->mirrors);
3089 safe_put_page(conf->tmppage);
3090 kfree(conf->poolinfo);
3091 kfree(conf);
3092}
3093
3094static int raid1_resize(struct mddev *mddev, sector_t sectors)
3095{
3096 /* no resync is happening, and there is enough space
3097 * on all devices, so we can resize.
3098 * We need to make sure resync covers any new space.
3099 * If the array is shrinking we should possibly wait until
3100 * any io in the removed space completes, but it hardly seems
3101 * worth it.
3102 */
3103 sector_t newsize = raid1_size(mddev, sectors, 0);
3104 if (mddev->external_size &&
3105 mddev->array_sectors > newsize)
3106 return -EINVAL;
3107 if (mddev->bitmap) {
3108 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3109 if (ret)
3110 return ret;
3111 }
3112 md_set_array_sectors(mddev, newsize);
3113 set_capacity(mddev->gendisk, mddev->array_sectors);
3114 revalidate_disk(mddev->gendisk);
3115 if (sectors > mddev->dev_sectors &&
3116 mddev->recovery_cp > mddev->dev_sectors) {
3117 mddev->recovery_cp = mddev->dev_sectors;
3118 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3119 }
3120 mddev->dev_sectors = sectors;
3121 mddev->resync_max_sectors = sectors;
3122 return 0;
3123}
3124
3125static int raid1_reshape(struct mddev *mddev)
3126{
3127 /* We need to:
3128 * 1/ resize the r1bio_pool
3129 * 2/ resize conf->mirrors
3130 *
3131 * We allocate a new r1bio_pool if we can.
3132 * Then raise a device barrier and wait until all IO stops.
3133 * Then resize conf->mirrors and swap in the new r1bio pool.
3134 *
3135 * At the same time, we "pack" the devices so that all the missing
3136 * devices have the higher raid_disk numbers.
3137 */
3138 mempool_t *newpool, *oldpool;
3139 struct pool_info *newpoolinfo;
3140 struct raid1_info *newmirrors;
3141 struct r1conf *conf = mddev->private;
3142 int cnt, raid_disks;
3143 unsigned long flags;
3144 int d, d2, err;
3145
3146 /* Cannot change chunk_size, layout, or level */
3147 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3148 mddev->layout != mddev->new_layout ||
3149 mddev->level != mddev->new_level) {
3150 mddev->new_chunk_sectors = mddev->chunk_sectors;
3151 mddev->new_layout = mddev->layout;
3152 mddev->new_level = mddev->level;
3153 return -EINVAL;
3154 }
3155
3156 if (!mddev_is_clustered(mddev)) {
3157 err = md_allow_write(mddev);
3158 if (err)
3159 return err;
3160 }
3161
3162 raid_disks = mddev->raid_disks + mddev->delta_disks;
3163
3164 if (raid_disks < conf->raid_disks) {
3165 cnt=0;
3166 for (d= 0; d < conf->raid_disks; d++)
3167 if (conf->mirrors[d].rdev)
3168 cnt++;
3169 if (cnt > raid_disks)
3170 return -EBUSY;
3171 }
3172
3173 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3174 if (!newpoolinfo)
3175 return -ENOMEM;
3176 newpoolinfo->mddev = mddev;
3177 newpoolinfo->raid_disks = raid_disks * 2;
3178
3179 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3180 r1bio_pool_free, newpoolinfo);
3181 if (!newpool) {
3182 kfree(newpoolinfo);
3183 return -ENOMEM;
3184 }
3185 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3186 GFP_KERNEL);
3187 if (!newmirrors) {
3188 kfree(newpoolinfo);
3189 mempool_destroy(newpool);
3190 return -ENOMEM;
3191 }
3192
3193 freeze_array(conf, 0);
3194
3195 /* ok, everything is stopped */
3196 oldpool = conf->r1bio_pool;
3197 conf->r1bio_pool = newpool;
3198
3199 for (d = d2 = 0; d < conf->raid_disks; d++) {
3200 struct md_rdev *rdev = conf->mirrors[d].rdev;
3201 if (rdev && rdev->raid_disk != d2) {
3202 sysfs_unlink_rdev(mddev, rdev);
3203 rdev->raid_disk = d2;
3204 sysfs_unlink_rdev(mddev, rdev);
3205 if (sysfs_link_rdev(mddev, rdev))
3206 pr_warn("md/raid1:%s: cannot register rd%d\n",
3207 mdname(mddev), rdev->raid_disk);
3208 }
3209 if (rdev)
3210 newmirrors[d2++].rdev = rdev;
3211 }
3212 kfree(conf->mirrors);
3213 conf->mirrors = newmirrors;
3214 kfree(conf->poolinfo);
3215 conf->poolinfo = newpoolinfo;
3216
3217 spin_lock_irqsave(&conf->device_lock, flags);
3218 mddev->degraded += (raid_disks - conf->raid_disks);
3219 spin_unlock_irqrestore(&conf->device_lock, flags);
3220 conf->raid_disks = mddev->raid_disks = raid_disks;
3221 mddev->delta_disks = 0;
3222
3223 unfreeze_array(conf);
3224
3225 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3226 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3227 md_wakeup_thread(mddev->thread);
3228
3229 mempool_destroy(oldpool);
3230 return 0;
3231}
3232
3233static void raid1_quiesce(struct mddev *mddev, int state)
3234{
3235 struct r1conf *conf = mddev->private;
3236
3237 switch(state) {
3238 case 2: /* wake for suspend */
3239 wake_up(&conf->wait_barrier);
3240 break;
3241 case 1:
3242 freeze_array(conf, 0);
3243 break;
3244 case 0:
3245 unfreeze_array(conf);
3246 break;
3247 }
3248}
3249
3250static void *raid1_takeover(struct mddev *mddev)
3251{
3252 /* raid1 can take over:
3253 * raid5 with 2 devices, any layout or chunk size
3254 */
3255 if (mddev->level == 5 && mddev->raid_disks == 2) {
3256 struct r1conf *conf;
3257 mddev->new_level = 1;
3258 mddev->new_layout = 0;
3259 mddev->new_chunk_sectors = 0;
3260 conf = setup_conf(mddev);
3261 if (!IS_ERR(conf)) {
3262 /* Array must appear to be quiesced */
3263 conf->array_frozen = 1;
3264 mddev_clear_unsupported_flags(mddev,
3265 UNSUPPORTED_MDDEV_FLAGS);
3266 }
3267 return conf;
3268 }
3269 return ERR_PTR(-EINVAL);
3270}
3271
3272static struct md_personality raid1_personality =
3273{
3274 .name = "raid1",
3275 .level = 1,
3276 .owner = THIS_MODULE,
3277 .make_request = raid1_make_request,
3278 .run = raid1_run,
3279 .free = raid1_free,
3280 .status = raid1_status,
3281 .error_handler = raid1_error,
3282 .hot_add_disk = raid1_add_disk,
3283 .hot_remove_disk= raid1_remove_disk,
3284 .spare_active = raid1_spare_active,
3285 .sync_request = raid1_sync_request,
3286 .resize = raid1_resize,
3287 .size = raid1_size,
3288 .check_reshape = raid1_reshape,
3289 .quiesce = raid1_quiesce,
3290 .takeover = raid1_takeover,
3291 .congested = raid1_congested,
3292};
3293
3294static int __init raid_init(void)
3295{
3296 return register_md_personality(&raid1_personality);
3297}
3298
3299static void raid_exit(void)
3300{
3301 unregister_md_personality(&raid1_personality);
3302}
3303
3304module_init(raid_init);
3305module_exit(raid_exit);
3306MODULE_LICENSE("GPL");
3307MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3308MODULE_ALIAS("md-personality-3"); /* RAID1 */
3309MODULE_ALIAS("md-raid1");
3310MODULE_ALIAS("md-level-1");
3311
3312module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);