Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (C) 2011-2012 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "dm-bio-prison-v1.h"
   9#include "dm.h"
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/log2.h>
  16#include <linux/list.h>
  17#include <linux/rculist.h>
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/vmalloc.h>
  22#include <linux/sort.h>
  23#include <linux/rbtree.h>
  24
  25#define	DM_MSG_PREFIX	"thin"
  26
  27/*
  28 * Tunable constants
  29 */
  30#define ENDIO_HOOK_POOL_SIZE 1024
  31#define MAPPING_POOL_SIZE 1024
  32#define COMMIT_PERIOD HZ
  33#define NO_SPACE_TIMEOUT_SECS 60
  34
  35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  36
  37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  38		"A percentage of time allocated for copy on write");
  39
  40/*
  41 * The block size of the device holding pool data must be
  42 * between 64KB and 1GB.
  43 */
  44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  46
  47/*
  48 * Device id is restricted to 24 bits.
  49 */
  50#define MAX_DEV_ID ((1 << 24) - 1)
  51
  52/*
  53 * How do we handle breaking sharing of data blocks?
  54 * =================================================
  55 *
  56 * We use a standard copy-on-write btree to store the mappings for the
  57 * devices (note I'm talking about copy-on-write of the metadata here, not
  58 * the data).  When you take an internal snapshot you clone the root node
  59 * of the origin btree.  After this there is no concept of an origin or a
  60 * snapshot.  They are just two device trees that happen to point to the
  61 * same data blocks.
  62 *
  63 * When we get a write in we decide if it's to a shared data block using
  64 * some timestamp magic.  If it is, we have to break sharing.
  65 *
  66 * Let's say we write to a shared block in what was the origin.  The
  67 * steps are:
  68 *
  69 * i) plug io further to this physical block. (see bio_prison code).
  70 *
  71 * ii) quiesce any read io to that shared data block.  Obviously
  72 * including all devices that share this block.  (see dm_deferred_set code)
  73 *
  74 * iii) copy the data block to a newly allocate block.  This step can be
  75 * missed out if the io covers the block. (schedule_copy).
  76 *
  77 * iv) insert the new mapping into the origin's btree
  78 * (process_prepared_mapping).  This act of inserting breaks some
  79 * sharing of btree nodes between the two devices.  Breaking sharing only
  80 * effects the btree of that specific device.  Btrees for the other
  81 * devices that share the block never change.  The btree for the origin
  82 * device as it was after the last commit is untouched, ie. we're using
  83 * persistent data structures in the functional programming sense.
  84 *
  85 * v) unplug io to this physical block, including the io that triggered
  86 * the breaking of sharing.
  87 *
  88 * Steps (ii) and (iii) occur in parallel.
  89 *
  90 * The metadata _doesn't_ need to be committed before the io continues.  We
  91 * get away with this because the io is always written to a _new_ block.
  92 * If there's a crash, then:
  93 *
  94 * - The origin mapping will point to the old origin block (the shared
  95 * one).  This will contain the data as it was before the io that triggered
  96 * the breaking of sharing came in.
  97 *
  98 * - The snap mapping still points to the old block.  As it would after
  99 * the commit.
 100 *
 101 * The downside of this scheme is the timestamp magic isn't perfect, and
 102 * will continue to think that data block in the snapshot device is shared
 103 * even after the write to the origin has broken sharing.  I suspect data
 104 * blocks will typically be shared by many different devices, so we're
 105 * breaking sharing n + 1 times, rather than n, where n is the number of
 106 * devices that reference this data block.  At the moment I think the
 107 * benefits far, far outweigh the disadvantages.
 108 */
 109
 110/*----------------------------------------------------------------*/
 111
 112/*
 113 * Key building.
 114 */
 115enum lock_space {
 116	VIRTUAL,
 117	PHYSICAL
 118};
 119
 120static void build_key(struct dm_thin_device *td, enum lock_space ls,
 121		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
 122{
 123	key->virtual = (ls == VIRTUAL);
 124	key->dev = dm_thin_dev_id(td);
 125	key->block_begin = b;
 126	key->block_end = e;
 127}
 128
 129static void build_data_key(struct dm_thin_device *td, dm_block_t b,
 130			   struct dm_cell_key *key)
 131{
 132	build_key(td, PHYSICAL, b, b + 1llu, key);
 133}
 134
 135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 136			      struct dm_cell_key *key)
 137{
 138	build_key(td, VIRTUAL, b, b + 1llu, key);
 139}
 140
 141/*----------------------------------------------------------------*/
 142
 143#define THROTTLE_THRESHOLD (1 * HZ)
 144
 145struct throttle {
 146	struct rw_semaphore lock;
 147	unsigned long threshold;
 148	bool throttle_applied;
 149};
 150
 151static void throttle_init(struct throttle *t)
 152{
 153	init_rwsem(&t->lock);
 154	t->throttle_applied = false;
 155}
 156
 157static void throttle_work_start(struct throttle *t)
 158{
 159	t->threshold = jiffies + THROTTLE_THRESHOLD;
 160}
 161
 162static void throttle_work_update(struct throttle *t)
 163{
 164	if (!t->throttle_applied && jiffies > t->threshold) {
 165		down_write(&t->lock);
 166		t->throttle_applied = true;
 167	}
 168}
 169
 170static void throttle_work_complete(struct throttle *t)
 171{
 172	if (t->throttle_applied) {
 173		t->throttle_applied = false;
 174		up_write(&t->lock);
 175	}
 176}
 177
 178static void throttle_lock(struct throttle *t)
 179{
 180	down_read(&t->lock);
 181}
 182
 183static void throttle_unlock(struct throttle *t)
 184{
 185	up_read(&t->lock);
 186}
 187
 188/*----------------------------------------------------------------*/
 189
 190/*
 191 * A pool device ties together a metadata device and a data device.  It
 192 * also provides the interface for creating and destroying internal
 193 * devices.
 194 */
 195struct dm_thin_new_mapping;
 196
 197/*
 198 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
 199 */
 200enum pool_mode {
 201	PM_WRITE,		/* metadata may be changed */
 202	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
 203	PM_READ_ONLY,		/* metadata may not be changed */
 204	PM_FAIL,		/* all I/O fails */
 205};
 206
 207struct pool_features {
 208	enum pool_mode mode;
 209
 210	bool zero_new_blocks:1;
 211	bool discard_enabled:1;
 212	bool discard_passdown:1;
 213	bool error_if_no_space:1;
 214};
 215
 216struct thin_c;
 217typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 218typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 219typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 220
 221#define CELL_SORT_ARRAY_SIZE 8192
 222
 223struct pool {
 224	struct list_head list;
 225	struct dm_target *ti;	/* Only set if a pool target is bound */
 226
 227	struct mapped_device *pool_md;
 228	struct block_device *md_dev;
 229	struct dm_pool_metadata *pmd;
 230
 231	dm_block_t low_water_blocks;
 232	uint32_t sectors_per_block;
 233	int sectors_per_block_shift;
 234
 235	struct pool_features pf;
 236	bool low_water_triggered:1;	/* A dm event has been sent */
 237	bool suspended:1;
 238	bool out_of_data_space:1;
 239
 240	struct dm_bio_prison *prison;
 241	struct dm_kcopyd_client *copier;
 242
 243	struct workqueue_struct *wq;
 244	struct throttle throttle;
 245	struct work_struct worker;
 246	struct delayed_work waker;
 247	struct delayed_work no_space_timeout;
 248
 249	unsigned long last_commit_jiffies;
 250	unsigned ref_count;
 251
 252	spinlock_t lock;
 253	struct bio_list deferred_flush_bios;
 254	struct list_head prepared_mappings;
 255	struct list_head prepared_discards;
 256	struct list_head prepared_discards_pt2;
 257	struct list_head active_thins;
 258
 259	struct dm_deferred_set *shared_read_ds;
 260	struct dm_deferred_set *all_io_ds;
 261
 262	struct dm_thin_new_mapping *next_mapping;
 263	mempool_t *mapping_pool;
 264
 265	process_bio_fn process_bio;
 266	process_bio_fn process_discard;
 267
 268	process_cell_fn process_cell;
 269	process_cell_fn process_discard_cell;
 270
 271	process_mapping_fn process_prepared_mapping;
 272	process_mapping_fn process_prepared_discard;
 273	process_mapping_fn process_prepared_discard_pt2;
 274
 275	struct dm_bio_prison_cell **cell_sort_array;
 276};
 277
 278static enum pool_mode get_pool_mode(struct pool *pool);
 279static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 280
 281/*
 282 * Target context for a pool.
 283 */
 284struct pool_c {
 285	struct dm_target *ti;
 286	struct pool *pool;
 287	struct dm_dev *data_dev;
 288	struct dm_dev *metadata_dev;
 289	struct dm_target_callbacks callbacks;
 290
 291	dm_block_t low_water_blocks;
 292	struct pool_features requested_pf; /* Features requested during table load */
 293	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 294};
 295
 296/*
 297 * Target context for a thin.
 298 */
 299struct thin_c {
 300	struct list_head list;
 301	struct dm_dev *pool_dev;
 302	struct dm_dev *origin_dev;
 303	sector_t origin_size;
 304	dm_thin_id dev_id;
 305
 306	struct pool *pool;
 307	struct dm_thin_device *td;
 308	struct mapped_device *thin_md;
 309
 310	bool requeue_mode:1;
 311	spinlock_t lock;
 312	struct list_head deferred_cells;
 313	struct bio_list deferred_bio_list;
 314	struct bio_list retry_on_resume_list;
 315	struct rb_root sort_bio_list; /* sorted list of deferred bios */
 316
 317	/*
 318	 * Ensures the thin is not destroyed until the worker has finished
 319	 * iterating the active_thins list.
 320	 */
 321	atomic_t refcount;
 322	struct completion can_destroy;
 323};
 324
 325/*----------------------------------------------------------------*/
 326
 327static bool block_size_is_power_of_two(struct pool *pool)
 328{
 329	return pool->sectors_per_block_shift >= 0;
 330}
 331
 332static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
 333{
 334	return block_size_is_power_of_two(pool) ?
 335		(b << pool->sectors_per_block_shift) :
 336		(b * pool->sectors_per_block);
 337}
 338
 339/*----------------------------------------------------------------*/
 340
 341struct discard_op {
 342	struct thin_c *tc;
 343	struct blk_plug plug;
 344	struct bio *parent_bio;
 345	struct bio *bio;
 346};
 347
 348static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
 349{
 350	BUG_ON(!parent);
 351
 352	op->tc = tc;
 353	blk_start_plug(&op->plug);
 354	op->parent_bio = parent;
 355	op->bio = NULL;
 356}
 357
 358static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
 359{
 360	struct thin_c *tc = op->tc;
 361	sector_t s = block_to_sectors(tc->pool, data_b);
 362	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
 363
 364	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
 365				      GFP_NOWAIT, 0, &op->bio);
 366}
 367
 368static void end_discard(struct discard_op *op, int r)
 369{
 370	if (op->bio) {
 371		/*
 372		 * Even if one of the calls to issue_discard failed, we
 373		 * need to wait for the chain to complete.
 374		 */
 375		bio_chain(op->bio, op->parent_bio);
 376		bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
 377		submit_bio(op->bio);
 378	}
 379
 380	blk_finish_plug(&op->plug);
 381
 382	/*
 383	 * Even if r is set, there could be sub discards in flight that we
 384	 * need to wait for.
 385	 */
 386	if (r && !op->parent_bio->bi_status)
 387		op->parent_bio->bi_status = errno_to_blk_status(r);
 388	bio_endio(op->parent_bio);
 389}
 390
 391/*----------------------------------------------------------------*/
 392
 393/*
 394 * wake_worker() is used when new work is queued and when pool_resume is
 395 * ready to continue deferred IO processing.
 396 */
 397static void wake_worker(struct pool *pool)
 398{
 399	queue_work(pool->wq, &pool->worker);
 400}
 401
 402/*----------------------------------------------------------------*/
 403
 404static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 405		      struct dm_bio_prison_cell **cell_result)
 406{
 407	int r;
 408	struct dm_bio_prison_cell *cell_prealloc;
 409
 410	/*
 411	 * Allocate a cell from the prison's mempool.
 412	 * This might block but it can't fail.
 413	 */
 414	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 415
 416	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 417	if (r)
 418		/*
 419		 * We reused an old cell; we can get rid of
 420		 * the new one.
 421		 */
 422		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 423
 424	return r;
 425}
 426
 427static void cell_release(struct pool *pool,
 428			 struct dm_bio_prison_cell *cell,
 429			 struct bio_list *bios)
 430{
 431	dm_cell_release(pool->prison, cell, bios);
 432	dm_bio_prison_free_cell(pool->prison, cell);
 433}
 434
 435static void cell_visit_release(struct pool *pool,
 436			       void (*fn)(void *, struct dm_bio_prison_cell *),
 437			       void *context,
 438			       struct dm_bio_prison_cell *cell)
 439{
 440	dm_cell_visit_release(pool->prison, fn, context, cell);
 441	dm_bio_prison_free_cell(pool->prison, cell);
 442}
 443
 444static void cell_release_no_holder(struct pool *pool,
 445				   struct dm_bio_prison_cell *cell,
 446				   struct bio_list *bios)
 447{
 448	dm_cell_release_no_holder(pool->prison, cell, bios);
 449	dm_bio_prison_free_cell(pool->prison, cell);
 450}
 451
 452static void cell_error_with_code(struct pool *pool,
 453		struct dm_bio_prison_cell *cell, blk_status_t error_code)
 454{
 455	dm_cell_error(pool->prison, cell, error_code);
 456	dm_bio_prison_free_cell(pool->prison, cell);
 457}
 458
 459static blk_status_t get_pool_io_error_code(struct pool *pool)
 460{
 461	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
 462}
 463
 464static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 465{
 466	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
 467}
 468
 469static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 470{
 471	cell_error_with_code(pool, cell, 0);
 472}
 473
 474static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 475{
 476	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
 477}
 478
 479/*----------------------------------------------------------------*/
 480
 481/*
 482 * A global list of pools that uses a struct mapped_device as a key.
 483 */
 484static struct dm_thin_pool_table {
 485	struct mutex mutex;
 486	struct list_head pools;
 487} dm_thin_pool_table;
 488
 489static void pool_table_init(void)
 490{
 491	mutex_init(&dm_thin_pool_table.mutex);
 492	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 493}
 494
 495static void pool_table_exit(void)
 496{
 497	mutex_destroy(&dm_thin_pool_table.mutex);
 498}
 499
 500static void __pool_table_insert(struct pool *pool)
 501{
 502	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 503	list_add(&pool->list, &dm_thin_pool_table.pools);
 504}
 505
 506static void __pool_table_remove(struct pool *pool)
 507{
 508	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 509	list_del(&pool->list);
 510}
 511
 512static struct pool *__pool_table_lookup(struct mapped_device *md)
 513{
 514	struct pool *pool = NULL, *tmp;
 515
 516	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 517
 518	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 519		if (tmp->pool_md == md) {
 520			pool = tmp;
 521			break;
 522		}
 523	}
 524
 525	return pool;
 526}
 527
 528static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 529{
 530	struct pool *pool = NULL, *tmp;
 531
 532	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 533
 534	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 535		if (tmp->md_dev == md_dev) {
 536			pool = tmp;
 537			break;
 538		}
 539	}
 540
 541	return pool;
 542}
 543
 544/*----------------------------------------------------------------*/
 545
 546struct dm_thin_endio_hook {
 547	struct thin_c *tc;
 548	struct dm_deferred_entry *shared_read_entry;
 549	struct dm_deferred_entry *all_io_entry;
 550	struct dm_thin_new_mapping *overwrite_mapping;
 551	struct rb_node rb_node;
 552	struct dm_bio_prison_cell *cell;
 553};
 554
 555static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
 556{
 557	bio_list_merge(bios, master);
 558	bio_list_init(master);
 559}
 560
 561static void error_bio_list(struct bio_list *bios, blk_status_t error)
 562{
 563	struct bio *bio;
 564
 565	while ((bio = bio_list_pop(bios))) {
 566		bio->bi_status = error;
 567		bio_endio(bio);
 568	}
 569}
 570
 571static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
 572		blk_status_t error)
 573{
 574	struct bio_list bios;
 575	unsigned long flags;
 576
 577	bio_list_init(&bios);
 578
 579	spin_lock_irqsave(&tc->lock, flags);
 580	__merge_bio_list(&bios, master);
 581	spin_unlock_irqrestore(&tc->lock, flags);
 582
 583	error_bio_list(&bios, error);
 584}
 585
 586static void requeue_deferred_cells(struct thin_c *tc)
 587{
 588	struct pool *pool = tc->pool;
 589	unsigned long flags;
 590	struct list_head cells;
 591	struct dm_bio_prison_cell *cell, *tmp;
 592
 593	INIT_LIST_HEAD(&cells);
 594
 595	spin_lock_irqsave(&tc->lock, flags);
 596	list_splice_init(&tc->deferred_cells, &cells);
 597	spin_unlock_irqrestore(&tc->lock, flags);
 598
 599	list_for_each_entry_safe(cell, tmp, &cells, user_list)
 600		cell_requeue(pool, cell);
 601}
 602
 603static void requeue_io(struct thin_c *tc)
 604{
 605	struct bio_list bios;
 606	unsigned long flags;
 607
 608	bio_list_init(&bios);
 609
 610	spin_lock_irqsave(&tc->lock, flags);
 611	__merge_bio_list(&bios, &tc->deferred_bio_list);
 612	__merge_bio_list(&bios, &tc->retry_on_resume_list);
 613	spin_unlock_irqrestore(&tc->lock, flags);
 614
 615	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
 616	requeue_deferred_cells(tc);
 617}
 618
 619static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
 620{
 621	struct thin_c *tc;
 622
 623	rcu_read_lock();
 624	list_for_each_entry_rcu(tc, &pool->active_thins, list)
 625		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
 626	rcu_read_unlock();
 627}
 628
 629static void error_retry_list(struct pool *pool)
 630{
 631	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
 632}
 633
 634/*
 635 * This section of code contains the logic for processing a thin device's IO.
 636 * Much of the code depends on pool object resources (lists, workqueues, etc)
 637 * but most is exclusively called from the thin target rather than the thin-pool
 638 * target.
 639 */
 640
 641static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 642{
 643	struct pool *pool = tc->pool;
 644	sector_t block_nr = bio->bi_iter.bi_sector;
 645
 646	if (block_size_is_power_of_two(pool))
 647		block_nr >>= pool->sectors_per_block_shift;
 648	else
 649		(void) sector_div(block_nr, pool->sectors_per_block);
 650
 651	return block_nr;
 652}
 653
 654/*
 655 * Returns the _complete_ blocks that this bio covers.
 656 */
 657static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
 658				dm_block_t *begin, dm_block_t *end)
 659{
 660	struct pool *pool = tc->pool;
 661	sector_t b = bio->bi_iter.bi_sector;
 662	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
 663
 664	b += pool->sectors_per_block - 1ull; /* so we round up */
 665
 666	if (block_size_is_power_of_two(pool)) {
 667		b >>= pool->sectors_per_block_shift;
 668		e >>= pool->sectors_per_block_shift;
 669	} else {
 670		(void) sector_div(b, pool->sectors_per_block);
 671		(void) sector_div(e, pool->sectors_per_block);
 672	}
 673
 674	if (e < b)
 675		/* Can happen if the bio is within a single block. */
 676		e = b;
 677
 678	*begin = b;
 679	*end = e;
 680}
 681
 682static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 683{
 684	struct pool *pool = tc->pool;
 685	sector_t bi_sector = bio->bi_iter.bi_sector;
 686
 687	bio_set_dev(bio, tc->pool_dev->bdev);
 688	if (block_size_is_power_of_two(pool))
 689		bio->bi_iter.bi_sector =
 690			(block << pool->sectors_per_block_shift) |
 691			(bi_sector & (pool->sectors_per_block - 1));
 692	else
 693		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 694				 sector_div(bi_sector, pool->sectors_per_block);
 695}
 696
 697static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 698{
 699	bio_set_dev(bio, tc->origin_dev->bdev);
 700}
 701
 702static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 703{
 704	return op_is_flush(bio->bi_opf) &&
 705		dm_thin_changed_this_transaction(tc->td);
 706}
 707
 708static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 709{
 710	struct dm_thin_endio_hook *h;
 711
 712	if (bio_op(bio) == REQ_OP_DISCARD)
 713		return;
 714
 715	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 716	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 717}
 718
 719static void issue(struct thin_c *tc, struct bio *bio)
 720{
 721	struct pool *pool = tc->pool;
 722	unsigned long flags;
 723
 724	if (!bio_triggers_commit(tc, bio)) {
 725		generic_make_request(bio);
 726		return;
 727	}
 728
 729	/*
 730	 * Complete bio with an error if earlier I/O caused changes to
 731	 * the metadata that can't be committed e.g, due to I/O errors
 732	 * on the metadata device.
 733	 */
 734	if (dm_thin_aborted_changes(tc->td)) {
 735		bio_io_error(bio);
 736		return;
 737	}
 738
 739	/*
 740	 * Batch together any bios that trigger commits and then issue a
 741	 * single commit for them in process_deferred_bios().
 742	 */
 743	spin_lock_irqsave(&pool->lock, flags);
 744	bio_list_add(&pool->deferred_flush_bios, bio);
 745	spin_unlock_irqrestore(&pool->lock, flags);
 746}
 747
 748static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 749{
 750	remap_to_origin(tc, bio);
 751	issue(tc, bio);
 752}
 753
 754static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 755			    dm_block_t block)
 756{
 757	remap(tc, bio, block);
 758	issue(tc, bio);
 759}
 760
 761/*----------------------------------------------------------------*/
 762
 763/*
 764 * Bio endio functions.
 765 */
 766struct dm_thin_new_mapping {
 767	struct list_head list;
 768
 769	bool pass_discard:1;
 770	bool maybe_shared:1;
 771
 772	/*
 773	 * Track quiescing, copying and zeroing preparation actions.  When this
 774	 * counter hits zero the block is prepared and can be inserted into the
 775	 * btree.
 776	 */
 777	atomic_t prepare_actions;
 778
 779	blk_status_t status;
 780	struct thin_c *tc;
 781	dm_block_t virt_begin, virt_end;
 782	dm_block_t data_block;
 783	struct dm_bio_prison_cell *cell;
 784
 785	/*
 786	 * If the bio covers the whole area of a block then we can avoid
 787	 * zeroing or copying.  Instead this bio is hooked.  The bio will
 788	 * still be in the cell, so care has to be taken to avoid issuing
 789	 * the bio twice.
 790	 */
 791	struct bio *bio;
 792	bio_end_io_t *saved_bi_end_io;
 793};
 794
 795static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 796{
 797	struct pool *pool = m->tc->pool;
 798
 799	if (atomic_dec_and_test(&m->prepare_actions)) {
 800		list_add_tail(&m->list, &pool->prepared_mappings);
 801		wake_worker(pool);
 802	}
 803}
 804
 805static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 806{
 807	unsigned long flags;
 808	struct pool *pool = m->tc->pool;
 809
 810	spin_lock_irqsave(&pool->lock, flags);
 811	__complete_mapping_preparation(m);
 812	spin_unlock_irqrestore(&pool->lock, flags);
 813}
 814
 815static void copy_complete(int read_err, unsigned long write_err, void *context)
 816{
 817	struct dm_thin_new_mapping *m = context;
 818
 819	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
 820	complete_mapping_preparation(m);
 821}
 822
 823static void overwrite_endio(struct bio *bio)
 824{
 825	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 826	struct dm_thin_new_mapping *m = h->overwrite_mapping;
 827
 828	bio->bi_end_io = m->saved_bi_end_io;
 829
 830	m->status = bio->bi_status;
 831	complete_mapping_preparation(m);
 832}
 833
 834/*----------------------------------------------------------------*/
 835
 836/*
 837 * Workqueue.
 838 */
 839
 840/*
 841 * Prepared mapping jobs.
 842 */
 843
 844/*
 845 * This sends the bios in the cell, except the original holder, back
 846 * to the deferred_bios list.
 847 */
 848static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 849{
 850	struct pool *pool = tc->pool;
 851	unsigned long flags;
 852
 853	spin_lock_irqsave(&tc->lock, flags);
 854	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
 855	spin_unlock_irqrestore(&tc->lock, flags);
 856
 857	wake_worker(pool);
 858}
 859
 860static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 861
 862struct remap_info {
 863	struct thin_c *tc;
 864	struct bio_list defer_bios;
 865	struct bio_list issue_bios;
 866};
 867
 868static void __inc_remap_and_issue_cell(void *context,
 869				       struct dm_bio_prison_cell *cell)
 870{
 871	struct remap_info *info = context;
 872	struct bio *bio;
 873
 874	while ((bio = bio_list_pop(&cell->bios))) {
 875		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
 876			bio_list_add(&info->defer_bios, bio);
 877		else {
 878			inc_all_io_entry(info->tc->pool, bio);
 879
 880			/*
 881			 * We can't issue the bios with the bio prison lock
 882			 * held, so we add them to a list to issue on
 883			 * return from this function.
 884			 */
 885			bio_list_add(&info->issue_bios, bio);
 886		}
 887	}
 888}
 889
 890static void inc_remap_and_issue_cell(struct thin_c *tc,
 891				     struct dm_bio_prison_cell *cell,
 892				     dm_block_t block)
 893{
 894	struct bio *bio;
 895	struct remap_info info;
 896
 897	info.tc = tc;
 898	bio_list_init(&info.defer_bios);
 899	bio_list_init(&info.issue_bios);
 900
 901	/*
 902	 * We have to be careful to inc any bios we're about to issue
 903	 * before the cell is released, and avoid a race with new bios
 904	 * being added to the cell.
 905	 */
 906	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 907			   &info, cell);
 908
 909	while ((bio = bio_list_pop(&info.defer_bios)))
 910		thin_defer_bio(tc, bio);
 911
 912	while ((bio = bio_list_pop(&info.issue_bios)))
 913		remap_and_issue(info.tc, bio, block);
 914}
 915
 916static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 917{
 918	cell_error(m->tc->pool, m->cell);
 919	list_del(&m->list);
 920	mempool_free(m, m->tc->pool->mapping_pool);
 921}
 922
 923static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 924{
 925	struct thin_c *tc = m->tc;
 926	struct pool *pool = tc->pool;
 927	struct bio *bio = m->bio;
 928	int r;
 929
 930	if (m->status) {
 931		cell_error(pool, m->cell);
 932		goto out;
 933	}
 934
 935	/*
 936	 * Commit the prepared block into the mapping btree.
 937	 * Any I/O for this block arriving after this point will get
 938	 * remapped to it directly.
 939	 */
 940	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
 941	if (r) {
 942		metadata_operation_failed(pool, "dm_thin_insert_block", r);
 943		cell_error(pool, m->cell);
 944		goto out;
 945	}
 946
 947	/*
 948	 * Release any bios held while the block was being provisioned.
 949	 * If we are processing a write bio that completely covers the block,
 950	 * we already processed it so can ignore it now when processing
 951	 * the bios in the cell.
 952	 */
 953	if (bio) {
 954		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 955		bio_endio(bio);
 956	} else {
 957		inc_all_io_entry(tc->pool, m->cell->holder);
 958		remap_and_issue(tc, m->cell->holder, m->data_block);
 959		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 960	}
 961
 962out:
 963	list_del(&m->list);
 964	mempool_free(m, pool->mapping_pool);
 965}
 966
 967/*----------------------------------------------------------------*/
 968
 969static void free_discard_mapping(struct dm_thin_new_mapping *m)
 970{
 971	struct thin_c *tc = m->tc;
 972	if (m->cell)
 973		cell_defer_no_holder(tc, m->cell);
 974	mempool_free(m, tc->pool->mapping_pool);
 975}
 976
 977static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
 978{
 979	bio_io_error(m->bio);
 980	free_discard_mapping(m);
 981}
 982
 983static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
 984{
 985	bio_endio(m->bio);
 986	free_discard_mapping(m);
 987}
 988
 989static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
 990{
 991	int r;
 992	struct thin_c *tc = m->tc;
 993
 994	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
 995	if (r) {
 996		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
 997		bio_io_error(m->bio);
 998	} else
 999		bio_endio(m->bio);
1000
1001	cell_defer_no_holder(tc, m->cell);
1002	mempool_free(m, tc->pool->mapping_pool);
1003}
1004
1005/*----------------------------------------------------------------*/
1006
1007static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1008						   struct bio *discard_parent)
1009{
1010	/*
1011	 * We've already unmapped this range of blocks, but before we
1012	 * passdown we have to check that these blocks are now unused.
1013	 */
1014	int r = 0;
1015	bool used = true;
1016	struct thin_c *tc = m->tc;
1017	struct pool *pool = tc->pool;
1018	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1019	struct discard_op op;
1020
1021	begin_discard(&op, tc, discard_parent);
1022	while (b != end) {
1023		/* find start of unmapped run */
1024		for (; b < end; b++) {
1025			r = dm_pool_block_is_used(pool->pmd, b, &used);
1026			if (r)
1027				goto out;
1028
1029			if (!used)
1030				break;
1031		}
1032
1033		if (b == end)
1034			break;
1035
1036		/* find end of run */
1037		for (e = b + 1; e != end; e++) {
1038			r = dm_pool_block_is_used(pool->pmd, e, &used);
1039			if (r)
1040				goto out;
1041
1042			if (used)
1043				break;
1044		}
1045
1046		r = issue_discard(&op, b, e);
1047		if (r)
1048			goto out;
1049
1050		b = e;
1051	}
1052out:
1053	end_discard(&op, r);
1054}
1055
1056static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1057{
1058	unsigned long flags;
1059	struct pool *pool = m->tc->pool;
1060
1061	spin_lock_irqsave(&pool->lock, flags);
1062	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1063	spin_unlock_irqrestore(&pool->lock, flags);
1064	wake_worker(pool);
1065}
1066
1067static void passdown_endio(struct bio *bio)
1068{
1069	/*
1070	 * It doesn't matter if the passdown discard failed, we still want
1071	 * to unmap (we ignore err).
1072	 */
1073	queue_passdown_pt2(bio->bi_private);
1074	bio_put(bio);
1075}
1076
1077static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1078{
1079	int r;
1080	struct thin_c *tc = m->tc;
1081	struct pool *pool = tc->pool;
1082	struct bio *discard_parent;
1083	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1084
1085	/*
1086	 * Only this thread allocates blocks, so we can be sure that the
1087	 * newly unmapped blocks will not be allocated before the end of
1088	 * the function.
1089	 */
1090	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1091	if (r) {
1092		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1093		bio_io_error(m->bio);
1094		cell_defer_no_holder(tc, m->cell);
1095		mempool_free(m, pool->mapping_pool);
1096		return;
1097	}
1098
1099	/*
1100	 * Increment the unmapped blocks.  This prevents a race between the
1101	 * passdown io and reallocation of freed blocks.
1102	 */
1103	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1104	if (r) {
1105		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1106		bio_io_error(m->bio);
1107		cell_defer_no_holder(tc, m->cell);
1108		mempool_free(m, pool->mapping_pool);
1109		return;
1110	}
1111
1112	discard_parent = bio_alloc(GFP_NOIO, 1);
1113	if (!discard_parent) {
1114		DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1115		       dm_device_name(tc->pool->pool_md));
1116		queue_passdown_pt2(m);
1117
1118	} else {
1119		discard_parent->bi_end_io = passdown_endio;
1120		discard_parent->bi_private = m;
1121
1122		if (m->maybe_shared)
1123			passdown_double_checking_shared_status(m, discard_parent);
1124		else {
1125			struct discard_op op;
1126
1127			begin_discard(&op, tc, discard_parent);
1128			r = issue_discard(&op, m->data_block, data_end);
1129			end_discard(&op, r);
1130		}
1131	}
1132}
1133
1134static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1135{
1136	int r;
1137	struct thin_c *tc = m->tc;
1138	struct pool *pool = tc->pool;
1139
1140	/*
1141	 * The passdown has completed, so now we can decrement all those
1142	 * unmapped blocks.
1143	 */
1144	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1145				   m->data_block + (m->virt_end - m->virt_begin));
1146	if (r) {
1147		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1148		bio_io_error(m->bio);
1149	} else
1150		bio_endio(m->bio);
1151
1152	cell_defer_no_holder(tc, m->cell);
1153	mempool_free(m, pool->mapping_pool);
1154}
1155
1156static void process_prepared(struct pool *pool, struct list_head *head,
1157			     process_mapping_fn *fn)
1158{
1159	unsigned long flags;
1160	struct list_head maps;
1161	struct dm_thin_new_mapping *m, *tmp;
1162
1163	INIT_LIST_HEAD(&maps);
1164	spin_lock_irqsave(&pool->lock, flags);
1165	list_splice_init(head, &maps);
1166	spin_unlock_irqrestore(&pool->lock, flags);
1167
1168	list_for_each_entry_safe(m, tmp, &maps, list)
1169		(*fn)(m);
1170}
1171
1172/*
1173 * Deferred bio jobs.
1174 */
1175static int io_overlaps_block(struct pool *pool, struct bio *bio)
1176{
1177	return bio->bi_iter.bi_size ==
1178		(pool->sectors_per_block << SECTOR_SHIFT);
1179}
1180
1181static int io_overwrites_block(struct pool *pool, struct bio *bio)
1182{
1183	return (bio_data_dir(bio) == WRITE) &&
1184		io_overlaps_block(pool, bio);
1185}
1186
1187static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1188			       bio_end_io_t *fn)
1189{
1190	*save = bio->bi_end_io;
1191	bio->bi_end_io = fn;
1192}
1193
1194static int ensure_next_mapping(struct pool *pool)
1195{
1196	if (pool->next_mapping)
1197		return 0;
1198
1199	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1200
1201	return pool->next_mapping ? 0 : -ENOMEM;
1202}
1203
1204static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1205{
1206	struct dm_thin_new_mapping *m = pool->next_mapping;
1207
1208	BUG_ON(!pool->next_mapping);
1209
1210	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1211	INIT_LIST_HEAD(&m->list);
1212	m->bio = NULL;
1213
1214	pool->next_mapping = NULL;
1215
1216	return m;
1217}
1218
1219static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1220		    sector_t begin, sector_t end)
1221{
1222	int r;
1223	struct dm_io_region to;
1224
1225	to.bdev = tc->pool_dev->bdev;
1226	to.sector = begin;
1227	to.count = end - begin;
1228
1229	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1230	if (r < 0) {
1231		DMERR_LIMIT("dm_kcopyd_zero() failed");
1232		copy_complete(1, 1, m);
1233	}
1234}
1235
1236static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1237				      dm_block_t data_begin,
1238				      struct dm_thin_new_mapping *m)
1239{
1240	struct pool *pool = tc->pool;
1241	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1242
1243	h->overwrite_mapping = m;
1244	m->bio = bio;
1245	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1246	inc_all_io_entry(pool, bio);
1247	remap_and_issue(tc, bio, data_begin);
1248}
1249
1250/*
1251 * A partial copy also needs to zero the uncopied region.
1252 */
1253static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1254			  struct dm_dev *origin, dm_block_t data_origin,
1255			  dm_block_t data_dest,
1256			  struct dm_bio_prison_cell *cell, struct bio *bio,
1257			  sector_t len)
1258{
1259	int r;
1260	struct pool *pool = tc->pool;
1261	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1262
1263	m->tc = tc;
1264	m->virt_begin = virt_block;
1265	m->virt_end = virt_block + 1u;
1266	m->data_block = data_dest;
1267	m->cell = cell;
1268
1269	/*
1270	 * quiesce action + copy action + an extra reference held for the
1271	 * duration of this function (we may need to inc later for a
1272	 * partial zero).
1273	 */
1274	atomic_set(&m->prepare_actions, 3);
1275
1276	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1277		complete_mapping_preparation(m); /* already quiesced */
1278
1279	/*
1280	 * IO to pool_dev remaps to the pool target's data_dev.
1281	 *
1282	 * If the whole block of data is being overwritten, we can issue the
1283	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1284	 */
1285	if (io_overwrites_block(pool, bio))
1286		remap_and_issue_overwrite(tc, bio, data_dest, m);
1287	else {
1288		struct dm_io_region from, to;
1289
1290		from.bdev = origin->bdev;
1291		from.sector = data_origin * pool->sectors_per_block;
1292		from.count = len;
1293
1294		to.bdev = tc->pool_dev->bdev;
1295		to.sector = data_dest * pool->sectors_per_block;
1296		to.count = len;
1297
1298		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1299				   0, copy_complete, m);
1300		if (r < 0) {
1301			DMERR_LIMIT("dm_kcopyd_copy() failed");
1302			copy_complete(1, 1, m);
1303
1304			/*
1305			 * We allow the zero to be issued, to simplify the
1306			 * error path.  Otherwise we'd need to start
1307			 * worrying about decrementing the prepare_actions
1308			 * counter.
1309			 */
1310		}
1311
1312		/*
1313		 * Do we need to zero a tail region?
1314		 */
1315		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1316			atomic_inc(&m->prepare_actions);
1317			ll_zero(tc, m,
1318				data_dest * pool->sectors_per_block + len,
1319				(data_dest + 1) * pool->sectors_per_block);
1320		}
1321	}
1322
1323	complete_mapping_preparation(m); /* drop our ref */
1324}
1325
1326static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1327				   dm_block_t data_origin, dm_block_t data_dest,
1328				   struct dm_bio_prison_cell *cell, struct bio *bio)
1329{
1330	schedule_copy(tc, virt_block, tc->pool_dev,
1331		      data_origin, data_dest, cell, bio,
1332		      tc->pool->sectors_per_block);
1333}
1334
1335static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1336			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1337			  struct bio *bio)
1338{
1339	struct pool *pool = tc->pool;
1340	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1341
1342	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1343	m->tc = tc;
1344	m->virt_begin = virt_block;
1345	m->virt_end = virt_block + 1u;
1346	m->data_block = data_block;
1347	m->cell = cell;
1348
1349	/*
1350	 * If the whole block of data is being overwritten or we are not
1351	 * zeroing pre-existing data, we can issue the bio immediately.
1352	 * Otherwise we use kcopyd to zero the data first.
1353	 */
1354	if (pool->pf.zero_new_blocks) {
1355		if (io_overwrites_block(pool, bio))
1356			remap_and_issue_overwrite(tc, bio, data_block, m);
1357		else
1358			ll_zero(tc, m, data_block * pool->sectors_per_block,
1359				(data_block + 1) * pool->sectors_per_block);
1360	} else
1361		process_prepared_mapping(m);
1362}
1363
1364static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1365				   dm_block_t data_dest,
1366				   struct dm_bio_prison_cell *cell, struct bio *bio)
1367{
1368	struct pool *pool = tc->pool;
1369	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1370	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1371
1372	if (virt_block_end <= tc->origin_size)
1373		schedule_copy(tc, virt_block, tc->origin_dev,
1374			      virt_block, data_dest, cell, bio,
1375			      pool->sectors_per_block);
1376
1377	else if (virt_block_begin < tc->origin_size)
1378		schedule_copy(tc, virt_block, tc->origin_dev,
1379			      virt_block, data_dest, cell, bio,
1380			      tc->origin_size - virt_block_begin);
1381
1382	else
1383		schedule_zero(tc, virt_block, data_dest, cell, bio);
1384}
1385
1386static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1387
1388static void check_for_space(struct pool *pool)
1389{
1390	int r;
1391	dm_block_t nr_free;
1392
1393	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1394		return;
1395
1396	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1397	if (r)
1398		return;
1399
1400	if (nr_free)
1401		set_pool_mode(pool, PM_WRITE);
1402}
1403
1404/*
1405 * A non-zero return indicates read_only or fail_io mode.
1406 * Many callers don't care about the return value.
1407 */
1408static int commit(struct pool *pool)
1409{
1410	int r;
1411
1412	if (get_pool_mode(pool) >= PM_READ_ONLY)
1413		return -EINVAL;
1414
1415	r = dm_pool_commit_metadata(pool->pmd);
1416	if (r)
1417		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1418	else
1419		check_for_space(pool);
1420
1421	return r;
1422}
1423
1424static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1425{
1426	unsigned long flags;
1427
1428	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1429		DMWARN("%s: reached low water mark for data device: sending event.",
1430		       dm_device_name(pool->pool_md));
1431		spin_lock_irqsave(&pool->lock, flags);
1432		pool->low_water_triggered = true;
1433		spin_unlock_irqrestore(&pool->lock, flags);
1434		dm_table_event(pool->ti->table);
1435	}
1436}
1437
1438static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1439{
1440	int r;
1441	dm_block_t free_blocks;
1442	struct pool *pool = tc->pool;
1443
1444	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1445		return -EINVAL;
1446
1447	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1448	if (r) {
1449		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1450		return r;
1451	}
1452
1453	check_low_water_mark(pool, free_blocks);
1454
1455	if (!free_blocks) {
1456		/*
1457		 * Try to commit to see if that will free up some
1458		 * more space.
1459		 */
1460		r = commit(pool);
1461		if (r)
1462			return r;
1463
1464		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1465		if (r) {
1466			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1467			return r;
1468		}
1469
1470		if (!free_blocks) {
1471			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1472			return -ENOSPC;
1473		}
1474	}
1475
1476	r = dm_pool_alloc_data_block(pool->pmd, result);
1477	if (r) {
1478		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1479		return r;
1480	}
1481
1482	return 0;
1483}
1484
1485/*
1486 * If we have run out of space, queue bios until the device is
1487 * resumed, presumably after having been reloaded with more space.
1488 */
1489static void retry_on_resume(struct bio *bio)
1490{
1491	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1492	struct thin_c *tc = h->tc;
1493	unsigned long flags;
1494
1495	spin_lock_irqsave(&tc->lock, flags);
1496	bio_list_add(&tc->retry_on_resume_list, bio);
1497	spin_unlock_irqrestore(&tc->lock, flags);
1498}
1499
1500static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1501{
1502	enum pool_mode m = get_pool_mode(pool);
1503
1504	switch (m) {
1505	case PM_WRITE:
1506		/* Shouldn't get here */
1507		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1508		return BLK_STS_IOERR;
1509
1510	case PM_OUT_OF_DATA_SPACE:
1511		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1512
1513	case PM_READ_ONLY:
1514	case PM_FAIL:
1515		return BLK_STS_IOERR;
1516	default:
1517		/* Shouldn't get here */
1518		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1519		return BLK_STS_IOERR;
1520	}
1521}
1522
1523static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1524{
1525	blk_status_t error = should_error_unserviceable_bio(pool);
1526
1527	if (error) {
1528		bio->bi_status = error;
1529		bio_endio(bio);
1530	} else
1531		retry_on_resume(bio);
1532}
1533
1534static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1535{
1536	struct bio *bio;
1537	struct bio_list bios;
1538	blk_status_t error;
1539
1540	error = should_error_unserviceable_bio(pool);
1541	if (error) {
1542		cell_error_with_code(pool, cell, error);
1543		return;
1544	}
1545
1546	bio_list_init(&bios);
1547	cell_release(pool, cell, &bios);
1548
1549	while ((bio = bio_list_pop(&bios)))
1550		retry_on_resume(bio);
1551}
1552
1553static void process_discard_cell_no_passdown(struct thin_c *tc,
1554					     struct dm_bio_prison_cell *virt_cell)
1555{
1556	struct pool *pool = tc->pool;
1557	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1558
1559	/*
1560	 * We don't need to lock the data blocks, since there's no
1561	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1562	 */
1563	m->tc = tc;
1564	m->virt_begin = virt_cell->key.block_begin;
1565	m->virt_end = virt_cell->key.block_end;
1566	m->cell = virt_cell;
1567	m->bio = virt_cell->holder;
1568
1569	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1570		pool->process_prepared_discard(m);
1571}
1572
1573static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1574				 struct bio *bio)
1575{
1576	struct pool *pool = tc->pool;
1577
1578	int r;
1579	bool maybe_shared;
1580	struct dm_cell_key data_key;
1581	struct dm_bio_prison_cell *data_cell;
1582	struct dm_thin_new_mapping *m;
1583	dm_block_t virt_begin, virt_end, data_begin;
1584
1585	while (begin != end) {
1586		r = ensure_next_mapping(pool);
1587		if (r)
1588			/* we did our best */
1589			return;
1590
1591		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1592					      &data_begin, &maybe_shared);
1593		if (r)
1594			/*
1595			 * Silently fail, letting any mappings we've
1596			 * created complete.
1597			 */
1598			break;
1599
1600		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1601		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1602			/* contention, we'll give up with this range */
1603			begin = virt_end;
1604			continue;
1605		}
1606
1607		/*
1608		 * IO may still be going to the destination block.  We must
1609		 * quiesce before we can do the removal.
1610		 */
1611		m = get_next_mapping(pool);
1612		m->tc = tc;
1613		m->maybe_shared = maybe_shared;
1614		m->virt_begin = virt_begin;
1615		m->virt_end = virt_end;
1616		m->data_block = data_begin;
1617		m->cell = data_cell;
1618		m->bio = bio;
1619
1620		/*
1621		 * The parent bio must not complete before sub discard bios are
1622		 * chained to it (see end_discard's bio_chain)!
1623		 *
1624		 * This per-mapping bi_remaining increment is paired with
1625		 * the implicit decrement that occurs via bio_endio() in
1626		 * end_discard().
1627		 */
1628		bio_inc_remaining(bio);
1629		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1630			pool->process_prepared_discard(m);
1631
1632		begin = virt_end;
1633	}
1634}
1635
1636static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1637{
1638	struct bio *bio = virt_cell->holder;
1639	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1640
1641	/*
1642	 * The virt_cell will only get freed once the origin bio completes.
1643	 * This means it will remain locked while all the individual
1644	 * passdown bios are in flight.
1645	 */
1646	h->cell = virt_cell;
1647	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1648
1649	/*
1650	 * We complete the bio now, knowing that the bi_remaining field
1651	 * will prevent completion until the sub range discards have
1652	 * completed.
1653	 */
1654	bio_endio(bio);
1655}
1656
1657static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1658{
1659	dm_block_t begin, end;
1660	struct dm_cell_key virt_key;
1661	struct dm_bio_prison_cell *virt_cell;
1662
1663	get_bio_block_range(tc, bio, &begin, &end);
1664	if (begin == end) {
1665		/*
1666		 * The discard covers less than a block.
1667		 */
1668		bio_endio(bio);
1669		return;
1670	}
1671
1672	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1673	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1674		/*
1675		 * Potential starvation issue: We're relying on the
1676		 * fs/application being well behaved, and not trying to
1677		 * send IO to a region at the same time as discarding it.
1678		 * If they do this persistently then it's possible this
1679		 * cell will never be granted.
1680		 */
1681		return;
1682
1683	tc->pool->process_discard_cell(tc, virt_cell);
1684}
1685
1686static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1687			  struct dm_cell_key *key,
1688			  struct dm_thin_lookup_result *lookup_result,
1689			  struct dm_bio_prison_cell *cell)
1690{
1691	int r;
1692	dm_block_t data_block;
1693	struct pool *pool = tc->pool;
1694
1695	r = alloc_data_block(tc, &data_block);
1696	switch (r) {
1697	case 0:
1698		schedule_internal_copy(tc, block, lookup_result->block,
1699				       data_block, cell, bio);
1700		break;
1701
1702	case -ENOSPC:
1703		retry_bios_on_resume(pool, cell);
1704		break;
1705
1706	default:
1707		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1708			    __func__, r);
1709		cell_error(pool, cell);
1710		break;
1711	}
1712}
1713
1714static void __remap_and_issue_shared_cell(void *context,
1715					  struct dm_bio_prison_cell *cell)
1716{
1717	struct remap_info *info = context;
1718	struct bio *bio;
1719
1720	while ((bio = bio_list_pop(&cell->bios))) {
1721		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1722		    bio_op(bio) == REQ_OP_DISCARD)
1723			bio_list_add(&info->defer_bios, bio);
1724		else {
1725			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1726
1727			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1728			inc_all_io_entry(info->tc->pool, bio);
1729			bio_list_add(&info->issue_bios, bio);
1730		}
1731	}
1732}
1733
1734static void remap_and_issue_shared_cell(struct thin_c *tc,
1735					struct dm_bio_prison_cell *cell,
1736					dm_block_t block)
1737{
1738	struct bio *bio;
1739	struct remap_info info;
1740
1741	info.tc = tc;
1742	bio_list_init(&info.defer_bios);
1743	bio_list_init(&info.issue_bios);
1744
1745	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1746			   &info, cell);
1747
1748	while ((bio = bio_list_pop(&info.defer_bios)))
1749		thin_defer_bio(tc, bio);
1750
1751	while ((bio = bio_list_pop(&info.issue_bios)))
1752		remap_and_issue(tc, bio, block);
1753}
1754
1755static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1756			       dm_block_t block,
1757			       struct dm_thin_lookup_result *lookup_result,
1758			       struct dm_bio_prison_cell *virt_cell)
1759{
1760	struct dm_bio_prison_cell *data_cell;
1761	struct pool *pool = tc->pool;
1762	struct dm_cell_key key;
1763
1764	/*
1765	 * If cell is already occupied, then sharing is already in the process
1766	 * of being broken so we have nothing further to do here.
1767	 */
1768	build_data_key(tc->td, lookup_result->block, &key);
1769	if (bio_detain(pool, &key, bio, &data_cell)) {
1770		cell_defer_no_holder(tc, virt_cell);
1771		return;
1772	}
1773
1774	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1775		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1776		cell_defer_no_holder(tc, virt_cell);
1777	} else {
1778		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1779
1780		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1781		inc_all_io_entry(pool, bio);
1782		remap_and_issue(tc, bio, lookup_result->block);
1783
1784		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1785		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1786	}
1787}
1788
1789static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1790			    struct dm_bio_prison_cell *cell)
1791{
1792	int r;
1793	dm_block_t data_block;
1794	struct pool *pool = tc->pool;
1795
1796	/*
1797	 * Remap empty bios (flushes) immediately, without provisioning.
1798	 */
1799	if (!bio->bi_iter.bi_size) {
1800		inc_all_io_entry(pool, bio);
1801		cell_defer_no_holder(tc, cell);
1802
1803		remap_and_issue(tc, bio, 0);
1804		return;
1805	}
1806
1807	/*
1808	 * Fill read bios with zeroes and complete them immediately.
1809	 */
1810	if (bio_data_dir(bio) == READ) {
1811		zero_fill_bio(bio);
1812		cell_defer_no_holder(tc, cell);
1813		bio_endio(bio);
1814		return;
1815	}
1816
1817	r = alloc_data_block(tc, &data_block);
1818	switch (r) {
1819	case 0:
1820		if (tc->origin_dev)
1821			schedule_external_copy(tc, block, data_block, cell, bio);
1822		else
1823			schedule_zero(tc, block, data_block, cell, bio);
1824		break;
1825
1826	case -ENOSPC:
1827		retry_bios_on_resume(pool, cell);
1828		break;
1829
1830	default:
1831		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1832			    __func__, r);
1833		cell_error(pool, cell);
1834		break;
1835	}
1836}
1837
1838static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1839{
1840	int r;
1841	struct pool *pool = tc->pool;
1842	struct bio *bio = cell->holder;
1843	dm_block_t block = get_bio_block(tc, bio);
1844	struct dm_thin_lookup_result lookup_result;
1845
1846	if (tc->requeue_mode) {
1847		cell_requeue(pool, cell);
1848		return;
1849	}
1850
1851	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1852	switch (r) {
1853	case 0:
1854		if (lookup_result.shared)
1855			process_shared_bio(tc, bio, block, &lookup_result, cell);
1856		else {
1857			inc_all_io_entry(pool, bio);
1858			remap_and_issue(tc, bio, lookup_result.block);
1859			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1860		}
1861		break;
1862
1863	case -ENODATA:
1864		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1865			inc_all_io_entry(pool, bio);
1866			cell_defer_no_holder(tc, cell);
1867
1868			if (bio_end_sector(bio) <= tc->origin_size)
1869				remap_to_origin_and_issue(tc, bio);
1870
1871			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1872				zero_fill_bio(bio);
1873				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1874				remap_to_origin_and_issue(tc, bio);
1875
1876			} else {
1877				zero_fill_bio(bio);
1878				bio_endio(bio);
1879			}
1880		} else
1881			provision_block(tc, bio, block, cell);
1882		break;
1883
1884	default:
1885		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1886			    __func__, r);
1887		cell_defer_no_holder(tc, cell);
1888		bio_io_error(bio);
1889		break;
1890	}
1891}
1892
1893static void process_bio(struct thin_c *tc, struct bio *bio)
1894{
1895	struct pool *pool = tc->pool;
1896	dm_block_t block = get_bio_block(tc, bio);
1897	struct dm_bio_prison_cell *cell;
1898	struct dm_cell_key key;
1899
1900	/*
1901	 * If cell is already occupied, then the block is already
1902	 * being provisioned so we have nothing further to do here.
1903	 */
1904	build_virtual_key(tc->td, block, &key);
1905	if (bio_detain(pool, &key, bio, &cell))
1906		return;
1907
1908	process_cell(tc, cell);
1909}
1910
1911static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1912				    struct dm_bio_prison_cell *cell)
1913{
1914	int r;
1915	int rw = bio_data_dir(bio);
1916	dm_block_t block = get_bio_block(tc, bio);
1917	struct dm_thin_lookup_result lookup_result;
1918
1919	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1920	switch (r) {
1921	case 0:
1922		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1923			handle_unserviceable_bio(tc->pool, bio);
1924			if (cell)
1925				cell_defer_no_holder(tc, cell);
1926		} else {
1927			inc_all_io_entry(tc->pool, bio);
1928			remap_and_issue(tc, bio, lookup_result.block);
1929			if (cell)
1930				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1931		}
1932		break;
1933
1934	case -ENODATA:
1935		if (cell)
1936			cell_defer_no_holder(tc, cell);
1937		if (rw != READ) {
1938			handle_unserviceable_bio(tc->pool, bio);
1939			break;
1940		}
1941
1942		if (tc->origin_dev) {
1943			inc_all_io_entry(tc->pool, bio);
1944			remap_to_origin_and_issue(tc, bio);
1945			break;
1946		}
1947
1948		zero_fill_bio(bio);
1949		bio_endio(bio);
1950		break;
1951
1952	default:
1953		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1954			    __func__, r);
1955		if (cell)
1956			cell_defer_no_holder(tc, cell);
1957		bio_io_error(bio);
1958		break;
1959	}
1960}
1961
1962static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1963{
1964	__process_bio_read_only(tc, bio, NULL);
1965}
1966
1967static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1968{
1969	__process_bio_read_only(tc, cell->holder, cell);
1970}
1971
1972static void process_bio_success(struct thin_c *tc, struct bio *bio)
1973{
1974	bio_endio(bio);
1975}
1976
1977static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1978{
1979	bio_io_error(bio);
1980}
1981
1982static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1983{
1984	cell_success(tc->pool, cell);
1985}
1986
1987static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1988{
1989	cell_error(tc->pool, cell);
1990}
1991
1992/*
1993 * FIXME: should we also commit due to size of transaction, measured in
1994 * metadata blocks?
1995 */
1996static int need_commit_due_to_time(struct pool *pool)
1997{
1998	return !time_in_range(jiffies, pool->last_commit_jiffies,
1999			      pool->last_commit_jiffies + COMMIT_PERIOD);
2000}
2001
2002#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2003#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2004
2005static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2006{
2007	struct rb_node **rbp, *parent;
2008	struct dm_thin_endio_hook *pbd;
2009	sector_t bi_sector = bio->bi_iter.bi_sector;
2010
2011	rbp = &tc->sort_bio_list.rb_node;
2012	parent = NULL;
2013	while (*rbp) {
2014		parent = *rbp;
2015		pbd = thin_pbd(parent);
2016
2017		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2018			rbp = &(*rbp)->rb_left;
2019		else
2020			rbp = &(*rbp)->rb_right;
2021	}
2022
2023	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2024	rb_link_node(&pbd->rb_node, parent, rbp);
2025	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2026}
2027
2028static void __extract_sorted_bios(struct thin_c *tc)
2029{
2030	struct rb_node *node;
2031	struct dm_thin_endio_hook *pbd;
2032	struct bio *bio;
2033
2034	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2035		pbd = thin_pbd(node);
2036		bio = thin_bio(pbd);
2037
2038		bio_list_add(&tc->deferred_bio_list, bio);
2039		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2040	}
2041
2042	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2043}
2044
2045static void __sort_thin_deferred_bios(struct thin_c *tc)
2046{
2047	struct bio *bio;
2048	struct bio_list bios;
2049
2050	bio_list_init(&bios);
2051	bio_list_merge(&bios, &tc->deferred_bio_list);
2052	bio_list_init(&tc->deferred_bio_list);
2053
2054	/* Sort deferred_bio_list using rb-tree */
2055	while ((bio = bio_list_pop(&bios)))
2056		__thin_bio_rb_add(tc, bio);
2057
2058	/*
2059	 * Transfer the sorted bios in sort_bio_list back to
2060	 * deferred_bio_list to allow lockless submission of
2061	 * all bios.
2062	 */
2063	__extract_sorted_bios(tc);
2064}
2065
2066static void process_thin_deferred_bios(struct thin_c *tc)
2067{
2068	struct pool *pool = tc->pool;
2069	unsigned long flags;
2070	struct bio *bio;
2071	struct bio_list bios;
2072	struct blk_plug plug;
2073	unsigned count = 0;
2074
2075	if (tc->requeue_mode) {
2076		error_thin_bio_list(tc, &tc->deferred_bio_list,
2077				BLK_STS_DM_REQUEUE);
2078		return;
2079	}
2080
2081	bio_list_init(&bios);
2082
2083	spin_lock_irqsave(&tc->lock, flags);
2084
2085	if (bio_list_empty(&tc->deferred_bio_list)) {
2086		spin_unlock_irqrestore(&tc->lock, flags);
2087		return;
2088	}
2089
2090	__sort_thin_deferred_bios(tc);
2091
2092	bio_list_merge(&bios, &tc->deferred_bio_list);
2093	bio_list_init(&tc->deferred_bio_list);
2094
2095	spin_unlock_irqrestore(&tc->lock, flags);
2096
2097	blk_start_plug(&plug);
2098	while ((bio = bio_list_pop(&bios))) {
2099		/*
2100		 * If we've got no free new_mapping structs, and processing
2101		 * this bio might require one, we pause until there are some
2102		 * prepared mappings to process.
2103		 */
2104		if (ensure_next_mapping(pool)) {
2105			spin_lock_irqsave(&tc->lock, flags);
2106			bio_list_add(&tc->deferred_bio_list, bio);
2107			bio_list_merge(&tc->deferred_bio_list, &bios);
2108			spin_unlock_irqrestore(&tc->lock, flags);
2109			break;
2110		}
2111
2112		if (bio_op(bio) == REQ_OP_DISCARD)
2113			pool->process_discard(tc, bio);
2114		else
2115			pool->process_bio(tc, bio);
2116
2117		if ((count++ & 127) == 0) {
2118			throttle_work_update(&pool->throttle);
2119			dm_pool_issue_prefetches(pool->pmd);
2120		}
2121	}
2122	blk_finish_plug(&plug);
2123}
2124
2125static int cmp_cells(const void *lhs, const void *rhs)
2126{
2127	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2128	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2129
2130	BUG_ON(!lhs_cell->holder);
2131	BUG_ON(!rhs_cell->holder);
2132
2133	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2134		return -1;
2135
2136	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2137		return 1;
2138
2139	return 0;
2140}
2141
2142static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2143{
2144	unsigned count = 0;
2145	struct dm_bio_prison_cell *cell, *tmp;
2146
2147	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2148		if (count >= CELL_SORT_ARRAY_SIZE)
2149			break;
2150
2151		pool->cell_sort_array[count++] = cell;
2152		list_del(&cell->user_list);
2153	}
2154
2155	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2156
2157	return count;
2158}
2159
2160static void process_thin_deferred_cells(struct thin_c *tc)
2161{
2162	struct pool *pool = tc->pool;
2163	unsigned long flags;
2164	struct list_head cells;
2165	struct dm_bio_prison_cell *cell;
2166	unsigned i, j, count;
2167
2168	INIT_LIST_HEAD(&cells);
2169
2170	spin_lock_irqsave(&tc->lock, flags);
2171	list_splice_init(&tc->deferred_cells, &cells);
2172	spin_unlock_irqrestore(&tc->lock, flags);
2173
2174	if (list_empty(&cells))
2175		return;
2176
2177	do {
2178		count = sort_cells(tc->pool, &cells);
2179
2180		for (i = 0; i < count; i++) {
2181			cell = pool->cell_sort_array[i];
2182			BUG_ON(!cell->holder);
2183
2184			/*
2185			 * If we've got no free new_mapping structs, and processing
2186			 * this bio might require one, we pause until there are some
2187			 * prepared mappings to process.
2188			 */
2189			if (ensure_next_mapping(pool)) {
2190				for (j = i; j < count; j++)
2191					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2192
2193				spin_lock_irqsave(&tc->lock, flags);
2194				list_splice(&cells, &tc->deferred_cells);
2195				spin_unlock_irqrestore(&tc->lock, flags);
2196				return;
2197			}
2198
2199			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2200				pool->process_discard_cell(tc, cell);
2201			else
2202				pool->process_cell(tc, cell);
2203		}
2204	} while (!list_empty(&cells));
2205}
2206
2207static void thin_get(struct thin_c *tc);
2208static void thin_put(struct thin_c *tc);
2209
2210/*
2211 * We can't hold rcu_read_lock() around code that can block.  So we
2212 * find a thin with the rcu lock held; bump a refcount; then drop
2213 * the lock.
2214 */
2215static struct thin_c *get_first_thin(struct pool *pool)
2216{
2217	struct thin_c *tc = NULL;
2218
2219	rcu_read_lock();
2220	if (!list_empty(&pool->active_thins)) {
2221		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2222		thin_get(tc);
2223	}
2224	rcu_read_unlock();
2225
2226	return tc;
2227}
2228
2229static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2230{
2231	struct thin_c *old_tc = tc;
2232
2233	rcu_read_lock();
2234	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2235		thin_get(tc);
2236		thin_put(old_tc);
2237		rcu_read_unlock();
2238		return tc;
2239	}
2240	thin_put(old_tc);
2241	rcu_read_unlock();
2242
2243	return NULL;
2244}
2245
2246static void process_deferred_bios(struct pool *pool)
2247{
2248	unsigned long flags;
2249	struct bio *bio;
2250	struct bio_list bios;
2251	struct thin_c *tc;
2252
2253	tc = get_first_thin(pool);
2254	while (tc) {
2255		process_thin_deferred_cells(tc);
2256		process_thin_deferred_bios(tc);
2257		tc = get_next_thin(pool, tc);
2258	}
2259
2260	/*
2261	 * If there are any deferred flush bios, we must commit
2262	 * the metadata before issuing them.
2263	 */
2264	bio_list_init(&bios);
2265	spin_lock_irqsave(&pool->lock, flags);
2266	bio_list_merge(&bios, &pool->deferred_flush_bios);
2267	bio_list_init(&pool->deferred_flush_bios);
2268	spin_unlock_irqrestore(&pool->lock, flags);
2269
2270	if (bio_list_empty(&bios) &&
2271	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2272		return;
2273
2274	if (commit(pool)) {
2275		while ((bio = bio_list_pop(&bios)))
2276			bio_io_error(bio);
2277		return;
2278	}
2279	pool->last_commit_jiffies = jiffies;
2280
2281	while ((bio = bio_list_pop(&bios)))
2282		generic_make_request(bio);
2283}
2284
2285static void do_worker(struct work_struct *ws)
2286{
2287	struct pool *pool = container_of(ws, struct pool, worker);
2288
2289	throttle_work_start(&pool->throttle);
2290	dm_pool_issue_prefetches(pool->pmd);
2291	throttle_work_update(&pool->throttle);
2292	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2293	throttle_work_update(&pool->throttle);
2294	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2295	throttle_work_update(&pool->throttle);
2296	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2297	throttle_work_update(&pool->throttle);
2298	process_deferred_bios(pool);
2299	throttle_work_complete(&pool->throttle);
2300}
2301
2302/*
2303 * We want to commit periodically so that not too much
2304 * unwritten data builds up.
2305 */
2306static void do_waker(struct work_struct *ws)
2307{
2308	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2309	wake_worker(pool);
2310	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2311}
2312
2313static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2314
2315/*
2316 * We're holding onto IO to allow userland time to react.  After the
2317 * timeout either the pool will have been resized (and thus back in
2318 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2319 */
2320static void do_no_space_timeout(struct work_struct *ws)
2321{
2322	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2323					 no_space_timeout);
2324
2325	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2326		pool->pf.error_if_no_space = true;
2327		notify_of_pool_mode_change_to_oods(pool);
2328		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2329	}
2330}
2331
2332/*----------------------------------------------------------------*/
2333
2334struct pool_work {
2335	struct work_struct worker;
2336	struct completion complete;
2337};
2338
2339static struct pool_work *to_pool_work(struct work_struct *ws)
2340{
2341	return container_of(ws, struct pool_work, worker);
2342}
2343
2344static void pool_work_complete(struct pool_work *pw)
2345{
2346	complete(&pw->complete);
2347}
2348
2349static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2350			   void (*fn)(struct work_struct *))
2351{
2352	INIT_WORK_ONSTACK(&pw->worker, fn);
2353	init_completion(&pw->complete);
2354	queue_work(pool->wq, &pw->worker);
2355	wait_for_completion(&pw->complete);
2356}
2357
2358/*----------------------------------------------------------------*/
2359
2360struct noflush_work {
2361	struct pool_work pw;
2362	struct thin_c *tc;
2363};
2364
2365static struct noflush_work *to_noflush(struct work_struct *ws)
2366{
2367	return container_of(to_pool_work(ws), struct noflush_work, pw);
2368}
2369
2370static void do_noflush_start(struct work_struct *ws)
2371{
2372	struct noflush_work *w = to_noflush(ws);
2373	w->tc->requeue_mode = true;
2374	requeue_io(w->tc);
2375	pool_work_complete(&w->pw);
2376}
2377
2378static void do_noflush_stop(struct work_struct *ws)
2379{
2380	struct noflush_work *w = to_noflush(ws);
2381	w->tc->requeue_mode = false;
2382	pool_work_complete(&w->pw);
2383}
2384
2385static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2386{
2387	struct noflush_work w;
2388
2389	w.tc = tc;
2390	pool_work_wait(&w.pw, tc->pool, fn);
2391}
2392
2393/*----------------------------------------------------------------*/
2394
2395static enum pool_mode get_pool_mode(struct pool *pool)
2396{
2397	return pool->pf.mode;
2398}
2399
2400static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2401{
2402	dm_table_event(pool->ti->table);
2403	DMINFO("%s: switching pool to %s mode",
2404	       dm_device_name(pool->pool_md), new_mode);
2405}
2406
2407static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2408{
2409	if (!pool->pf.error_if_no_space)
2410		notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2411	else
2412		notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2413}
2414
2415static bool passdown_enabled(struct pool_c *pt)
2416{
2417	return pt->adjusted_pf.discard_passdown;
2418}
2419
2420static void set_discard_callbacks(struct pool *pool)
2421{
2422	struct pool_c *pt = pool->ti->private;
2423
2424	if (passdown_enabled(pt)) {
2425		pool->process_discard_cell = process_discard_cell_passdown;
2426		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2427		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2428	} else {
2429		pool->process_discard_cell = process_discard_cell_no_passdown;
2430		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2431	}
2432}
2433
2434static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2435{
2436	struct pool_c *pt = pool->ti->private;
2437	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2438	enum pool_mode old_mode = get_pool_mode(pool);
2439	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2440
2441	/*
2442	 * Never allow the pool to transition to PM_WRITE mode if user
2443	 * intervention is required to verify metadata and data consistency.
2444	 */
2445	if (new_mode == PM_WRITE && needs_check) {
2446		DMERR("%s: unable to switch pool to write mode until repaired.",
2447		      dm_device_name(pool->pool_md));
2448		if (old_mode != new_mode)
2449			new_mode = old_mode;
2450		else
2451			new_mode = PM_READ_ONLY;
2452	}
2453	/*
2454	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2455	 * not going to recover without a thin_repair.	So we never let the
2456	 * pool move out of the old mode.
2457	 */
2458	if (old_mode == PM_FAIL)
2459		new_mode = old_mode;
2460
2461	switch (new_mode) {
2462	case PM_FAIL:
2463		if (old_mode != new_mode)
2464			notify_of_pool_mode_change(pool, "failure");
2465		dm_pool_metadata_read_only(pool->pmd);
2466		pool->process_bio = process_bio_fail;
2467		pool->process_discard = process_bio_fail;
2468		pool->process_cell = process_cell_fail;
2469		pool->process_discard_cell = process_cell_fail;
2470		pool->process_prepared_mapping = process_prepared_mapping_fail;
2471		pool->process_prepared_discard = process_prepared_discard_fail;
2472
2473		error_retry_list(pool);
2474		break;
2475
2476	case PM_READ_ONLY:
2477		if (old_mode != new_mode)
2478			notify_of_pool_mode_change(pool, "read-only");
2479		dm_pool_metadata_read_only(pool->pmd);
2480		pool->process_bio = process_bio_read_only;
2481		pool->process_discard = process_bio_success;
2482		pool->process_cell = process_cell_read_only;
2483		pool->process_discard_cell = process_cell_success;
2484		pool->process_prepared_mapping = process_prepared_mapping_fail;
2485		pool->process_prepared_discard = process_prepared_discard_success;
2486
2487		error_retry_list(pool);
2488		break;
2489
2490	case PM_OUT_OF_DATA_SPACE:
2491		/*
2492		 * Ideally we'd never hit this state; the low water mark
2493		 * would trigger userland to extend the pool before we
2494		 * completely run out of data space.  However, many small
2495		 * IOs to unprovisioned space can consume data space at an
2496		 * alarming rate.  Adjust your low water mark if you're
2497		 * frequently seeing this mode.
2498		 */
2499		if (old_mode != new_mode)
2500			notify_of_pool_mode_change_to_oods(pool);
2501		pool->out_of_data_space = true;
2502		pool->process_bio = process_bio_read_only;
2503		pool->process_discard = process_discard_bio;
2504		pool->process_cell = process_cell_read_only;
2505		pool->process_prepared_mapping = process_prepared_mapping;
2506		set_discard_callbacks(pool);
2507
2508		if (!pool->pf.error_if_no_space && no_space_timeout)
2509			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2510		break;
2511
2512	case PM_WRITE:
2513		if (old_mode != new_mode)
2514			notify_of_pool_mode_change(pool, "write");
2515		pool->out_of_data_space = false;
2516		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2517		dm_pool_metadata_read_write(pool->pmd);
2518		pool->process_bio = process_bio;
2519		pool->process_discard = process_discard_bio;
2520		pool->process_cell = process_cell;
2521		pool->process_prepared_mapping = process_prepared_mapping;
2522		set_discard_callbacks(pool);
2523		break;
2524	}
2525
2526	pool->pf.mode = new_mode;
2527	/*
2528	 * The pool mode may have changed, sync it so bind_control_target()
2529	 * doesn't cause an unexpected mode transition on resume.
2530	 */
2531	pt->adjusted_pf.mode = new_mode;
2532}
2533
2534static void abort_transaction(struct pool *pool)
2535{
2536	const char *dev_name = dm_device_name(pool->pool_md);
2537
2538	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2539	if (dm_pool_abort_metadata(pool->pmd)) {
2540		DMERR("%s: failed to abort metadata transaction", dev_name);
2541		set_pool_mode(pool, PM_FAIL);
2542	}
2543
2544	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2545		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2546		set_pool_mode(pool, PM_FAIL);
2547	}
2548}
2549
2550static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2551{
2552	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2553		    dm_device_name(pool->pool_md), op, r);
2554
2555	abort_transaction(pool);
2556	set_pool_mode(pool, PM_READ_ONLY);
2557}
2558
2559/*----------------------------------------------------------------*/
2560
2561/*
2562 * Mapping functions.
2563 */
2564
2565/*
2566 * Called only while mapping a thin bio to hand it over to the workqueue.
2567 */
2568static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2569{
2570	unsigned long flags;
2571	struct pool *pool = tc->pool;
2572
2573	spin_lock_irqsave(&tc->lock, flags);
2574	bio_list_add(&tc->deferred_bio_list, bio);
2575	spin_unlock_irqrestore(&tc->lock, flags);
2576
2577	wake_worker(pool);
2578}
2579
2580static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2581{
2582	struct pool *pool = tc->pool;
2583
2584	throttle_lock(&pool->throttle);
2585	thin_defer_bio(tc, bio);
2586	throttle_unlock(&pool->throttle);
2587}
2588
2589static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2590{
2591	unsigned long flags;
2592	struct pool *pool = tc->pool;
2593
2594	throttle_lock(&pool->throttle);
2595	spin_lock_irqsave(&tc->lock, flags);
2596	list_add_tail(&cell->user_list, &tc->deferred_cells);
2597	spin_unlock_irqrestore(&tc->lock, flags);
2598	throttle_unlock(&pool->throttle);
2599
2600	wake_worker(pool);
2601}
2602
2603static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2604{
2605	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2606
2607	h->tc = tc;
2608	h->shared_read_entry = NULL;
2609	h->all_io_entry = NULL;
2610	h->overwrite_mapping = NULL;
2611	h->cell = NULL;
2612}
2613
2614/*
2615 * Non-blocking function called from the thin target's map function.
2616 */
2617static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2618{
2619	int r;
2620	struct thin_c *tc = ti->private;
2621	dm_block_t block = get_bio_block(tc, bio);
2622	struct dm_thin_device *td = tc->td;
2623	struct dm_thin_lookup_result result;
2624	struct dm_bio_prison_cell *virt_cell, *data_cell;
2625	struct dm_cell_key key;
2626
2627	thin_hook_bio(tc, bio);
2628
2629	if (tc->requeue_mode) {
2630		bio->bi_status = BLK_STS_DM_REQUEUE;
2631		bio_endio(bio);
2632		return DM_MAPIO_SUBMITTED;
2633	}
2634
2635	if (get_pool_mode(tc->pool) == PM_FAIL) {
2636		bio_io_error(bio);
2637		return DM_MAPIO_SUBMITTED;
2638	}
2639
2640	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2641		thin_defer_bio_with_throttle(tc, bio);
2642		return DM_MAPIO_SUBMITTED;
2643	}
2644
2645	/*
2646	 * We must hold the virtual cell before doing the lookup, otherwise
2647	 * there's a race with discard.
2648	 */
2649	build_virtual_key(tc->td, block, &key);
2650	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2651		return DM_MAPIO_SUBMITTED;
2652
2653	r = dm_thin_find_block(td, block, 0, &result);
2654
2655	/*
2656	 * Note that we defer readahead too.
2657	 */
2658	switch (r) {
2659	case 0:
2660		if (unlikely(result.shared)) {
2661			/*
2662			 * We have a race condition here between the
2663			 * result.shared value returned by the lookup and
2664			 * snapshot creation, which may cause new
2665			 * sharing.
2666			 *
2667			 * To avoid this always quiesce the origin before
2668			 * taking the snap.  You want to do this anyway to
2669			 * ensure a consistent application view
2670			 * (i.e. lockfs).
2671			 *
2672			 * More distant ancestors are irrelevant. The
2673			 * shared flag will be set in their case.
2674			 */
2675			thin_defer_cell(tc, virt_cell);
2676			return DM_MAPIO_SUBMITTED;
2677		}
2678
2679		build_data_key(tc->td, result.block, &key);
2680		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2681			cell_defer_no_holder(tc, virt_cell);
2682			return DM_MAPIO_SUBMITTED;
2683		}
2684
2685		inc_all_io_entry(tc->pool, bio);
2686		cell_defer_no_holder(tc, data_cell);
2687		cell_defer_no_holder(tc, virt_cell);
2688
2689		remap(tc, bio, result.block);
2690		return DM_MAPIO_REMAPPED;
2691
2692	case -ENODATA:
2693	case -EWOULDBLOCK:
2694		thin_defer_cell(tc, virt_cell);
2695		return DM_MAPIO_SUBMITTED;
2696
2697	default:
2698		/*
2699		 * Must always call bio_io_error on failure.
2700		 * dm_thin_find_block can fail with -EINVAL if the
2701		 * pool is switched to fail-io mode.
2702		 */
2703		bio_io_error(bio);
2704		cell_defer_no_holder(tc, virt_cell);
2705		return DM_MAPIO_SUBMITTED;
2706	}
2707}
2708
2709static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2710{
2711	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2712	struct request_queue *q;
2713
2714	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2715		return 1;
2716
2717	q = bdev_get_queue(pt->data_dev->bdev);
2718	return bdi_congested(q->backing_dev_info, bdi_bits);
2719}
2720
2721static void requeue_bios(struct pool *pool)
2722{
2723	unsigned long flags;
2724	struct thin_c *tc;
2725
2726	rcu_read_lock();
2727	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2728		spin_lock_irqsave(&tc->lock, flags);
2729		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2730		bio_list_init(&tc->retry_on_resume_list);
2731		spin_unlock_irqrestore(&tc->lock, flags);
2732	}
2733	rcu_read_unlock();
2734}
2735
2736/*----------------------------------------------------------------
2737 * Binding of control targets to a pool object
2738 *--------------------------------------------------------------*/
2739static bool data_dev_supports_discard(struct pool_c *pt)
2740{
2741	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2742
2743	return q && blk_queue_discard(q);
2744}
2745
2746static bool is_factor(sector_t block_size, uint32_t n)
2747{
2748	return !sector_div(block_size, n);
2749}
2750
2751/*
2752 * If discard_passdown was enabled verify that the data device
2753 * supports discards.  Disable discard_passdown if not.
2754 */
2755static void disable_passdown_if_not_supported(struct pool_c *pt)
2756{
2757	struct pool *pool = pt->pool;
2758	struct block_device *data_bdev = pt->data_dev->bdev;
2759	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2760	const char *reason = NULL;
2761	char buf[BDEVNAME_SIZE];
2762
2763	if (!pt->adjusted_pf.discard_passdown)
2764		return;
2765
2766	if (!data_dev_supports_discard(pt))
2767		reason = "discard unsupported";
2768
2769	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2770		reason = "max discard sectors smaller than a block";
2771
2772	if (reason) {
2773		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2774		pt->adjusted_pf.discard_passdown = false;
2775	}
2776}
2777
2778static int bind_control_target(struct pool *pool, struct dm_target *ti)
2779{
2780	struct pool_c *pt = ti->private;
2781
2782	/*
2783	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2784	 */
2785	enum pool_mode old_mode = get_pool_mode(pool);
2786	enum pool_mode new_mode = pt->adjusted_pf.mode;
2787
2788	/*
2789	 * Don't change the pool's mode until set_pool_mode() below.
2790	 * Otherwise the pool's process_* function pointers may
2791	 * not match the desired pool mode.
2792	 */
2793	pt->adjusted_pf.mode = old_mode;
2794
2795	pool->ti = ti;
2796	pool->pf = pt->adjusted_pf;
2797	pool->low_water_blocks = pt->low_water_blocks;
2798
2799	set_pool_mode(pool, new_mode);
2800
2801	return 0;
2802}
2803
2804static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2805{
2806	if (pool->ti == ti)
2807		pool->ti = NULL;
2808}
2809
2810/*----------------------------------------------------------------
2811 * Pool creation
2812 *--------------------------------------------------------------*/
2813/* Initialize pool features. */
2814static void pool_features_init(struct pool_features *pf)
2815{
2816	pf->mode = PM_WRITE;
2817	pf->zero_new_blocks = true;
2818	pf->discard_enabled = true;
2819	pf->discard_passdown = true;
2820	pf->error_if_no_space = false;
2821}
2822
2823static void __pool_destroy(struct pool *pool)
2824{
2825	__pool_table_remove(pool);
2826
2827	vfree(pool->cell_sort_array);
2828	if (dm_pool_metadata_close(pool->pmd) < 0)
2829		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2830
2831	dm_bio_prison_destroy(pool->prison);
2832	dm_kcopyd_client_destroy(pool->copier);
2833
2834	if (pool->wq)
2835		destroy_workqueue(pool->wq);
2836
2837	if (pool->next_mapping)
2838		mempool_free(pool->next_mapping, pool->mapping_pool);
2839	mempool_destroy(pool->mapping_pool);
2840	dm_deferred_set_destroy(pool->shared_read_ds);
2841	dm_deferred_set_destroy(pool->all_io_ds);
2842	kfree(pool);
2843}
2844
2845static struct kmem_cache *_new_mapping_cache;
2846
2847static struct pool *pool_create(struct mapped_device *pool_md,
2848				struct block_device *metadata_dev,
2849				unsigned long block_size,
2850				int read_only, char **error)
2851{
2852	int r;
2853	void *err_p;
2854	struct pool *pool;
2855	struct dm_pool_metadata *pmd;
2856	bool format_device = read_only ? false : true;
2857
2858	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2859	if (IS_ERR(pmd)) {
2860		*error = "Error creating metadata object";
2861		return (struct pool *)pmd;
2862	}
2863
2864	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2865	if (!pool) {
2866		*error = "Error allocating memory for pool";
2867		err_p = ERR_PTR(-ENOMEM);
2868		goto bad_pool;
2869	}
2870
2871	pool->pmd = pmd;
2872	pool->sectors_per_block = block_size;
2873	if (block_size & (block_size - 1))
2874		pool->sectors_per_block_shift = -1;
2875	else
2876		pool->sectors_per_block_shift = __ffs(block_size);
2877	pool->low_water_blocks = 0;
2878	pool_features_init(&pool->pf);
2879	pool->prison = dm_bio_prison_create();
2880	if (!pool->prison) {
2881		*error = "Error creating pool's bio prison";
2882		err_p = ERR_PTR(-ENOMEM);
2883		goto bad_prison;
2884	}
2885
2886	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2887	if (IS_ERR(pool->copier)) {
2888		r = PTR_ERR(pool->copier);
2889		*error = "Error creating pool's kcopyd client";
2890		err_p = ERR_PTR(r);
2891		goto bad_kcopyd_client;
2892	}
2893
2894	/*
2895	 * Create singlethreaded workqueue that will service all devices
2896	 * that use this metadata.
2897	 */
2898	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2899	if (!pool->wq) {
2900		*error = "Error creating pool's workqueue";
2901		err_p = ERR_PTR(-ENOMEM);
2902		goto bad_wq;
2903	}
2904
2905	throttle_init(&pool->throttle);
2906	INIT_WORK(&pool->worker, do_worker);
2907	INIT_DELAYED_WORK(&pool->waker, do_waker);
2908	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2909	spin_lock_init(&pool->lock);
2910	bio_list_init(&pool->deferred_flush_bios);
2911	INIT_LIST_HEAD(&pool->prepared_mappings);
2912	INIT_LIST_HEAD(&pool->prepared_discards);
2913	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2914	INIT_LIST_HEAD(&pool->active_thins);
2915	pool->low_water_triggered = false;
2916	pool->suspended = true;
2917	pool->out_of_data_space = false;
2918
2919	pool->shared_read_ds = dm_deferred_set_create();
2920	if (!pool->shared_read_ds) {
2921		*error = "Error creating pool's shared read deferred set";
2922		err_p = ERR_PTR(-ENOMEM);
2923		goto bad_shared_read_ds;
2924	}
2925
2926	pool->all_io_ds = dm_deferred_set_create();
2927	if (!pool->all_io_ds) {
2928		*error = "Error creating pool's all io deferred set";
2929		err_p = ERR_PTR(-ENOMEM);
2930		goto bad_all_io_ds;
2931	}
2932
2933	pool->next_mapping = NULL;
2934	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2935						      _new_mapping_cache);
2936	if (!pool->mapping_pool) {
2937		*error = "Error creating pool's mapping mempool";
2938		err_p = ERR_PTR(-ENOMEM);
2939		goto bad_mapping_pool;
2940	}
2941
2942	pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2943	if (!pool->cell_sort_array) {
2944		*error = "Error allocating cell sort array";
2945		err_p = ERR_PTR(-ENOMEM);
2946		goto bad_sort_array;
2947	}
2948
2949	pool->ref_count = 1;
2950	pool->last_commit_jiffies = jiffies;
2951	pool->pool_md = pool_md;
2952	pool->md_dev = metadata_dev;
2953	__pool_table_insert(pool);
2954
2955	return pool;
2956
2957bad_sort_array:
2958	mempool_destroy(pool->mapping_pool);
2959bad_mapping_pool:
2960	dm_deferred_set_destroy(pool->all_io_ds);
2961bad_all_io_ds:
2962	dm_deferred_set_destroy(pool->shared_read_ds);
2963bad_shared_read_ds:
2964	destroy_workqueue(pool->wq);
2965bad_wq:
2966	dm_kcopyd_client_destroy(pool->copier);
2967bad_kcopyd_client:
2968	dm_bio_prison_destroy(pool->prison);
2969bad_prison:
2970	kfree(pool);
2971bad_pool:
2972	if (dm_pool_metadata_close(pmd))
2973		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2974
2975	return err_p;
2976}
2977
2978static void __pool_inc(struct pool *pool)
2979{
2980	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2981	pool->ref_count++;
2982}
2983
2984static void __pool_dec(struct pool *pool)
2985{
2986	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2987	BUG_ON(!pool->ref_count);
2988	if (!--pool->ref_count)
2989		__pool_destroy(pool);
2990}
2991
2992static struct pool *__pool_find(struct mapped_device *pool_md,
2993				struct block_device *metadata_dev,
2994				unsigned long block_size, int read_only,
2995				char **error, int *created)
2996{
2997	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2998
2999	if (pool) {
3000		if (pool->pool_md != pool_md) {
3001			*error = "metadata device already in use by a pool";
3002			return ERR_PTR(-EBUSY);
3003		}
3004		__pool_inc(pool);
3005
3006	} else {
3007		pool = __pool_table_lookup(pool_md);
3008		if (pool) {
3009			if (pool->md_dev != metadata_dev) {
3010				*error = "different pool cannot replace a pool";
3011				return ERR_PTR(-EINVAL);
3012			}
3013			__pool_inc(pool);
3014
3015		} else {
3016			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3017			*created = 1;
3018		}
3019	}
3020
3021	return pool;
3022}
3023
3024/*----------------------------------------------------------------
3025 * Pool target methods
3026 *--------------------------------------------------------------*/
3027static void pool_dtr(struct dm_target *ti)
3028{
3029	struct pool_c *pt = ti->private;
3030
3031	mutex_lock(&dm_thin_pool_table.mutex);
3032
3033	unbind_control_target(pt->pool, ti);
3034	__pool_dec(pt->pool);
3035	dm_put_device(ti, pt->metadata_dev);
3036	dm_put_device(ti, pt->data_dev);
3037	kfree(pt);
3038
3039	mutex_unlock(&dm_thin_pool_table.mutex);
3040}
3041
3042static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3043			       struct dm_target *ti)
3044{
3045	int r;
3046	unsigned argc;
3047	const char *arg_name;
3048
3049	static const struct dm_arg _args[] = {
3050		{0, 4, "Invalid number of pool feature arguments"},
3051	};
3052
3053	/*
3054	 * No feature arguments supplied.
3055	 */
3056	if (!as->argc)
3057		return 0;
3058
3059	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3060	if (r)
3061		return -EINVAL;
3062
3063	while (argc && !r) {
3064		arg_name = dm_shift_arg(as);
3065		argc--;
3066
3067		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3068			pf->zero_new_blocks = false;
3069
3070		else if (!strcasecmp(arg_name, "ignore_discard"))
3071			pf->discard_enabled = false;
3072
3073		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3074			pf->discard_passdown = false;
3075
3076		else if (!strcasecmp(arg_name, "read_only"))
3077			pf->mode = PM_READ_ONLY;
3078
3079		else if (!strcasecmp(arg_name, "error_if_no_space"))
3080			pf->error_if_no_space = true;
3081
3082		else {
3083			ti->error = "Unrecognised pool feature requested";
3084			r = -EINVAL;
3085			break;
3086		}
3087	}
3088
3089	return r;
3090}
3091
3092static void metadata_low_callback(void *context)
3093{
3094	struct pool *pool = context;
3095
3096	DMWARN("%s: reached low water mark for metadata device: sending event.",
3097	       dm_device_name(pool->pool_md));
3098
3099	dm_table_event(pool->ti->table);
3100}
3101
3102static sector_t get_dev_size(struct block_device *bdev)
3103{
3104	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3105}
3106
3107static void warn_if_metadata_device_too_big(struct block_device *bdev)
3108{
3109	sector_t metadata_dev_size = get_dev_size(bdev);
3110	char buffer[BDEVNAME_SIZE];
3111
3112	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3113		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3114		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3115}
3116
3117static sector_t get_metadata_dev_size(struct block_device *bdev)
3118{
3119	sector_t metadata_dev_size = get_dev_size(bdev);
3120
3121	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3122		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3123
3124	return metadata_dev_size;
3125}
3126
3127static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3128{
3129	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3130
3131	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3132
3133	return metadata_dev_size;
3134}
3135
3136/*
3137 * When a metadata threshold is crossed a dm event is triggered, and
3138 * userland should respond by growing the metadata device.  We could let
3139 * userland set the threshold, like we do with the data threshold, but I'm
3140 * not sure they know enough to do this well.
3141 */
3142static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3143{
3144	/*
3145	 * 4M is ample for all ops with the possible exception of thin
3146	 * device deletion which is harmless if it fails (just retry the
3147	 * delete after you've grown the device).
3148	 */
3149	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3150	return min((dm_block_t)1024ULL /* 4M */, quarter);
3151}
3152
3153/*
3154 * thin-pool <metadata dev> <data dev>
3155 *	     <data block size (sectors)>
3156 *	     <low water mark (blocks)>
3157 *	     [<#feature args> [<arg>]*]
3158 *
3159 * Optional feature arguments are:
3160 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3161 *	     ignore_discard: disable discard
3162 *	     no_discard_passdown: don't pass discards down to the data device
3163 *	     read_only: Don't allow any changes to be made to the pool metadata.
3164 *	     error_if_no_space: error IOs, instead of queueing, if no space.
3165 */
3166static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3167{
3168	int r, pool_created = 0;
3169	struct pool_c *pt;
3170	struct pool *pool;
3171	struct pool_features pf;
3172	struct dm_arg_set as;
3173	struct dm_dev *data_dev;
3174	unsigned long block_size;
3175	dm_block_t low_water_blocks;
3176	struct dm_dev *metadata_dev;
3177	fmode_t metadata_mode;
3178
3179	/*
3180	 * FIXME Remove validation from scope of lock.
3181	 */
3182	mutex_lock(&dm_thin_pool_table.mutex);
3183
3184	if (argc < 4) {
3185		ti->error = "Invalid argument count";
3186		r = -EINVAL;
3187		goto out_unlock;
3188	}
3189
3190	as.argc = argc;
3191	as.argv = argv;
3192
3193	/*
3194	 * Set default pool features.
3195	 */
3196	pool_features_init(&pf);
3197
3198	dm_consume_args(&as, 4);
3199	r = parse_pool_features(&as, &pf, ti);
3200	if (r)
3201		goto out_unlock;
3202
3203	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3204	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3205	if (r) {
3206		ti->error = "Error opening metadata block device";
3207		goto out_unlock;
3208	}
3209	warn_if_metadata_device_too_big(metadata_dev->bdev);
3210
3211	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3212	if (r) {
3213		ti->error = "Error getting data device";
3214		goto out_metadata;
3215	}
3216
3217	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3218	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3219	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3220	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3221		ti->error = "Invalid block size";
3222		r = -EINVAL;
3223		goto out;
3224	}
3225
3226	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3227		ti->error = "Invalid low water mark";
3228		r = -EINVAL;
3229		goto out;
3230	}
3231
3232	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3233	if (!pt) {
3234		r = -ENOMEM;
3235		goto out;
3236	}
3237
3238	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3239			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3240	if (IS_ERR(pool)) {
3241		r = PTR_ERR(pool);
3242		goto out_free_pt;
3243	}
3244
3245	/*
3246	 * 'pool_created' reflects whether this is the first table load.
3247	 * Top level discard support is not allowed to be changed after
3248	 * initial load.  This would require a pool reload to trigger thin
3249	 * device changes.
3250	 */
3251	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3252		ti->error = "Discard support cannot be disabled once enabled";
3253		r = -EINVAL;
3254		goto out_flags_changed;
3255	}
3256
3257	pt->pool = pool;
3258	pt->ti = ti;
3259	pt->metadata_dev = metadata_dev;
3260	pt->data_dev = data_dev;
3261	pt->low_water_blocks = low_water_blocks;
3262	pt->adjusted_pf = pt->requested_pf = pf;
3263	ti->num_flush_bios = 1;
3264
3265	/*
3266	 * Only need to enable discards if the pool should pass
3267	 * them down to the data device.  The thin device's discard
3268	 * processing will cause mappings to be removed from the btree.
3269	 */
3270	if (pf.discard_enabled && pf.discard_passdown) {
3271		ti->num_discard_bios = 1;
3272
3273		/*
3274		 * Setting 'discards_supported' circumvents the normal
3275		 * stacking of discard limits (this keeps the pool and
3276		 * thin devices' discard limits consistent).
3277		 */
3278		ti->discards_supported = true;
3279	}
3280	ti->private = pt;
3281
3282	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3283						calc_metadata_threshold(pt),
3284						metadata_low_callback,
3285						pool);
3286	if (r)
3287		goto out_flags_changed;
3288
3289	pt->callbacks.congested_fn = pool_is_congested;
3290	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3291
3292	mutex_unlock(&dm_thin_pool_table.mutex);
3293
3294	return 0;
3295
3296out_flags_changed:
3297	__pool_dec(pool);
3298out_free_pt:
3299	kfree(pt);
3300out:
3301	dm_put_device(ti, data_dev);
3302out_metadata:
3303	dm_put_device(ti, metadata_dev);
3304out_unlock:
3305	mutex_unlock(&dm_thin_pool_table.mutex);
3306
3307	return r;
3308}
3309
3310static int pool_map(struct dm_target *ti, struct bio *bio)
3311{
3312	int r;
3313	struct pool_c *pt = ti->private;
3314	struct pool *pool = pt->pool;
3315	unsigned long flags;
3316
3317	/*
3318	 * As this is a singleton target, ti->begin is always zero.
3319	 */
3320	spin_lock_irqsave(&pool->lock, flags);
3321	bio_set_dev(bio, pt->data_dev->bdev);
3322	r = DM_MAPIO_REMAPPED;
3323	spin_unlock_irqrestore(&pool->lock, flags);
3324
3325	return r;
3326}
3327
3328static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3329{
3330	int r;
3331	struct pool_c *pt = ti->private;
3332	struct pool *pool = pt->pool;
3333	sector_t data_size = ti->len;
3334	dm_block_t sb_data_size;
3335
3336	*need_commit = false;
3337
3338	(void) sector_div(data_size, pool->sectors_per_block);
3339
3340	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3341	if (r) {
3342		DMERR("%s: failed to retrieve data device size",
3343		      dm_device_name(pool->pool_md));
3344		return r;
3345	}
3346
3347	if (data_size < sb_data_size) {
3348		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3349		      dm_device_name(pool->pool_md),
3350		      (unsigned long long)data_size, sb_data_size);
3351		return -EINVAL;
3352
3353	} else if (data_size > sb_data_size) {
3354		if (dm_pool_metadata_needs_check(pool->pmd)) {
3355			DMERR("%s: unable to grow the data device until repaired.",
3356			      dm_device_name(pool->pool_md));
3357			return 0;
3358		}
3359
3360		if (sb_data_size)
3361			DMINFO("%s: growing the data device from %llu to %llu blocks",
3362			       dm_device_name(pool->pool_md),
3363			       sb_data_size, (unsigned long long)data_size);
3364		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3365		if (r) {
3366			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3367			return r;
3368		}
3369
3370		*need_commit = true;
3371	}
3372
3373	return 0;
3374}
3375
3376static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3377{
3378	int r;
3379	struct pool_c *pt = ti->private;
3380	struct pool *pool = pt->pool;
3381	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3382
3383	*need_commit = false;
3384
3385	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3386
3387	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3388	if (r) {
3389		DMERR("%s: failed to retrieve metadata device size",
3390		      dm_device_name(pool->pool_md));
3391		return r;
3392	}
3393
3394	if (metadata_dev_size < sb_metadata_dev_size) {
3395		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3396		      dm_device_name(pool->pool_md),
3397		      metadata_dev_size, sb_metadata_dev_size);
3398		return -EINVAL;
3399
3400	} else if (metadata_dev_size > sb_metadata_dev_size) {
3401		if (dm_pool_metadata_needs_check(pool->pmd)) {
3402			DMERR("%s: unable to grow the metadata device until repaired.",
3403			      dm_device_name(pool->pool_md));
3404			return 0;
3405		}
3406
3407		warn_if_metadata_device_too_big(pool->md_dev);
3408		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3409		       dm_device_name(pool->pool_md),
3410		       sb_metadata_dev_size, metadata_dev_size);
3411		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3412		if (r) {
3413			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3414			return r;
3415		}
3416
3417		*need_commit = true;
3418	}
3419
3420	return 0;
3421}
3422
3423/*
3424 * Retrieves the number of blocks of the data device from
3425 * the superblock and compares it to the actual device size,
3426 * thus resizing the data device in case it has grown.
3427 *
3428 * This both copes with opening preallocated data devices in the ctr
3429 * being followed by a resume
3430 * -and-
3431 * calling the resume method individually after userspace has
3432 * grown the data device in reaction to a table event.
3433 */
3434static int pool_preresume(struct dm_target *ti)
3435{
3436	int r;
3437	bool need_commit1, need_commit2;
3438	struct pool_c *pt = ti->private;
3439	struct pool *pool = pt->pool;
3440
3441	/*
3442	 * Take control of the pool object.
3443	 */
3444	r = bind_control_target(pool, ti);
3445	if (r)
3446		return r;
3447
3448	r = maybe_resize_data_dev(ti, &need_commit1);
3449	if (r)
3450		return r;
3451
3452	r = maybe_resize_metadata_dev(ti, &need_commit2);
3453	if (r)
3454		return r;
3455
3456	if (need_commit1 || need_commit2)
3457		(void) commit(pool);
3458
3459	return 0;
3460}
3461
3462static void pool_suspend_active_thins(struct pool *pool)
3463{
3464	struct thin_c *tc;
3465
3466	/* Suspend all active thin devices */
3467	tc = get_first_thin(pool);
3468	while (tc) {
3469		dm_internal_suspend_noflush(tc->thin_md);
3470		tc = get_next_thin(pool, tc);
3471	}
3472}
3473
3474static void pool_resume_active_thins(struct pool *pool)
3475{
3476	struct thin_c *tc;
3477
3478	/* Resume all active thin devices */
3479	tc = get_first_thin(pool);
3480	while (tc) {
3481		dm_internal_resume(tc->thin_md);
3482		tc = get_next_thin(pool, tc);
3483	}
3484}
3485
3486static void pool_resume(struct dm_target *ti)
3487{
3488	struct pool_c *pt = ti->private;
3489	struct pool *pool = pt->pool;
3490	unsigned long flags;
3491
3492	/*
3493	 * Must requeue active_thins' bios and then resume
3494	 * active_thins _before_ clearing 'suspend' flag.
3495	 */
3496	requeue_bios(pool);
3497	pool_resume_active_thins(pool);
3498
3499	spin_lock_irqsave(&pool->lock, flags);
3500	pool->low_water_triggered = false;
3501	pool->suspended = false;
3502	spin_unlock_irqrestore(&pool->lock, flags);
3503
3504	do_waker(&pool->waker.work);
3505}
3506
3507static void pool_presuspend(struct dm_target *ti)
3508{
3509	struct pool_c *pt = ti->private;
3510	struct pool *pool = pt->pool;
3511	unsigned long flags;
3512
3513	spin_lock_irqsave(&pool->lock, flags);
3514	pool->suspended = true;
3515	spin_unlock_irqrestore(&pool->lock, flags);
3516
3517	pool_suspend_active_thins(pool);
3518}
3519
3520static void pool_presuspend_undo(struct dm_target *ti)
3521{
3522	struct pool_c *pt = ti->private;
3523	struct pool *pool = pt->pool;
3524	unsigned long flags;
3525
3526	pool_resume_active_thins(pool);
3527
3528	spin_lock_irqsave(&pool->lock, flags);
3529	pool->suspended = false;
3530	spin_unlock_irqrestore(&pool->lock, flags);
3531}
3532
3533static void pool_postsuspend(struct dm_target *ti)
3534{
3535	struct pool_c *pt = ti->private;
3536	struct pool *pool = pt->pool;
3537
3538	cancel_delayed_work_sync(&pool->waker);
3539	cancel_delayed_work_sync(&pool->no_space_timeout);
3540	flush_workqueue(pool->wq);
3541	(void) commit(pool);
3542}
3543
3544static int check_arg_count(unsigned argc, unsigned args_required)
3545{
3546	if (argc != args_required) {
3547		DMWARN("Message received with %u arguments instead of %u.",
3548		       argc, args_required);
3549		return -EINVAL;
3550	}
3551
3552	return 0;
3553}
3554
3555static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3556{
3557	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3558	    *dev_id <= MAX_DEV_ID)
3559		return 0;
3560
3561	if (warning)
3562		DMWARN("Message received with invalid device id: %s", arg);
3563
3564	return -EINVAL;
3565}
3566
3567static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3568{
3569	dm_thin_id dev_id;
3570	int r;
3571
3572	r = check_arg_count(argc, 2);
3573	if (r)
3574		return r;
3575
3576	r = read_dev_id(argv[1], &dev_id, 1);
3577	if (r)
3578		return r;
3579
3580	r = dm_pool_create_thin(pool->pmd, dev_id);
3581	if (r) {
3582		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3583		       argv[1]);
3584		return r;
3585	}
3586
3587	return 0;
3588}
3589
3590static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3591{
3592	dm_thin_id dev_id;
3593	dm_thin_id origin_dev_id;
3594	int r;
3595
3596	r = check_arg_count(argc, 3);
3597	if (r)
3598		return r;
3599
3600	r = read_dev_id(argv[1], &dev_id, 1);
3601	if (r)
3602		return r;
3603
3604	r = read_dev_id(argv[2], &origin_dev_id, 1);
3605	if (r)
3606		return r;
3607
3608	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3609	if (r) {
3610		DMWARN("Creation of new snapshot %s of device %s failed.",
3611		       argv[1], argv[2]);
3612		return r;
3613	}
3614
3615	return 0;
3616}
3617
3618static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3619{
3620	dm_thin_id dev_id;
3621	int r;
3622
3623	r = check_arg_count(argc, 2);
3624	if (r)
3625		return r;
3626
3627	r = read_dev_id(argv[1], &dev_id, 1);
3628	if (r)
3629		return r;
3630
3631	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3632	if (r)
3633		DMWARN("Deletion of thin device %s failed.", argv[1]);
3634
3635	return r;
3636}
3637
3638static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3639{
3640	dm_thin_id old_id, new_id;
3641	int r;
3642
3643	r = check_arg_count(argc, 3);
3644	if (r)
3645		return r;
3646
3647	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3648		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3649		return -EINVAL;
3650	}
3651
3652	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3653		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3654		return -EINVAL;
3655	}
3656
3657	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3658	if (r) {
3659		DMWARN("Failed to change transaction id from %s to %s.",
3660		       argv[1], argv[2]);
3661		return r;
3662	}
3663
3664	return 0;
3665}
3666
3667static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3668{
3669	int r;
3670
3671	r = check_arg_count(argc, 1);
3672	if (r)
3673		return r;
3674
3675	(void) commit(pool);
3676
3677	r = dm_pool_reserve_metadata_snap(pool->pmd);
3678	if (r)
3679		DMWARN("reserve_metadata_snap message failed.");
3680
3681	return r;
3682}
3683
3684static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3685{
3686	int r;
3687
3688	r = check_arg_count(argc, 1);
3689	if (r)
3690		return r;
3691
3692	r = dm_pool_release_metadata_snap(pool->pmd);
3693	if (r)
3694		DMWARN("release_metadata_snap message failed.");
3695
3696	return r;
3697}
3698
3699/*
3700 * Messages supported:
3701 *   create_thin	<dev_id>
3702 *   create_snap	<dev_id> <origin_id>
3703 *   delete		<dev_id>
3704 *   set_transaction_id <current_trans_id> <new_trans_id>
3705 *   reserve_metadata_snap
3706 *   release_metadata_snap
3707 */
3708static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3709			char *result, unsigned maxlen)
3710{
3711	int r = -EINVAL;
3712	struct pool_c *pt = ti->private;
3713	struct pool *pool = pt->pool;
3714
3715	if (get_pool_mode(pool) >= PM_READ_ONLY) {
3716		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3717		      dm_device_name(pool->pool_md));
3718		return -EOPNOTSUPP;
3719	}
3720
3721	if (!strcasecmp(argv[0], "create_thin"))
3722		r = process_create_thin_mesg(argc, argv, pool);
3723
3724	else if (!strcasecmp(argv[0], "create_snap"))
3725		r = process_create_snap_mesg(argc, argv, pool);
3726
3727	else if (!strcasecmp(argv[0], "delete"))
3728		r = process_delete_mesg(argc, argv, pool);
3729
3730	else if (!strcasecmp(argv[0], "set_transaction_id"))
3731		r = process_set_transaction_id_mesg(argc, argv, pool);
3732
3733	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3734		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3735
3736	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3737		r = process_release_metadata_snap_mesg(argc, argv, pool);
3738
3739	else
3740		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3741
3742	if (!r)
3743		(void) commit(pool);
3744
3745	return r;
3746}
3747
3748static void emit_flags(struct pool_features *pf, char *result,
3749		       unsigned sz, unsigned maxlen)
3750{
3751	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3752		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3753		pf->error_if_no_space;
3754	DMEMIT("%u ", count);
3755
3756	if (!pf->zero_new_blocks)
3757		DMEMIT("skip_block_zeroing ");
3758
3759	if (!pf->discard_enabled)
3760		DMEMIT("ignore_discard ");
3761
3762	if (!pf->discard_passdown)
3763		DMEMIT("no_discard_passdown ");
3764
3765	if (pf->mode == PM_READ_ONLY)
3766		DMEMIT("read_only ");
3767
3768	if (pf->error_if_no_space)
3769		DMEMIT("error_if_no_space ");
3770}
3771
3772/*
3773 * Status line is:
3774 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3775 *    <used data sectors>/<total data sectors> <held metadata root>
3776 *    <pool mode> <discard config> <no space config> <needs_check>
3777 */
3778static void pool_status(struct dm_target *ti, status_type_t type,
3779			unsigned status_flags, char *result, unsigned maxlen)
3780{
3781	int r;
3782	unsigned sz = 0;
3783	uint64_t transaction_id;
3784	dm_block_t nr_free_blocks_data;
3785	dm_block_t nr_free_blocks_metadata;
3786	dm_block_t nr_blocks_data;
3787	dm_block_t nr_blocks_metadata;
3788	dm_block_t held_root;
3789	char buf[BDEVNAME_SIZE];
3790	char buf2[BDEVNAME_SIZE];
3791	struct pool_c *pt = ti->private;
3792	struct pool *pool = pt->pool;
3793
3794	switch (type) {
3795	case STATUSTYPE_INFO:
3796		if (get_pool_mode(pool) == PM_FAIL) {
3797			DMEMIT("Fail");
3798			break;
3799		}
3800
3801		/* Commit to ensure statistics aren't out-of-date */
3802		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3803			(void) commit(pool);
3804
3805		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3806		if (r) {
3807			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3808			      dm_device_name(pool->pool_md), r);
3809			goto err;
3810		}
3811
3812		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3813		if (r) {
3814			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3815			      dm_device_name(pool->pool_md), r);
3816			goto err;
3817		}
3818
3819		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3820		if (r) {
3821			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3822			      dm_device_name(pool->pool_md), r);
3823			goto err;
3824		}
3825
3826		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3827		if (r) {
3828			DMERR("%s: dm_pool_get_free_block_count returned %d",
3829			      dm_device_name(pool->pool_md), r);
3830			goto err;
3831		}
3832
3833		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3834		if (r) {
3835			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3836			      dm_device_name(pool->pool_md), r);
3837			goto err;
3838		}
3839
3840		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3841		if (r) {
3842			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3843			      dm_device_name(pool->pool_md), r);
3844			goto err;
3845		}
3846
3847		DMEMIT("%llu %llu/%llu %llu/%llu ",
3848		       (unsigned long long)transaction_id,
3849		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3850		       (unsigned long long)nr_blocks_metadata,
3851		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3852		       (unsigned long long)nr_blocks_data);
3853
3854		if (held_root)
3855			DMEMIT("%llu ", held_root);
3856		else
3857			DMEMIT("- ");
3858
3859		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3860			DMEMIT("out_of_data_space ");
3861		else if (pool->pf.mode == PM_READ_ONLY)
3862			DMEMIT("ro ");
3863		else
3864			DMEMIT("rw ");
3865
3866		if (!pool->pf.discard_enabled)
3867			DMEMIT("ignore_discard ");
3868		else if (pool->pf.discard_passdown)
3869			DMEMIT("discard_passdown ");
3870		else
3871			DMEMIT("no_discard_passdown ");
3872
3873		if (pool->pf.error_if_no_space)
3874			DMEMIT("error_if_no_space ");
3875		else
3876			DMEMIT("queue_if_no_space ");
3877
3878		if (dm_pool_metadata_needs_check(pool->pmd))
3879			DMEMIT("needs_check ");
3880		else
3881			DMEMIT("- ");
3882
3883		break;
3884
3885	case STATUSTYPE_TABLE:
3886		DMEMIT("%s %s %lu %llu ",
3887		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3888		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3889		       (unsigned long)pool->sectors_per_block,
3890		       (unsigned long long)pt->low_water_blocks);
3891		emit_flags(&pt->requested_pf, result, sz, maxlen);
3892		break;
3893	}
3894	return;
3895
3896err:
3897	DMEMIT("Error");
3898}
3899
3900static int pool_iterate_devices(struct dm_target *ti,
3901				iterate_devices_callout_fn fn, void *data)
3902{
3903	struct pool_c *pt = ti->private;
3904
3905	return fn(ti, pt->data_dev, 0, ti->len, data);
3906}
3907
3908static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3909{
3910	struct pool_c *pt = ti->private;
3911	struct pool *pool = pt->pool;
3912	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3913
3914	/*
3915	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3916	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3917	 * This is especially beneficial when the pool's data device is a RAID
3918	 * device that has a full stripe width that matches pool->sectors_per_block
3919	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3920	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3921	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3922	 */
3923	if (limits->max_sectors < pool->sectors_per_block) {
3924		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3925			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3926				limits->max_sectors--;
3927			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3928		}
3929	}
3930
3931	/*
3932	 * If the system-determined stacked limits are compatible with the
3933	 * pool's blocksize (io_opt is a factor) do not override them.
3934	 */
3935	if (io_opt_sectors < pool->sectors_per_block ||
3936	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3937		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3938			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3939		else
3940			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3941		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3942	}
3943
3944	/*
3945	 * pt->adjusted_pf is a staging area for the actual features to use.
3946	 * They get transferred to the live pool in bind_control_target()
3947	 * called from pool_preresume().
3948	 */
3949	if (!pt->adjusted_pf.discard_enabled) {
3950		/*
3951		 * Must explicitly disallow stacking discard limits otherwise the
3952		 * block layer will stack them if pool's data device has support.
3953		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3954		 * user to see that, so make sure to set all discard limits to 0.
3955		 */
3956		limits->discard_granularity = 0;
3957		return;
3958	}
3959
3960	disable_passdown_if_not_supported(pt);
3961
3962	/*
3963	 * The pool uses the same discard limits as the underlying data
3964	 * device.  DM core has already set this up.
3965	 */
3966}
3967
3968static struct target_type pool_target = {
3969	.name = "thin-pool",
3970	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3971		    DM_TARGET_IMMUTABLE,
3972	.version = {1, 19, 0},
3973	.module = THIS_MODULE,
3974	.ctr = pool_ctr,
3975	.dtr = pool_dtr,
3976	.map = pool_map,
3977	.presuspend = pool_presuspend,
3978	.presuspend_undo = pool_presuspend_undo,
3979	.postsuspend = pool_postsuspend,
3980	.preresume = pool_preresume,
3981	.resume = pool_resume,
3982	.message = pool_message,
3983	.status = pool_status,
3984	.iterate_devices = pool_iterate_devices,
3985	.io_hints = pool_io_hints,
3986};
3987
3988/*----------------------------------------------------------------
3989 * Thin target methods
3990 *--------------------------------------------------------------*/
3991static void thin_get(struct thin_c *tc)
3992{
3993	atomic_inc(&tc->refcount);
3994}
3995
3996static void thin_put(struct thin_c *tc)
3997{
3998	if (atomic_dec_and_test(&tc->refcount))
3999		complete(&tc->can_destroy);
4000}
4001
4002static void thin_dtr(struct dm_target *ti)
4003{
4004	struct thin_c *tc = ti->private;
4005	unsigned long flags;
4006
4007	spin_lock_irqsave(&tc->pool->lock, flags);
4008	list_del_rcu(&tc->list);
4009	spin_unlock_irqrestore(&tc->pool->lock, flags);
4010	synchronize_rcu();
4011
4012	thin_put(tc);
4013	wait_for_completion(&tc->can_destroy);
4014
4015	mutex_lock(&dm_thin_pool_table.mutex);
4016
4017	__pool_dec(tc->pool);
4018	dm_pool_close_thin_device(tc->td);
4019	dm_put_device(ti, tc->pool_dev);
4020	if (tc->origin_dev)
4021		dm_put_device(ti, tc->origin_dev);
4022	kfree(tc);
4023
4024	mutex_unlock(&dm_thin_pool_table.mutex);
4025}
4026
4027/*
4028 * Thin target parameters:
4029 *
4030 * <pool_dev> <dev_id> [origin_dev]
4031 *
4032 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4033 * dev_id: the internal device identifier
4034 * origin_dev: a device external to the pool that should act as the origin
4035 *
4036 * If the pool device has discards disabled, they get disabled for the thin
4037 * device as well.
4038 */
4039static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4040{
4041	int r;
4042	struct thin_c *tc;
4043	struct dm_dev *pool_dev, *origin_dev;
4044	struct mapped_device *pool_md;
4045	unsigned long flags;
4046
4047	mutex_lock(&dm_thin_pool_table.mutex);
4048
4049	if (argc != 2 && argc != 3) {
4050		ti->error = "Invalid argument count";
4051		r = -EINVAL;
4052		goto out_unlock;
4053	}
4054
4055	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4056	if (!tc) {
4057		ti->error = "Out of memory";
4058		r = -ENOMEM;
4059		goto out_unlock;
4060	}
4061	tc->thin_md = dm_table_get_md(ti->table);
4062	spin_lock_init(&tc->lock);
4063	INIT_LIST_HEAD(&tc->deferred_cells);
4064	bio_list_init(&tc->deferred_bio_list);
4065	bio_list_init(&tc->retry_on_resume_list);
4066	tc->sort_bio_list = RB_ROOT;
4067
4068	if (argc == 3) {
4069		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4070		if (r) {
4071			ti->error = "Error opening origin device";
4072			goto bad_origin_dev;
4073		}
4074		tc->origin_dev = origin_dev;
4075	}
4076
4077	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4078	if (r) {
4079		ti->error = "Error opening pool device";
4080		goto bad_pool_dev;
4081	}
4082	tc->pool_dev = pool_dev;
4083
4084	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4085		ti->error = "Invalid device id";
4086		r = -EINVAL;
4087		goto bad_common;
4088	}
4089
4090	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4091	if (!pool_md) {
4092		ti->error = "Couldn't get pool mapped device";
4093		r = -EINVAL;
4094		goto bad_common;
4095	}
4096
4097	tc->pool = __pool_table_lookup(pool_md);
4098	if (!tc->pool) {
4099		ti->error = "Couldn't find pool object";
4100		r = -EINVAL;
4101		goto bad_pool_lookup;
4102	}
4103	__pool_inc(tc->pool);
4104
4105	if (get_pool_mode(tc->pool) == PM_FAIL) {
4106		ti->error = "Couldn't open thin device, Pool is in fail mode";
4107		r = -EINVAL;
4108		goto bad_pool;
4109	}
4110
4111	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4112	if (r) {
4113		ti->error = "Couldn't open thin internal device";
4114		goto bad_pool;
4115	}
4116
4117	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4118	if (r)
4119		goto bad;
4120
4121	ti->num_flush_bios = 1;
4122	ti->flush_supported = true;
4123	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4124
4125	/* In case the pool supports discards, pass them on. */
4126	if (tc->pool->pf.discard_enabled) {
4127		ti->discards_supported = true;
4128		ti->num_discard_bios = 1;
4129		ti->split_discard_bios = false;
4130	}
4131
4132	mutex_unlock(&dm_thin_pool_table.mutex);
4133
4134	spin_lock_irqsave(&tc->pool->lock, flags);
4135	if (tc->pool->suspended) {
4136		spin_unlock_irqrestore(&tc->pool->lock, flags);
4137		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4138		ti->error = "Unable to activate thin device while pool is suspended";
4139		r = -EINVAL;
4140		goto bad;
4141	}
4142	atomic_set(&tc->refcount, 1);
4143	init_completion(&tc->can_destroy);
4144	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4145	spin_unlock_irqrestore(&tc->pool->lock, flags);
4146	/*
4147	 * This synchronize_rcu() call is needed here otherwise we risk a
4148	 * wake_worker() call finding no bios to process (because the newly
4149	 * added tc isn't yet visible).  So this reduces latency since we
4150	 * aren't then dependent on the periodic commit to wake_worker().
4151	 */
4152	synchronize_rcu();
4153
4154	dm_put(pool_md);
4155
4156	return 0;
4157
4158bad:
4159	dm_pool_close_thin_device(tc->td);
4160bad_pool:
4161	__pool_dec(tc->pool);
4162bad_pool_lookup:
4163	dm_put(pool_md);
4164bad_common:
4165	dm_put_device(ti, tc->pool_dev);
4166bad_pool_dev:
4167	if (tc->origin_dev)
4168		dm_put_device(ti, tc->origin_dev);
4169bad_origin_dev:
4170	kfree(tc);
4171out_unlock:
4172	mutex_unlock(&dm_thin_pool_table.mutex);
4173
4174	return r;
4175}
4176
4177static int thin_map(struct dm_target *ti, struct bio *bio)
4178{
4179	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4180
4181	return thin_bio_map(ti, bio);
4182}
4183
4184static int thin_endio(struct dm_target *ti, struct bio *bio,
4185		blk_status_t *err)
4186{
4187	unsigned long flags;
4188	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4189	struct list_head work;
4190	struct dm_thin_new_mapping *m, *tmp;
4191	struct pool *pool = h->tc->pool;
4192
4193	if (h->shared_read_entry) {
4194		INIT_LIST_HEAD(&work);
4195		dm_deferred_entry_dec(h->shared_read_entry, &work);
4196
4197		spin_lock_irqsave(&pool->lock, flags);
4198		list_for_each_entry_safe(m, tmp, &work, list) {
4199			list_del(&m->list);
4200			__complete_mapping_preparation(m);
4201		}
4202		spin_unlock_irqrestore(&pool->lock, flags);
4203	}
4204
4205	if (h->all_io_entry) {
4206		INIT_LIST_HEAD(&work);
4207		dm_deferred_entry_dec(h->all_io_entry, &work);
4208		if (!list_empty(&work)) {
4209			spin_lock_irqsave(&pool->lock, flags);
4210			list_for_each_entry_safe(m, tmp, &work, list)
4211				list_add_tail(&m->list, &pool->prepared_discards);
4212			spin_unlock_irqrestore(&pool->lock, flags);
4213			wake_worker(pool);
4214		}
4215	}
4216
4217	if (h->cell)
4218		cell_defer_no_holder(h->tc, h->cell);
4219
4220	return DM_ENDIO_DONE;
4221}
4222
4223static void thin_presuspend(struct dm_target *ti)
4224{
4225	struct thin_c *tc = ti->private;
4226
4227	if (dm_noflush_suspending(ti))
4228		noflush_work(tc, do_noflush_start);
4229}
4230
4231static void thin_postsuspend(struct dm_target *ti)
4232{
4233	struct thin_c *tc = ti->private;
4234
4235	/*
4236	 * The dm_noflush_suspending flag has been cleared by now, so
4237	 * unfortunately we must always run this.
4238	 */
4239	noflush_work(tc, do_noflush_stop);
4240}
4241
4242static int thin_preresume(struct dm_target *ti)
4243{
4244	struct thin_c *tc = ti->private;
4245
4246	if (tc->origin_dev)
4247		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4248
4249	return 0;
4250}
4251
4252/*
4253 * <nr mapped sectors> <highest mapped sector>
4254 */
4255static void thin_status(struct dm_target *ti, status_type_t type,
4256			unsigned status_flags, char *result, unsigned maxlen)
4257{
4258	int r;
4259	ssize_t sz = 0;
4260	dm_block_t mapped, highest;
4261	char buf[BDEVNAME_SIZE];
4262	struct thin_c *tc = ti->private;
4263
4264	if (get_pool_mode(tc->pool) == PM_FAIL) {
4265		DMEMIT("Fail");
4266		return;
4267	}
4268
4269	if (!tc->td)
4270		DMEMIT("-");
4271	else {
4272		switch (type) {
4273		case STATUSTYPE_INFO:
4274			r = dm_thin_get_mapped_count(tc->td, &mapped);
4275			if (r) {
4276				DMERR("dm_thin_get_mapped_count returned %d", r);
4277				goto err;
4278			}
4279
4280			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4281			if (r < 0) {
4282				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4283				goto err;
4284			}
4285
4286			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4287			if (r)
4288				DMEMIT("%llu", ((highest + 1) *
4289						tc->pool->sectors_per_block) - 1);
4290			else
4291				DMEMIT("-");
4292			break;
4293
4294		case STATUSTYPE_TABLE:
4295			DMEMIT("%s %lu",
4296			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4297			       (unsigned long) tc->dev_id);
4298			if (tc->origin_dev)
4299				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4300			break;
4301		}
4302	}
4303
4304	return;
4305
4306err:
4307	DMEMIT("Error");
4308}
4309
4310static int thin_iterate_devices(struct dm_target *ti,
4311				iterate_devices_callout_fn fn, void *data)
4312{
4313	sector_t blocks;
4314	struct thin_c *tc = ti->private;
4315	struct pool *pool = tc->pool;
4316
4317	/*
4318	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4319	 * we follow a more convoluted path through to the pool's target.
4320	 */
4321	if (!pool->ti)
4322		return 0;	/* nothing is bound */
4323
4324	blocks = pool->ti->len;
4325	(void) sector_div(blocks, pool->sectors_per_block);
4326	if (blocks)
4327		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4328
4329	return 0;
4330}
4331
4332static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4333{
4334	struct thin_c *tc = ti->private;
4335	struct pool *pool = tc->pool;
4336
4337	if (!pool->pf.discard_enabled)
4338		return;
4339
4340	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4341	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4342}
4343
4344static struct target_type thin_target = {
4345	.name = "thin",
4346	.version = {1, 19, 0},
4347	.module	= THIS_MODULE,
4348	.ctr = thin_ctr,
4349	.dtr = thin_dtr,
4350	.map = thin_map,
4351	.end_io = thin_endio,
4352	.preresume = thin_preresume,
4353	.presuspend = thin_presuspend,
4354	.postsuspend = thin_postsuspend,
4355	.status = thin_status,
4356	.iterate_devices = thin_iterate_devices,
4357	.io_hints = thin_io_hints,
4358};
4359
4360/*----------------------------------------------------------------*/
4361
4362static int __init dm_thin_init(void)
4363{
4364	int r = -ENOMEM;
4365
4366	pool_table_init();
4367
4368	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4369	if (!_new_mapping_cache)
4370		return r;
4371
4372	r = dm_register_target(&thin_target);
4373	if (r)
4374		goto bad_new_mapping_cache;
4375
4376	r = dm_register_target(&pool_target);
4377	if (r)
4378		goto bad_thin_target;
4379
4380	return 0;
4381
4382bad_thin_target:
4383	dm_unregister_target(&thin_target);
4384bad_new_mapping_cache:
4385	kmem_cache_destroy(_new_mapping_cache);
4386
4387	return r;
4388}
4389
4390static void dm_thin_exit(void)
4391{
4392	dm_unregister_target(&thin_target);
4393	dm_unregister_target(&pool_target);
4394
4395	kmem_cache_destroy(_new_mapping_cache);
4396
4397	pool_table_exit();
4398}
4399
4400module_init(dm_thin_init);
4401module_exit(dm_thin_exit);
4402
4403module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4404MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4405
4406MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4407MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4408MODULE_LICENSE("GPL");