Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (C) 2011-2012 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "dm-bio-prison.h"
   9#include "dm.h"
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/list.h>
  15#include <linux/rculist.h>
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/rbtree.h>
  20
  21#define	DM_MSG_PREFIX	"thin"
  22
  23/*
  24 * Tunable constants
  25 */
  26#define ENDIO_HOOK_POOL_SIZE 1024
  27#define MAPPING_POOL_SIZE 1024
  28#define PRISON_CELLS 1024
  29#define COMMIT_PERIOD HZ
  30#define NO_SPACE_TIMEOUT_SECS 60
  31
  32static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  33
  34DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  35		"A percentage of time allocated for copy on write");
  36
  37/*
  38 * The block size of the device holding pool data must be
  39 * between 64KB and 1GB.
  40 */
  41#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  42#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  43
  44/*
  45 * Device id is restricted to 24 bits.
  46 */
  47#define MAX_DEV_ID ((1 << 24) - 1)
  48
  49/*
  50 * How do we handle breaking sharing of data blocks?
  51 * =================================================
  52 *
  53 * We use a standard copy-on-write btree to store the mappings for the
  54 * devices (note I'm talking about copy-on-write of the metadata here, not
  55 * the data).  When you take an internal snapshot you clone the root node
  56 * of the origin btree.  After this there is no concept of an origin or a
  57 * snapshot.  They are just two device trees that happen to point to the
  58 * same data blocks.
  59 *
  60 * When we get a write in we decide if it's to a shared data block using
  61 * some timestamp magic.  If it is, we have to break sharing.
  62 *
  63 * Let's say we write to a shared block in what was the origin.  The
  64 * steps are:
  65 *
  66 * i) plug io further to this physical block. (see bio_prison code).
  67 *
  68 * ii) quiesce any read io to that shared data block.  Obviously
  69 * including all devices that share this block.  (see dm_deferred_set code)
  70 *
  71 * iii) copy the data block to a newly allocate block.  This step can be
  72 * missed out if the io covers the block. (schedule_copy).
  73 *
  74 * iv) insert the new mapping into the origin's btree
  75 * (process_prepared_mapping).  This act of inserting breaks some
  76 * sharing of btree nodes between the two devices.  Breaking sharing only
  77 * effects the btree of that specific device.  Btrees for the other
  78 * devices that share the block never change.  The btree for the origin
  79 * device as it was after the last commit is untouched, ie. we're using
  80 * persistent data structures in the functional programming sense.
  81 *
  82 * v) unplug io to this physical block, including the io that triggered
  83 * the breaking of sharing.
  84 *
  85 * Steps (ii) and (iii) occur in parallel.
  86 *
  87 * The metadata _doesn't_ need to be committed before the io continues.  We
  88 * get away with this because the io is always written to a _new_ block.
  89 * If there's a crash, then:
  90 *
  91 * - The origin mapping will point to the old origin block (the shared
  92 * one).  This will contain the data as it was before the io that triggered
  93 * the breaking of sharing came in.
  94 *
  95 * - The snap mapping still points to the old block.  As it would after
  96 * the commit.
  97 *
  98 * The downside of this scheme is the timestamp magic isn't perfect, and
  99 * will continue to think that data block in the snapshot device is shared
 100 * even after the write to the origin has broken sharing.  I suspect data
 101 * blocks will typically be shared by many different devices, so we're
 102 * breaking sharing n + 1 times, rather than n, where n is the number of
 103 * devices that reference this data block.  At the moment I think the
 104 * benefits far, far outweigh the disadvantages.
 105 */
 106
 107/*----------------------------------------------------------------*/
 108
 109/*
 110 * Key building.
 111 */
 112static void build_data_key(struct dm_thin_device *td,
 113			   dm_block_t b, struct dm_cell_key *key)
 114{
 115	key->virtual = 0;
 116	key->dev = dm_thin_dev_id(td);
 117	key->block = b;
 118}
 119
 120static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 121			      struct dm_cell_key *key)
 122{
 123	key->virtual = 1;
 124	key->dev = dm_thin_dev_id(td);
 125	key->block = b;
 126}
 127
 128/*----------------------------------------------------------------*/
 129
 130/*
 131 * A pool device ties together a metadata device and a data device.  It
 132 * also provides the interface for creating and destroying internal
 133 * devices.
 134 */
 135struct dm_thin_new_mapping;
 136
 137/*
 138 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
 139 */
 140enum pool_mode {
 141	PM_WRITE,		/* metadata may be changed */
 142	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
 143	PM_READ_ONLY,		/* metadata may not be changed */
 144	PM_FAIL,		/* all I/O fails */
 145};
 146
 147struct pool_features {
 148	enum pool_mode mode;
 149
 150	bool zero_new_blocks:1;
 151	bool discard_enabled:1;
 152	bool discard_passdown:1;
 153	bool error_if_no_space:1;
 154};
 155
 156struct thin_c;
 157typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 158typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 159
 160struct pool {
 161	struct list_head list;
 162	struct dm_target *ti;	/* Only set if a pool target is bound */
 163
 164	struct mapped_device *pool_md;
 165	struct block_device *md_dev;
 166	struct dm_pool_metadata *pmd;
 167
 168	dm_block_t low_water_blocks;
 169	uint32_t sectors_per_block;
 170	int sectors_per_block_shift;
 171
 172	struct pool_features pf;
 173	bool low_water_triggered:1;	/* A dm event has been sent */
 174
 175	struct dm_bio_prison *prison;
 176	struct dm_kcopyd_client *copier;
 177
 178	struct workqueue_struct *wq;
 179	struct work_struct worker;
 180	struct delayed_work waker;
 181	struct delayed_work no_space_timeout;
 182
 183	unsigned long last_commit_jiffies;
 184	unsigned ref_count;
 185
 186	spinlock_t lock;
 187	struct bio_list deferred_flush_bios;
 188	struct list_head prepared_mappings;
 189	struct list_head prepared_discards;
 190	struct list_head active_thins;
 191
 192	struct dm_deferred_set *shared_read_ds;
 193	struct dm_deferred_set *all_io_ds;
 194
 195	struct dm_thin_new_mapping *next_mapping;
 196	mempool_t *mapping_pool;
 197
 198	process_bio_fn process_bio;
 199	process_bio_fn process_discard;
 200
 201	process_mapping_fn process_prepared_mapping;
 202	process_mapping_fn process_prepared_discard;
 203};
 204
 205static enum pool_mode get_pool_mode(struct pool *pool);
 206static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 207
 208/*
 209 * Target context for a pool.
 210 */
 211struct pool_c {
 212	struct dm_target *ti;
 213	struct pool *pool;
 214	struct dm_dev *data_dev;
 215	struct dm_dev *metadata_dev;
 216	struct dm_target_callbacks callbacks;
 217
 218	dm_block_t low_water_blocks;
 219	struct pool_features requested_pf; /* Features requested during table load */
 220	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 221};
 222
 223/*
 224 * Target context for a thin.
 225 */
 226struct thin_c {
 227	struct list_head list;
 228	struct dm_dev *pool_dev;
 229	struct dm_dev *origin_dev;
 230	dm_thin_id dev_id;
 231
 232	struct pool *pool;
 233	struct dm_thin_device *td;
 234	bool requeue_mode:1;
 235	spinlock_t lock;
 236	struct bio_list deferred_bio_list;
 237	struct bio_list retry_on_resume_list;
 238	struct rb_root sort_bio_list; /* sorted list of deferred bios */
 239
 240	/*
 241	 * Ensures the thin is not destroyed until the worker has finished
 242	 * iterating the active_thins list.
 243	 */
 244	atomic_t refcount;
 245	struct completion can_destroy;
 246};
 247
 248/*----------------------------------------------------------------*/
 249
 250/*
 251 * wake_worker() is used when new work is queued and when pool_resume is
 252 * ready to continue deferred IO processing.
 253 */
 254static void wake_worker(struct pool *pool)
 255{
 256	queue_work(pool->wq, &pool->worker);
 257}
 258
 259/*----------------------------------------------------------------*/
 260
 261static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 262		      struct dm_bio_prison_cell **cell_result)
 263{
 264	int r;
 265	struct dm_bio_prison_cell *cell_prealloc;
 266
 267	/*
 268	 * Allocate a cell from the prison's mempool.
 269	 * This might block but it can't fail.
 270	 */
 271	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 272
 273	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 274	if (r)
 275		/*
 276		 * We reused an old cell; we can get rid of
 277		 * the new one.
 278		 */
 279		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 280
 281	return r;
 282}
 283
 284static void cell_release(struct pool *pool,
 285			 struct dm_bio_prison_cell *cell,
 286			 struct bio_list *bios)
 287{
 288	dm_cell_release(pool->prison, cell, bios);
 289	dm_bio_prison_free_cell(pool->prison, cell);
 290}
 291
 292static void cell_release_no_holder(struct pool *pool,
 293				   struct dm_bio_prison_cell *cell,
 294				   struct bio_list *bios)
 295{
 296	dm_cell_release_no_holder(pool->prison, cell, bios);
 297	dm_bio_prison_free_cell(pool->prison, cell);
 298}
 299
 300static void cell_defer_no_holder_no_free(struct thin_c *tc,
 301					 struct dm_bio_prison_cell *cell)
 302{
 303	struct pool *pool = tc->pool;
 304	unsigned long flags;
 305
 306	spin_lock_irqsave(&tc->lock, flags);
 307	dm_cell_release_no_holder(pool->prison, cell, &tc->deferred_bio_list);
 308	spin_unlock_irqrestore(&tc->lock, flags);
 309
 310	wake_worker(pool);
 311}
 312
 313static void cell_error(struct pool *pool,
 314		       struct dm_bio_prison_cell *cell)
 315{
 316	dm_cell_error(pool->prison, cell);
 317	dm_bio_prison_free_cell(pool->prison, cell);
 318}
 319
 320/*----------------------------------------------------------------*/
 321
 322/*
 323 * A global list of pools that uses a struct mapped_device as a key.
 324 */
 325static struct dm_thin_pool_table {
 326	struct mutex mutex;
 327	struct list_head pools;
 328} dm_thin_pool_table;
 329
 330static void pool_table_init(void)
 331{
 332	mutex_init(&dm_thin_pool_table.mutex);
 333	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 334}
 335
 336static void __pool_table_insert(struct pool *pool)
 337{
 338	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 339	list_add(&pool->list, &dm_thin_pool_table.pools);
 340}
 341
 342static void __pool_table_remove(struct pool *pool)
 343{
 344	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 345	list_del(&pool->list);
 346}
 347
 348static struct pool *__pool_table_lookup(struct mapped_device *md)
 349{
 350	struct pool *pool = NULL, *tmp;
 351
 352	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 353
 354	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 355		if (tmp->pool_md == md) {
 356			pool = tmp;
 357			break;
 358		}
 359	}
 360
 361	return pool;
 362}
 363
 364static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 365{
 366	struct pool *pool = NULL, *tmp;
 367
 368	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 369
 370	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 371		if (tmp->md_dev == md_dev) {
 372			pool = tmp;
 373			break;
 374		}
 375	}
 376
 377	return pool;
 378}
 379
 380/*----------------------------------------------------------------*/
 381
 382struct dm_thin_endio_hook {
 383	struct thin_c *tc;
 384	struct dm_deferred_entry *shared_read_entry;
 385	struct dm_deferred_entry *all_io_entry;
 386	struct dm_thin_new_mapping *overwrite_mapping;
 387	struct rb_node rb_node;
 388};
 389
 390static void requeue_bio_list(struct thin_c *tc, struct bio_list *master)
 391{
 392	struct bio *bio;
 393	struct bio_list bios;
 394	unsigned long flags;
 395
 396	bio_list_init(&bios);
 397
 398	spin_lock_irqsave(&tc->lock, flags);
 399	bio_list_merge(&bios, master);
 400	bio_list_init(master);
 401	spin_unlock_irqrestore(&tc->lock, flags);
 402
 403	while ((bio = bio_list_pop(&bios)))
 404		bio_endio(bio, DM_ENDIO_REQUEUE);
 405}
 406
 407static void requeue_io(struct thin_c *tc)
 408{
 409	requeue_bio_list(tc, &tc->deferred_bio_list);
 410	requeue_bio_list(tc, &tc->retry_on_resume_list);
 411}
 412
 413static void error_thin_retry_list(struct thin_c *tc)
 414{
 415	struct bio *bio;
 416	unsigned long flags;
 417	struct bio_list bios;
 418
 419	bio_list_init(&bios);
 420
 421	spin_lock_irqsave(&tc->lock, flags);
 422	bio_list_merge(&bios, &tc->retry_on_resume_list);
 423	bio_list_init(&tc->retry_on_resume_list);
 424	spin_unlock_irqrestore(&tc->lock, flags);
 425
 426	while ((bio = bio_list_pop(&bios)))
 427		bio_io_error(bio);
 428}
 429
 430static void error_retry_list(struct pool *pool)
 431{
 432	struct thin_c *tc;
 433
 434	rcu_read_lock();
 435	list_for_each_entry_rcu(tc, &pool->active_thins, list)
 436		error_thin_retry_list(tc);
 437	rcu_read_unlock();
 438}
 439
 440/*
 441 * This section of code contains the logic for processing a thin device's IO.
 442 * Much of the code depends on pool object resources (lists, workqueues, etc)
 443 * but most is exclusively called from the thin target rather than the thin-pool
 444 * target.
 445 */
 446
 447static bool block_size_is_power_of_two(struct pool *pool)
 448{
 449	return pool->sectors_per_block_shift >= 0;
 450}
 451
 452static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 453{
 454	struct pool *pool = tc->pool;
 455	sector_t block_nr = bio->bi_iter.bi_sector;
 456
 457	if (block_size_is_power_of_two(pool))
 458		block_nr >>= pool->sectors_per_block_shift;
 459	else
 460		(void) sector_div(block_nr, pool->sectors_per_block);
 461
 462	return block_nr;
 463}
 464
 465static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 466{
 467	struct pool *pool = tc->pool;
 468	sector_t bi_sector = bio->bi_iter.bi_sector;
 469
 470	bio->bi_bdev = tc->pool_dev->bdev;
 471	if (block_size_is_power_of_two(pool))
 472		bio->bi_iter.bi_sector =
 473			(block << pool->sectors_per_block_shift) |
 474			(bi_sector & (pool->sectors_per_block - 1));
 475	else
 476		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 477				 sector_div(bi_sector, pool->sectors_per_block);
 478}
 479
 480static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 481{
 482	bio->bi_bdev = tc->origin_dev->bdev;
 483}
 484
 485static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 486{
 487	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
 488		dm_thin_changed_this_transaction(tc->td);
 489}
 490
 491static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 492{
 493	struct dm_thin_endio_hook *h;
 494
 495	if (bio->bi_rw & REQ_DISCARD)
 496		return;
 497
 498	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 499	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 500}
 501
 502static void issue(struct thin_c *tc, struct bio *bio)
 503{
 504	struct pool *pool = tc->pool;
 505	unsigned long flags;
 506
 507	if (!bio_triggers_commit(tc, bio)) {
 508		generic_make_request(bio);
 509		return;
 510	}
 511
 512	/*
 513	 * Complete bio with an error if earlier I/O caused changes to
 514	 * the metadata that can't be committed e.g, due to I/O errors
 515	 * on the metadata device.
 516	 */
 517	if (dm_thin_aborted_changes(tc->td)) {
 518		bio_io_error(bio);
 519		return;
 520	}
 521
 522	/*
 523	 * Batch together any bios that trigger commits and then issue a
 524	 * single commit for them in process_deferred_bios().
 525	 */
 526	spin_lock_irqsave(&pool->lock, flags);
 527	bio_list_add(&pool->deferred_flush_bios, bio);
 528	spin_unlock_irqrestore(&pool->lock, flags);
 529}
 530
 531static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 532{
 533	remap_to_origin(tc, bio);
 534	issue(tc, bio);
 535}
 536
 537static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 538			    dm_block_t block)
 539{
 540	remap(tc, bio, block);
 541	issue(tc, bio);
 542}
 543
 544/*----------------------------------------------------------------*/
 545
 546/*
 547 * Bio endio functions.
 548 */
 549struct dm_thin_new_mapping {
 550	struct list_head list;
 551
 552	bool quiesced:1;
 553	bool prepared:1;
 554	bool pass_discard:1;
 555	bool definitely_not_shared:1;
 556
 557	int err;
 558	struct thin_c *tc;
 559	dm_block_t virt_block;
 560	dm_block_t data_block;
 561	struct dm_bio_prison_cell *cell, *cell2;
 562
 563	/*
 564	 * If the bio covers the whole area of a block then we can avoid
 565	 * zeroing or copying.  Instead this bio is hooked.  The bio will
 566	 * still be in the cell, so care has to be taken to avoid issuing
 567	 * the bio twice.
 568	 */
 569	struct bio *bio;
 570	bio_end_io_t *saved_bi_end_io;
 571};
 572
 573static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
 574{
 575	struct pool *pool = m->tc->pool;
 576
 577	if (m->quiesced && m->prepared) {
 578		list_add_tail(&m->list, &pool->prepared_mappings);
 579		wake_worker(pool);
 580	}
 581}
 582
 583static void copy_complete(int read_err, unsigned long write_err, void *context)
 584{
 585	unsigned long flags;
 586	struct dm_thin_new_mapping *m = context;
 587	struct pool *pool = m->tc->pool;
 588
 589	m->err = read_err || write_err ? -EIO : 0;
 590
 591	spin_lock_irqsave(&pool->lock, flags);
 592	m->prepared = true;
 593	__maybe_add_mapping(m);
 594	spin_unlock_irqrestore(&pool->lock, flags);
 595}
 596
 597static void overwrite_endio(struct bio *bio, int err)
 598{
 599	unsigned long flags;
 600	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 601	struct dm_thin_new_mapping *m = h->overwrite_mapping;
 602	struct pool *pool = m->tc->pool;
 603
 604	m->err = err;
 605
 606	spin_lock_irqsave(&pool->lock, flags);
 607	m->prepared = true;
 608	__maybe_add_mapping(m);
 609	spin_unlock_irqrestore(&pool->lock, flags);
 610}
 611
 612/*----------------------------------------------------------------*/
 613
 614/*
 615 * Workqueue.
 616 */
 617
 618/*
 619 * Prepared mapping jobs.
 620 */
 621
 622/*
 623 * This sends the bios in the cell back to the deferred_bios list.
 624 */
 625static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 626{
 627	struct pool *pool = tc->pool;
 628	unsigned long flags;
 629
 630	spin_lock_irqsave(&tc->lock, flags);
 631	cell_release(pool, cell, &tc->deferred_bio_list);
 632	spin_unlock_irqrestore(&tc->lock, flags);
 633
 634	wake_worker(pool);
 635}
 636
 637/*
 638 * Same as cell_defer above, except it omits the original holder of the cell.
 639 */
 640static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 641{
 642	struct pool *pool = tc->pool;
 643	unsigned long flags;
 644
 645	spin_lock_irqsave(&tc->lock, flags);
 646	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
 647	spin_unlock_irqrestore(&tc->lock, flags);
 648
 649	wake_worker(pool);
 650}
 651
 652static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 653{
 654	if (m->bio) {
 655		m->bio->bi_end_io = m->saved_bi_end_io;
 656		atomic_inc(&m->bio->bi_remaining);
 657	}
 658	cell_error(m->tc->pool, m->cell);
 659	list_del(&m->list);
 660	mempool_free(m, m->tc->pool->mapping_pool);
 661}
 662
 663static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 664{
 665	struct thin_c *tc = m->tc;
 666	struct pool *pool = tc->pool;
 667	struct bio *bio;
 668	int r;
 669
 670	bio = m->bio;
 671	if (bio) {
 672		bio->bi_end_io = m->saved_bi_end_io;
 673		atomic_inc(&bio->bi_remaining);
 674	}
 675
 676	if (m->err) {
 677		cell_error(pool, m->cell);
 678		goto out;
 679	}
 680
 681	/*
 682	 * Commit the prepared block into the mapping btree.
 683	 * Any I/O for this block arriving after this point will get
 684	 * remapped to it directly.
 685	 */
 686	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
 687	if (r) {
 688		metadata_operation_failed(pool, "dm_thin_insert_block", r);
 689		cell_error(pool, m->cell);
 690		goto out;
 691	}
 692
 693	/*
 694	 * Release any bios held while the block was being provisioned.
 695	 * If we are processing a write bio that completely covers the block,
 696	 * we already processed it so can ignore it now when processing
 697	 * the bios in the cell.
 698	 */
 699	if (bio) {
 700		cell_defer_no_holder(tc, m->cell);
 701		bio_endio(bio, 0);
 702	} else
 703		cell_defer(tc, m->cell);
 704
 705out:
 706	list_del(&m->list);
 707	mempool_free(m, pool->mapping_pool);
 708}
 709
 710static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
 711{
 712	struct thin_c *tc = m->tc;
 713
 714	bio_io_error(m->bio);
 715	cell_defer_no_holder(tc, m->cell);
 716	cell_defer_no_holder(tc, m->cell2);
 717	mempool_free(m, tc->pool->mapping_pool);
 718}
 719
 720static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
 721{
 722	struct thin_c *tc = m->tc;
 723
 724	inc_all_io_entry(tc->pool, m->bio);
 725	cell_defer_no_holder(tc, m->cell);
 726	cell_defer_no_holder(tc, m->cell2);
 727
 728	if (m->pass_discard)
 729		if (m->definitely_not_shared)
 730			remap_and_issue(tc, m->bio, m->data_block);
 731		else {
 732			bool used = false;
 733			if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used)
 734				bio_endio(m->bio, 0);
 735			else
 736				remap_and_issue(tc, m->bio, m->data_block);
 737		}
 738	else
 739		bio_endio(m->bio, 0);
 740
 741	mempool_free(m, tc->pool->mapping_pool);
 742}
 743
 744static void process_prepared_discard(struct dm_thin_new_mapping *m)
 745{
 746	int r;
 747	struct thin_c *tc = m->tc;
 748
 749	r = dm_thin_remove_block(tc->td, m->virt_block);
 750	if (r)
 751		DMERR_LIMIT("dm_thin_remove_block() failed");
 752
 753	process_prepared_discard_passdown(m);
 754}
 755
 756static void process_prepared(struct pool *pool, struct list_head *head,
 757			     process_mapping_fn *fn)
 758{
 759	unsigned long flags;
 760	struct list_head maps;
 761	struct dm_thin_new_mapping *m, *tmp;
 762
 763	INIT_LIST_HEAD(&maps);
 764	spin_lock_irqsave(&pool->lock, flags);
 765	list_splice_init(head, &maps);
 766	spin_unlock_irqrestore(&pool->lock, flags);
 767
 768	list_for_each_entry_safe(m, tmp, &maps, list)
 769		(*fn)(m);
 770}
 771
 772/*
 773 * Deferred bio jobs.
 774 */
 775static int io_overlaps_block(struct pool *pool, struct bio *bio)
 776{
 777	return bio->bi_iter.bi_size ==
 778		(pool->sectors_per_block << SECTOR_SHIFT);
 779}
 780
 781static int io_overwrites_block(struct pool *pool, struct bio *bio)
 782{
 783	return (bio_data_dir(bio) == WRITE) &&
 784		io_overlaps_block(pool, bio);
 785}
 786
 787static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
 788			       bio_end_io_t *fn)
 789{
 790	*save = bio->bi_end_io;
 791	bio->bi_end_io = fn;
 792}
 793
 794static int ensure_next_mapping(struct pool *pool)
 795{
 796	if (pool->next_mapping)
 797		return 0;
 798
 799	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
 800
 801	return pool->next_mapping ? 0 : -ENOMEM;
 802}
 803
 804static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
 805{
 806	struct dm_thin_new_mapping *m = pool->next_mapping;
 807
 808	BUG_ON(!pool->next_mapping);
 809
 810	memset(m, 0, sizeof(struct dm_thin_new_mapping));
 811	INIT_LIST_HEAD(&m->list);
 812	m->bio = NULL;
 813
 814	pool->next_mapping = NULL;
 815
 816	return m;
 817}
 818
 819static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
 820			  struct dm_dev *origin, dm_block_t data_origin,
 821			  dm_block_t data_dest,
 822			  struct dm_bio_prison_cell *cell, struct bio *bio)
 823{
 824	int r;
 825	struct pool *pool = tc->pool;
 826	struct dm_thin_new_mapping *m = get_next_mapping(pool);
 827
 828	m->tc = tc;
 829	m->virt_block = virt_block;
 830	m->data_block = data_dest;
 831	m->cell = cell;
 832
 833	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
 834		m->quiesced = true;
 835
 836	/*
 837	 * IO to pool_dev remaps to the pool target's data_dev.
 838	 *
 839	 * If the whole block of data is being overwritten, we can issue the
 840	 * bio immediately. Otherwise we use kcopyd to clone the data first.
 841	 */
 842	if (io_overwrites_block(pool, bio)) {
 843		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 844
 845		h->overwrite_mapping = m;
 846		m->bio = bio;
 847		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
 848		inc_all_io_entry(pool, bio);
 849		remap_and_issue(tc, bio, data_dest);
 850	} else {
 851		struct dm_io_region from, to;
 852
 853		from.bdev = origin->bdev;
 854		from.sector = data_origin * pool->sectors_per_block;
 855		from.count = pool->sectors_per_block;
 856
 857		to.bdev = tc->pool_dev->bdev;
 858		to.sector = data_dest * pool->sectors_per_block;
 859		to.count = pool->sectors_per_block;
 860
 861		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
 862				   0, copy_complete, m);
 863		if (r < 0) {
 864			mempool_free(m, pool->mapping_pool);
 865			DMERR_LIMIT("dm_kcopyd_copy() failed");
 866			cell_error(pool, cell);
 867		}
 868	}
 869}
 870
 871static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
 872				   dm_block_t data_origin, dm_block_t data_dest,
 873				   struct dm_bio_prison_cell *cell, struct bio *bio)
 874{
 875	schedule_copy(tc, virt_block, tc->pool_dev,
 876		      data_origin, data_dest, cell, bio);
 877}
 878
 879static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
 880				   dm_block_t data_dest,
 881				   struct dm_bio_prison_cell *cell, struct bio *bio)
 882{
 883	schedule_copy(tc, virt_block, tc->origin_dev,
 884		      virt_block, data_dest, cell, bio);
 885}
 886
 887static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
 888			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
 889			  struct bio *bio)
 890{
 891	struct pool *pool = tc->pool;
 892	struct dm_thin_new_mapping *m = get_next_mapping(pool);
 893
 894	m->quiesced = true;
 895	m->prepared = false;
 896	m->tc = tc;
 897	m->virt_block = virt_block;
 898	m->data_block = data_block;
 899	m->cell = cell;
 900
 901	/*
 902	 * If the whole block of data is being overwritten or we are not
 903	 * zeroing pre-existing data, we can issue the bio immediately.
 904	 * Otherwise we use kcopyd to zero the data first.
 905	 */
 906	if (!pool->pf.zero_new_blocks)
 907		process_prepared_mapping(m);
 908
 909	else if (io_overwrites_block(pool, bio)) {
 910		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 911
 912		h->overwrite_mapping = m;
 913		m->bio = bio;
 914		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
 915		inc_all_io_entry(pool, bio);
 916		remap_and_issue(tc, bio, data_block);
 917	} else {
 918		int r;
 919		struct dm_io_region to;
 920
 921		to.bdev = tc->pool_dev->bdev;
 922		to.sector = data_block * pool->sectors_per_block;
 923		to.count = pool->sectors_per_block;
 924
 925		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
 926		if (r < 0) {
 927			mempool_free(m, pool->mapping_pool);
 928			DMERR_LIMIT("dm_kcopyd_zero() failed");
 929			cell_error(pool, cell);
 930		}
 931	}
 932}
 933
 934/*
 935 * A non-zero return indicates read_only or fail_io mode.
 936 * Many callers don't care about the return value.
 937 */
 938static int commit(struct pool *pool)
 939{
 940	int r;
 941
 942	if (get_pool_mode(pool) >= PM_READ_ONLY)
 943		return -EINVAL;
 944
 945	r = dm_pool_commit_metadata(pool->pmd);
 946	if (r)
 947		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
 948
 949	return r;
 950}
 951
 952static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
 953{
 954	unsigned long flags;
 955
 956	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
 957		DMWARN("%s: reached low water mark for data device: sending event.",
 958		       dm_device_name(pool->pool_md));
 959		spin_lock_irqsave(&pool->lock, flags);
 960		pool->low_water_triggered = true;
 961		spin_unlock_irqrestore(&pool->lock, flags);
 962		dm_table_event(pool->ti->table);
 963	}
 964}
 965
 966static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
 967
 968static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
 969{
 970	int r;
 971	dm_block_t free_blocks;
 972	struct pool *pool = tc->pool;
 973
 974	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
 975		return -EINVAL;
 976
 977	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
 978	if (r) {
 979		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
 980		return r;
 981	}
 982
 983	check_low_water_mark(pool, free_blocks);
 984
 985	if (!free_blocks) {
 986		/*
 987		 * Try to commit to see if that will free up some
 988		 * more space.
 989		 */
 990		r = commit(pool);
 991		if (r)
 992			return r;
 993
 994		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
 995		if (r) {
 996			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
 997			return r;
 998		}
 999
1000		if (!free_blocks) {
1001			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1002			return -ENOSPC;
1003		}
1004	}
1005
1006	r = dm_pool_alloc_data_block(pool->pmd, result);
1007	if (r) {
1008		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1009		return r;
1010	}
1011
1012	return 0;
1013}
1014
1015/*
1016 * If we have run out of space, queue bios until the device is
1017 * resumed, presumably after having been reloaded with more space.
1018 */
1019static void retry_on_resume(struct bio *bio)
1020{
1021	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1022	struct thin_c *tc = h->tc;
1023	unsigned long flags;
1024
1025	spin_lock_irqsave(&tc->lock, flags);
1026	bio_list_add(&tc->retry_on_resume_list, bio);
1027	spin_unlock_irqrestore(&tc->lock, flags);
1028}
1029
1030static bool should_error_unserviceable_bio(struct pool *pool)
1031{
1032	enum pool_mode m = get_pool_mode(pool);
1033
1034	switch (m) {
1035	case PM_WRITE:
1036		/* Shouldn't get here */
1037		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1038		return true;
1039
1040	case PM_OUT_OF_DATA_SPACE:
1041		return pool->pf.error_if_no_space;
1042
1043	case PM_READ_ONLY:
1044	case PM_FAIL:
1045		return true;
1046	default:
1047		/* Shouldn't get here */
1048		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1049		return true;
1050	}
1051}
1052
1053static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1054{
1055	if (should_error_unserviceable_bio(pool))
1056		bio_io_error(bio);
1057	else
1058		retry_on_resume(bio);
1059}
1060
1061static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1062{
1063	struct bio *bio;
1064	struct bio_list bios;
1065
1066	if (should_error_unserviceable_bio(pool)) {
1067		cell_error(pool, cell);
1068		return;
1069	}
1070
1071	bio_list_init(&bios);
1072	cell_release(pool, cell, &bios);
1073
1074	if (should_error_unserviceable_bio(pool))
1075		while ((bio = bio_list_pop(&bios)))
1076			bio_io_error(bio);
1077	else
1078		while ((bio = bio_list_pop(&bios)))
1079			retry_on_resume(bio);
1080}
1081
1082static void process_discard(struct thin_c *tc, struct bio *bio)
1083{
1084	int r;
1085	unsigned long flags;
1086	struct pool *pool = tc->pool;
1087	struct dm_bio_prison_cell *cell, *cell2;
1088	struct dm_cell_key key, key2;
1089	dm_block_t block = get_bio_block(tc, bio);
1090	struct dm_thin_lookup_result lookup_result;
1091	struct dm_thin_new_mapping *m;
1092
1093	build_virtual_key(tc->td, block, &key);
1094	if (bio_detain(tc->pool, &key, bio, &cell))
1095		return;
1096
1097	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1098	switch (r) {
1099	case 0:
1100		/*
1101		 * Check nobody is fiddling with this pool block.  This can
1102		 * happen if someone's in the process of breaking sharing
1103		 * on this block.
1104		 */
1105		build_data_key(tc->td, lookup_result.block, &key2);
1106		if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1107			cell_defer_no_holder(tc, cell);
1108			break;
1109		}
1110
1111		if (io_overlaps_block(pool, bio)) {
1112			/*
1113			 * IO may still be going to the destination block.  We must
1114			 * quiesce before we can do the removal.
1115			 */
1116			m = get_next_mapping(pool);
1117			m->tc = tc;
1118			m->pass_discard = pool->pf.discard_passdown;
1119			m->definitely_not_shared = !lookup_result.shared;
1120			m->virt_block = block;
1121			m->data_block = lookup_result.block;
1122			m->cell = cell;
1123			m->cell2 = cell2;
1124			m->bio = bio;
1125
1126			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1127				spin_lock_irqsave(&pool->lock, flags);
1128				list_add_tail(&m->list, &pool->prepared_discards);
1129				spin_unlock_irqrestore(&pool->lock, flags);
1130				wake_worker(pool);
1131			}
1132		} else {
1133			inc_all_io_entry(pool, bio);
1134			cell_defer_no_holder(tc, cell);
1135			cell_defer_no_holder(tc, cell2);
1136
1137			/*
1138			 * The DM core makes sure that the discard doesn't span
1139			 * a block boundary.  So we submit the discard of a
1140			 * partial block appropriately.
1141			 */
1142			if ((!lookup_result.shared) && pool->pf.discard_passdown)
1143				remap_and_issue(tc, bio, lookup_result.block);
1144			else
1145				bio_endio(bio, 0);
1146		}
1147		break;
1148
1149	case -ENODATA:
1150		/*
1151		 * It isn't provisioned, just forget it.
1152		 */
1153		cell_defer_no_holder(tc, cell);
1154		bio_endio(bio, 0);
1155		break;
1156
1157	default:
1158		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1159			    __func__, r);
1160		cell_defer_no_holder(tc, cell);
1161		bio_io_error(bio);
1162		break;
1163	}
1164}
1165
1166static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1167			  struct dm_cell_key *key,
1168			  struct dm_thin_lookup_result *lookup_result,
1169			  struct dm_bio_prison_cell *cell)
1170{
1171	int r;
1172	dm_block_t data_block;
1173	struct pool *pool = tc->pool;
1174
1175	r = alloc_data_block(tc, &data_block);
1176	switch (r) {
1177	case 0:
1178		schedule_internal_copy(tc, block, lookup_result->block,
1179				       data_block, cell, bio);
1180		break;
1181
1182	case -ENOSPC:
1183		retry_bios_on_resume(pool, cell);
1184		break;
1185
1186	default:
1187		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1188			    __func__, r);
1189		cell_error(pool, cell);
1190		break;
1191	}
1192}
1193
1194static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1195			       dm_block_t block,
1196			       struct dm_thin_lookup_result *lookup_result)
1197{
1198	struct dm_bio_prison_cell *cell;
1199	struct pool *pool = tc->pool;
1200	struct dm_cell_key key;
1201
1202	/*
1203	 * If cell is already occupied, then sharing is already in the process
1204	 * of being broken so we have nothing further to do here.
1205	 */
1206	build_data_key(tc->td, lookup_result->block, &key);
1207	if (bio_detain(pool, &key, bio, &cell))
1208		return;
1209
1210	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size)
1211		break_sharing(tc, bio, block, &key, lookup_result, cell);
1212	else {
1213		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1214
1215		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1216		inc_all_io_entry(pool, bio);
1217		cell_defer_no_holder(tc, cell);
1218
1219		remap_and_issue(tc, bio, lookup_result->block);
1220	}
1221}
1222
1223static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1224			    struct dm_bio_prison_cell *cell)
1225{
1226	int r;
1227	dm_block_t data_block;
1228	struct pool *pool = tc->pool;
1229
1230	/*
1231	 * Remap empty bios (flushes) immediately, without provisioning.
1232	 */
1233	if (!bio->bi_iter.bi_size) {
1234		inc_all_io_entry(pool, bio);
1235		cell_defer_no_holder(tc, cell);
1236
1237		remap_and_issue(tc, bio, 0);
1238		return;
1239	}
1240
1241	/*
1242	 * Fill read bios with zeroes and complete them immediately.
1243	 */
1244	if (bio_data_dir(bio) == READ) {
1245		zero_fill_bio(bio);
1246		cell_defer_no_holder(tc, cell);
1247		bio_endio(bio, 0);
1248		return;
1249	}
1250
1251	r = alloc_data_block(tc, &data_block);
1252	switch (r) {
1253	case 0:
1254		if (tc->origin_dev)
1255			schedule_external_copy(tc, block, data_block, cell, bio);
1256		else
1257			schedule_zero(tc, block, data_block, cell, bio);
1258		break;
1259
1260	case -ENOSPC:
1261		retry_bios_on_resume(pool, cell);
1262		break;
1263
1264	default:
1265		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1266			    __func__, r);
1267		cell_error(pool, cell);
1268		break;
1269	}
1270}
1271
1272static void process_bio(struct thin_c *tc, struct bio *bio)
1273{
1274	int r;
1275	struct pool *pool = tc->pool;
1276	dm_block_t block = get_bio_block(tc, bio);
1277	struct dm_bio_prison_cell *cell;
1278	struct dm_cell_key key;
1279	struct dm_thin_lookup_result lookup_result;
1280
1281	/*
1282	 * If cell is already occupied, then the block is already
1283	 * being provisioned so we have nothing further to do here.
1284	 */
1285	build_virtual_key(tc->td, block, &key);
1286	if (bio_detain(pool, &key, bio, &cell))
1287		return;
1288
1289	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1290	switch (r) {
1291	case 0:
1292		if (lookup_result.shared) {
1293			process_shared_bio(tc, bio, block, &lookup_result);
1294			cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1295		} else {
1296			inc_all_io_entry(pool, bio);
1297			cell_defer_no_holder(tc, cell);
1298
1299			remap_and_issue(tc, bio, lookup_result.block);
1300		}
1301		break;
1302
1303	case -ENODATA:
1304		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1305			inc_all_io_entry(pool, bio);
1306			cell_defer_no_holder(tc, cell);
1307
1308			remap_to_origin_and_issue(tc, bio);
1309		} else
1310			provision_block(tc, bio, block, cell);
1311		break;
1312
1313	default:
1314		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1315			    __func__, r);
1316		cell_defer_no_holder(tc, cell);
1317		bio_io_error(bio);
1318		break;
1319	}
1320}
1321
1322static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1323{
1324	int r;
1325	int rw = bio_data_dir(bio);
1326	dm_block_t block = get_bio_block(tc, bio);
1327	struct dm_thin_lookup_result lookup_result;
1328
1329	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1330	switch (r) {
1331	case 0:
1332		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size)
1333			handle_unserviceable_bio(tc->pool, bio);
1334		else {
1335			inc_all_io_entry(tc->pool, bio);
1336			remap_and_issue(tc, bio, lookup_result.block);
1337		}
1338		break;
1339
1340	case -ENODATA:
1341		if (rw != READ) {
1342			handle_unserviceable_bio(tc->pool, bio);
1343			break;
1344		}
1345
1346		if (tc->origin_dev) {
1347			inc_all_io_entry(tc->pool, bio);
1348			remap_to_origin_and_issue(tc, bio);
1349			break;
1350		}
1351
1352		zero_fill_bio(bio);
1353		bio_endio(bio, 0);
1354		break;
1355
1356	default:
1357		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1358			    __func__, r);
1359		bio_io_error(bio);
1360		break;
1361	}
1362}
1363
1364static void process_bio_success(struct thin_c *tc, struct bio *bio)
1365{
1366	bio_endio(bio, 0);
1367}
1368
1369static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1370{
1371	bio_io_error(bio);
1372}
1373
1374/*
1375 * FIXME: should we also commit due to size of transaction, measured in
1376 * metadata blocks?
1377 */
1378static int need_commit_due_to_time(struct pool *pool)
1379{
1380	return jiffies < pool->last_commit_jiffies ||
1381	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1382}
1383
1384#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1385#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1386
1387static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1388{
1389	struct rb_node **rbp, *parent;
1390	struct dm_thin_endio_hook *pbd;
1391	sector_t bi_sector = bio->bi_iter.bi_sector;
1392
1393	rbp = &tc->sort_bio_list.rb_node;
1394	parent = NULL;
1395	while (*rbp) {
1396		parent = *rbp;
1397		pbd = thin_pbd(parent);
1398
1399		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1400			rbp = &(*rbp)->rb_left;
1401		else
1402			rbp = &(*rbp)->rb_right;
1403	}
1404
1405	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1406	rb_link_node(&pbd->rb_node, parent, rbp);
1407	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
1408}
1409
1410static void __extract_sorted_bios(struct thin_c *tc)
1411{
1412	struct rb_node *node;
1413	struct dm_thin_endio_hook *pbd;
1414	struct bio *bio;
1415
1416	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
1417		pbd = thin_pbd(node);
1418		bio = thin_bio(pbd);
1419
1420		bio_list_add(&tc->deferred_bio_list, bio);
1421		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
1422	}
1423
1424	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
1425}
1426
1427static void __sort_thin_deferred_bios(struct thin_c *tc)
1428{
1429	struct bio *bio;
1430	struct bio_list bios;
1431
1432	bio_list_init(&bios);
1433	bio_list_merge(&bios, &tc->deferred_bio_list);
1434	bio_list_init(&tc->deferred_bio_list);
1435
1436	/* Sort deferred_bio_list using rb-tree */
1437	while ((bio = bio_list_pop(&bios)))
1438		__thin_bio_rb_add(tc, bio);
1439
1440	/*
1441	 * Transfer the sorted bios in sort_bio_list back to
1442	 * deferred_bio_list to allow lockless submission of
1443	 * all bios.
1444	 */
1445	__extract_sorted_bios(tc);
1446}
1447
1448static void process_thin_deferred_bios(struct thin_c *tc)
1449{
1450	struct pool *pool = tc->pool;
1451	unsigned long flags;
1452	struct bio *bio;
1453	struct bio_list bios;
1454	struct blk_plug plug;
1455
1456	if (tc->requeue_mode) {
1457		requeue_bio_list(tc, &tc->deferred_bio_list);
1458		return;
1459	}
1460
1461	bio_list_init(&bios);
1462
1463	spin_lock_irqsave(&tc->lock, flags);
1464
1465	if (bio_list_empty(&tc->deferred_bio_list)) {
1466		spin_unlock_irqrestore(&tc->lock, flags);
1467		return;
1468	}
1469
1470	__sort_thin_deferred_bios(tc);
1471
1472	bio_list_merge(&bios, &tc->deferred_bio_list);
1473	bio_list_init(&tc->deferred_bio_list);
1474
1475	spin_unlock_irqrestore(&tc->lock, flags);
1476
1477	blk_start_plug(&plug);
1478	while ((bio = bio_list_pop(&bios))) {
1479		/*
1480		 * If we've got no free new_mapping structs, and processing
1481		 * this bio might require one, we pause until there are some
1482		 * prepared mappings to process.
1483		 */
1484		if (ensure_next_mapping(pool)) {
1485			spin_lock_irqsave(&tc->lock, flags);
1486			bio_list_add(&tc->deferred_bio_list, bio);
1487			bio_list_merge(&tc->deferred_bio_list, &bios);
1488			spin_unlock_irqrestore(&tc->lock, flags);
1489			break;
1490		}
1491
1492		if (bio->bi_rw & REQ_DISCARD)
1493			pool->process_discard(tc, bio);
1494		else
1495			pool->process_bio(tc, bio);
1496	}
1497	blk_finish_plug(&plug);
1498}
1499
1500static void thin_get(struct thin_c *tc);
1501static void thin_put(struct thin_c *tc);
1502
1503/*
1504 * We can't hold rcu_read_lock() around code that can block.  So we
1505 * find a thin with the rcu lock held; bump a refcount; then drop
1506 * the lock.
1507 */
1508static struct thin_c *get_first_thin(struct pool *pool)
1509{
1510	struct thin_c *tc = NULL;
1511
1512	rcu_read_lock();
1513	if (!list_empty(&pool->active_thins)) {
1514		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
1515		thin_get(tc);
1516	}
1517	rcu_read_unlock();
1518
1519	return tc;
1520}
1521
1522static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
1523{
1524	struct thin_c *old_tc = tc;
1525
1526	rcu_read_lock();
1527	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
1528		thin_get(tc);
1529		thin_put(old_tc);
1530		rcu_read_unlock();
1531		return tc;
1532	}
1533	thin_put(old_tc);
1534	rcu_read_unlock();
1535
1536	return NULL;
1537}
1538
1539static void process_deferred_bios(struct pool *pool)
1540{
1541	unsigned long flags;
1542	struct bio *bio;
1543	struct bio_list bios;
1544	struct thin_c *tc;
1545
1546	tc = get_first_thin(pool);
1547	while (tc) {
1548		process_thin_deferred_bios(tc);
1549		tc = get_next_thin(pool, tc);
1550	}
1551
1552	/*
1553	 * If there are any deferred flush bios, we must commit
1554	 * the metadata before issuing them.
1555	 */
1556	bio_list_init(&bios);
1557	spin_lock_irqsave(&pool->lock, flags);
1558	bio_list_merge(&bios, &pool->deferred_flush_bios);
1559	bio_list_init(&pool->deferred_flush_bios);
1560	spin_unlock_irqrestore(&pool->lock, flags);
1561
1562	if (bio_list_empty(&bios) &&
1563	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
1564		return;
1565
1566	if (commit(pool)) {
1567		while ((bio = bio_list_pop(&bios)))
1568			bio_io_error(bio);
1569		return;
1570	}
1571	pool->last_commit_jiffies = jiffies;
1572
1573	while ((bio = bio_list_pop(&bios)))
1574		generic_make_request(bio);
1575}
1576
1577static void do_worker(struct work_struct *ws)
1578{
1579	struct pool *pool = container_of(ws, struct pool, worker);
1580
1581	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1582	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1583	process_deferred_bios(pool);
1584}
1585
1586/*
1587 * We want to commit periodically so that not too much
1588 * unwritten data builds up.
1589 */
1590static void do_waker(struct work_struct *ws)
1591{
1592	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1593	wake_worker(pool);
1594	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1595}
1596
1597/*
1598 * We're holding onto IO to allow userland time to react.  After the
1599 * timeout either the pool will have been resized (and thus back in
1600 * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
1601 */
1602static void do_no_space_timeout(struct work_struct *ws)
1603{
1604	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
1605					 no_space_timeout);
1606
1607	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
1608		set_pool_mode(pool, PM_READ_ONLY);
1609}
1610
1611/*----------------------------------------------------------------*/
1612
1613struct noflush_work {
1614	struct work_struct worker;
1615	struct thin_c *tc;
1616
1617	atomic_t complete;
1618	wait_queue_head_t wait;
1619};
1620
1621static void complete_noflush_work(struct noflush_work *w)
1622{
1623	atomic_set(&w->complete, 1);
1624	wake_up(&w->wait);
1625}
1626
1627static void do_noflush_start(struct work_struct *ws)
1628{
1629	struct noflush_work *w = container_of(ws, struct noflush_work, worker);
1630	w->tc->requeue_mode = true;
1631	requeue_io(w->tc);
1632	complete_noflush_work(w);
1633}
1634
1635static void do_noflush_stop(struct work_struct *ws)
1636{
1637	struct noflush_work *w = container_of(ws, struct noflush_work, worker);
1638	w->tc->requeue_mode = false;
1639	complete_noflush_work(w);
1640}
1641
1642static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
1643{
1644	struct noflush_work w;
1645
1646	INIT_WORK_ONSTACK(&w.worker, fn);
1647	w.tc = tc;
1648	atomic_set(&w.complete, 0);
1649	init_waitqueue_head(&w.wait);
1650
1651	queue_work(tc->pool->wq, &w.worker);
1652
1653	wait_event(w.wait, atomic_read(&w.complete));
1654}
1655
1656/*----------------------------------------------------------------*/
1657
1658static enum pool_mode get_pool_mode(struct pool *pool)
1659{
1660	return pool->pf.mode;
1661}
1662
1663static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
1664{
1665	dm_table_event(pool->ti->table);
1666	DMINFO("%s: switching pool to %s mode",
1667	       dm_device_name(pool->pool_md), new_mode);
1668}
1669
1670static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
1671{
1672	struct pool_c *pt = pool->ti->private;
1673	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
1674	enum pool_mode old_mode = get_pool_mode(pool);
1675	unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
1676
1677	/*
1678	 * Never allow the pool to transition to PM_WRITE mode if user
1679	 * intervention is required to verify metadata and data consistency.
1680	 */
1681	if (new_mode == PM_WRITE && needs_check) {
1682		DMERR("%s: unable to switch pool to write mode until repaired.",
1683		      dm_device_name(pool->pool_md));
1684		if (old_mode != new_mode)
1685			new_mode = old_mode;
1686		else
1687			new_mode = PM_READ_ONLY;
1688	}
1689	/*
1690	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
1691	 * not going to recover without a thin_repair.	So we never let the
1692	 * pool move out of the old mode.
1693	 */
1694	if (old_mode == PM_FAIL)
1695		new_mode = old_mode;
1696
1697	switch (new_mode) {
1698	case PM_FAIL:
1699		if (old_mode != new_mode)
1700			notify_of_pool_mode_change(pool, "failure");
1701		dm_pool_metadata_read_only(pool->pmd);
1702		pool->process_bio = process_bio_fail;
1703		pool->process_discard = process_bio_fail;
1704		pool->process_prepared_mapping = process_prepared_mapping_fail;
1705		pool->process_prepared_discard = process_prepared_discard_fail;
1706
1707		error_retry_list(pool);
1708		break;
1709
1710	case PM_READ_ONLY:
1711		if (old_mode != new_mode)
1712			notify_of_pool_mode_change(pool, "read-only");
1713		dm_pool_metadata_read_only(pool->pmd);
1714		pool->process_bio = process_bio_read_only;
1715		pool->process_discard = process_bio_success;
1716		pool->process_prepared_mapping = process_prepared_mapping_fail;
1717		pool->process_prepared_discard = process_prepared_discard_passdown;
1718
1719		error_retry_list(pool);
1720		break;
1721
1722	case PM_OUT_OF_DATA_SPACE:
1723		/*
1724		 * Ideally we'd never hit this state; the low water mark
1725		 * would trigger userland to extend the pool before we
1726		 * completely run out of data space.  However, many small
1727		 * IOs to unprovisioned space can consume data space at an
1728		 * alarming rate.  Adjust your low water mark if you're
1729		 * frequently seeing this mode.
1730		 */
1731		if (old_mode != new_mode)
1732			notify_of_pool_mode_change(pool, "out-of-data-space");
1733		pool->process_bio = process_bio_read_only;
1734		pool->process_discard = process_discard;
1735		pool->process_prepared_mapping = process_prepared_mapping;
1736		pool->process_prepared_discard = process_prepared_discard_passdown;
1737
1738		if (!pool->pf.error_if_no_space && no_space_timeout)
1739			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
1740		break;
1741
1742	case PM_WRITE:
1743		if (old_mode != new_mode)
1744			notify_of_pool_mode_change(pool, "write");
1745		dm_pool_metadata_read_write(pool->pmd);
1746		pool->process_bio = process_bio;
1747		pool->process_discard = process_discard;
1748		pool->process_prepared_mapping = process_prepared_mapping;
1749		pool->process_prepared_discard = process_prepared_discard;
1750		break;
1751	}
1752
1753	pool->pf.mode = new_mode;
1754	/*
1755	 * The pool mode may have changed, sync it so bind_control_target()
1756	 * doesn't cause an unexpected mode transition on resume.
1757	 */
1758	pt->adjusted_pf.mode = new_mode;
1759}
1760
1761static void abort_transaction(struct pool *pool)
1762{
1763	const char *dev_name = dm_device_name(pool->pool_md);
1764
1765	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1766	if (dm_pool_abort_metadata(pool->pmd)) {
1767		DMERR("%s: failed to abort metadata transaction", dev_name);
1768		set_pool_mode(pool, PM_FAIL);
1769	}
1770
1771	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
1772		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1773		set_pool_mode(pool, PM_FAIL);
1774	}
1775}
1776
1777static void metadata_operation_failed(struct pool *pool, const char *op, int r)
1778{
1779	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1780		    dm_device_name(pool->pool_md), op, r);
1781
1782	abort_transaction(pool);
1783	set_pool_mode(pool, PM_READ_ONLY);
1784}
1785
1786/*----------------------------------------------------------------*/
1787
1788/*
1789 * Mapping functions.
1790 */
1791
1792/*
1793 * Called only while mapping a thin bio to hand it over to the workqueue.
1794 */
1795static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1796{
1797	unsigned long flags;
1798	struct pool *pool = tc->pool;
1799
1800	spin_lock_irqsave(&tc->lock, flags);
1801	bio_list_add(&tc->deferred_bio_list, bio);
1802	spin_unlock_irqrestore(&tc->lock, flags);
1803
1804	wake_worker(pool);
1805}
1806
1807static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1808{
1809	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1810
1811	h->tc = tc;
1812	h->shared_read_entry = NULL;
1813	h->all_io_entry = NULL;
1814	h->overwrite_mapping = NULL;
1815}
1816
1817/*
1818 * Non-blocking function called from the thin target's map function.
1819 */
1820static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1821{
1822	int r;
1823	struct thin_c *tc = ti->private;
1824	dm_block_t block = get_bio_block(tc, bio);
1825	struct dm_thin_device *td = tc->td;
1826	struct dm_thin_lookup_result result;
1827	struct dm_bio_prison_cell cell1, cell2;
1828	struct dm_bio_prison_cell *cell_result;
1829	struct dm_cell_key key;
1830
1831	thin_hook_bio(tc, bio);
1832
1833	if (tc->requeue_mode) {
1834		bio_endio(bio, DM_ENDIO_REQUEUE);
1835		return DM_MAPIO_SUBMITTED;
1836	}
1837
1838	if (get_pool_mode(tc->pool) == PM_FAIL) {
1839		bio_io_error(bio);
1840		return DM_MAPIO_SUBMITTED;
1841	}
1842
1843	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1844		thin_defer_bio(tc, bio);
1845		return DM_MAPIO_SUBMITTED;
1846	}
1847
1848	r = dm_thin_find_block(td, block, 0, &result);
1849
1850	/*
1851	 * Note that we defer readahead too.
1852	 */
1853	switch (r) {
1854	case 0:
1855		if (unlikely(result.shared)) {
1856			/*
1857			 * We have a race condition here between the
1858			 * result.shared value returned by the lookup and
1859			 * snapshot creation, which may cause new
1860			 * sharing.
1861			 *
1862			 * To avoid this always quiesce the origin before
1863			 * taking the snap.  You want to do this anyway to
1864			 * ensure a consistent application view
1865			 * (i.e. lockfs).
1866			 *
1867			 * More distant ancestors are irrelevant. The
1868			 * shared flag will be set in their case.
1869			 */
1870			thin_defer_bio(tc, bio);
1871			return DM_MAPIO_SUBMITTED;
1872		}
1873
1874		build_virtual_key(tc->td, block, &key);
1875		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1876			return DM_MAPIO_SUBMITTED;
1877
1878		build_data_key(tc->td, result.block, &key);
1879		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1880			cell_defer_no_holder_no_free(tc, &cell1);
1881			return DM_MAPIO_SUBMITTED;
1882		}
1883
1884		inc_all_io_entry(tc->pool, bio);
1885		cell_defer_no_holder_no_free(tc, &cell2);
1886		cell_defer_no_holder_no_free(tc, &cell1);
1887
1888		remap(tc, bio, result.block);
1889		return DM_MAPIO_REMAPPED;
1890
1891	case -ENODATA:
1892		if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1893			/*
1894			 * This block isn't provisioned, and we have no way
1895			 * of doing so.
1896			 */
1897			handle_unserviceable_bio(tc->pool, bio);
1898			return DM_MAPIO_SUBMITTED;
1899		}
1900		/* fall through */
1901
1902	case -EWOULDBLOCK:
1903		/*
1904		 * In future, the failed dm_thin_find_block above could
1905		 * provide the hint to load the metadata into cache.
1906		 */
1907		thin_defer_bio(tc, bio);
1908		return DM_MAPIO_SUBMITTED;
1909
1910	default:
1911		/*
1912		 * Must always call bio_io_error on failure.
1913		 * dm_thin_find_block can fail with -EINVAL if the
1914		 * pool is switched to fail-io mode.
1915		 */
1916		bio_io_error(bio);
1917		return DM_MAPIO_SUBMITTED;
1918	}
1919}
1920
1921static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1922{
1923	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1924	struct request_queue *q;
1925
1926	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
1927		return 1;
1928
1929	q = bdev_get_queue(pt->data_dev->bdev);
1930	return bdi_congested(&q->backing_dev_info, bdi_bits);
1931}
1932
1933static void requeue_bios(struct pool *pool)
1934{
1935	unsigned long flags;
1936	struct thin_c *tc;
1937
1938	rcu_read_lock();
1939	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
1940		spin_lock_irqsave(&tc->lock, flags);
1941		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
1942		bio_list_init(&tc->retry_on_resume_list);
1943		spin_unlock_irqrestore(&tc->lock, flags);
1944	}
1945	rcu_read_unlock();
1946}
1947
1948/*----------------------------------------------------------------
1949 * Binding of control targets to a pool object
1950 *--------------------------------------------------------------*/
1951static bool data_dev_supports_discard(struct pool_c *pt)
1952{
1953	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1954
1955	return q && blk_queue_discard(q);
1956}
1957
1958static bool is_factor(sector_t block_size, uint32_t n)
1959{
1960	return !sector_div(block_size, n);
1961}
1962
1963/*
1964 * If discard_passdown was enabled verify that the data device
1965 * supports discards.  Disable discard_passdown if not.
1966 */
1967static void disable_passdown_if_not_supported(struct pool_c *pt)
1968{
1969	struct pool *pool = pt->pool;
1970	struct block_device *data_bdev = pt->data_dev->bdev;
1971	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1972	sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1973	const char *reason = NULL;
1974	char buf[BDEVNAME_SIZE];
1975
1976	if (!pt->adjusted_pf.discard_passdown)
1977		return;
1978
1979	if (!data_dev_supports_discard(pt))
1980		reason = "discard unsupported";
1981
1982	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1983		reason = "max discard sectors smaller than a block";
1984
1985	else if (data_limits->discard_granularity > block_size)
1986		reason = "discard granularity larger than a block";
1987
1988	else if (!is_factor(block_size, data_limits->discard_granularity))
1989		reason = "discard granularity not a factor of block size";
1990
1991	if (reason) {
1992		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1993		pt->adjusted_pf.discard_passdown = false;
1994	}
1995}
1996
1997static int bind_control_target(struct pool *pool, struct dm_target *ti)
1998{
1999	struct pool_c *pt = ti->private;
2000
2001	/*
2002	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2003	 */
2004	enum pool_mode old_mode = get_pool_mode(pool);
2005	enum pool_mode new_mode = pt->adjusted_pf.mode;
2006
2007	/*
2008	 * Don't change the pool's mode until set_pool_mode() below.
2009	 * Otherwise the pool's process_* function pointers may
2010	 * not match the desired pool mode.
2011	 */
2012	pt->adjusted_pf.mode = old_mode;
2013
2014	pool->ti = ti;
2015	pool->pf = pt->adjusted_pf;
2016	pool->low_water_blocks = pt->low_water_blocks;
2017
2018	set_pool_mode(pool, new_mode);
2019
2020	return 0;
2021}
2022
2023static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2024{
2025	if (pool->ti == ti)
2026		pool->ti = NULL;
2027}
2028
2029/*----------------------------------------------------------------
2030 * Pool creation
2031 *--------------------------------------------------------------*/
2032/* Initialize pool features. */
2033static void pool_features_init(struct pool_features *pf)
2034{
2035	pf->mode = PM_WRITE;
2036	pf->zero_new_blocks = true;
2037	pf->discard_enabled = true;
2038	pf->discard_passdown = true;
2039	pf->error_if_no_space = false;
2040}
2041
2042static void __pool_destroy(struct pool *pool)
2043{
2044	__pool_table_remove(pool);
2045
2046	if (dm_pool_metadata_close(pool->pmd) < 0)
2047		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2048
2049	dm_bio_prison_destroy(pool->prison);
2050	dm_kcopyd_client_destroy(pool->copier);
2051
2052	if (pool->wq)
2053		destroy_workqueue(pool->wq);
2054
2055	if (pool->next_mapping)
2056		mempool_free(pool->next_mapping, pool->mapping_pool);
2057	mempool_destroy(pool->mapping_pool);
2058	dm_deferred_set_destroy(pool->shared_read_ds);
2059	dm_deferred_set_destroy(pool->all_io_ds);
2060	kfree(pool);
2061}
2062
2063static struct kmem_cache *_new_mapping_cache;
2064
2065static struct pool *pool_create(struct mapped_device *pool_md,
2066				struct block_device *metadata_dev,
2067				unsigned long block_size,
2068				int read_only, char **error)
2069{
2070	int r;
2071	void *err_p;
2072	struct pool *pool;
2073	struct dm_pool_metadata *pmd;
2074	bool format_device = read_only ? false : true;
2075
2076	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2077	if (IS_ERR(pmd)) {
2078		*error = "Error creating metadata object";
2079		return (struct pool *)pmd;
2080	}
2081
2082	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2083	if (!pool) {
2084		*error = "Error allocating memory for pool";
2085		err_p = ERR_PTR(-ENOMEM);
2086		goto bad_pool;
2087	}
2088
2089	pool->pmd = pmd;
2090	pool->sectors_per_block = block_size;
2091	if (block_size & (block_size - 1))
2092		pool->sectors_per_block_shift = -1;
2093	else
2094		pool->sectors_per_block_shift = __ffs(block_size);
2095	pool->low_water_blocks = 0;
2096	pool_features_init(&pool->pf);
2097	pool->prison = dm_bio_prison_create(PRISON_CELLS);
2098	if (!pool->prison) {
2099		*error = "Error creating pool's bio prison";
2100		err_p = ERR_PTR(-ENOMEM);
2101		goto bad_prison;
2102	}
2103
2104	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2105	if (IS_ERR(pool->copier)) {
2106		r = PTR_ERR(pool->copier);
2107		*error = "Error creating pool's kcopyd client";
2108		err_p = ERR_PTR(r);
2109		goto bad_kcopyd_client;
2110	}
2111
2112	/*
2113	 * Create singlethreaded workqueue that will service all devices
2114	 * that use this metadata.
2115	 */
2116	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2117	if (!pool->wq) {
2118		*error = "Error creating pool's workqueue";
2119		err_p = ERR_PTR(-ENOMEM);
2120		goto bad_wq;
2121	}
2122
2123	INIT_WORK(&pool->worker, do_worker);
2124	INIT_DELAYED_WORK(&pool->waker, do_waker);
2125	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2126	spin_lock_init(&pool->lock);
2127	bio_list_init(&pool->deferred_flush_bios);
2128	INIT_LIST_HEAD(&pool->prepared_mappings);
2129	INIT_LIST_HEAD(&pool->prepared_discards);
2130	INIT_LIST_HEAD(&pool->active_thins);
2131	pool->low_water_triggered = false;
2132
2133	pool->shared_read_ds = dm_deferred_set_create();
2134	if (!pool->shared_read_ds) {
2135		*error = "Error creating pool's shared read deferred set";
2136		err_p = ERR_PTR(-ENOMEM);
2137		goto bad_shared_read_ds;
2138	}
2139
2140	pool->all_io_ds = dm_deferred_set_create();
2141	if (!pool->all_io_ds) {
2142		*error = "Error creating pool's all io deferred set";
2143		err_p = ERR_PTR(-ENOMEM);
2144		goto bad_all_io_ds;
2145	}
2146
2147	pool->next_mapping = NULL;
2148	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2149						      _new_mapping_cache);
2150	if (!pool->mapping_pool) {
2151		*error = "Error creating pool's mapping mempool";
2152		err_p = ERR_PTR(-ENOMEM);
2153		goto bad_mapping_pool;
2154	}
2155
2156	pool->ref_count = 1;
2157	pool->last_commit_jiffies = jiffies;
2158	pool->pool_md = pool_md;
2159	pool->md_dev = metadata_dev;
2160	__pool_table_insert(pool);
2161
2162	return pool;
2163
2164bad_mapping_pool:
2165	dm_deferred_set_destroy(pool->all_io_ds);
2166bad_all_io_ds:
2167	dm_deferred_set_destroy(pool->shared_read_ds);
2168bad_shared_read_ds:
2169	destroy_workqueue(pool->wq);
2170bad_wq:
2171	dm_kcopyd_client_destroy(pool->copier);
2172bad_kcopyd_client:
2173	dm_bio_prison_destroy(pool->prison);
2174bad_prison:
2175	kfree(pool);
2176bad_pool:
2177	if (dm_pool_metadata_close(pmd))
2178		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2179
2180	return err_p;
2181}
2182
2183static void __pool_inc(struct pool *pool)
2184{
2185	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2186	pool->ref_count++;
2187}
2188
2189static void __pool_dec(struct pool *pool)
2190{
2191	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2192	BUG_ON(!pool->ref_count);
2193	if (!--pool->ref_count)
2194		__pool_destroy(pool);
2195}
2196
2197static struct pool *__pool_find(struct mapped_device *pool_md,
2198				struct block_device *metadata_dev,
2199				unsigned long block_size, int read_only,
2200				char **error, int *created)
2201{
2202	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2203
2204	if (pool) {
2205		if (pool->pool_md != pool_md) {
2206			*error = "metadata device already in use by a pool";
2207			return ERR_PTR(-EBUSY);
2208		}
2209		__pool_inc(pool);
2210
2211	} else {
2212		pool = __pool_table_lookup(pool_md);
2213		if (pool) {
2214			if (pool->md_dev != metadata_dev) {
2215				*error = "different pool cannot replace a pool";
2216				return ERR_PTR(-EINVAL);
2217			}
2218			__pool_inc(pool);
2219
2220		} else {
2221			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2222			*created = 1;
2223		}
2224	}
2225
2226	return pool;
2227}
2228
2229/*----------------------------------------------------------------
2230 * Pool target methods
2231 *--------------------------------------------------------------*/
2232static void pool_dtr(struct dm_target *ti)
2233{
2234	struct pool_c *pt = ti->private;
2235
2236	mutex_lock(&dm_thin_pool_table.mutex);
2237
2238	unbind_control_target(pt->pool, ti);
2239	__pool_dec(pt->pool);
2240	dm_put_device(ti, pt->metadata_dev);
2241	dm_put_device(ti, pt->data_dev);
2242	kfree(pt);
2243
2244	mutex_unlock(&dm_thin_pool_table.mutex);
2245}
2246
2247static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2248			       struct dm_target *ti)
2249{
2250	int r;
2251	unsigned argc;
2252	const char *arg_name;
2253
2254	static struct dm_arg _args[] = {
2255		{0, 4, "Invalid number of pool feature arguments"},
2256	};
2257
2258	/*
2259	 * No feature arguments supplied.
2260	 */
2261	if (!as->argc)
2262		return 0;
2263
2264	r = dm_read_arg_group(_args, as, &argc, &ti->error);
2265	if (r)
2266		return -EINVAL;
2267
2268	while (argc && !r) {
2269		arg_name = dm_shift_arg(as);
2270		argc--;
2271
2272		if (!strcasecmp(arg_name, "skip_block_zeroing"))
2273			pf->zero_new_blocks = false;
2274
2275		else if (!strcasecmp(arg_name, "ignore_discard"))
2276			pf->discard_enabled = false;
2277
2278		else if (!strcasecmp(arg_name, "no_discard_passdown"))
2279			pf->discard_passdown = false;
2280
2281		else if (!strcasecmp(arg_name, "read_only"))
2282			pf->mode = PM_READ_ONLY;
2283
2284		else if (!strcasecmp(arg_name, "error_if_no_space"))
2285			pf->error_if_no_space = true;
2286
2287		else {
2288			ti->error = "Unrecognised pool feature requested";
2289			r = -EINVAL;
2290			break;
2291		}
2292	}
2293
2294	return r;
2295}
2296
2297static void metadata_low_callback(void *context)
2298{
2299	struct pool *pool = context;
2300
2301	DMWARN("%s: reached low water mark for metadata device: sending event.",
2302	       dm_device_name(pool->pool_md));
2303
2304	dm_table_event(pool->ti->table);
2305}
2306
2307static sector_t get_dev_size(struct block_device *bdev)
2308{
2309	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
2310}
2311
2312static void warn_if_metadata_device_too_big(struct block_device *bdev)
2313{
2314	sector_t metadata_dev_size = get_dev_size(bdev);
2315	char buffer[BDEVNAME_SIZE];
2316
2317	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2318		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2319		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
2320}
2321
2322static sector_t get_metadata_dev_size(struct block_device *bdev)
2323{
2324	sector_t metadata_dev_size = get_dev_size(bdev);
2325
2326	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
2327		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
2328
2329	return metadata_dev_size;
2330}
2331
2332static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
2333{
2334	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
2335
2336	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
2337
2338	return metadata_dev_size;
2339}
2340
2341/*
2342 * When a metadata threshold is crossed a dm event is triggered, and
2343 * userland should respond by growing the metadata device.  We could let
2344 * userland set the threshold, like we do with the data threshold, but I'm
2345 * not sure they know enough to do this well.
2346 */
2347static dm_block_t calc_metadata_threshold(struct pool_c *pt)
2348{
2349	/*
2350	 * 4M is ample for all ops with the possible exception of thin
2351	 * device deletion which is harmless if it fails (just retry the
2352	 * delete after you've grown the device).
2353	 */
2354	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
2355	return min((dm_block_t)1024ULL /* 4M */, quarter);
2356}
2357
2358/*
2359 * thin-pool <metadata dev> <data dev>
2360 *	     <data block size (sectors)>
2361 *	     <low water mark (blocks)>
2362 *	     [<#feature args> [<arg>]*]
2363 *
2364 * Optional feature arguments are:
2365 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2366 *	     ignore_discard: disable discard
2367 *	     no_discard_passdown: don't pass discards down to the data device
2368 *	     read_only: Don't allow any changes to be made to the pool metadata.
2369 *	     error_if_no_space: error IOs, instead of queueing, if no space.
2370 */
2371static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2372{
2373	int r, pool_created = 0;
2374	struct pool_c *pt;
2375	struct pool *pool;
2376	struct pool_features pf;
2377	struct dm_arg_set as;
2378	struct dm_dev *data_dev;
2379	unsigned long block_size;
2380	dm_block_t low_water_blocks;
2381	struct dm_dev *metadata_dev;
2382	fmode_t metadata_mode;
2383
2384	/*
2385	 * FIXME Remove validation from scope of lock.
2386	 */
2387	mutex_lock(&dm_thin_pool_table.mutex);
2388
2389	if (argc < 4) {
2390		ti->error = "Invalid argument count";
2391		r = -EINVAL;
2392		goto out_unlock;
2393	}
2394
2395	as.argc = argc;
2396	as.argv = argv;
2397
2398	/*
2399	 * Set default pool features.
2400	 */
2401	pool_features_init(&pf);
2402
2403	dm_consume_args(&as, 4);
2404	r = parse_pool_features(&as, &pf, ti);
2405	if (r)
2406		goto out_unlock;
2407
2408	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
2409	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
2410	if (r) {
2411		ti->error = "Error opening metadata block device";
2412		goto out_unlock;
2413	}
2414	warn_if_metadata_device_too_big(metadata_dev->bdev);
2415
2416	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2417	if (r) {
2418		ti->error = "Error getting data device";
2419		goto out_metadata;
2420	}
2421
2422	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2423	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2424	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2425	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2426		ti->error = "Invalid block size";
2427		r = -EINVAL;
2428		goto out;
2429	}
2430
2431	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2432		ti->error = "Invalid low water mark";
2433		r = -EINVAL;
2434		goto out;
2435	}
2436
2437	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2438	if (!pt) {
2439		r = -ENOMEM;
2440		goto out;
2441	}
2442
2443	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2444			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2445	if (IS_ERR(pool)) {
2446		r = PTR_ERR(pool);
2447		goto out_free_pt;
2448	}
2449
2450	/*
2451	 * 'pool_created' reflects whether this is the first table load.
2452	 * Top level discard support is not allowed to be changed after
2453	 * initial load.  This would require a pool reload to trigger thin
2454	 * device changes.
2455	 */
2456	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2457		ti->error = "Discard support cannot be disabled once enabled";
2458		r = -EINVAL;
2459		goto out_flags_changed;
2460	}
2461
2462	pt->pool = pool;
2463	pt->ti = ti;
2464	pt->metadata_dev = metadata_dev;
2465	pt->data_dev = data_dev;
2466	pt->low_water_blocks = low_water_blocks;
2467	pt->adjusted_pf = pt->requested_pf = pf;
2468	ti->num_flush_bios = 1;
2469
2470	/*
2471	 * Only need to enable discards if the pool should pass
2472	 * them down to the data device.  The thin device's discard
2473	 * processing will cause mappings to be removed from the btree.
2474	 */
2475	ti->discard_zeroes_data_unsupported = true;
2476	if (pf.discard_enabled && pf.discard_passdown) {
2477		ti->num_discard_bios = 1;
2478
2479		/*
2480		 * Setting 'discards_supported' circumvents the normal
2481		 * stacking of discard limits (this keeps the pool and
2482		 * thin devices' discard limits consistent).
2483		 */
2484		ti->discards_supported = true;
2485	}
2486	ti->private = pt;
2487
2488	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
2489						calc_metadata_threshold(pt),
2490						metadata_low_callback,
2491						pool);
2492	if (r)
2493		goto out_free_pt;
2494
2495	pt->callbacks.congested_fn = pool_is_congested;
2496	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2497
2498	mutex_unlock(&dm_thin_pool_table.mutex);
2499
2500	return 0;
2501
2502out_flags_changed:
2503	__pool_dec(pool);
2504out_free_pt:
2505	kfree(pt);
2506out:
2507	dm_put_device(ti, data_dev);
2508out_metadata:
2509	dm_put_device(ti, metadata_dev);
2510out_unlock:
2511	mutex_unlock(&dm_thin_pool_table.mutex);
2512
2513	return r;
2514}
2515
2516static int pool_map(struct dm_target *ti, struct bio *bio)
2517{
2518	int r;
2519	struct pool_c *pt = ti->private;
2520	struct pool *pool = pt->pool;
2521	unsigned long flags;
2522
2523	/*
2524	 * As this is a singleton target, ti->begin is always zero.
2525	 */
2526	spin_lock_irqsave(&pool->lock, flags);
2527	bio->bi_bdev = pt->data_dev->bdev;
2528	r = DM_MAPIO_REMAPPED;
2529	spin_unlock_irqrestore(&pool->lock, flags);
2530
2531	return r;
2532}
2533
2534static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
2535{
2536	int r;
2537	struct pool_c *pt = ti->private;
2538	struct pool *pool = pt->pool;
2539	sector_t data_size = ti->len;
2540	dm_block_t sb_data_size;
2541
2542	*need_commit = false;
2543
2544	(void) sector_div(data_size, pool->sectors_per_block);
2545
2546	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2547	if (r) {
2548		DMERR("%s: failed to retrieve data device size",
2549		      dm_device_name(pool->pool_md));
2550		return r;
2551	}
2552
2553	if (data_size < sb_data_size) {
2554		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2555		      dm_device_name(pool->pool_md),
2556		      (unsigned long long)data_size, sb_data_size);
2557		return -EINVAL;
2558
2559	} else if (data_size > sb_data_size) {
2560		if (dm_pool_metadata_needs_check(pool->pmd)) {
2561			DMERR("%s: unable to grow the data device until repaired.",
2562			      dm_device_name(pool->pool_md));
2563			return 0;
2564		}
2565
2566		if (sb_data_size)
2567			DMINFO("%s: growing the data device from %llu to %llu blocks",
2568			       dm_device_name(pool->pool_md),
2569			       sb_data_size, (unsigned long long)data_size);
2570		r = dm_pool_resize_data_dev(pool->pmd, data_size);
2571		if (r) {
2572			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
2573			return r;
2574		}
2575
2576		*need_commit = true;
2577	}
2578
2579	return 0;
2580}
2581
2582static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
2583{
2584	int r;
2585	struct pool_c *pt = ti->private;
2586	struct pool *pool = pt->pool;
2587	dm_block_t metadata_dev_size, sb_metadata_dev_size;
2588
2589	*need_commit = false;
2590
2591	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
2592
2593	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
2594	if (r) {
2595		DMERR("%s: failed to retrieve metadata device size",
2596		      dm_device_name(pool->pool_md));
2597		return r;
2598	}
2599
2600	if (metadata_dev_size < sb_metadata_dev_size) {
2601		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2602		      dm_device_name(pool->pool_md),
2603		      metadata_dev_size, sb_metadata_dev_size);
2604		return -EINVAL;
2605
2606	} else if (metadata_dev_size > sb_metadata_dev_size) {
2607		if (dm_pool_metadata_needs_check(pool->pmd)) {
2608			DMERR("%s: unable to grow the metadata device until repaired.",
2609			      dm_device_name(pool->pool_md));
2610			return 0;
2611		}
2612
2613		warn_if_metadata_device_too_big(pool->md_dev);
2614		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2615		       dm_device_name(pool->pool_md),
2616		       sb_metadata_dev_size, metadata_dev_size);
2617		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
2618		if (r) {
2619			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
2620			return r;
2621		}
2622
2623		*need_commit = true;
2624	}
2625
2626	return 0;
2627}
2628
2629/*
2630 * Retrieves the number of blocks of the data device from
2631 * the superblock and compares it to the actual device size,
2632 * thus resizing the data device in case it has grown.
2633 *
2634 * This both copes with opening preallocated data devices in the ctr
2635 * being followed by a resume
2636 * -and-
2637 * calling the resume method individually after userspace has
2638 * grown the data device in reaction to a table event.
2639 */
2640static int pool_preresume(struct dm_target *ti)
2641{
2642	int r;
2643	bool need_commit1, need_commit2;
2644	struct pool_c *pt = ti->private;
2645	struct pool *pool = pt->pool;
2646
2647	/*
2648	 * Take control of the pool object.
2649	 */
2650	r = bind_control_target(pool, ti);
2651	if (r)
2652		return r;
2653
2654	r = maybe_resize_data_dev(ti, &need_commit1);
2655	if (r)
2656		return r;
2657
2658	r = maybe_resize_metadata_dev(ti, &need_commit2);
2659	if (r)
2660		return r;
2661
2662	if (need_commit1 || need_commit2)
2663		(void) commit(pool);
2664
2665	return 0;
2666}
2667
2668static void pool_resume(struct dm_target *ti)
2669{
2670	struct pool_c *pt = ti->private;
2671	struct pool *pool = pt->pool;
2672	unsigned long flags;
2673
2674	spin_lock_irqsave(&pool->lock, flags);
2675	pool->low_water_triggered = false;
2676	spin_unlock_irqrestore(&pool->lock, flags);
2677	requeue_bios(pool);
2678
2679	do_waker(&pool->waker.work);
2680}
2681
2682static void pool_postsuspend(struct dm_target *ti)
2683{
2684	struct pool_c *pt = ti->private;
2685	struct pool *pool = pt->pool;
2686
2687	cancel_delayed_work(&pool->waker);
2688	cancel_delayed_work(&pool->no_space_timeout);
2689	flush_workqueue(pool->wq);
2690	(void) commit(pool);
2691}
2692
2693static int check_arg_count(unsigned argc, unsigned args_required)
2694{
2695	if (argc != args_required) {
2696		DMWARN("Message received with %u arguments instead of %u.",
2697		       argc, args_required);
2698		return -EINVAL;
2699	}
2700
2701	return 0;
2702}
2703
2704static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2705{
2706	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2707	    *dev_id <= MAX_DEV_ID)
2708		return 0;
2709
2710	if (warning)
2711		DMWARN("Message received with invalid device id: %s", arg);
2712
2713	return -EINVAL;
2714}
2715
2716static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2717{
2718	dm_thin_id dev_id;
2719	int r;
2720
2721	r = check_arg_count(argc, 2);
2722	if (r)
2723		return r;
2724
2725	r = read_dev_id(argv[1], &dev_id, 1);
2726	if (r)
2727		return r;
2728
2729	r = dm_pool_create_thin(pool->pmd, dev_id);
2730	if (r) {
2731		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2732		       argv[1]);
2733		return r;
2734	}
2735
2736	return 0;
2737}
2738
2739static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2740{
2741	dm_thin_id dev_id;
2742	dm_thin_id origin_dev_id;
2743	int r;
2744
2745	r = check_arg_count(argc, 3);
2746	if (r)
2747		return r;
2748
2749	r = read_dev_id(argv[1], &dev_id, 1);
2750	if (r)
2751		return r;
2752
2753	r = read_dev_id(argv[2], &origin_dev_id, 1);
2754	if (r)
2755		return r;
2756
2757	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2758	if (r) {
2759		DMWARN("Creation of new snapshot %s of device %s failed.",
2760		       argv[1], argv[2]);
2761		return r;
2762	}
2763
2764	return 0;
2765}
2766
2767static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2768{
2769	dm_thin_id dev_id;
2770	int r;
2771
2772	r = check_arg_count(argc, 2);
2773	if (r)
2774		return r;
2775
2776	r = read_dev_id(argv[1], &dev_id, 1);
2777	if (r)
2778		return r;
2779
2780	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2781	if (r)
2782		DMWARN("Deletion of thin device %s failed.", argv[1]);
2783
2784	return r;
2785}
2786
2787static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2788{
2789	dm_thin_id old_id, new_id;
2790	int r;
2791
2792	r = check_arg_count(argc, 3);
2793	if (r)
2794		return r;
2795
2796	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2797		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2798		return -EINVAL;
2799	}
2800
2801	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2802		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2803		return -EINVAL;
2804	}
2805
2806	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2807	if (r) {
2808		DMWARN("Failed to change transaction id from %s to %s.",
2809		       argv[1], argv[2]);
2810		return r;
2811	}
2812
2813	return 0;
2814}
2815
2816static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2817{
2818	int r;
2819
2820	r = check_arg_count(argc, 1);
2821	if (r)
2822		return r;
2823
2824	(void) commit(pool);
2825
2826	r = dm_pool_reserve_metadata_snap(pool->pmd);
2827	if (r)
2828		DMWARN("reserve_metadata_snap message failed.");
2829
2830	return r;
2831}
2832
2833static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2834{
2835	int r;
2836
2837	r = check_arg_count(argc, 1);
2838	if (r)
2839		return r;
2840
2841	r = dm_pool_release_metadata_snap(pool->pmd);
2842	if (r)
2843		DMWARN("release_metadata_snap message failed.");
2844
2845	return r;
2846}
2847
2848/*
2849 * Messages supported:
2850 *   create_thin	<dev_id>
2851 *   create_snap	<dev_id> <origin_id>
2852 *   delete		<dev_id>
2853 *   trim		<dev_id> <new_size_in_sectors>
2854 *   set_transaction_id <current_trans_id> <new_trans_id>
2855 *   reserve_metadata_snap
2856 *   release_metadata_snap
2857 */
2858static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2859{
2860	int r = -EINVAL;
2861	struct pool_c *pt = ti->private;
2862	struct pool *pool = pt->pool;
2863
2864	if (!strcasecmp(argv[0], "create_thin"))
2865		r = process_create_thin_mesg(argc, argv, pool);
2866
2867	else if (!strcasecmp(argv[0], "create_snap"))
2868		r = process_create_snap_mesg(argc, argv, pool);
2869
2870	else if (!strcasecmp(argv[0], "delete"))
2871		r = process_delete_mesg(argc, argv, pool);
2872
2873	else if (!strcasecmp(argv[0], "set_transaction_id"))
2874		r = process_set_transaction_id_mesg(argc, argv, pool);
2875
2876	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2877		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2878
2879	else if (!strcasecmp(argv[0], "release_metadata_snap"))
2880		r = process_release_metadata_snap_mesg(argc, argv, pool);
2881
2882	else
2883		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2884
2885	if (!r)
2886		(void) commit(pool);
2887
2888	return r;
2889}
2890
2891static void emit_flags(struct pool_features *pf, char *result,
2892		       unsigned sz, unsigned maxlen)
2893{
2894	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2895		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
2896		pf->error_if_no_space;
2897	DMEMIT("%u ", count);
2898
2899	if (!pf->zero_new_blocks)
2900		DMEMIT("skip_block_zeroing ");
2901
2902	if (!pf->discard_enabled)
2903		DMEMIT("ignore_discard ");
2904
2905	if (!pf->discard_passdown)
2906		DMEMIT("no_discard_passdown ");
2907
2908	if (pf->mode == PM_READ_ONLY)
2909		DMEMIT("read_only ");
2910
2911	if (pf->error_if_no_space)
2912		DMEMIT("error_if_no_space ");
2913}
2914
2915/*
2916 * Status line is:
2917 *    <transaction id> <used metadata sectors>/<total metadata sectors>
2918 *    <used data sectors>/<total data sectors> <held metadata root>
2919 */
2920static void pool_status(struct dm_target *ti, status_type_t type,
2921			unsigned status_flags, char *result, unsigned maxlen)
2922{
2923	int r;
2924	unsigned sz = 0;
2925	uint64_t transaction_id;
2926	dm_block_t nr_free_blocks_data;
2927	dm_block_t nr_free_blocks_metadata;
2928	dm_block_t nr_blocks_data;
2929	dm_block_t nr_blocks_metadata;
2930	dm_block_t held_root;
2931	char buf[BDEVNAME_SIZE];
2932	char buf2[BDEVNAME_SIZE];
2933	struct pool_c *pt = ti->private;
2934	struct pool *pool = pt->pool;
2935
2936	switch (type) {
2937	case STATUSTYPE_INFO:
2938		if (get_pool_mode(pool) == PM_FAIL) {
2939			DMEMIT("Fail");
2940			break;
2941		}
2942
2943		/* Commit to ensure statistics aren't out-of-date */
2944		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2945			(void) commit(pool);
2946
2947		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2948		if (r) {
2949			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2950			      dm_device_name(pool->pool_md), r);
2951			goto err;
2952		}
2953
2954		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2955		if (r) {
2956			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2957			      dm_device_name(pool->pool_md), r);
2958			goto err;
2959		}
2960
2961		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2962		if (r) {
2963			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2964			      dm_device_name(pool->pool_md), r);
2965			goto err;
2966		}
2967
2968		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2969		if (r) {
2970			DMERR("%s: dm_pool_get_free_block_count returned %d",
2971			      dm_device_name(pool->pool_md), r);
2972			goto err;
2973		}
2974
2975		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2976		if (r) {
2977			DMERR("%s: dm_pool_get_data_dev_size returned %d",
2978			      dm_device_name(pool->pool_md), r);
2979			goto err;
2980		}
2981
2982		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2983		if (r) {
2984			DMERR("%s: dm_pool_get_metadata_snap returned %d",
2985			      dm_device_name(pool->pool_md), r);
2986			goto err;
2987		}
2988
2989		DMEMIT("%llu %llu/%llu %llu/%llu ",
2990		       (unsigned long long)transaction_id,
2991		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2992		       (unsigned long long)nr_blocks_metadata,
2993		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2994		       (unsigned long long)nr_blocks_data);
2995
2996		if (held_root)
2997			DMEMIT("%llu ", held_root);
2998		else
2999			DMEMIT("- ");
3000
3001		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3002			DMEMIT("out_of_data_space ");
3003		else if (pool->pf.mode == PM_READ_ONLY)
3004			DMEMIT("ro ");
3005		else
3006			DMEMIT("rw ");
3007
3008		if (!pool->pf.discard_enabled)
3009			DMEMIT("ignore_discard ");
3010		else if (pool->pf.discard_passdown)
3011			DMEMIT("discard_passdown ");
3012		else
3013			DMEMIT("no_discard_passdown ");
3014
3015		if (pool->pf.error_if_no_space)
3016			DMEMIT("error_if_no_space ");
3017		else
3018			DMEMIT("queue_if_no_space ");
3019
3020		break;
3021
3022	case STATUSTYPE_TABLE:
3023		DMEMIT("%s %s %lu %llu ",
3024		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3025		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3026		       (unsigned long)pool->sectors_per_block,
3027		       (unsigned long long)pt->low_water_blocks);
3028		emit_flags(&pt->requested_pf, result, sz, maxlen);
3029		break;
3030	}
3031	return;
3032
3033err:
3034	DMEMIT("Error");
3035}
3036
3037static int pool_iterate_devices(struct dm_target *ti,
3038				iterate_devices_callout_fn fn, void *data)
3039{
3040	struct pool_c *pt = ti->private;
3041
3042	return fn(ti, pt->data_dev, 0, ti->len, data);
3043}
3044
3045static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3046		      struct bio_vec *biovec, int max_size)
3047{
3048	struct pool_c *pt = ti->private;
3049	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3050
3051	if (!q->merge_bvec_fn)
3052		return max_size;
3053
3054	bvm->bi_bdev = pt->data_dev->bdev;
3055
3056	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3057}
3058
3059static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
3060{
3061	struct pool *pool = pt->pool;
3062	struct queue_limits *data_limits;
3063
3064	limits->max_discard_sectors = pool->sectors_per_block;
3065
3066	/*
3067	 * discard_granularity is just a hint, and not enforced.
3068	 */
3069	if (pt->adjusted_pf.discard_passdown) {
3070		data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
3071		limits->discard_granularity = data_limits->discard_granularity;
3072	} else
3073		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
3074}
3075
3076static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3077{
3078	struct pool_c *pt = ti->private;
3079	struct pool *pool = pt->pool;
3080	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3081
3082	/*
3083	 * If the system-determined stacked limits are compatible with the
3084	 * pool's blocksize (io_opt is a factor) do not override them.
3085	 */
3086	if (io_opt_sectors < pool->sectors_per_block ||
3087	    do_div(io_opt_sectors, pool->sectors_per_block)) {
3088		blk_limits_io_min(limits, 0);
3089		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3090	}
3091
3092	/*
3093	 * pt->adjusted_pf is a staging area for the actual features to use.
3094	 * They get transferred to the live pool in bind_control_target()
3095	 * called from pool_preresume().
3096	 */
3097	if (!pt->adjusted_pf.discard_enabled) {
3098		/*
3099		 * Must explicitly disallow stacking discard limits otherwise the
3100		 * block layer will stack them if pool's data device has support.
3101		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3102		 * user to see that, so make sure to set all discard limits to 0.
3103		 */
3104		limits->discard_granularity = 0;
3105		return;
3106	}
3107
3108	disable_passdown_if_not_supported(pt);
3109
3110	set_discard_limits(pt, limits);
3111}
3112
3113static struct target_type pool_target = {
3114	.name = "thin-pool",
3115	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3116		    DM_TARGET_IMMUTABLE,
3117	.version = {1, 12, 0},
3118	.module = THIS_MODULE,
3119	.ctr = pool_ctr,
3120	.dtr = pool_dtr,
3121	.map = pool_map,
3122	.postsuspend = pool_postsuspend,
3123	.preresume = pool_preresume,
3124	.resume = pool_resume,
3125	.message = pool_message,
3126	.status = pool_status,
3127	.merge = pool_merge,
3128	.iterate_devices = pool_iterate_devices,
3129	.io_hints = pool_io_hints,
3130};
3131
3132/*----------------------------------------------------------------
3133 * Thin target methods
3134 *--------------------------------------------------------------*/
3135static void thin_get(struct thin_c *tc)
3136{
3137	atomic_inc(&tc->refcount);
3138}
3139
3140static void thin_put(struct thin_c *tc)
3141{
3142	if (atomic_dec_and_test(&tc->refcount))
3143		complete(&tc->can_destroy);
3144}
3145
3146static void thin_dtr(struct dm_target *ti)
3147{
3148	struct thin_c *tc = ti->private;
3149	unsigned long flags;
3150
3151	thin_put(tc);
3152	wait_for_completion(&tc->can_destroy);
3153
3154	spin_lock_irqsave(&tc->pool->lock, flags);
3155	list_del_rcu(&tc->list);
3156	spin_unlock_irqrestore(&tc->pool->lock, flags);
3157	synchronize_rcu();
3158
3159	mutex_lock(&dm_thin_pool_table.mutex);
3160
3161	__pool_dec(tc->pool);
3162	dm_pool_close_thin_device(tc->td);
3163	dm_put_device(ti, tc->pool_dev);
3164	if (tc->origin_dev)
3165		dm_put_device(ti, tc->origin_dev);
3166	kfree(tc);
3167
3168	mutex_unlock(&dm_thin_pool_table.mutex);
3169}
3170
3171/*
3172 * Thin target parameters:
3173 *
3174 * <pool_dev> <dev_id> [origin_dev]
3175 *
3176 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3177 * dev_id: the internal device identifier
3178 * origin_dev: a device external to the pool that should act as the origin
3179 *
3180 * If the pool device has discards disabled, they get disabled for the thin
3181 * device as well.
3182 */
3183static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3184{
3185	int r;
3186	struct thin_c *tc;
3187	struct dm_dev *pool_dev, *origin_dev;
3188	struct mapped_device *pool_md;
3189	unsigned long flags;
3190
3191	mutex_lock(&dm_thin_pool_table.mutex);
3192
3193	if (argc != 2 && argc != 3) {
3194		ti->error = "Invalid argument count";
3195		r = -EINVAL;
3196		goto out_unlock;
3197	}
3198
3199	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
3200	if (!tc) {
3201		ti->error = "Out of memory";
3202		r = -ENOMEM;
3203		goto out_unlock;
3204	}
3205	spin_lock_init(&tc->lock);
3206	bio_list_init(&tc->deferred_bio_list);
3207	bio_list_init(&tc->retry_on_resume_list);
3208	tc->sort_bio_list = RB_ROOT;
3209
3210	if (argc == 3) {
3211		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
3212		if (r) {
3213			ti->error = "Error opening origin device";
3214			goto bad_origin_dev;
3215		}
3216		tc->origin_dev = origin_dev;
3217	}
3218
3219	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
3220	if (r) {
3221		ti->error = "Error opening pool device";
3222		goto bad_pool_dev;
3223	}
3224	tc->pool_dev = pool_dev;
3225
3226	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
3227		ti->error = "Invalid device id";
3228		r = -EINVAL;
3229		goto bad_common;
3230	}
3231
3232	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
3233	if (!pool_md) {
3234		ti->error = "Couldn't get pool mapped device";
3235		r = -EINVAL;
3236		goto bad_common;
3237	}
3238
3239	tc->pool = __pool_table_lookup(pool_md);
3240	if (!tc->pool) {
3241		ti->error = "Couldn't find pool object";
3242		r = -EINVAL;
3243		goto bad_pool_lookup;
3244	}
3245	__pool_inc(tc->pool);
3246
3247	if (get_pool_mode(tc->pool) == PM_FAIL) {
3248		ti->error = "Couldn't open thin device, Pool is in fail mode";
3249		r = -EINVAL;
3250		goto bad_thin_open;
3251	}
3252
3253	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
3254	if (r) {
3255		ti->error = "Couldn't open thin internal device";
3256		goto bad_thin_open;
3257	}
3258
3259	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
3260	if (r)
3261		goto bad_target_max_io_len;
3262
3263	ti->num_flush_bios = 1;
3264	ti->flush_supported = true;
3265	ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
3266
3267	/* In case the pool supports discards, pass them on. */
3268	ti->discard_zeroes_data_unsupported = true;
3269	if (tc->pool->pf.discard_enabled) {
3270		ti->discards_supported = true;
3271		ti->num_discard_bios = 1;
3272		/* Discard bios must be split on a block boundary */
3273		ti->split_discard_bios = true;
3274	}
3275
3276	dm_put(pool_md);
3277
3278	mutex_unlock(&dm_thin_pool_table.mutex);
3279
3280	atomic_set(&tc->refcount, 1);
3281	init_completion(&tc->can_destroy);
3282
3283	spin_lock_irqsave(&tc->pool->lock, flags);
3284	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
3285	spin_unlock_irqrestore(&tc->pool->lock, flags);
3286	/*
3287	 * This synchronize_rcu() call is needed here otherwise we risk a
3288	 * wake_worker() call finding no bios to process (because the newly
3289	 * added tc isn't yet visible).  So this reduces latency since we
3290	 * aren't then dependent on the periodic commit to wake_worker().
3291	 */
3292	synchronize_rcu();
3293
3294	return 0;
3295
3296bad_target_max_io_len:
3297	dm_pool_close_thin_device(tc->td);
3298bad_thin_open:
3299	__pool_dec(tc->pool);
3300bad_pool_lookup:
3301	dm_put(pool_md);
3302bad_common:
3303	dm_put_device(ti, tc->pool_dev);
3304bad_pool_dev:
3305	if (tc->origin_dev)
3306		dm_put_device(ti, tc->origin_dev);
3307bad_origin_dev:
3308	kfree(tc);
3309out_unlock:
3310	mutex_unlock(&dm_thin_pool_table.mutex);
3311
3312	return r;
3313}
3314
3315static int thin_map(struct dm_target *ti, struct bio *bio)
3316{
3317	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
3318
3319	return thin_bio_map(ti, bio);
3320}
3321
3322static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
3323{
3324	unsigned long flags;
3325	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
3326	struct list_head work;
3327	struct dm_thin_new_mapping *m, *tmp;
3328	struct pool *pool = h->tc->pool;
3329
3330	if (h->shared_read_entry) {
3331		INIT_LIST_HEAD(&work);
3332		dm_deferred_entry_dec(h->shared_read_entry, &work);
3333
3334		spin_lock_irqsave(&pool->lock, flags);
3335		list_for_each_entry_safe(m, tmp, &work, list) {
3336			list_del(&m->list);
3337			m->quiesced = true;
3338			__maybe_add_mapping(m);
3339		}
3340		spin_unlock_irqrestore(&pool->lock, flags);
3341	}
3342
3343	if (h->all_io_entry) {
3344		INIT_LIST_HEAD(&work);
3345		dm_deferred_entry_dec(h->all_io_entry, &work);
3346		if (!list_empty(&work)) {
3347			spin_lock_irqsave(&pool->lock, flags);
3348			list_for_each_entry_safe(m, tmp, &work, list)
3349				list_add_tail(&m->list, &pool->prepared_discards);
3350			spin_unlock_irqrestore(&pool->lock, flags);
3351			wake_worker(pool);
3352		}
3353	}
3354
3355	return 0;
3356}
3357
3358static void thin_presuspend(struct dm_target *ti)
3359{
3360	struct thin_c *tc = ti->private;
3361
3362	if (dm_noflush_suspending(ti))
3363		noflush_work(tc, do_noflush_start);
3364}
3365
3366static void thin_postsuspend(struct dm_target *ti)
3367{
3368	struct thin_c *tc = ti->private;
3369
3370	/*
3371	 * The dm_noflush_suspending flag has been cleared by now, so
3372	 * unfortunately we must always run this.
3373	 */
3374	noflush_work(tc, do_noflush_stop);
3375}
3376
3377/*
3378 * <nr mapped sectors> <highest mapped sector>
3379 */
3380static void thin_status(struct dm_target *ti, status_type_t type,
3381			unsigned status_flags, char *result, unsigned maxlen)
3382{
3383	int r;
3384	ssize_t sz = 0;
3385	dm_block_t mapped, highest;
3386	char buf[BDEVNAME_SIZE];
3387	struct thin_c *tc = ti->private;
3388
3389	if (get_pool_mode(tc->pool) == PM_FAIL) {
3390		DMEMIT("Fail");
3391		return;
3392	}
3393
3394	if (!tc->td)
3395		DMEMIT("-");
3396	else {
3397		switch (type) {
3398		case STATUSTYPE_INFO:
3399			r = dm_thin_get_mapped_count(tc->td, &mapped);
3400			if (r) {
3401				DMERR("dm_thin_get_mapped_count returned %d", r);
3402				goto err;
3403			}
3404
3405			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3406			if (r < 0) {
3407				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
3408				goto err;
3409			}
3410
3411			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3412			if (r)
3413				DMEMIT("%llu", ((highest + 1) *
3414						tc->pool->sectors_per_block) - 1);
3415			else
3416				DMEMIT("-");
3417			break;
3418
3419		case STATUSTYPE_TABLE:
3420			DMEMIT("%s %lu",
3421			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3422			       (unsigned long) tc->dev_id);
3423			if (tc->origin_dev)
3424				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3425			break;
3426		}
3427	}
3428
3429	return;
3430
3431err:
3432	DMEMIT("Error");
3433}
3434
3435static int thin_iterate_devices(struct dm_target *ti,
3436				iterate_devices_callout_fn fn, void *data)
3437{
3438	sector_t blocks;
3439	struct thin_c *tc = ti->private;
3440	struct pool *pool = tc->pool;
3441
3442	/*
3443	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3444	 * we follow a more convoluted path through to the pool's target.
3445	 */
3446	if (!pool->ti)
3447		return 0;	/* nothing is bound */
3448
3449	blocks = pool->ti->len;
3450	(void) sector_div(blocks, pool->sectors_per_block);
3451	if (blocks)
3452		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3453
3454	return 0;
3455}
3456
3457static struct target_type thin_target = {
3458	.name = "thin",
3459	.version = {1, 12, 0},
3460	.module	= THIS_MODULE,
3461	.ctr = thin_ctr,
3462	.dtr = thin_dtr,
3463	.map = thin_map,
3464	.end_io = thin_endio,
3465	.presuspend = thin_presuspend,
3466	.postsuspend = thin_postsuspend,
3467	.status = thin_status,
3468	.iterate_devices = thin_iterate_devices,
3469};
3470
3471/*----------------------------------------------------------------*/
3472
3473static int __init dm_thin_init(void)
3474{
3475	int r;
3476
3477	pool_table_init();
3478
3479	r = dm_register_target(&thin_target);
3480	if (r)
3481		return r;
3482
3483	r = dm_register_target(&pool_target);
3484	if (r)
3485		goto bad_pool_target;
3486
3487	r = -ENOMEM;
3488
3489	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3490	if (!_new_mapping_cache)
3491		goto bad_new_mapping_cache;
3492
3493	return 0;
3494
3495bad_new_mapping_cache:
3496	dm_unregister_target(&pool_target);
3497bad_pool_target:
3498	dm_unregister_target(&thin_target);
3499
3500	return r;
3501}
3502
3503static void dm_thin_exit(void)
3504{
3505	dm_unregister_target(&thin_target);
3506	dm_unregister_target(&pool_target);
3507
3508	kmem_cache_destroy(_new_mapping_cache);
3509}
3510
3511module_init(dm_thin_init);
3512module_exit(dm_thin_exit);
3513
3514module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
3515MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
3516
3517MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3518MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3519MODULE_LICENSE("GPL");