Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright © 2014 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Ben Widawsky <ben@bwidawsk.net>
  25 *    Michel Thierry <michel.thierry@intel.com>
  26 *    Thomas Daniel <thomas.daniel@intel.com>
  27 *    Oscar Mateo <oscar.mateo@intel.com>
  28 *
  29 */
  30
  31/**
  32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
  33 *
  34 * Motivation:
  35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
  36 * These expanded contexts enable a number of new abilities, especially
  37 * "Execlists" (also implemented in this file).
  38 *
  39 * One of the main differences with the legacy HW contexts is that logical
  40 * ring contexts incorporate many more things to the context's state, like
  41 * PDPs or ringbuffer control registers:
  42 *
  43 * The reason why PDPs are included in the context is straightforward: as
  44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
  45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
  46 * instead, the GPU will do it for you on the context switch.
  47 *
  48 * But, what about the ringbuffer control registers (head, tail, etc..)?
  49 * shouldn't we just need a set of those per engine command streamer? This is
  50 * where the name "Logical Rings" starts to make sense: by virtualizing the
  51 * rings, the engine cs shifts to a new "ring buffer" with every context
  52 * switch. When you want to submit a workload to the GPU you: A) choose your
  53 * context, B) find its appropriate virtualized ring, C) write commands to it
  54 * and then, finally, D) tell the GPU to switch to that context.
  55 *
  56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
  57 * to a contexts is via a context execution list, ergo "Execlists".
  58 *
  59 * LRC implementation:
  60 * Regarding the creation of contexts, we have:
  61 *
  62 * - One global default context.
  63 * - One local default context for each opened fd.
  64 * - One local extra context for each context create ioctl call.
  65 *
  66 * Now that ringbuffers belong per-context (and not per-engine, like before)
  67 * and that contexts are uniquely tied to a given engine (and not reusable,
  68 * like before) we need:
  69 *
  70 * - One ringbuffer per-engine inside each context.
  71 * - One backing object per-engine inside each context.
  72 *
  73 * The global default context starts its life with these new objects fully
  74 * allocated and populated. The local default context for each opened fd is
  75 * more complex, because we don't know at creation time which engine is going
  76 * to use them. To handle this, we have implemented a deferred creation of LR
  77 * contexts:
  78 *
  79 * The local context starts its life as a hollow or blank holder, that only
  80 * gets populated for a given engine once we receive an execbuffer. If later
  81 * on we receive another execbuffer ioctl for the same context but a different
  82 * engine, we allocate/populate a new ringbuffer and context backing object and
  83 * so on.
  84 *
  85 * Finally, regarding local contexts created using the ioctl call: as they are
  86 * only allowed with the render ring, we can allocate & populate them right
  87 * away (no need to defer anything, at least for now).
  88 *
  89 * Execlists implementation:
  90 * Execlists are the new method by which, on gen8+ hardware, workloads are
  91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
  92 * This method works as follows:
  93 *
  94 * When a request is committed, its commands (the BB start and any leading or
  95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
  96 * for the appropriate context. The tail pointer in the hardware context is not
  97 * updated at this time, but instead, kept by the driver in the ringbuffer
  98 * structure. A structure representing this request is added to a request queue
  99 * for the appropriate engine: this structure contains a copy of the context's
 100 * tail after the request was written to the ring buffer and a pointer to the
 101 * context itself.
 102 *
 103 * If the engine's request queue was empty before the request was added, the
 104 * queue is processed immediately. Otherwise the queue will be processed during
 105 * a context switch interrupt. In any case, elements on the queue will get sent
 106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 107 * globally unique 20-bits submission ID.
 108 *
 109 * When execution of a request completes, the GPU updates the context status
 110 * buffer with a context complete event and generates a context switch interrupt.
 111 * During the interrupt handling, the driver examines the events in the buffer:
 112 * for each context complete event, if the announced ID matches that on the head
 113 * of the request queue, then that request is retired and removed from the queue.
 114 *
 115 * After processing, if any requests were retired and the queue is not empty
 116 * then a new execution list can be submitted. The two requests at the front of
 117 * the queue are next to be submitted but since a context may not occur twice in
 118 * an execution list, if subsequent requests have the same ID as the first then
 119 * the two requests must be combined. This is done simply by discarding requests
 120 * at the head of the queue until either only one requests is left (in which case
 121 * we use a NULL second context) or the first two requests have unique IDs.
 122 *
 123 * By always executing the first two requests in the queue the driver ensures
 124 * that the GPU is kept as busy as possible. In the case where a single context
 125 * completes but a second context is still executing, the request for this second
 126 * context will be at the head of the queue when we remove the first one. This
 127 * request will then be resubmitted along with a new request for a different context,
 128 * which will cause the hardware to continue executing the second request and queue
 129 * the new request (the GPU detects the condition of a context getting preempted
 130 * with the same context and optimizes the context switch flow by not doing
 131 * preemption, but just sampling the new tail pointer).
 132 *
 133 */
 134#include <linux/interrupt.h>
 135
 136#include <drm/drmP.h>
 137#include <drm/i915_drm.h>
 138#include "i915_drv.h"
 139#include "i915_gem_render_state.h"
 140#include "intel_lrc_reg.h"
 141#include "intel_mocs.h"
 142
 143#define RING_EXECLIST_QFULL		(1 << 0x2)
 144#define RING_EXECLIST1_VALID		(1 << 0x3)
 145#define RING_EXECLIST0_VALID		(1 << 0x4)
 146#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
 147#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
 148#define RING_EXECLIST0_ACTIVE		(1 << 0x12)
 149
 150#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
 151#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
 152#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
 153#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
 154#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
 155#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
 156
 157#define GEN8_CTX_STATUS_COMPLETED_MASK \
 158	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
 159
 160/* Typical size of the average request (2 pipecontrols and a MI_BB) */
 161#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
 162#define WA_TAIL_DWORDS 2
 163#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
 164
 165static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
 166					    struct intel_engine_cs *engine);
 167static void execlists_init_reg_state(u32 *reg_state,
 168				     struct i915_gem_context *ctx,
 169				     struct intel_engine_cs *engine,
 170				     struct intel_ring *ring);
 171
 172static inline struct i915_priolist *to_priolist(struct rb_node *rb)
 173{
 174	return rb_entry(rb, struct i915_priolist, node);
 175}
 176
 177static inline int rq_prio(const struct i915_request *rq)
 178{
 179	return rq->priotree.priority;
 180}
 181
 182static inline bool need_preempt(const struct intel_engine_cs *engine,
 183				const struct i915_request *last,
 184				int prio)
 185{
 186	return engine->i915->preempt_context && prio > max(rq_prio(last), 0);
 187}
 188
 189/**
 190 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 191 * 					  descriptor for a pinned context
 192 * @ctx: Context to work on
 193 * @engine: Engine the descriptor will be used with
 194 *
 195 * The context descriptor encodes various attributes of a context,
 196 * including its GTT address and some flags. Because it's fairly
 197 * expensive to calculate, we'll just do it once and cache the result,
 198 * which remains valid until the context is unpinned.
 199 *
 200 * This is what a descriptor looks like, from LSB to MSB::
 201 *
 202 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
 203 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 204 *      bits 32-52:    ctx ID, a globally unique tag
 205 *      bits 53-54:    mbz, reserved for use by hardware
 206 *      bits 55-63:    group ID, currently unused and set to 0
 207 *
 208 * Starting from Gen11, the upper dword of the descriptor has a new format:
 209 *
 210 *      bits 32-36:    reserved
 211 *      bits 37-47:    SW context ID
 212 *      bits 48:53:    engine instance
 213 *      bit 54:        mbz, reserved for use by hardware
 214 *      bits 55-60:    SW counter
 215 *      bits 61-63:    engine class
 216 *
 217 * engine info, SW context ID and SW counter need to form a unique number
 218 * (Context ID) per lrc.
 219 */
 220static void
 221intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
 222				   struct intel_engine_cs *engine)
 223{
 224	struct intel_context *ce = &ctx->engine[engine->id];
 225	u64 desc;
 226
 227	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
 228	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
 229
 230	desc = ctx->desc_template;				/* bits  0-11 */
 231	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
 232
 233	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
 234								/* bits 12-31 */
 235	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
 236
 237	if (INTEL_GEN(ctx->i915) >= 11) {
 238		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
 239		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
 240								/* bits 37-47 */
 241
 242		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
 243								/* bits 48-53 */
 244
 245		/* TODO: decide what to do with SW counter (bits 55-60) */
 246
 247		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
 248								/* bits 61-63 */
 249	} else {
 250		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
 251		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
 252	}
 253
 254	ce->lrc_desc = desc;
 255}
 256
 257static struct i915_priolist *
 258lookup_priolist(struct intel_engine_cs *engine,
 259		struct i915_priotree *pt,
 260		int prio)
 261{
 262	struct intel_engine_execlists * const execlists = &engine->execlists;
 263	struct i915_priolist *p;
 264	struct rb_node **parent, *rb;
 265	bool first = true;
 266
 267	if (unlikely(execlists->no_priolist))
 268		prio = I915_PRIORITY_NORMAL;
 269
 270find_priolist:
 271	/* most positive priority is scheduled first, equal priorities fifo */
 272	rb = NULL;
 273	parent = &execlists->queue.rb_node;
 274	while (*parent) {
 275		rb = *parent;
 276		p = to_priolist(rb);
 277		if (prio > p->priority) {
 278			parent = &rb->rb_left;
 279		} else if (prio < p->priority) {
 280			parent = &rb->rb_right;
 281			first = false;
 282		} else {
 283			return p;
 284		}
 285	}
 286
 287	if (prio == I915_PRIORITY_NORMAL) {
 288		p = &execlists->default_priolist;
 289	} else {
 290		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
 291		/* Convert an allocation failure to a priority bump */
 292		if (unlikely(!p)) {
 293			prio = I915_PRIORITY_NORMAL; /* recurses just once */
 294
 295			/* To maintain ordering with all rendering, after an
 296			 * allocation failure we have to disable all scheduling.
 297			 * Requests will then be executed in fifo, and schedule
 298			 * will ensure that dependencies are emitted in fifo.
 299			 * There will be still some reordering with existing
 300			 * requests, so if userspace lied about their
 301			 * dependencies that reordering may be visible.
 302			 */
 303			execlists->no_priolist = true;
 304			goto find_priolist;
 305		}
 306	}
 307
 308	p->priority = prio;
 309	INIT_LIST_HEAD(&p->requests);
 310	rb_link_node(&p->node, rb, parent);
 311	rb_insert_color(&p->node, &execlists->queue);
 312
 313	if (first)
 314		execlists->first = &p->node;
 315
 316	return p;
 317}
 318
 319static void unwind_wa_tail(struct i915_request *rq)
 320{
 321	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
 322	assert_ring_tail_valid(rq->ring, rq->tail);
 323}
 324
 325static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
 326{
 327	struct i915_request *rq, *rn;
 328	struct i915_priolist *uninitialized_var(p);
 329	int last_prio = I915_PRIORITY_INVALID;
 330
 331	lockdep_assert_held(&engine->timeline->lock);
 332
 333	list_for_each_entry_safe_reverse(rq, rn,
 334					 &engine->timeline->requests,
 335					 link) {
 336		if (i915_request_completed(rq))
 337			return;
 338
 339		__i915_request_unsubmit(rq);
 340		unwind_wa_tail(rq);
 341
 342		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
 343		if (rq_prio(rq) != last_prio) {
 344			last_prio = rq_prio(rq);
 345			p = lookup_priolist(engine, &rq->priotree, last_prio);
 346		}
 347
 348		list_add(&rq->priotree.link, &p->requests);
 349	}
 350}
 351
 352void
 353execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
 354{
 355	struct intel_engine_cs *engine =
 356		container_of(execlists, typeof(*engine), execlists);
 357
 358	spin_lock_irq(&engine->timeline->lock);
 359	__unwind_incomplete_requests(engine);
 360	spin_unlock_irq(&engine->timeline->lock);
 361}
 362
 363static inline void
 364execlists_context_status_change(struct i915_request *rq, unsigned long status)
 365{
 366	/*
 367	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
 368	 * The compiler should eliminate this function as dead-code.
 369	 */
 370	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
 371		return;
 372
 373	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
 374				   status, rq);
 375}
 376
 377static inline void
 378execlists_context_schedule_in(struct i915_request *rq)
 379{
 380	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
 381	intel_engine_context_in(rq->engine);
 382}
 383
 384static inline void
 385execlists_context_schedule_out(struct i915_request *rq)
 386{
 387	intel_engine_context_out(rq->engine);
 388	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
 389}
 390
 391static void
 392execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
 393{
 394	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
 395	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
 396	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
 397	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
 398}
 399
 400static u64 execlists_update_context(struct i915_request *rq)
 401{
 402	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
 403	struct i915_hw_ppgtt *ppgtt =
 404		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
 405	u32 *reg_state = ce->lrc_reg_state;
 406
 407	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
 408
 409	/* True 32b PPGTT with dynamic page allocation: update PDP
 410	 * registers and point the unallocated PDPs to scratch page.
 411	 * PML4 is allocated during ppgtt init, so this is not needed
 412	 * in 48-bit mode.
 413	 */
 414	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
 415		execlists_update_context_pdps(ppgtt, reg_state);
 416
 417	return ce->lrc_desc;
 418}
 419
 420static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
 421{
 422	if (execlists->ctrl_reg) {
 423		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
 424		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
 425	} else {
 426		writel(upper_32_bits(desc), execlists->submit_reg);
 427		writel(lower_32_bits(desc), execlists->submit_reg);
 428	}
 429}
 430
 431static void execlists_submit_ports(struct intel_engine_cs *engine)
 432{
 433	struct intel_engine_execlists *execlists = &engine->execlists;
 434	struct execlist_port *port = execlists->port;
 435	unsigned int n;
 436
 437	/*
 438	 * ELSQ note: the submit queue is not cleared after being submitted
 439	 * to the HW so we need to make sure we always clean it up. This is
 440	 * currently ensured by the fact that we always write the same number
 441	 * of elsq entries, keep this in mind before changing the loop below.
 442	 */
 443	for (n = execlists_num_ports(execlists); n--; ) {
 444		struct i915_request *rq;
 445		unsigned int count;
 446		u64 desc;
 447
 448		rq = port_unpack(&port[n], &count);
 449		if (rq) {
 450			GEM_BUG_ON(count > !n);
 451			if (!count++)
 452				execlists_context_schedule_in(rq);
 453			port_set(&port[n], port_pack(rq, count));
 454			desc = execlists_update_context(rq);
 455			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
 456
 457			GEM_TRACE("%s in[%d]:  ctx=%d.%d, seqno=%x, prio=%d\n",
 458				  engine->name, n,
 459				  port[n].context_id, count,
 460				  rq->global_seqno,
 461				  rq_prio(rq));
 462		} else {
 463			GEM_BUG_ON(!n);
 464			desc = 0;
 465		}
 466
 467		write_desc(execlists, desc, n);
 468	}
 469
 470	/* we need to manually load the submit queue */
 471	if (execlists->ctrl_reg)
 472		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
 473
 474	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
 475}
 476
 477static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
 478{
 479	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
 480		i915_gem_context_force_single_submission(ctx));
 481}
 482
 483static bool can_merge_ctx(const struct i915_gem_context *prev,
 484			  const struct i915_gem_context *next)
 485{
 486	if (prev != next)
 487		return false;
 488
 489	if (ctx_single_port_submission(prev))
 490		return false;
 491
 492	return true;
 493}
 494
 495static void port_assign(struct execlist_port *port, struct i915_request *rq)
 496{
 497	GEM_BUG_ON(rq == port_request(port));
 498
 499	if (port_isset(port))
 500		i915_request_put(port_request(port));
 501
 502	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
 503}
 504
 505static void inject_preempt_context(struct intel_engine_cs *engine)
 506{
 507	struct intel_engine_execlists *execlists = &engine->execlists;
 508	struct intel_context *ce =
 509		&engine->i915->preempt_context->engine[engine->id];
 510	unsigned int n;
 511
 512	GEM_BUG_ON(execlists->preempt_complete_status !=
 513		   upper_32_bits(ce->lrc_desc));
 514	GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
 515		    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
 516				       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
 517		   _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
 518				      CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));
 519
 520	/*
 521	 * Switch to our empty preempt context so
 522	 * the state of the GPU is known (idle).
 523	 */
 524	GEM_TRACE("%s\n", engine->name);
 525	for (n = execlists_num_ports(execlists); --n; )
 526		write_desc(execlists, 0, n);
 527
 528	write_desc(execlists, ce->lrc_desc, n);
 529
 530	/* we need to manually load the submit queue */
 531	if (execlists->ctrl_reg)
 532		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
 533
 534	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
 535	execlists_set_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT);
 536}
 537
 538static void execlists_dequeue(struct intel_engine_cs *engine)
 539{
 540	struct intel_engine_execlists * const execlists = &engine->execlists;
 541	struct execlist_port *port = execlists->port;
 542	const struct execlist_port * const last_port =
 543		&execlists->port[execlists->port_mask];
 544	struct i915_request *last = port_request(port);
 545	struct rb_node *rb;
 546	bool submit = false;
 547
 548	/* Hardware submission is through 2 ports. Conceptually each port
 549	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
 550	 * static for a context, and unique to each, so we only execute
 551	 * requests belonging to a single context from each ring. RING_HEAD
 552	 * is maintained by the CS in the context image, it marks the place
 553	 * where it got up to last time, and through RING_TAIL we tell the CS
 554	 * where we want to execute up to this time.
 555	 *
 556	 * In this list the requests are in order of execution. Consecutive
 557	 * requests from the same context are adjacent in the ringbuffer. We
 558	 * can combine these requests into a single RING_TAIL update:
 559	 *
 560	 *              RING_HEAD...req1...req2
 561	 *                                    ^- RING_TAIL
 562	 * since to execute req2 the CS must first execute req1.
 563	 *
 564	 * Our goal then is to point each port to the end of a consecutive
 565	 * sequence of requests as being the most optimal (fewest wake ups
 566	 * and context switches) submission.
 567	 */
 568
 569	spin_lock_irq(&engine->timeline->lock);
 570	rb = execlists->first;
 571	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
 572
 573	if (last) {
 574		/*
 575		 * Don't resubmit or switch until all outstanding
 576		 * preemptions (lite-restore) are seen. Then we
 577		 * know the next preemption status we see corresponds
 578		 * to this ELSP update.
 579		 */
 580		GEM_BUG_ON(!execlists_is_active(execlists,
 581						EXECLISTS_ACTIVE_USER));
 582		GEM_BUG_ON(!port_count(&port[0]));
 583		if (port_count(&port[0]) > 1)
 584			goto unlock;
 585
 586		/*
 587		 * If we write to ELSP a second time before the HW has had
 588		 * a chance to respond to the previous write, we can confuse
 589		 * the HW and hit "undefined behaviour". After writing to ELSP,
 590		 * we must then wait until we see a context-switch event from
 591		 * the HW to indicate that it has had a chance to respond.
 592		 */
 593		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
 594			goto unlock;
 595
 596		if (need_preempt(engine, last, execlists->queue_priority)) {
 597			inject_preempt_context(engine);
 598			goto unlock;
 599		}
 600
 601		/*
 602		 * In theory, we could coalesce more requests onto
 603		 * the second port (the first port is active, with
 604		 * no preemptions pending). However, that means we
 605		 * then have to deal with the possible lite-restore
 606		 * of the second port (as we submit the ELSP, there
 607		 * may be a context-switch) but also we may complete
 608		 * the resubmission before the context-switch. Ergo,
 609		 * coalescing onto the second port will cause a
 610		 * preemption event, but we cannot predict whether
 611		 * that will affect port[0] or port[1].
 612		 *
 613		 * If the second port is already active, we can wait
 614		 * until the next context-switch before contemplating
 615		 * new requests. The GPU will be busy and we should be
 616		 * able to resubmit the new ELSP before it idles,
 617		 * avoiding pipeline bubbles (momentary pauses where
 618		 * the driver is unable to keep up the supply of new
 619		 * work). However, we have to double check that the
 620		 * priorities of the ports haven't been switch.
 621		 */
 622		if (port_count(&port[1]))
 623			goto unlock;
 624
 625		/*
 626		 * WaIdleLiteRestore:bdw,skl
 627		 * Apply the wa NOOPs to prevent
 628		 * ring:HEAD == rq:TAIL as we resubmit the
 629		 * request. See gen8_emit_breadcrumb() for
 630		 * where we prepare the padding after the
 631		 * end of the request.
 632		 */
 633		last->tail = last->wa_tail;
 634	}
 635
 636	while (rb) {
 637		struct i915_priolist *p = to_priolist(rb);
 638		struct i915_request *rq, *rn;
 639
 640		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
 641			/*
 642			 * Can we combine this request with the current port?
 643			 * It has to be the same context/ringbuffer and not
 644			 * have any exceptions (e.g. GVT saying never to
 645			 * combine contexts).
 646			 *
 647			 * If we can combine the requests, we can execute both
 648			 * by updating the RING_TAIL to point to the end of the
 649			 * second request, and so we never need to tell the
 650			 * hardware about the first.
 651			 */
 652			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
 653				/*
 654				 * If we are on the second port and cannot
 655				 * combine this request with the last, then we
 656				 * are done.
 657				 */
 658				if (port == last_port) {
 659					__list_del_many(&p->requests,
 660							&rq->priotree.link);
 661					goto done;
 662				}
 663
 664				/*
 665				 * If GVT overrides us we only ever submit
 666				 * port[0], leaving port[1] empty. Note that we
 667				 * also have to be careful that we don't queue
 668				 * the same context (even though a different
 669				 * request) to the second port.
 670				 */
 671				if (ctx_single_port_submission(last->ctx) ||
 672				    ctx_single_port_submission(rq->ctx)) {
 673					__list_del_many(&p->requests,
 674							&rq->priotree.link);
 675					goto done;
 676				}
 677
 678				GEM_BUG_ON(last->ctx == rq->ctx);
 679
 680				if (submit)
 681					port_assign(port, last);
 682				port++;
 683
 684				GEM_BUG_ON(port_isset(port));
 685			}
 686
 687			INIT_LIST_HEAD(&rq->priotree.link);
 688			__i915_request_submit(rq);
 689			trace_i915_request_in(rq, port_index(port, execlists));
 690			last = rq;
 691			submit = true;
 692		}
 693
 694		rb = rb_next(rb);
 695		rb_erase(&p->node, &execlists->queue);
 696		INIT_LIST_HEAD(&p->requests);
 697		if (p->priority != I915_PRIORITY_NORMAL)
 698			kmem_cache_free(engine->i915->priorities, p);
 699	}
 700done:
 701	execlists->queue_priority = rb ? to_priolist(rb)->priority : INT_MIN;
 702	execlists->first = rb;
 703	if (submit)
 704		port_assign(port, last);
 705
 706	/* We must always keep the beast fed if we have work piled up */
 707	GEM_BUG_ON(execlists->first && !port_isset(execlists->port));
 708
 709unlock:
 710	spin_unlock_irq(&engine->timeline->lock);
 711
 712	if (submit) {
 713		execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
 714		execlists_submit_ports(engine);
 715	}
 716
 717	GEM_BUG_ON(port_isset(execlists->port) &&
 718		   !execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
 719}
 720
 721void
 722execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
 723{
 724	struct execlist_port *port = execlists->port;
 725	unsigned int num_ports = execlists_num_ports(execlists);
 726
 727	while (num_ports-- && port_isset(port)) {
 728		struct i915_request *rq = port_request(port);
 729
 730		GEM_BUG_ON(!execlists->active);
 731		intel_engine_context_out(rq->engine);
 732
 733		execlists_context_status_change(rq,
 734						i915_request_completed(rq) ?
 735						INTEL_CONTEXT_SCHEDULE_OUT :
 736						INTEL_CONTEXT_SCHEDULE_PREEMPTED);
 737
 738		i915_request_put(rq);
 739
 740		memset(port, 0, sizeof(*port));
 741		port++;
 742	}
 743
 744	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
 745}
 746
 747static void execlists_cancel_requests(struct intel_engine_cs *engine)
 748{
 749	struct intel_engine_execlists * const execlists = &engine->execlists;
 750	struct i915_request *rq, *rn;
 751	struct rb_node *rb;
 752	unsigned long flags;
 753
 754	GEM_TRACE("%s\n", engine->name);
 755
 756	/*
 757	 * Before we call engine->cancel_requests(), we should have exclusive
 758	 * access to the submission state. This is arranged for us by the
 759	 * caller disabling the interrupt generation, the tasklet and other
 760	 * threads that may then access the same state, giving us a free hand
 761	 * to reset state. However, we still need to let lockdep be aware that
 762	 * we know this state may be accessed in hardirq context, so we
 763	 * disable the irq around this manipulation and we want to keep
 764	 * the spinlock focused on its duties and not accidentally conflate
 765	 * coverage to the submission's irq state. (Similarly, although we
 766	 * shouldn't need to disable irq around the manipulation of the
 767	 * submission's irq state, we also wish to remind ourselves that
 768	 * it is irq state.)
 769	 */
 770	local_irq_save(flags);
 771
 772	/* Cancel the requests on the HW and clear the ELSP tracker. */
 773	execlists_cancel_port_requests(execlists);
 774
 775	spin_lock(&engine->timeline->lock);
 776
 777	/* Mark all executing requests as skipped. */
 778	list_for_each_entry(rq, &engine->timeline->requests, link) {
 779		GEM_BUG_ON(!rq->global_seqno);
 780		if (!i915_request_completed(rq))
 781			dma_fence_set_error(&rq->fence, -EIO);
 782	}
 783
 784	/* Flush the queued requests to the timeline list (for retiring). */
 785	rb = execlists->first;
 786	while (rb) {
 787		struct i915_priolist *p = to_priolist(rb);
 788
 789		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
 790			INIT_LIST_HEAD(&rq->priotree.link);
 791
 792			dma_fence_set_error(&rq->fence, -EIO);
 793			__i915_request_submit(rq);
 794		}
 795
 796		rb = rb_next(rb);
 797		rb_erase(&p->node, &execlists->queue);
 798		INIT_LIST_HEAD(&p->requests);
 799		if (p->priority != I915_PRIORITY_NORMAL)
 800			kmem_cache_free(engine->i915->priorities, p);
 801	}
 802
 803	/* Remaining _unready_ requests will be nop'ed when submitted */
 804
 805	execlists->queue_priority = INT_MIN;
 806	execlists->queue = RB_ROOT;
 807	execlists->first = NULL;
 808	GEM_BUG_ON(port_isset(execlists->port));
 809
 810	spin_unlock(&engine->timeline->lock);
 811
 812	/*
 813	 * The port is checked prior to scheduling a tasklet, but
 814	 * just in case we have suspended the tasklet to do the
 815	 * wedging make sure that when it wakes, it decides there
 816	 * is no work to do by clearing the irq_posted bit.
 817	 */
 818	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
 819
 820	/* Mark all CS interrupts as complete */
 821	execlists->active = 0;
 822
 823	local_irq_restore(flags);
 824}
 825
 826/*
 827 * Check the unread Context Status Buffers and manage the submission of new
 828 * contexts to the ELSP accordingly.
 829 */
 830static void execlists_submission_tasklet(unsigned long data)
 831{
 832	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
 833	struct intel_engine_execlists * const execlists = &engine->execlists;
 834	struct execlist_port * const port = execlists->port;
 835	struct drm_i915_private *dev_priv = engine->i915;
 836	bool fw = false;
 837
 838	/*
 839	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
 840	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
 841	 * not be relinquished until the device is idle (see
 842	 * i915_gem_idle_work_handler()). As a precaution, we make sure
 843	 * that all ELSP are drained i.e. we have processed the CSB,
 844	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
 845	 */
 846	GEM_BUG_ON(!dev_priv->gt.awake);
 847
 848	/*
 849	 * Prefer doing test_and_clear_bit() as a two stage operation to avoid
 850	 * imposing the cost of a locked atomic transaction when submitting a
 851	 * new request (outside of the context-switch interrupt).
 852	 */
 853	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
 854		/* The HWSP contains a (cacheable) mirror of the CSB */
 855		const u32 *buf =
 856			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
 857		unsigned int head, tail;
 858
 859		if (unlikely(execlists->csb_use_mmio)) {
 860			buf = (u32 * __force)
 861				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
 862			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
 863		}
 864
 865		/* Clear before reading to catch new interrupts */
 866		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
 867		smp_mb__after_atomic();
 868
 869		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
 870			if (!fw) {
 871				intel_uncore_forcewake_get(dev_priv,
 872							   execlists->fw_domains);
 873				fw = true;
 874			}
 875
 876			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
 877			tail = GEN8_CSB_WRITE_PTR(head);
 878			head = GEN8_CSB_READ_PTR(head);
 879			execlists->csb_head = head;
 880		} else {
 881			const int write_idx =
 882				intel_hws_csb_write_index(dev_priv) -
 883				I915_HWS_CSB_BUF0_INDEX;
 884
 885			head = execlists->csb_head;
 886			tail = READ_ONCE(buf[write_idx]);
 887			rmb(); /* Hopefully paired with a wmb() in HW */
 888		}
 889		GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
 890			  engine->name,
 891			  head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
 892			  tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
 893
 894		while (head != tail) {
 895			struct i915_request *rq;
 896			unsigned int status;
 897			unsigned int count;
 898
 899			if (++head == GEN8_CSB_ENTRIES)
 900				head = 0;
 901
 902			/* We are flying near dragons again.
 903			 *
 904			 * We hold a reference to the request in execlist_port[]
 905			 * but no more than that. We are operating in softirq
 906			 * context and so cannot hold any mutex or sleep. That
 907			 * prevents us stopping the requests we are processing
 908			 * in port[] from being retired simultaneously (the
 909			 * breadcrumb will be complete before we see the
 910			 * context-switch). As we only hold the reference to the
 911			 * request, any pointer chasing underneath the request
 912			 * is subject to a potential use-after-free. Thus we
 913			 * store all of the bookkeeping within port[] as
 914			 * required, and avoid using unguarded pointers beneath
 915			 * request itself. The same applies to the atomic
 916			 * status notifier.
 917			 */
 918
 919			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
 920			GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
 921				  engine->name, head,
 922				  status, buf[2*head + 1],
 923				  execlists->active);
 924
 925			if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
 926				      GEN8_CTX_STATUS_PREEMPTED))
 927				execlists_set_active(execlists,
 928						     EXECLISTS_ACTIVE_HWACK);
 929			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
 930				execlists_clear_active(execlists,
 931						       EXECLISTS_ACTIVE_HWACK);
 932
 933			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
 934				continue;
 935
 936			/* We should never get a COMPLETED | IDLE_ACTIVE! */
 937			GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
 938
 939			if (status & GEN8_CTX_STATUS_COMPLETE &&
 940			    buf[2*head + 1] == execlists->preempt_complete_status) {
 941				GEM_TRACE("%s preempt-idle\n", engine->name);
 942
 943				execlists_cancel_port_requests(execlists);
 944				execlists_unwind_incomplete_requests(execlists);
 945
 946				GEM_BUG_ON(!execlists_is_active(execlists,
 947								EXECLISTS_ACTIVE_PREEMPT));
 948				execlists_clear_active(execlists,
 949						       EXECLISTS_ACTIVE_PREEMPT);
 950				continue;
 951			}
 952
 953			if (status & GEN8_CTX_STATUS_PREEMPTED &&
 954			    execlists_is_active(execlists,
 955						EXECLISTS_ACTIVE_PREEMPT))
 956				continue;
 957
 958			GEM_BUG_ON(!execlists_is_active(execlists,
 959							EXECLISTS_ACTIVE_USER));
 960
 961			rq = port_unpack(port, &count);
 962			GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x, prio=%d\n",
 963				  engine->name,
 964				  port->context_id, count,
 965				  rq ? rq->global_seqno : 0,
 966				  rq ? rq_prio(rq) : 0);
 967
 968			/* Check the context/desc id for this event matches */
 969			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
 970
 971			GEM_BUG_ON(count == 0);
 972			if (--count == 0) {
 973				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
 974				GEM_BUG_ON(port_isset(&port[1]) &&
 975					   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
 976				GEM_BUG_ON(!i915_request_completed(rq));
 977				execlists_context_schedule_out(rq);
 978				trace_i915_request_out(rq);
 979				i915_request_put(rq);
 980
 981				GEM_TRACE("%s completed ctx=%d\n",
 982					  engine->name, port->context_id);
 983
 984				execlists_port_complete(execlists, port);
 985			} else {
 986				port_set(port, port_pack(rq, count));
 987			}
 988
 989			/* After the final element, the hw should be idle */
 990			GEM_BUG_ON(port_count(port) == 0 &&
 991				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
 992			if (port_count(port) == 0)
 993				execlists_clear_active(execlists,
 994						       EXECLISTS_ACTIVE_USER);
 995		}
 996
 997		if (head != execlists->csb_head) {
 998			execlists->csb_head = head;
 999			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
1000			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
1001		}
1002	}
1003
1004	if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
1005		execlists_dequeue(engine);
1006
1007	if (fw)
1008		intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
1009
1010	/* If the engine is now idle, so should be the flag; and vice versa. */
1011	GEM_BUG_ON(execlists_is_active(&engine->execlists,
1012				       EXECLISTS_ACTIVE_USER) ==
1013		   !port_isset(engine->execlists.port));
1014}
1015
1016static void queue_request(struct intel_engine_cs *engine,
1017			  struct i915_priotree *pt,
1018			  int prio)
1019{
1020	list_add_tail(&pt->link, &lookup_priolist(engine, pt, prio)->requests);
1021}
1022
1023static void submit_queue(struct intel_engine_cs *engine, int prio)
1024{
1025	if (prio > engine->execlists.queue_priority) {
1026		engine->execlists.queue_priority = prio;
1027		tasklet_hi_schedule(&engine->execlists.tasklet);
1028	}
1029}
1030
1031static void execlists_submit_request(struct i915_request *request)
1032{
1033	struct intel_engine_cs *engine = request->engine;
1034	unsigned long flags;
1035
1036	/* Will be called from irq-context when using foreign fences. */
1037	spin_lock_irqsave(&engine->timeline->lock, flags);
1038
1039	queue_request(engine, &request->priotree, rq_prio(request));
1040	submit_queue(engine, rq_prio(request));
1041
1042	GEM_BUG_ON(!engine->execlists.first);
1043	GEM_BUG_ON(list_empty(&request->priotree.link));
1044
1045	spin_unlock_irqrestore(&engine->timeline->lock, flags);
1046}
1047
1048static struct i915_request *pt_to_request(struct i915_priotree *pt)
1049{
1050	return container_of(pt, struct i915_request, priotree);
1051}
1052
1053static struct intel_engine_cs *
1054pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
1055{
1056	struct intel_engine_cs *engine = pt_to_request(pt)->engine;
1057
1058	GEM_BUG_ON(!locked);
1059
1060	if (engine != locked) {
1061		spin_unlock(&locked->timeline->lock);
1062		spin_lock(&engine->timeline->lock);
1063	}
1064
1065	return engine;
1066}
1067
1068static void execlists_schedule(struct i915_request *request, int prio)
1069{
1070	struct intel_engine_cs *engine;
1071	struct i915_dependency *dep, *p;
1072	struct i915_dependency stack;
1073	LIST_HEAD(dfs);
1074
1075	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
1076
1077	if (i915_request_completed(request))
1078		return;
1079
1080	if (prio <= READ_ONCE(request->priotree.priority))
1081		return;
1082
1083	/* Need BKL in order to use the temporary link inside i915_dependency */
1084	lockdep_assert_held(&request->i915->drm.struct_mutex);
1085
1086	stack.signaler = &request->priotree;
1087	list_add(&stack.dfs_link, &dfs);
1088
1089	/*
1090	 * Recursively bump all dependent priorities to match the new request.
1091	 *
1092	 * A naive approach would be to use recursion:
1093	 * static void update_priorities(struct i915_priotree *pt, prio) {
1094	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
1095	 *		update_priorities(dep->signal, prio)
1096	 *	queue_request(pt);
1097	 * }
1098	 * but that may have unlimited recursion depth and so runs a very
1099	 * real risk of overunning the kernel stack. Instead, we build
1100	 * a flat list of all dependencies starting with the current request.
1101	 * As we walk the list of dependencies, we add all of its dependencies
1102	 * to the end of the list (this may include an already visited
1103	 * request) and continue to walk onwards onto the new dependencies. The
1104	 * end result is a topological list of requests in reverse order, the
1105	 * last element in the list is the request we must execute first.
1106	 */
1107	list_for_each_entry(dep, &dfs, dfs_link) {
1108		struct i915_priotree *pt = dep->signaler;
1109
1110		/*
1111		 * Within an engine, there can be no cycle, but we may
1112		 * refer to the same dependency chain multiple times
1113		 * (redundant dependencies are not eliminated) and across
1114		 * engines.
1115		 */
1116		list_for_each_entry(p, &pt->signalers_list, signal_link) {
1117			GEM_BUG_ON(p == dep); /* no cycles! */
1118
1119			if (i915_priotree_signaled(p->signaler))
1120				continue;
1121
1122			GEM_BUG_ON(p->signaler->priority < pt->priority);
1123			if (prio > READ_ONCE(p->signaler->priority))
1124				list_move_tail(&p->dfs_link, &dfs);
1125		}
1126	}
1127
1128	/*
1129	 * If we didn't need to bump any existing priorities, and we haven't
1130	 * yet submitted this request (i.e. there is no potential race with
1131	 * execlists_submit_request()), we can set our own priority and skip
1132	 * acquiring the engine locks.
1133	 */
1134	if (request->priotree.priority == I915_PRIORITY_INVALID) {
1135		GEM_BUG_ON(!list_empty(&request->priotree.link));
1136		request->priotree.priority = prio;
1137		if (stack.dfs_link.next == stack.dfs_link.prev)
1138			return;
1139		__list_del_entry(&stack.dfs_link);
1140	}
1141
1142	engine = request->engine;
1143	spin_lock_irq(&engine->timeline->lock);
1144
1145	/* Fifo and depth-first replacement ensure our deps execute before us */
1146	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
1147		struct i915_priotree *pt = dep->signaler;
1148
1149		INIT_LIST_HEAD(&dep->dfs_link);
1150
1151		engine = pt_lock_engine(pt, engine);
1152
1153		if (prio <= pt->priority)
1154			continue;
1155
1156		pt->priority = prio;
1157		if (!list_empty(&pt->link)) {
1158			__list_del_entry(&pt->link);
1159			queue_request(engine, pt, prio);
1160		}
1161		submit_queue(engine, prio);
1162	}
1163
1164	spin_unlock_irq(&engine->timeline->lock);
1165}
1166
1167static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
1168{
1169	unsigned int flags;
1170	int err;
1171
1172	/*
1173	 * Clear this page out of any CPU caches for coherent swap-in/out.
1174	 * We only want to do this on the first bind so that we do not stall
1175	 * on an active context (which by nature is already on the GPU).
1176	 */
1177	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1178		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1179		if (err)
1180			return err;
1181	}
1182
1183	flags = PIN_GLOBAL | PIN_HIGH;
1184	if (ctx->ggtt_offset_bias)
1185		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
1186
1187	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
1188}
1189
1190static struct intel_ring *
1191execlists_context_pin(struct intel_engine_cs *engine,
1192		      struct i915_gem_context *ctx)
1193{
1194	struct intel_context *ce = &ctx->engine[engine->id];
1195	void *vaddr;
1196	int ret;
1197
1198	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1199
1200	if (likely(ce->pin_count++))
1201		goto out;
1202	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1203
1204	ret = execlists_context_deferred_alloc(ctx, engine);
1205	if (ret)
1206		goto err;
1207	GEM_BUG_ON(!ce->state);
1208
1209	ret = __context_pin(ctx, ce->state);
1210	if (ret)
1211		goto err;
1212
1213	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1214	if (IS_ERR(vaddr)) {
1215		ret = PTR_ERR(vaddr);
1216		goto unpin_vma;
1217	}
1218
1219	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1220	if (ret)
1221		goto unpin_map;
1222
1223	intel_lr_context_descriptor_update(ctx, engine);
1224
1225	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1226	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1227		i915_ggtt_offset(ce->ring->vma);
1228
1229	ce->state->obj->pin_global++;
1230	i915_gem_context_get(ctx);
1231out:
1232	return ce->ring;
1233
1234unpin_map:
1235	i915_gem_object_unpin_map(ce->state->obj);
1236unpin_vma:
1237	__i915_vma_unpin(ce->state);
1238err:
1239	ce->pin_count = 0;
1240	return ERR_PTR(ret);
1241}
1242
1243static void execlists_context_unpin(struct intel_engine_cs *engine,
1244				    struct i915_gem_context *ctx)
1245{
1246	struct intel_context *ce = &ctx->engine[engine->id];
1247
1248	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1249	GEM_BUG_ON(ce->pin_count == 0);
1250
1251	if (--ce->pin_count)
1252		return;
1253
1254	intel_ring_unpin(ce->ring);
1255
1256	ce->state->obj->pin_global--;
1257	i915_gem_object_unpin_map(ce->state->obj);
1258	i915_vma_unpin(ce->state);
1259
1260	i915_gem_context_put(ctx);
1261}
1262
1263static int execlists_request_alloc(struct i915_request *request)
1264{
1265	struct intel_engine_cs *engine = request->engine;
1266	struct intel_context *ce = &request->ctx->engine[engine->id];
1267	int ret;
1268
1269	GEM_BUG_ON(!ce->pin_count);
1270
1271	/* Flush enough space to reduce the likelihood of waiting after
1272	 * we start building the request - in which case we will just
1273	 * have to repeat work.
1274	 */
1275	request->reserved_space += EXECLISTS_REQUEST_SIZE;
1276
1277	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
1278	if (ret)
1279		return ret;
1280
1281	/* Note that after this point, we have committed to using
1282	 * this request as it is being used to both track the
1283	 * state of engine initialisation and liveness of the
1284	 * golden renderstate above. Think twice before you try
1285	 * to cancel/unwind this request now.
1286	 */
1287
1288	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1289	return 0;
1290}
1291
1292/*
1293 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1294 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1295 * but there is a slight complication as this is applied in WA batch where the
1296 * values are only initialized once so we cannot take register value at the
1297 * beginning and reuse it further; hence we save its value to memory, upload a
1298 * constant value with bit21 set and then we restore it back with the saved value.
1299 * To simplify the WA, a constant value is formed by using the default value
1300 * of this register. This shouldn't be a problem because we are only modifying
1301 * it for a short period and this batch in non-premptible. We can ofcourse
1302 * use additional instructions that read the actual value of the register
1303 * at that time and set our bit of interest but it makes the WA complicated.
1304 *
1305 * This WA is also required for Gen9 so extracting as a function avoids
1306 * code duplication.
1307 */
1308static u32 *
1309gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1310{
1311	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1312	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1313	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
1314	*batch++ = 0;
1315
1316	*batch++ = MI_LOAD_REGISTER_IMM(1);
1317	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1318	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1319
1320	batch = gen8_emit_pipe_control(batch,
1321				       PIPE_CONTROL_CS_STALL |
1322				       PIPE_CONTROL_DC_FLUSH_ENABLE,
1323				       0);
1324
1325	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1326	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1327	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
1328	*batch++ = 0;
1329
1330	return batch;
1331}
1332
1333/*
1334 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1335 * initialized at the beginning and shared across all contexts but this field
1336 * helps us to have multiple batches at different offsets and select them based
1337 * on a criteria. At the moment this batch always start at the beginning of the page
1338 * and at this point we don't have multiple wa_ctx batch buffers.
1339 *
1340 * The number of WA applied are not known at the beginning; we use this field
1341 * to return the no of DWORDS written.
1342 *
1343 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1344 * so it adds NOOPs as padding to make it cacheline aligned.
1345 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1346 * makes a complete batch buffer.
1347 */
1348static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1349{
1350	/* WaDisableCtxRestoreArbitration:bdw,chv */
1351	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1352
1353	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1354	if (IS_BROADWELL(engine->i915))
1355		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1356
1357	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1358	/* Actual scratch location is at 128 bytes offset */
1359	batch = gen8_emit_pipe_control(batch,
1360				       PIPE_CONTROL_FLUSH_L3 |
1361				       PIPE_CONTROL_GLOBAL_GTT_IVB |
1362				       PIPE_CONTROL_CS_STALL |
1363				       PIPE_CONTROL_QW_WRITE,
1364				       i915_ggtt_offset(engine->scratch) +
1365				       2 * CACHELINE_BYTES);
1366
1367	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1368
1369	/* Pad to end of cacheline */
1370	while ((unsigned long)batch % CACHELINE_BYTES)
1371		*batch++ = MI_NOOP;
1372
1373	/*
1374	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1375	 * execution depends on the length specified in terms of cache lines
1376	 * in the register CTX_RCS_INDIRECT_CTX
1377	 */
1378
1379	return batch;
1380}
1381
1382static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1383{
1384	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1385
1386	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1387	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1388
1389	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1390	*batch++ = MI_LOAD_REGISTER_IMM(1);
1391	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1392	*batch++ = _MASKED_BIT_DISABLE(
1393			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1394	*batch++ = MI_NOOP;
1395
1396	/* WaClearSlmSpaceAtContextSwitch:kbl */
1397	/* Actual scratch location is at 128 bytes offset */
1398	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1399		batch = gen8_emit_pipe_control(batch,
1400					       PIPE_CONTROL_FLUSH_L3 |
1401					       PIPE_CONTROL_GLOBAL_GTT_IVB |
1402					       PIPE_CONTROL_CS_STALL |
1403					       PIPE_CONTROL_QW_WRITE,
1404					       i915_ggtt_offset(engine->scratch)
1405					       + 2 * CACHELINE_BYTES);
1406	}
1407
1408	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1409	if (HAS_POOLED_EU(engine->i915)) {
1410		/*
1411		 * EU pool configuration is setup along with golden context
1412		 * during context initialization. This value depends on
1413		 * device type (2x6 or 3x6) and needs to be updated based
1414		 * on which subslice is disabled especially for 2x6
1415		 * devices, however it is safe to load default
1416		 * configuration of 3x6 device instead of masking off
1417		 * corresponding bits because HW ignores bits of a disabled
1418		 * subslice and drops down to appropriate config. Please
1419		 * see render_state_setup() in i915_gem_render_state.c for
1420		 * possible configurations, to avoid duplication they are
1421		 * not shown here again.
1422		 */
1423		*batch++ = GEN9_MEDIA_POOL_STATE;
1424		*batch++ = GEN9_MEDIA_POOL_ENABLE;
1425		*batch++ = 0x00777000;
1426		*batch++ = 0;
1427		*batch++ = 0;
1428		*batch++ = 0;
1429	}
1430
1431	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1432
1433	/* Pad to end of cacheline */
1434	while ((unsigned long)batch % CACHELINE_BYTES)
1435		*batch++ = MI_NOOP;
1436
1437	return batch;
1438}
1439
1440static u32 *
1441gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1442{
1443	int i;
1444
1445	/*
1446	 * WaPipeControlBefore3DStateSamplePattern: cnl
1447	 *
1448	 * Ensure the engine is idle prior to programming a
1449	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
1450	 */
1451	batch = gen8_emit_pipe_control(batch,
1452				       PIPE_CONTROL_CS_STALL,
1453				       0);
1454	/*
1455	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1456	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1457	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1458	 * confusing. Since gen8_emit_pipe_control() already advances the
1459	 * batch by 6 dwords, we advance the other 10 here, completing a
1460	 * cacheline. It's not clear if the workaround requires this padding
1461	 * before other commands, or if it's just the regular padding we would
1462	 * already have for the workaround bb, so leave it here for now.
1463	 */
1464	for (i = 0; i < 10; i++)
1465		*batch++ = MI_NOOP;
1466
1467	/* Pad to end of cacheline */
1468	while ((unsigned long)batch % CACHELINE_BYTES)
1469		*batch++ = MI_NOOP;
1470
1471	return batch;
1472}
1473
1474#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1475
1476static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1477{
1478	struct drm_i915_gem_object *obj;
1479	struct i915_vma *vma;
1480	int err;
1481
1482	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1483	if (IS_ERR(obj))
1484		return PTR_ERR(obj);
1485
1486	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1487	if (IS_ERR(vma)) {
1488		err = PTR_ERR(vma);
1489		goto err;
1490	}
1491
1492	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1493	if (err)
1494		goto err;
1495
1496	engine->wa_ctx.vma = vma;
1497	return 0;
1498
1499err:
1500	i915_gem_object_put(obj);
1501	return err;
1502}
1503
1504static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1505{
1506	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1507}
1508
1509typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1510
1511static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1512{
1513	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1514	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1515					    &wa_ctx->per_ctx };
1516	wa_bb_func_t wa_bb_fn[2];
1517	struct page *page;
1518	void *batch, *batch_ptr;
1519	unsigned int i;
1520	int ret;
1521
1522	if (GEM_WARN_ON(engine->id != RCS))
1523		return -EINVAL;
1524
1525	switch (INTEL_GEN(engine->i915)) {
1526	case 10:
1527		wa_bb_fn[0] = gen10_init_indirectctx_bb;
1528		wa_bb_fn[1] = NULL;
1529		break;
1530	case 9:
1531		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1532		wa_bb_fn[1] = NULL;
1533		break;
1534	case 8:
1535		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1536		wa_bb_fn[1] = NULL;
1537		break;
1538	default:
1539		MISSING_CASE(INTEL_GEN(engine->i915));
1540		return 0;
1541	}
1542
1543	ret = lrc_setup_wa_ctx(engine);
1544	if (ret) {
1545		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1546		return ret;
1547	}
1548
1549	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1550	batch = batch_ptr = kmap_atomic(page);
1551
1552	/*
1553	 * Emit the two workaround batch buffers, recording the offset from the
1554	 * start of the workaround batch buffer object for each and their
1555	 * respective sizes.
1556	 */
1557	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1558		wa_bb[i]->offset = batch_ptr - batch;
1559		if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1560					    CACHELINE_BYTES))) {
1561			ret = -EINVAL;
1562			break;
1563		}
1564		if (wa_bb_fn[i])
1565			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1566		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1567	}
1568
1569	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1570
1571	kunmap_atomic(batch);
1572	if (ret)
1573		lrc_destroy_wa_ctx(engine);
1574
1575	return ret;
1576}
1577
1578static u8 gtiir[] = {
1579	[RCS] = 0,
1580	[BCS] = 0,
1581	[VCS] = 1,
1582	[VCS2] = 1,
1583	[VECS] = 3,
1584};
1585
1586static void enable_execlists(struct intel_engine_cs *engine)
1587{
1588	struct drm_i915_private *dev_priv = engine->i915;
1589
1590	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1591
1592	/*
1593	 * Make sure we're not enabling the new 12-deep CSB
1594	 * FIFO as that requires a slightly updated handling
1595	 * in the ctx switch irq. Since we're currently only
1596	 * using only 2 elements of the enhanced execlists the
1597	 * deeper FIFO it's not needed and it's not worth adding
1598	 * more statements to the irq handler to support it.
1599	 */
1600	if (INTEL_GEN(dev_priv) >= 11)
1601		I915_WRITE(RING_MODE_GEN7(engine),
1602			   _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1603	else
1604		I915_WRITE(RING_MODE_GEN7(engine),
1605			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1606
1607	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1608		   engine->status_page.ggtt_offset);
1609	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1610
1611	/* Following the reset, we need to reload the CSB read/write pointers */
1612	engine->execlists.csb_head = -1;
1613}
1614
1615static int gen8_init_common_ring(struct intel_engine_cs *engine)
1616{
1617	struct intel_engine_execlists * const execlists = &engine->execlists;
1618	int ret;
1619
1620	ret = intel_mocs_init_engine(engine);
1621	if (ret)
1622		return ret;
1623
1624	intel_engine_reset_breadcrumbs(engine);
1625	intel_engine_init_hangcheck(engine);
1626
1627	enable_execlists(engine);
1628
1629	/* After a GPU reset, we may have requests to replay */
1630	if (execlists->first)
1631		tasklet_schedule(&execlists->tasklet);
1632
1633	return 0;
1634}
1635
1636static int gen8_init_render_ring(struct intel_engine_cs *engine)
1637{
1638	struct drm_i915_private *dev_priv = engine->i915;
1639	int ret;
1640
1641	ret = gen8_init_common_ring(engine);
1642	if (ret)
1643		return ret;
1644
1645	/* We need to disable the AsyncFlip performance optimisations in order
1646	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1647	 * programmed to '1' on all products.
1648	 *
1649	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1650	 */
1651	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1652
1653	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1654
1655	return init_workarounds_ring(engine);
1656}
1657
1658static int gen9_init_render_ring(struct intel_engine_cs *engine)
1659{
1660	int ret;
1661
1662	ret = gen8_init_common_ring(engine);
1663	if (ret)
1664		return ret;
1665
1666	return init_workarounds_ring(engine);
1667}
1668
1669static void reset_irq(struct intel_engine_cs *engine)
1670{
1671	struct drm_i915_private *dev_priv = engine->i915;
1672	int i;
1673
1674	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));
1675
1676	/*
1677	 * Clear any pending interrupt state.
1678	 *
1679	 * We do it twice out of paranoia that some of the IIR are double
1680	 * buffered, and if we only reset it once there may still be
1681	 * an interrupt pending.
1682	 */
1683	for (i = 0; i < 2; i++) {
1684		I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
1685			   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
1686		POSTING_READ(GEN8_GT_IIR(gtiir[engine->id]));
1687	}
1688	GEM_BUG_ON(I915_READ(GEN8_GT_IIR(gtiir[engine->id])) &
1689		   (GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift));
1690
1691	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1692}
1693
1694static void reset_common_ring(struct intel_engine_cs *engine,
1695			      struct i915_request *request)
1696{
1697	struct intel_engine_execlists * const execlists = &engine->execlists;
1698	struct intel_context *ce;
1699	unsigned long flags;
1700
1701	GEM_TRACE("%s seqno=%x\n",
1702		  engine->name, request ? request->global_seqno : 0);
1703
1704	/* See execlists_cancel_requests() for the irq/spinlock split. */
1705	local_irq_save(flags);
1706
1707	reset_irq(engine);
1708
1709	/*
1710	 * Catch up with any missed context-switch interrupts.
1711	 *
1712	 * Ideally we would just read the remaining CSB entries now that we
1713	 * know the gpu is idle. However, the CSB registers are sometimes^W
1714	 * often trashed across a GPU reset! Instead we have to rely on
1715	 * guessing the missed context-switch events by looking at what
1716	 * requests were completed.
1717	 */
1718	execlists_cancel_port_requests(execlists);
1719
1720	/* Push back any incomplete requests for replay after the reset. */
1721	spin_lock(&engine->timeline->lock);
1722	__unwind_incomplete_requests(engine);
1723	spin_unlock(&engine->timeline->lock);
1724
1725	/* Mark all CS interrupts as complete */
1726	execlists->active = 0;
1727
1728	local_irq_restore(flags);
1729
1730	/*
1731	 * If the request was innocent, we leave the request in the ELSP
1732	 * and will try to replay it on restarting. The context image may
1733	 * have been corrupted by the reset, in which case we may have
1734	 * to service a new GPU hang, but more likely we can continue on
1735	 * without impact.
1736	 *
1737	 * If the request was guilty, we presume the context is corrupt
1738	 * and have to at least restore the RING register in the context
1739	 * image back to the expected values to skip over the guilty request.
1740	 */
1741	if (!request || request->fence.error != -EIO)
1742		return;
1743
1744	/*
1745	 * We want a simple context + ring to execute the breadcrumb update.
1746	 * We cannot rely on the context being intact across the GPU hang,
1747	 * so clear it and rebuild just what we need for the breadcrumb.
1748	 * All pending requests for this context will be zapped, and any
1749	 * future request will be after userspace has had the opportunity
1750	 * to recreate its own state.
1751	 */
1752	ce = &request->ctx->engine[engine->id];
1753	execlists_init_reg_state(ce->lrc_reg_state,
1754				 request->ctx, engine, ce->ring);
1755
1756	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1757	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1758		i915_ggtt_offset(ce->ring->vma);
1759	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1760
1761	request->ring->head = request->postfix;
1762	intel_ring_update_space(request->ring);
1763
1764	/* Reset WaIdleLiteRestore:bdw,skl as well */
1765	unwind_wa_tail(request);
1766}
1767
1768static int intel_logical_ring_emit_pdps(struct i915_request *rq)
1769{
1770	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
1771	struct intel_engine_cs *engine = rq->engine;
1772	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1773	u32 *cs;
1774	int i;
1775
1776	cs = intel_ring_begin(rq, num_lri_cmds * 2 + 2);
1777	if (IS_ERR(cs))
1778		return PTR_ERR(cs);
1779
1780	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1781	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1782		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1783
1784		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1785		*cs++ = upper_32_bits(pd_daddr);
1786		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1787		*cs++ = lower_32_bits(pd_daddr);
1788	}
1789
1790	*cs++ = MI_NOOP;
1791	intel_ring_advance(rq, cs);
1792
1793	return 0;
1794}
1795
1796static int gen8_emit_bb_start(struct i915_request *rq,
1797			      u64 offset, u32 len,
1798			      const unsigned int flags)
1799{
1800	u32 *cs;
1801	int ret;
1802
1803	/* Don't rely in hw updating PDPs, specially in lite-restore.
1804	 * Ideally, we should set Force PD Restore in ctx descriptor,
1805	 * but we can't. Force Restore would be a second option, but
1806	 * it is unsafe in case of lite-restore (because the ctx is
1807	 * not idle). PML4 is allocated during ppgtt init so this is
1808	 * not needed in 48-bit.*/
1809	if (rq->ctx->ppgtt &&
1810	    (intel_engine_flag(rq->engine) & rq->ctx->ppgtt->pd_dirty_rings) &&
1811	    !i915_vm_is_48bit(&rq->ctx->ppgtt->base) &&
1812	    !intel_vgpu_active(rq->i915)) {
1813		ret = intel_logical_ring_emit_pdps(rq);
1814		if (ret)
1815			return ret;
1816
1817		rq->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(rq->engine);
1818	}
1819
1820	cs = intel_ring_begin(rq, 4);
1821	if (IS_ERR(cs))
1822		return PTR_ERR(cs);
1823
1824	/*
1825	 * WaDisableCtxRestoreArbitration:bdw,chv
1826	 *
1827	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
1828	 * particular all the gen that do not need the w/a at all!), if we
1829	 * took care to make sure that on every switch into this context
1830	 * (both ordinary and for preemption) that arbitrartion was enabled
1831	 * we would be fine. However, there doesn't seem to be a downside to
1832	 * being paranoid and making sure it is set before each batch and
1833	 * every context-switch.
1834	 *
1835	 * Note that if we fail to enable arbitration before the request
1836	 * is complete, then we do not see the context-switch interrupt and
1837	 * the engine hangs (with RING_HEAD == RING_TAIL).
1838	 *
1839	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
1840	 */
1841	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1842
1843	/* FIXME(BDW): Address space and security selectors. */
1844	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
1845		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
1846		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1847	*cs++ = lower_32_bits(offset);
1848	*cs++ = upper_32_bits(offset);
1849	intel_ring_advance(rq, cs);
1850
1851	return 0;
1852}
1853
1854static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1855{
1856	struct drm_i915_private *dev_priv = engine->i915;
1857	I915_WRITE_IMR(engine,
1858		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
1859	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1860}
1861
1862static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1863{
1864	struct drm_i915_private *dev_priv = engine->i915;
1865	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1866}
1867
1868static int gen8_emit_flush(struct i915_request *request, u32 mode)
1869{
1870	u32 cmd, *cs;
1871
1872	cs = intel_ring_begin(request, 4);
1873	if (IS_ERR(cs))
1874		return PTR_ERR(cs);
1875
1876	cmd = MI_FLUSH_DW + 1;
1877
1878	/* We always require a command barrier so that subsequent
1879	 * commands, such as breadcrumb interrupts, are strictly ordered
1880	 * wrt the contents of the write cache being flushed to memory
1881	 * (and thus being coherent from the CPU).
1882	 */
1883	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1884
1885	if (mode & EMIT_INVALIDATE) {
1886		cmd |= MI_INVALIDATE_TLB;
1887		if (request->engine->id == VCS)
1888			cmd |= MI_INVALIDATE_BSD;
1889	}
1890
1891	*cs++ = cmd;
1892	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1893	*cs++ = 0; /* upper addr */
1894	*cs++ = 0; /* value */
1895	intel_ring_advance(request, cs);
1896
1897	return 0;
1898}
1899
1900static int gen8_emit_flush_render(struct i915_request *request,
1901				  u32 mode)
1902{
1903	struct intel_engine_cs *engine = request->engine;
1904	u32 scratch_addr =
1905		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1906	bool vf_flush_wa = false, dc_flush_wa = false;
1907	u32 *cs, flags = 0;
1908	int len;
1909
1910	flags |= PIPE_CONTROL_CS_STALL;
1911
1912	if (mode & EMIT_FLUSH) {
1913		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1914		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1915		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1916		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1917	}
1918
1919	if (mode & EMIT_INVALIDATE) {
1920		flags |= PIPE_CONTROL_TLB_INVALIDATE;
1921		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1922		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1923		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1924		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1925		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1926		flags |= PIPE_CONTROL_QW_WRITE;
1927		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1928
1929		/*
1930		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1931		 * pipe control.
1932		 */
1933		if (IS_GEN9(request->i915))
1934			vf_flush_wa = true;
1935
1936		/* WaForGAMHang:kbl */
1937		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1938			dc_flush_wa = true;
1939	}
1940
1941	len = 6;
1942
1943	if (vf_flush_wa)
1944		len += 6;
1945
1946	if (dc_flush_wa)
1947		len += 12;
1948
1949	cs = intel_ring_begin(request, len);
1950	if (IS_ERR(cs))
1951		return PTR_ERR(cs);
1952
1953	if (vf_flush_wa)
1954		cs = gen8_emit_pipe_control(cs, 0, 0);
1955
1956	if (dc_flush_wa)
1957		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
1958					    0);
1959
1960	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
1961
1962	if (dc_flush_wa)
1963		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
1964
1965	intel_ring_advance(request, cs);
1966
1967	return 0;
1968}
1969
1970/*
1971 * Reserve space for 2 NOOPs at the end of each request to be
1972 * used as a workaround for not being allowed to do lite
1973 * restore with HEAD==TAIL (WaIdleLiteRestore).
1974 */
1975static void gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
1976{
1977	/* Ensure there's always at least one preemption point per-request. */
1978	*cs++ = MI_ARB_CHECK;
1979	*cs++ = MI_NOOP;
1980	request->wa_tail = intel_ring_offset(request, cs);
1981}
1982
1983static void gen8_emit_breadcrumb(struct i915_request *request, u32 *cs)
1984{
1985	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1986	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1987
1988	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
1989				  intel_hws_seqno_address(request->engine));
1990	*cs++ = MI_USER_INTERRUPT;
1991	*cs++ = MI_NOOP;
1992	request->tail = intel_ring_offset(request, cs);
1993	assert_ring_tail_valid(request->ring, request->tail);
1994
1995	gen8_emit_wa_tail(request, cs);
1996}
1997static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1998
1999static void gen8_emit_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2000{
2001	/* We're using qword write, seqno should be aligned to 8 bytes. */
2002	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
2003
2004	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
2005				      intel_hws_seqno_address(request->engine));
2006	*cs++ = MI_USER_INTERRUPT;
2007	*cs++ = MI_NOOP;
2008	request->tail = intel_ring_offset(request, cs);
2009	assert_ring_tail_valid(request->ring, request->tail);
2010
2011	gen8_emit_wa_tail(request, cs);
2012}
2013static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
2014
2015static int gen8_init_rcs_context(struct i915_request *rq)
2016{
2017	int ret;
2018
2019	ret = intel_ring_workarounds_emit(rq);
2020	if (ret)
2021		return ret;
2022
2023	ret = intel_rcs_context_init_mocs(rq);
2024	/*
2025	 * Failing to program the MOCS is non-fatal.The system will not
2026	 * run at peak performance. So generate an error and carry on.
2027	 */
2028	if (ret)
2029		DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2030
2031	return i915_gem_render_state_emit(rq);
2032}
2033
2034/**
2035 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2036 * @engine: Engine Command Streamer.
2037 */
2038void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2039{
2040	struct drm_i915_private *dev_priv;
2041
2042	/*
2043	 * Tasklet cannot be active at this point due intel_mark_active/idle
2044	 * so this is just for documentation.
2045	 */
2046	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
2047			     &engine->execlists.tasklet.state)))
2048		tasklet_kill(&engine->execlists.tasklet);
2049
2050	dev_priv = engine->i915;
2051
2052	if (engine->buffer) {
2053		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2054	}
2055
2056	if (engine->cleanup)
2057		engine->cleanup(engine);
2058
2059	intel_engine_cleanup_common(engine);
2060
2061	lrc_destroy_wa_ctx(engine);
2062
2063	engine->i915 = NULL;
2064	dev_priv->engine[engine->id] = NULL;
2065	kfree(engine);
2066}
2067
2068static void execlists_set_default_submission(struct intel_engine_cs *engine)
2069{
2070	engine->submit_request = execlists_submit_request;
2071	engine->cancel_requests = execlists_cancel_requests;
2072	engine->schedule = execlists_schedule;
2073	engine->execlists.tasklet.func = execlists_submission_tasklet;
2074
2075	engine->park = NULL;
2076	engine->unpark = NULL;
2077
2078	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2079
2080	engine->i915->caps.scheduler =
2081		I915_SCHEDULER_CAP_ENABLED |
2082		I915_SCHEDULER_CAP_PRIORITY;
2083	if (engine->i915->preempt_context)
2084		engine->i915->caps.scheduler |= I915_SCHEDULER_CAP_PREEMPTION;
2085}
2086
2087static void
2088logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2089{
2090	/* Default vfuncs which can be overriden by each engine. */
2091	engine->init_hw = gen8_init_common_ring;
2092	engine->reset_hw = reset_common_ring;
2093
2094	engine->context_pin = execlists_context_pin;
2095	engine->context_unpin = execlists_context_unpin;
2096
2097	engine->request_alloc = execlists_request_alloc;
2098
2099	engine->emit_flush = gen8_emit_flush;
2100	engine->emit_breadcrumb = gen8_emit_breadcrumb;
2101	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
2102
2103	engine->set_default_submission = execlists_set_default_submission;
2104
2105	if (INTEL_GEN(engine->i915) < 11) {
2106		engine->irq_enable = gen8_logical_ring_enable_irq;
2107		engine->irq_disable = gen8_logical_ring_disable_irq;
2108	} else {
2109		/*
2110		 * TODO: On Gen11 interrupt masks need to be clear
2111		 * to allow C6 entry. Keep interrupts enabled at
2112		 * and take the hit of generating extra interrupts
2113		 * until a more refined solution exists.
2114		 */
2115	}
2116	engine->emit_bb_start = gen8_emit_bb_start;
2117}
2118
2119static inline void
2120logical_ring_default_irqs(struct intel_engine_cs *engine)
2121{
2122	unsigned shift = engine->irq_shift;
2123	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2124	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2125}
2126
2127static void
2128logical_ring_setup(struct intel_engine_cs *engine)
2129{
2130	struct drm_i915_private *dev_priv = engine->i915;
2131	enum forcewake_domains fw_domains;
2132
2133	intel_engine_setup_common(engine);
2134
2135	/* Intentionally left blank. */
2136	engine->buffer = NULL;
2137
2138	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2139						    RING_ELSP(engine),
2140						    FW_REG_WRITE);
2141
2142	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2143						     RING_CONTEXT_STATUS_PTR(engine),
2144						     FW_REG_READ | FW_REG_WRITE);
2145
2146	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2147						     RING_CONTEXT_STATUS_BUF_BASE(engine),
2148						     FW_REG_READ);
2149
2150	engine->execlists.fw_domains = fw_domains;
2151
2152	tasklet_init(&engine->execlists.tasklet,
2153		     execlists_submission_tasklet, (unsigned long)engine);
2154
2155	logical_ring_default_vfuncs(engine);
2156	logical_ring_default_irqs(engine);
2157}
2158
2159static int logical_ring_init(struct intel_engine_cs *engine)
2160{
2161	int ret;
2162
2163	ret = intel_engine_init_common(engine);
2164	if (ret)
2165		goto error;
2166
2167	if (HAS_LOGICAL_RING_ELSQ(engine->i915)) {
2168		engine->execlists.submit_reg = engine->i915->regs +
2169			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(engine));
2170		engine->execlists.ctrl_reg = engine->i915->regs +
2171			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(engine));
2172	} else {
2173		engine->execlists.submit_reg = engine->i915->regs +
2174			i915_mmio_reg_offset(RING_ELSP(engine));
2175	}
2176
2177	engine->execlists.preempt_complete_status = ~0u;
2178	if (engine->i915->preempt_context)
2179		engine->execlists.preempt_complete_status =
2180			upper_32_bits(engine->i915->preempt_context->engine[engine->id].lrc_desc);
2181
2182	return 0;
2183
2184error:
2185	intel_logical_ring_cleanup(engine);
2186	return ret;
2187}
2188
2189int logical_render_ring_init(struct intel_engine_cs *engine)
2190{
2191	struct drm_i915_private *dev_priv = engine->i915;
2192	int ret;
2193
2194	logical_ring_setup(engine);
2195
2196	if (HAS_L3_DPF(dev_priv))
2197		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2198
2199	/* Override some for render ring. */
2200	if (INTEL_GEN(dev_priv) >= 9)
2201		engine->init_hw = gen9_init_render_ring;
2202	else
2203		engine->init_hw = gen8_init_render_ring;
2204	engine->init_context = gen8_init_rcs_context;
2205	engine->emit_flush = gen8_emit_flush_render;
2206	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
2207	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2208
2209	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2210	if (ret)
2211		return ret;
2212
2213	ret = intel_init_workaround_bb(engine);
2214	if (ret) {
2215		/*
2216		 * We continue even if we fail to initialize WA batch
2217		 * because we only expect rare glitches but nothing
2218		 * critical to prevent us from using GPU
2219		 */
2220		DRM_ERROR("WA batch buffer initialization failed: %d\n",
2221			  ret);
2222	}
2223
2224	return logical_ring_init(engine);
2225}
2226
2227int logical_xcs_ring_init(struct intel_engine_cs *engine)
2228{
2229	logical_ring_setup(engine);
2230
2231	return logical_ring_init(engine);
2232}
2233
2234static u32
2235make_rpcs(struct drm_i915_private *dev_priv)
2236{
2237	u32 rpcs = 0;
2238
2239	/*
2240	 * No explicit RPCS request is needed to ensure full
2241	 * slice/subslice/EU enablement prior to Gen9.
2242	*/
2243	if (INTEL_GEN(dev_priv) < 9)
2244		return 0;
2245
2246	/*
2247	 * Starting in Gen9, render power gating can leave
2248	 * slice/subslice/EU in a partially enabled state. We
2249	 * must make an explicit request through RPCS for full
2250	 * enablement.
2251	*/
2252	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2253		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2254		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2255			GEN8_RPCS_S_CNT_SHIFT;
2256		rpcs |= GEN8_RPCS_ENABLE;
2257	}
2258
2259	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2260		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2261		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask[0]) <<
2262			GEN8_RPCS_SS_CNT_SHIFT;
2263		rpcs |= GEN8_RPCS_ENABLE;
2264	}
2265
2266	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2267		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2268			GEN8_RPCS_EU_MIN_SHIFT;
2269		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2270			GEN8_RPCS_EU_MAX_SHIFT;
2271		rpcs |= GEN8_RPCS_ENABLE;
2272	}
2273
2274	return rpcs;
2275}
2276
2277static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2278{
2279	u32 indirect_ctx_offset;
2280
2281	switch (INTEL_GEN(engine->i915)) {
2282	default:
2283		MISSING_CASE(INTEL_GEN(engine->i915));
2284		/* fall through */
2285	case 11:
2286		indirect_ctx_offset =
2287			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2288		break;
2289	case 10:
2290		indirect_ctx_offset =
2291			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2292		break;
2293	case 9:
2294		indirect_ctx_offset =
2295			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2296		break;
2297	case 8:
2298		indirect_ctx_offset =
2299			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2300		break;
2301	}
2302
2303	return indirect_ctx_offset;
2304}
2305
2306static void execlists_init_reg_state(u32 *regs,
2307				     struct i915_gem_context *ctx,
2308				     struct intel_engine_cs *engine,
2309				     struct intel_ring *ring)
2310{
2311	struct drm_i915_private *dev_priv = engine->i915;
2312	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2313	u32 base = engine->mmio_base;
2314	bool rcs = engine->id == RCS;
2315
2316	/* A context is actually a big batch buffer with several
2317	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2318	 * values we are setting here are only for the first context restore:
2319	 * on a subsequent save, the GPU will recreate this batchbuffer with new
2320	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2321	 * we are not initializing here).
2322	 */
2323	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2324				 MI_LRI_FORCE_POSTED;
2325
2326	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2327		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2328				    CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2329		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2330				   (HAS_RESOURCE_STREAMER(dev_priv) ?
2331				   CTX_CTRL_RS_CTX_ENABLE : 0)));
2332	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2333	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2334	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2335	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2336		RING_CTL_SIZE(ring->size) | RING_VALID);
2337	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2338	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2339	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2340	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2341	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2342	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2343	if (rcs) {
2344		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2345
2346		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2347		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2348			RING_INDIRECT_CTX_OFFSET(base), 0);
2349		if (wa_ctx->indirect_ctx.size) {
2350			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2351
2352			regs[CTX_RCS_INDIRECT_CTX + 1] =
2353				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
2354				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2355
2356			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2357				intel_lr_indirect_ctx_offset(engine) << 6;
2358		}
2359
2360		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2361		if (wa_ctx->per_ctx.size) {
2362			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2363
2364			regs[CTX_BB_PER_CTX_PTR + 1] =
2365				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2366		}
2367	}
2368
2369	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2370
2371	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2372	/* PDP values well be assigned later if needed */
2373	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
2374	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
2375	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
2376	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
2377	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
2378	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
2379	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
2380	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2381
2382	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2383		/* 64b PPGTT (48bit canonical)
2384		 * PDP0_DESCRIPTOR contains the base address to PML4 and
2385		 * other PDP Descriptors are ignored.
2386		 */
2387		ASSIGN_CTX_PML4(ppgtt, regs);
2388	}
2389
2390	if (rcs) {
2391		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2392		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2393			make_rpcs(dev_priv));
2394
2395		i915_oa_init_reg_state(engine, ctx, regs);
2396	}
2397}
2398
2399static int
2400populate_lr_context(struct i915_gem_context *ctx,
2401		    struct drm_i915_gem_object *ctx_obj,
2402		    struct intel_engine_cs *engine,
2403		    struct intel_ring *ring)
2404{
2405	void *vaddr;
2406	u32 *regs;
2407	int ret;
2408
2409	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2410	if (ret) {
2411		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2412		return ret;
2413	}
2414
2415	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2416	if (IS_ERR(vaddr)) {
2417		ret = PTR_ERR(vaddr);
2418		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2419		return ret;
2420	}
2421	ctx_obj->mm.dirty = true;
2422
2423	if (engine->default_state) {
2424		/*
2425		 * We only want to copy over the template context state;
2426		 * skipping over the headers reserved for GuC communication,
2427		 * leaving those as zero.
2428		 */
2429		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2430		void *defaults;
2431
2432		defaults = i915_gem_object_pin_map(engine->default_state,
2433						   I915_MAP_WB);
2434		if (IS_ERR(defaults))
2435			return PTR_ERR(defaults);
2436
2437		memcpy(vaddr + start, defaults + start, engine->context_size);
2438		i915_gem_object_unpin_map(engine->default_state);
2439	}
2440
2441	/* The second page of the context object contains some fields which must
2442	 * be set up prior to the first execution. */
2443	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2444	execlists_init_reg_state(regs, ctx, engine, ring);
2445	if (!engine->default_state)
2446		regs[CTX_CONTEXT_CONTROL + 1] |=
2447			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2448	if (ctx == ctx->i915->preempt_context && INTEL_GEN(engine->i915) < 11)
2449		regs[CTX_CONTEXT_CONTROL + 1] |=
2450			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2451					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2452
2453	i915_gem_object_unpin_map(ctx_obj);
2454
2455	return 0;
2456}
2457
2458static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2459					    struct intel_engine_cs *engine)
2460{
2461	struct drm_i915_gem_object *ctx_obj;
2462	struct intel_context *ce = &ctx->engine[engine->id];
2463	struct i915_vma *vma;
2464	uint32_t context_size;
2465	struct intel_ring *ring;
2466	int ret;
2467
2468	if (ce->state)
2469		return 0;
2470
2471	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2472
2473	/*
2474	 * Before the actual start of the context image, we insert a few pages
2475	 * for our own use and for sharing with the GuC.
2476	 */
2477	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2478
2479	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2480	if (IS_ERR(ctx_obj)) {
2481		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2482		return PTR_ERR(ctx_obj);
2483	}
2484
2485	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2486	if (IS_ERR(vma)) {
2487		ret = PTR_ERR(vma);
2488		goto error_deref_obj;
2489	}
2490
2491	ring = intel_engine_create_ring(engine, ctx->ring_size);
2492	if (IS_ERR(ring)) {
2493		ret = PTR_ERR(ring);
2494		goto error_deref_obj;
2495	}
2496
2497	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2498	if (ret) {
2499		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2500		goto error_ring_free;
2501	}
2502
2503	ce->ring = ring;
2504	ce->state = vma;
2505
2506	return 0;
2507
2508error_ring_free:
2509	intel_ring_free(ring);
2510error_deref_obj:
2511	i915_gem_object_put(ctx_obj);
2512	return ret;
2513}
2514
2515void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2516{
2517	struct intel_engine_cs *engine;
2518	struct i915_gem_context *ctx;
2519	enum intel_engine_id id;
2520
2521	/* Because we emit WA_TAIL_DWORDS there may be a disparity
2522	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2523	 * that stored in context. As we only write new commands from
2524	 * ce->ring->tail onwards, everything before that is junk. If the GPU
2525	 * starts reading from its RING_HEAD from the context, it may try to
2526	 * execute that junk and die.
2527	 *
2528	 * So to avoid that we reset the context images upon resume. For
2529	 * simplicity, we just zero everything out.
2530	 */
2531	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2532		for_each_engine(engine, dev_priv, id) {
2533			struct intel_context *ce = &ctx->engine[engine->id];
2534			u32 *reg;
2535
2536			if (!ce->state)
2537				continue;
2538
2539			reg = i915_gem_object_pin_map(ce->state->obj,
2540						      I915_MAP_WB);
2541			if (WARN_ON(IS_ERR(reg)))
2542				continue;
2543
2544			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2545			reg[CTX_RING_HEAD+1] = 0;
2546			reg[CTX_RING_TAIL+1] = 0;
2547
2548			ce->state->obj->mm.dirty = true;
2549			i915_gem_object_unpin_map(ce->state->obj);
2550
2551			intel_ring_reset(ce->ring, 0);
2552		}
2553	}
2554}