Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright © 2014 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Ben Widawsky <ben@bwidawsk.net>
  25 *    Michel Thierry <michel.thierry@intel.com>
  26 *    Thomas Daniel <thomas.daniel@intel.com>
  27 *    Oscar Mateo <oscar.mateo@intel.com>
  28 *
  29 */
  30
  31/**
  32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
  33 *
  34 * Motivation:
  35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
  36 * These expanded contexts enable a number of new abilities, especially
  37 * "Execlists" (also implemented in this file).
  38 *
  39 * One of the main differences with the legacy HW contexts is that logical
  40 * ring contexts incorporate many more things to the context's state, like
  41 * PDPs or ringbuffer control registers:
  42 *
  43 * The reason why PDPs are included in the context is straightforward: as
  44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
  45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
  46 * instead, the GPU will do it for you on the context switch.
  47 *
  48 * But, what about the ringbuffer control registers (head, tail, etc..)?
  49 * shouldn't we just need a set of those per engine command streamer? This is
  50 * where the name "Logical Rings" starts to make sense: by virtualizing the
  51 * rings, the engine cs shifts to a new "ring buffer" with every context
  52 * switch. When you want to submit a workload to the GPU you: A) choose your
  53 * context, B) find its appropriate virtualized ring, C) write commands to it
  54 * and then, finally, D) tell the GPU to switch to that context.
  55 *
  56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
  57 * to a contexts is via a context execution list, ergo "Execlists".
  58 *
  59 * LRC implementation:
  60 * Regarding the creation of contexts, we have:
  61 *
  62 * - One global default context.
  63 * - One local default context for each opened fd.
  64 * - One local extra context for each context create ioctl call.
  65 *
  66 * Now that ringbuffers belong per-context (and not per-engine, like before)
  67 * and that contexts are uniquely tied to a given engine (and not reusable,
  68 * like before) we need:
  69 *
  70 * - One ringbuffer per-engine inside each context.
  71 * - One backing object per-engine inside each context.
  72 *
  73 * The global default context starts its life with these new objects fully
  74 * allocated and populated. The local default context for each opened fd is
  75 * more complex, because we don't know at creation time which engine is going
  76 * to use them. To handle this, we have implemented a deferred creation of LR
  77 * contexts:
  78 *
  79 * The local context starts its life as a hollow or blank holder, that only
  80 * gets populated for a given engine once we receive an execbuffer. If later
  81 * on we receive another execbuffer ioctl for the same context but a different
  82 * engine, we allocate/populate a new ringbuffer and context backing object and
  83 * so on.
  84 *
  85 * Finally, regarding local contexts created using the ioctl call: as they are
  86 * only allowed with the render ring, we can allocate & populate them right
  87 * away (no need to defer anything, at least for now).
  88 *
  89 * Execlists implementation:
  90 * Execlists are the new method by which, on gen8+ hardware, workloads are
  91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
  92 * This method works as follows:
  93 *
  94 * When a request is committed, its commands (the BB start and any leading or
  95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
  96 * for the appropriate context. The tail pointer in the hardware context is not
  97 * updated at this time, but instead, kept by the driver in the ringbuffer
  98 * structure. A structure representing this request is added to a request queue
  99 * for the appropriate engine: this structure contains a copy of the context's
 100 * tail after the request was written to the ring buffer and a pointer to the
 101 * context itself.
 102 *
 103 * If the engine's request queue was empty before the request was added, the
 104 * queue is processed immediately. Otherwise the queue will be processed during
 105 * a context switch interrupt. In any case, elements on the queue will get sent
 106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 107 * globally unique 20-bits submission ID.
 108 *
 109 * When execution of a request completes, the GPU updates the context status
 110 * buffer with a context complete event and generates a context switch interrupt.
 111 * During the interrupt handling, the driver examines the events in the buffer:
 112 * for each context complete event, if the announced ID matches that on the head
 113 * of the request queue, then that request is retired and removed from the queue.
 114 *
 115 * After processing, if any requests were retired and the queue is not empty
 116 * then a new execution list can be submitted. The two requests at the front of
 117 * the queue are next to be submitted but since a context may not occur twice in
 118 * an execution list, if subsequent requests have the same ID as the first then
 119 * the two requests must be combined. This is done simply by discarding requests
 120 * at the head of the queue until either only one requests is left (in which case
 121 * we use a NULL second context) or the first two requests have unique IDs.
 122 *
 123 * By always executing the first two requests in the queue the driver ensures
 124 * that the GPU is kept as busy as possible. In the case where a single context
 125 * completes but a second context is still executing, the request for this second
 126 * context will be at the head of the queue when we remove the first one. This
 127 * request will then be resubmitted along with a new request for a different context,
 128 * which will cause the hardware to continue executing the second request and queue
 129 * the new request (the GPU detects the condition of a context getting preempted
 130 * with the same context and optimizes the context switch flow by not doing
 131 * preemption, but just sampling the new tail pointer).
 132 *
 133 */
 134#include <linux/interrupt.h>
 135
 136#include <drm/drmP.h>
 137#include <drm/i915_drm.h>
 138#include "i915_drv.h"
 139#include "intel_mocs.h"
 140
 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
 142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
 143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
 144
 145#define RING_EXECLIST_QFULL		(1 << 0x2)
 146#define RING_EXECLIST1_VALID		(1 << 0x3)
 147#define RING_EXECLIST0_VALID		(1 << 0x4)
 148#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
 149#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
 150#define RING_EXECLIST0_ACTIVE		(1 << 0x12)
 151
 152#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
 153#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
 154#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
 155#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
 156#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
 157#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
 158
 159#define GEN8_CTX_STATUS_COMPLETED_MASK \
 160	 (GEN8_CTX_STATUS_ACTIVE_IDLE | \
 161	  GEN8_CTX_STATUS_PREEMPTED | \
 162	  GEN8_CTX_STATUS_ELEMENT_SWITCH)
 163
 164#define CTX_LRI_HEADER_0		0x01
 165#define CTX_CONTEXT_CONTROL		0x02
 166#define CTX_RING_HEAD			0x04
 167#define CTX_RING_TAIL			0x06
 168#define CTX_RING_BUFFER_START		0x08
 169#define CTX_RING_BUFFER_CONTROL		0x0a
 170#define CTX_BB_HEAD_U			0x0c
 171#define CTX_BB_HEAD_L			0x0e
 172#define CTX_BB_STATE			0x10
 173#define CTX_SECOND_BB_HEAD_U		0x12
 174#define CTX_SECOND_BB_HEAD_L		0x14
 175#define CTX_SECOND_BB_STATE		0x16
 176#define CTX_BB_PER_CTX_PTR		0x18
 177#define CTX_RCS_INDIRECT_CTX		0x1a
 178#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
 179#define CTX_LRI_HEADER_1		0x21
 180#define CTX_CTX_TIMESTAMP		0x22
 181#define CTX_PDP3_UDW			0x24
 182#define CTX_PDP3_LDW			0x26
 183#define CTX_PDP2_UDW			0x28
 184#define CTX_PDP2_LDW			0x2a
 185#define CTX_PDP1_UDW			0x2c
 186#define CTX_PDP1_LDW			0x2e
 187#define CTX_PDP0_UDW			0x30
 188#define CTX_PDP0_LDW			0x32
 189#define CTX_LRI_HEADER_2		0x41
 190#define CTX_R_PWR_CLK_STATE		0x42
 191#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44
 192
 193#define GEN8_CTX_VALID (1<<0)
 194#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
 195#define GEN8_CTX_FORCE_RESTORE (1<<2)
 196#define GEN8_CTX_L3LLC_COHERENT (1<<5)
 197#define GEN8_CTX_PRIVILEGE (1<<8)
 198
 199#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
 200	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
 201	(reg_state)[(pos)+1] = (val); \
 202} while (0)
 203
 204#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
 205	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
 206	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
 207	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
 208} while (0)
 209
 210#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
 211	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
 212	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
 213} while (0)
 214
 215enum {
 216	FAULT_AND_HANG = 0,
 217	FAULT_AND_HALT, /* Debug only */
 218	FAULT_AND_STREAM,
 219	FAULT_AND_CONTINUE /* Unsupported */
 220};
 221#define GEN8_CTX_ID_SHIFT 32
 222#define GEN8_CTX_ID_WIDTH 21
 223#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x17
 224#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT	0x26
 225
 226/* Typical size of the average request (2 pipecontrols and a MI_BB) */
 227#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
 228
 229#define WA_TAIL_DWORDS 2
 230
 231static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
 232					    struct intel_engine_cs *engine);
 233static int intel_lr_context_pin(struct i915_gem_context *ctx,
 234				struct intel_engine_cs *engine);
 235static void execlists_init_reg_state(u32 *reg_state,
 236				     struct i915_gem_context *ctx,
 237				     struct intel_engine_cs *engine,
 238				     struct intel_ring *ring);
 239
 240/**
 241 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 242 * @dev_priv: i915 device private
 243 * @enable_execlists: value of i915.enable_execlists module parameter.
 244 *
 245 * Only certain platforms support Execlists (the prerequisites being
 246 * support for Logical Ring Contexts and Aliasing PPGTT or better).
 247 *
 248 * Return: 1 if Execlists is supported and has to be enabled.
 249 */
 250int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
 251{
 252	/* On platforms with execlist available, vGPU will only
 253	 * support execlist mode, no ring buffer mode.
 254	 */
 255	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
 256		return 1;
 257
 258	if (INTEL_GEN(dev_priv) >= 9)
 259		return 1;
 260
 261	if (enable_execlists == 0)
 262		return 0;
 263
 264	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
 265	    USES_PPGTT(dev_priv) &&
 266	    i915.use_mmio_flip >= 0)
 267		return 1;
 268
 269	return 0;
 270}
 271
 272static void
 273logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
 274{
 275	struct drm_i915_private *dev_priv = engine->i915;
 276
 277	engine->disable_lite_restore_wa =
 278		IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) &&
 279		(engine->id == VCS || engine->id == VCS2);
 280
 281	engine->ctx_desc_template = GEN8_CTX_VALID;
 282	if (IS_GEN8(dev_priv))
 283		engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
 284	engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
 285
 286	/* TODO: WaDisableLiteRestore when we start using semaphore
 287	 * signalling between Command Streamers */
 288	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
 289
 290	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
 291	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
 292	if (engine->disable_lite_restore_wa)
 293		engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
 294}
 295
 296/**
 297 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 298 * 					  descriptor for a pinned context
 299 * @ctx: Context to work on
 300 * @engine: Engine the descriptor will be used with
 301 *
 302 * The context descriptor encodes various attributes of a context,
 303 * including its GTT address and some flags. Because it's fairly
 304 * expensive to calculate, we'll just do it once and cache the result,
 305 * which remains valid until the context is unpinned.
 306 *
 307 * This is what a descriptor looks like, from LSB to MSB::
 308 *
 309 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 310 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 311 *      bits 32-52:    ctx ID, a globally unique tag
 312 *      bits 53-54:    mbz, reserved for use by hardware
 313 *      bits 55-63:    group ID, currently unused and set to 0
 314 */
 315static void
 316intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
 317				   struct intel_engine_cs *engine)
 318{
 319	struct intel_context *ce = &ctx->engine[engine->id];
 320	u64 desc;
 321
 322	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
 323
 324	desc = ctx->desc_template;				/* bits  3-4  */
 325	desc |= engine->ctx_desc_template;			/* bits  0-11 */
 326	desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
 327								/* bits 12-31 */
 328	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
 329
 330	ce->lrc_desc = desc;
 331}
 332
 333uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
 334				     struct intel_engine_cs *engine)
 335{
 336	return ctx->engine[engine->id].lrc_desc;
 337}
 338
 339static inline void
 340execlists_context_status_change(struct drm_i915_gem_request *rq,
 341				unsigned long status)
 342{
 343	/*
 344	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
 345	 * The compiler should eliminate this function as dead-code.
 346	 */
 347	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
 348		return;
 349
 350	atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
 351}
 352
 353static void
 354execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
 355{
 356	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
 357	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
 358	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
 359	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
 360}
 361
 362static u64 execlists_update_context(struct drm_i915_gem_request *rq)
 363{
 364	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
 365	struct i915_hw_ppgtt *ppgtt =
 366		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
 367	u32 *reg_state = ce->lrc_reg_state;
 368
 369	reg_state[CTX_RING_TAIL+1] = rq->tail;
 370
 371	/* True 32b PPGTT with dynamic page allocation: update PDP
 372	 * registers and point the unallocated PDPs to scratch page.
 373	 * PML4 is allocated during ppgtt init, so this is not needed
 374	 * in 48-bit mode.
 375	 */
 376	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
 377		execlists_update_context_pdps(ppgtt, reg_state);
 378
 379	return ce->lrc_desc;
 380}
 381
 382static void execlists_submit_ports(struct intel_engine_cs *engine)
 383{
 384	struct drm_i915_private *dev_priv = engine->i915;
 385	struct execlist_port *port = engine->execlist_port;
 386	u32 __iomem *elsp =
 387		dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
 388	u64 desc[2];
 389
 390	if (!port[0].count)
 391		execlists_context_status_change(port[0].request,
 392						INTEL_CONTEXT_SCHEDULE_IN);
 393	desc[0] = execlists_update_context(port[0].request);
 394	engine->preempt_wa = port[0].count++; /* bdw only? fixed on skl? */
 395
 396	if (port[1].request) {
 397		GEM_BUG_ON(port[1].count);
 398		execlists_context_status_change(port[1].request,
 399						INTEL_CONTEXT_SCHEDULE_IN);
 400		desc[1] = execlists_update_context(port[1].request);
 401		port[1].count = 1;
 402	} else {
 403		desc[1] = 0;
 404	}
 405	GEM_BUG_ON(desc[0] == desc[1]);
 406
 407	/* You must always write both descriptors in the order below. */
 408	writel(upper_32_bits(desc[1]), elsp);
 409	writel(lower_32_bits(desc[1]), elsp);
 410
 411	writel(upper_32_bits(desc[0]), elsp);
 412	/* The context is automatically loaded after the following */
 413	writel(lower_32_bits(desc[0]), elsp);
 414}
 415
 416static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
 417{
 418	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
 419		ctx->execlists_force_single_submission);
 420}
 421
 422static bool can_merge_ctx(const struct i915_gem_context *prev,
 423			  const struct i915_gem_context *next)
 424{
 425	if (prev != next)
 426		return false;
 427
 428	if (ctx_single_port_submission(prev))
 429		return false;
 430
 431	return true;
 432}
 433
 434static void execlists_dequeue(struct intel_engine_cs *engine)
 435{
 436	struct drm_i915_gem_request *last;
 437	struct execlist_port *port = engine->execlist_port;
 438	unsigned long flags;
 439	struct rb_node *rb;
 440	bool submit = false;
 441
 442	last = port->request;
 443	if (last)
 444		/* WaIdleLiteRestore:bdw,skl
 445		 * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
 446		 * as we resubmit the request. See gen8_emit_breadcrumb()
 447		 * for where we prepare the padding after the end of the
 448		 * request.
 449		 */
 450		last->tail = last->wa_tail;
 451
 452	GEM_BUG_ON(port[1].request);
 453
 454	/* Hardware submission is through 2 ports. Conceptually each port
 455	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
 456	 * static for a context, and unique to each, so we only execute
 457	 * requests belonging to a single context from each ring. RING_HEAD
 458	 * is maintained by the CS in the context image, it marks the place
 459	 * where it got up to last time, and through RING_TAIL we tell the CS
 460	 * where we want to execute up to this time.
 461	 *
 462	 * In this list the requests are in order of execution. Consecutive
 463	 * requests from the same context are adjacent in the ringbuffer. We
 464	 * can combine these requests into a single RING_TAIL update:
 465	 *
 466	 *              RING_HEAD...req1...req2
 467	 *                                    ^- RING_TAIL
 468	 * since to execute req2 the CS must first execute req1.
 469	 *
 470	 * Our goal then is to point each port to the end of a consecutive
 471	 * sequence of requests as being the most optimal (fewest wake ups
 472	 * and context switches) submission.
 473	 */
 474
 475	spin_lock_irqsave(&engine->timeline->lock, flags);
 476	rb = engine->execlist_first;
 477	while (rb) {
 478		struct drm_i915_gem_request *cursor =
 479			rb_entry(rb, typeof(*cursor), priotree.node);
 480
 481		/* Can we combine this request with the current port? It has to
 482		 * be the same context/ringbuffer and not have any exceptions
 483		 * (e.g. GVT saying never to combine contexts).
 484		 *
 485		 * If we can combine the requests, we can execute both by
 486		 * updating the RING_TAIL to point to the end of the second
 487		 * request, and so we never need to tell the hardware about
 488		 * the first.
 489		 */
 490		if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
 491			/* If we are on the second port and cannot combine
 492			 * this request with the last, then we are done.
 493			 */
 494			if (port != engine->execlist_port)
 495				break;
 496
 497			/* If GVT overrides us we only ever submit port[0],
 498			 * leaving port[1] empty. Note that we also have
 499			 * to be careful that we don't queue the same
 500			 * context (even though a different request) to
 501			 * the second port.
 502			 */
 503			if (ctx_single_port_submission(last->ctx) ||
 504			    ctx_single_port_submission(cursor->ctx))
 505				break;
 506
 507			GEM_BUG_ON(last->ctx == cursor->ctx);
 508
 509			i915_gem_request_assign(&port->request, last);
 510			port++;
 511		}
 512
 513		rb = rb_next(rb);
 514		rb_erase(&cursor->priotree.node, &engine->execlist_queue);
 515		RB_CLEAR_NODE(&cursor->priotree.node);
 516		cursor->priotree.priority = INT_MAX;
 517
 518		/* We keep the previous context alive until we retire the
 519		 * following request. This ensures that any the context object
 520		 * is still pinned for any residual writes the HW makes into it
 521		 * on the context switch into the next object following the
 522		 * breadcrumb. Otherwise, we may retire the context too early.
 523		 */
 524		cursor->previous_context = engine->last_context;
 525		engine->last_context = cursor->ctx;
 526
 527		__i915_gem_request_submit(cursor);
 528		last = cursor;
 529		submit = true;
 530	}
 531	if (submit) {
 532		i915_gem_request_assign(&port->request, last);
 533		engine->execlist_first = rb;
 534	}
 535	spin_unlock_irqrestore(&engine->timeline->lock, flags);
 536
 537	if (submit)
 538		execlists_submit_ports(engine);
 539}
 540
 541static bool execlists_elsp_idle(struct intel_engine_cs *engine)
 542{
 543	return !engine->execlist_port[0].request;
 544}
 545
 546/**
 547 * intel_execlists_idle() - Determine if all engine submission ports are idle
 548 * @dev_priv: i915 device private
 549 *
 550 * Return true if there are no requests pending on any of the submission ports
 551 * of any engines.
 552 */
 553bool intel_execlists_idle(struct drm_i915_private *dev_priv)
 554{
 555	struct intel_engine_cs *engine;
 556	enum intel_engine_id id;
 557
 558	if (!i915.enable_execlists)
 559		return true;
 560
 561	for_each_engine(engine, dev_priv, id)
 562		if (!execlists_elsp_idle(engine))
 563			return false;
 564
 565	return true;
 566}
 567
 568static bool execlists_elsp_ready(struct intel_engine_cs *engine)
 569{
 570	int port;
 571
 572	port = 1; /* wait for a free slot */
 573	if (engine->disable_lite_restore_wa || engine->preempt_wa)
 574		port = 0; /* wait for GPU to be idle before continuing */
 575
 576	return !engine->execlist_port[port].request;
 577}
 578
 579/*
 580 * Check the unread Context Status Buffers and manage the submission of new
 581 * contexts to the ELSP accordingly.
 582 */
 583static void intel_lrc_irq_handler(unsigned long data)
 584{
 585	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
 586	struct execlist_port *port = engine->execlist_port;
 587	struct drm_i915_private *dev_priv = engine->i915;
 588
 589	intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
 590
 591	if (!execlists_elsp_idle(engine)) {
 592		u32 __iomem *csb_mmio =
 593			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
 594		u32 __iomem *buf =
 595			dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
 596		unsigned int csb, head, tail;
 597
 598		csb = readl(csb_mmio);
 599		head = GEN8_CSB_READ_PTR(csb);
 600		tail = GEN8_CSB_WRITE_PTR(csb);
 601		if (tail < head)
 602			tail += GEN8_CSB_ENTRIES;
 603		while (head < tail) {
 604			unsigned int idx = ++head % GEN8_CSB_ENTRIES;
 605			unsigned int status = readl(buf + 2 * idx);
 606
 607			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
 608				continue;
 609
 610			GEM_BUG_ON(port[0].count == 0);
 611			if (--port[0].count == 0) {
 612				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
 613				execlists_context_status_change(port[0].request,
 614								INTEL_CONTEXT_SCHEDULE_OUT);
 615
 616				i915_gem_request_put(port[0].request);
 617				port[0] = port[1];
 618				memset(&port[1], 0, sizeof(port[1]));
 619
 620				engine->preempt_wa = false;
 621			}
 622
 623			GEM_BUG_ON(port[0].count == 0 &&
 624				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
 625		}
 626
 627		writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
 628				     GEN8_CSB_WRITE_PTR(csb) << 8),
 629		       csb_mmio);
 630	}
 631
 632	if (execlists_elsp_ready(engine))
 633		execlists_dequeue(engine);
 634
 635	intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
 636}
 637
 638static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
 639{
 640	struct rb_node **p, *rb;
 641	bool first = true;
 642
 643	/* most positive priority is scheduled first, equal priorities fifo */
 644	rb = NULL;
 645	p = &root->rb_node;
 646	while (*p) {
 647		struct i915_priotree *pos;
 648
 649		rb = *p;
 650		pos = rb_entry(rb, typeof(*pos), node);
 651		if (pt->priority > pos->priority) {
 652			p = &rb->rb_left;
 653		} else {
 654			p = &rb->rb_right;
 655			first = false;
 656		}
 657	}
 658	rb_link_node(&pt->node, rb, p);
 659	rb_insert_color(&pt->node, root);
 660
 661	return first;
 662}
 663
 664static void execlists_submit_request(struct drm_i915_gem_request *request)
 665{
 666	struct intel_engine_cs *engine = request->engine;
 667	unsigned long flags;
 668
 669	/* Will be called from irq-context when using foreign fences. */
 670	spin_lock_irqsave(&engine->timeline->lock, flags);
 671
 672	if (insert_request(&request->priotree, &engine->execlist_queue))
 673		engine->execlist_first = &request->priotree.node;
 674	if (execlists_elsp_idle(engine))
 675		tasklet_hi_schedule(&engine->irq_tasklet);
 676
 677	spin_unlock_irqrestore(&engine->timeline->lock, flags);
 678}
 679
 680static struct intel_engine_cs *
 681pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
 682{
 683	struct intel_engine_cs *engine;
 684
 685	engine = container_of(pt,
 686			      struct drm_i915_gem_request,
 687			      priotree)->engine;
 688	if (engine != locked) {
 689		if (locked)
 690			spin_unlock_irq(&locked->timeline->lock);
 691		spin_lock_irq(&engine->timeline->lock);
 692	}
 693
 694	return engine;
 695}
 696
 697static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
 698{
 699	static DEFINE_MUTEX(lock);
 700	struct intel_engine_cs *engine = NULL;
 701	struct i915_dependency *dep, *p;
 702	struct i915_dependency stack;
 703	LIST_HEAD(dfs);
 704
 705	if (prio <= READ_ONCE(request->priotree.priority))
 706		return;
 707
 708	/* Need global lock to use the temporary link inside i915_dependency */
 709	mutex_lock(&lock);
 710
 711	stack.signaler = &request->priotree;
 712	list_add(&stack.dfs_link, &dfs);
 713
 714	/* Recursively bump all dependent priorities to match the new request.
 715	 *
 716	 * A naive approach would be to use recursion:
 717	 * static void update_priorities(struct i915_priotree *pt, prio) {
 718	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
 719	 *		update_priorities(dep->signal, prio)
 720	 *	insert_request(pt);
 721	 * }
 722	 * but that may have unlimited recursion depth and so runs a very
 723	 * real risk of overunning the kernel stack. Instead, we build
 724	 * a flat list of all dependencies starting with the current request.
 725	 * As we walk the list of dependencies, we add all of its dependencies
 726	 * to the end of the list (this may include an already visited
 727	 * request) and continue to walk onwards onto the new dependencies. The
 728	 * end result is a topological list of requests in reverse order, the
 729	 * last element in the list is the request we must execute first.
 730	 */
 731	list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
 732		struct i915_priotree *pt = dep->signaler;
 733
 734		list_for_each_entry(p, &pt->signalers_list, signal_link)
 735			if (prio > READ_ONCE(p->signaler->priority))
 736				list_move_tail(&p->dfs_link, &dfs);
 737
 738		p = list_next_entry(dep, dfs_link);
 739		if (!RB_EMPTY_NODE(&pt->node))
 740			continue;
 741
 742		engine = pt_lock_engine(pt, engine);
 743
 744		/* If it is not already in the rbtree, we can update the
 745		 * priority inplace and skip over it (and its dependencies)
 746		 * if it is referenced *again* as we descend the dfs.
 747		 */
 748		if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
 749			pt->priority = prio;
 750			list_del_init(&dep->dfs_link);
 751		}
 752	}
 753
 754	/* Fifo and depth-first replacement ensure our deps execute before us */
 755	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
 756		struct i915_priotree *pt = dep->signaler;
 757
 758		INIT_LIST_HEAD(&dep->dfs_link);
 759
 760		engine = pt_lock_engine(pt, engine);
 761
 762		if (prio <= pt->priority)
 763			continue;
 764
 765		GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));
 766
 767		pt->priority = prio;
 768		rb_erase(&pt->node, &engine->execlist_queue);
 769		if (insert_request(pt, &engine->execlist_queue))
 770			engine->execlist_first = &pt->node;
 771	}
 772
 773	if (engine)
 774		spin_unlock_irq(&engine->timeline->lock);
 775
 776	mutex_unlock(&lock);
 777
 778	/* XXX Do we need to preempt to make room for us and our deps? */
 779}
 780
 781int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
 782{
 783	struct intel_engine_cs *engine = request->engine;
 784	struct intel_context *ce = &request->ctx->engine[engine->id];
 785	int ret;
 786
 787	/* Flush enough space to reduce the likelihood of waiting after
 788	 * we start building the request - in which case we will just
 789	 * have to repeat work.
 790	 */
 791	request->reserved_space += EXECLISTS_REQUEST_SIZE;
 792
 793	if (!ce->state) {
 794		ret = execlists_context_deferred_alloc(request->ctx, engine);
 795		if (ret)
 796			return ret;
 797	}
 798
 799	request->ring = ce->ring;
 800
 801	ret = intel_lr_context_pin(request->ctx, engine);
 802	if (ret)
 803		return ret;
 804
 805	if (i915.enable_guc_submission) {
 806		/*
 807		 * Check that the GuC has space for the request before
 808		 * going any further, as the i915_add_request() call
 809		 * later on mustn't fail ...
 810		 */
 811		ret = i915_guc_wq_reserve(request);
 812		if (ret)
 813			goto err_unpin;
 814	}
 815
 816	ret = intel_ring_begin(request, 0);
 817	if (ret)
 818		goto err_unreserve;
 819
 820	if (!ce->initialised) {
 821		ret = engine->init_context(request);
 822		if (ret)
 823			goto err_unreserve;
 824
 825		ce->initialised = true;
 826	}
 827
 828	/* Note that after this point, we have committed to using
 829	 * this request as it is being used to both track the
 830	 * state of engine initialisation and liveness of the
 831	 * golden renderstate above. Think twice before you try
 832	 * to cancel/unwind this request now.
 833	 */
 834
 835	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
 836	return 0;
 837
 838err_unreserve:
 839	if (i915.enable_guc_submission)
 840		i915_guc_wq_unreserve(request);
 841err_unpin:
 842	intel_lr_context_unpin(request->ctx, engine);
 843	return ret;
 844}
 845
 846static int intel_lr_context_pin(struct i915_gem_context *ctx,
 847				struct intel_engine_cs *engine)
 848{
 849	struct intel_context *ce = &ctx->engine[engine->id];
 850	void *vaddr;
 851	int ret;
 852
 853	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
 854
 855	if (ce->pin_count++)
 856		return 0;
 857
 858	ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
 859			   PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
 860	if (ret)
 861		goto err;
 862
 863	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
 864	if (IS_ERR(vaddr)) {
 865		ret = PTR_ERR(vaddr);
 866		goto unpin_vma;
 867	}
 868
 869	ret = intel_ring_pin(ce->ring);
 870	if (ret)
 871		goto unpin_map;
 872
 873	intel_lr_context_descriptor_update(ctx, engine);
 874
 875	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
 876	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
 877		i915_ggtt_offset(ce->ring->vma);
 878
 879	ce->state->obj->mm.dirty = true;
 880
 881	/* Invalidate GuC TLB. */
 882	if (i915.enable_guc_submission) {
 883		struct drm_i915_private *dev_priv = ctx->i915;
 884		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
 885	}
 886
 887	i915_gem_context_get(ctx);
 888	return 0;
 889
 890unpin_map:
 891	i915_gem_object_unpin_map(ce->state->obj);
 892unpin_vma:
 893	__i915_vma_unpin(ce->state);
 894err:
 895	ce->pin_count = 0;
 896	return ret;
 897}
 898
 899void intel_lr_context_unpin(struct i915_gem_context *ctx,
 900			    struct intel_engine_cs *engine)
 901{
 902	struct intel_context *ce = &ctx->engine[engine->id];
 903
 904	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
 905	GEM_BUG_ON(ce->pin_count == 0);
 906
 907	if (--ce->pin_count)
 908		return;
 909
 910	intel_ring_unpin(ce->ring);
 911
 912	i915_gem_object_unpin_map(ce->state->obj);
 913	i915_vma_unpin(ce->state);
 914
 915	i915_gem_context_put(ctx);
 916}
 917
 918static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
 919{
 920	int ret, i;
 921	struct intel_ring *ring = req->ring;
 922	struct i915_workarounds *w = &req->i915->workarounds;
 923
 924	if (w->count == 0)
 925		return 0;
 926
 927	ret = req->engine->emit_flush(req, EMIT_BARRIER);
 928	if (ret)
 929		return ret;
 930
 931	ret = intel_ring_begin(req, w->count * 2 + 2);
 932	if (ret)
 933		return ret;
 934
 935	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
 936	for (i = 0; i < w->count; i++) {
 937		intel_ring_emit_reg(ring, w->reg[i].addr);
 938		intel_ring_emit(ring, w->reg[i].value);
 939	}
 940	intel_ring_emit(ring, MI_NOOP);
 941
 942	intel_ring_advance(ring);
 943
 944	ret = req->engine->emit_flush(req, EMIT_BARRIER);
 945	if (ret)
 946		return ret;
 947
 948	return 0;
 949}
 950
 951#define wa_ctx_emit(batch, index, cmd)					\
 952	do {								\
 953		int __index = (index)++;				\
 954		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
 955			return -ENOSPC;					\
 956		}							\
 957		batch[__index] = (cmd);					\
 958	} while (0)
 959
 960#define wa_ctx_emit_reg(batch, index, reg) \
 961	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
 962
 963/*
 964 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 965 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 966 * but there is a slight complication as this is applied in WA batch where the
 967 * values are only initialized once so we cannot take register value at the
 968 * beginning and reuse it further; hence we save its value to memory, upload a
 969 * constant value with bit21 set and then we restore it back with the saved value.
 970 * To simplify the WA, a constant value is formed by using the default value
 971 * of this register. This shouldn't be a problem because we are only modifying
 972 * it for a short period and this batch in non-premptible. We can ofcourse
 973 * use additional instructions that read the actual value of the register
 974 * at that time and set our bit of interest but it makes the WA complicated.
 975 *
 976 * This WA is also required for Gen9 so extracting as a function avoids
 977 * code duplication.
 978 */
 979static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
 980						uint32_t *batch,
 981						uint32_t index)
 982{
 983	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
 984
 985	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
 986				   MI_SRM_LRM_GLOBAL_GTT));
 987	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
 988	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
 989	wa_ctx_emit(batch, index, 0);
 990
 991	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
 992	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
 993	wa_ctx_emit(batch, index, l3sqc4_flush);
 994
 995	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
 996	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
 997				   PIPE_CONTROL_DC_FLUSH_ENABLE));
 998	wa_ctx_emit(batch, index, 0);
 999	wa_ctx_emit(batch, index, 0);
1000	wa_ctx_emit(batch, index, 0);
1001	wa_ctx_emit(batch, index, 0);
1002
1003	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1004				   MI_SRM_LRM_GLOBAL_GTT));
1005	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1006	wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
1007	wa_ctx_emit(batch, index, 0);
1008
1009	return index;
1010}
1011
1012static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1013				    uint32_t offset,
1014				    uint32_t start_alignment)
1015{
1016	return wa_ctx->offset = ALIGN(offset, start_alignment);
1017}
1018
1019static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1020			     uint32_t offset,
1021			     uint32_t size_alignment)
1022{
1023	wa_ctx->size = offset - wa_ctx->offset;
1024
1025	WARN(wa_ctx->size % size_alignment,
1026	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1027	     wa_ctx->size, size_alignment);
1028	return 0;
1029}
1030
1031/*
1032 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1033 * initialized at the beginning and shared across all contexts but this field
1034 * helps us to have multiple batches at different offsets and select them based
1035 * on a criteria. At the moment this batch always start at the beginning of the page
1036 * and at this point we don't have multiple wa_ctx batch buffers.
1037 *
1038 * The number of WA applied are not known at the beginning; we use this field
1039 * to return the no of DWORDS written.
1040 *
1041 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1042 * so it adds NOOPs as padding to make it cacheline aligned.
1043 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1044 * makes a complete batch buffer.
1045 */
1046static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1047				    struct i915_wa_ctx_bb *wa_ctx,
1048				    uint32_t *batch,
1049				    uint32_t *offset)
1050{
1051	uint32_t scratch_addr;
1052	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1053
1054	/* WaDisableCtxRestoreArbitration:bdw,chv */
1055	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1056
1057	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1058	if (IS_BROADWELL(engine->i915)) {
1059		int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1060		if (rc < 0)
1061			return rc;
1062		index = rc;
1063	}
1064
1065	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1066	/* Actual scratch location is at 128 bytes offset */
1067	scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1068
1069	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1070	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1071				   PIPE_CONTROL_GLOBAL_GTT_IVB |
1072				   PIPE_CONTROL_CS_STALL |
1073				   PIPE_CONTROL_QW_WRITE));
1074	wa_ctx_emit(batch, index, scratch_addr);
1075	wa_ctx_emit(batch, index, 0);
1076	wa_ctx_emit(batch, index, 0);
1077	wa_ctx_emit(batch, index, 0);
1078
1079	/* Pad to end of cacheline */
1080	while (index % CACHELINE_DWORDS)
1081		wa_ctx_emit(batch, index, MI_NOOP);
1082
1083	/*
1084	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1085	 * execution depends on the length specified in terms of cache lines
1086	 * in the register CTX_RCS_INDIRECT_CTX
1087	 */
1088
1089	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1090}
1091
1092/*
1093 *  This batch is started immediately after indirect_ctx batch. Since we ensure
1094 *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
1095 *
1096 *  The number of DWORDS written are returned using this field.
1097 *
1098 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1099 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1100 */
1101static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1102			       struct i915_wa_ctx_bb *wa_ctx,
1103			       uint32_t *batch,
1104			       uint32_t *offset)
1105{
1106	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1107
1108	/* WaDisableCtxRestoreArbitration:bdw,chv */
1109	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1110
1111	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1112
1113	return wa_ctx_end(wa_ctx, *offset = index, 1);
1114}
1115
1116static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1117				    struct i915_wa_ctx_bb *wa_ctx,
1118				    uint32_t *batch,
1119				    uint32_t *offset)
1120{
1121	int ret;
1122	struct drm_i915_private *dev_priv = engine->i915;
1123	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1124
1125	/* WaDisableCtxRestoreArbitration:bxt */
1126	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1127		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1128
1129	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1130	ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1131	if (ret < 0)
1132		return ret;
1133	index = ret;
1134
1135	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1136	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1137	wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1138	wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1139			    GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1140	wa_ctx_emit(batch, index, MI_NOOP);
1141
1142	/* WaClearSlmSpaceAtContextSwitch:kbl */
1143	/* Actual scratch location is at 128 bytes offset */
1144	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
1145		u32 scratch_addr =
1146			i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1147
1148		wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1149		wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1150					   PIPE_CONTROL_GLOBAL_GTT_IVB |
1151					   PIPE_CONTROL_CS_STALL |
1152					   PIPE_CONTROL_QW_WRITE));
1153		wa_ctx_emit(batch, index, scratch_addr);
1154		wa_ctx_emit(batch, index, 0);
1155		wa_ctx_emit(batch, index, 0);
1156		wa_ctx_emit(batch, index, 0);
1157	}
1158
1159	/* WaMediaPoolStateCmdInWABB:bxt */
1160	if (HAS_POOLED_EU(engine->i915)) {
1161		/*
1162		 * EU pool configuration is setup along with golden context
1163		 * during context initialization. This value depends on
1164		 * device type (2x6 or 3x6) and needs to be updated based
1165		 * on which subslice is disabled especially for 2x6
1166		 * devices, however it is safe to load default
1167		 * configuration of 3x6 device instead of masking off
1168		 * corresponding bits because HW ignores bits of a disabled
1169		 * subslice and drops down to appropriate config. Please
1170		 * see render_state_setup() in i915_gem_render_state.c for
1171		 * possible configurations, to avoid duplication they are
1172		 * not shown here again.
1173		 */
1174		u32 eu_pool_config = 0x00777000;
1175		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1176		wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1177		wa_ctx_emit(batch, index, eu_pool_config);
1178		wa_ctx_emit(batch, index, 0);
1179		wa_ctx_emit(batch, index, 0);
1180		wa_ctx_emit(batch, index, 0);
1181	}
1182
1183	/* Pad to end of cacheline */
1184	while (index % CACHELINE_DWORDS)
1185		wa_ctx_emit(batch, index, MI_NOOP);
1186
1187	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1188}
1189
1190static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1191			       struct i915_wa_ctx_bb *wa_ctx,
1192			       uint32_t *batch,
1193			       uint32_t *offset)
1194{
1195	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1196
1197	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
1198	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
1199		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1200		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1201		wa_ctx_emit(batch, index,
1202			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1203		wa_ctx_emit(batch, index, MI_NOOP);
1204	}
1205
1206	/* WaClearTdlStateAckDirtyBits:bxt */
1207	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
1208		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1209
1210		wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1211		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1212
1213		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1214		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1215
1216		wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1217		wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1218
1219		wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1220		/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1221		wa_ctx_emit(batch, index, 0x0);
1222		wa_ctx_emit(batch, index, MI_NOOP);
1223	}
1224
1225	/* WaDisableCtxRestoreArbitration:bxt */
1226	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1227		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1228
1229	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1230
1231	return wa_ctx_end(wa_ctx, *offset = index, 1);
1232}
1233
1234static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1235{
1236	struct drm_i915_gem_object *obj;
1237	struct i915_vma *vma;
1238	int err;
1239
1240	obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
1241	if (IS_ERR(obj))
1242		return PTR_ERR(obj);
1243
1244	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1245	if (IS_ERR(vma)) {
1246		err = PTR_ERR(vma);
1247		goto err;
1248	}
1249
1250	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1251	if (err)
1252		goto err;
1253
1254	engine->wa_ctx.vma = vma;
1255	return 0;
1256
1257err:
1258	i915_gem_object_put(obj);
1259	return err;
1260}
1261
1262static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1263{
1264	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1265}
1266
1267static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1268{
1269	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1270	uint32_t *batch;
1271	uint32_t offset;
1272	struct page *page;
1273	int ret;
1274
1275	WARN_ON(engine->id != RCS);
1276
1277	/* update this when WA for higher Gen are added */
1278	if (INTEL_GEN(engine->i915) > 9) {
1279		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1280			  INTEL_GEN(engine->i915));
1281		return 0;
1282	}
1283
1284	/* some WA perform writes to scratch page, ensure it is valid */
1285	if (!engine->scratch) {
1286		DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1287		return -EINVAL;
1288	}
1289
1290	ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1291	if (ret) {
1292		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1293		return ret;
1294	}
1295
1296	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1297	batch = kmap_atomic(page);
1298	offset = 0;
1299
1300	if (IS_GEN8(engine->i915)) {
1301		ret = gen8_init_indirectctx_bb(engine,
1302					       &wa_ctx->indirect_ctx,
1303					       batch,
1304					       &offset);
1305		if (ret)
1306			goto out;
1307
1308		ret = gen8_init_perctx_bb(engine,
1309					  &wa_ctx->per_ctx,
1310					  batch,
1311					  &offset);
1312		if (ret)
1313			goto out;
1314	} else if (IS_GEN9(engine->i915)) {
1315		ret = gen9_init_indirectctx_bb(engine,
1316					       &wa_ctx->indirect_ctx,
1317					       batch,
1318					       &offset);
1319		if (ret)
1320			goto out;
1321
1322		ret = gen9_init_perctx_bb(engine,
1323					  &wa_ctx->per_ctx,
1324					  batch,
1325					  &offset);
1326		if (ret)
1327			goto out;
1328	}
1329
1330out:
1331	kunmap_atomic(batch);
1332	if (ret)
1333		lrc_destroy_wa_ctx_obj(engine);
1334
1335	return ret;
1336}
1337
1338static void lrc_init_hws(struct intel_engine_cs *engine)
1339{
1340	struct drm_i915_private *dev_priv = engine->i915;
1341
1342	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1343		   engine->status_page.ggtt_offset);
1344	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1345}
1346
1347static int gen8_init_common_ring(struct intel_engine_cs *engine)
1348{
1349	struct drm_i915_private *dev_priv = engine->i915;
1350	int ret;
1351
1352	ret = intel_mocs_init_engine(engine);
1353	if (ret)
1354		return ret;
1355
1356	lrc_init_hws(engine);
1357
1358	intel_engine_reset_breadcrumbs(engine);
1359
1360	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1361
1362	I915_WRITE(RING_MODE_GEN7(engine),
1363		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1364		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1365
1366	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1367
1368	intel_engine_init_hangcheck(engine);
1369
1370	/* After a GPU reset, we may have requests to replay */
1371	if (!execlists_elsp_idle(engine)) {
1372		engine->execlist_port[0].count = 0;
1373		engine->execlist_port[1].count = 0;
1374		execlists_submit_ports(engine);
1375	}
1376
1377	return 0;
1378}
1379
1380static int gen8_init_render_ring(struct intel_engine_cs *engine)
1381{
1382	struct drm_i915_private *dev_priv = engine->i915;
1383	int ret;
1384
1385	ret = gen8_init_common_ring(engine);
1386	if (ret)
1387		return ret;
1388
1389	/* We need to disable the AsyncFlip performance optimisations in order
1390	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1391	 * programmed to '1' on all products.
1392	 *
1393	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1394	 */
1395	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1396
1397	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1398
1399	return init_workarounds_ring(engine);
1400}
1401
1402static int gen9_init_render_ring(struct intel_engine_cs *engine)
1403{
1404	int ret;
1405
1406	ret = gen8_init_common_ring(engine);
1407	if (ret)
1408		return ret;
1409
1410	return init_workarounds_ring(engine);
1411}
1412
1413static void reset_common_ring(struct intel_engine_cs *engine,
1414			      struct drm_i915_gem_request *request)
1415{
1416	struct drm_i915_private *dev_priv = engine->i915;
1417	struct execlist_port *port = engine->execlist_port;
1418	struct intel_context *ce = &request->ctx->engine[engine->id];
1419
1420	/* We want a simple context + ring to execute the breadcrumb update.
1421	 * We cannot rely on the context being intact across the GPU hang,
1422	 * so clear it and rebuild just what we need for the breadcrumb.
1423	 * All pending requests for this context will be zapped, and any
1424	 * future request will be after userspace has had the opportunity
1425	 * to recreate its own state.
1426	 */
1427	execlists_init_reg_state(ce->lrc_reg_state,
1428				 request->ctx, engine, ce->ring);
1429
1430	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1431	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1432		i915_ggtt_offset(ce->ring->vma);
1433	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1434
1435	request->ring->head = request->postfix;
1436	request->ring->last_retired_head = -1;
1437	intel_ring_update_space(request->ring);
1438
1439	if (i915.enable_guc_submission)
1440		return;
1441
1442	/* Catch up with any missed context-switch interrupts */
1443	I915_WRITE(RING_CONTEXT_STATUS_PTR(engine), _MASKED_FIELD(0xffff, 0));
1444	if (request->ctx != port[0].request->ctx) {
1445		i915_gem_request_put(port[0].request);
1446		port[0] = port[1];
1447		memset(&port[1], 0, sizeof(port[1]));
1448	}
1449
1450	GEM_BUG_ON(request->ctx != port[0].request->ctx);
1451
1452	/* Reset WaIdleLiteRestore:bdw,skl as well */
1453	request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1454}
1455
1456static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1457{
1458	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1459	struct intel_ring *ring = req->ring;
1460	struct intel_engine_cs *engine = req->engine;
1461	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1462	int i, ret;
1463
1464	ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1465	if (ret)
1466		return ret;
1467
1468	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1469	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1470		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1471
1472		intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1473		intel_ring_emit(ring, upper_32_bits(pd_daddr));
1474		intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1475		intel_ring_emit(ring, lower_32_bits(pd_daddr));
1476	}
1477
1478	intel_ring_emit(ring, MI_NOOP);
1479	intel_ring_advance(ring);
1480
1481	return 0;
1482}
1483
1484static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1485			      u64 offset, u32 len,
1486			      unsigned int dispatch_flags)
1487{
1488	struct intel_ring *ring = req->ring;
1489	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1490	int ret;
1491
1492	/* Don't rely in hw updating PDPs, specially in lite-restore.
1493	 * Ideally, we should set Force PD Restore in ctx descriptor,
1494	 * but we can't. Force Restore would be a second option, but
1495	 * it is unsafe in case of lite-restore (because the ctx is
1496	 * not idle). PML4 is allocated during ppgtt init so this is
1497	 * not needed in 48-bit.*/
1498	if (req->ctx->ppgtt &&
1499	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1500		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1501		    !intel_vgpu_active(req->i915)) {
1502			ret = intel_logical_ring_emit_pdps(req);
1503			if (ret)
1504				return ret;
1505		}
1506
1507		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1508	}
1509
1510	ret = intel_ring_begin(req, 4);
1511	if (ret)
1512		return ret;
1513
1514	/* FIXME(BDW): Address space and security selectors. */
1515	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1516			(ppgtt<<8) |
1517			(dispatch_flags & I915_DISPATCH_RS ?
1518			 MI_BATCH_RESOURCE_STREAMER : 0));
1519	intel_ring_emit(ring, lower_32_bits(offset));
1520	intel_ring_emit(ring, upper_32_bits(offset));
1521	intel_ring_emit(ring, MI_NOOP);
1522	intel_ring_advance(ring);
1523
1524	return 0;
1525}
1526
1527static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1528{
1529	struct drm_i915_private *dev_priv = engine->i915;
1530	I915_WRITE_IMR(engine,
1531		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
1532	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1533}
1534
1535static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1536{
1537	struct drm_i915_private *dev_priv = engine->i915;
1538	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1539}
1540
1541static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1542{
1543	struct intel_ring *ring = request->ring;
1544	u32 cmd;
1545	int ret;
1546
1547	ret = intel_ring_begin(request, 4);
1548	if (ret)
1549		return ret;
1550
1551	cmd = MI_FLUSH_DW + 1;
1552
1553	/* We always require a command barrier so that subsequent
1554	 * commands, such as breadcrumb interrupts, are strictly ordered
1555	 * wrt the contents of the write cache being flushed to memory
1556	 * (and thus being coherent from the CPU).
1557	 */
1558	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1559
1560	if (mode & EMIT_INVALIDATE) {
1561		cmd |= MI_INVALIDATE_TLB;
1562		if (request->engine->id == VCS)
1563			cmd |= MI_INVALIDATE_BSD;
1564	}
1565
1566	intel_ring_emit(ring, cmd);
1567	intel_ring_emit(ring,
1568			I915_GEM_HWS_SCRATCH_ADDR |
1569			MI_FLUSH_DW_USE_GTT);
1570	intel_ring_emit(ring, 0); /* upper addr */
1571	intel_ring_emit(ring, 0); /* value */
1572	intel_ring_advance(ring);
1573
1574	return 0;
1575}
1576
1577static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1578				  u32 mode)
1579{
1580	struct intel_ring *ring = request->ring;
1581	struct intel_engine_cs *engine = request->engine;
1582	u32 scratch_addr =
1583		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1584	bool vf_flush_wa = false, dc_flush_wa = false;
1585	u32 flags = 0;
1586	int ret;
1587	int len;
1588
1589	flags |= PIPE_CONTROL_CS_STALL;
1590
1591	if (mode & EMIT_FLUSH) {
1592		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1593		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1594		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1595		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1596	}
1597
1598	if (mode & EMIT_INVALIDATE) {
1599		flags |= PIPE_CONTROL_TLB_INVALIDATE;
1600		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1601		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1602		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1603		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1604		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1605		flags |= PIPE_CONTROL_QW_WRITE;
1606		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1607
1608		/*
1609		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1610		 * pipe control.
1611		 */
1612		if (IS_GEN9(request->i915))
1613			vf_flush_wa = true;
1614
1615		/* WaForGAMHang:kbl */
1616		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1617			dc_flush_wa = true;
1618	}
1619
1620	len = 6;
1621
1622	if (vf_flush_wa)
1623		len += 6;
1624
1625	if (dc_flush_wa)
1626		len += 12;
1627
1628	ret = intel_ring_begin(request, len);
1629	if (ret)
1630		return ret;
1631
1632	if (vf_flush_wa) {
1633		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1634		intel_ring_emit(ring, 0);
1635		intel_ring_emit(ring, 0);
1636		intel_ring_emit(ring, 0);
1637		intel_ring_emit(ring, 0);
1638		intel_ring_emit(ring, 0);
1639	}
1640
1641	if (dc_flush_wa) {
1642		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1643		intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1644		intel_ring_emit(ring, 0);
1645		intel_ring_emit(ring, 0);
1646		intel_ring_emit(ring, 0);
1647		intel_ring_emit(ring, 0);
1648	}
1649
1650	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1651	intel_ring_emit(ring, flags);
1652	intel_ring_emit(ring, scratch_addr);
1653	intel_ring_emit(ring, 0);
1654	intel_ring_emit(ring, 0);
1655	intel_ring_emit(ring, 0);
1656
1657	if (dc_flush_wa) {
1658		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1659		intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1660		intel_ring_emit(ring, 0);
1661		intel_ring_emit(ring, 0);
1662		intel_ring_emit(ring, 0);
1663		intel_ring_emit(ring, 0);
1664	}
1665
1666	intel_ring_advance(ring);
1667
1668	return 0;
1669}
1670
1671static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1672{
1673	/*
1674	 * On BXT A steppings there is a HW coherency issue whereby the
1675	 * MI_STORE_DATA_IMM storing the completed request's seqno
1676	 * occasionally doesn't invalidate the CPU cache. Work around this by
1677	 * clflushing the corresponding cacheline whenever the caller wants
1678	 * the coherency to be guaranteed. Note that this cacheline is known
1679	 * to be clean at this point, since we only write it in
1680	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1681	 * this clflush in practice becomes an invalidate operation.
1682	 */
1683	intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1684}
1685
1686/*
1687 * Reserve space for 2 NOOPs at the end of each request to be
1688 * used as a workaround for not being allowed to do lite
1689 * restore with HEAD==TAIL (WaIdleLiteRestore).
1690 */
1691static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *out)
1692{
1693	*out++ = MI_NOOP;
1694	*out++ = MI_NOOP;
1695	request->wa_tail = intel_ring_offset(request->ring, out);
1696}
1697
1698static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request,
1699				 u32 *out)
1700{
1701	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1702	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1703
1704	*out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1705	*out++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1706	*out++ = 0;
1707	*out++ = request->global_seqno;
1708	*out++ = MI_USER_INTERRUPT;
1709	*out++ = MI_NOOP;
1710	request->tail = intel_ring_offset(request->ring, out);
1711
1712	gen8_emit_wa_tail(request, out);
1713}
1714
1715static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1716
1717static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1718					u32 *out)
1719{
1720	/* We're using qword write, seqno should be aligned to 8 bytes. */
1721	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1722
1723	/* w/a for post sync ops following a GPGPU operation we
1724	 * need a prior CS_STALL, which is emitted by the flush
1725	 * following the batch.
1726	 */
1727	*out++ = GFX_OP_PIPE_CONTROL(6);
1728	*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1729		  PIPE_CONTROL_CS_STALL |
1730		  PIPE_CONTROL_QW_WRITE);
1731	*out++ = intel_hws_seqno_address(request->engine);
1732	*out++ = 0;
1733	*out++ = request->global_seqno;
1734	/* We're thrashing one dword of HWS. */
1735	*out++ = 0;
1736	*out++ = MI_USER_INTERRUPT;
1737	*out++ = MI_NOOP;
1738	request->tail = intel_ring_offset(request->ring, out);
1739
1740	gen8_emit_wa_tail(request, out);
1741}
1742
1743static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1744
1745static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1746{
1747	int ret;
1748
1749	ret = intel_logical_ring_workarounds_emit(req);
1750	if (ret)
1751		return ret;
1752
1753	ret = intel_rcs_context_init_mocs(req);
1754	/*
1755	 * Failing to program the MOCS is non-fatal.The system will not
1756	 * run at peak performance. So generate an error and carry on.
1757	 */
1758	if (ret)
1759		DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1760
1761	return i915_gem_render_state_emit(req);
1762}
1763
1764/**
1765 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1766 * @engine: Engine Command Streamer.
1767 */
1768void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1769{
1770	struct drm_i915_private *dev_priv;
1771
1772	/*
1773	 * Tasklet cannot be active at this point due intel_mark_active/idle
1774	 * so this is just for documentation.
1775	 */
1776	if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1777		tasklet_kill(&engine->irq_tasklet);
1778
1779	dev_priv = engine->i915;
1780
1781	if (engine->buffer) {
1782		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1783	}
1784
1785	if (engine->cleanup)
1786		engine->cleanup(engine);
1787
1788	intel_engine_cleanup_common(engine);
1789
1790	if (engine->status_page.vma) {
1791		i915_gem_object_unpin_map(engine->status_page.vma->obj);
1792		engine->status_page.vma = NULL;
1793	}
1794	intel_lr_context_unpin(dev_priv->kernel_context, engine);
1795
1796	lrc_destroy_wa_ctx_obj(engine);
1797	engine->i915 = NULL;
1798	dev_priv->engine[engine->id] = NULL;
1799	kfree(engine);
1800}
1801
1802void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1803{
1804	struct intel_engine_cs *engine;
1805	enum intel_engine_id id;
1806
1807	for_each_engine(engine, dev_priv, id) {
1808		engine->submit_request = execlists_submit_request;
1809		engine->schedule = execlists_schedule;
1810	}
1811}
1812
1813static void
1814logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1815{
1816	/* Default vfuncs which can be overriden by each engine. */
1817	engine->init_hw = gen8_init_common_ring;
1818	engine->reset_hw = reset_common_ring;
1819	engine->emit_flush = gen8_emit_flush;
1820	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1821	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1822	engine->submit_request = execlists_submit_request;
1823	engine->schedule = execlists_schedule;
1824
1825	engine->irq_enable = gen8_logical_ring_enable_irq;
1826	engine->irq_disable = gen8_logical_ring_disable_irq;
1827	engine->emit_bb_start = gen8_emit_bb_start;
1828	if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
1829		engine->irq_seqno_barrier = bxt_a_seqno_barrier;
1830}
1831
1832static inline void
1833logical_ring_default_irqs(struct intel_engine_cs *engine)
1834{
1835	unsigned shift = engine->irq_shift;
1836	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1837	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1838}
1839
1840static int
1841lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1842{
1843	const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1844	void *hws;
1845
1846	/* The HWSP is part of the default context object in LRC mode. */
1847	hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1848	if (IS_ERR(hws))
1849		return PTR_ERR(hws);
1850
1851	engine->status_page.page_addr = hws + hws_offset;
1852	engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1853	engine->status_page.vma = vma;
1854
1855	return 0;
1856}
1857
1858static void
1859logical_ring_setup(struct intel_engine_cs *engine)
1860{
1861	struct drm_i915_private *dev_priv = engine->i915;
1862	enum forcewake_domains fw_domains;
1863
1864	intel_engine_setup_common(engine);
1865
1866	/* Intentionally left blank. */
1867	engine->buffer = NULL;
1868
1869	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1870						    RING_ELSP(engine),
1871						    FW_REG_WRITE);
1872
1873	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1874						     RING_CONTEXT_STATUS_PTR(engine),
1875						     FW_REG_READ | FW_REG_WRITE);
1876
1877	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1878						     RING_CONTEXT_STATUS_BUF_BASE(engine),
1879						     FW_REG_READ);
1880
1881	engine->fw_domains = fw_domains;
1882
1883	tasklet_init(&engine->irq_tasklet,
1884		     intel_lrc_irq_handler, (unsigned long)engine);
1885
1886	logical_ring_init_platform_invariants(engine);
1887	logical_ring_default_vfuncs(engine);
1888	logical_ring_default_irqs(engine);
1889}
1890
1891static int
1892logical_ring_init(struct intel_engine_cs *engine)
1893{
1894	struct i915_gem_context *dctx = engine->i915->kernel_context;
1895	int ret;
1896
1897	ret = intel_engine_init_common(engine);
1898	if (ret)
1899		goto error;
1900
1901	ret = execlists_context_deferred_alloc(dctx, engine);
1902	if (ret)
1903		goto error;
1904
1905	/* As this is the default context, always pin it */
1906	ret = intel_lr_context_pin(dctx, engine);
1907	if (ret) {
1908		DRM_ERROR("Failed to pin context for %s: %d\n",
1909			  engine->name, ret);
1910		goto error;
1911	}
1912
1913	/* And setup the hardware status page. */
1914	ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1915	if (ret) {
1916		DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1917		goto error;
1918	}
1919
1920	return 0;
1921
1922error:
1923	intel_logical_ring_cleanup(engine);
1924	return ret;
1925}
1926
1927int logical_render_ring_init(struct intel_engine_cs *engine)
1928{
1929	struct drm_i915_private *dev_priv = engine->i915;
1930	int ret;
1931
1932	logical_ring_setup(engine);
1933
1934	if (HAS_L3_DPF(dev_priv))
1935		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1936
1937	/* Override some for render ring. */
1938	if (INTEL_GEN(dev_priv) >= 9)
1939		engine->init_hw = gen9_init_render_ring;
1940	else
1941		engine->init_hw = gen8_init_render_ring;
1942	engine->init_context = gen8_init_rcs_context;
1943	engine->emit_flush = gen8_emit_flush_render;
1944	engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1945	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1946
1947	ret = intel_engine_create_scratch(engine, 4096);
1948	if (ret)
1949		return ret;
1950
1951	ret = intel_init_workaround_bb(engine);
1952	if (ret) {
1953		/*
1954		 * We continue even if we fail to initialize WA batch
1955		 * because we only expect rare glitches but nothing
1956		 * critical to prevent us from using GPU
1957		 */
1958		DRM_ERROR("WA batch buffer initialization failed: %d\n",
1959			  ret);
1960	}
1961
1962	return logical_ring_init(engine);
1963}
1964
1965int logical_xcs_ring_init(struct intel_engine_cs *engine)
1966{
1967	logical_ring_setup(engine);
1968
1969	return logical_ring_init(engine);
1970}
1971
1972static u32
1973make_rpcs(struct drm_i915_private *dev_priv)
1974{
1975	u32 rpcs = 0;
1976
1977	/*
1978	 * No explicit RPCS request is needed to ensure full
1979	 * slice/subslice/EU enablement prior to Gen9.
1980	*/
1981	if (INTEL_GEN(dev_priv) < 9)
1982		return 0;
1983
1984	/*
1985	 * Starting in Gen9, render power gating can leave
1986	 * slice/subslice/EU in a partially enabled state. We
1987	 * must make an explicit request through RPCS for full
1988	 * enablement.
1989	*/
1990	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1991		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1992		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1993			GEN8_RPCS_S_CNT_SHIFT;
1994		rpcs |= GEN8_RPCS_ENABLE;
1995	}
1996
1997	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1998		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1999		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2000			GEN8_RPCS_SS_CNT_SHIFT;
2001		rpcs |= GEN8_RPCS_ENABLE;
2002	}
2003
2004	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
2005		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2006			GEN8_RPCS_EU_MIN_SHIFT;
2007		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2008			GEN8_RPCS_EU_MAX_SHIFT;
2009		rpcs |= GEN8_RPCS_ENABLE;
2010	}
2011
2012	return rpcs;
2013}
2014
2015static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2016{
2017	u32 indirect_ctx_offset;
2018
2019	switch (INTEL_GEN(engine->i915)) {
2020	default:
2021		MISSING_CASE(INTEL_GEN(engine->i915));
2022		/* fall through */
2023	case 9:
2024		indirect_ctx_offset =
2025			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2026		break;
2027	case 8:
2028		indirect_ctx_offset =
2029			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2030		break;
2031	}
2032
2033	return indirect_ctx_offset;
2034}
2035
2036static void execlists_init_reg_state(u32 *reg_state,
2037				     struct i915_gem_context *ctx,
2038				     struct intel_engine_cs *engine,
2039				     struct intel_ring *ring)
2040{
2041	struct drm_i915_private *dev_priv = engine->i915;
2042	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2043
2044	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2045	 * commands followed by (reg, value) pairs. The values we are setting here are
2046	 * only for the first context restore: on a subsequent save, the GPU will
2047	 * recreate this batchbuffer with new values (including all the missing
2048	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2049	reg_state[CTX_LRI_HEADER_0] =
2050		MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2051	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2052		       RING_CONTEXT_CONTROL(engine),
2053		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2054					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2055					  (HAS_RESOURCE_STREAMER(dev_priv) ?
2056					   CTX_CTRL_RS_CTX_ENABLE : 0)));
2057	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2058		       0);
2059	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2060		       0);
2061	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2062		       RING_START(engine->mmio_base), 0);
2063	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2064		       RING_CTL(engine->mmio_base),
2065		       RING_CTL_SIZE(ring->size) | RING_VALID);
2066	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2067		       RING_BBADDR_UDW(engine->mmio_base), 0);
2068	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2069		       RING_BBADDR(engine->mmio_base), 0);
2070	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2071		       RING_BBSTATE(engine->mmio_base),
2072		       RING_BB_PPGTT);
2073	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2074		       RING_SBBADDR_UDW(engine->mmio_base), 0);
2075	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2076		       RING_SBBADDR(engine->mmio_base), 0);
2077	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2078		       RING_SBBSTATE(engine->mmio_base), 0);
2079	if (engine->id == RCS) {
2080		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2081			       RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2082		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2083			       RING_INDIRECT_CTX(engine->mmio_base), 0);
2084		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2085			       RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2086		if (engine->wa_ctx.vma) {
2087			struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2088			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2089
2090			reg_state[CTX_RCS_INDIRECT_CTX+1] =
2091				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2092				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2093
2094			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2095				intel_lr_indirect_ctx_offset(engine) << 6;
2096
2097			reg_state[CTX_BB_PER_CTX_PTR+1] =
2098				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2099				0x01;
2100		}
2101	}
2102	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2103	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2104		       RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2105	/* PDP values well be assigned later if needed */
2106	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2107		       0);
2108	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2109		       0);
2110	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2111		       0);
2112	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2113		       0);
2114	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2115		       0);
2116	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2117		       0);
2118	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2119		       0);
2120	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2121		       0);
2122
2123	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2124		/* 64b PPGTT (48bit canonical)
2125		 * PDP0_DESCRIPTOR contains the base address to PML4 and
2126		 * other PDP Descriptors are ignored.
2127		 */
2128		ASSIGN_CTX_PML4(ppgtt, reg_state);
2129	} else {
2130		/* 32b PPGTT
2131		 * PDP*_DESCRIPTOR contains the base address of space supported.
2132		 * With dynamic page allocation, PDPs may not be allocated at
2133		 * this point. Point the unallocated PDPs to the scratch page
2134		 */
2135		execlists_update_context_pdps(ppgtt, reg_state);
2136	}
2137
2138	if (engine->id == RCS) {
2139		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2140		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2141			       make_rpcs(dev_priv));
2142	}
2143}
2144
2145static int
2146populate_lr_context(struct i915_gem_context *ctx,
2147		    struct drm_i915_gem_object *ctx_obj,
2148		    struct intel_engine_cs *engine,
2149		    struct intel_ring *ring)
2150{
2151	void *vaddr;
2152	int ret;
2153
2154	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2155	if (ret) {
2156		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2157		return ret;
2158	}
2159
2160	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2161	if (IS_ERR(vaddr)) {
2162		ret = PTR_ERR(vaddr);
2163		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2164		return ret;
2165	}
2166	ctx_obj->mm.dirty = true;
2167
2168	/* The second page of the context object contains some fields which must
2169	 * be set up prior to the first execution. */
2170
2171	execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
2172				 ctx, engine, ring);
2173
2174	i915_gem_object_unpin_map(ctx_obj);
2175
2176	return 0;
2177}
2178
2179/**
2180 * intel_lr_context_size() - return the size of the context for an engine
2181 * @engine: which engine to find the context size for
2182 *
2183 * Each engine may require a different amount of space for a context image,
2184 * so when allocating (or copying) an image, this function can be used to
2185 * find the right size for the specific engine.
2186 *
2187 * Return: size (in bytes) of an engine-specific context image
2188 *
2189 * Note: this size includes the HWSP, which is part of the context image
2190 * in LRC mode, but does not include the "shared data page" used with
2191 * GuC submission. The caller should account for this if using the GuC.
2192 */
2193uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2194{
2195	int ret = 0;
2196
2197	WARN_ON(INTEL_GEN(engine->i915) < 8);
2198
2199	switch (engine->id) {
2200	case RCS:
2201		if (INTEL_GEN(engine->i915) >= 9)
2202			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2203		else
2204			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2205		break;
2206	case VCS:
2207	case BCS:
2208	case VECS:
2209	case VCS2:
2210		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2211		break;
2212	}
2213
2214	return ret;
2215}
2216
2217static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2218					    struct intel_engine_cs *engine)
2219{
2220	struct drm_i915_gem_object *ctx_obj;
2221	struct intel_context *ce = &ctx->engine[engine->id];
2222	struct i915_vma *vma;
2223	uint32_t context_size;
2224	struct intel_ring *ring;
2225	int ret;
2226
2227	WARN_ON(ce->state);
2228
2229	context_size = round_up(intel_lr_context_size(engine), 4096);
2230
2231	/* One extra page as the sharing data between driver and GuC */
2232	context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2233
2234	ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
2235	if (IS_ERR(ctx_obj)) {
2236		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2237		return PTR_ERR(ctx_obj);
2238	}
2239
2240	vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2241	if (IS_ERR(vma)) {
2242		ret = PTR_ERR(vma);
2243		goto error_deref_obj;
2244	}
2245
2246	ring = intel_engine_create_ring(engine, ctx->ring_size);
2247	if (IS_ERR(ring)) {
2248		ret = PTR_ERR(ring);
2249		goto error_deref_obj;
2250	}
2251
2252	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2253	if (ret) {
2254		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2255		goto error_ring_free;
2256	}
2257
2258	ce->ring = ring;
2259	ce->state = vma;
2260	ce->initialised = engine->init_context == NULL;
2261
2262	return 0;
2263
2264error_ring_free:
2265	intel_ring_free(ring);
2266error_deref_obj:
2267	i915_gem_object_put(ctx_obj);
2268	return ret;
2269}
2270
2271void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2272{
2273	struct intel_engine_cs *engine;
2274	struct i915_gem_context *ctx;
2275	enum intel_engine_id id;
2276
2277	/* Because we emit WA_TAIL_DWORDS there may be a disparity
2278	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2279	 * that stored in context. As we only write new commands from
2280	 * ce->ring->tail onwards, everything before that is junk. If the GPU
2281	 * starts reading from its RING_HEAD from the context, it may try to
2282	 * execute that junk and die.
2283	 *
2284	 * So to avoid that we reset the context images upon resume. For
2285	 * simplicity, we just zero everything out.
2286	 */
2287	list_for_each_entry(ctx, &dev_priv->context_list, link) {
2288		for_each_engine(engine, dev_priv, id) {
2289			struct intel_context *ce = &ctx->engine[engine->id];
2290			u32 *reg;
2291
2292			if (!ce->state)
2293				continue;
2294
2295			reg = i915_gem_object_pin_map(ce->state->obj,
2296						      I915_MAP_WB);
2297			if (WARN_ON(IS_ERR(reg)))
2298				continue;
2299
2300			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2301			reg[CTX_RING_HEAD+1] = 0;
2302			reg[CTX_RING_TAIL+1] = 0;
2303
2304			ce->state->obj->mm.dirty = true;
2305			i915_gem_object_unpin_map(ce->state->obj);
2306
2307			ce->ring->head = ce->ring->tail = 0;
2308			ce->ring->last_retired_head = -1;
2309			intel_ring_update_space(ce->ring);
2310		}
2311	}
2312}