Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * This file contains driver for the Cadence Triple Timer Counter Rev 06
  3 *
  4 *  Copyright (C) 2011-2013 Xilinx
  5 *
  6 * based on arch/mips/kernel/time.c timer driver
  7 *
  8 * This software is licensed under the terms of the GNU General Public
  9 * License version 2, as published by the Free Software Foundation, and
 10 * may be copied, distributed, and modified under those terms.
 11 *
 12 * This program is distributed in the hope that it will be useful,
 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 * GNU General Public License for more details.
 16 */
 17
 18#include <linux/clk.h>
 19#include <linux/interrupt.h>
 20#include <linux/clockchips.h>
 21#include <linux/clocksource.h>
 22#include <linux/of_address.h>
 23#include <linux/of_irq.h>
 24#include <linux/slab.h>
 25#include <linux/sched_clock.h>
 26
 27/*
 28 * This driver configures the 2 16/32-bit count-up timers as follows:
 29 *
 30 * T1: Timer 1, clocksource for generic timekeeping
 31 * T2: Timer 2, clockevent source for hrtimers
 32 * T3: Timer 3, <unused>
 33 *
 34 * The input frequency to the timer module for emulation is 2.5MHz which is
 35 * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
 36 * the timers are clocked at 78.125KHz (12.8 us resolution).
 37
 38 * The input frequency to the timer module in silicon is configurable and
 39 * obtained from device tree. The pre-scaler of 32 is used.
 40 */
 41
 42/*
 43 * Timer Register Offset Definitions of Timer 1, Increment base address by 4
 44 * and use same offsets for Timer 2
 45 */
 46#define TTC_CLK_CNTRL_OFFSET		0x00 /* Clock Control Reg, RW */
 47#define TTC_CNT_CNTRL_OFFSET		0x0C /* Counter Control Reg, RW */
 48#define TTC_COUNT_VAL_OFFSET		0x18 /* Counter Value Reg, RO */
 49#define TTC_INTR_VAL_OFFSET		0x24 /* Interval Count Reg, RW */
 50#define TTC_ISR_OFFSET		0x54 /* Interrupt Status Reg, RO */
 51#define TTC_IER_OFFSET		0x60 /* Interrupt Enable Reg, RW */
 52
 53#define TTC_CNT_CNTRL_DISABLE_MASK	0x1
 54
 55#define TTC_CLK_CNTRL_CSRC_MASK		(1 << 5)	/* clock source */
 56#define TTC_CLK_CNTRL_PSV_MASK		0x1e
 57#define TTC_CLK_CNTRL_PSV_SHIFT		1
 58
 59/*
 60 * Setup the timers to use pre-scaling, using a fixed value for now that will
 61 * work across most input frequency, but it may need to be more dynamic
 62 */
 63#define PRESCALE_EXPONENT	11	/* 2 ^ PRESCALE_EXPONENT = PRESCALE */
 64#define PRESCALE		2048	/* The exponent must match this */
 65#define CLK_CNTRL_PRESCALE	((PRESCALE_EXPONENT - 1) << 1)
 66#define CLK_CNTRL_PRESCALE_EN	1
 67#define CNT_CNTRL_RESET		(1 << 4)
 68
 69#define MAX_F_ERR 50
 70
 71/**
 72 * struct ttc_timer - This definition defines local timer structure
 73 *
 74 * @base_addr:	Base address of timer
 75 * @freq:	Timer input clock frequency
 76 * @clk:	Associated clock source
 77 * @clk_rate_change_nb	Notifier block for clock rate changes
 78 */
 79struct ttc_timer {
 80	void __iomem *base_addr;
 81	unsigned long freq;
 82	struct clk *clk;
 83	struct notifier_block clk_rate_change_nb;
 84};
 85
 86#define to_ttc_timer(x) \
 87		container_of(x, struct ttc_timer, clk_rate_change_nb)
 88
 89struct ttc_timer_clocksource {
 90	u32			scale_clk_ctrl_reg_old;
 91	u32			scale_clk_ctrl_reg_new;
 92	struct ttc_timer	ttc;
 93	struct clocksource	cs;
 94};
 95
 96#define to_ttc_timer_clksrc(x) \
 97		container_of(x, struct ttc_timer_clocksource, cs)
 98
 99struct ttc_timer_clockevent {
100	struct ttc_timer		ttc;
101	struct clock_event_device	ce;
102};
103
104#define to_ttc_timer_clkevent(x) \
105		container_of(x, struct ttc_timer_clockevent, ce)
106
107static void __iomem *ttc_sched_clock_val_reg;
108
109/**
110 * ttc_set_interval - Set the timer interval value
111 *
112 * @timer:	Pointer to the timer instance
113 * @cycles:	Timer interval ticks
114 **/
115static void ttc_set_interval(struct ttc_timer *timer,
116					unsigned long cycles)
117{
118	u32 ctrl_reg;
119
120	/* Disable the counter, set the counter value  and re-enable counter */
121	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
122	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
123	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
124
125	writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
126
127	/*
128	 * Reset the counter (0x10) so that it starts from 0, one-shot
129	 * mode makes this needed for timing to be right.
130	 */
131	ctrl_reg |= CNT_CNTRL_RESET;
132	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
133	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
134}
135
136/**
137 * ttc_clock_event_interrupt - Clock event timer interrupt handler
138 *
139 * @irq:	IRQ number of the Timer
140 * @dev_id:	void pointer to the ttc_timer instance
141 *
142 * returns: Always IRQ_HANDLED - success
143 **/
144static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
145{
146	struct ttc_timer_clockevent *ttce = dev_id;
147	struct ttc_timer *timer = &ttce->ttc;
148
149	/* Acknowledge the interrupt and call event handler */
150	readl_relaxed(timer->base_addr + TTC_ISR_OFFSET);
151
152	ttce->ce.event_handler(&ttce->ce);
153
154	return IRQ_HANDLED;
155}
156
157/**
158 * __ttc_clocksource_read - Reads the timer counter register
159 *
160 * returns: Current timer counter register value
161 **/
162static u64 __ttc_clocksource_read(struct clocksource *cs)
163{
164	struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
165
166	return (u64)readl_relaxed(timer->base_addr +
167				TTC_COUNT_VAL_OFFSET);
168}
169
170static u64 notrace ttc_sched_clock_read(void)
171{
172	return readl_relaxed(ttc_sched_clock_val_reg);
173}
174
175/**
176 * ttc_set_next_event - Sets the time interval for next event
177 *
178 * @cycles:	Timer interval ticks
179 * @evt:	Address of clock event instance
180 *
181 * returns: Always 0 - success
182 **/
183static int ttc_set_next_event(unsigned long cycles,
184					struct clock_event_device *evt)
185{
186	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
187	struct ttc_timer *timer = &ttce->ttc;
188
189	ttc_set_interval(timer, cycles);
190	return 0;
191}
192
193/**
194 * ttc_set_{shutdown|oneshot|periodic} - Sets the state of timer
195 *
196 * @evt:	Address of clock event instance
197 **/
198static int ttc_shutdown(struct clock_event_device *evt)
199{
200	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
201	struct ttc_timer *timer = &ttce->ttc;
202	u32 ctrl_reg;
203
204	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
205	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
206	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
207	return 0;
208}
209
210static int ttc_set_periodic(struct clock_event_device *evt)
211{
212	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
213	struct ttc_timer *timer = &ttce->ttc;
214
215	ttc_set_interval(timer,
216			 DIV_ROUND_CLOSEST(ttce->ttc.freq, PRESCALE * HZ));
217	return 0;
218}
219
220static int ttc_resume(struct clock_event_device *evt)
221{
222	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
223	struct ttc_timer *timer = &ttce->ttc;
224	u32 ctrl_reg;
225
226	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
227	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
228	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
229	return 0;
230}
231
232static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
233		unsigned long event, void *data)
234{
235	struct clk_notifier_data *ndata = data;
236	struct ttc_timer *ttc = to_ttc_timer(nb);
237	struct ttc_timer_clocksource *ttccs = container_of(ttc,
238			struct ttc_timer_clocksource, ttc);
239
240	switch (event) {
241	case PRE_RATE_CHANGE:
242	{
243		u32 psv;
244		unsigned long factor, rate_low, rate_high;
245
246		if (ndata->new_rate > ndata->old_rate) {
247			factor = DIV_ROUND_CLOSEST(ndata->new_rate,
248					ndata->old_rate);
249			rate_low = ndata->old_rate;
250			rate_high = ndata->new_rate;
251		} else {
252			factor = DIV_ROUND_CLOSEST(ndata->old_rate,
253					ndata->new_rate);
254			rate_low = ndata->new_rate;
255			rate_high = ndata->old_rate;
256		}
257
258		if (!is_power_of_2(factor))
259				return NOTIFY_BAD;
260
261		if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
262			return NOTIFY_BAD;
263
264		factor = __ilog2_u32(factor);
265
266		/*
267		 * store timer clock ctrl register so we can restore it in case
268		 * of an abort.
269		 */
270		ttccs->scale_clk_ctrl_reg_old =
271			readl_relaxed(ttccs->ttc.base_addr +
272			TTC_CLK_CNTRL_OFFSET);
273
274		psv = (ttccs->scale_clk_ctrl_reg_old &
275				TTC_CLK_CNTRL_PSV_MASK) >>
276				TTC_CLK_CNTRL_PSV_SHIFT;
277		if (ndata->new_rate < ndata->old_rate)
278			psv -= factor;
279		else
280			psv += factor;
281
282		/* prescaler within legal range? */
283		if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
284			return NOTIFY_BAD;
285
286		ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
287			~TTC_CLK_CNTRL_PSV_MASK;
288		ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;
289
290
291		/* scale down: adjust divider in post-change notification */
292		if (ndata->new_rate < ndata->old_rate)
293			return NOTIFY_DONE;
294
295		/* scale up: adjust divider now - before frequency change */
296		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
297			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
298		break;
299	}
300	case POST_RATE_CHANGE:
301		/* scale up: pre-change notification did the adjustment */
302		if (ndata->new_rate > ndata->old_rate)
303			return NOTIFY_OK;
304
305		/* scale down: adjust divider now - after frequency change */
306		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
307			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
308		break;
309
310	case ABORT_RATE_CHANGE:
311		/* we have to undo the adjustment in case we scale up */
312		if (ndata->new_rate < ndata->old_rate)
313			return NOTIFY_OK;
314
315		/* restore original register value */
316		writel_relaxed(ttccs->scale_clk_ctrl_reg_old,
317			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
318		/* fall through */
319	default:
320		return NOTIFY_DONE;
321	}
322
323	return NOTIFY_DONE;
324}
325
326static int __init ttc_setup_clocksource(struct clk *clk, void __iomem *base,
327					 u32 timer_width)
328{
329	struct ttc_timer_clocksource *ttccs;
330	int err;
331
332	ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
333	if (!ttccs)
334		return -ENOMEM;
335
336	ttccs->ttc.clk = clk;
337
338	err = clk_prepare_enable(ttccs->ttc.clk);
339	if (err) {
340		kfree(ttccs);
341		return err;
342	}
343
344	ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);
345
346	ttccs->ttc.clk_rate_change_nb.notifier_call =
347		ttc_rate_change_clocksource_cb;
348	ttccs->ttc.clk_rate_change_nb.next = NULL;
349
350	err = clk_notifier_register(ttccs->ttc.clk,
351				    &ttccs->ttc.clk_rate_change_nb);
352	if (err)
353		pr_warn("Unable to register clock notifier.\n");
354
355	ttccs->ttc.base_addr = base;
356	ttccs->cs.name = "ttc_clocksource";
357	ttccs->cs.rating = 200;
358	ttccs->cs.read = __ttc_clocksource_read;
359	ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width);
360	ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
361
362	/*
363	 * Setup the clock source counter to be an incrementing counter
364	 * with no interrupt and it rolls over at 0xFFFF. Pre-scale
365	 * it by 32 also. Let it start running now.
366	 */
367	writel_relaxed(0x0,  ttccs->ttc.base_addr + TTC_IER_OFFSET);
368	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
369		     ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
370	writel_relaxed(CNT_CNTRL_RESET,
371		     ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
372
373	err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
374	if (err) {
375		kfree(ttccs);
376		return err;
377	}
378
379	ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
380	sched_clock_register(ttc_sched_clock_read, timer_width,
381			     ttccs->ttc.freq / PRESCALE);
382
383	return 0;
384}
385
386static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
387		unsigned long event, void *data)
388{
389	struct clk_notifier_data *ndata = data;
390	struct ttc_timer *ttc = to_ttc_timer(nb);
391	struct ttc_timer_clockevent *ttcce = container_of(ttc,
392			struct ttc_timer_clockevent, ttc);
393
394	switch (event) {
395	case POST_RATE_CHANGE:
396		/* update cached frequency */
397		ttc->freq = ndata->new_rate;
398
399		clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);
400
401		/* fall through */
402	case PRE_RATE_CHANGE:
403	case ABORT_RATE_CHANGE:
404	default:
405		return NOTIFY_DONE;
406	}
407}
408
409static int __init ttc_setup_clockevent(struct clk *clk,
410				       void __iomem *base, u32 irq)
411{
412	struct ttc_timer_clockevent *ttcce;
413	int err;
414
415	ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
416	if (!ttcce)
417		return -ENOMEM;
418
419	ttcce->ttc.clk = clk;
420
421	err = clk_prepare_enable(ttcce->ttc.clk);
422	if (err) {
423		kfree(ttcce);
424		return err;
425	}
426
427	ttcce->ttc.clk_rate_change_nb.notifier_call =
428		ttc_rate_change_clockevent_cb;
429	ttcce->ttc.clk_rate_change_nb.next = NULL;
430
431	err = clk_notifier_register(ttcce->ttc.clk,
432				    &ttcce->ttc.clk_rate_change_nb);
433	if (err) {
434		pr_warn("Unable to register clock notifier.\n");
435		return err;
436	}
437
438	ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
439
440	ttcce->ttc.base_addr = base;
441	ttcce->ce.name = "ttc_clockevent";
442	ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
443	ttcce->ce.set_next_event = ttc_set_next_event;
444	ttcce->ce.set_state_shutdown = ttc_shutdown;
445	ttcce->ce.set_state_periodic = ttc_set_periodic;
446	ttcce->ce.set_state_oneshot = ttc_shutdown;
447	ttcce->ce.tick_resume = ttc_resume;
448	ttcce->ce.rating = 200;
449	ttcce->ce.irq = irq;
450	ttcce->ce.cpumask = cpu_possible_mask;
451
452	/*
453	 * Setup the clock event timer to be an interval timer which
454	 * is prescaled by 32 using the interval interrupt. Leave it
455	 * disabled for now.
456	 */
457	writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
458	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
459		     ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
460	writel_relaxed(0x1,  ttcce->ttc.base_addr + TTC_IER_OFFSET);
461
462	err = request_irq(irq, ttc_clock_event_interrupt,
463			  IRQF_TIMER, ttcce->ce.name, ttcce);
464	if (err) {
465		kfree(ttcce);
466		return err;
467	}
468
469	clockevents_config_and_register(&ttcce->ce,
470			ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
471
472	return 0;
473}
474
475/**
476 * ttc_timer_init - Initialize the timer
477 *
478 * Initializes the timer hardware and register the clock source and clock event
479 * timers with Linux kernal timer framework
480 */
481static int __init ttc_timer_init(struct device_node *timer)
482{
483	unsigned int irq;
484	void __iomem *timer_baseaddr;
485	struct clk *clk_cs, *clk_ce;
486	static int initialized;
487	int clksel, ret;
488	u32 timer_width = 16;
489
490	if (initialized)
491		return 0;
492
493	initialized = 1;
494
495	/*
496	 * Get the 1st Triple Timer Counter (TTC) block from the device tree
497	 * and use it. Note that the event timer uses the interrupt and it's the
498	 * 2nd TTC hence the irq_of_parse_and_map(,1)
499	 */
500	timer_baseaddr = of_iomap(timer, 0);
501	if (!timer_baseaddr) {
502		pr_err("ERROR: invalid timer base address\n");
503		return -ENXIO;
504	}
505
506	irq = irq_of_parse_and_map(timer, 1);
507	if (irq <= 0) {
508		pr_err("ERROR: invalid interrupt number\n");
509		return -EINVAL;
510	}
511
512	of_property_read_u32(timer, "timer-width", &timer_width);
513
514	clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
515	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
516	clk_cs = of_clk_get(timer, clksel);
517	if (IS_ERR(clk_cs)) {
518		pr_err("ERROR: timer input clock not found\n");
519		return PTR_ERR(clk_cs);
520	}
521
522	clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
523	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
524	clk_ce = of_clk_get(timer, clksel);
525	if (IS_ERR(clk_ce)) {
526		pr_err("ERROR: timer input clock not found\n");
527		return PTR_ERR(clk_ce);
528	}
529
530	ret = ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width);
531	if (ret)
532		return ret;
533
534	ret = ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
535	if (ret)
536		return ret;
537
538	pr_info("%s #0 at %p, irq=%d\n", timer->name, timer_baseaddr, irq);
539
540	return 0;
541}
542
543TIMER_OF_DECLARE(ttc, "cdns,ttc", ttc_timer_init);