Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * This file contains driver for the Cadence Triple Timer Counter Rev 06
  3 *
  4 *  Copyright (C) 2011-2013 Xilinx
  5 *
  6 * based on arch/mips/kernel/time.c timer driver
  7 *
  8 * This software is licensed under the terms of the GNU General Public
  9 * License version 2, as published by the Free Software Foundation, and
 10 * may be copied, distributed, and modified under those terms.
 11 *
 12 * This program is distributed in the hope that it will be useful,
 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 * GNU General Public License for more details.
 16 */
 17
 18#include <linux/clk.h>
 19#include <linux/clk-provider.h>
 20#include <linux/interrupt.h>
 21#include <linux/clockchips.h>
 22#include <linux/of_address.h>
 23#include <linux/of_irq.h>
 24#include <linux/slab.h>
 25#include <linux/sched_clock.h>
 26
 27/*
 28 * This driver configures the 2 16-bit count-up timers as follows:
 29 *
 30 * T1: Timer 1, clocksource for generic timekeeping
 31 * T2: Timer 2, clockevent source for hrtimers
 32 * T3: Timer 3, <unused>
 33 *
 34 * The input frequency to the timer module for emulation is 2.5MHz which is
 35 * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
 36 * the timers are clocked at 78.125KHz (12.8 us resolution).
 37
 38 * The input frequency to the timer module in silicon is configurable and
 39 * obtained from device tree. The pre-scaler of 32 is used.
 40 */
 41
 42/*
 43 * Timer Register Offset Definitions of Timer 1, Increment base address by 4
 44 * and use same offsets for Timer 2
 45 */
 46#define TTC_CLK_CNTRL_OFFSET		0x00 /* Clock Control Reg, RW */
 47#define TTC_CNT_CNTRL_OFFSET		0x0C /* Counter Control Reg, RW */
 48#define TTC_COUNT_VAL_OFFSET		0x18 /* Counter Value Reg, RO */
 49#define TTC_INTR_VAL_OFFSET		0x24 /* Interval Count Reg, RW */
 50#define TTC_ISR_OFFSET		0x54 /* Interrupt Status Reg, RO */
 51#define TTC_IER_OFFSET		0x60 /* Interrupt Enable Reg, RW */
 52
 53#define TTC_CNT_CNTRL_DISABLE_MASK	0x1
 54
 55#define TTC_CLK_CNTRL_CSRC_MASK		(1 << 5)	/* clock source */
 56#define TTC_CLK_CNTRL_PSV_MASK		0x1e
 57#define TTC_CLK_CNTRL_PSV_SHIFT		1
 58
 59/*
 60 * Setup the timers to use pre-scaling, using a fixed value for now that will
 61 * work across most input frequency, but it may need to be more dynamic
 62 */
 63#define PRESCALE_EXPONENT	11	/* 2 ^ PRESCALE_EXPONENT = PRESCALE */
 64#define PRESCALE		2048	/* The exponent must match this */
 65#define CLK_CNTRL_PRESCALE	((PRESCALE_EXPONENT - 1) << 1)
 66#define CLK_CNTRL_PRESCALE_EN	1
 67#define CNT_CNTRL_RESET		(1 << 4)
 68
 69#define MAX_F_ERR 50
 70
 71/**
 72 * struct ttc_timer - This definition defines local timer structure
 73 *
 74 * @base_addr:	Base address of timer
 75 * @freq:	Timer input clock frequency
 76 * @clk:	Associated clock source
 77 * @clk_rate_change_nb	Notifier block for clock rate changes
 78 */
 79struct ttc_timer {
 80	void __iomem *base_addr;
 81	unsigned long freq;
 82	struct clk *clk;
 83	struct notifier_block clk_rate_change_nb;
 84};
 85
 86#define to_ttc_timer(x) \
 87		container_of(x, struct ttc_timer, clk_rate_change_nb)
 88
 89struct ttc_timer_clocksource {
 90	u32			scale_clk_ctrl_reg_old;
 91	u32			scale_clk_ctrl_reg_new;
 92	struct ttc_timer	ttc;
 93	struct clocksource	cs;
 94};
 95
 96#define to_ttc_timer_clksrc(x) \
 97		container_of(x, struct ttc_timer_clocksource, cs)
 98
 99struct ttc_timer_clockevent {
100	struct ttc_timer		ttc;
101	struct clock_event_device	ce;
102};
103
104#define to_ttc_timer_clkevent(x) \
105		container_of(x, struct ttc_timer_clockevent, ce)
106
107static void __iomem *ttc_sched_clock_val_reg;
108
109/**
110 * ttc_set_interval - Set the timer interval value
111 *
112 * @timer:	Pointer to the timer instance
113 * @cycles:	Timer interval ticks
114 **/
115static void ttc_set_interval(struct ttc_timer *timer,
116					unsigned long cycles)
117{
118	u32 ctrl_reg;
119
120	/* Disable the counter, set the counter value  and re-enable counter */
121	ctrl_reg = __raw_readl(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
122	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
123	__raw_writel(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
124
125	__raw_writel(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
126
127	/*
128	 * Reset the counter (0x10) so that it starts from 0, one-shot
129	 * mode makes this needed for timing to be right.
130	 */
131	ctrl_reg |= CNT_CNTRL_RESET;
132	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
133	__raw_writel(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
134}
135
136/**
137 * ttc_clock_event_interrupt - Clock event timer interrupt handler
138 *
139 * @irq:	IRQ number of the Timer
140 * @dev_id:	void pointer to the ttc_timer instance
141 *
142 * returns: Always IRQ_HANDLED - success
143 **/
144static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
145{
146	struct ttc_timer_clockevent *ttce = dev_id;
147	struct ttc_timer *timer = &ttce->ttc;
148
149	/* Acknowledge the interrupt and call event handler */
150	__raw_readl(timer->base_addr + TTC_ISR_OFFSET);
151
152	ttce->ce.event_handler(&ttce->ce);
153
154	return IRQ_HANDLED;
155}
156
157/**
158 * __ttc_clocksource_read - Reads the timer counter register
159 *
160 * returns: Current timer counter register value
161 **/
162static cycle_t __ttc_clocksource_read(struct clocksource *cs)
163{
164	struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
165
166	return (cycle_t)__raw_readl(timer->base_addr +
167				TTC_COUNT_VAL_OFFSET);
168}
169
170static u64 notrace ttc_sched_clock_read(void)
171{
172	return __raw_readl(ttc_sched_clock_val_reg);
173}
174
175/**
176 * ttc_set_next_event - Sets the time interval for next event
177 *
178 * @cycles:	Timer interval ticks
179 * @evt:	Address of clock event instance
180 *
181 * returns: Always 0 - success
182 **/
183static int ttc_set_next_event(unsigned long cycles,
184					struct clock_event_device *evt)
185{
186	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
187	struct ttc_timer *timer = &ttce->ttc;
188
189	ttc_set_interval(timer, cycles);
190	return 0;
191}
192
193/**
194 * ttc_set_mode - Sets the mode of timer
195 *
196 * @mode:	Mode to be set
197 * @evt:	Address of clock event instance
198 **/
199static void ttc_set_mode(enum clock_event_mode mode,
200					struct clock_event_device *evt)
201{
202	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
203	struct ttc_timer *timer = &ttce->ttc;
204	u32 ctrl_reg;
205
206	switch (mode) {
207	case CLOCK_EVT_MODE_PERIODIC:
208		ttc_set_interval(timer, DIV_ROUND_CLOSEST(ttce->ttc.freq,
209						PRESCALE * HZ));
210		break;
211	case CLOCK_EVT_MODE_ONESHOT:
212	case CLOCK_EVT_MODE_UNUSED:
213	case CLOCK_EVT_MODE_SHUTDOWN:
214		ctrl_reg = __raw_readl(timer->base_addr +
215					TTC_CNT_CNTRL_OFFSET);
216		ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
217		__raw_writel(ctrl_reg,
218				timer->base_addr + TTC_CNT_CNTRL_OFFSET);
219		break;
220	case CLOCK_EVT_MODE_RESUME:
221		ctrl_reg = __raw_readl(timer->base_addr +
222					TTC_CNT_CNTRL_OFFSET);
223		ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
224		__raw_writel(ctrl_reg,
225				timer->base_addr + TTC_CNT_CNTRL_OFFSET);
226		break;
227	}
228}
229
230static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
231		unsigned long event, void *data)
232{
233	struct clk_notifier_data *ndata = data;
234	struct ttc_timer *ttc = to_ttc_timer(nb);
235	struct ttc_timer_clocksource *ttccs = container_of(ttc,
236			struct ttc_timer_clocksource, ttc);
237
238	switch (event) {
239	case PRE_RATE_CHANGE:
240	{
241		u32 psv;
242		unsigned long factor, rate_low, rate_high;
243
244		if (ndata->new_rate > ndata->old_rate) {
245			factor = DIV_ROUND_CLOSEST(ndata->new_rate,
246					ndata->old_rate);
247			rate_low = ndata->old_rate;
248			rate_high = ndata->new_rate;
249		} else {
250			factor = DIV_ROUND_CLOSEST(ndata->old_rate,
251					ndata->new_rate);
252			rate_low = ndata->new_rate;
253			rate_high = ndata->old_rate;
254		}
255
256		if (!is_power_of_2(factor))
257				return NOTIFY_BAD;
258
259		if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
260			return NOTIFY_BAD;
261
262		factor = __ilog2_u32(factor);
263
264		/*
265		 * store timer clock ctrl register so we can restore it in case
266		 * of an abort.
267		 */
268		ttccs->scale_clk_ctrl_reg_old =
269			__raw_readl(ttccs->ttc.base_addr +
270					TTC_CLK_CNTRL_OFFSET);
271
272		psv = (ttccs->scale_clk_ctrl_reg_old &
273				TTC_CLK_CNTRL_PSV_MASK) >>
274				TTC_CLK_CNTRL_PSV_SHIFT;
275		if (ndata->new_rate < ndata->old_rate)
276			psv -= factor;
277		else
278			psv += factor;
279
280		/* prescaler within legal range? */
281		if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
282			return NOTIFY_BAD;
283
284		ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
285			~TTC_CLK_CNTRL_PSV_MASK;
286		ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;
287
288
289		/* scale down: adjust divider in post-change notification */
290		if (ndata->new_rate < ndata->old_rate)
291			return NOTIFY_DONE;
292
293		/* scale up: adjust divider now - before frequency change */
294		__raw_writel(ttccs->scale_clk_ctrl_reg_new,
295				ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
296		break;
297	}
298	case POST_RATE_CHANGE:
299		/* scale up: pre-change notification did the adjustment */
300		if (ndata->new_rate > ndata->old_rate)
301			return NOTIFY_OK;
302
303		/* scale down: adjust divider now - after frequency change */
304		__raw_writel(ttccs->scale_clk_ctrl_reg_new,
305				ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
306		break;
307
308	case ABORT_RATE_CHANGE:
309		/* we have to undo the adjustment in case we scale up */
310		if (ndata->new_rate < ndata->old_rate)
311			return NOTIFY_OK;
312
313		/* restore original register value */
314		__raw_writel(ttccs->scale_clk_ctrl_reg_old,
315				ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
316		/* fall through */
317	default:
318		return NOTIFY_DONE;
319	}
320
321	return NOTIFY_DONE;
322}
323
324static void __init ttc_setup_clocksource(struct clk *clk, void __iomem *base)
325{
326	struct ttc_timer_clocksource *ttccs;
327	int err;
328
329	ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
330	if (WARN_ON(!ttccs))
331		return;
332
333	ttccs->ttc.clk = clk;
334
335	err = clk_prepare_enable(ttccs->ttc.clk);
336	if (WARN_ON(err)) {
337		kfree(ttccs);
338		return;
339	}
340
341	ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);
342
343	ttccs->ttc.clk_rate_change_nb.notifier_call =
344		ttc_rate_change_clocksource_cb;
345	ttccs->ttc.clk_rate_change_nb.next = NULL;
346	if (clk_notifier_register(ttccs->ttc.clk,
347				&ttccs->ttc.clk_rate_change_nb))
348		pr_warn("Unable to register clock notifier.\n");
349
350	ttccs->ttc.base_addr = base;
351	ttccs->cs.name = "ttc_clocksource";
352	ttccs->cs.rating = 200;
353	ttccs->cs.read = __ttc_clocksource_read;
354	ttccs->cs.mask = CLOCKSOURCE_MASK(16);
355	ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
356
357	/*
358	 * Setup the clock source counter to be an incrementing counter
359	 * with no interrupt and it rolls over at 0xFFFF. Pre-scale
360	 * it by 32 also. Let it start running now.
361	 */
362	__raw_writel(0x0,  ttccs->ttc.base_addr + TTC_IER_OFFSET);
363	__raw_writel(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
364		     ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
365	__raw_writel(CNT_CNTRL_RESET,
366		     ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
367
368	err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
369	if (WARN_ON(err)) {
370		kfree(ttccs);
371		return;
372	}
373
374	ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
375	sched_clock_register(ttc_sched_clock_read, 16, ttccs->ttc.freq / PRESCALE);
376}
377
378static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
379		unsigned long event, void *data)
380{
381	struct clk_notifier_data *ndata = data;
382	struct ttc_timer *ttc = to_ttc_timer(nb);
383	struct ttc_timer_clockevent *ttcce = container_of(ttc,
384			struct ttc_timer_clockevent, ttc);
385
386	switch (event) {
387	case POST_RATE_CHANGE:
388		/* update cached frequency */
389		ttc->freq = ndata->new_rate;
390
391		clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);
392
393		/* fall through */
394	case PRE_RATE_CHANGE:
395	case ABORT_RATE_CHANGE:
396	default:
397		return NOTIFY_DONE;
398	}
399}
400
401static void __init ttc_setup_clockevent(struct clk *clk,
402						void __iomem *base, u32 irq)
403{
404	struct ttc_timer_clockevent *ttcce;
405	int err;
406
407	ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
408	if (WARN_ON(!ttcce))
409		return;
410
411	ttcce->ttc.clk = clk;
412
413	err = clk_prepare_enable(ttcce->ttc.clk);
414	if (WARN_ON(err)) {
415		kfree(ttcce);
416		return;
417	}
418
419	ttcce->ttc.clk_rate_change_nb.notifier_call =
420		ttc_rate_change_clockevent_cb;
421	ttcce->ttc.clk_rate_change_nb.next = NULL;
422	if (clk_notifier_register(ttcce->ttc.clk,
423				&ttcce->ttc.clk_rate_change_nb))
424		pr_warn("Unable to register clock notifier.\n");
425	ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
426
427	ttcce->ttc.base_addr = base;
428	ttcce->ce.name = "ttc_clockevent";
429	ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
430	ttcce->ce.set_next_event = ttc_set_next_event;
431	ttcce->ce.set_mode = ttc_set_mode;
432	ttcce->ce.rating = 200;
433	ttcce->ce.irq = irq;
434	ttcce->ce.cpumask = cpu_possible_mask;
435
436	/*
437	 * Setup the clock event timer to be an interval timer which
438	 * is prescaled by 32 using the interval interrupt. Leave it
439	 * disabled for now.
440	 */
441	__raw_writel(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
442	__raw_writel(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
443		     ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
444	__raw_writel(0x1,  ttcce->ttc.base_addr + TTC_IER_OFFSET);
445
446	err = request_irq(irq, ttc_clock_event_interrupt,
447			  IRQF_TIMER, ttcce->ce.name, ttcce);
448	if (WARN_ON(err)) {
449		kfree(ttcce);
450		return;
451	}
452
453	clockevents_config_and_register(&ttcce->ce,
454			ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
455}
456
457/**
458 * ttc_timer_init - Initialize the timer
459 *
460 * Initializes the timer hardware and register the clock source and clock event
461 * timers with Linux kernal timer framework
462 */
463static void __init ttc_timer_init(struct device_node *timer)
464{
465	unsigned int irq;
466	void __iomem *timer_baseaddr;
467	struct clk *clk_cs, *clk_ce;
468	static int initialized;
469	int clksel;
470
471	if (initialized)
472		return;
473
474	initialized = 1;
475
476	/*
477	 * Get the 1st Triple Timer Counter (TTC) block from the device tree
478	 * and use it. Note that the event timer uses the interrupt and it's the
479	 * 2nd TTC hence the irq_of_parse_and_map(,1)
480	 */
481	timer_baseaddr = of_iomap(timer, 0);
482	if (!timer_baseaddr) {
483		pr_err("ERROR: invalid timer base address\n");
484		BUG();
485	}
486
487	irq = irq_of_parse_and_map(timer, 1);
488	if (irq <= 0) {
489		pr_err("ERROR: invalid interrupt number\n");
490		BUG();
491	}
492
493	clksel = __raw_readl(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
494	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
495	clk_cs = of_clk_get(timer, clksel);
496	if (IS_ERR(clk_cs)) {
497		pr_err("ERROR: timer input clock not found\n");
498		BUG();
499	}
500
501	clksel = __raw_readl(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
502	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
503	clk_ce = of_clk_get(timer, clksel);
504	if (IS_ERR(clk_ce)) {
505		pr_err("ERROR: timer input clock not found\n");
506		BUG();
507	}
508
509	ttc_setup_clocksource(clk_cs, timer_baseaddr);
510	ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
511
512	pr_info("%s #0 at %p, irq=%d\n", timer->name, timer_baseaddr, irq);
513}
514
515CLOCKSOURCE_OF_DECLARE(ttc, "cdns,ttc", ttc_timer_init);