Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2  Madge Horizon ATM Adapter driver.
   3  Copyright (C) 1995-1999  Madge Networks Ltd.
   4  
   5  This program is free software; you can redistribute it and/or modify
   6  it under the terms of the GNU General Public License as published by
   7  the Free Software Foundation; either version 2 of the License, or
   8  (at your option) any later version.
   9  
  10  This program is distributed in the hope that it will be useful,
  11  but WITHOUT ANY WARRANTY; without even the implied warranty of
  12  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13  GNU General Public License for more details.
  14  
  15  You should have received a copy of the GNU General Public License
  16  along with this program; if not, write to the Free Software
  17  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  18  
  19  The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
  20  system and in the file COPYING in the Linux kernel source.
  21*/
  22
  23/*
  24  IMPORTANT NOTE: Madge Networks no longer makes the adapters
  25  supported by this driver and makes no commitment to maintain it.
  26*/
  27
  28#include <linux/module.h>
  29#include <linux/kernel.h>
 
  30#include <linux/mm.h>
  31#include <linux/pci.h>
  32#include <linux/errno.h>
  33#include <linux/atm.h>
  34#include <linux/atmdev.h>
  35#include <linux/sonet.h>
  36#include <linux/skbuff.h>
  37#include <linux/time.h>
  38#include <linux/delay.h>
  39#include <linux/uio.h>
  40#include <linux/init.h>
  41#include <linux/interrupt.h>
  42#include <linux/ioport.h>
  43#include <linux/wait.h>
  44#include <linux/slab.h>
  45
  46#include <asm/system.h>
  47#include <asm/io.h>
  48#include <linux/atomic.h>
  49#include <asm/uaccess.h>
  50#include <asm/string.h>
  51#include <asm/byteorder.h>
  52
  53#include "horizon.h"
  54
  55#define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
  56#define description_string "Madge ATM Horizon [Ultra] driver"
  57#define version_string "1.2.1"
  58
  59static inline void __init show_version (void) {
  60  printk ("%s version %s\n", description_string, version_string);
  61}
  62
  63/*
  64  
  65  CREDITS
  66  
  67  Driver and documentation by:
  68  
  69  Chris Aston        Madge Networks
  70  Giuliano Procida   Madge Networks
  71  Simon Benham       Madge Networks
  72  Simon Johnson      Madge Networks
  73  Various Others     Madge Networks
  74  
  75  Some inspiration taken from other drivers by:
  76  
  77  Alexandru Cucos    UTBv
  78  Kari Mettinen      University of Helsinki
  79  Werner Almesberger EPFL LRC
  80  
  81  Theory of Operation
  82  
  83  I Hardware, detection, initialisation and shutdown.
  84  
  85  1. Supported Hardware
  86  
  87  This driver should handle all variants of the PCI Madge ATM adapters
  88  with the Horizon chipset. These are all PCI cards supporting PIO, BM
  89  DMA and a form of MMIO (registers only, not internal RAM).
  90  
  91  The driver is only known to work with SONET and UTP Horizon Ultra
  92  cards at 155Mb/s. However, code is in place to deal with both the
  93  original Horizon and 25Mb/s operation.
  94  
  95  There are two revisions of the Horizon ASIC: the original and the
  96  Ultra. Details of hardware bugs are in section III.
  97  
  98  The ASIC version can be distinguished by chip markings but is NOT
  99  indicated by the PCI revision (all adapters seem to have PCI rev 1).
 100  
 101  I believe that:
 102  
 103  Horizon       => Collage  25 PCI Adapter (UTP and STP)
 104  Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
 105  Ambassador x  => Collage 155 PCI Server (completely different)
 106  
 107  Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
 108  have a Madge B154 plus glue logic serializer. I have also found a
 109  really ancient version of this with slightly different glue. It
 110  comes with the revision 0 (140-025-01) ASIC.
 111  
 112  Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
 113  output (UTP) or an HP HFBR 5205 output (SONET). It has either
 114  Madge's SAMBA framer or a SUNI-lite device (early versions). It
 115  comes with the revision 1 (140-027-01) ASIC.
 116  
 117  2. Detection
 118  
 119  All Horizon-based cards present with the same PCI Vendor and Device
 120  IDs. The standard Linux 2.2 PCI API is used to locate any cards and
 121  to enable bus-mastering (with appropriate latency).
 122  
 123  ATM_LAYER_STATUS in the control register distinguishes between the
 124  two possible physical layers (25 and 155). It is not clear whether
 125  the 155 cards can also operate at 25Mbps. We rely on the fact that a
 126  card operates at 155 if and only if it has the newer Horizon Ultra
 127  ASIC.
 128  
 129  For 155 cards the two possible framers are probed for and then set
 130  up for loop-timing.
 131  
 132  3. Initialisation
 133  
 134  The card is reset and then put into a known state. The physical
 135  layer is configured for normal operation at the appropriate speed;
 136  in the case of the 155 cards, the framer is initialised with
 137  line-based timing; the internal RAM is zeroed and the allocation of
 138  buffers for RX and TX is made; the Burnt In Address is read and
 139  copied to the ATM ESI; various policy settings for RX (VPI bits,
 140  unknown VCs, oam cells) are made. Ideally all policy items should be
 141  configurable at module load (if not actually on-demand), however,
 142  only the vpi vs vci bit allocation can be specified at insmod.
 143  
 144  4. Shutdown
 145  
 146  This is in response to module_cleaup. No VCs are in use and the card
 147  should be idle; it is reset.
 148  
 149  II Driver software (as it should be)
 150  
 151  0. Traffic Parameters
 152  
 153  The traffic classes (not an enumeration) are currently: ATM_NONE (no
 154  traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
 155  (compatible with everything). Together with (perhaps only some of)
 156  the following items they make up the traffic specification.
 157  
 158  struct atm_trafprm {
 159    unsigned char traffic_class; traffic class (ATM_UBR, ...)
 160    int           max_pcr;       maximum PCR in cells per second
 161    int           pcr;           desired PCR in cells per second
 162    int           min_pcr;       minimum PCR in cells per second
 163    int           max_cdv;       maximum CDV in microseconds
 164    int           max_sdu;       maximum SDU in bytes
 165  };
 166  
 167  Note that these denote bandwidth available not bandwidth used; the
 168  possibilities according to ATMF are:
 169  
 170  Real Time (cdv and max CDT given)
 171  
 172  CBR(pcr)             pcr bandwidth always available
 173  rtVBR(pcr,scr,mbs)   scr bandwidth always available, up to pcr at mbs too
 174  
 175  Non Real Time
 176  
 177  nrtVBR(pcr,scr,mbs)  scr bandwidth always available, up to pcr at mbs too
 178  UBR()
 179  ABR(mcr,pcr)         mcr bandwidth always available, up to pcr (depending) too
 180  
 181  mbs is max burst size (bucket)
 182  pcr and scr have associated cdvt values
 183  mcr is like scr but has no cdtv
 184  cdtv may differ at each hop
 185  
 186  Some of the above items are qos items (as opposed to traffic
 187  parameters). We have nothing to do with qos. All except ABR can have
 188  their traffic parameters converted to GCRA parameters. The GCRA may
 189  be implemented as a (real-number) leaky bucket. The GCRA can be used
 190  in complicated ways by switches and in simpler ways by end-stations.
 191  It can be used both to filter incoming cells and shape out-going
 192  cells.
 193  
 194  ATM Linux actually supports:
 195  
 196  ATM_NONE() (no traffic in this direction)
 197  ATM_UBR(max_frame_size)
 198  ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
 199  
 200  0 or ATM_MAX_PCR are used to indicate maximum available PCR
 201  
 202  A traffic specification consists of the AAL type and separate
 203  traffic specifications for either direction. In ATM Linux it is:
 204  
 205  struct atm_qos {
 206  struct atm_trafprm txtp;
 207  struct atm_trafprm rxtp;
 208  unsigned char aal;
 209  };
 210  
 211  AAL types are:
 212  
 213  ATM_NO_AAL    AAL not specified
 214  ATM_AAL0      "raw" ATM cells
 215  ATM_AAL1      AAL1 (CBR)
 216  ATM_AAL2      AAL2 (VBR)
 217  ATM_AAL34     AAL3/4 (data)
 218  ATM_AAL5      AAL5 (data)
 219  ATM_SAAL      signaling AAL
 220  
 221  The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
 222  it does not implement AAL 3/4 SAR and it has a different notion of
 223  "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
 224  supported by this driver.
 225  
 226  The Horizon has limited support for ABR (including UBR), VBR and
 227  CBR. Each TX channel has a bucket (containing up to 31 cell units)
 228  and two timers (PCR and SCR) associated with it that can be used to
 229  govern cell emissions and host notification (in the case of ABR this
 230  is presumably so that RM cells may be emitted at appropriate times).
 231  The timers may either be disabled or may be set to any of 240 values
 232  (determined by the clock crystal, a fixed (?) per-device divider, a
 233  configurable divider and a configurable timer preload value).
 234  
 235  At the moment only UBR and CBR are supported by the driver. VBR will
 236  be supported as soon as ATM for Linux supports it. ABR support is
 237  very unlikely as RM cell handling is completely up to the driver.
 238  
 239  1. TX (TX channel setup and TX transfer)
 240  
 241  The TX half of the driver owns the TX Horizon registers. The TX
 242  component in the IRQ handler is the BM completion handler. This can
 243  only be entered when tx_busy is true (enforced by hardware). The
 244  other TX component can only be entered when tx_busy is false
 245  (enforced by driver). So TX is single-threaded.
 246  
 247  Apart from a minor optimisation to not re-select the last channel,
 248  the TX send component works as follows:
 249  
 250  Atomic test and set tx_busy until we succeed; we should implement
 251  some sort of timeout so that tx_busy will never be stuck at true.
 252  
 253  If no TX channel is set up for this VC we wait for an idle one (if
 254  necessary) and set it up.
 255  
 256  At this point we have a TX channel ready for use. We wait for enough
 257  buffers to become available then start a TX transmit (set the TX
 258  descriptor, schedule transfer, exit).
 259  
 260  The IRQ component handles TX completion (stats, free buffer, tx_busy
 261  unset, exit). We also re-schedule further transfers for the same
 262  frame if needed.
 263  
 264  TX setup in more detail:
 265  
 266  TX open is a nop, the relevant information is held in the hrz_vcc
 267  (vcc->dev_data) structure and is "cached" on the card.
 268  
 269  TX close gets the TX lock and clears the channel from the "cache".
 270  
 271  2. RX (Data Available and RX transfer)
 272  
 273  The RX half of the driver owns the RX registers. There are two RX
 274  components in the IRQ handler: the data available handler deals with
 275  fresh data that has arrived on the card, the BM completion handler
 276  is very similar to the TX completion handler. The data available
 277  handler grabs the rx_lock and it is only released once the data has
 278  been discarded or completely transferred to the host. The BM
 279  completion handler only runs when the lock is held; the data
 280  available handler is locked out over the same period.
 281  
 282  Data available on the card triggers an interrupt. If the data is not
 283  suitable for our existing RX channels or we cannot allocate a buffer
 284  it is flushed. Otherwise an RX receive is scheduled. Multiple RX
 285  transfers may be scheduled for the same frame.
 286  
 287  RX setup in more detail:
 288  
 289  RX open...
 290  RX close...
 291  
 292  III Hardware Bugs
 293  
 294  0. Byte vs Word addressing of adapter RAM.
 295  
 296  A design feature; see the .h file (especially the memory map).
 297  
 298  1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
 299  
 300  The host must not start a transmit direction transfer at a
 301  non-four-byte boundary in host memory. Instead the host should
 302  perform a byte, or a two byte, or one byte followed by two byte
 303  transfer in order to start the rest of the transfer on a four byte
 304  boundary. RX is OK.
 305  
 306  Simultaneous transmit and receive direction bus master transfers are
 307  not allowed.
 308  
 309  The simplest solution to these two is to always do PIO (never DMA)
 310  in the TX direction on the original Horizon. More complicated
 311  solutions are likely to hurt my brain.
 312  
 313  2. Loss of buffer on close VC
 314  
 315  When a VC is being closed, the buffer associated with it is not
 316  returned to the pool. The host must store the reference to this
 317  buffer and when opening a new VC then give it to that new VC.
 318  
 319  The host intervention currently consists of stacking such a buffer
 320  pointer at VC close and checking the stack at VC open.
 321  
 322  3. Failure to close a VC
 323  
 324  If a VC is currently receiving a frame then closing the VC may fail
 325  and the frame continues to be received.
 326  
 327  The solution is to make sure any received frames are flushed when
 328  ready. This is currently done just before the solution to 2.
 329  
 330  4. PCI bus (original Horizon only, fixed in Ultra)
 331  
 332  Reading from the data port prior to initialisation will hang the PCI
 333  bus. Just don't do that then! We don't.
 334  
 335  IV To Do List
 336  
 337  . Timer code may be broken.
 338  
 339  . Allow users to specify buffer allocation split for TX and RX.
 340  
 341  . Deal once and for all with buggy VC close.
 342  
 343  . Handle interrupted and/or non-blocking operations.
 344  
 345  . Change some macros to functions and move from .h to .c.
 346  
 347  . Try to limit the number of TX frames each VC may have queued, in
 348    order to reduce the chances of TX buffer exhaustion.
 349  
 350  . Implement VBR (bucket and timers not understood) and ABR (need to
 351    do RM cells manually); also no Linux support for either.
 352  
 353  . Implement QoS changes on open VCs (involves extracting parts of VC open
 354    and close into separate functions and using them to make changes).
 355  
 356*/
 357
 358/********** globals **********/
 359
 360static void do_housekeeping (unsigned long arg);
 361
 362static unsigned short debug = 0;
 363static unsigned short vpi_bits = 0;
 364static int max_tx_size = 9000;
 365static int max_rx_size = 9000;
 366static unsigned char pci_lat = 0;
 367
 368/********** access functions **********/
 369
 370/* Read / Write Horizon registers */
 371static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
 372  outl (cpu_to_le32 (data), dev->iobase + reg);
 373}
 374
 375static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
 376  return le32_to_cpu (inl (dev->iobase + reg));
 377}
 378
 379static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
 380  outw (cpu_to_le16 (data), dev->iobase + reg);
 381}
 382
 383static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
 384  return le16_to_cpu (inw (dev->iobase + reg));
 385}
 386
 387static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
 388  outsb (dev->iobase + reg, addr, len);
 389}
 390
 391static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
 392  insb (dev->iobase + reg, addr, len);
 393}
 394
 395/* Read / Write to a given address in Horizon buffer memory.
 396   Interrupts must be disabled between the address register and data
 397   port accesses as these must form an atomic operation. */
 398static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
 399  // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
 400  wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
 401  wr_regl (dev, MEMORY_PORT_OFF, data);
 402}
 403
 404static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
 405  // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
 406  wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
 407  return rd_regl (dev, MEMORY_PORT_OFF);
 408}
 409
 410static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
 411  wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
 412  wr_regl (dev, MEMORY_PORT_OFF, data);
 413}
 414
 415static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
 416  wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
 417  return rd_regl (dev, MEMORY_PORT_OFF);
 418}
 419
 420/********** specialised access functions **********/
 421
 422/* RX */
 423
 424static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
 425  wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
 426  return;
 427}
 428
 429static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
 430  while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
 431    ;
 432  return;
 433}
 434
 435static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
 436  wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
 437  return;
 438}
 439
 440static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
 441  while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
 442    ;
 443  return;
 444}
 445
 446/* TX */
 447
 448static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
 449  wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
 450  return;
 451}
 452
 453/* Update or query one configuration parameter of a particular channel. */
 454
 455static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
 456  wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
 457	   chan * TX_CHANNEL_CONFIG_MULT | mode);
 458    wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
 459    return;
 460}
 461
 462static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) {
 463  wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
 464	   chan * TX_CHANNEL_CONFIG_MULT | mode);
 465    return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF);
 466}
 467
 468/********** dump functions **********/
 469
 470static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
 471#ifdef DEBUG_HORIZON
 472  unsigned int i;
 473  unsigned char * data = skb->data;
 474  PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
 475  for (i=0; i<skb->len && i < 256;i++)
 476    PRINTDM (DBG_DATA, "%02x ", data[i]);
 477  PRINTDE (DBG_DATA,"");
 478#else
 479  (void) prefix;
 480  (void) vc;
 481  (void) skb;
 482#endif
 483  return;
 484}
 485
 486static inline void dump_regs (hrz_dev * dev) {
 487#ifdef DEBUG_HORIZON
 488  PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
 489  PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
 490  PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
 491  PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
 492  PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
 493  PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
 494#else
 495  (void) dev;
 496#endif
 497  return;
 498}
 499
 500static inline void dump_framer (hrz_dev * dev) {
 501#ifdef DEBUG_HORIZON
 502  unsigned int i;
 503  PRINTDB (DBG_REGS, "framer registers:");
 504  for (i = 0; i < 0x10; ++i)
 505    PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
 506  PRINTDE (DBG_REGS,"");
 507#else
 508  (void) dev;
 509#endif
 510  return;
 511}
 512
 513/********** VPI/VCI <-> (RX) channel conversions **********/
 514
 515/* RX channels are 10 bit integers, these fns are quite paranoid */
 516
 517static inline int channel_to_vpivci (const u16 channel, short * vpi, int * vci) {
 518  unsigned short vci_bits = 10 - vpi_bits;
 519  if ((channel & RX_CHANNEL_MASK) == channel) {
 520    *vci = channel & ((~0)<<vci_bits);
 521    *vpi = channel >> vci_bits;
 522    return channel ? 0 : -EINVAL;
 523  }
 524  return -EINVAL;
 525}
 526
 527static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
 528  unsigned short vci_bits = 10 - vpi_bits;
 529  if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
 530    *channel = vpi<<vci_bits | vci;
 531    return *channel ? 0 : -EINVAL;
 532  }
 533  return -EINVAL;
 534}
 535
 536/********** decode RX queue entries **********/
 537
 538static inline u16 rx_q_entry_to_length (u32 x) {
 539  return x & RX_Q_ENTRY_LENGTH_MASK;
 540}
 541
 542static inline u16 rx_q_entry_to_rx_channel (u32 x) {
 543  return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
 544}
 545
 546/* Cell Transmit Rate Values
 547 *
 548 * the cell transmit rate (cells per sec) can be set to a variety of
 549 * different values by specifying two parameters: a timer preload from
 550 * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
 551 * an exponent from 0 to 14; the special value 15 disables the timer).
 552 *
 553 * cellrate = baserate / (preload * 2^divider)
 554 *
 555 * The maximum cell rate that can be specified is therefore just the
 556 * base rate. Halving the preload is equivalent to adding 1 to the
 557 * divider and so values 1 to 8 of the preload are redundant except
 558 * in the case of a maximal divider (14).
 559 *
 560 * Given a desired cell rate, an algorithm to determine the preload
 561 * and divider is:
 562 * 
 563 * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
 564 * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
 565 *    if x <= 16 then set p = x, d = 0 (high rates), done
 566 * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
 567 *    know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
 568 *    we find the range (n will be between 1 and 14), set d = n
 569 * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
 570 *
 571 * The algorithm used below is a minor variant of the above.
 572 *
 573 * The base rate is derived from the oscillator frequency (Hz) using a
 574 * fixed divider:
 575 *
 576 * baserate = freq / 32 in the case of some Unknown Card
 577 * baserate = freq / 8  in the case of the Horizon        25
 578 * baserate = freq / 8  in the case of the Horizon Ultra 155
 579 *
 580 * The Horizon cards have oscillators and base rates as follows:
 581 *
 582 * Card               Oscillator  Base Rate
 583 * Unknown Card       33 MHz      1.03125 MHz (33 MHz = PCI freq)
 584 * Horizon        25  32 MHz      4       MHz
 585 * Horizon Ultra 155  40 MHz      5       MHz
 586 *
 587 * The following defines give the base rates in Hz. These were
 588 * previously a factor of 100 larger, no doubt someone was using
 589 * cps*100.
 590 */
 591
 592#define BR_UKN 1031250l
 593#define BR_HRZ 4000000l
 594#define BR_ULT 5000000l
 595
 596// d is an exponent
 597#define CR_MIND 0
 598#define CR_MAXD 14
 599
 600// p ranges from 1 to a power of 2
 601#define CR_MAXPEXP 4
 602 
 603static int make_rate (const hrz_dev * dev, u32 c, rounding r,
 604		      u16 * bits, unsigned int * actual)
 605{
 606	// note: rounding the rate down means rounding 'p' up
 607	const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
 608  
 609	u32 div = CR_MIND;
 610	u32 pre;
 611  
 612	// br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
 613	// the tests below. We could think harder about exact possibilities
 614	// of failure...
 615  
 616	unsigned long br_man = br;
 617	unsigned int br_exp = 0;
 618  
 619	PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
 620		r == round_up ? "up" : r == round_down ? "down" : "nearest");
 621  
 622	// avoid div by zero
 623	if (!c) {
 624		PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
 625		return -EINVAL;
 626	}
 627  
 628	while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
 629		br_man = br_man >> 1;
 630		++br_exp;
 631	}
 632	// (br >>br_exp) <<br_exp == br and
 633	// br_exp <= CR_MAXPEXP+CR_MIND
 634  
 635	if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
 636		// Equivalent to: B <= (c << (MAXPEXP+MIND))
 637		// take care of rounding
 638		switch (r) {
 639			case round_down:
 640				pre = DIV_ROUND_UP(br, c<<div);
 641				// but p must be non-zero
 642				if (!pre)
 643					pre = 1;
 644				break;
 645			case round_nearest:
 646				pre = DIV_ROUND_CLOSEST(br, c<<div);
 647				// but p must be non-zero
 648				if (!pre)
 649					pre = 1;
 650				break;
 651			default:	/* round_up */
 652				pre = br/(c<<div);
 653				// but p must be non-zero
 654				if (!pre)
 655					return -EINVAL;
 656		}
 657		PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
 658		goto got_it;
 659	}
 660  
 661	// at this point we have
 662	// d == MIND and (c << (MAXPEXP+MIND)) < B
 663	while (div < CR_MAXD) {
 664		div++;
 665		if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
 666			// Equivalent to: B <= (c << (MAXPEXP+d))
 667			// c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
 668			// 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
 669			// MAXP/2 < B/c2^d <= MAXP
 670			// take care of rounding
 671			switch (r) {
 672				case round_down:
 673					pre = DIV_ROUND_UP(br, c<<div);
 674					break;
 675				case round_nearest:
 676					pre = DIV_ROUND_CLOSEST(br, c<<div);
 677					break;
 678				default: /* round_up */
 679					pre = br/(c<<div);
 680			}
 681			PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
 682			goto got_it;
 683		}
 684	}
 685	// at this point we have
 686	// d == MAXD and (c << (MAXPEXP+MAXD)) < B
 687	// but we cannot go any higher
 688	// take care of rounding
 689	if (r == round_down)
 690		return -EINVAL;
 691	pre = 1 << CR_MAXPEXP;
 692	PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
 693got_it:
 694	// paranoia
 695	if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
 696		PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
 697			div, pre);
 698		return -EINVAL;
 699	} else {
 700		if (bits)
 701			*bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
 702		if (actual) {
 703			*actual = DIV_ROUND_UP(br, pre<<div);
 704			PRINTD (DBG_QOS, "actual rate: %u", *actual);
 705		}
 706		return 0;
 707	}
 708}
 709
 710static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
 711				     u16 * bit_pattern, unsigned int * actual) {
 712  unsigned int my_actual;
 713  
 714  PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
 715	  c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
 716  
 717  if (!actual)
 718    // actual rate is not returned
 719    actual = &my_actual;
 720  
 721  if (make_rate (dev, c, round_nearest, bit_pattern, actual))
 722    // should never happen as round_nearest always succeeds
 723    return -1;
 724  
 725  if (c - tol <= *actual && *actual <= c + tol)
 726    // within tolerance
 727    return 0;
 728  else
 729    // intolerant, try rounding instead
 730    return make_rate (dev, c, r, bit_pattern, actual);
 731}
 732
 733/********** Listen on a VC **********/
 734
 735static int hrz_open_rx (hrz_dev * dev, u16 channel) {
 736  // is there any guarantee that we don't get two simulataneous
 737  // identical calls of this function from different processes? yes
 738  // rate_lock
 739  unsigned long flags;
 740  u32 channel_type; // u16?
 741  
 742  u16 buf_ptr = RX_CHANNEL_IDLE;
 743  
 744  rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
 745  
 746  PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
 747  
 748  spin_lock_irqsave (&dev->mem_lock, flags);
 749  channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
 750  spin_unlock_irqrestore (&dev->mem_lock, flags);
 751  
 752  // very serious error, should never occur
 753  if (channel_type != RX_CHANNEL_DISABLED) {
 754    PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
 755    return -EBUSY; // clean up?
 756  }
 757  
 758  // Give back spare buffer
 759  if (dev->noof_spare_buffers) {
 760    buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
 761    PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
 762    // should never occur
 763    if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
 764      // but easy to recover from
 765      PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
 766      buf_ptr = RX_CHANNEL_IDLE;
 767    }
 768  } else {
 769    PRINTD (DBG_VCC, "using IDLE buffer pointer");
 770  }
 771  
 772  // Channel is currently disabled so change its status to idle
 773  
 774  // do we really need to save the flags again?
 775  spin_lock_irqsave (&dev->mem_lock, flags);
 776  
 777  wr_mem (dev, &rx_desc->wr_buf_type,
 778	  buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
 779  if (buf_ptr != RX_CHANNEL_IDLE)
 780    wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
 781  
 782  spin_unlock_irqrestore (&dev->mem_lock, flags);
 783  
 784  // rxer->rate = make_rate (qos->peak_cells);
 785  
 786  PRINTD (DBG_FLOW, "hrz_open_rx ok");
 787  
 788  return 0;
 789}
 790
 791#if 0
 792/********** change vc rate for a given vc **********/
 793
 794static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
 795  rxer->rate = make_rate (qos->peak_cells);
 796}
 797#endif
 798
 799/********** free an skb (as per ATM device driver documentation) **********/
 800
 801static void hrz_kfree_skb (struct sk_buff * skb) {
 802  if (ATM_SKB(skb)->vcc->pop) {
 803    ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
 804  } else {
 805    dev_kfree_skb_any (skb);
 806  }
 807}
 808
 809/********** cancel listen on a VC **********/
 810
 811static void hrz_close_rx (hrz_dev * dev, u16 vc) {
 812  unsigned long flags;
 813  
 814  u32 value;
 815  
 816  u32 r1, r2;
 817  
 818  rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
 819  
 820  int was_idle = 0;
 821  
 822  spin_lock_irqsave (&dev->mem_lock, flags);
 823  value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
 824  spin_unlock_irqrestore (&dev->mem_lock, flags);
 825  
 826  if (value == RX_CHANNEL_DISABLED) {
 827    // I suppose this could happen once we deal with _NONE traffic properly
 828    PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
 829    return;
 830  }
 831  if (value == RX_CHANNEL_IDLE)
 832    was_idle = 1;
 833  
 834  spin_lock_irqsave (&dev->mem_lock, flags);
 835  
 836  for (;;) {
 837    wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
 838    
 839    if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
 840      break;
 841    
 842    was_idle = 0;
 843  }
 844  
 845  if (was_idle) {
 846    spin_unlock_irqrestore (&dev->mem_lock, flags);
 847    return;
 848  }
 849  
 850  WAIT_FLUSH_RX_COMPLETE(dev);
 851  
 852  // XXX Is this all really necessary? We can rely on the rx_data_av
 853  // handler to discard frames that remain queued for delivery. If the
 854  // worry is that immediately reopening the channel (perhaps by a
 855  // different process) may cause some data to be mis-delivered then
 856  // there may still be a simpler solution (such as busy-waiting on
 857  // rx_busy once the channel is disabled or before a new one is
 858  // opened - does this leave any holes?). Arguably setting up and
 859  // tearing down the TX and RX halves of each virtual circuit could
 860  // most safely be done within ?x_busy protected regions.
 861  
 862  // OK, current changes are that Simon's marker is disabled and we DO
 863  // look for NULL rxer elsewhere. The code here seems flush frames
 864  // and then remember the last dead cell belonging to the channel
 865  // just disabled - the cell gets relinked at the next vc_open.
 866  // However, when all VCs are closed or only a few opened there are a
 867  // handful of buffers that are unusable.
 868  
 869  // Does anyone feel like documenting spare_buffers properly?
 870  // Does anyone feel like fixing this in a nicer way?
 871  
 872  // Flush any data which is left in the channel
 873  for (;;) {
 874    // Change the rx channel port to something different to the RX
 875    // channel we are trying to close to force Horizon to flush the rx
 876    // channel read and write pointers.
 877    
 878    u16 other = vc^(RX_CHANS/2);
 879    
 880    SELECT_RX_CHANNEL (dev, other);
 881    WAIT_UPDATE_COMPLETE (dev);
 882    
 883    r1 = rd_mem (dev, &rx_desc->rd_buf_type);
 884    
 885    // Select this RX channel. Flush doesn't seem to work unless we
 886    // select an RX channel before hand
 887    
 888    SELECT_RX_CHANNEL (dev, vc);
 889    WAIT_UPDATE_COMPLETE (dev);
 890    
 891    // Attempt to flush a frame on this RX channel
 892    
 893    FLUSH_RX_CHANNEL (dev, vc);
 894    WAIT_FLUSH_RX_COMPLETE (dev);
 895    
 896    // Force Horizon to flush rx channel read and write pointers as before
 897    
 898    SELECT_RX_CHANNEL (dev, other);
 899    WAIT_UPDATE_COMPLETE (dev);
 900    
 901    r2 = rd_mem (dev, &rx_desc->rd_buf_type);
 902    
 903    PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
 904    
 905    if (r1 == r2) {
 906      dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
 907      break;
 908    }
 909  }
 910  
 911#if 0
 912  {
 913    rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
 914    rx_q_entry * rd_ptr = dev->rx_q_entry;
 915    
 916    PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
 917    
 918    while (rd_ptr != wr_ptr) {
 919      u32 x = rd_mem (dev, (HDW *) rd_ptr);
 920      
 921      if (vc == rx_q_entry_to_rx_channel (x)) {
 922	x |= SIMONS_DODGEY_MARKER;
 923	
 924	PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
 925	
 926	wr_mem (dev, (HDW *) rd_ptr, x);
 927      }
 928      
 929      if (rd_ptr == dev->rx_q_wrap)
 930	rd_ptr = dev->rx_q_reset;
 931      else
 932	rd_ptr++;
 933    }
 934  }
 935#endif
 936  
 937  spin_unlock_irqrestore (&dev->mem_lock, flags);
 938  
 939  return;
 940}
 941
 942/********** schedule RX transfers **********/
 943
 944// Note on tail recursion: a GCC developer said that it is not likely
 945// to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
 946// are sure it does as you may otherwise overflow the kernel stack.
 947
 948// giving this fn a return value would help GCC, allegedly
 949
 950static void rx_schedule (hrz_dev * dev, int irq) {
 951  unsigned int rx_bytes;
 952  
 953  int pio_instead = 0;
 954#ifndef TAILRECURSIONWORKS
 955  pio_instead = 1;
 956  while (pio_instead) {
 957#endif
 958    // bytes waiting for RX transfer
 959    rx_bytes = dev->rx_bytes;
 960    
 961#if 0
 962    spin_count = 0;
 963    while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
 964      PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
 965      if (++spin_count > 10) {
 966	PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
 967	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
 968	clear_bit (rx_busy, &dev->flags);
 969	hrz_kfree_skb (dev->rx_skb);
 970	return;
 971      }
 972    }
 973#endif
 974    
 975    // this code follows the TX code but (at the moment) there is only
 976    // one region - the skb itself. I don't know if this will change,
 977    // but it doesn't hurt to have the code here, disabled.
 978    
 979    if (rx_bytes) {
 980      // start next transfer within same region
 981      if (rx_bytes <= MAX_PIO_COUNT) {
 982	PRINTD (DBG_RX|DBG_BUS, "(pio)");
 983	pio_instead = 1;
 984      }
 985      if (rx_bytes <= MAX_TRANSFER_COUNT) {
 986	PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
 987	dev->rx_bytes = 0;
 988      } else {
 989	PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
 990	dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
 991	rx_bytes = MAX_TRANSFER_COUNT;
 992      }
 993    } else {
 994      // rx_bytes == 0 -- we're between regions
 995      // regions remaining to transfer
 996#if 0
 997      unsigned int rx_regions = dev->rx_regions;
 998#else
 999      unsigned int rx_regions = 0;
1000#endif
1001      
1002      if (rx_regions) {
1003#if 0
1004	// start a new region
1005	dev->rx_addr = dev->rx_iovec->iov_base;
1006	rx_bytes = dev->rx_iovec->iov_len;
1007	++dev->rx_iovec;
1008	dev->rx_regions = rx_regions - 1;
1009	
1010	if (rx_bytes <= MAX_PIO_COUNT) {
1011	  PRINTD (DBG_RX|DBG_BUS, "(pio)");
1012	  pio_instead = 1;
1013	}
1014	if (rx_bytes <= MAX_TRANSFER_COUNT) {
1015	  PRINTD (DBG_RX|DBG_BUS, "(full region)");
1016	  dev->rx_bytes = 0;
1017	} else {
1018	  PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
1019	  dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1020	  rx_bytes = MAX_TRANSFER_COUNT;
1021	}
1022#endif
1023      } else {
1024	// rx_regions == 0
1025	// that's all folks - end of frame
1026	struct sk_buff * skb = dev->rx_skb;
1027	// dev->rx_iovec = 0;
1028	
1029	FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1030	
1031	dump_skb ("<<<", dev->rx_channel, skb);
1032	
1033	PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1034	
1035	{
1036	  struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1037	  // VC layer stats
1038	  atomic_inc(&vcc->stats->rx);
1039	  __net_timestamp(skb);
1040	  // end of our responsibility
1041	  vcc->push (vcc, skb);
1042	}
1043      }
1044    }
1045    
1046    // note: writing RX_COUNT clears any interrupt condition
1047    if (rx_bytes) {
1048      if (pio_instead) {
1049	if (irq)
1050	  wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1051	rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1052      } else {
1053	wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1054	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1055      }
1056      dev->rx_addr += rx_bytes;
1057    } else {
1058      if (irq)
1059	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1060      // allow another RX thread to start
1061      YELLOW_LED_ON(dev);
1062      clear_bit (rx_busy, &dev->flags);
1063      PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1064    }
1065    
1066#ifdef TAILRECURSIONWORKS
1067    // and we all bless optimised tail calls
1068    if (pio_instead)
1069      return rx_schedule (dev, 0);
1070    return;
1071#else
1072    // grrrrrrr!
1073    irq = 0;
1074  }
1075  return;
1076#endif
1077}
1078
1079/********** handle RX bus master complete events **********/
1080
1081static void rx_bus_master_complete_handler (hrz_dev * dev) {
1082  if (test_bit (rx_busy, &dev->flags)) {
1083    rx_schedule (dev, 1);
1084  } else {
1085    PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1086    // clear interrupt condition on adapter
1087    wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1088  }
1089  return;
1090}
1091
1092/********** (queue to) become the next TX thread **********/
1093
1094static int tx_hold (hrz_dev * dev) {
1095  PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1096  wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
1097  PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1098  if (signal_pending (current))
1099    return -1;
1100  PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1101  return 0;
1102}
1103
1104/********** allow another TX thread to start **********/
1105
1106static inline void tx_release (hrz_dev * dev) {
1107  clear_bit (tx_busy, &dev->flags);
1108  PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1109  wake_up_interruptible (&dev->tx_queue);
1110}
1111
1112/********** schedule TX transfers **********/
1113
1114static void tx_schedule (hrz_dev * const dev, int irq) {
1115  unsigned int tx_bytes;
1116  
1117  int append_desc = 0;
1118  
1119  int pio_instead = 0;
1120#ifndef TAILRECURSIONWORKS
1121  pio_instead = 1;
1122  while (pio_instead) {
1123#endif
1124    // bytes in current region waiting for TX transfer
1125    tx_bytes = dev->tx_bytes;
1126    
1127#if 0
1128    spin_count = 0;
1129    while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1130      PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1131      if (++spin_count > 10) {
1132	PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1133	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1134	tx_release (dev);
1135	hrz_kfree_skb (dev->tx_skb);
1136	return;
1137      }
1138    }
1139#endif
1140    
1141    if (tx_bytes) {
1142      // start next transfer within same region
1143      if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1144	PRINTD (DBG_TX|DBG_BUS, "(pio)");
1145	pio_instead = 1;
1146      }
1147      if (tx_bytes <= MAX_TRANSFER_COUNT) {
1148	PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1149	if (!dev->tx_iovec) {
1150	  // end of last region
1151	  append_desc = 1;
1152	}
1153	dev->tx_bytes = 0;
1154      } else {
1155	PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1156	dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1157	tx_bytes = MAX_TRANSFER_COUNT;
1158      }
1159    } else {
1160      // tx_bytes == 0 -- we're between regions
1161      // regions remaining to transfer
1162      unsigned int tx_regions = dev->tx_regions;
1163      
1164      if (tx_regions) {
1165	// start a new region
1166	dev->tx_addr = dev->tx_iovec->iov_base;
1167	tx_bytes = dev->tx_iovec->iov_len;
1168	++dev->tx_iovec;
1169	dev->tx_regions = tx_regions - 1;
1170	
1171	if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1172	  PRINTD (DBG_TX|DBG_BUS, "(pio)");
1173	  pio_instead = 1;
1174	}
1175	if (tx_bytes <= MAX_TRANSFER_COUNT) {
1176	  PRINTD (DBG_TX|DBG_BUS, "(full region)");
1177	  dev->tx_bytes = 0;
1178	} else {
1179	  PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1180	  dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1181	  tx_bytes = MAX_TRANSFER_COUNT;
1182	}
1183      } else {
1184	// tx_regions == 0
1185	// that's all folks - end of frame
1186	struct sk_buff * skb = dev->tx_skb;
1187	dev->tx_iovec = NULL;
1188	
1189	// VC layer stats
1190	atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1191	
1192	// free the skb
1193	hrz_kfree_skb (skb);
1194      }
1195    }
1196    
1197    // note: writing TX_COUNT clears any interrupt condition
1198    if (tx_bytes) {
1199      if (pio_instead) {
1200	if (irq)
1201	  wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1202	wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1203	if (append_desc)
1204	  wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1205      } else {
1206	wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1207	if (append_desc)
1208	  wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1209	wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1210		 append_desc
1211		 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1212		 : tx_bytes);
1213      }
1214      dev->tx_addr += tx_bytes;
1215    } else {
1216      if (irq)
1217	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1218      YELLOW_LED_ON(dev);
1219      tx_release (dev);
1220    }
1221    
1222#ifdef TAILRECURSIONWORKS
1223    // and we all bless optimised tail calls
1224    if (pio_instead)
1225      return tx_schedule (dev, 0);
1226    return;
1227#else
1228    // grrrrrrr!
1229    irq = 0;
1230  }
1231  return;
1232#endif
1233}
1234
1235/********** handle TX bus master complete events **********/
1236
1237static void tx_bus_master_complete_handler (hrz_dev * dev) {
1238  if (test_bit (tx_busy, &dev->flags)) {
1239    tx_schedule (dev, 1);
1240  } else {
1241    PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1242    // clear interrupt condition on adapter
1243    wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1244  }
1245  return;
1246}
1247
1248/********** move RX Q pointer to next item in circular buffer **********/
1249
1250// called only from IRQ sub-handler
1251static u32 rx_queue_entry_next (hrz_dev * dev) {
1252  u32 rx_queue_entry;
1253  spin_lock (&dev->mem_lock);
1254  rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1255  if (dev->rx_q_entry == dev->rx_q_wrap)
1256    dev->rx_q_entry = dev->rx_q_reset;
1257  else
1258    dev->rx_q_entry++;
1259  wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1260  spin_unlock (&dev->mem_lock);
1261  return rx_queue_entry;
1262}
1263
1264/********** handle RX disabled by device **********/
1265
1266static inline void rx_disabled_handler (hrz_dev * dev) {
1267  wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1268  // count me please
1269  PRINTK (KERN_WARNING, "RX was disabled!");
1270}
1271
1272/********** handle RX data received by device **********/
1273
1274// called from IRQ handler
1275static void rx_data_av_handler (hrz_dev * dev) {
1276  u32 rx_queue_entry;
1277  u32 rx_queue_entry_flags;
1278  u16 rx_len;
1279  u16 rx_channel;
1280  
1281  PRINTD (DBG_FLOW, "hrz_data_av_handler");
1282  
1283  // try to grab rx lock (not possible during RX bus mastering)
1284  if (test_and_set_bit (rx_busy, &dev->flags)) {
1285    PRINTD (DBG_RX, "locked out of rx lock");
1286    return;
1287  }
1288  PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1289  // lock is cleared if we fail now, o/w after bus master completion
1290  
1291  YELLOW_LED_OFF(dev);
1292  
1293  rx_queue_entry = rx_queue_entry_next (dev);
1294  
1295  rx_len = rx_q_entry_to_length (rx_queue_entry);
1296  rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1297  
1298  WAIT_FLUSH_RX_COMPLETE (dev);
1299  
1300  SELECT_RX_CHANNEL (dev, rx_channel);
1301  
1302  PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1303  rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1304  
1305  if (!rx_len) {
1306    // (at least) bus-mastering breaks if we try to handle a
1307    // zero-length frame, besides AAL5 does not support them
1308    PRINTK (KERN_ERR, "zero-length frame!");
1309    rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1310  }
1311  
1312  if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1313    PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1314  }
1315  if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1316    struct atm_vcc * atm_vcc;
1317    
1318    PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1319    
1320    atm_vcc = dev->rxer[rx_channel];
1321    // if no vcc is assigned to this channel, we should drop the frame
1322    // (is this what SIMONS etc. was trying to achieve?)
1323    
1324    if (atm_vcc) {
1325      
1326      if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1327	
1328	if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1329	    
1330	  struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1331	  if (skb) {
1332	    // remember this so we can push it later
1333	    dev->rx_skb = skb;
1334	    // remember this so we can flush it later
1335	    dev->rx_channel = rx_channel;
1336	    
1337	    // prepare socket buffer
1338	    skb_put (skb, rx_len);
1339	    ATM_SKB(skb)->vcc = atm_vcc;
1340	    
1341	    // simple transfer
1342	    // dev->rx_regions = 0;
1343	    // dev->rx_iovec = 0;
1344	    dev->rx_bytes = rx_len;
1345	    dev->rx_addr = skb->data;
1346	    PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1347		    skb->data, rx_len);
1348	    
1349	    // do the business
1350	    rx_schedule (dev, 0);
1351	    return;
1352	    
1353	  } else {
1354	    PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1355	  }
1356	  
1357	} else {
1358	  PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1359	  // do we count this?
1360	}
1361	
1362      } else {
1363	PRINTK (KERN_WARNING, "dropped over-size frame");
1364	// do we count this?
1365      }
1366      
1367    } else {
1368      PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1369      // do we count this?
1370    }
1371    
1372  } else {
1373    // Wait update complete ? SPONG
1374  }
1375  
1376  // RX was aborted
1377  YELLOW_LED_ON(dev);
1378  
1379  FLUSH_RX_CHANNEL (dev,rx_channel);
1380  clear_bit (rx_busy, &dev->flags);
1381  
1382  return;
1383}
1384
1385/********** interrupt handler **********/
1386
1387static irqreturn_t interrupt_handler(int irq, void *dev_id)
1388{
1389  hrz_dev *dev = dev_id;
1390  u32 int_source;
1391  unsigned int irq_ok;
1392  
1393  PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1394  
1395  // definitely for us
1396  irq_ok = 0;
1397  while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1398	  & INTERESTING_INTERRUPTS)) {
1399    // In the interests of fairness, the handlers below are
1400    // called in sequence and without immediate return to the head of
1401    // the while loop. This is only of issue for slow hosts (or when
1402    // debugging messages are on). Really slow hosts may find a fast
1403    // sender keeps them permanently in the IRQ handler. :(
1404    
1405    // (only an issue for slow hosts) RX completion goes before
1406    // rx_data_av as the former implies rx_busy and so the latter
1407    // would just abort. If it reschedules another transfer
1408    // (continuing the same frame) then it will not clear rx_busy.
1409    
1410    // (only an issue for slow hosts) TX completion goes before RX
1411    // data available as it is a much shorter routine - there is the
1412    // chance that any further transfers it schedules will be complete
1413    // by the time of the return to the head of the while loop
1414    
1415    if (int_source & RX_BUS_MASTER_COMPLETE) {
1416      ++irq_ok;
1417      PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1418      rx_bus_master_complete_handler (dev);
1419    }
1420    if (int_source & TX_BUS_MASTER_COMPLETE) {
1421      ++irq_ok;
1422      PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1423      tx_bus_master_complete_handler (dev);
1424    }
1425    if (int_source & RX_DATA_AV) {
1426      ++irq_ok;
1427      PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1428      rx_data_av_handler (dev);
1429    }
1430  }
1431  if (irq_ok) {
1432    PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1433  } else {
1434    PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1435  }
1436  
1437  PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1438  if (irq_ok)
1439	return IRQ_HANDLED;
1440  return IRQ_NONE;
1441}
1442
1443/********** housekeeping **********/
1444
1445static void do_housekeeping (unsigned long arg) {
1446  // just stats at the moment
1447  hrz_dev * dev = (hrz_dev *) arg;
1448
1449  // collect device-specific (not driver/atm-linux) stats here
1450  dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1451  dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1452  dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1453  dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1454
1455  mod_timer (&dev->housekeeping, jiffies + HZ/10);
1456
1457  return;
1458}
1459
1460/********** find an idle channel for TX and set it up **********/
1461
1462// called with tx_busy set
1463static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1464  unsigned short idle_channels;
1465  short tx_channel = -1;
1466  unsigned int spin_count;
1467  PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1468  
1469  // better would be to fail immediately, the caller can then decide whether
1470  // to wait or drop (depending on whether this is UBR etc.)
1471  spin_count = 0;
1472  while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1473    PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1474    // delay a bit here
1475    if (++spin_count > 100) {
1476      PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1477      return -EBUSY;
1478    }
1479  }
1480  
1481  // got an idle channel
1482  {
1483    // tx_idle ensures we look for idle channels in RR order
1484    int chan = dev->tx_idle;
1485    
1486    int keep_going = 1;
1487    while (keep_going) {
1488      if (idle_channels & (1<<chan)) {
1489	tx_channel = chan;
1490	keep_going = 0;
1491      }
1492      ++chan;
1493      if (chan == TX_CHANS)
1494	chan = 0;
1495    }
1496    
1497    dev->tx_idle = chan;
1498  }
1499  
1500  // set up the channel we found
1501  {
1502    // Initialise the cell header in the transmit channel descriptor
1503    // a.k.a. prepare the channel and remember that we have done so.
1504    
1505    tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1506    u32 rd_ptr;
1507    u32 wr_ptr;
1508    u16 channel = vcc->channel;
1509    
1510    unsigned long flags;
1511    spin_lock_irqsave (&dev->mem_lock, flags);
1512    
1513    // Update the transmit channel record.
1514    dev->tx_channel_record[tx_channel] = channel;
1515    
1516    // xBR channel
1517    update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1518			      vcc->tx_xbr_bits);
1519    
1520    // Update the PCR counter preload value etc.
1521    update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1522			      vcc->tx_pcr_bits);
1523
1524#if 0
1525    if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1526      // SCR timer
1527      update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1528				vcc->tx_scr_bits);
1529      
1530      // Bucket size...
1531      update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1532				vcc->tx_bucket_bits);
1533      
1534      // ... and fullness
1535      update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1536				vcc->tx_bucket_bits);
1537    }
1538#endif
1539
1540    // Initialise the read and write buffer pointers
1541    rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1542    wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1543    
1544    // idle TX channels should have identical pointers
1545    if (rd_ptr != wr_ptr) {
1546      PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1547      // spin_unlock... return -E...
1548      // I wonder if gcc would get rid of one of the pointer aliases
1549    }
1550    PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1551	    rd_ptr, wr_ptr);
1552    
1553    switch (vcc->aal) {
1554      case aal0:
1555	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1556	rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1557	wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1558	break;
1559      case aal34:
1560	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1561	rd_ptr |= CHANNEL_TYPE_AAL3_4;
1562	wr_ptr |= CHANNEL_TYPE_AAL3_4;
1563	break;
1564      case aal5:
1565	rd_ptr |= CHANNEL_TYPE_AAL5;
1566	wr_ptr |= CHANNEL_TYPE_AAL5;
1567	// Initialise the CRC
1568	wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1569	break;
1570    }
1571    
1572    wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1573    wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1574    
1575    // Write the Cell Header
1576    // Payload Type, CLP and GFC would go here if non-zero
1577    wr_mem (dev, &tx_desc->cell_header, channel);
1578    
1579    spin_unlock_irqrestore (&dev->mem_lock, flags);
1580  }
1581  
1582  return tx_channel;
1583}
1584
1585/********** send a frame **********/
1586
1587static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1588  unsigned int spin_count;
1589  int free_buffers;
1590  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1591  hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1592  u16 channel = vcc->channel;
1593  
1594  u32 buffers_required;
1595  
1596  /* signed for error return */
1597  short tx_channel;
1598  
1599  PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1600	  channel, skb->data, skb->len);
1601  
1602  dump_skb (">>>", channel, skb);
1603  
1604  if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1605    PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1606    hrz_kfree_skb (skb);
1607    return -EIO;
1608  }
1609  
1610  // don't understand this
1611  ATM_SKB(skb)->vcc = atm_vcc;
1612  
1613  if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1614    PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1615    hrz_kfree_skb (skb);
1616    return -EIO;
1617  }
1618  
1619  if (!channel) {
1620    PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1621    hrz_kfree_skb (skb);
1622    return -EIO;
1623  }
1624  
1625#if 0
1626  {
1627    // where would be a better place for this? housekeeping?
1628    u16 status;
1629    pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1630    if (status & PCI_STATUS_REC_MASTER_ABORT) {
1631      PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1632      status &= ~PCI_STATUS_REC_MASTER_ABORT;
1633      pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1634      if (test_bit (tx_busy, &dev->flags)) {
1635	hrz_kfree_skb (dev->tx_skb);
1636	tx_release (dev);
1637      }
1638    }
1639  }
1640#endif
1641  
1642#ifdef DEBUG_HORIZON
1643  /* wey-hey! */
1644  if (channel == 1023) {
1645    unsigned int i;
1646    unsigned short d = 0;
1647    char * s = skb->data;
1648    if (*s++ == 'D') {
1649	for (i = 0; i < 4; ++i)
1650		d = (d << 4) | hex_to_bin(*s++);
1651      PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1652    }
1653  }
1654#endif
1655  
1656  // wait until TX is free and grab lock
1657  if (tx_hold (dev)) {
1658    hrz_kfree_skb (skb);
1659    return -ERESTARTSYS;
1660  }
1661 
1662  // Wait for enough space to be available in transmit buffer memory.
1663  
1664  // should be number of cells needed + 2 (according to hardware docs)
1665  // = ((framelen+8)+47) / 48 + 2
1666  // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1667  buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1668  
1669  // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1670  spin_count = 0;
1671  while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1672    PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1673	    free_buffers, buffers_required);
1674    // what is the appropriate delay? implement a timeout? (depending on line speed?)
1675    // mdelay (1);
1676    // what happens if we kill (current_pid, SIGKILL) ?
1677    schedule();
1678    if (++spin_count > 1000) {
1679      PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1680	      free_buffers, buffers_required);
1681      tx_release (dev);
1682      hrz_kfree_skb (skb);
1683      return -ERESTARTSYS;
1684    }
1685  }
1686  
1687  // Select a channel to transmit the frame on.
1688  if (channel == dev->last_vc) {
1689    PRINTD (DBG_TX, "last vc hack: hit");
1690    tx_channel = dev->tx_last;
1691  } else {
1692    PRINTD (DBG_TX, "last vc hack: miss");
1693    // Are we currently transmitting this VC on one of the channels?
1694    for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1695      if (dev->tx_channel_record[tx_channel] == channel) {
1696	PRINTD (DBG_TX, "vc already on channel: hit");
1697	break;
1698      }
1699    if (tx_channel == TX_CHANS) { 
1700      PRINTD (DBG_TX, "vc already on channel: miss");
1701      // Find and set up an idle channel.
1702      tx_channel = setup_idle_tx_channel (dev, vcc);
1703      if (tx_channel < 0) {
1704	PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1705	tx_release (dev);
1706	return tx_channel;
1707      }
1708    }
1709    
1710    PRINTD (DBG_TX, "got channel");
1711    SELECT_TX_CHANNEL(dev, tx_channel);
1712    
1713    dev->last_vc = channel;
1714    dev->tx_last = tx_channel;
1715  }
1716  
1717  PRINTD (DBG_TX, "using channel %u", tx_channel);
1718  
1719  YELLOW_LED_OFF(dev);
1720  
1721  // TX start transfer
1722  
1723  {
1724    unsigned int tx_len = skb->len;
1725    unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1726    // remember this so we can free it later
1727    dev->tx_skb = skb;
1728    
1729    if (tx_iovcnt) {
1730      // scatter gather transfer
1731      dev->tx_regions = tx_iovcnt;
1732      dev->tx_iovec = NULL;		/* @@@ needs rewritten */
1733      dev->tx_bytes = 0;
1734      PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1735	      skb->data, tx_len);
1736      tx_release (dev);
1737      hrz_kfree_skb (skb);
1738      return -EIO;
1739    } else {
1740      // simple transfer
1741      dev->tx_regions = 0;
1742      dev->tx_iovec = NULL;
1743      dev->tx_bytes = tx_len;
1744      dev->tx_addr = skb->data;
1745      PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1746	      skb->data, tx_len);
1747    }
1748    
1749    // and do the business
1750    tx_schedule (dev, 0);
1751    
1752  }
1753  
1754  return 0;
1755}
1756
1757/********** reset a card **********/
1758
1759static void hrz_reset (const hrz_dev * dev) {
1760  u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1761  
1762  // why not set RESET_HORIZON to one and wait for the card to
1763  // reassert that bit as zero? Like so:
1764  control_0_reg = control_0_reg & RESET_HORIZON;
1765  wr_regl (dev, CONTROL_0_REG, control_0_reg);
1766  while (control_0_reg & RESET_HORIZON)
1767    control_0_reg = rd_regl (dev, CONTROL_0_REG);
1768  
1769  // old reset code retained:
1770  wr_regl (dev, CONTROL_0_REG, control_0_reg |
1771	   RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1772  // just guessing here
1773  udelay (1000);
1774  
1775  wr_regl (dev, CONTROL_0_REG, control_0_reg);
1776}
1777
1778/********** read the burnt in address **********/
1779
1780static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1781{
1782	wr_regl (dev, CONTROL_0_REG, ctrl);
1783	udelay (5);
1784}
1785  
1786static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1787{
1788	// DI must be valid around rising SK edge
1789	WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1790	WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1791}
1792
1793static u16 __devinit read_bia (const hrz_dev * dev, u16 addr)
1794{
1795  u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1796  
1797  const unsigned int addr_bits = 6;
1798  const unsigned int data_bits = 16;
1799  
1800  unsigned int i;
1801  
1802  u16 res;
1803  
1804  ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1805  WRITE_IT_WAIT(dev, ctrl);
1806  
1807  // wake Serial EEPROM and send 110 (READ) command
1808  ctrl |=  (SEEPROM_CS | SEEPROM_DI);
1809  CLOCK_IT(dev, ctrl);
1810  
1811  ctrl |= SEEPROM_DI;
1812  CLOCK_IT(dev, ctrl);
1813  
1814  ctrl &= ~SEEPROM_DI;
1815  CLOCK_IT(dev, ctrl);
1816  
1817  for (i=0; i<addr_bits; i++) {
1818    if (addr & (1 << (addr_bits-1)))
1819      ctrl |= SEEPROM_DI;
1820    else
1821      ctrl &= ~SEEPROM_DI;
1822    
1823    CLOCK_IT(dev, ctrl);
1824    
1825    addr = addr << 1;
1826  }
1827  
1828  // we could check that we have DO = 0 here
1829  ctrl &= ~SEEPROM_DI;
1830  
1831  res = 0;
1832  for (i=0;i<data_bits;i++) {
1833    res = res >> 1;
1834    
1835    CLOCK_IT(dev, ctrl);
1836    
1837    if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1838      res |= (1 << (data_bits-1));
1839  }
1840  
1841  ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1842  WRITE_IT_WAIT(dev, ctrl);
1843  
1844  return res;
1845}
1846
1847/********** initialise a card **********/
1848
1849static int __devinit hrz_init (hrz_dev * dev) {
 
1850  int onefivefive;
1851  
1852  u16 chan;
1853  
1854  int buff_count;
1855  
1856  HDW * mem;
1857  
1858  cell_buf * tx_desc;
1859  cell_buf * rx_desc;
1860  
1861  u32 ctrl;
1862  
1863  ctrl = rd_regl (dev, CONTROL_0_REG);
1864  PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1865  onefivefive = ctrl & ATM_LAYER_STATUS;
1866  
1867  if (onefivefive)
1868    printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1869  else
1870    printk (DEV_LABEL ": Horizon (at 25 MBps)");
1871  
1872  printk (":");
1873  // Reset the card to get everything in a known state
1874  
1875  printk (" reset");
1876  hrz_reset (dev);
1877  
1878  // Clear all the buffer memory
1879  
1880  printk (" clearing memory");
1881  
1882  for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1883    wr_mem (dev, mem, 0);
1884  
1885  printk (" tx channels");
1886  
1887  // All transmit eight channels are set up as AAL5 ABR channels with
1888  // a 16us cell spacing. Why?
1889  
1890  // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1891  // buffer at 110h etc.
1892  
1893  for (chan = 0; chan < TX_CHANS; ++chan) {
1894    tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1895    cell_buf * buf = &memmap->inittxbufs[chan];
1896    
1897    // initialise the read and write buffer pointers
1898    wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1899    wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1900    
1901    // set the status of the initial buffers to empty
1902    wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1903  }
1904  
1905  // Use space bufn3 at the moment for tx buffers
1906  
1907  printk (" tx buffers");
1908  
1909  tx_desc = memmap->bufn3;
1910  
1911  wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1912  
1913  for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1914    wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1915    tx_desc++;
1916  }
1917  
1918  wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1919  
1920  // Initialise the transmit free buffer count
1921  wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1922  
1923  printk (" rx channels");
1924  
1925  // Initialise all of the receive channels to be AAL5 disabled with
1926  // an interrupt threshold of 0
1927  
1928  for (chan = 0; chan < RX_CHANS; ++chan) {
1929    rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1930    
1931    wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1932  }
1933  
1934  printk (" rx buffers");
1935  
1936  // Use space bufn4 at the moment for rx buffers
1937  
1938  rx_desc = memmap->bufn4;
1939  
1940  wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1941  
1942  for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1943    wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1944    
1945    rx_desc++;
1946  }
1947  
1948  wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1949  
1950  // Initialise the receive free buffer count
1951  wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1952  
1953  // Initialize Horizons registers
1954  
1955  // TX config
1956  wr_regw (dev, TX_CONFIG_OFF,
1957	   ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
1958  
1959  // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1960  wr_regw (dev, RX_CONFIG_OFF,
1961	   DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
1962  
1963  // RX line config
1964  wr_regw (dev, RX_LINE_CONFIG_OFF,
1965	   LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
1966  
1967  // Set the max AAL5 cell count to be just enough to contain the
1968  // largest AAL5 frame that the user wants to receive
1969  wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1970	   DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
1971  
1972  // Enable receive
1973  wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1974  
1975  printk (" control");
1976  
1977  // Drive the OE of the LEDs then turn the green LED on
1978  ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
1979  wr_regl (dev, CONTROL_0_REG, ctrl);
1980  
1981  // Test for a 155-capable card
1982  
1983  if (onefivefive) {
1984    // Select 155 mode... make this a choice (or: how do we detect
1985    // external line speed and switch?)
1986    ctrl |= ATM_LAYER_SELECT;
1987    wr_regl (dev, CONTROL_0_REG, ctrl);
1988    
1989    // test SUNI-lite vs SAMBA
1990    
1991    // Register 0x00 in the SUNI will have some of bits 3-7 set, and
1992    // they will always be zero for the SAMBA.  Ha!  Bloody hardware
1993    // engineers.  It'll never work.
1994    
1995    if (rd_framer (dev, 0) & 0x00f0) {
1996      // SUNI
1997      printk (" SUNI");
1998      
1999      // Reset, just in case
2000      wr_framer (dev, 0x00, 0x0080);
2001      wr_framer (dev, 0x00, 0x0000);
2002      
2003      // Configure transmit FIFO
2004      wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
2005      
2006      // Set line timed mode
2007      wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
2008    } else {
2009      // SAMBA
2010      printk (" SAMBA");
2011      
2012      // Reset, just in case
2013      wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
2014      wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
2015      
2016      // Turn off diagnostic loopback and enable line-timed mode
2017      wr_framer (dev, 0, 0x0002);
2018      
2019      // Turn on transmit outputs
2020      wr_framer (dev, 2, 0x0B80);
2021    }
2022  } else {
2023    // Select 25 mode
2024    ctrl &= ~ATM_LAYER_SELECT;
2025    
2026    // Madge B154 setup
2027    // none required?
2028  }
2029  
2030  printk (" LEDs");
2031  
2032  GREEN_LED_ON(dev);
2033  YELLOW_LED_ON(dev);
2034  
2035  printk (" ESI=");
2036  
2037  {
2038    u16 b = 0;
2039    int i;
2040    u8 * esi = dev->atm_dev->esi;
2041    
2042    // in the card I have, EEPROM
2043    // addresses 0, 1, 2 contain 0
2044    // addresess 5, 6 etc. contain ffff
2045    // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2046    // the read_bia routine gets the BIA in Ethernet bit order
2047    
2048    for (i=0; i < ESI_LEN; ++i) {
2049      if (i % 2 == 0)
2050	b = read_bia (dev, i/2 + 2);
2051      else
2052	b = b >> 8;
2053      esi[i] = b & 0xFF;
2054      printk ("%02x", esi[i]);
2055    }
2056  }
2057  
2058  // Enable RX_Q and ?X_COMPLETE interrupts only
2059  wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2060  printk (" IRQ on");
2061  
2062  printk (".\n");
2063  
2064  return onefivefive;
2065}
2066
2067/********** check max_sdu **********/
2068
2069static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2070  PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2071  
2072  switch (aal) {
2073    case aal0:
2074      if (!(tp->max_sdu)) {
2075	PRINTD (DBG_QOS, "defaulting max_sdu");
2076	tp->max_sdu = ATM_AAL0_SDU;
2077      } else if (tp->max_sdu != ATM_AAL0_SDU) {
2078	PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2079	return -EINVAL;
2080      }
2081      break;
2082    case aal34:
2083      if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2084	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2085	tp->max_sdu = ATM_MAX_AAL34_PDU;
2086      }
2087      break;
2088    case aal5:
2089      if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2090	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2091	tp->max_sdu = max_frame_size;
2092      }
2093      break;
2094  }
2095  return 0;
2096}
2097
2098/********** check pcr **********/
2099
2100// something like this should be part of ATM Linux
2101static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2102  // we are assuming non-UBR, and non-special values of pcr
2103  if (tp->min_pcr == ATM_MAX_PCR)
2104    PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2105  else if (tp->min_pcr < 0)
2106    PRINTD (DBG_QOS, "luser gave negative min_pcr");
2107  else if (tp->min_pcr && tp->min_pcr > pcr)
2108    PRINTD (DBG_QOS, "pcr less than min_pcr");
2109  else
2110    // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2111    // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2112    // [this would get rid of next two conditionals]
2113    if ((0) && tp->max_pcr == ATM_MAX_PCR)
2114      PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2115    else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2116      PRINTD (DBG_QOS, "luser gave negative max_pcr");
2117    else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2118      PRINTD (DBG_QOS, "pcr greater than max_pcr");
2119    else {
2120      // each limit unspecified or not violated
2121      PRINTD (DBG_QOS, "xBR(pcr) OK");
2122      return 0;
2123    }
2124  PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2125	  pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2126  return -EINVAL;
2127}
2128
2129/********** open VC **********/
2130
2131static int hrz_open (struct atm_vcc *atm_vcc)
2132{
2133  int error;
2134  u16 channel;
2135  
2136  struct atm_qos * qos;
2137  struct atm_trafprm * txtp;
2138  struct atm_trafprm * rxtp;
2139  
2140  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2141  hrz_vcc vcc;
2142  hrz_vcc * vccp; // allocated late
2143  short vpi = atm_vcc->vpi;
2144  int vci = atm_vcc->vci;
2145  PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2146  
2147#ifdef ATM_VPI_UNSPEC
2148  // UNSPEC is deprecated, remove this code eventually
2149  if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2150    PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2151    return -EINVAL;
2152  }
2153#endif
2154  
2155  error = vpivci_to_channel (&channel, vpi, vci);
2156  if (error) {
2157    PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2158    return error;
2159  }
2160  
2161  vcc.channel = channel;
2162  // max speed for the moment
2163  vcc.tx_rate = 0x0;
2164  
2165  qos = &atm_vcc->qos;
2166  
2167  // check AAL and remember it
2168  switch (qos->aal) {
2169    case ATM_AAL0:
2170      // we would if it were 48 bytes and not 52!
2171      PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2172      vcc.aal = aal0;
2173      break;
2174    case ATM_AAL34:
2175      // we would if I knew how do the SAR!
2176      PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2177      vcc.aal = aal34;
2178      break;
2179    case ATM_AAL5:
2180      PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2181      vcc.aal = aal5;
2182      break;
2183    default:
2184      PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2185      return -EINVAL;
2186      break;
2187  }
2188  
2189  // TX traffic parameters
2190  
2191  // there are two, interrelated problems here: 1. the reservation of
2192  // PCR is not a binary choice, we are given bounds and/or a
2193  // desirable value; 2. the device is only capable of certain values,
2194  // most of which are not integers. It is almost certainly acceptable
2195  // to be off by a maximum of 1 to 10 cps.
2196  
2197  // Pragmatic choice: always store an integral PCR as that which has
2198  // been allocated, even if we allocate a little (or a lot) less,
2199  // after rounding. The actual allocation depends on what we can
2200  // manage with our rate selection algorithm. The rate selection
2201  // algorithm is given an integral PCR and a tolerance and told
2202  // whether it should round the value up or down if the tolerance is
2203  // exceeded; it returns: a) the actual rate selected (rounded up to
2204  // the nearest integer), b) a bit pattern to feed to the timer
2205  // register, and c) a failure value if no applicable rate exists.
2206  
2207  // Part of the job is done by atm_pcr_goal which gives us a PCR
2208  // specification which says: EITHER grab the maximum available PCR
2209  // (and perhaps a lower bound which we musn't pass), OR grab this
2210  // amount, rounding down if you have to (and perhaps a lower bound
2211  // which we musn't pass) OR grab this amount, rounding up if you
2212  // have to (and perhaps an upper bound which we musn't pass). If any
2213  // bounds ARE passed we fail. Note that rounding is only rounding to
2214  // match device limitations, we do not round down to satisfy
2215  // bandwidth availability even if this would not violate any given
2216  // lower bound.
2217  
2218  // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2219  // (say) so this is not even a binary fixpoint cell rate (but this
2220  // device can do it). To avoid this sort of hassle we use a
2221  // tolerance parameter (currently fixed at 10 cps).
2222  
2223  PRINTD (DBG_QOS, "TX:");
2224  
2225  txtp = &qos->txtp;
2226  
2227  // set up defaults for no traffic
2228  vcc.tx_rate = 0;
2229  // who knows what would actually happen if you try and send on this?
2230  vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2231  vcc.tx_pcr_bits = CLOCK_DISABLE;
2232#if 0
2233  vcc.tx_scr_bits = CLOCK_DISABLE;
2234  vcc.tx_bucket_bits = 0;
2235#endif
2236  
2237  if (txtp->traffic_class != ATM_NONE) {
2238    error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2239    if (error) {
2240      PRINTD (DBG_QOS, "TX max_sdu check failed");
2241      return error;
2242    }
2243    
2244    switch (txtp->traffic_class) {
2245      case ATM_UBR: {
2246	// we take "the PCR" as a rate-cap
2247	// not reserved
2248	vcc.tx_rate = 0;
2249	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2250	vcc.tx_xbr_bits = ABR_RATE_TYPE;
2251	break;
2252      }
2253#if 0
2254      case ATM_ABR: {
2255	// reserve min, allow up to max
2256	vcc.tx_rate = 0; // ?
2257	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2258	vcc.tx_xbr_bits = ABR_RATE_TYPE;
2259	break;
2260      }
2261#endif
2262      case ATM_CBR: {
2263	int pcr = atm_pcr_goal (txtp);
2264	rounding r;
2265	if (!pcr) {
2266	  // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2267	  // should really have: once someone gets unlimited bandwidth
2268	  // that no more non-UBR channels can be opened until the
2269	  // unlimited one closes?? For the moment, round_down means
2270	  // greedy people actually get something and not nothing
2271	  r = round_down;
2272	  // slight race (no locking) here so we may get -EAGAIN
2273	  // later; the greedy bastards would deserve it :)
2274	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2275	  pcr = dev->tx_avail;
2276	} else if (pcr < 0) {
2277	  r = round_down;
2278	  pcr = -pcr;
2279	} else {
2280	  r = round_up;
2281	}
2282	error = make_rate_with_tolerance (dev, pcr, r, 10,
2283					  &vcc.tx_pcr_bits, &vcc.tx_rate);
2284	if (error) {
2285	  PRINTD (DBG_QOS, "could not make rate from TX PCR");
2286	  return error;
2287	}
2288	// not really clear what further checking is needed
2289	error = atm_pcr_check (txtp, vcc.tx_rate);
2290	if (error) {
2291	  PRINTD (DBG_QOS, "TX PCR failed consistency check");
2292	  return error;
2293	}
2294	vcc.tx_xbr_bits = CBR_RATE_TYPE;
2295	break;
2296      }
2297#if 0
2298      case ATM_VBR: {
2299	int pcr = atm_pcr_goal (txtp);
2300	// int scr = atm_scr_goal (txtp);
2301	int scr = pcr/2; // just for fun
2302	unsigned int mbs = 60; // just for fun
2303	rounding pr;
2304	rounding sr;
2305	unsigned int bucket;
2306	if (!pcr) {
2307	  pr = round_nearest;
2308	  pcr = 1<<30;
2309	} else if (pcr < 0) {
2310	  pr = round_down;
2311	  pcr = -pcr;
2312	} else {
2313	  pr = round_up;
2314	}
2315	error = make_rate_with_tolerance (dev, pcr, pr, 10,
2316					  &vcc.tx_pcr_bits, 0);
2317	if (!scr) {
2318	  // see comments for PCR with CBR above
2319	  sr = round_down;
2320	  // slight race (no locking) here so we may get -EAGAIN
2321	  // later; the greedy bastards would deserve it :)
2322	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2323	  scr = dev->tx_avail;
2324	} else if (scr < 0) {
2325	  sr = round_down;
2326	  scr = -scr;
2327	} else {
2328	  sr = round_up;
2329	}
2330	error = make_rate_with_tolerance (dev, scr, sr, 10,
2331					  &vcc.tx_scr_bits, &vcc.tx_rate);
2332	if (error) {
2333	  PRINTD (DBG_QOS, "could not make rate from TX SCR");
2334	  return error;
2335	}
2336	// not really clear what further checking is needed
2337	// error = atm_scr_check (txtp, vcc.tx_rate);
2338	if (error) {
2339	  PRINTD (DBG_QOS, "TX SCR failed consistency check");
2340	  return error;
2341	}
2342	// bucket calculations (from a piece of paper...) cell bucket
2343	// capacity must be largest integer smaller than m(p-s)/p + 1
2344	// where m = max burst size, p = pcr, s = scr
2345	bucket = mbs*(pcr-scr)/pcr;
2346	if (bucket*pcr != mbs*(pcr-scr))
2347	  bucket += 1;
2348	if (bucket > BUCKET_MAX_SIZE) {
2349	  PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2350		  bucket, BUCKET_MAX_SIZE);
2351	  bucket = BUCKET_MAX_SIZE;
2352	}
2353	vcc.tx_xbr_bits = VBR_RATE_TYPE;
2354	vcc.tx_bucket_bits = bucket;
2355	break;
2356      }
2357#endif
2358      default: {
2359	PRINTD (DBG_QOS, "unsupported TX traffic class");
2360	return -EINVAL;
2361	break;
2362      }
2363    }
2364  }
2365  
2366  // RX traffic parameters
2367  
2368  PRINTD (DBG_QOS, "RX:");
2369  
2370  rxtp = &qos->rxtp;
2371  
2372  // set up defaults for no traffic
2373  vcc.rx_rate = 0;
2374  
2375  if (rxtp->traffic_class != ATM_NONE) {
2376    error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2377    if (error) {
2378      PRINTD (DBG_QOS, "RX max_sdu check failed");
2379      return error;
2380    }
2381    switch (rxtp->traffic_class) {
2382      case ATM_UBR: {
2383	// not reserved
2384	break;
2385      }
2386#if 0
2387      case ATM_ABR: {
2388	// reserve min
2389	vcc.rx_rate = 0; // ?
2390	break;
2391      }
2392#endif
2393      case ATM_CBR: {
2394	int pcr = atm_pcr_goal (rxtp);
2395	if (!pcr) {
2396	  // slight race (no locking) here so we may get -EAGAIN
2397	  // later; the greedy bastards would deserve it :)
2398	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2399	  pcr = dev->rx_avail;
2400	} else if (pcr < 0) {
2401	  pcr = -pcr;
2402	}
2403	vcc.rx_rate = pcr;
2404	// not really clear what further checking is needed
2405	error = atm_pcr_check (rxtp, vcc.rx_rate);
2406	if (error) {
2407	  PRINTD (DBG_QOS, "RX PCR failed consistency check");
2408	  return error;
2409	}
2410	break;
2411      }
2412#if 0
2413      case ATM_VBR: {
2414	// int scr = atm_scr_goal (rxtp);
2415	int scr = 1<<16; // just for fun
2416	if (!scr) {
2417	  // slight race (no locking) here so we may get -EAGAIN
2418	  // later; the greedy bastards would deserve it :)
2419	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2420	  scr = dev->rx_avail;
2421	} else if (scr < 0) {
2422	  scr = -scr;
2423	}
2424	vcc.rx_rate = scr;
2425	// not really clear what further checking is needed
2426	// error = atm_scr_check (rxtp, vcc.rx_rate);
2427	if (error) {
2428	  PRINTD (DBG_QOS, "RX SCR failed consistency check");
2429	  return error;
2430	}
2431	break;
2432      }
2433#endif
2434      default: {
2435	PRINTD (DBG_QOS, "unsupported RX traffic class");
2436	return -EINVAL;
2437	break;
2438      }
2439    }
2440  }
2441  
2442  
2443  // late abort useful for diagnostics
2444  if (vcc.aal != aal5) {
2445    PRINTD (DBG_QOS, "AAL not supported");
2446    return -EINVAL;
2447  }
2448  
2449  // get space for our vcc stuff and copy parameters into it
2450  vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2451  if (!vccp) {
2452    PRINTK (KERN_ERR, "out of memory!");
2453    return -ENOMEM;
2454  }
2455  *vccp = vcc;
2456  
2457  // clear error and grab cell rate resource lock
2458  error = 0;
2459  spin_lock (&dev->rate_lock);
2460  
2461  if (vcc.tx_rate > dev->tx_avail) {
2462    PRINTD (DBG_QOS, "not enough TX PCR left");
2463    error = -EAGAIN;
2464  }
2465  
2466  if (vcc.rx_rate > dev->rx_avail) {
2467    PRINTD (DBG_QOS, "not enough RX PCR left");
2468    error = -EAGAIN;
2469  }
2470  
2471  if (!error) {
2472    // really consume cell rates
2473    dev->tx_avail -= vcc.tx_rate;
2474    dev->rx_avail -= vcc.rx_rate;
2475    PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2476	    vcc.tx_rate, vcc.rx_rate);
2477  }
2478  
2479  // release lock and exit on error
2480  spin_unlock (&dev->rate_lock);
2481  if (error) {
2482    PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2483    kfree (vccp);
2484    return error;
2485  }
2486  
2487  // this is "immediately before allocating the connection identifier
2488  // in hardware" - so long as the next call does not fail :)
2489  set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2490  
2491  // any errors here are very serious and should never occur
2492  
2493  if (rxtp->traffic_class != ATM_NONE) {
2494    if (dev->rxer[channel]) {
2495      PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2496      error = -EBUSY;
2497    }
2498    if (!error)
2499      error = hrz_open_rx (dev, channel);
2500    if (error) {
2501      kfree (vccp);
2502      return error;
2503    }
2504    // this link allows RX frames through
2505    dev->rxer[channel] = atm_vcc;
2506  }
2507  
2508  // success, set elements of atm_vcc
2509  atm_vcc->dev_data = (void *) vccp;
2510  
2511  // indicate readiness
2512  set_bit(ATM_VF_READY,&atm_vcc->flags);
2513  
2514  return 0;
2515}
2516
2517/********** close VC **********/
2518
2519static void hrz_close (struct atm_vcc * atm_vcc) {
2520  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2521  hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2522  u16 channel = vcc->channel;
2523  PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2524  
2525  // indicate unreadiness
2526  clear_bit(ATM_VF_READY,&atm_vcc->flags);
2527
2528  if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2529    unsigned int i;
2530    
2531    // let any TX on this channel that has started complete
2532    // no restart, just keep trying
2533    while (tx_hold (dev))
2534      ;
2535    // remove record of any tx_channel having been setup for this channel
2536    for (i = 0; i < TX_CHANS; ++i)
2537      if (dev->tx_channel_record[i] == channel) {
2538	dev->tx_channel_record[i] = -1;
2539	break;
2540      }
2541    if (dev->last_vc == channel)
2542      dev->tx_last = -1;
2543    tx_release (dev);
2544  }
2545
2546  if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2547    // disable RXing - it tries quite hard
2548    hrz_close_rx (dev, channel);
2549    // forget the vcc - no more skbs will be pushed
2550    if (atm_vcc != dev->rxer[channel])
2551      PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2552	      "arghhh! we're going to die!",
2553	      atm_vcc, dev->rxer[channel]);
2554    dev->rxer[channel] = NULL;
2555  }
2556  
2557  // atomically release our rate reservation
2558  spin_lock (&dev->rate_lock);
2559  PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2560	  vcc->tx_rate, vcc->rx_rate);
2561  dev->tx_avail += vcc->tx_rate;
2562  dev->rx_avail += vcc->rx_rate;
2563  spin_unlock (&dev->rate_lock);
2564  
2565  // free our structure
2566  kfree (vcc);
2567  // say the VPI/VCI is free again
2568  clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2569}
2570
2571#if 0
2572static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2573			   void *optval, int optlen) {
2574  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2575  PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2576  switch (level) {
2577    case SOL_SOCKET:
2578      switch (optname) {
2579//	case SO_BCTXOPT:
2580//	  break;
2581//	case SO_BCRXOPT:
2582//	  break;
2583	default:
2584	  return -ENOPROTOOPT;
2585	  break;
2586      };
2587      break;
2588  }
2589  return -EINVAL;
2590}
2591
2592static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2593			   void *optval, unsigned int optlen) {
2594  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2595  PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2596  switch (level) {
2597    case SOL_SOCKET:
2598      switch (optname) {
2599//	case SO_BCTXOPT:
2600//	  break;
2601//	case SO_BCRXOPT:
2602//	  break;
2603	default:
2604	  return -ENOPROTOOPT;
2605	  break;
2606      };
2607      break;
2608  }
2609  return -EINVAL;
2610}
2611#endif
2612
2613#if 0
2614static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2615  hrz_dev * dev = HRZ_DEV(atm_dev);
2616  PRINTD (DBG_FLOW, "hrz_ioctl");
2617  return -1;
2618}
2619
2620unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2621  hrz_dev * dev = HRZ_DEV(atm_dev);
2622  PRINTD (DBG_FLOW, "hrz_phy_get");
2623  return 0;
2624}
2625
2626static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2627			 unsigned long addr) {
2628  hrz_dev * dev = HRZ_DEV(atm_dev);
2629  PRINTD (DBG_FLOW, "hrz_phy_put");
2630}
2631
2632static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2633  hrz_dev * dev = HRZ_DEV(vcc->dev);
2634  PRINTD (DBG_FLOW, "hrz_change_qos");
2635  return -1;
2636}
2637#endif
2638
2639/********** proc file contents **********/
2640
2641static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2642  hrz_dev * dev = HRZ_DEV(atm_dev);
2643  int left = *pos;
2644  PRINTD (DBG_FLOW, "hrz_proc_read");
2645  
2646  /* more diagnostics here? */
2647  
2648#if 0
2649  if (!left--) {
2650    unsigned int count = sprintf (page, "vbr buckets:");
2651    unsigned int i;
2652    for (i = 0; i < TX_CHANS; ++i)
2653      count += sprintf (page, " %u/%u",
2654			query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2655			query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2656    count += sprintf (page+count, ".\n");
2657    return count;
2658  }
2659#endif
2660  
2661  if (!left--)
2662    return sprintf (page,
2663		    "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2664		    dev->tx_cell_count, dev->rx_cell_count,
2665		    dev->hec_error_count, dev->unassigned_cell_count);
2666  
2667  if (!left--)
2668    return sprintf (page,
2669		    "free cell buffers: TX %hu, RX %hu+%hu.\n",
2670		    rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2671		    rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2672		    dev->noof_spare_buffers);
2673  
2674  if (!left--)
2675    return sprintf (page,
2676		    "cps remaining: TX %u, RX %u\n",
2677		    dev->tx_avail, dev->rx_avail);
2678  
2679  return 0;
2680}
2681
2682static const struct atmdev_ops hrz_ops = {
2683  .open	= hrz_open,
2684  .close	= hrz_close,
2685  .send	= hrz_send,
2686  .proc_read	= hrz_proc_read,
2687  .owner	= THIS_MODULE,
2688};
2689
2690static int __devinit hrz_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
 
2691{
2692	hrz_dev * dev;
2693	int err = 0;
2694
2695	// adapter slot free, read resources from PCI configuration space
2696	u32 iobase = pci_resource_start (pci_dev, 0);
2697	u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2698	unsigned int irq;
2699	unsigned char lat;
2700
2701	PRINTD (DBG_FLOW, "hrz_probe");
2702
2703	if (pci_enable_device(pci_dev))
2704		return -EINVAL;
2705
2706	/* XXX DEV_LABEL is a guess */
2707	if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2708		err = -EINVAL;
2709		goto out_disable;
2710	}
2711
2712	dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
2713	if (!dev) {
2714		// perhaps we should be nice: deregister all adapters and abort?
2715		PRINTD(DBG_ERR, "out of memory");
2716		err = -ENOMEM;
2717		goto out_release;
2718	}
2719
2720	pci_set_drvdata(pci_dev, dev);
2721
2722	// grab IRQ and install handler - move this someplace more sensible
2723	irq = pci_dev->irq;
2724	if (request_irq(irq,
2725			interrupt_handler,
2726			IRQF_SHARED, /* irqflags guess */
2727			DEV_LABEL, /* name guess */
2728			dev)) {
2729		PRINTD(DBG_WARN, "request IRQ failed!");
2730		err = -EINVAL;
2731		goto out_free;
2732	}
2733
2734	PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2735	       iobase, irq, membase);
2736
2737	dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
2738					NULL);
2739	if (!(dev->atm_dev)) {
2740		PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2741		err = -EINVAL;
2742		goto out_free_irq;
2743	}
2744
2745	PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2746	       dev->atm_dev->number, dev, dev->atm_dev);
2747	dev->atm_dev->dev_data = (void *) dev;
2748	dev->pci_dev = pci_dev; 
2749
2750	// enable bus master accesses
2751	pci_set_master(pci_dev);
2752
2753	// frobnicate latency (upwards, usually)
2754	pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2755	if (pci_lat) {
2756		PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2757		       "changing", lat, pci_lat);
2758		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2759	} else if (lat < MIN_PCI_LATENCY) {
2760		PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2761		       "increasing", lat, MIN_PCI_LATENCY);
2762		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2763	}
2764
2765	dev->iobase = iobase;
2766	dev->irq = irq; 
2767	dev->membase = membase; 
2768
2769	dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2770	dev->rx_q_wrap  = &memmap->rx_q_entries[RX_CHANS-1];
2771
2772	// these next three are performance hacks
2773	dev->last_vc = -1;
2774	dev->tx_last = -1;
2775	dev->tx_idle = 0;
2776
2777	dev->tx_regions = 0;
2778	dev->tx_bytes = 0;
2779	dev->tx_skb = NULL;
2780	dev->tx_iovec = NULL;
2781
2782	dev->tx_cell_count = 0;
2783	dev->rx_cell_count = 0;
2784	dev->hec_error_count = 0;
2785	dev->unassigned_cell_count = 0;
2786
2787	dev->noof_spare_buffers = 0;
2788
2789	{
2790		unsigned int i;
2791		for (i = 0; i < TX_CHANS; ++i)
2792			dev->tx_channel_record[i] = -1;
2793	}
2794
2795	dev->flags = 0;
2796
2797	// Allocate cell rates and remember ASIC version
2798	// Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2799	// Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2800	// Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2801
2802	if (hrz_init(dev)) {
2803		// to be really pedantic, this should be ATM_OC3c_PCR
2804		dev->tx_avail = ATM_OC3_PCR;
2805		dev->rx_avail = ATM_OC3_PCR;
2806		set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2807	} else {
2808		dev->tx_avail = ((25600000/8)*26)/(27*53);
2809		dev->rx_avail = ((25600000/8)*26)/(27*53);
2810		PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2811	}
2812
2813	// rate changes spinlock
2814	spin_lock_init(&dev->rate_lock);
2815
2816	// on-board memory access spinlock; we want atomic reads and
2817	// writes to adapter memory (handles IRQ and SMP)
2818	spin_lock_init(&dev->mem_lock);
2819
2820	init_waitqueue_head(&dev->tx_queue);
2821
2822	// vpi in 0..4, vci in 6..10
2823	dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2824	dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2825
2826	init_timer(&dev->housekeeping);
2827	dev->housekeeping.function = do_housekeeping;
2828	dev->housekeeping.data = (unsigned long) dev;
2829	mod_timer(&dev->housekeeping, jiffies);
2830
2831out:
2832	return err;
2833
2834out_free_irq:
2835	free_irq(dev->irq, dev);
2836out_free:
2837	kfree(dev);
2838out_release:
2839	release_region(iobase, HRZ_IO_EXTENT);
2840out_disable:
2841	pci_disable_device(pci_dev);
2842	goto out;
2843}
2844
2845static void __devexit hrz_remove_one(struct pci_dev *pci_dev)
2846{
2847	hrz_dev *dev;
2848
2849	dev = pci_get_drvdata(pci_dev);
2850
2851	PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2852	del_timer_sync(&dev->housekeeping);
2853	hrz_reset(dev);
2854	atm_dev_deregister(dev->atm_dev);
2855	free_irq(dev->irq, dev);
2856	release_region(dev->iobase, HRZ_IO_EXTENT);
2857	kfree(dev);
2858
2859	pci_disable_device(pci_dev);
2860}
2861
2862static void __init hrz_check_args (void) {
2863#ifdef DEBUG_HORIZON
2864  PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2865#else
2866  if (debug)
2867    PRINTK (KERN_NOTICE, "no debug support in this image");
2868#endif
2869  
2870  if (vpi_bits > HRZ_MAX_VPI)
2871    PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2872	    vpi_bits = HRZ_MAX_VPI);
2873  
2874  if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2875    PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2876	    max_tx_size = TX_AAL5_LIMIT);
2877  
2878  if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2879    PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2880	    max_rx_size = RX_AAL5_LIMIT);
2881  
2882  return;
2883}
2884
2885MODULE_AUTHOR(maintainer_string);
2886MODULE_DESCRIPTION(description_string);
2887MODULE_LICENSE("GPL");
2888module_param(debug, ushort, 0644);
2889module_param(vpi_bits, ushort, 0);
2890module_param(max_tx_size, int, 0);
2891module_param(max_rx_size, int, 0);
2892module_param(pci_lat, byte, 0);
2893MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2894MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2895MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2896MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2897MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2898
2899static struct pci_device_id hrz_pci_tbl[] = {
2900	{ PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
2901	  0, 0, 0 },
2902	{ 0, }
2903};
2904
2905MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2906
2907static struct pci_driver hrz_driver = {
2908	.name =		"horizon",
2909	.probe =	hrz_probe,
2910	.remove =	__devexit_p(hrz_remove_one),
2911	.id_table =	hrz_pci_tbl,
2912};
2913
2914/********** module entry **********/
2915
2916static int __init hrz_module_init (void) {
2917  // sanity check - cast is needed since printk does not support %Zu
2918  if (sizeof(struct MEMMAP) != 128*1024/4) {
2919    PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
2920	    (unsigned long) sizeof(struct MEMMAP));
2921    return -ENOMEM;
2922  }
2923  
2924  show_version();
2925  
2926  // check arguments
2927  hrz_check_args();
2928  
2929  // get the juice
2930  return pci_register_driver(&hrz_driver);
2931}
2932
2933/********** module exit **********/
2934
2935static void __exit hrz_module_exit (void) {
2936  PRINTD (DBG_FLOW, "cleanup_module");
2937
2938  pci_unregister_driver(&hrz_driver);
2939}
2940
2941module_init(hrz_module_init);
2942module_exit(hrz_module_exit);
v4.17
   1/*
   2  Madge Horizon ATM Adapter driver.
   3  Copyright (C) 1995-1999  Madge Networks Ltd.
   4  
   5  This program is free software; you can redistribute it and/or modify
   6  it under the terms of the GNU General Public License as published by
   7  the Free Software Foundation; either version 2 of the License, or
   8  (at your option) any later version.
   9  
  10  This program is distributed in the hope that it will be useful,
  11  but WITHOUT ANY WARRANTY; without even the implied warranty of
  12  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13  GNU General Public License for more details.
  14  
  15  You should have received a copy of the GNU General Public License
  16  along with this program; if not, write to the Free Software
  17  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  18  
  19  The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
  20  system and in the file COPYING in the Linux kernel source.
  21*/
  22
  23/*
  24  IMPORTANT NOTE: Madge Networks no longer makes the adapters
  25  supported by this driver and makes no commitment to maintain it.
  26*/
  27
  28#include <linux/module.h>
  29#include <linux/kernel.h>
  30#include <linux/sched/signal.h>
  31#include <linux/mm.h>
  32#include <linux/pci.h>
  33#include <linux/errno.h>
  34#include <linux/atm.h>
  35#include <linux/atmdev.h>
  36#include <linux/sonet.h>
  37#include <linux/skbuff.h>
  38#include <linux/time.h>
  39#include <linux/delay.h>
  40#include <linux/uio.h>
  41#include <linux/init.h>
  42#include <linux/interrupt.h>
  43#include <linux/ioport.h>
  44#include <linux/wait.h>
  45#include <linux/slab.h>
  46
 
  47#include <asm/io.h>
  48#include <linux/atomic.h>
  49#include <linux/uaccess.h>
  50#include <asm/string.h>
  51#include <asm/byteorder.h>
  52
  53#include "horizon.h"
  54
  55#define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
  56#define description_string "Madge ATM Horizon [Ultra] driver"
  57#define version_string "1.2.1"
  58
  59static inline void __init show_version (void) {
  60  printk ("%s version %s\n", description_string, version_string);
  61}
  62
  63/*
  64  
  65  CREDITS
  66  
  67  Driver and documentation by:
  68  
  69  Chris Aston        Madge Networks
  70  Giuliano Procida   Madge Networks
  71  Simon Benham       Madge Networks
  72  Simon Johnson      Madge Networks
  73  Various Others     Madge Networks
  74  
  75  Some inspiration taken from other drivers by:
  76  
  77  Alexandru Cucos    UTBv
  78  Kari Mettinen      University of Helsinki
  79  Werner Almesberger EPFL LRC
  80  
  81  Theory of Operation
  82  
  83  I Hardware, detection, initialisation and shutdown.
  84  
  85  1. Supported Hardware
  86  
  87  This driver should handle all variants of the PCI Madge ATM adapters
  88  with the Horizon chipset. These are all PCI cards supporting PIO, BM
  89  DMA and a form of MMIO (registers only, not internal RAM).
  90  
  91  The driver is only known to work with SONET and UTP Horizon Ultra
  92  cards at 155Mb/s. However, code is in place to deal with both the
  93  original Horizon and 25Mb/s operation.
  94  
  95  There are two revisions of the Horizon ASIC: the original and the
  96  Ultra. Details of hardware bugs are in section III.
  97  
  98  The ASIC version can be distinguished by chip markings but is NOT
  99  indicated by the PCI revision (all adapters seem to have PCI rev 1).
 100  
 101  I believe that:
 102  
 103  Horizon       => Collage  25 PCI Adapter (UTP and STP)
 104  Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
 105  Ambassador x  => Collage 155 PCI Server (completely different)
 106  
 107  Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
 108  have a Madge B154 plus glue logic serializer. I have also found a
 109  really ancient version of this with slightly different glue. It
 110  comes with the revision 0 (140-025-01) ASIC.
 111  
 112  Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
 113  output (UTP) or an HP HFBR 5205 output (SONET). It has either
 114  Madge's SAMBA framer or a SUNI-lite device (early versions). It
 115  comes with the revision 1 (140-027-01) ASIC.
 116  
 117  2. Detection
 118  
 119  All Horizon-based cards present with the same PCI Vendor and Device
 120  IDs. The standard Linux 2.2 PCI API is used to locate any cards and
 121  to enable bus-mastering (with appropriate latency).
 122  
 123  ATM_LAYER_STATUS in the control register distinguishes between the
 124  two possible physical layers (25 and 155). It is not clear whether
 125  the 155 cards can also operate at 25Mbps. We rely on the fact that a
 126  card operates at 155 if and only if it has the newer Horizon Ultra
 127  ASIC.
 128  
 129  For 155 cards the two possible framers are probed for and then set
 130  up for loop-timing.
 131  
 132  3. Initialisation
 133  
 134  The card is reset and then put into a known state. The physical
 135  layer is configured for normal operation at the appropriate speed;
 136  in the case of the 155 cards, the framer is initialised with
 137  line-based timing; the internal RAM is zeroed and the allocation of
 138  buffers for RX and TX is made; the Burnt In Address is read and
 139  copied to the ATM ESI; various policy settings for RX (VPI bits,
 140  unknown VCs, oam cells) are made. Ideally all policy items should be
 141  configurable at module load (if not actually on-demand), however,
 142  only the vpi vs vci bit allocation can be specified at insmod.
 143  
 144  4. Shutdown
 145  
 146  This is in response to module_cleaup. No VCs are in use and the card
 147  should be idle; it is reset.
 148  
 149  II Driver software (as it should be)
 150  
 151  0. Traffic Parameters
 152  
 153  The traffic classes (not an enumeration) are currently: ATM_NONE (no
 154  traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
 155  (compatible with everything). Together with (perhaps only some of)
 156  the following items they make up the traffic specification.
 157  
 158  struct atm_trafprm {
 159    unsigned char traffic_class; traffic class (ATM_UBR, ...)
 160    int           max_pcr;       maximum PCR in cells per second
 161    int           pcr;           desired PCR in cells per second
 162    int           min_pcr;       minimum PCR in cells per second
 163    int           max_cdv;       maximum CDV in microseconds
 164    int           max_sdu;       maximum SDU in bytes
 165  };
 166  
 167  Note that these denote bandwidth available not bandwidth used; the
 168  possibilities according to ATMF are:
 169  
 170  Real Time (cdv and max CDT given)
 171  
 172  CBR(pcr)             pcr bandwidth always available
 173  rtVBR(pcr,scr,mbs)   scr bandwidth always available, up to pcr at mbs too
 174  
 175  Non Real Time
 176  
 177  nrtVBR(pcr,scr,mbs)  scr bandwidth always available, up to pcr at mbs too
 178  UBR()
 179  ABR(mcr,pcr)         mcr bandwidth always available, up to pcr (depending) too
 180  
 181  mbs is max burst size (bucket)
 182  pcr and scr have associated cdvt values
 183  mcr is like scr but has no cdtv
 184  cdtv may differ at each hop
 185  
 186  Some of the above items are qos items (as opposed to traffic
 187  parameters). We have nothing to do with qos. All except ABR can have
 188  their traffic parameters converted to GCRA parameters. The GCRA may
 189  be implemented as a (real-number) leaky bucket. The GCRA can be used
 190  in complicated ways by switches and in simpler ways by end-stations.
 191  It can be used both to filter incoming cells and shape out-going
 192  cells.
 193  
 194  ATM Linux actually supports:
 195  
 196  ATM_NONE() (no traffic in this direction)
 197  ATM_UBR(max_frame_size)
 198  ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
 199  
 200  0 or ATM_MAX_PCR are used to indicate maximum available PCR
 201  
 202  A traffic specification consists of the AAL type and separate
 203  traffic specifications for either direction. In ATM Linux it is:
 204  
 205  struct atm_qos {
 206  struct atm_trafprm txtp;
 207  struct atm_trafprm rxtp;
 208  unsigned char aal;
 209  };
 210  
 211  AAL types are:
 212  
 213  ATM_NO_AAL    AAL not specified
 214  ATM_AAL0      "raw" ATM cells
 215  ATM_AAL1      AAL1 (CBR)
 216  ATM_AAL2      AAL2 (VBR)
 217  ATM_AAL34     AAL3/4 (data)
 218  ATM_AAL5      AAL5 (data)
 219  ATM_SAAL      signaling AAL
 220  
 221  The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
 222  it does not implement AAL 3/4 SAR and it has a different notion of
 223  "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
 224  supported by this driver.
 225  
 226  The Horizon has limited support for ABR (including UBR), VBR and
 227  CBR. Each TX channel has a bucket (containing up to 31 cell units)
 228  and two timers (PCR and SCR) associated with it that can be used to
 229  govern cell emissions and host notification (in the case of ABR this
 230  is presumably so that RM cells may be emitted at appropriate times).
 231  The timers may either be disabled or may be set to any of 240 values
 232  (determined by the clock crystal, a fixed (?) per-device divider, a
 233  configurable divider and a configurable timer preload value).
 234  
 235  At the moment only UBR and CBR are supported by the driver. VBR will
 236  be supported as soon as ATM for Linux supports it. ABR support is
 237  very unlikely as RM cell handling is completely up to the driver.
 238  
 239  1. TX (TX channel setup and TX transfer)
 240  
 241  The TX half of the driver owns the TX Horizon registers. The TX
 242  component in the IRQ handler is the BM completion handler. This can
 243  only be entered when tx_busy is true (enforced by hardware). The
 244  other TX component can only be entered when tx_busy is false
 245  (enforced by driver). So TX is single-threaded.
 246  
 247  Apart from a minor optimisation to not re-select the last channel,
 248  the TX send component works as follows:
 249  
 250  Atomic test and set tx_busy until we succeed; we should implement
 251  some sort of timeout so that tx_busy will never be stuck at true.
 252  
 253  If no TX channel is set up for this VC we wait for an idle one (if
 254  necessary) and set it up.
 255  
 256  At this point we have a TX channel ready for use. We wait for enough
 257  buffers to become available then start a TX transmit (set the TX
 258  descriptor, schedule transfer, exit).
 259  
 260  The IRQ component handles TX completion (stats, free buffer, tx_busy
 261  unset, exit). We also re-schedule further transfers for the same
 262  frame if needed.
 263  
 264  TX setup in more detail:
 265  
 266  TX open is a nop, the relevant information is held in the hrz_vcc
 267  (vcc->dev_data) structure and is "cached" on the card.
 268  
 269  TX close gets the TX lock and clears the channel from the "cache".
 270  
 271  2. RX (Data Available and RX transfer)
 272  
 273  The RX half of the driver owns the RX registers. There are two RX
 274  components in the IRQ handler: the data available handler deals with
 275  fresh data that has arrived on the card, the BM completion handler
 276  is very similar to the TX completion handler. The data available
 277  handler grabs the rx_lock and it is only released once the data has
 278  been discarded or completely transferred to the host. The BM
 279  completion handler only runs when the lock is held; the data
 280  available handler is locked out over the same period.
 281  
 282  Data available on the card triggers an interrupt. If the data is not
 283  suitable for our existing RX channels or we cannot allocate a buffer
 284  it is flushed. Otherwise an RX receive is scheduled. Multiple RX
 285  transfers may be scheduled for the same frame.
 286  
 287  RX setup in more detail:
 288  
 289  RX open...
 290  RX close...
 291  
 292  III Hardware Bugs
 293  
 294  0. Byte vs Word addressing of adapter RAM.
 295  
 296  A design feature; see the .h file (especially the memory map).
 297  
 298  1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
 299  
 300  The host must not start a transmit direction transfer at a
 301  non-four-byte boundary in host memory. Instead the host should
 302  perform a byte, or a two byte, or one byte followed by two byte
 303  transfer in order to start the rest of the transfer on a four byte
 304  boundary. RX is OK.
 305  
 306  Simultaneous transmit and receive direction bus master transfers are
 307  not allowed.
 308  
 309  The simplest solution to these two is to always do PIO (never DMA)
 310  in the TX direction on the original Horizon. More complicated
 311  solutions are likely to hurt my brain.
 312  
 313  2. Loss of buffer on close VC
 314  
 315  When a VC is being closed, the buffer associated with it is not
 316  returned to the pool. The host must store the reference to this
 317  buffer and when opening a new VC then give it to that new VC.
 318  
 319  The host intervention currently consists of stacking such a buffer
 320  pointer at VC close and checking the stack at VC open.
 321  
 322  3. Failure to close a VC
 323  
 324  If a VC is currently receiving a frame then closing the VC may fail
 325  and the frame continues to be received.
 326  
 327  The solution is to make sure any received frames are flushed when
 328  ready. This is currently done just before the solution to 2.
 329  
 330  4. PCI bus (original Horizon only, fixed in Ultra)
 331  
 332  Reading from the data port prior to initialisation will hang the PCI
 333  bus. Just don't do that then! We don't.
 334  
 335  IV To Do List
 336  
 337  . Timer code may be broken.
 338  
 339  . Allow users to specify buffer allocation split for TX and RX.
 340  
 341  . Deal once and for all with buggy VC close.
 342  
 343  . Handle interrupted and/or non-blocking operations.
 344  
 345  . Change some macros to functions and move from .h to .c.
 346  
 347  . Try to limit the number of TX frames each VC may have queued, in
 348    order to reduce the chances of TX buffer exhaustion.
 349  
 350  . Implement VBR (bucket and timers not understood) and ABR (need to
 351    do RM cells manually); also no Linux support for either.
 352  
 353  . Implement QoS changes on open VCs (involves extracting parts of VC open
 354    and close into separate functions and using them to make changes).
 355  
 356*/
 357
 358/********** globals **********/
 359
 360static void do_housekeeping (struct timer_list *t);
 361
 362static unsigned short debug = 0;
 363static unsigned short vpi_bits = 0;
 364static int max_tx_size = 9000;
 365static int max_rx_size = 9000;
 366static unsigned char pci_lat = 0;
 367
 368/********** access functions **********/
 369
 370/* Read / Write Horizon registers */
 371static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
 372  outl (cpu_to_le32 (data), dev->iobase + reg);
 373}
 374
 375static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
 376  return le32_to_cpu (inl (dev->iobase + reg));
 377}
 378
 379static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
 380  outw (cpu_to_le16 (data), dev->iobase + reg);
 381}
 382
 383static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
 384  return le16_to_cpu (inw (dev->iobase + reg));
 385}
 386
 387static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
 388  outsb (dev->iobase + reg, addr, len);
 389}
 390
 391static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
 392  insb (dev->iobase + reg, addr, len);
 393}
 394
 395/* Read / Write to a given address in Horizon buffer memory.
 396   Interrupts must be disabled between the address register and data
 397   port accesses as these must form an atomic operation. */
 398static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
 399  // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
 400  wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
 401  wr_regl (dev, MEMORY_PORT_OFF, data);
 402}
 403
 404static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
 405  // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
 406  wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
 407  return rd_regl (dev, MEMORY_PORT_OFF);
 408}
 409
 410static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
 411  wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
 412  wr_regl (dev, MEMORY_PORT_OFF, data);
 413}
 414
 415static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
 416  wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
 417  return rd_regl (dev, MEMORY_PORT_OFF);
 418}
 419
 420/********** specialised access functions **********/
 421
 422/* RX */
 423
 424static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
 425  wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
 426  return;
 427}
 428
 429static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
 430  while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
 431    ;
 432  return;
 433}
 434
 435static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
 436  wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
 437  return;
 438}
 439
 440static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
 441  while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
 442    ;
 443  return;
 444}
 445
 446/* TX */
 447
 448static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
 449  wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
 450  return;
 451}
 452
 453/* Update or query one configuration parameter of a particular channel. */
 454
 455static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
 456  wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
 457	   chan * TX_CHANNEL_CONFIG_MULT | mode);
 458    wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
 459    return;
 460}
 461
 
 
 
 
 
 
 462/********** dump functions **********/
 463
 464static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
 465#ifdef DEBUG_HORIZON
 466  unsigned int i;
 467  unsigned char * data = skb->data;
 468  PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
 469  for (i=0; i<skb->len && i < 256;i++)
 470    PRINTDM (DBG_DATA, "%02x ", data[i]);
 471  PRINTDE (DBG_DATA,"");
 472#else
 473  (void) prefix;
 474  (void) vc;
 475  (void) skb;
 476#endif
 477  return;
 478}
 479
 480static inline void dump_regs (hrz_dev * dev) {
 481#ifdef DEBUG_HORIZON
 482  PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
 483  PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
 484  PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
 485  PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
 486  PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
 487  PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
 488#else
 489  (void) dev;
 490#endif
 491  return;
 492}
 493
 494static inline void dump_framer (hrz_dev * dev) {
 495#ifdef DEBUG_HORIZON
 496  unsigned int i;
 497  PRINTDB (DBG_REGS, "framer registers:");
 498  for (i = 0; i < 0x10; ++i)
 499    PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
 500  PRINTDE (DBG_REGS,"");
 501#else
 502  (void) dev;
 503#endif
 504  return;
 505}
 506
 507/********** VPI/VCI <-> (RX) channel conversions **********/
 508
 509/* RX channels are 10 bit integers, these fns are quite paranoid */
 510
 
 
 
 
 
 
 
 
 
 
 511static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
 512  unsigned short vci_bits = 10 - vpi_bits;
 513  if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
 514    *channel = vpi<<vci_bits | vci;
 515    return *channel ? 0 : -EINVAL;
 516  }
 517  return -EINVAL;
 518}
 519
 520/********** decode RX queue entries **********/
 521
 522static inline u16 rx_q_entry_to_length (u32 x) {
 523  return x & RX_Q_ENTRY_LENGTH_MASK;
 524}
 525
 526static inline u16 rx_q_entry_to_rx_channel (u32 x) {
 527  return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
 528}
 529
 530/* Cell Transmit Rate Values
 531 *
 532 * the cell transmit rate (cells per sec) can be set to a variety of
 533 * different values by specifying two parameters: a timer preload from
 534 * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
 535 * an exponent from 0 to 14; the special value 15 disables the timer).
 536 *
 537 * cellrate = baserate / (preload * 2^divider)
 538 *
 539 * The maximum cell rate that can be specified is therefore just the
 540 * base rate. Halving the preload is equivalent to adding 1 to the
 541 * divider and so values 1 to 8 of the preload are redundant except
 542 * in the case of a maximal divider (14).
 543 *
 544 * Given a desired cell rate, an algorithm to determine the preload
 545 * and divider is:
 546 * 
 547 * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
 548 * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
 549 *    if x <= 16 then set p = x, d = 0 (high rates), done
 550 * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
 551 *    know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
 552 *    we find the range (n will be between 1 and 14), set d = n
 553 * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
 554 *
 555 * The algorithm used below is a minor variant of the above.
 556 *
 557 * The base rate is derived from the oscillator frequency (Hz) using a
 558 * fixed divider:
 559 *
 560 * baserate = freq / 32 in the case of some Unknown Card
 561 * baserate = freq / 8  in the case of the Horizon        25
 562 * baserate = freq / 8  in the case of the Horizon Ultra 155
 563 *
 564 * The Horizon cards have oscillators and base rates as follows:
 565 *
 566 * Card               Oscillator  Base Rate
 567 * Unknown Card       33 MHz      1.03125 MHz (33 MHz = PCI freq)
 568 * Horizon        25  32 MHz      4       MHz
 569 * Horizon Ultra 155  40 MHz      5       MHz
 570 *
 571 * The following defines give the base rates in Hz. These were
 572 * previously a factor of 100 larger, no doubt someone was using
 573 * cps*100.
 574 */
 575
 576#define BR_UKN 1031250l
 577#define BR_HRZ 4000000l
 578#define BR_ULT 5000000l
 579
 580// d is an exponent
 581#define CR_MIND 0
 582#define CR_MAXD 14
 583
 584// p ranges from 1 to a power of 2
 585#define CR_MAXPEXP 4
 586 
 587static int make_rate (const hrz_dev * dev, u32 c, rounding r,
 588		      u16 * bits, unsigned int * actual)
 589{
 590	// note: rounding the rate down means rounding 'p' up
 591	const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
 592  
 593	u32 div = CR_MIND;
 594	u32 pre;
 595  
 596	// br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
 597	// the tests below. We could think harder about exact possibilities
 598	// of failure...
 599  
 600	unsigned long br_man = br;
 601	unsigned int br_exp = 0;
 602  
 603	PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
 604		r == round_up ? "up" : r == round_down ? "down" : "nearest");
 605  
 606	// avoid div by zero
 607	if (!c) {
 608		PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
 609		return -EINVAL;
 610	}
 611  
 612	while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
 613		br_man = br_man >> 1;
 614		++br_exp;
 615	}
 616	// (br >>br_exp) <<br_exp == br and
 617	// br_exp <= CR_MAXPEXP+CR_MIND
 618  
 619	if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
 620		// Equivalent to: B <= (c << (MAXPEXP+MIND))
 621		// take care of rounding
 622		switch (r) {
 623			case round_down:
 624				pre = DIV_ROUND_UP(br, c<<div);
 625				// but p must be non-zero
 626				if (!pre)
 627					pre = 1;
 628				break;
 629			case round_nearest:
 630				pre = DIV_ROUND_CLOSEST(br, c<<div);
 631				// but p must be non-zero
 632				if (!pre)
 633					pre = 1;
 634				break;
 635			default:	/* round_up */
 636				pre = br/(c<<div);
 637				// but p must be non-zero
 638				if (!pre)
 639					return -EINVAL;
 640		}
 641		PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
 642		goto got_it;
 643	}
 644  
 645	// at this point we have
 646	// d == MIND and (c << (MAXPEXP+MIND)) < B
 647	while (div < CR_MAXD) {
 648		div++;
 649		if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
 650			// Equivalent to: B <= (c << (MAXPEXP+d))
 651			// c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
 652			// 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
 653			// MAXP/2 < B/c2^d <= MAXP
 654			// take care of rounding
 655			switch (r) {
 656				case round_down:
 657					pre = DIV_ROUND_UP(br, c<<div);
 658					break;
 659				case round_nearest:
 660					pre = DIV_ROUND_CLOSEST(br, c<<div);
 661					break;
 662				default: /* round_up */
 663					pre = br/(c<<div);
 664			}
 665			PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
 666			goto got_it;
 667		}
 668	}
 669	// at this point we have
 670	// d == MAXD and (c << (MAXPEXP+MAXD)) < B
 671	// but we cannot go any higher
 672	// take care of rounding
 673	if (r == round_down)
 674		return -EINVAL;
 675	pre = 1 << CR_MAXPEXP;
 676	PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
 677got_it:
 678	// paranoia
 679	if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
 680		PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
 681			div, pre);
 682		return -EINVAL;
 683	} else {
 684		if (bits)
 685			*bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
 686		if (actual) {
 687			*actual = DIV_ROUND_UP(br, pre<<div);
 688			PRINTD (DBG_QOS, "actual rate: %u", *actual);
 689		}
 690		return 0;
 691	}
 692}
 693
 694static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
 695				     u16 * bit_pattern, unsigned int * actual) {
 696  unsigned int my_actual;
 697  
 698  PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
 699	  c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
 700  
 701  if (!actual)
 702    // actual rate is not returned
 703    actual = &my_actual;
 704  
 705  if (make_rate (dev, c, round_nearest, bit_pattern, actual))
 706    // should never happen as round_nearest always succeeds
 707    return -1;
 708  
 709  if (c - tol <= *actual && *actual <= c + tol)
 710    // within tolerance
 711    return 0;
 712  else
 713    // intolerant, try rounding instead
 714    return make_rate (dev, c, r, bit_pattern, actual);
 715}
 716
 717/********** Listen on a VC **********/
 718
 719static int hrz_open_rx (hrz_dev * dev, u16 channel) {
 720  // is there any guarantee that we don't get two simulataneous
 721  // identical calls of this function from different processes? yes
 722  // rate_lock
 723  unsigned long flags;
 724  u32 channel_type; // u16?
 725  
 726  u16 buf_ptr = RX_CHANNEL_IDLE;
 727  
 728  rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
 729  
 730  PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
 731  
 732  spin_lock_irqsave (&dev->mem_lock, flags);
 733  channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
 734  spin_unlock_irqrestore (&dev->mem_lock, flags);
 735  
 736  // very serious error, should never occur
 737  if (channel_type != RX_CHANNEL_DISABLED) {
 738    PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
 739    return -EBUSY; // clean up?
 740  }
 741  
 742  // Give back spare buffer
 743  if (dev->noof_spare_buffers) {
 744    buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
 745    PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
 746    // should never occur
 747    if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
 748      // but easy to recover from
 749      PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
 750      buf_ptr = RX_CHANNEL_IDLE;
 751    }
 752  } else {
 753    PRINTD (DBG_VCC, "using IDLE buffer pointer");
 754  }
 755  
 756  // Channel is currently disabled so change its status to idle
 757  
 758  // do we really need to save the flags again?
 759  spin_lock_irqsave (&dev->mem_lock, flags);
 760  
 761  wr_mem (dev, &rx_desc->wr_buf_type,
 762	  buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
 763  if (buf_ptr != RX_CHANNEL_IDLE)
 764    wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
 765  
 766  spin_unlock_irqrestore (&dev->mem_lock, flags);
 767  
 768  // rxer->rate = make_rate (qos->peak_cells);
 769  
 770  PRINTD (DBG_FLOW, "hrz_open_rx ok");
 771  
 772  return 0;
 773}
 774
 775#if 0
 776/********** change vc rate for a given vc **********/
 777
 778static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
 779  rxer->rate = make_rate (qos->peak_cells);
 780}
 781#endif
 782
 783/********** free an skb (as per ATM device driver documentation) **********/
 784
 785static void hrz_kfree_skb (struct sk_buff * skb) {
 786  if (ATM_SKB(skb)->vcc->pop) {
 787    ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
 788  } else {
 789    dev_kfree_skb_any (skb);
 790  }
 791}
 792
 793/********** cancel listen on a VC **********/
 794
 795static void hrz_close_rx (hrz_dev * dev, u16 vc) {
 796  unsigned long flags;
 797  
 798  u32 value;
 799  
 800  u32 r1, r2;
 801  
 802  rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
 803  
 804  int was_idle = 0;
 805  
 806  spin_lock_irqsave (&dev->mem_lock, flags);
 807  value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
 808  spin_unlock_irqrestore (&dev->mem_lock, flags);
 809  
 810  if (value == RX_CHANNEL_DISABLED) {
 811    // I suppose this could happen once we deal with _NONE traffic properly
 812    PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
 813    return;
 814  }
 815  if (value == RX_CHANNEL_IDLE)
 816    was_idle = 1;
 817  
 818  spin_lock_irqsave (&dev->mem_lock, flags);
 819  
 820  for (;;) {
 821    wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
 822    
 823    if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
 824      break;
 825    
 826    was_idle = 0;
 827  }
 828  
 829  if (was_idle) {
 830    spin_unlock_irqrestore (&dev->mem_lock, flags);
 831    return;
 832  }
 833  
 834  WAIT_FLUSH_RX_COMPLETE(dev);
 835  
 836  // XXX Is this all really necessary? We can rely on the rx_data_av
 837  // handler to discard frames that remain queued for delivery. If the
 838  // worry is that immediately reopening the channel (perhaps by a
 839  // different process) may cause some data to be mis-delivered then
 840  // there may still be a simpler solution (such as busy-waiting on
 841  // rx_busy once the channel is disabled or before a new one is
 842  // opened - does this leave any holes?). Arguably setting up and
 843  // tearing down the TX and RX halves of each virtual circuit could
 844  // most safely be done within ?x_busy protected regions.
 845  
 846  // OK, current changes are that Simon's marker is disabled and we DO
 847  // look for NULL rxer elsewhere. The code here seems flush frames
 848  // and then remember the last dead cell belonging to the channel
 849  // just disabled - the cell gets relinked at the next vc_open.
 850  // However, when all VCs are closed or only a few opened there are a
 851  // handful of buffers that are unusable.
 852  
 853  // Does anyone feel like documenting spare_buffers properly?
 854  // Does anyone feel like fixing this in a nicer way?
 855  
 856  // Flush any data which is left in the channel
 857  for (;;) {
 858    // Change the rx channel port to something different to the RX
 859    // channel we are trying to close to force Horizon to flush the rx
 860    // channel read and write pointers.
 861    
 862    u16 other = vc^(RX_CHANS/2);
 863    
 864    SELECT_RX_CHANNEL (dev, other);
 865    WAIT_UPDATE_COMPLETE (dev);
 866    
 867    r1 = rd_mem (dev, &rx_desc->rd_buf_type);
 868    
 869    // Select this RX channel. Flush doesn't seem to work unless we
 870    // select an RX channel before hand
 871    
 872    SELECT_RX_CHANNEL (dev, vc);
 873    WAIT_UPDATE_COMPLETE (dev);
 874    
 875    // Attempt to flush a frame on this RX channel
 876    
 877    FLUSH_RX_CHANNEL (dev, vc);
 878    WAIT_FLUSH_RX_COMPLETE (dev);
 879    
 880    // Force Horizon to flush rx channel read and write pointers as before
 881    
 882    SELECT_RX_CHANNEL (dev, other);
 883    WAIT_UPDATE_COMPLETE (dev);
 884    
 885    r2 = rd_mem (dev, &rx_desc->rd_buf_type);
 886    
 887    PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
 888    
 889    if (r1 == r2) {
 890      dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
 891      break;
 892    }
 893  }
 894  
 895#if 0
 896  {
 897    rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
 898    rx_q_entry * rd_ptr = dev->rx_q_entry;
 899    
 900    PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
 901    
 902    while (rd_ptr != wr_ptr) {
 903      u32 x = rd_mem (dev, (HDW *) rd_ptr);
 904      
 905      if (vc == rx_q_entry_to_rx_channel (x)) {
 906	x |= SIMONS_DODGEY_MARKER;
 907	
 908	PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
 909	
 910	wr_mem (dev, (HDW *) rd_ptr, x);
 911      }
 912      
 913      if (rd_ptr == dev->rx_q_wrap)
 914	rd_ptr = dev->rx_q_reset;
 915      else
 916	rd_ptr++;
 917    }
 918  }
 919#endif
 920  
 921  spin_unlock_irqrestore (&dev->mem_lock, flags);
 922  
 923  return;
 924}
 925
 926/********** schedule RX transfers **********/
 927
 928// Note on tail recursion: a GCC developer said that it is not likely
 929// to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
 930// are sure it does as you may otherwise overflow the kernel stack.
 931
 932// giving this fn a return value would help GCC, allegedly
 933
 934static void rx_schedule (hrz_dev * dev, int irq) {
 935  unsigned int rx_bytes;
 936  
 937  int pio_instead = 0;
 938#ifndef TAILRECURSIONWORKS
 939  pio_instead = 1;
 940  while (pio_instead) {
 941#endif
 942    // bytes waiting for RX transfer
 943    rx_bytes = dev->rx_bytes;
 944    
 945#if 0
 946    spin_count = 0;
 947    while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
 948      PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
 949      if (++spin_count > 10) {
 950	PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
 951	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
 952	clear_bit (rx_busy, &dev->flags);
 953	hrz_kfree_skb (dev->rx_skb);
 954	return;
 955      }
 956    }
 957#endif
 958    
 959    // this code follows the TX code but (at the moment) there is only
 960    // one region - the skb itself. I don't know if this will change,
 961    // but it doesn't hurt to have the code here, disabled.
 962    
 963    if (rx_bytes) {
 964      // start next transfer within same region
 965      if (rx_bytes <= MAX_PIO_COUNT) {
 966	PRINTD (DBG_RX|DBG_BUS, "(pio)");
 967	pio_instead = 1;
 968      }
 969      if (rx_bytes <= MAX_TRANSFER_COUNT) {
 970	PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
 971	dev->rx_bytes = 0;
 972      } else {
 973	PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
 974	dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
 975	rx_bytes = MAX_TRANSFER_COUNT;
 976      }
 977    } else {
 978      // rx_bytes == 0 -- we're between regions
 979      // regions remaining to transfer
 980#if 0
 981      unsigned int rx_regions = dev->rx_regions;
 982#else
 983      unsigned int rx_regions = 0;
 984#endif
 985      
 986      if (rx_regions) {
 987#if 0
 988	// start a new region
 989	dev->rx_addr = dev->rx_iovec->iov_base;
 990	rx_bytes = dev->rx_iovec->iov_len;
 991	++dev->rx_iovec;
 992	dev->rx_regions = rx_regions - 1;
 993	
 994	if (rx_bytes <= MAX_PIO_COUNT) {
 995	  PRINTD (DBG_RX|DBG_BUS, "(pio)");
 996	  pio_instead = 1;
 997	}
 998	if (rx_bytes <= MAX_TRANSFER_COUNT) {
 999	  PRINTD (DBG_RX|DBG_BUS, "(full region)");
1000	  dev->rx_bytes = 0;
1001	} else {
1002	  PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
1003	  dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1004	  rx_bytes = MAX_TRANSFER_COUNT;
1005	}
1006#endif
1007      } else {
1008	// rx_regions == 0
1009	// that's all folks - end of frame
1010	struct sk_buff * skb = dev->rx_skb;
1011	// dev->rx_iovec = 0;
1012	
1013	FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1014	
1015	dump_skb ("<<<", dev->rx_channel, skb);
1016	
1017	PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1018	
1019	{
1020	  struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1021	  // VC layer stats
1022	  atomic_inc(&vcc->stats->rx);
1023	  __net_timestamp(skb);
1024	  // end of our responsibility
1025	  vcc->push (vcc, skb);
1026	}
1027      }
1028    }
1029    
1030    // note: writing RX_COUNT clears any interrupt condition
1031    if (rx_bytes) {
1032      if (pio_instead) {
1033	if (irq)
1034	  wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1035	rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1036      } else {
1037	wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1038	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1039      }
1040      dev->rx_addr += rx_bytes;
1041    } else {
1042      if (irq)
1043	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1044      // allow another RX thread to start
1045      YELLOW_LED_ON(dev);
1046      clear_bit (rx_busy, &dev->flags);
1047      PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1048    }
1049    
1050#ifdef TAILRECURSIONWORKS
1051    // and we all bless optimised tail calls
1052    if (pio_instead)
1053      return rx_schedule (dev, 0);
1054    return;
1055#else
1056    // grrrrrrr!
1057    irq = 0;
1058  }
1059  return;
1060#endif
1061}
1062
1063/********** handle RX bus master complete events **********/
1064
1065static void rx_bus_master_complete_handler (hrz_dev * dev) {
1066  if (test_bit (rx_busy, &dev->flags)) {
1067    rx_schedule (dev, 1);
1068  } else {
1069    PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1070    // clear interrupt condition on adapter
1071    wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1072  }
1073  return;
1074}
1075
1076/********** (queue to) become the next TX thread **********/
1077
1078static int tx_hold (hrz_dev * dev) {
1079  PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1080  wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
1081  PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1082  if (signal_pending (current))
1083    return -1;
1084  PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1085  return 0;
1086}
1087
1088/********** allow another TX thread to start **********/
1089
1090static inline void tx_release (hrz_dev * dev) {
1091  clear_bit (tx_busy, &dev->flags);
1092  PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1093  wake_up_interruptible (&dev->tx_queue);
1094}
1095
1096/********** schedule TX transfers **********/
1097
1098static void tx_schedule (hrz_dev * const dev, int irq) {
1099  unsigned int tx_bytes;
1100  
1101  int append_desc = 0;
1102  
1103  int pio_instead = 0;
1104#ifndef TAILRECURSIONWORKS
1105  pio_instead = 1;
1106  while (pio_instead) {
1107#endif
1108    // bytes in current region waiting for TX transfer
1109    tx_bytes = dev->tx_bytes;
1110    
1111#if 0
1112    spin_count = 0;
1113    while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1114      PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1115      if (++spin_count > 10) {
1116	PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1117	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1118	tx_release (dev);
1119	hrz_kfree_skb (dev->tx_skb);
1120	return;
1121      }
1122    }
1123#endif
1124    
1125    if (tx_bytes) {
1126      // start next transfer within same region
1127      if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1128	PRINTD (DBG_TX|DBG_BUS, "(pio)");
1129	pio_instead = 1;
1130      }
1131      if (tx_bytes <= MAX_TRANSFER_COUNT) {
1132	PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1133	if (!dev->tx_iovec) {
1134	  // end of last region
1135	  append_desc = 1;
1136	}
1137	dev->tx_bytes = 0;
1138      } else {
1139	PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1140	dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1141	tx_bytes = MAX_TRANSFER_COUNT;
1142      }
1143    } else {
1144      // tx_bytes == 0 -- we're between regions
1145      // regions remaining to transfer
1146      unsigned int tx_regions = dev->tx_regions;
1147      
1148      if (tx_regions) {
1149	// start a new region
1150	dev->tx_addr = dev->tx_iovec->iov_base;
1151	tx_bytes = dev->tx_iovec->iov_len;
1152	++dev->tx_iovec;
1153	dev->tx_regions = tx_regions - 1;
1154	
1155	if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1156	  PRINTD (DBG_TX|DBG_BUS, "(pio)");
1157	  pio_instead = 1;
1158	}
1159	if (tx_bytes <= MAX_TRANSFER_COUNT) {
1160	  PRINTD (DBG_TX|DBG_BUS, "(full region)");
1161	  dev->tx_bytes = 0;
1162	} else {
1163	  PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1164	  dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1165	  tx_bytes = MAX_TRANSFER_COUNT;
1166	}
1167      } else {
1168	// tx_regions == 0
1169	// that's all folks - end of frame
1170	struct sk_buff * skb = dev->tx_skb;
1171	dev->tx_iovec = NULL;
1172	
1173	// VC layer stats
1174	atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1175	
1176	// free the skb
1177	hrz_kfree_skb (skb);
1178      }
1179    }
1180    
1181    // note: writing TX_COUNT clears any interrupt condition
1182    if (tx_bytes) {
1183      if (pio_instead) {
1184	if (irq)
1185	  wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1186	wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1187	if (append_desc)
1188	  wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1189      } else {
1190	wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1191	if (append_desc)
1192	  wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1193	wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1194		 append_desc
1195		 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1196		 : tx_bytes);
1197      }
1198      dev->tx_addr += tx_bytes;
1199    } else {
1200      if (irq)
1201	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1202      YELLOW_LED_ON(dev);
1203      tx_release (dev);
1204    }
1205    
1206#ifdef TAILRECURSIONWORKS
1207    // and we all bless optimised tail calls
1208    if (pio_instead)
1209      return tx_schedule (dev, 0);
1210    return;
1211#else
1212    // grrrrrrr!
1213    irq = 0;
1214  }
1215  return;
1216#endif
1217}
1218
1219/********** handle TX bus master complete events **********/
1220
1221static void tx_bus_master_complete_handler (hrz_dev * dev) {
1222  if (test_bit (tx_busy, &dev->flags)) {
1223    tx_schedule (dev, 1);
1224  } else {
1225    PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1226    // clear interrupt condition on adapter
1227    wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1228  }
1229  return;
1230}
1231
1232/********** move RX Q pointer to next item in circular buffer **********/
1233
1234// called only from IRQ sub-handler
1235static u32 rx_queue_entry_next (hrz_dev * dev) {
1236  u32 rx_queue_entry;
1237  spin_lock (&dev->mem_lock);
1238  rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1239  if (dev->rx_q_entry == dev->rx_q_wrap)
1240    dev->rx_q_entry = dev->rx_q_reset;
1241  else
1242    dev->rx_q_entry++;
1243  wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1244  spin_unlock (&dev->mem_lock);
1245  return rx_queue_entry;
1246}
1247
 
 
 
 
 
 
 
 
1248/********** handle RX data received by device **********/
1249
1250// called from IRQ handler
1251static void rx_data_av_handler (hrz_dev * dev) {
1252  u32 rx_queue_entry;
1253  u32 rx_queue_entry_flags;
1254  u16 rx_len;
1255  u16 rx_channel;
1256  
1257  PRINTD (DBG_FLOW, "hrz_data_av_handler");
1258  
1259  // try to grab rx lock (not possible during RX bus mastering)
1260  if (test_and_set_bit (rx_busy, &dev->flags)) {
1261    PRINTD (DBG_RX, "locked out of rx lock");
1262    return;
1263  }
1264  PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1265  // lock is cleared if we fail now, o/w after bus master completion
1266  
1267  YELLOW_LED_OFF(dev);
1268  
1269  rx_queue_entry = rx_queue_entry_next (dev);
1270  
1271  rx_len = rx_q_entry_to_length (rx_queue_entry);
1272  rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1273  
1274  WAIT_FLUSH_RX_COMPLETE (dev);
1275  
1276  SELECT_RX_CHANNEL (dev, rx_channel);
1277  
1278  PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1279  rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1280  
1281  if (!rx_len) {
1282    // (at least) bus-mastering breaks if we try to handle a
1283    // zero-length frame, besides AAL5 does not support them
1284    PRINTK (KERN_ERR, "zero-length frame!");
1285    rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1286  }
1287  
1288  if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1289    PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1290  }
1291  if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1292    struct atm_vcc * atm_vcc;
1293    
1294    PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1295    
1296    atm_vcc = dev->rxer[rx_channel];
1297    // if no vcc is assigned to this channel, we should drop the frame
1298    // (is this what SIMONS etc. was trying to achieve?)
1299    
1300    if (atm_vcc) {
1301      
1302      if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1303	
1304	if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1305	    
1306	  struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1307	  if (skb) {
1308	    // remember this so we can push it later
1309	    dev->rx_skb = skb;
1310	    // remember this so we can flush it later
1311	    dev->rx_channel = rx_channel;
1312	    
1313	    // prepare socket buffer
1314	    skb_put (skb, rx_len);
1315	    ATM_SKB(skb)->vcc = atm_vcc;
1316	    
1317	    // simple transfer
1318	    // dev->rx_regions = 0;
1319	    // dev->rx_iovec = 0;
1320	    dev->rx_bytes = rx_len;
1321	    dev->rx_addr = skb->data;
1322	    PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1323		    skb->data, rx_len);
1324	    
1325	    // do the business
1326	    rx_schedule (dev, 0);
1327	    return;
1328	    
1329	  } else {
1330	    PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1331	  }
1332	  
1333	} else {
1334	  PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1335	  // do we count this?
1336	}
1337	
1338      } else {
1339	PRINTK (KERN_WARNING, "dropped over-size frame");
1340	// do we count this?
1341      }
1342      
1343    } else {
1344      PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1345      // do we count this?
1346    }
1347    
1348  } else {
1349    // Wait update complete ? SPONG
1350  }
1351  
1352  // RX was aborted
1353  YELLOW_LED_ON(dev);
1354  
1355  FLUSH_RX_CHANNEL (dev,rx_channel);
1356  clear_bit (rx_busy, &dev->flags);
1357  
1358  return;
1359}
1360
1361/********** interrupt handler **********/
1362
1363static irqreturn_t interrupt_handler(int irq, void *dev_id)
1364{
1365  hrz_dev *dev = dev_id;
1366  u32 int_source;
1367  unsigned int irq_ok;
1368  
1369  PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1370  
1371  // definitely for us
1372  irq_ok = 0;
1373  while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1374	  & INTERESTING_INTERRUPTS)) {
1375    // In the interests of fairness, the handlers below are
1376    // called in sequence and without immediate return to the head of
1377    // the while loop. This is only of issue for slow hosts (or when
1378    // debugging messages are on). Really slow hosts may find a fast
1379    // sender keeps them permanently in the IRQ handler. :(
1380    
1381    // (only an issue for slow hosts) RX completion goes before
1382    // rx_data_av as the former implies rx_busy and so the latter
1383    // would just abort. If it reschedules another transfer
1384    // (continuing the same frame) then it will not clear rx_busy.
1385    
1386    // (only an issue for slow hosts) TX completion goes before RX
1387    // data available as it is a much shorter routine - there is the
1388    // chance that any further transfers it schedules will be complete
1389    // by the time of the return to the head of the while loop
1390    
1391    if (int_source & RX_BUS_MASTER_COMPLETE) {
1392      ++irq_ok;
1393      PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1394      rx_bus_master_complete_handler (dev);
1395    }
1396    if (int_source & TX_BUS_MASTER_COMPLETE) {
1397      ++irq_ok;
1398      PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1399      tx_bus_master_complete_handler (dev);
1400    }
1401    if (int_source & RX_DATA_AV) {
1402      ++irq_ok;
1403      PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1404      rx_data_av_handler (dev);
1405    }
1406  }
1407  if (irq_ok) {
1408    PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1409  } else {
1410    PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1411  }
1412  
1413  PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1414  if (irq_ok)
1415	return IRQ_HANDLED;
1416  return IRQ_NONE;
1417}
1418
1419/********** housekeeping **********/
1420
1421static void do_housekeeping (struct timer_list *t) {
1422  // just stats at the moment
1423  hrz_dev * dev = from_timer(dev, t, housekeeping);
1424
1425  // collect device-specific (not driver/atm-linux) stats here
1426  dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1427  dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1428  dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1429  dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1430
1431  mod_timer (&dev->housekeeping, jiffies + HZ/10);
1432
1433  return;
1434}
1435
1436/********** find an idle channel for TX and set it up **********/
1437
1438// called with tx_busy set
1439static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1440  unsigned short idle_channels;
1441  short tx_channel = -1;
1442  unsigned int spin_count;
1443  PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1444  
1445  // better would be to fail immediately, the caller can then decide whether
1446  // to wait or drop (depending on whether this is UBR etc.)
1447  spin_count = 0;
1448  while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1449    PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1450    // delay a bit here
1451    if (++spin_count > 100) {
1452      PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1453      return -EBUSY;
1454    }
1455  }
1456  
1457  // got an idle channel
1458  {
1459    // tx_idle ensures we look for idle channels in RR order
1460    int chan = dev->tx_idle;
1461    
1462    int keep_going = 1;
1463    while (keep_going) {
1464      if (idle_channels & (1<<chan)) {
1465	tx_channel = chan;
1466	keep_going = 0;
1467      }
1468      ++chan;
1469      if (chan == TX_CHANS)
1470	chan = 0;
1471    }
1472    
1473    dev->tx_idle = chan;
1474  }
1475  
1476  // set up the channel we found
1477  {
1478    // Initialise the cell header in the transmit channel descriptor
1479    // a.k.a. prepare the channel and remember that we have done so.
1480    
1481    tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1482    u32 rd_ptr;
1483    u32 wr_ptr;
1484    u16 channel = vcc->channel;
1485    
1486    unsigned long flags;
1487    spin_lock_irqsave (&dev->mem_lock, flags);
1488    
1489    // Update the transmit channel record.
1490    dev->tx_channel_record[tx_channel] = channel;
1491    
1492    // xBR channel
1493    update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1494			      vcc->tx_xbr_bits);
1495    
1496    // Update the PCR counter preload value etc.
1497    update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1498			      vcc->tx_pcr_bits);
1499
1500#if 0
1501    if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1502      // SCR timer
1503      update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1504				vcc->tx_scr_bits);
1505      
1506      // Bucket size...
1507      update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1508				vcc->tx_bucket_bits);
1509      
1510      // ... and fullness
1511      update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1512				vcc->tx_bucket_bits);
1513    }
1514#endif
1515
1516    // Initialise the read and write buffer pointers
1517    rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1518    wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1519    
1520    // idle TX channels should have identical pointers
1521    if (rd_ptr != wr_ptr) {
1522      PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1523      // spin_unlock... return -E...
1524      // I wonder if gcc would get rid of one of the pointer aliases
1525    }
1526    PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1527	    rd_ptr, wr_ptr);
1528    
1529    switch (vcc->aal) {
1530      case aal0:
1531	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1532	rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1533	wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1534	break;
1535      case aal34:
1536	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1537	rd_ptr |= CHANNEL_TYPE_AAL3_4;
1538	wr_ptr |= CHANNEL_TYPE_AAL3_4;
1539	break;
1540      case aal5:
1541	rd_ptr |= CHANNEL_TYPE_AAL5;
1542	wr_ptr |= CHANNEL_TYPE_AAL5;
1543	// Initialise the CRC
1544	wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1545	break;
1546    }
1547    
1548    wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1549    wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1550    
1551    // Write the Cell Header
1552    // Payload Type, CLP and GFC would go here if non-zero
1553    wr_mem (dev, &tx_desc->cell_header, channel);
1554    
1555    spin_unlock_irqrestore (&dev->mem_lock, flags);
1556  }
1557  
1558  return tx_channel;
1559}
1560
1561/********** send a frame **********/
1562
1563static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1564  unsigned int spin_count;
1565  int free_buffers;
1566  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1567  hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1568  u16 channel = vcc->channel;
1569  
1570  u32 buffers_required;
1571  
1572  /* signed for error return */
1573  short tx_channel;
1574  
1575  PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1576	  channel, skb->data, skb->len);
1577  
1578  dump_skb (">>>", channel, skb);
1579  
1580  if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1581    PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1582    hrz_kfree_skb (skb);
1583    return -EIO;
1584  }
1585  
1586  // don't understand this
1587  ATM_SKB(skb)->vcc = atm_vcc;
1588  
1589  if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1590    PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1591    hrz_kfree_skb (skb);
1592    return -EIO;
1593  }
1594  
1595  if (!channel) {
1596    PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1597    hrz_kfree_skb (skb);
1598    return -EIO;
1599  }
1600  
1601#if 0
1602  {
1603    // where would be a better place for this? housekeeping?
1604    u16 status;
1605    pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1606    if (status & PCI_STATUS_REC_MASTER_ABORT) {
1607      PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1608      status &= ~PCI_STATUS_REC_MASTER_ABORT;
1609      pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1610      if (test_bit (tx_busy, &dev->flags)) {
1611	hrz_kfree_skb (dev->tx_skb);
1612	tx_release (dev);
1613      }
1614    }
1615  }
1616#endif
1617  
1618#ifdef DEBUG_HORIZON
1619  /* wey-hey! */
1620  if (channel == 1023) {
1621    unsigned int i;
1622    unsigned short d = 0;
1623    char * s = skb->data;
1624    if (*s++ == 'D') {
1625	for (i = 0; i < 4; ++i)
1626		d = (d << 4) | hex_to_bin(*s++);
1627      PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1628    }
1629  }
1630#endif
1631  
1632  // wait until TX is free and grab lock
1633  if (tx_hold (dev)) {
1634    hrz_kfree_skb (skb);
1635    return -ERESTARTSYS;
1636  }
1637 
1638  // Wait for enough space to be available in transmit buffer memory.
1639  
1640  // should be number of cells needed + 2 (according to hardware docs)
1641  // = ((framelen+8)+47) / 48 + 2
1642  // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1643  buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1644  
1645  // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1646  spin_count = 0;
1647  while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1648    PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1649	    free_buffers, buffers_required);
1650    // what is the appropriate delay? implement a timeout? (depending on line speed?)
1651    // mdelay (1);
1652    // what happens if we kill (current_pid, SIGKILL) ?
1653    schedule();
1654    if (++spin_count > 1000) {
1655      PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1656	      free_buffers, buffers_required);
1657      tx_release (dev);
1658      hrz_kfree_skb (skb);
1659      return -ERESTARTSYS;
1660    }
1661  }
1662  
1663  // Select a channel to transmit the frame on.
1664  if (channel == dev->last_vc) {
1665    PRINTD (DBG_TX, "last vc hack: hit");
1666    tx_channel = dev->tx_last;
1667  } else {
1668    PRINTD (DBG_TX, "last vc hack: miss");
1669    // Are we currently transmitting this VC on one of the channels?
1670    for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1671      if (dev->tx_channel_record[tx_channel] == channel) {
1672	PRINTD (DBG_TX, "vc already on channel: hit");
1673	break;
1674      }
1675    if (tx_channel == TX_CHANS) { 
1676      PRINTD (DBG_TX, "vc already on channel: miss");
1677      // Find and set up an idle channel.
1678      tx_channel = setup_idle_tx_channel (dev, vcc);
1679      if (tx_channel < 0) {
1680	PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1681	tx_release (dev);
1682	return tx_channel;
1683      }
1684    }
1685    
1686    PRINTD (DBG_TX, "got channel");
1687    SELECT_TX_CHANNEL(dev, tx_channel);
1688    
1689    dev->last_vc = channel;
1690    dev->tx_last = tx_channel;
1691  }
1692  
1693  PRINTD (DBG_TX, "using channel %u", tx_channel);
1694  
1695  YELLOW_LED_OFF(dev);
1696  
1697  // TX start transfer
1698  
1699  {
1700    unsigned int tx_len = skb->len;
1701    unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1702    // remember this so we can free it later
1703    dev->tx_skb = skb;
1704    
1705    if (tx_iovcnt) {
1706      // scatter gather transfer
1707      dev->tx_regions = tx_iovcnt;
1708      dev->tx_iovec = NULL;		/* @@@ needs rewritten */
1709      dev->tx_bytes = 0;
1710      PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1711	      skb->data, tx_len);
1712      tx_release (dev);
1713      hrz_kfree_skb (skb);
1714      return -EIO;
1715    } else {
1716      // simple transfer
1717      dev->tx_regions = 0;
1718      dev->tx_iovec = NULL;
1719      dev->tx_bytes = tx_len;
1720      dev->tx_addr = skb->data;
1721      PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1722	      skb->data, tx_len);
1723    }
1724    
1725    // and do the business
1726    tx_schedule (dev, 0);
1727    
1728  }
1729  
1730  return 0;
1731}
1732
1733/********** reset a card **********/
1734
1735static void hrz_reset (const hrz_dev * dev) {
1736  u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1737  
1738  // why not set RESET_HORIZON to one and wait for the card to
1739  // reassert that bit as zero? Like so:
1740  control_0_reg = control_0_reg & RESET_HORIZON;
1741  wr_regl (dev, CONTROL_0_REG, control_0_reg);
1742  while (control_0_reg & RESET_HORIZON)
1743    control_0_reg = rd_regl (dev, CONTROL_0_REG);
1744  
1745  // old reset code retained:
1746  wr_regl (dev, CONTROL_0_REG, control_0_reg |
1747	   RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1748  // just guessing here
1749  udelay (1000);
1750  
1751  wr_regl (dev, CONTROL_0_REG, control_0_reg);
1752}
1753
1754/********** read the burnt in address **********/
1755
1756static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1757{
1758	wr_regl (dev, CONTROL_0_REG, ctrl);
1759	udelay (5);
1760}
1761  
1762static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1763{
1764	// DI must be valid around rising SK edge
1765	WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1766	WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1767}
1768
1769static u16 read_bia(const hrz_dev *dev, u16 addr)
1770{
1771  u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1772  
1773  const unsigned int addr_bits = 6;
1774  const unsigned int data_bits = 16;
1775  
1776  unsigned int i;
1777  
1778  u16 res;
1779  
1780  ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1781  WRITE_IT_WAIT(dev, ctrl);
1782  
1783  // wake Serial EEPROM and send 110 (READ) command
1784  ctrl |=  (SEEPROM_CS | SEEPROM_DI);
1785  CLOCK_IT(dev, ctrl);
1786  
1787  ctrl |= SEEPROM_DI;
1788  CLOCK_IT(dev, ctrl);
1789  
1790  ctrl &= ~SEEPROM_DI;
1791  CLOCK_IT(dev, ctrl);
1792  
1793  for (i=0; i<addr_bits; i++) {
1794    if (addr & (1 << (addr_bits-1)))
1795      ctrl |= SEEPROM_DI;
1796    else
1797      ctrl &= ~SEEPROM_DI;
1798    
1799    CLOCK_IT(dev, ctrl);
1800    
1801    addr = addr << 1;
1802  }
1803  
1804  // we could check that we have DO = 0 here
1805  ctrl &= ~SEEPROM_DI;
1806  
1807  res = 0;
1808  for (i=0;i<data_bits;i++) {
1809    res = res >> 1;
1810    
1811    CLOCK_IT(dev, ctrl);
1812    
1813    if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1814      res |= (1 << (data_bits-1));
1815  }
1816  
1817  ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1818  WRITE_IT_WAIT(dev, ctrl);
1819  
1820  return res;
1821}
1822
1823/********** initialise a card **********/
1824
1825static int hrz_init(hrz_dev *dev)
1826{
1827  int onefivefive;
1828  
1829  u16 chan;
1830  
1831  int buff_count;
1832  
1833  HDW * mem;
1834  
1835  cell_buf * tx_desc;
1836  cell_buf * rx_desc;
1837  
1838  u32 ctrl;
1839  
1840  ctrl = rd_regl (dev, CONTROL_0_REG);
1841  PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1842  onefivefive = ctrl & ATM_LAYER_STATUS;
1843  
1844  if (onefivefive)
1845    printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1846  else
1847    printk (DEV_LABEL ": Horizon (at 25 MBps)");
1848  
1849  printk (":");
1850  // Reset the card to get everything in a known state
1851  
1852  printk (" reset");
1853  hrz_reset (dev);
1854  
1855  // Clear all the buffer memory
1856  
1857  printk (" clearing memory");
1858  
1859  for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1860    wr_mem (dev, mem, 0);
1861  
1862  printk (" tx channels");
1863  
1864  // All transmit eight channels are set up as AAL5 ABR channels with
1865  // a 16us cell spacing. Why?
1866  
1867  // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1868  // buffer at 110h etc.
1869  
1870  for (chan = 0; chan < TX_CHANS; ++chan) {
1871    tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1872    cell_buf * buf = &memmap->inittxbufs[chan];
1873    
1874    // initialise the read and write buffer pointers
1875    wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1876    wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1877    
1878    // set the status of the initial buffers to empty
1879    wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1880  }
1881  
1882  // Use space bufn3 at the moment for tx buffers
1883  
1884  printk (" tx buffers");
1885  
1886  tx_desc = memmap->bufn3;
1887  
1888  wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1889  
1890  for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1891    wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1892    tx_desc++;
1893  }
1894  
1895  wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1896  
1897  // Initialise the transmit free buffer count
1898  wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1899  
1900  printk (" rx channels");
1901  
1902  // Initialise all of the receive channels to be AAL5 disabled with
1903  // an interrupt threshold of 0
1904  
1905  for (chan = 0; chan < RX_CHANS; ++chan) {
1906    rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1907    
1908    wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1909  }
1910  
1911  printk (" rx buffers");
1912  
1913  // Use space bufn4 at the moment for rx buffers
1914  
1915  rx_desc = memmap->bufn4;
1916  
1917  wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1918  
1919  for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1920    wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1921    
1922    rx_desc++;
1923  }
1924  
1925  wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1926  
1927  // Initialise the receive free buffer count
1928  wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1929  
1930  // Initialize Horizons registers
1931  
1932  // TX config
1933  wr_regw (dev, TX_CONFIG_OFF,
1934	   ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
1935  
1936  // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1937  wr_regw (dev, RX_CONFIG_OFF,
1938	   DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
1939  
1940  // RX line config
1941  wr_regw (dev, RX_LINE_CONFIG_OFF,
1942	   LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
1943  
1944  // Set the max AAL5 cell count to be just enough to contain the
1945  // largest AAL5 frame that the user wants to receive
1946  wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1947	   DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
1948  
1949  // Enable receive
1950  wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1951  
1952  printk (" control");
1953  
1954  // Drive the OE of the LEDs then turn the green LED on
1955  ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
1956  wr_regl (dev, CONTROL_0_REG, ctrl);
1957  
1958  // Test for a 155-capable card
1959  
1960  if (onefivefive) {
1961    // Select 155 mode... make this a choice (or: how do we detect
1962    // external line speed and switch?)
1963    ctrl |= ATM_LAYER_SELECT;
1964    wr_regl (dev, CONTROL_0_REG, ctrl);
1965    
1966    // test SUNI-lite vs SAMBA
1967    
1968    // Register 0x00 in the SUNI will have some of bits 3-7 set, and
1969    // they will always be zero for the SAMBA.  Ha!  Bloody hardware
1970    // engineers.  It'll never work.
1971    
1972    if (rd_framer (dev, 0) & 0x00f0) {
1973      // SUNI
1974      printk (" SUNI");
1975      
1976      // Reset, just in case
1977      wr_framer (dev, 0x00, 0x0080);
1978      wr_framer (dev, 0x00, 0x0000);
1979      
1980      // Configure transmit FIFO
1981      wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
1982      
1983      // Set line timed mode
1984      wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
1985    } else {
1986      // SAMBA
1987      printk (" SAMBA");
1988      
1989      // Reset, just in case
1990      wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
1991      wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
1992      
1993      // Turn off diagnostic loopback and enable line-timed mode
1994      wr_framer (dev, 0, 0x0002);
1995      
1996      // Turn on transmit outputs
1997      wr_framer (dev, 2, 0x0B80);
1998    }
1999  } else {
2000    // Select 25 mode
2001    ctrl &= ~ATM_LAYER_SELECT;
2002    
2003    // Madge B154 setup
2004    // none required?
2005  }
2006  
2007  printk (" LEDs");
2008  
2009  GREEN_LED_ON(dev);
2010  YELLOW_LED_ON(dev);
2011  
2012  printk (" ESI=");
2013  
2014  {
2015    u16 b = 0;
2016    int i;
2017    u8 * esi = dev->atm_dev->esi;
2018    
2019    // in the card I have, EEPROM
2020    // addresses 0, 1, 2 contain 0
2021    // addresess 5, 6 etc. contain ffff
2022    // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2023    // the read_bia routine gets the BIA in Ethernet bit order
2024    
2025    for (i=0; i < ESI_LEN; ++i) {
2026      if (i % 2 == 0)
2027	b = read_bia (dev, i/2 + 2);
2028      else
2029	b = b >> 8;
2030      esi[i] = b & 0xFF;
2031      printk ("%02x", esi[i]);
2032    }
2033  }
2034  
2035  // Enable RX_Q and ?X_COMPLETE interrupts only
2036  wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2037  printk (" IRQ on");
2038  
2039  printk (".\n");
2040  
2041  return onefivefive;
2042}
2043
2044/********** check max_sdu **********/
2045
2046static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2047  PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2048  
2049  switch (aal) {
2050    case aal0:
2051      if (!(tp->max_sdu)) {
2052	PRINTD (DBG_QOS, "defaulting max_sdu");
2053	tp->max_sdu = ATM_AAL0_SDU;
2054      } else if (tp->max_sdu != ATM_AAL0_SDU) {
2055	PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2056	return -EINVAL;
2057      }
2058      break;
2059    case aal34:
2060      if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2061	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2062	tp->max_sdu = ATM_MAX_AAL34_PDU;
2063      }
2064      break;
2065    case aal5:
2066      if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2067	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2068	tp->max_sdu = max_frame_size;
2069      }
2070      break;
2071  }
2072  return 0;
2073}
2074
2075/********** check pcr **********/
2076
2077// something like this should be part of ATM Linux
2078static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2079  // we are assuming non-UBR, and non-special values of pcr
2080  if (tp->min_pcr == ATM_MAX_PCR)
2081    PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2082  else if (tp->min_pcr < 0)
2083    PRINTD (DBG_QOS, "luser gave negative min_pcr");
2084  else if (tp->min_pcr && tp->min_pcr > pcr)
2085    PRINTD (DBG_QOS, "pcr less than min_pcr");
2086  else
2087    // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2088    // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2089    // [this would get rid of next two conditionals]
2090    if ((0) && tp->max_pcr == ATM_MAX_PCR)
2091      PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2092    else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2093      PRINTD (DBG_QOS, "luser gave negative max_pcr");
2094    else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2095      PRINTD (DBG_QOS, "pcr greater than max_pcr");
2096    else {
2097      // each limit unspecified or not violated
2098      PRINTD (DBG_QOS, "xBR(pcr) OK");
2099      return 0;
2100    }
2101  PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2102	  pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2103  return -EINVAL;
2104}
2105
2106/********** open VC **********/
2107
2108static int hrz_open (struct atm_vcc *atm_vcc)
2109{
2110  int error;
2111  u16 channel;
2112  
2113  struct atm_qos * qos;
2114  struct atm_trafprm * txtp;
2115  struct atm_trafprm * rxtp;
2116  
2117  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2118  hrz_vcc vcc;
2119  hrz_vcc * vccp; // allocated late
2120  short vpi = atm_vcc->vpi;
2121  int vci = atm_vcc->vci;
2122  PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2123  
2124#ifdef ATM_VPI_UNSPEC
2125  // UNSPEC is deprecated, remove this code eventually
2126  if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2127    PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2128    return -EINVAL;
2129  }
2130#endif
2131  
2132  error = vpivci_to_channel (&channel, vpi, vci);
2133  if (error) {
2134    PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2135    return error;
2136  }
2137  
2138  vcc.channel = channel;
2139  // max speed for the moment
2140  vcc.tx_rate = 0x0;
2141  
2142  qos = &atm_vcc->qos;
2143  
2144  // check AAL and remember it
2145  switch (qos->aal) {
2146    case ATM_AAL0:
2147      // we would if it were 48 bytes and not 52!
2148      PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2149      vcc.aal = aal0;
2150      break;
2151    case ATM_AAL34:
2152      // we would if I knew how do the SAR!
2153      PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2154      vcc.aal = aal34;
2155      break;
2156    case ATM_AAL5:
2157      PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2158      vcc.aal = aal5;
2159      break;
2160    default:
2161      PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2162      return -EINVAL;
 
2163  }
2164  
2165  // TX traffic parameters
2166  
2167  // there are two, interrelated problems here: 1. the reservation of
2168  // PCR is not a binary choice, we are given bounds and/or a
2169  // desirable value; 2. the device is only capable of certain values,
2170  // most of which are not integers. It is almost certainly acceptable
2171  // to be off by a maximum of 1 to 10 cps.
2172  
2173  // Pragmatic choice: always store an integral PCR as that which has
2174  // been allocated, even if we allocate a little (or a lot) less,
2175  // after rounding. The actual allocation depends on what we can
2176  // manage with our rate selection algorithm. The rate selection
2177  // algorithm is given an integral PCR and a tolerance and told
2178  // whether it should round the value up or down if the tolerance is
2179  // exceeded; it returns: a) the actual rate selected (rounded up to
2180  // the nearest integer), b) a bit pattern to feed to the timer
2181  // register, and c) a failure value if no applicable rate exists.
2182  
2183  // Part of the job is done by atm_pcr_goal which gives us a PCR
2184  // specification which says: EITHER grab the maximum available PCR
2185  // (and perhaps a lower bound which we musn't pass), OR grab this
2186  // amount, rounding down if you have to (and perhaps a lower bound
2187  // which we musn't pass) OR grab this amount, rounding up if you
2188  // have to (and perhaps an upper bound which we musn't pass). If any
2189  // bounds ARE passed we fail. Note that rounding is only rounding to
2190  // match device limitations, we do not round down to satisfy
2191  // bandwidth availability even if this would not violate any given
2192  // lower bound.
2193  
2194  // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2195  // (say) so this is not even a binary fixpoint cell rate (but this
2196  // device can do it). To avoid this sort of hassle we use a
2197  // tolerance parameter (currently fixed at 10 cps).
2198  
2199  PRINTD (DBG_QOS, "TX:");
2200  
2201  txtp = &qos->txtp;
2202  
2203  // set up defaults for no traffic
2204  vcc.tx_rate = 0;
2205  // who knows what would actually happen if you try and send on this?
2206  vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2207  vcc.tx_pcr_bits = CLOCK_DISABLE;
2208#if 0
2209  vcc.tx_scr_bits = CLOCK_DISABLE;
2210  vcc.tx_bucket_bits = 0;
2211#endif
2212  
2213  if (txtp->traffic_class != ATM_NONE) {
2214    error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2215    if (error) {
2216      PRINTD (DBG_QOS, "TX max_sdu check failed");
2217      return error;
2218    }
2219    
2220    switch (txtp->traffic_class) {
2221      case ATM_UBR: {
2222	// we take "the PCR" as a rate-cap
2223	// not reserved
2224	vcc.tx_rate = 0;
2225	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2226	vcc.tx_xbr_bits = ABR_RATE_TYPE;
2227	break;
2228      }
2229#if 0
2230      case ATM_ABR: {
2231	// reserve min, allow up to max
2232	vcc.tx_rate = 0; // ?
2233	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2234	vcc.tx_xbr_bits = ABR_RATE_TYPE;
2235	break;
2236      }
2237#endif
2238      case ATM_CBR: {
2239	int pcr = atm_pcr_goal (txtp);
2240	rounding r;
2241	if (!pcr) {
2242	  // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2243	  // should really have: once someone gets unlimited bandwidth
2244	  // that no more non-UBR channels can be opened until the
2245	  // unlimited one closes?? For the moment, round_down means
2246	  // greedy people actually get something and not nothing
2247	  r = round_down;
2248	  // slight race (no locking) here so we may get -EAGAIN
2249	  // later; the greedy bastards would deserve it :)
2250	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2251	  pcr = dev->tx_avail;
2252	} else if (pcr < 0) {
2253	  r = round_down;
2254	  pcr = -pcr;
2255	} else {
2256	  r = round_up;
2257	}
2258	error = make_rate_with_tolerance (dev, pcr, r, 10,
2259					  &vcc.tx_pcr_bits, &vcc.tx_rate);
2260	if (error) {
2261	  PRINTD (DBG_QOS, "could not make rate from TX PCR");
2262	  return error;
2263	}
2264	// not really clear what further checking is needed
2265	error = atm_pcr_check (txtp, vcc.tx_rate);
2266	if (error) {
2267	  PRINTD (DBG_QOS, "TX PCR failed consistency check");
2268	  return error;
2269	}
2270	vcc.tx_xbr_bits = CBR_RATE_TYPE;
2271	break;
2272      }
2273#if 0
2274      case ATM_VBR: {
2275	int pcr = atm_pcr_goal (txtp);
2276	// int scr = atm_scr_goal (txtp);
2277	int scr = pcr/2; // just for fun
2278	unsigned int mbs = 60; // just for fun
2279	rounding pr;
2280	rounding sr;
2281	unsigned int bucket;
2282	if (!pcr) {
2283	  pr = round_nearest;
2284	  pcr = 1<<30;
2285	} else if (pcr < 0) {
2286	  pr = round_down;
2287	  pcr = -pcr;
2288	} else {
2289	  pr = round_up;
2290	}
2291	error = make_rate_with_tolerance (dev, pcr, pr, 10,
2292					  &vcc.tx_pcr_bits, 0);
2293	if (!scr) {
2294	  // see comments for PCR with CBR above
2295	  sr = round_down;
2296	  // slight race (no locking) here so we may get -EAGAIN
2297	  // later; the greedy bastards would deserve it :)
2298	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2299	  scr = dev->tx_avail;
2300	} else if (scr < 0) {
2301	  sr = round_down;
2302	  scr = -scr;
2303	} else {
2304	  sr = round_up;
2305	}
2306	error = make_rate_with_tolerance (dev, scr, sr, 10,
2307					  &vcc.tx_scr_bits, &vcc.tx_rate);
2308	if (error) {
2309	  PRINTD (DBG_QOS, "could not make rate from TX SCR");
2310	  return error;
2311	}
2312	// not really clear what further checking is needed
2313	// error = atm_scr_check (txtp, vcc.tx_rate);
2314	if (error) {
2315	  PRINTD (DBG_QOS, "TX SCR failed consistency check");
2316	  return error;
2317	}
2318	// bucket calculations (from a piece of paper...) cell bucket
2319	// capacity must be largest integer smaller than m(p-s)/p + 1
2320	// where m = max burst size, p = pcr, s = scr
2321	bucket = mbs*(pcr-scr)/pcr;
2322	if (bucket*pcr != mbs*(pcr-scr))
2323	  bucket += 1;
2324	if (bucket > BUCKET_MAX_SIZE) {
2325	  PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2326		  bucket, BUCKET_MAX_SIZE);
2327	  bucket = BUCKET_MAX_SIZE;
2328	}
2329	vcc.tx_xbr_bits = VBR_RATE_TYPE;
2330	vcc.tx_bucket_bits = bucket;
2331	break;
2332      }
2333#endif
2334      default: {
2335	PRINTD (DBG_QOS, "unsupported TX traffic class");
2336	return -EINVAL;
 
2337      }
2338    }
2339  }
2340  
2341  // RX traffic parameters
2342  
2343  PRINTD (DBG_QOS, "RX:");
2344  
2345  rxtp = &qos->rxtp;
2346  
2347  // set up defaults for no traffic
2348  vcc.rx_rate = 0;
2349  
2350  if (rxtp->traffic_class != ATM_NONE) {
2351    error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2352    if (error) {
2353      PRINTD (DBG_QOS, "RX max_sdu check failed");
2354      return error;
2355    }
2356    switch (rxtp->traffic_class) {
2357      case ATM_UBR: {
2358	// not reserved
2359	break;
2360      }
2361#if 0
2362      case ATM_ABR: {
2363	// reserve min
2364	vcc.rx_rate = 0; // ?
2365	break;
2366      }
2367#endif
2368      case ATM_CBR: {
2369	int pcr = atm_pcr_goal (rxtp);
2370	if (!pcr) {
2371	  // slight race (no locking) here so we may get -EAGAIN
2372	  // later; the greedy bastards would deserve it :)
2373	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2374	  pcr = dev->rx_avail;
2375	} else if (pcr < 0) {
2376	  pcr = -pcr;
2377	}
2378	vcc.rx_rate = pcr;
2379	// not really clear what further checking is needed
2380	error = atm_pcr_check (rxtp, vcc.rx_rate);
2381	if (error) {
2382	  PRINTD (DBG_QOS, "RX PCR failed consistency check");
2383	  return error;
2384	}
2385	break;
2386      }
2387#if 0
2388      case ATM_VBR: {
2389	// int scr = atm_scr_goal (rxtp);
2390	int scr = 1<<16; // just for fun
2391	if (!scr) {
2392	  // slight race (no locking) here so we may get -EAGAIN
2393	  // later; the greedy bastards would deserve it :)
2394	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2395	  scr = dev->rx_avail;
2396	} else if (scr < 0) {
2397	  scr = -scr;
2398	}
2399	vcc.rx_rate = scr;
2400	// not really clear what further checking is needed
2401	// error = atm_scr_check (rxtp, vcc.rx_rate);
2402	if (error) {
2403	  PRINTD (DBG_QOS, "RX SCR failed consistency check");
2404	  return error;
2405	}
2406	break;
2407      }
2408#endif
2409      default: {
2410	PRINTD (DBG_QOS, "unsupported RX traffic class");
2411	return -EINVAL;
 
2412      }
2413    }
2414  }
2415  
2416  
2417  // late abort useful for diagnostics
2418  if (vcc.aal != aal5) {
2419    PRINTD (DBG_QOS, "AAL not supported");
2420    return -EINVAL;
2421  }
2422  
2423  // get space for our vcc stuff and copy parameters into it
2424  vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2425  if (!vccp) {
2426    PRINTK (KERN_ERR, "out of memory!");
2427    return -ENOMEM;
2428  }
2429  *vccp = vcc;
2430  
2431  // clear error and grab cell rate resource lock
2432  error = 0;
2433  spin_lock (&dev->rate_lock);
2434  
2435  if (vcc.tx_rate > dev->tx_avail) {
2436    PRINTD (DBG_QOS, "not enough TX PCR left");
2437    error = -EAGAIN;
2438  }
2439  
2440  if (vcc.rx_rate > dev->rx_avail) {
2441    PRINTD (DBG_QOS, "not enough RX PCR left");
2442    error = -EAGAIN;
2443  }
2444  
2445  if (!error) {
2446    // really consume cell rates
2447    dev->tx_avail -= vcc.tx_rate;
2448    dev->rx_avail -= vcc.rx_rate;
2449    PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2450	    vcc.tx_rate, vcc.rx_rate);
2451  }
2452  
2453  // release lock and exit on error
2454  spin_unlock (&dev->rate_lock);
2455  if (error) {
2456    PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2457    kfree (vccp);
2458    return error;
2459  }
2460  
2461  // this is "immediately before allocating the connection identifier
2462  // in hardware" - so long as the next call does not fail :)
2463  set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2464  
2465  // any errors here are very serious and should never occur
2466  
2467  if (rxtp->traffic_class != ATM_NONE) {
2468    if (dev->rxer[channel]) {
2469      PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2470      error = -EBUSY;
2471    }
2472    if (!error)
2473      error = hrz_open_rx (dev, channel);
2474    if (error) {
2475      kfree (vccp);
2476      return error;
2477    }
2478    // this link allows RX frames through
2479    dev->rxer[channel] = atm_vcc;
2480  }
2481  
2482  // success, set elements of atm_vcc
2483  atm_vcc->dev_data = (void *) vccp;
2484  
2485  // indicate readiness
2486  set_bit(ATM_VF_READY,&atm_vcc->flags);
2487  
2488  return 0;
2489}
2490
2491/********** close VC **********/
2492
2493static void hrz_close (struct atm_vcc * atm_vcc) {
2494  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2495  hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2496  u16 channel = vcc->channel;
2497  PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2498  
2499  // indicate unreadiness
2500  clear_bit(ATM_VF_READY,&atm_vcc->flags);
2501
2502  if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2503    unsigned int i;
2504    
2505    // let any TX on this channel that has started complete
2506    // no restart, just keep trying
2507    while (tx_hold (dev))
2508      ;
2509    // remove record of any tx_channel having been setup for this channel
2510    for (i = 0; i < TX_CHANS; ++i)
2511      if (dev->tx_channel_record[i] == channel) {
2512	dev->tx_channel_record[i] = -1;
2513	break;
2514      }
2515    if (dev->last_vc == channel)
2516      dev->tx_last = -1;
2517    tx_release (dev);
2518  }
2519
2520  if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2521    // disable RXing - it tries quite hard
2522    hrz_close_rx (dev, channel);
2523    // forget the vcc - no more skbs will be pushed
2524    if (atm_vcc != dev->rxer[channel])
2525      PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2526	      "arghhh! we're going to die!",
2527	      atm_vcc, dev->rxer[channel]);
2528    dev->rxer[channel] = NULL;
2529  }
2530  
2531  // atomically release our rate reservation
2532  spin_lock (&dev->rate_lock);
2533  PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2534	  vcc->tx_rate, vcc->rx_rate);
2535  dev->tx_avail += vcc->tx_rate;
2536  dev->rx_avail += vcc->rx_rate;
2537  spin_unlock (&dev->rate_lock);
2538  
2539  // free our structure
2540  kfree (vcc);
2541  // say the VPI/VCI is free again
2542  clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2543}
2544
2545#if 0
2546static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2547			   void *optval, int optlen) {
2548  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2549  PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2550  switch (level) {
2551    case SOL_SOCKET:
2552      switch (optname) {
2553//	case SO_BCTXOPT:
2554//	  break;
2555//	case SO_BCRXOPT:
2556//	  break;
2557	default:
2558	  return -ENOPROTOOPT;
 
2559      };
2560      break;
2561  }
2562  return -EINVAL;
2563}
2564
2565static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2566			   void *optval, unsigned int optlen) {
2567  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2568  PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2569  switch (level) {
2570    case SOL_SOCKET:
2571      switch (optname) {
2572//	case SO_BCTXOPT:
2573//	  break;
2574//	case SO_BCRXOPT:
2575//	  break;
2576	default:
2577	  return -ENOPROTOOPT;
 
2578      };
2579      break;
2580  }
2581  return -EINVAL;
2582}
2583#endif
2584
2585#if 0
2586static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2587  hrz_dev * dev = HRZ_DEV(atm_dev);
2588  PRINTD (DBG_FLOW, "hrz_ioctl");
2589  return -1;
2590}
2591
2592unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2593  hrz_dev * dev = HRZ_DEV(atm_dev);
2594  PRINTD (DBG_FLOW, "hrz_phy_get");
2595  return 0;
2596}
2597
2598static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2599			 unsigned long addr) {
2600  hrz_dev * dev = HRZ_DEV(atm_dev);
2601  PRINTD (DBG_FLOW, "hrz_phy_put");
2602}
2603
2604static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2605  hrz_dev * dev = HRZ_DEV(vcc->dev);
2606  PRINTD (DBG_FLOW, "hrz_change_qos");
2607  return -1;
2608}
2609#endif
2610
2611/********** proc file contents **********/
2612
2613static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2614  hrz_dev * dev = HRZ_DEV(atm_dev);
2615  int left = *pos;
2616  PRINTD (DBG_FLOW, "hrz_proc_read");
2617  
2618  /* more diagnostics here? */
2619  
2620#if 0
2621  if (!left--) {
2622    unsigned int count = sprintf (page, "vbr buckets:");
2623    unsigned int i;
2624    for (i = 0; i < TX_CHANS; ++i)
2625      count += sprintf (page, " %u/%u",
2626			query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2627			query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2628    count += sprintf (page+count, ".\n");
2629    return count;
2630  }
2631#endif
2632  
2633  if (!left--)
2634    return sprintf (page,
2635		    "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2636		    dev->tx_cell_count, dev->rx_cell_count,
2637		    dev->hec_error_count, dev->unassigned_cell_count);
2638  
2639  if (!left--)
2640    return sprintf (page,
2641		    "free cell buffers: TX %hu, RX %hu+%hu.\n",
2642		    rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2643		    rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2644		    dev->noof_spare_buffers);
2645  
2646  if (!left--)
2647    return sprintf (page,
2648		    "cps remaining: TX %u, RX %u\n",
2649		    dev->tx_avail, dev->rx_avail);
2650  
2651  return 0;
2652}
2653
2654static const struct atmdev_ops hrz_ops = {
2655  .open	= hrz_open,
2656  .close	= hrz_close,
2657  .send	= hrz_send,
2658  .proc_read	= hrz_proc_read,
2659  .owner	= THIS_MODULE,
2660};
2661
2662static int hrz_probe(struct pci_dev *pci_dev,
2663		     const struct pci_device_id *pci_ent)
2664{
2665	hrz_dev * dev;
2666	int err = 0;
2667
2668	// adapter slot free, read resources from PCI configuration space
2669	u32 iobase = pci_resource_start (pci_dev, 0);
2670	u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2671	unsigned int irq;
2672	unsigned char lat;
2673
2674	PRINTD (DBG_FLOW, "hrz_probe");
2675
2676	if (pci_enable_device(pci_dev))
2677		return -EINVAL;
2678
2679	/* XXX DEV_LABEL is a guess */
2680	if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2681		err = -EINVAL;
2682		goto out_disable;
2683	}
2684
2685	dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
2686	if (!dev) {
2687		// perhaps we should be nice: deregister all adapters and abort?
2688		PRINTD(DBG_ERR, "out of memory");
2689		err = -ENOMEM;
2690		goto out_release;
2691	}
2692
2693	pci_set_drvdata(pci_dev, dev);
2694
2695	// grab IRQ and install handler - move this someplace more sensible
2696	irq = pci_dev->irq;
2697	if (request_irq(irq,
2698			interrupt_handler,
2699			IRQF_SHARED, /* irqflags guess */
2700			DEV_LABEL, /* name guess */
2701			dev)) {
2702		PRINTD(DBG_WARN, "request IRQ failed!");
2703		err = -EINVAL;
2704		goto out_free;
2705	}
2706
2707	PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2708	       iobase, irq, membase);
2709
2710	dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
2711					NULL);
2712	if (!(dev->atm_dev)) {
2713		PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2714		err = -EINVAL;
2715		goto out_free_irq;
2716	}
2717
2718	PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2719	       dev->atm_dev->number, dev, dev->atm_dev);
2720	dev->atm_dev->dev_data = (void *) dev;
2721	dev->pci_dev = pci_dev; 
2722
2723	// enable bus master accesses
2724	pci_set_master(pci_dev);
2725
2726	// frobnicate latency (upwards, usually)
2727	pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2728	if (pci_lat) {
2729		PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2730		       "changing", lat, pci_lat);
2731		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2732	} else if (lat < MIN_PCI_LATENCY) {
2733		PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2734		       "increasing", lat, MIN_PCI_LATENCY);
2735		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2736	}
2737
2738	dev->iobase = iobase;
2739	dev->irq = irq; 
2740	dev->membase = membase; 
2741
2742	dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2743	dev->rx_q_wrap  = &memmap->rx_q_entries[RX_CHANS-1];
2744
2745	// these next three are performance hacks
2746	dev->last_vc = -1;
2747	dev->tx_last = -1;
2748	dev->tx_idle = 0;
2749
2750	dev->tx_regions = 0;
2751	dev->tx_bytes = 0;
2752	dev->tx_skb = NULL;
2753	dev->tx_iovec = NULL;
2754
2755	dev->tx_cell_count = 0;
2756	dev->rx_cell_count = 0;
2757	dev->hec_error_count = 0;
2758	dev->unassigned_cell_count = 0;
2759
2760	dev->noof_spare_buffers = 0;
2761
2762	{
2763		unsigned int i;
2764		for (i = 0; i < TX_CHANS; ++i)
2765			dev->tx_channel_record[i] = -1;
2766	}
2767
2768	dev->flags = 0;
2769
2770	// Allocate cell rates and remember ASIC version
2771	// Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2772	// Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2773	// Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2774
2775	if (hrz_init(dev)) {
2776		// to be really pedantic, this should be ATM_OC3c_PCR
2777		dev->tx_avail = ATM_OC3_PCR;
2778		dev->rx_avail = ATM_OC3_PCR;
2779		set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2780	} else {
2781		dev->tx_avail = ((25600000/8)*26)/(27*53);
2782		dev->rx_avail = ((25600000/8)*26)/(27*53);
2783		PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2784	}
2785
2786	// rate changes spinlock
2787	spin_lock_init(&dev->rate_lock);
2788
2789	// on-board memory access spinlock; we want atomic reads and
2790	// writes to adapter memory (handles IRQ and SMP)
2791	spin_lock_init(&dev->mem_lock);
2792
2793	init_waitqueue_head(&dev->tx_queue);
2794
2795	// vpi in 0..4, vci in 6..10
2796	dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2797	dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2798
2799	timer_setup(&dev->housekeeping, do_housekeeping, 0);
 
 
2800	mod_timer(&dev->housekeeping, jiffies);
2801
2802out:
2803	return err;
2804
2805out_free_irq:
2806	free_irq(irq, dev);
2807out_free:
2808	kfree(dev);
2809out_release:
2810	release_region(iobase, HRZ_IO_EXTENT);
2811out_disable:
2812	pci_disable_device(pci_dev);
2813	goto out;
2814}
2815
2816static void hrz_remove_one(struct pci_dev *pci_dev)
2817{
2818	hrz_dev *dev;
2819
2820	dev = pci_get_drvdata(pci_dev);
2821
2822	PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2823	del_timer_sync(&dev->housekeeping);
2824	hrz_reset(dev);
2825	atm_dev_deregister(dev->atm_dev);
2826	free_irq(dev->irq, dev);
2827	release_region(dev->iobase, HRZ_IO_EXTENT);
2828	kfree(dev);
2829
2830	pci_disable_device(pci_dev);
2831}
2832
2833static void __init hrz_check_args (void) {
2834#ifdef DEBUG_HORIZON
2835  PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2836#else
2837  if (debug)
2838    PRINTK (KERN_NOTICE, "no debug support in this image");
2839#endif
2840  
2841  if (vpi_bits > HRZ_MAX_VPI)
2842    PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2843	    vpi_bits = HRZ_MAX_VPI);
2844  
2845  if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2846    PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2847	    max_tx_size = TX_AAL5_LIMIT);
2848  
2849  if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2850    PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2851	    max_rx_size = RX_AAL5_LIMIT);
2852  
2853  return;
2854}
2855
2856MODULE_AUTHOR(maintainer_string);
2857MODULE_DESCRIPTION(description_string);
2858MODULE_LICENSE("GPL");
2859module_param(debug, ushort, 0644);
2860module_param(vpi_bits, ushort, 0);
2861module_param(max_tx_size, int, 0);
2862module_param(max_rx_size, int, 0);
2863module_param(pci_lat, byte, 0);
2864MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2865MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2866MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2867MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2868MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2869
2870static const struct pci_device_id hrz_pci_tbl[] = {
2871	{ PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
2872	  0, 0, 0 },
2873	{ 0, }
2874};
2875
2876MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2877
2878static struct pci_driver hrz_driver = {
2879	.name =		"horizon",
2880	.probe =	hrz_probe,
2881	.remove =	hrz_remove_one,
2882	.id_table =	hrz_pci_tbl,
2883};
2884
2885/********** module entry **********/
2886
2887static int __init hrz_module_init (void) {
2888  BUILD_BUG_ON(sizeof(struct MEMMAP) != 128*1024/4);
 
 
 
 
 
2889  
2890  show_version();
2891  
2892  // check arguments
2893  hrz_check_args();
2894  
2895  // get the juice
2896  return pci_register_driver(&hrz_driver);
2897}
2898
2899/********** module exit **********/
2900
2901static void __exit hrz_module_exit (void) {
2902  PRINTD (DBG_FLOW, "cleanup_module");
2903
2904  pci_unregister_driver(&hrz_driver);
2905}
2906
2907module_init(hrz_module_init);
2908module_exit(hrz_module_exit);