Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2  Madge Horizon ATM Adapter driver.
   3  Copyright (C) 1995-1999  Madge Networks Ltd.
   4  
   5  This program is free software; you can redistribute it and/or modify
   6  it under the terms of the GNU General Public License as published by
   7  the Free Software Foundation; either version 2 of the License, or
   8  (at your option) any later version.
   9  
  10  This program is distributed in the hope that it will be useful,
  11  but WITHOUT ANY WARRANTY; without even the implied warranty of
  12  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13  GNU General Public License for more details.
  14  
  15  You should have received a copy of the GNU General Public License
  16  along with this program; if not, write to the Free Software
  17  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  18  
  19  The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
  20  system and in the file COPYING in the Linux kernel source.
  21*/
  22
  23/*
  24  IMPORTANT NOTE: Madge Networks no longer makes the adapters
  25  supported by this driver and makes no commitment to maintain it.
  26*/
  27
  28#include <linux/module.h>
  29#include <linux/kernel.h>
  30#include <linux/mm.h>
  31#include <linux/pci.h>
  32#include <linux/errno.h>
  33#include <linux/atm.h>
  34#include <linux/atmdev.h>
  35#include <linux/sonet.h>
  36#include <linux/skbuff.h>
  37#include <linux/time.h>
  38#include <linux/delay.h>
  39#include <linux/uio.h>
  40#include <linux/init.h>
  41#include <linux/interrupt.h>
  42#include <linux/ioport.h>
  43#include <linux/wait.h>
  44#include <linux/slab.h>
  45
  46#include <asm/system.h>
  47#include <asm/io.h>
  48#include <linux/atomic.h>
  49#include <asm/uaccess.h>
  50#include <asm/string.h>
  51#include <asm/byteorder.h>
  52
  53#include "horizon.h"
  54
  55#define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
  56#define description_string "Madge ATM Horizon [Ultra] driver"
  57#define version_string "1.2.1"
  58
  59static inline void __init show_version (void) {
  60  printk ("%s version %s\n", description_string, version_string);
  61}
  62
  63/*
  64  
  65  CREDITS
  66  
  67  Driver and documentation by:
  68  
  69  Chris Aston        Madge Networks
  70  Giuliano Procida   Madge Networks
  71  Simon Benham       Madge Networks
  72  Simon Johnson      Madge Networks
  73  Various Others     Madge Networks
  74  
  75  Some inspiration taken from other drivers by:
  76  
  77  Alexandru Cucos    UTBv
  78  Kari Mettinen      University of Helsinki
  79  Werner Almesberger EPFL LRC
  80  
  81  Theory of Operation
  82  
  83  I Hardware, detection, initialisation and shutdown.
  84  
  85  1. Supported Hardware
  86  
  87  This driver should handle all variants of the PCI Madge ATM adapters
  88  with the Horizon chipset. These are all PCI cards supporting PIO, BM
  89  DMA and a form of MMIO (registers only, not internal RAM).
  90  
  91  The driver is only known to work with SONET and UTP Horizon Ultra
  92  cards at 155Mb/s. However, code is in place to deal with both the
  93  original Horizon and 25Mb/s operation.
  94  
  95  There are two revisions of the Horizon ASIC: the original and the
  96  Ultra. Details of hardware bugs are in section III.
  97  
  98  The ASIC version can be distinguished by chip markings but is NOT
  99  indicated by the PCI revision (all adapters seem to have PCI rev 1).
 100  
 101  I believe that:
 102  
 103  Horizon       => Collage  25 PCI Adapter (UTP and STP)
 104  Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
 105  Ambassador x  => Collage 155 PCI Server (completely different)
 106  
 107  Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
 108  have a Madge B154 plus glue logic serializer. I have also found a
 109  really ancient version of this with slightly different glue. It
 110  comes with the revision 0 (140-025-01) ASIC.
 111  
 112  Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
 113  output (UTP) or an HP HFBR 5205 output (SONET). It has either
 114  Madge's SAMBA framer or a SUNI-lite device (early versions). It
 115  comes with the revision 1 (140-027-01) ASIC.
 116  
 117  2. Detection
 118  
 119  All Horizon-based cards present with the same PCI Vendor and Device
 120  IDs. The standard Linux 2.2 PCI API is used to locate any cards and
 121  to enable bus-mastering (with appropriate latency).
 122  
 123  ATM_LAYER_STATUS in the control register distinguishes between the
 124  two possible physical layers (25 and 155). It is not clear whether
 125  the 155 cards can also operate at 25Mbps. We rely on the fact that a
 126  card operates at 155 if and only if it has the newer Horizon Ultra
 127  ASIC.
 128  
 129  For 155 cards the two possible framers are probed for and then set
 130  up for loop-timing.
 131  
 132  3. Initialisation
 133  
 134  The card is reset and then put into a known state. The physical
 135  layer is configured for normal operation at the appropriate speed;
 136  in the case of the 155 cards, the framer is initialised with
 137  line-based timing; the internal RAM is zeroed and the allocation of
 138  buffers for RX and TX is made; the Burnt In Address is read and
 139  copied to the ATM ESI; various policy settings for RX (VPI bits,
 140  unknown VCs, oam cells) are made. Ideally all policy items should be
 141  configurable at module load (if not actually on-demand), however,
 142  only the vpi vs vci bit allocation can be specified at insmod.
 143  
 144  4. Shutdown
 145  
 146  This is in response to module_cleaup. No VCs are in use and the card
 147  should be idle; it is reset.
 148  
 149  II Driver software (as it should be)
 150  
 151  0. Traffic Parameters
 152  
 153  The traffic classes (not an enumeration) are currently: ATM_NONE (no
 154  traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
 155  (compatible with everything). Together with (perhaps only some of)
 156  the following items they make up the traffic specification.
 157  
 158  struct atm_trafprm {
 159    unsigned char traffic_class; traffic class (ATM_UBR, ...)
 160    int           max_pcr;       maximum PCR in cells per second
 161    int           pcr;           desired PCR in cells per second
 162    int           min_pcr;       minimum PCR in cells per second
 163    int           max_cdv;       maximum CDV in microseconds
 164    int           max_sdu;       maximum SDU in bytes
 165  };
 166  
 167  Note that these denote bandwidth available not bandwidth used; the
 168  possibilities according to ATMF are:
 169  
 170  Real Time (cdv and max CDT given)
 171  
 172  CBR(pcr)             pcr bandwidth always available
 173  rtVBR(pcr,scr,mbs)   scr bandwidth always available, up to pcr at mbs too
 174  
 175  Non Real Time
 176  
 177  nrtVBR(pcr,scr,mbs)  scr bandwidth always available, up to pcr at mbs too
 178  UBR()
 179  ABR(mcr,pcr)         mcr bandwidth always available, up to pcr (depending) too
 180  
 181  mbs is max burst size (bucket)
 182  pcr and scr have associated cdvt values
 183  mcr is like scr but has no cdtv
 184  cdtv may differ at each hop
 185  
 186  Some of the above items are qos items (as opposed to traffic
 187  parameters). We have nothing to do with qos. All except ABR can have
 188  their traffic parameters converted to GCRA parameters. The GCRA may
 189  be implemented as a (real-number) leaky bucket. The GCRA can be used
 190  in complicated ways by switches and in simpler ways by end-stations.
 191  It can be used both to filter incoming cells and shape out-going
 192  cells.
 193  
 194  ATM Linux actually supports:
 195  
 196  ATM_NONE() (no traffic in this direction)
 197  ATM_UBR(max_frame_size)
 198  ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
 199  
 200  0 or ATM_MAX_PCR are used to indicate maximum available PCR
 201  
 202  A traffic specification consists of the AAL type and separate
 203  traffic specifications for either direction. In ATM Linux it is:
 204  
 205  struct atm_qos {
 206  struct atm_trafprm txtp;
 207  struct atm_trafprm rxtp;
 208  unsigned char aal;
 209  };
 210  
 211  AAL types are:
 212  
 213  ATM_NO_AAL    AAL not specified
 214  ATM_AAL0      "raw" ATM cells
 215  ATM_AAL1      AAL1 (CBR)
 216  ATM_AAL2      AAL2 (VBR)
 217  ATM_AAL34     AAL3/4 (data)
 218  ATM_AAL5      AAL5 (data)
 219  ATM_SAAL      signaling AAL
 220  
 221  The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
 222  it does not implement AAL 3/4 SAR and it has a different notion of
 223  "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
 224  supported by this driver.
 225  
 226  The Horizon has limited support for ABR (including UBR), VBR and
 227  CBR. Each TX channel has a bucket (containing up to 31 cell units)
 228  and two timers (PCR and SCR) associated with it that can be used to
 229  govern cell emissions and host notification (in the case of ABR this
 230  is presumably so that RM cells may be emitted at appropriate times).
 231  The timers may either be disabled or may be set to any of 240 values
 232  (determined by the clock crystal, a fixed (?) per-device divider, a
 233  configurable divider and a configurable timer preload value).
 234  
 235  At the moment only UBR and CBR are supported by the driver. VBR will
 236  be supported as soon as ATM for Linux supports it. ABR support is
 237  very unlikely as RM cell handling is completely up to the driver.
 238  
 239  1. TX (TX channel setup and TX transfer)
 240  
 241  The TX half of the driver owns the TX Horizon registers. The TX
 242  component in the IRQ handler is the BM completion handler. This can
 243  only be entered when tx_busy is true (enforced by hardware). The
 244  other TX component can only be entered when tx_busy is false
 245  (enforced by driver). So TX is single-threaded.
 246  
 247  Apart from a minor optimisation to not re-select the last channel,
 248  the TX send component works as follows:
 249  
 250  Atomic test and set tx_busy until we succeed; we should implement
 251  some sort of timeout so that tx_busy will never be stuck at true.
 252  
 253  If no TX channel is set up for this VC we wait for an idle one (if
 254  necessary) and set it up.
 255  
 256  At this point we have a TX channel ready for use. We wait for enough
 257  buffers to become available then start a TX transmit (set the TX
 258  descriptor, schedule transfer, exit).
 259  
 260  The IRQ component handles TX completion (stats, free buffer, tx_busy
 261  unset, exit). We also re-schedule further transfers for the same
 262  frame if needed.
 263  
 264  TX setup in more detail:
 265  
 266  TX open is a nop, the relevant information is held in the hrz_vcc
 267  (vcc->dev_data) structure and is "cached" on the card.
 268  
 269  TX close gets the TX lock and clears the channel from the "cache".
 270  
 271  2. RX (Data Available and RX transfer)
 272  
 273  The RX half of the driver owns the RX registers. There are two RX
 274  components in the IRQ handler: the data available handler deals with
 275  fresh data that has arrived on the card, the BM completion handler
 276  is very similar to the TX completion handler. The data available
 277  handler grabs the rx_lock and it is only released once the data has
 278  been discarded or completely transferred to the host. The BM
 279  completion handler only runs when the lock is held; the data
 280  available handler is locked out over the same period.
 281  
 282  Data available on the card triggers an interrupt. If the data is not
 283  suitable for our existing RX channels or we cannot allocate a buffer
 284  it is flushed. Otherwise an RX receive is scheduled. Multiple RX
 285  transfers may be scheduled for the same frame.
 286  
 287  RX setup in more detail:
 288  
 289  RX open...
 290  RX close...
 291  
 292  III Hardware Bugs
 293  
 294  0. Byte vs Word addressing of adapter RAM.
 295  
 296  A design feature; see the .h file (especially the memory map).
 297  
 298  1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
 299  
 300  The host must not start a transmit direction transfer at a
 301  non-four-byte boundary in host memory. Instead the host should
 302  perform a byte, or a two byte, or one byte followed by two byte
 303  transfer in order to start the rest of the transfer on a four byte
 304  boundary. RX is OK.
 305  
 306  Simultaneous transmit and receive direction bus master transfers are
 307  not allowed.
 308  
 309  The simplest solution to these two is to always do PIO (never DMA)
 310  in the TX direction on the original Horizon. More complicated
 311  solutions are likely to hurt my brain.
 312  
 313  2. Loss of buffer on close VC
 314  
 315  When a VC is being closed, the buffer associated with it is not
 316  returned to the pool. The host must store the reference to this
 317  buffer and when opening a new VC then give it to that new VC.
 318  
 319  The host intervention currently consists of stacking such a buffer
 320  pointer at VC close and checking the stack at VC open.
 321  
 322  3. Failure to close a VC
 323  
 324  If a VC is currently receiving a frame then closing the VC may fail
 325  and the frame continues to be received.
 326  
 327  The solution is to make sure any received frames are flushed when
 328  ready. This is currently done just before the solution to 2.
 329  
 330  4. PCI bus (original Horizon only, fixed in Ultra)
 331  
 332  Reading from the data port prior to initialisation will hang the PCI
 333  bus. Just don't do that then! We don't.
 334  
 335  IV To Do List
 336  
 337  . Timer code may be broken.
 338  
 339  . Allow users to specify buffer allocation split for TX and RX.
 340  
 341  . Deal once and for all with buggy VC close.
 342  
 343  . Handle interrupted and/or non-blocking operations.
 344  
 345  . Change some macros to functions and move from .h to .c.
 346  
 347  . Try to limit the number of TX frames each VC may have queued, in
 348    order to reduce the chances of TX buffer exhaustion.
 349  
 350  . Implement VBR (bucket and timers not understood) and ABR (need to
 351    do RM cells manually); also no Linux support for either.
 352  
 353  . Implement QoS changes on open VCs (involves extracting parts of VC open
 354    and close into separate functions and using them to make changes).
 355  
 356*/
 357
 358/********** globals **********/
 359
 360static void do_housekeeping (unsigned long arg);
 361
 362static unsigned short debug = 0;
 363static unsigned short vpi_bits = 0;
 364static int max_tx_size = 9000;
 365static int max_rx_size = 9000;
 366static unsigned char pci_lat = 0;
 367
 368/********** access functions **********/
 369
 370/* Read / Write Horizon registers */
 371static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
 372  outl (cpu_to_le32 (data), dev->iobase + reg);
 373}
 374
 375static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
 376  return le32_to_cpu (inl (dev->iobase + reg));
 377}
 378
 379static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
 380  outw (cpu_to_le16 (data), dev->iobase + reg);
 381}
 382
 383static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
 384  return le16_to_cpu (inw (dev->iobase + reg));
 385}
 386
 387static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
 388  outsb (dev->iobase + reg, addr, len);
 389}
 390
 391static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
 392  insb (dev->iobase + reg, addr, len);
 393}
 394
 395/* Read / Write to a given address in Horizon buffer memory.
 396   Interrupts must be disabled between the address register and data
 397   port accesses as these must form an atomic operation. */
 398static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
 399  // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
 400  wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
 401  wr_regl (dev, MEMORY_PORT_OFF, data);
 402}
 403
 404static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
 405  // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
 406  wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
 407  return rd_regl (dev, MEMORY_PORT_OFF);
 408}
 409
 410static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
 411  wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
 412  wr_regl (dev, MEMORY_PORT_OFF, data);
 413}
 414
 415static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
 416  wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
 417  return rd_regl (dev, MEMORY_PORT_OFF);
 418}
 419
 420/********** specialised access functions **********/
 421
 422/* RX */
 423
 424static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
 425  wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
 426  return;
 427}
 428
 429static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
 430  while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
 431    ;
 432  return;
 433}
 434
 435static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
 436  wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
 437  return;
 438}
 439
 440static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
 441  while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
 442    ;
 443  return;
 444}
 445
 446/* TX */
 447
 448static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
 449  wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
 450  return;
 451}
 452
 453/* Update or query one configuration parameter of a particular channel. */
 454
 455static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
 456  wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
 457	   chan * TX_CHANNEL_CONFIG_MULT | mode);
 458    wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
 459    return;
 460}
 461
 462static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) {
 463  wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
 464	   chan * TX_CHANNEL_CONFIG_MULT | mode);
 465    return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF);
 466}
 467
 468/********** dump functions **********/
 469
 470static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
 471#ifdef DEBUG_HORIZON
 472  unsigned int i;
 473  unsigned char * data = skb->data;
 474  PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
 475  for (i=0; i<skb->len && i < 256;i++)
 476    PRINTDM (DBG_DATA, "%02x ", data[i]);
 477  PRINTDE (DBG_DATA,"");
 478#else
 479  (void) prefix;
 480  (void) vc;
 481  (void) skb;
 482#endif
 483  return;
 484}
 485
 486static inline void dump_regs (hrz_dev * dev) {
 487#ifdef DEBUG_HORIZON
 488  PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
 489  PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
 490  PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
 491  PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
 492  PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
 493  PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
 494#else
 495  (void) dev;
 496#endif
 497  return;
 498}
 499
 500static inline void dump_framer (hrz_dev * dev) {
 501#ifdef DEBUG_HORIZON
 502  unsigned int i;
 503  PRINTDB (DBG_REGS, "framer registers:");
 504  for (i = 0; i < 0x10; ++i)
 505    PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
 506  PRINTDE (DBG_REGS,"");
 507#else
 508  (void) dev;
 509#endif
 510  return;
 511}
 512
 513/********** VPI/VCI <-> (RX) channel conversions **********/
 514
 515/* RX channels are 10 bit integers, these fns are quite paranoid */
 516
 517static inline int channel_to_vpivci (const u16 channel, short * vpi, int * vci) {
 518  unsigned short vci_bits = 10 - vpi_bits;
 519  if ((channel & RX_CHANNEL_MASK) == channel) {
 520    *vci = channel & ((~0)<<vci_bits);
 521    *vpi = channel >> vci_bits;
 522    return channel ? 0 : -EINVAL;
 523  }
 524  return -EINVAL;
 525}
 526
 527static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
 528  unsigned short vci_bits = 10 - vpi_bits;
 529  if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
 530    *channel = vpi<<vci_bits | vci;
 531    return *channel ? 0 : -EINVAL;
 532  }
 533  return -EINVAL;
 534}
 535
 536/********** decode RX queue entries **********/
 537
 538static inline u16 rx_q_entry_to_length (u32 x) {
 539  return x & RX_Q_ENTRY_LENGTH_MASK;
 540}
 541
 542static inline u16 rx_q_entry_to_rx_channel (u32 x) {
 543  return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
 544}
 545
 546/* Cell Transmit Rate Values
 547 *
 548 * the cell transmit rate (cells per sec) can be set to a variety of
 549 * different values by specifying two parameters: a timer preload from
 550 * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
 551 * an exponent from 0 to 14; the special value 15 disables the timer).
 552 *
 553 * cellrate = baserate / (preload * 2^divider)
 554 *
 555 * The maximum cell rate that can be specified is therefore just the
 556 * base rate. Halving the preload is equivalent to adding 1 to the
 557 * divider and so values 1 to 8 of the preload are redundant except
 558 * in the case of a maximal divider (14).
 559 *
 560 * Given a desired cell rate, an algorithm to determine the preload
 561 * and divider is:
 562 * 
 563 * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
 564 * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
 565 *    if x <= 16 then set p = x, d = 0 (high rates), done
 566 * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
 567 *    know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
 568 *    we find the range (n will be between 1 and 14), set d = n
 569 * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
 570 *
 571 * The algorithm used below is a minor variant of the above.
 572 *
 573 * The base rate is derived from the oscillator frequency (Hz) using a
 574 * fixed divider:
 575 *
 576 * baserate = freq / 32 in the case of some Unknown Card
 577 * baserate = freq / 8  in the case of the Horizon        25
 578 * baserate = freq / 8  in the case of the Horizon Ultra 155
 579 *
 580 * The Horizon cards have oscillators and base rates as follows:
 581 *
 582 * Card               Oscillator  Base Rate
 583 * Unknown Card       33 MHz      1.03125 MHz (33 MHz = PCI freq)
 584 * Horizon        25  32 MHz      4       MHz
 585 * Horizon Ultra 155  40 MHz      5       MHz
 586 *
 587 * The following defines give the base rates in Hz. These were
 588 * previously a factor of 100 larger, no doubt someone was using
 589 * cps*100.
 590 */
 591
 592#define BR_UKN 1031250l
 593#define BR_HRZ 4000000l
 594#define BR_ULT 5000000l
 595
 596// d is an exponent
 597#define CR_MIND 0
 598#define CR_MAXD 14
 599
 600// p ranges from 1 to a power of 2
 601#define CR_MAXPEXP 4
 602 
 603static int make_rate (const hrz_dev * dev, u32 c, rounding r,
 604		      u16 * bits, unsigned int * actual)
 605{
 606	// note: rounding the rate down means rounding 'p' up
 607	const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
 608  
 609	u32 div = CR_MIND;
 610	u32 pre;
 611  
 612	// br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
 613	// the tests below. We could think harder about exact possibilities
 614	// of failure...
 615  
 616	unsigned long br_man = br;
 617	unsigned int br_exp = 0;
 618  
 619	PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
 620		r == round_up ? "up" : r == round_down ? "down" : "nearest");
 621  
 622	// avoid div by zero
 623	if (!c) {
 624		PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
 625		return -EINVAL;
 626	}
 627  
 628	while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
 629		br_man = br_man >> 1;
 630		++br_exp;
 631	}
 632	// (br >>br_exp) <<br_exp == br and
 633	// br_exp <= CR_MAXPEXP+CR_MIND
 634  
 635	if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
 636		// Equivalent to: B <= (c << (MAXPEXP+MIND))
 637		// take care of rounding
 638		switch (r) {
 639			case round_down:
 640				pre = DIV_ROUND_UP(br, c<<div);
 641				// but p must be non-zero
 642				if (!pre)
 643					pre = 1;
 644				break;
 645			case round_nearest:
 646				pre = DIV_ROUND_CLOSEST(br, c<<div);
 647				// but p must be non-zero
 648				if (!pre)
 649					pre = 1;
 650				break;
 651			default:	/* round_up */
 652				pre = br/(c<<div);
 653				// but p must be non-zero
 654				if (!pre)
 655					return -EINVAL;
 656		}
 657		PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
 658		goto got_it;
 659	}
 660  
 661	// at this point we have
 662	// d == MIND and (c << (MAXPEXP+MIND)) < B
 663	while (div < CR_MAXD) {
 664		div++;
 665		if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
 666			// Equivalent to: B <= (c << (MAXPEXP+d))
 667			// c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
 668			// 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
 669			// MAXP/2 < B/c2^d <= MAXP
 670			// take care of rounding
 671			switch (r) {
 672				case round_down:
 673					pre = DIV_ROUND_UP(br, c<<div);
 674					break;
 675				case round_nearest:
 676					pre = DIV_ROUND_CLOSEST(br, c<<div);
 677					break;
 678				default: /* round_up */
 679					pre = br/(c<<div);
 680			}
 681			PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
 682			goto got_it;
 683		}
 684	}
 685	// at this point we have
 686	// d == MAXD and (c << (MAXPEXP+MAXD)) < B
 687	// but we cannot go any higher
 688	// take care of rounding
 689	if (r == round_down)
 690		return -EINVAL;
 691	pre = 1 << CR_MAXPEXP;
 692	PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
 693got_it:
 694	// paranoia
 695	if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
 696		PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
 697			div, pre);
 698		return -EINVAL;
 699	} else {
 700		if (bits)
 701			*bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
 702		if (actual) {
 703			*actual = DIV_ROUND_UP(br, pre<<div);
 704			PRINTD (DBG_QOS, "actual rate: %u", *actual);
 705		}
 706		return 0;
 707	}
 708}
 709
 710static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
 711				     u16 * bit_pattern, unsigned int * actual) {
 712  unsigned int my_actual;
 713  
 714  PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
 715	  c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
 716  
 717  if (!actual)
 718    // actual rate is not returned
 719    actual = &my_actual;
 720  
 721  if (make_rate (dev, c, round_nearest, bit_pattern, actual))
 722    // should never happen as round_nearest always succeeds
 723    return -1;
 724  
 725  if (c - tol <= *actual && *actual <= c + tol)
 726    // within tolerance
 727    return 0;
 728  else
 729    // intolerant, try rounding instead
 730    return make_rate (dev, c, r, bit_pattern, actual);
 731}
 732
 733/********** Listen on a VC **********/
 734
 735static int hrz_open_rx (hrz_dev * dev, u16 channel) {
 736  // is there any guarantee that we don't get two simulataneous
 737  // identical calls of this function from different processes? yes
 738  // rate_lock
 739  unsigned long flags;
 740  u32 channel_type; // u16?
 741  
 742  u16 buf_ptr = RX_CHANNEL_IDLE;
 743  
 744  rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
 745  
 746  PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
 747  
 748  spin_lock_irqsave (&dev->mem_lock, flags);
 749  channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
 750  spin_unlock_irqrestore (&dev->mem_lock, flags);
 751  
 752  // very serious error, should never occur
 753  if (channel_type != RX_CHANNEL_DISABLED) {
 754    PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
 755    return -EBUSY; // clean up?
 756  }
 757  
 758  // Give back spare buffer
 759  if (dev->noof_spare_buffers) {
 760    buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
 761    PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
 762    // should never occur
 763    if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
 764      // but easy to recover from
 765      PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
 766      buf_ptr = RX_CHANNEL_IDLE;
 767    }
 768  } else {
 769    PRINTD (DBG_VCC, "using IDLE buffer pointer");
 770  }
 771  
 772  // Channel is currently disabled so change its status to idle
 773  
 774  // do we really need to save the flags again?
 775  spin_lock_irqsave (&dev->mem_lock, flags);
 776  
 777  wr_mem (dev, &rx_desc->wr_buf_type,
 778	  buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
 779  if (buf_ptr != RX_CHANNEL_IDLE)
 780    wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
 781  
 782  spin_unlock_irqrestore (&dev->mem_lock, flags);
 783  
 784  // rxer->rate = make_rate (qos->peak_cells);
 785  
 786  PRINTD (DBG_FLOW, "hrz_open_rx ok");
 787  
 788  return 0;
 789}
 790
 791#if 0
 792/********** change vc rate for a given vc **********/
 793
 794static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
 795  rxer->rate = make_rate (qos->peak_cells);
 796}
 797#endif
 798
 799/********** free an skb (as per ATM device driver documentation) **********/
 800
 801static void hrz_kfree_skb (struct sk_buff * skb) {
 802  if (ATM_SKB(skb)->vcc->pop) {
 803    ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
 804  } else {
 805    dev_kfree_skb_any (skb);
 806  }
 807}
 808
 809/********** cancel listen on a VC **********/
 810
 811static void hrz_close_rx (hrz_dev * dev, u16 vc) {
 812  unsigned long flags;
 813  
 814  u32 value;
 815  
 816  u32 r1, r2;
 817  
 818  rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
 819  
 820  int was_idle = 0;
 821  
 822  spin_lock_irqsave (&dev->mem_lock, flags);
 823  value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
 824  spin_unlock_irqrestore (&dev->mem_lock, flags);
 825  
 826  if (value == RX_CHANNEL_DISABLED) {
 827    // I suppose this could happen once we deal with _NONE traffic properly
 828    PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
 829    return;
 830  }
 831  if (value == RX_CHANNEL_IDLE)
 832    was_idle = 1;
 833  
 834  spin_lock_irqsave (&dev->mem_lock, flags);
 835  
 836  for (;;) {
 837    wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
 838    
 839    if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
 840      break;
 841    
 842    was_idle = 0;
 843  }
 844  
 845  if (was_idle) {
 846    spin_unlock_irqrestore (&dev->mem_lock, flags);
 847    return;
 848  }
 849  
 850  WAIT_FLUSH_RX_COMPLETE(dev);
 851  
 852  // XXX Is this all really necessary? We can rely on the rx_data_av
 853  // handler to discard frames that remain queued for delivery. If the
 854  // worry is that immediately reopening the channel (perhaps by a
 855  // different process) may cause some data to be mis-delivered then
 856  // there may still be a simpler solution (such as busy-waiting on
 857  // rx_busy once the channel is disabled or before a new one is
 858  // opened - does this leave any holes?). Arguably setting up and
 859  // tearing down the TX and RX halves of each virtual circuit could
 860  // most safely be done within ?x_busy protected regions.
 861  
 862  // OK, current changes are that Simon's marker is disabled and we DO
 863  // look for NULL rxer elsewhere. The code here seems flush frames
 864  // and then remember the last dead cell belonging to the channel
 865  // just disabled - the cell gets relinked at the next vc_open.
 866  // However, when all VCs are closed or only a few opened there are a
 867  // handful of buffers that are unusable.
 868  
 869  // Does anyone feel like documenting spare_buffers properly?
 870  // Does anyone feel like fixing this in a nicer way?
 871  
 872  // Flush any data which is left in the channel
 873  for (;;) {
 874    // Change the rx channel port to something different to the RX
 875    // channel we are trying to close to force Horizon to flush the rx
 876    // channel read and write pointers.
 877    
 878    u16 other = vc^(RX_CHANS/2);
 879    
 880    SELECT_RX_CHANNEL (dev, other);
 881    WAIT_UPDATE_COMPLETE (dev);
 882    
 883    r1 = rd_mem (dev, &rx_desc->rd_buf_type);
 884    
 885    // Select this RX channel. Flush doesn't seem to work unless we
 886    // select an RX channel before hand
 887    
 888    SELECT_RX_CHANNEL (dev, vc);
 889    WAIT_UPDATE_COMPLETE (dev);
 890    
 891    // Attempt to flush a frame on this RX channel
 892    
 893    FLUSH_RX_CHANNEL (dev, vc);
 894    WAIT_FLUSH_RX_COMPLETE (dev);
 895    
 896    // Force Horizon to flush rx channel read and write pointers as before
 897    
 898    SELECT_RX_CHANNEL (dev, other);
 899    WAIT_UPDATE_COMPLETE (dev);
 900    
 901    r2 = rd_mem (dev, &rx_desc->rd_buf_type);
 902    
 903    PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
 904    
 905    if (r1 == r2) {
 906      dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
 907      break;
 908    }
 909  }
 910  
 911#if 0
 912  {
 913    rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
 914    rx_q_entry * rd_ptr = dev->rx_q_entry;
 915    
 916    PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
 917    
 918    while (rd_ptr != wr_ptr) {
 919      u32 x = rd_mem (dev, (HDW *) rd_ptr);
 920      
 921      if (vc == rx_q_entry_to_rx_channel (x)) {
 922	x |= SIMONS_DODGEY_MARKER;
 923	
 924	PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
 925	
 926	wr_mem (dev, (HDW *) rd_ptr, x);
 927      }
 928      
 929      if (rd_ptr == dev->rx_q_wrap)
 930	rd_ptr = dev->rx_q_reset;
 931      else
 932	rd_ptr++;
 933    }
 934  }
 935#endif
 936  
 937  spin_unlock_irqrestore (&dev->mem_lock, flags);
 938  
 939  return;
 940}
 941
 942/********** schedule RX transfers **********/
 943
 944// Note on tail recursion: a GCC developer said that it is not likely
 945// to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
 946// are sure it does as you may otherwise overflow the kernel stack.
 947
 948// giving this fn a return value would help GCC, allegedly
 949
 950static void rx_schedule (hrz_dev * dev, int irq) {
 951  unsigned int rx_bytes;
 952  
 953  int pio_instead = 0;
 954#ifndef TAILRECURSIONWORKS
 955  pio_instead = 1;
 956  while (pio_instead) {
 957#endif
 958    // bytes waiting for RX transfer
 959    rx_bytes = dev->rx_bytes;
 960    
 961#if 0
 962    spin_count = 0;
 963    while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
 964      PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
 965      if (++spin_count > 10) {
 966	PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
 967	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
 968	clear_bit (rx_busy, &dev->flags);
 969	hrz_kfree_skb (dev->rx_skb);
 970	return;
 971      }
 972    }
 973#endif
 974    
 975    // this code follows the TX code but (at the moment) there is only
 976    // one region - the skb itself. I don't know if this will change,
 977    // but it doesn't hurt to have the code here, disabled.
 978    
 979    if (rx_bytes) {
 980      // start next transfer within same region
 981      if (rx_bytes <= MAX_PIO_COUNT) {
 982	PRINTD (DBG_RX|DBG_BUS, "(pio)");
 983	pio_instead = 1;
 984      }
 985      if (rx_bytes <= MAX_TRANSFER_COUNT) {
 986	PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
 987	dev->rx_bytes = 0;
 988      } else {
 989	PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
 990	dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
 991	rx_bytes = MAX_TRANSFER_COUNT;
 992      }
 993    } else {
 994      // rx_bytes == 0 -- we're between regions
 995      // regions remaining to transfer
 996#if 0
 997      unsigned int rx_regions = dev->rx_regions;
 998#else
 999      unsigned int rx_regions = 0;
1000#endif
1001      
1002      if (rx_regions) {
1003#if 0
1004	// start a new region
1005	dev->rx_addr = dev->rx_iovec->iov_base;
1006	rx_bytes = dev->rx_iovec->iov_len;
1007	++dev->rx_iovec;
1008	dev->rx_regions = rx_regions - 1;
1009	
1010	if (rx_bytes <= MAX_PIO_COUNT) {
1011	  PRINTD (DBG_RX|DBG_BUS, "(pio)");
1012	  pio_instead = 1;
1013	}
1014	if (rx_bytes <= MAX_TRANSFER_COUNT) {
1015	  PRINTD (DBG_RX|DBG_BUS, "(full region)");
1016	  dev->rx_bytes = 0;
1017	} else {
1018	  PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
1019	  dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1020	  rx_bytes = MAX_TRANSFER_COUNT;
1021	}
1022#endif
1023      } else {
1024	// rx_regions == 0
1025	// that's all folks - end of frame
1026	struct sk_buff * skb = dev->rx_skb;
1027	// dev->rx_iovec = 0;
1028	
1029	FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1030	
1031	dump_skb ("<<<", dev->rx_channel, skb);
1032	
1033	PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1034	
1035	{
1036	  struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1037	  // VC layer stats
1038	  atomic_inc(&vcc->stats->rx);
1039	  __net_timestamp(skb);
1040	  // end of our responsibility
1041	  vcc->push (vcc, skb);
1042	}
1043      }
1044    }
1045    
1046    // note: writing RX_COUNT clears any interrupt condition
1047    if (rx_bytes) {
1048      if (pio_instead) {
1049	if (irq)
1050	  wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1051	rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1052      } else {
1053	wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1054	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1055      }
1056      dev->rx_addr += rx_bytes;
1057    } else {
1058      if (irq)
1059	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1060      // allow another RX thread to start
1061      YELLOW_LED_ON(dev);
1062      clear_bit (rx_busy, &dev->flags);
1063      PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1064    }
1065    
1066#ifdef TAILRECURSIONWORKS
1067    // and we all bless optimised tail calls
1068    if (pio_instead)
1069      return rx_schedule (dev, 0);
1070    return;
1071#else
1072    // grrrrrrr!
1073    irq = 0;
1074  }
1075  return;
1076#endif
1077}
1078
1079/********** handle RX bus master complete events **********/
1080
1081static void rx_bus_master_complete_handler (hrz_dev * dev) {
1082  if (test_bit (rx_busy, &dev->flags)) {
1083    rx_schedule (dev, 1);
1084  } else {
1085    PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1086    // clear interrupt condition on adapter
1087    wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1088  }
1089  return;
1090}
1091
1092/********** (queue to) become the next TX thread **********/
1093
1094static int tx_hold (hrz_dev * dev) {
1095  PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1096  wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
1097  PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1098  if (signal_pending (current))
1099    return -1;
1100  PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1101  return 0;
1102}
1103
1104/********** allow another TX thread to start **********/
1105
1106static inline void tx_release (hrz_dev * dev) {
1107  clear_bit (tx_busy, &dev->flags);
1108  PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1109  wake_up_interruptible (&dev->tx_queue);
1110}
1111
1112/********** schedule TX transfers **********/
1113
1114static void tx_schedule (hrz_dev * const dev, int irq) {
1115  unsigned int tx_bytes;
1116  
1117  int append_desc = 0;
1118  
1119  int pio_instead = 0;
1120#ifndef TAILRECURSIONWORKS
1121  pio_instead = 1;
1122  while (pio_instead) {
1123#endif
1124    // bytes in current region waiting for TX transfer
1125    tx_bytes = dev->tx_bytes;
1126    
1127#if 0
1128    spin_count = 0;
1129    while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1130      PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1131      if (++spin_count > 10) {
1132	PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1133	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1134	tx_release (dev);
1135	hrz_kfree_skb (dev->tx_skb);
1136	return;
1137      }
1138    }
1139#endif
1140    
1141    if (tx_bytes) {
1142      // start next transfer within same region
1143      if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1144	PRINTD (DBG_TX|DBG_BUS, "(pio)");
1145	pio_instead = 1;
1146      }
1147      if (tx_bytes <= MAX_TRANSFER_COUNT) {
1148	PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1149	if (!dev->tx_iovec) {
1150	  // end of last region
1151	  append_desc = 1;
1152	}
1153	dev->tx_bytes = 0;
1154      } else {
1155	PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1156	dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1157	tx_bytes = MAX_TRANSFER_COUNT;
1158      }
1159    } else {
1160      // tx_bytes == 0 -- we're between regions
1161      // regions remaining to transfer
1162      unsigned int tx_regions = dev->tx_regions;
1163      
1164      if (tx_regions) {
1165	// start a new region
1166	dev->tx_addr = dev->tx_iovec->iov_base;
1167	tx_bytes = dev->tx_iovec->iov_len;
1168	++dev->tx_iovec;
1169	dev->tx_regions = tx_regions - 1;
1170	
1171	if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1172	  PRINTD (DBG_TX|DBG_BUS, "(pio)");
1173	  pio_instead = 1;
1174	}
1175	if (tx_bytes <= MAX_TRANSFER_COUNT) {
1176	  PRINTD (DBG_TX|DBG_BUS, "(full region)");
1177	  dev->tx_bytes = 0;
1178	} else {
1179	  PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1180	  dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1181	  tx_bytes = MAX_TRANSFER_COUNT;
1182	}
1183      } else {
1184	// tx_regions == 0
1185	// that's all folks - end of frame
1186	struct sk_buff * skb = dev->tx_skb;
1187	dev->tx_iovec = NULL;
1188	
1189	// VC layer stats
1190	atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1191	
1192	// free the skb
1193	hrz_kfree_skb (skb);
1194      }
1195    }
1196    
1197    // note: writing TX_COUNT clears any interrupt condition
1198    if (tx_bytes) {
1199      if (pio_instead) {
1200	if (irq)
1201	  wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1202	wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1203	if (append_desc)
1204	  wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1205      } else {
1206	wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1207	if (append_desc)
1208	  wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1209	wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1210		 append_desc
1211		 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1212		 : tx_bytes);
1213      }
1214      dev->tx_addr += tx_bytes;
1215    } else {
1216      if (irq)
1217	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1218      YELLOW_LED_ON(dev);
1219      tx_release (dev);
1220    }
1221    
1222#ifdef TAILRECURSIONWORKS
1223    // and we all bless optimised tail calls
1224    if (pio_instead)
1225      return tx_schedule (dev, 0);
1226    return;
1227#else
1228    // grrrrrrr!
1229    irq = 0;
1230  }
1231  return;
1232#endif
1233}
1234
1235/********** handle TX bus master complete events **********/
1236
1237static void tx_bus_master_complete_handler (hrz_dev * dev) {
1238  if (test_bit (tx_busy, &dev->flags)) {
1239    tx_schedule (dev, 1);
1240  } else {
1241    PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1242    // clear interrupt condition on adapter
1243    wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1244  }
1245  return;
1246}
1247
1248/********** move RX Q pointer to next item in circular buffer **********/
1249
1250// called only from IRQ sub-handler
1251static u32 rx_queue_entry_next (hrz_dev * dev) {
1252  u32 rx_queue_entry;
1253  spin_lock (&dev->mem_lock);
1254  rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1255  if (dev->rx_q_entry == dev->rx_q_wrap)
1256    dev->rx_q_entry = dev->rx_q_reset;
1257  else
1258    dev->rx_q_entry++;
1259  wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1260  spin_unlock (&dev->mem_lock);
1261  return rx_queue_entry;
1262}
1263
1264/********** handle RX disabled by device **********/
1265
1266static inline void rx_disabled_handler (hrz_dev * dev) {
1267  wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1268  // count me please
1269  PRINTK (KERN_WARNING, "RX was disabled!");
1270}
1271
1272/********** handle RX data received by device **********/
1273
1274// called from IRQ handler
1275static void rx_data_av_handler (hrz_dev * dev) {
1276  u32 rx_queue_entry;
1277  u32 rx_queue_entry_flags;
1278  u16 rx_len;
1279  u16 rx_channel;
1280  
1281  PRINTD (DBG_FLOW, "hrz_data_av_handler");
1282  
1283  // try to grab rx lock (not possible during RX bus mastering)
1284  if (test_and_set_bit (rx_busy, &dev->flags)) {
1285    PRINTD (DBG_RX, "locked out of rx lock");
1286    return;
1287  }
1288  PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1289  // lock is cleared if we fail now, o/w after bus master completion
1290  
1291  YELLOW_LED_OFF(dev);
1292  
1293  rx_queue_entry = rx_queue_entry_next (dev);
1294  
1295  rx_len = rx_q_entry_to_length (rx_queue_entry);
1296  rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1297  
1298  WAIT_FLUSH_RX_COMPLETE (dev);
1299  
1300  SELECT_RX_CHANNEL (dev, rx_channel);
1301  
1302  PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1303  rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1304  
1305  if (!rx_len) {
1306    // (at least) bus-mastering breaks if we try to handle a
1307    // zero-length frame, besides AAL5 does not support them
1308    PRINTK (KERN_ERR, "zero-length frame!");
1309    rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1310  }
1311  
1312  if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1313    PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1314  }
1315  if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1316    struct atm_vcc * atm_vcc;
1317    
1318    PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1319    
1320    atm_vcc = dev->rxer[rx_channel];
1321    // if no vcc is assigned to this channel, we should drop the frame
1322    // (is this what SIMONS etc. was trying to achieve?)
1323    
1324    if (atm_vcc) {
1325      
1326      if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1327	
1328	if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1329	    
1330	  struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1331	  if (skb) {
1332	    // remember this so we can push it later
1333	    dev->rx_skb = skb;
1334	    // remember this so we can flush it later
1335	    dev->rx_channel = rx_channel;
1336	    
1337	    // prepare socket buffer
1338	    skb_put (skb, rx_len);
1339	    ATM_SKB(skb)->vcc = atm_vcc;
1340	    
1341	    // simple transfer
1342	    // dev->rx_regions = 0;
1343	    // dev->rx_iovec = 0;
1344	    dev->rx_bytes = rx_len;
1345	    dev->rx_addr = skb->data;
1346	    PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1347		    skb->data, rx_len);
1348	    
1349	    // do the business
1350	    rx_schedule (dev, 0);
1351	    return;
1352	    
1353	  } else {
1354	    PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1355	  }
1356	  
1357	} else {
1358	  PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1359	  // do we count this?
1360	}
1361	
1362      } else {
1363	PRINTK (KERN_WARNING, "dropped over-size frame");
1364	// do we count this?
1365      }
1366      
1367    } else {
1368      PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1369      // do we count this?
1370    }
1371    
1372  } else {
1373    // Wait update complete ? SPONG
1374  }
1375  
1376  // RX was aborted
1377  YELLOW_LED_ON(dev);
1378  
1379  FLUSH_RX_CHANNEL (dev,rx_channel);
1380  clear_bit (rx_busy, &dev->flags);
1381  
1382  return;
1383}
1384
1385/********** interrupt handler **********/
1386
1387static irqreturn_t interrupt_handler(int irq, void *dev_id)
1388{
1389  hrz_dev *dev = dev_id;
1390  u32 int_source;
1391  unsigned int irq_ok;
1392  
1393  PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1394  
1395  // definitely for us
1396  irq_ok = 0;
1397  while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1398	  & INTERESTING_INTERRUPTS)) {
1399    // In the interests of fairness, the handlers below are
1400    // called in sequence and without immediate return to the head of
1401    // the while loop. This is only of issue for slow hosts (or when
1402    // debugging messages are on). Really slow hosts may find a fast
1403    // sender keeps them permanently in the IRQ handler. :(
1404    
1405    // (only an issue for slow hosts) RX completion goes before
1406    // rx_data_av as the former implies rx_busy and so the latter
1407    // would just abort. If it reschedules another transfer
1408    // (continuing the same frame) then it will not clear rx_busy.
1409    
1410    // (only an issue for slow hosts) TX completion goes before RX
1411    // data available as it is a much shorter routine - there is the
1412    // chance that any further transfers it schedules will be complete
1413    // by the time of the return to the head of the while loop
1414    
1415    if (int_source & RX_BUS_MASTER_COMPLETE) {
1416      ++irq_ok;
1417      PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1418      rx_bus_master_complete_handler (dev);
1419    }
1420    if (int_source & TX_BUS_MASTER_COMPLETE) {
1421      ++irq_ok;
1422      PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1423      tx_bus_master_complete_handler (dev);
1424    }
1425    if (int_source & RX_DATA_AV) {
1426      ++irq_ok;
1427      PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1428      rx_data_av_handler (dev);
1429    }
1430  }
1431  if (irq_ok) {
1432    PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1433  } else {
1434    PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1435  }
1436  
1437  PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1438  if (irq_ok)
1439	return IRQ_HANDLED;
1440  return IRQ_NONE;
1441}
1442
1443/********** housekeeping **********/
1444
1445static void do_housekeeping (unsigned long arg) {
1446  // just stats at the moment
1447  hrz_dev * dev = (hrz_dev *) arg;
1448
1449  // collect device-specific (not driver/atm-linux) stats here
1450  dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1451  dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1452  dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1453  dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1454
1455  mod_timer (&dev->housekeeping, jiffies + HZ/10);
1456
1457  return;
1458}
1459
1460/********** find an idle channel for TX and set it up **********/
1461
1462// called with tx_busy set
1463static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1464  unsigned short idle_channels;
1465  short tx_channel = -1;
1466  unsigned int spin_count;
1467  PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1468  
1469  // better would be to fail immediately, the caller can then decide whether
1470  // to wait or drop (depending on whether this is UBR etc.)
1471  spin_count = 0;
1472  while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1473    PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1474    // delay a bit here
1475    if (++spin_count > 100) {
1476      PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1477      return -EBUSY;
1478    }
1479  }
1480  
1481  // got an idle channel
1482  {
1483    // tx_idle ensures we look for idle channels in RR order
1484    int chan = dev->tx_idle;
1485    
1486    int keep_going = 1;
1487    while (keep_going) {
1488      if (idle_channels & (1<<chan)) {
1489	tx_channel = chan;
1490	keep_going = 0;
1491      }
1492      ++chan;
1493      if (chan == TX_CHANS)
1494	chan = 0;
1495    }
1496    
1497    dev->tx_idle = chan;
1498  }
1499  
1500  // set up the channel we found
1501  {
1502    // Initialise the cell header in the transmit channel descriptor
1503    // a.k.a. prepare the channel and remember that we have done so.
1504    
1505    tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1506    u32 rd_ptr;
1507    u32 wr_ptr;
1508    u16 channel = vcc->channel;
1509    
1510    unsigned long flags;
1511    spin_lock_irqsave (&dev->mem_lock, flags);
1512    
1513    // Update the transmit channel record.
1514    dev->tx_channel_record[tx_channel] = channel;
1515    
1516    // xBR channel
1517    update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1518			      vcc->tx_xbr_bits);
1519    
1520    // Update the PCR counter preload value etc.
1521    update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1522			      vcc->tx_pcr_bits);
1523
1524#if 0
1525    if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1526      // SCR timer
1527      update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1528				vcc->tx_scr_bits);
1529      
1530      // Bucket size...
1531      update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1532				vcc->tx_bucket_bits);
1533      
1534      // ... and fullness
1535      update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1536				vcc->tx_bucket_bits);
1537    }
1538#endif
1539
1540    // Initialise the read and write buffer pointers
1541    rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1542    wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1543    
1544    // idle TX channels should have identical pointers
1545    if (rd_ptr != wr_ptr) {
1546      PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1547      // spin_unlock... return -E...
1548      // I wonder if gcc would get rid of one of the pointer aliases
1549    }
1550    PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1551	    rd_ptr, wr_ptr);
1552    
1553    switch (vcc->aal) {
1554      case aal0:
1555	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1556	rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1557	wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1558	break;
1559      case aal34:
1560	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1561	rd_ptr |= CHANNEL_TYPE_AAL3_4;
1562	wr_ptr |= CHANNEL_TYPE_AAL3_4;
1563	break;
1564      case aal5:
1565	rd_ptr |= CHANNEL_TYPE_AAL5;
1566	wr_ptr |= CHANNEL_TYPE_AAL5;
1567	// Initialise the CRC
1568	wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1569	break;
1570    }
1571    
1572    wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1573    wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1574    
1575    // Write the Cell Header
1576    // Payload Type, CLP and GFC would go here if non-zero
1577    wr_mem (dev, &tx_desc->cell_header, channel);
1578    
1579    spin_unlock_irqrestore (&dev->mem_lock, flags);
1580  }
1581  
1582  return tx_channel;
1583}
1584
1585/********** send a frame **********/
1586
1587static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1588  unsigned int spin_count;
1589  int free_buffers;
1590  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1591  hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1592  u16 channel = vcc->channel;
1593  
1594  u32 buffers_required;
1595  
1596  /* signed for error return */
1597  short tx_channel;
1598  
1599  PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1600	  channel, skb->data, skb->len);
1601  
1602  dump_skb (">>>", channel, skb);
1603  
1604  if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1605    PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1606    hrz_kfree_skb (skb);
1607    return -EIO;
1608  }
1609  
1610  // don't understand this
1611  ATM_SKB(skb)->vcc = atm_vcc;
1612  
1613  if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1614    PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1615    hrz_kfree_skb (skb);
1616    return -EIO;
1617  }
1618  
1619  if (!channel) {
1620    PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1621    hrz_kfree_skb (skb);
1622    return -EIO;
1623  }
1624  
1625#if 0
1626  {
1627    // where would be a better place for this? housekeeping?
1628    u16 status;
1629    pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1630    if (status & PCI_STATUS_REC_MASTER_ABORT) {
1631      PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1632      status &= ~PCI_STATUS_REC_MASTER_ABORT;
1633      pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1634      if (test_bit (tx_busy, &dev->flags)) {
1635	hrz_kfree_skb (dev->tx_skb);
1636	tx_release (dev);
1637      }
1638    }
1639  }
1640#endif
1641  
1642#ifdef DEBUG_HORIZON
1643  /* wey-hey! */
1644  if (channel == 1023) {
1645    unsigned int i;
1646    unsigned short d = 0;
1647    char * s = skb->data;
1648    if (*s++ == 'D') {
1649	for (i = 0; i < 4; ++i)
1650		d = (d << 4) | hex_to_bin(*s++);
1651      PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1652    }
1653  }
1654#endif
1655  
1656  // wait until TX is free and grab lock
1657  if (tx_hold (dev)) {
1658    hrz_kfree_skb (skb);
1659    return -ERESTARTSYS;
1660  }
1661 
1662  // Wait for enough space to be available in transmit buffer memory.
1663  
1664  // should be number of cells needed + 2 (according to hardware docs)
1665  // = ((framelen+8)+47) / 48 + 2
1666  // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1667  buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1668  
1669  // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1670  spin_count = 0;
1671  while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1672    PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1673	    free_buffers, buffers_required);
1674    // what is the appropriate delay? implement a timeout? (depending on line speed?)
1675    // mdelay (1);
1676    // what happens if we kill (current_pid, SIGKILL) ?
1677    schedule();
1678    if (++spin_count > 1000) {
1679      PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1680	      free_buffers, buffers_required);
1681      tx_release (dev);
1682      hrz_kfree_skb (skb);
1683      return -ERESTARTSYS;
1684    }
1685  }
1686  
1687  // Select a channel to transmit the frame on.
1688  if (channel == dev->last_vc) {
1689    PRINTD (DBG_TX, "last vc hack: hit");
1690    tx_channel = dev->tx_last;
1691  } else {
1692    PRINTD (DBG_TX, "last vc hack: miss");
1693    // Are we currently transmitting this VC on one of the channels?
1694    for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1695      if (dev->tx_channel_record[tx_channel] == channel) {
1696	PRINTD (DBG_TX, "vc already on channel: hit");
1697	break;
1698      }
1699    if (tx_channel == TX_CHANS) { 
1700      PRINTD (DBG_TX, "vc already on channel: miss");
1701      // Find and set up an idle channel.
1702      tx_channel = setup_idle_tx_channel (dev, vcc);
1703      if (tx_channel < 0) {
1704	PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1705	tx_release (dev);
1706	return tx_channel;
1707      }
1708    }
1709    
1710    PRINTD (DBG_TX, "got channel");
1711    SELECT_TX_CHANNEL(dev, tx_channel);
1712    
1713    dev->last_vc = channel;
1714    dev->tx_last = tx_channel;
1715  }
1716  
1717  PRINTD (DBG_TX, "using channel %u", tx_channel);
1718  
1719  YELLOW_LED_OFF(dev);
1720  
1721  // TX start transfer
1722  
1723  {
1724    unsigned int tx_len = skb->len;
1725    unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1726    // remember this so we can free it later
1727    dev->tx_skb = skb;
1728    
1729    if (tx_iovcnt) {
1730      // scatter gather transfer
1731      dev->tx_regions = tx_iovcnt;
1732      dev->tx_iovec = NULL;		/* @@@ needs rewritten */
1733      dev->tx_bytes = 0;
1734      PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1735	      skb->data, tx_len);
1736      tx_release (dev);
1737      hrz_kfree_skb (skb);
1738      return -EIO;
1739    } else {
1740      // simple transfer
1741      dev->tx_regions = 0;
1742      dev->tx_iovec = NULL;
1743      dev->tx_bytes = tx_len;
1744      dev->tx_addr = skb->data;
1745      PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1746	      skb->data, tx_len);
1747    }
1748    
1749    // and do the business
1750    tx_schedule (dev, 0);
1751    
1752  }
1753  
1754  return 0;
1755}
1756
1757/********** reset a card **********/
1758
1759static void hrz_reset (const hrz_dev * dev) {
1760  u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1761  
1762  // why not set RESET_HORIZON to one and wait for the card to
1763  // reassert that bit as zero? Like so:
1764  control_0_reg = control_0_reg & RESET_HORIZON;
1765  wr_regl (dev, CONTROL_0_REG, control_0_reg);
1766  while (control_0_reg & RESET_HORIZON)
1767    control_0_reg = rd_regl (dev, CONTROL_0_REG);
1768  
1769  // old reset code retained:
1770  wr_regl (dev, CONTROL_0_REG, control_0_reg |
1771	   RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1772  // just guessing here
1773  udelay (1000);
1774  
1775  wr_regl (dev, CONTROL_0_REG, control_0_reg);
1776}
1777
1778/********** read the burnt in address **********/
1779
1780static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1781{
1782	wr_regl (dev, CONTROL_0_REG, ctrl);
1783	udelay (5);
1784}
1785  
1786static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1787{
1788	// DI must be valid around rising SK edge
1789	WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1790	WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1791}
1792
1793static u16 __devinit read_bia (const hrz_dev * dev, u16 addr)
1794{
1795  u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1796  
1797  const unsigned int addr_bits = 6;
1798  const unsigned int data_bits = 16;
1799  
1800  unsigned int i;
1801  
1802  u16 res;
1803  
1804  ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1805  WRITE_IT_WAIT(dev, ctrl);
1806  
1807  // wake Serial EEPROM and send 110 (READ) command
1808  ctrl |=  (SEEPROM_CS | SEEPROM_DI);
1809  CLOCK_IT(dev, ctrl);
1810  
1811  ctrl |= SEEPROM_DI;
1812  CLOCK_IT(dev, ctrl);
1813  
1814  ctrl &= ~SEEPROM_DI;
1815  CLOCK_IT(dev, ctrl);
1816  
1817  for (i=0; i<addr_bits; i++) {
1818    if (addr & (1 << (addr_bits-1)))
1819      ctrl |= SEEPROM_DI;
1820    else
1821      ctrl &= ~SEEPROM_DI;
1822    
1823    CLOCK_IT(dev, ctrl);
1824    
1825    addr = addr << 1;
1826  }
1827  
1828  // we could check that we have DO = 0 here
1829  ctrl &= ~SEEPROM_DI;
1830  
1831  res = 0;
1832  for (i=0;i<data_bits;i++) {
1833    res = res >> 1;
1834    
1835    CLOCK_IT(dev, ctrl);
1836    
1837    if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1838      res |= (1 << (data_bits-1));
1839  }
1840  
1841  ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1842  WRITE_IT_WAIT(dev, ctrl);
1843  
1844  return res;
1845}
1846
1847/********** initialise a card **********/
1848
1849static int __devinit hrz_init (hrz_dev * dev) {
 
1850  int onefivefive;
1851  
1852  u16 chan;
1853  
1854  int buff_count;
1855  
1856  HDW * mem;
1857  
1858  cell_buf * tx_desc;
1859  cell_buf * rx_desc;
1860  
1861  u32 ctrl;
1862  
1863  ctrl = rd_regl (dev, CONTROL_0_REG);
1864  PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1865  onefivefive = ctrl & ATM_LAYER_STATUS;
1866  
1867  if (onefivefive)
1868    printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1869  else
1870    printk (DEV_LABEL ": Horizon (at 25 MBps)");
1871  
1872  printk (":");
1873  // Reset the card to get everything in a known state
1874  
1875  printk (" reset");
1876  hrz_reset (dev);
1877  
1878  // Clear all the buffer memory
1879  
1880  printk (" clearing memory");
1881  
1882  for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1883    wr_mem (dev, mem, 0);
1884  
1885  printk (" tx channels");
1886  
1887  // All transmit eight channels are set up as AAL5 ABR channels with
1888  // a 16us cell spacing. Why?
1889  
1890  // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1891  // buffer at 110h etc.
1892  
1893  for (chan = 0; chan < TX_CHANS; ++chan) {
1894    tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1895    cell_buf * buf = &memmap->inittxbufs[chan];
1896    
1897    // initialise the read and write buffer pointers
1898    wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1899    wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1900    
1901    // set the status of the initial buffers to empty
1902    wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1903  }
1904  
1905  // Use space bufn3 at the moment for tx buffers
1906  
1907  printk (" tx buffers");
1908  
1909  tx_desc = memmap->bufn3;
1910  
1911  wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1912  
1913  for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1914    wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1915    tx_desc++;
1916  }
1917  
1918  wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1919  
1920  // Initialise the transmit free buffer count
1921  wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1922  
1923  printk (" rx channels");
1924  
1925  // Initialise all of the receive channels to be AAL5 disabled with
1926  // an interrupt threshold of 0
1927  
1928  for (chan = 0; chan < RX_CHANS; ++chan) {
1929    rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1930    
1931    wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1932  }
1933  
1934  printk (" rx buffers");
1935  
1936  // Use space bufn4 at the moment for rx buffers
1937  
1938  rx_desc = memmap->bufn4;
1939  
1940  wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1941  
1942  for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1943    wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1944    
1945    rx_desc++;
1946  }
1947  
1948  wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1949  
1950  // Initialise the receive free buffer count
1951  wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1952  
1953  // Initialize Horizons registers
1954  
1955  // TX config
1956  wr_regw (dev, TX_CONFIG_OFF,
1957	   ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
1958  
1959  // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1960  wr_regw (dev, RX_CONFIG_OFF,
1961	   DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
1962  
1963  // RX line config
1964  wr_regw (dev, RX_LINE_CONFIG_OFF,
1965	   LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
1966  
1967  // Set the max AAL5 cell count to be just enough to contain the
1968  // largest AAL5 frame that the user wants to receive
1969  wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1970	   DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
1971  
1972  // Enable receive
1973  wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1974  
1975  printk (" control");
1976  
1977  // Drive the OE of the LEDs then turn the green LED on
1978  ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
1979  wr_regl (dev, CONTROL_0_REG, ctrl);
1980  
1981  // Test for a 155-capable card
1982  
1983  if (onefivefive) {
1984    // Select 155 mode... make this a choice (or: how do we detect
1985    // external line speed and switch?)
1986    ctrl |= ATM_LAYER_SELECT;
1987    wr_regl (dev, CONTROL_0_REG, ctrl);
1988    
1989    // test SUNI-lite vs SAMBA
1990    
1991    // Register 0x00 in the SUNI will have some of bits 3-7 set, and
1992    // they will always be zero for the SAMBA.  Ha!  Bloody hardware
1993    // engineers.  It'll never work.
1994    
1995    if (rd_framer (dev, 0) & 0x00f0) {
1996      // SUNI
1997      printk (" SUNI");
1998      
1999      // Reset, just in case
2000      wr_framer (dev, 0x00, 0x0080);
2001      wr_framer (dev, 0x00, 0x0000);
2002      
2003      // Configure transmit FIFO
2004      wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
2005      
2006      // Set line timed mode
2007      wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
2008    } else {
2009      // SAMBA
2010      printk (" SAMBA");
2011      
2012      // Reset, just in case
2013      wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
2014      wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
2015      
2016      // Turn off diagnostic loopback and enable line-timed mode
2017      wr_framer (dev, 0, 0x0002);
2018      
2019      // Turn on transmit outputs
2020      wr_framer (dev, 2, 0x0B80);
2021    }
2022  } else {
2023    // Select 25 mode
2024    ctrl &= ~ATM_LAYER_SELECT;
2025    
2026    // Madge B154 setup
2027    // none required?
2028  }
2029  
2030  printk (" LEDs");
2031  
2032  GREEN_LED_ON(dev);
2033  YELLOW_LED_ON(dev);
2034  
2035  printk (" ESI=");
2036  
2037  {
2038    u16 b = 0;
2039    int i;
2040    u8 * esi = dev->atm_dev->esi;
2041    
2042    // in the card I have, EEPROM
2043    // addresses 0, 1, 2 contain 0
2044    // addresess 5, 6 etc. contain ffff
2045    // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2046    // the read_bia routine gets the BIA in Ethernet bit order
2047    
2048    for (i=0; i < ESI_LEN; ++i) {
2049      if (i % 2 == 0)
2050	b = read_bia (dev, i/2 + 2);
2051      else
2052	b = b >> 8;
2053      esi[i] = b & 0xFF;
2054      printk ("%02x", esi[i]);
2055    }
2056  }
2057  
2058  // Enable RX_Q and ?X_COMPLETE interrupts only
2059  wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2060  printk (" IRQ on");
2061  
2062  printk (".\n");
2063  
2064  return onefivefive;
2065}
2066
2067/********** check max_sdu **********/
2068
2069static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2070  PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2071  
2072  switch (aal) {
2073    case aal0:
2074      if (!(tp->max_sdu)) {
2075	PRINTD (DBG_QOS, "defaulting max_sdu");
2076	tp->max_sdu = ATM_AAL0_SDU;
2077      } else if (tp->max_sdu != ATM_AAL0_SDU) {
2078	PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2079	return -EINVAL;
2080      }
2081      break;
2082    case aal34:
2083      if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2084	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2085	tp->max_sdu = ATM_MAX_AAL34_PDU;
2086      }
2087      break;
2088    case aal5:
2089      if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2090	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2091	tp->max_sdu = max_frame_size;
2092      }
2093      break;
2094  }
2095  return 0;
2096}
2097
2098/********** check pcr **********/
2099
2100// something like this should be part of ATM Linux
2101static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2102  // we are assuming non-UBR, and non-special values of pcr
2103  if (tp->min_pcr == ATM_MAX_PCR)
2104    PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2105  else if (tp->min_pcr < 0)
2106    PRINTD (DBG_QOS, "luser gave negative min_pcr");
2107  else if (tp->min_pcr && tp->min_pcr > pcr)
2108    PRINTD (DBG_QOS, "pcr less than min_pcr");
2109  else
2110    // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2111    // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2112    // [this would get rid of next two conditionals]
2113    if ((0) && tp->max_pcr == ATM_MAX_PCR)
2114      PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2115    else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2116      PRINTD (DBG_QOS, "luser gave negative max_pcr");
2117    else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2118      PRINTD (DBG_QOS, "pcr greater than max_pcr");
2119    else {
2120      // each limit unspecified or not violated
2121      PRINTD (DBG_QOS, "xBR(pcr) OK");
2122      return 0;
2123    }
2124  PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2125	  pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2126  return -EINVAL;
2127}
2128
2129/********** open VC **********/
2130
2131static int hrz_open (struct atm_vcc *atm_vcc)
2132{
2133  int error;
2134  u16 channel;
2135  
2136  struct atm_qos * qos;
2137  struct atm_trafprm * txtp;
2138  struct atm_trafprm * rxtp;
2139  
2140  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2141  hrz_vcc vcc;
2142  hrz_vcc * vccp; // allocated late
2143  short vpi = atm_vcc->vpi;
2144  int vci = atm_vcc->vci;
2145  PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2146  
2147#ifdef ATM_VPI_UNSPEC
2148  // UNSPEC is deprecated, remove this code eventually
2149  if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2150    PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2151    return -EINVAL;
2152  }
2153#endif
2154  
2155  error = vpivci_to_channel (&channel, vpi, vci);
2156  if (error) {
2157    PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2158    return error;
2159  }
2160  
2161  vcc.channel = channel;
2162  // max speed for the moment
2163  vcc.tx_rate = 0x0;
2164  
2165  qos = &atm_vcc->qos;
2166  
2167  // check AAL and remember it
2168  switch (qos->aal) {
2169    case ATM_AAL0:
2170      // we would if it were 48 bytes and not 52!
2171      PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2172      vcc.aal = aal0;
2173      break;
2174    case ATM_AAL34:
2175      // we would if I knew how do the SAR!
2176      PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2177      vcc.aal = aal34;
2178      break;
2179    case ATM_AAL5:
2180      PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2181      vcc.aal = aal5;
2182      break;
2183    default:
2184      PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2185      return -EINVAL;
2186      break;
2187  }
2188  
2189  // TX traffic parameters
2190  
2191  // there are two, interrelated problems here: 1. the reservation of
2192  // PCR is not a binary choice, we are given bounds and/or a
2193  // desirable value; 2. the device is only capable of certain values,
2194  // most of which are not integers. It is almost certainly acceptable
2195  // to be off by a maximum of 1 to 10 cps.
2196  
2197  // Pragmatic choice: always store an integral PCR as that which has
2198  // been allocated, even if we allocate a little (or a lot) less,
2199  // after rounding. The actual allocation depends on what we can
2200  // manage with our rate selection algorithm. The rate selection
2201  // algorithm is given an integral PCR and a tolerance and told
2202  // whether it should round the value up or down if the tolerance is
2203  // exceeded; it returns: a) the actual rate selected (rounded up to
2204  // the nearest integer), b) a bit pattern to feed to the timer
2205  // register, and c) a failure value if no applicable rate exists.
2206  
2207  // Part of the job is done by atm_pcr_goal which gives us a PCR
2208  // specification which says: EITHER grab the maximum available PCR
2209  // (and perhaps a lower bound which we musn't pass), OR grab this
2210  // amount, rounding down if you have to (and perhaps a lower bound
2211  // which we musn't pass) OR grab this amount, rounding up if you
2212  // have to (and perhaps an upper bound which we musn't pass). If any
2213  // bounds ARE passed we fail. Note that rounding is only rounding to
2214  // match device limitations, we do not round down to satisfy
2215  // bandwidth availability even if this would not violate any given
2216  // lower bound.
2217  
2218  // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2219  // (say) so this is not even a binary fixpoint cell rate (but this
2220  // device can do it). To avoid this sort of hassle we use a
2221  // tolerance parameter (currently fixed at 10 cps).
2222  
2223  PRINTD (DBG_QOS, "TX:");
2224  
2225  txtp = &qos->txtp;
2226  
2227  // set up defaults for no traffic
2228  vcc.tx_rate = 0;
2229  // who knows what would actually happen if you try and send on this?
2230  vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2231  vcc.tx_pcr_bits = CLOCK_DISABLE;
2232#if 0
2233  vcc.tx_scr_bits = CLOCK_DISABLE;
2234  vcc.tx_bucket_bits = 0;
2235#endif
2236  
2237  if (txtp->traffic_class != ATM_NONE) {
2238    error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2239    if (error) {
2240      PRINTD (DBG_QOS, "TX max_sdu check failed");
2241      return error;
2242    }
2243    
2244    switch (txtp->traffic_class) {
2245      case ATM_UBR: {
2246	// we take "the PCR" as a rate-cap
2247	// not reserved
2248	vcc.tx_rate = 0;
2249	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2250	vcc.tx_xbr_bits = ABR_RATE_TYPE;
2251	break;
2252      }
2253#if 0
2254      case ATM_ABR: {
2255	// reserve min, allow up to max
2256	vcc.tx_rate = 0; // ?
2257	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2258	vcc.tx_xbr_bits = ABR_RATE_TYPE;
2259	break;
2260      }
2261#endif
2262      case ATM_CBR: {
2263	int pcr = atm_pcr_goal (txtp);
2264	rounding r;
2265	if (!pcr) {
2266	  // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2267	  // should really have: once someone gets unlimited bandwidth
2268	  // that no more non-UBR channels can be opened until the
2269	  // unlimited one closes?? For the moment, round_down means
2270	  // greedy people actually get something and not nothing
2271	  r = round_down;
2272	  // slight race (no locking) here so we may get -EAGAIN
2273	  // later; the greedy bastards would deserve it :)
2274	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2275	  pcr = dev->tx_avail;
2276	} else if (pcr < 0) {
2277	  r = round_down;
2278	  pcr = -pcr;
2279	} else {
2280	  r = round_up;
2281	}
2282	error = make_rate_with_tolerance (dev, pcr, r, 10,
2283					  &vcc.tx_pcr_bits, &vcc.tx_rate);
2284	if (error) {
2285	  PRINTD (DBG_QOS, "could not make rate from TX PCR");
2286	  return error;
2287	}
2288	// not really clear what further checking is needed
2289	error = atm_pcr_check (txtp, vcc.tx_rate);
2290	if (error) {
2291	  PRINTD (DBG_QOS, "TX PCR failed consistency check");
2292	  return error;
2293	}
2294	vcc.tx_xbr_bits = CBR_RATE_TYPE;
2295	break;
2296      }
2297#if 0
2298      case ATM_VBR: {
2299	int pcr = atm_pcr_goal (txtp);
2300	// int scr = atm_scr_goal (txtp);
2301	int scr = pcr/2; // just for fun
2302	unsigned int mbs = 60; // just for fun
2303	rounding pr;
2304	rounding sr;
2305	unsigned int bucket;
2306	if (!pcr) {
2307	  pr = round_nearest;
2308	  pcr = 1<<30;
2309	} else if (pcr < 0) {
2310	  pr = round_down;
2311	  pcr = -pcr;
2312	} else {
2313	  pr = round_up;
2314	}
2315	error = make_rate_with_tolerance (dev, pcr, pr, 10,
2316					  &vcc.tx_pcr_bits, 0);
2317	if (!scr) {
2318	  // see comments for PCR with CBR above
2319	  sr = round_down;
2320	  // slight race (no locking) here so we may get -EAGAIN
2321	  // later; the greedy bastards would deserve it :)
2322	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2323	  scr = dev->tx_avail;
2324	} else if (scr < 0) {
2325	  sr = round_down;
2326	  scr = -scr;
2327	} else {
2328	  sr = round_up;
2329	}
2330	error = make_rate_with_tolerance (dev, scr, sr, 10,
2331					  &vcc.tx_scr_bits, &vcc.tx_rate);
2332	if (error) {
2333	  PRINTD (DBG_QOS, "could not make rate from TX SCR");
2334	  return error;
2335	}
2336	// not really clear what further checking is needed
2337	// error = atm_scr_check (txtp, vcc.tx_rate);
2338	if (error) {
2339	  PRINTD (DBG_QOS, "TX SCR failed consistency check");
2340	  return error;
2341	}
2342	// bucket calculations (from a piece of paper...) cell bucket
2343	// capacity must be largest integer smaller than m(p-s)/p + 1
2344	// where m = max burst size, p = pcr, s = scr
2345	bucket = mbs*(pcr-scr)/pcr;
2346	if (bucket*pcr != mbs*(pcr-scr))
2347	  bucket += 1;
2348	if (bucket > BUCKET_MAX_SIZE) {
2349	  PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2350		  bucket, BUCKET_MAX_SIZE);
2351	  bucket = BUCKET_MAX_SIZE;
2352	}
2353	vcc.tx_xbr_bits = VBR_RATE_TYPE;
2354	vcc.tx_bucket_bits = bucket;
2355	break;
2356      }
2357#endif
2358      default: {
2359	PRINTD (DBG_QOS, "unsupported TX traffic class");
2360	return -EINVAL;
2361	break;
2362      }
2363    }
2364  }
2365  
2366  // RX traffic parameters
2367  
2368  PRINTD (DBG_QOS, "RX:");
2369  
2370  rxtp = &qos->rxtp;
2371  
2372  // set up defaults for no traffic
2373  vcc.rx_rate = 0;
2374  
2375  if (rxtp->traffic_class != ATM_NONE) {
2376    error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2377    if (error) {
2378      PRINTD (DBG_QOS, "RX max_sdu check failed");
2379      return error;
2380    }
2381    switch (rxtp->traffic_class) {
2382      case ATM_UBR: {
2383	// not reserved
2384	break;
2385      }
2386#if 0
2387      case ATM_ABR: {
2388	// reserve min
2389	vcc.rx_rate = 0; // ?
2390	break;
2391      }
2392#endif
2393      case ATM_CBR: {
2394	int pcr = atm_pcr_goal (rxtp);
2395	if (!pcr) {
2396	  // slight race (no locking) here so we may get -EAGAIN
2397	  // later; the greedy bastards would deserve it :)
2398	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2399	  pcr = dev->rx_avail;
2400	} else if (pcr < 0) {
2401	  pcr = -pcr;
2402	}
2403	vcc.rx_rate = pcr;
2404	// not really clear what further checking is needed
2405	error = atm_pcr_check (rxtp, vcc.rx_rate);
2406	if (error) {
2407	  PRINTD (DBG_QOS, "RX PCR failed consistency check");
2408	  return error;
2409	}
2410	break;
2411      }
2412#if 0
2413      case ATM_VBR: {
2414	// int scr = atm_scr_goal (rxtp);
2415	int scr = 1<<16; // just for fun
2416	if (!scr) {
2417	  // slight race (no locking) here so we may get -EAGAIN
2418	  // later; the greedy bastards would deserve it :)
2419	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2420	  scr = dev->rx_avail;
2421	} else if (scr < 0) {
2422	  scr = -scr;
2423	}
2424	vcc.rx_rate = scr;
2425	// not really clear what further checking is needed
2426	// error = atm_scr_check (rxtp, vcc.rx_rate);
2427	if (error) {
2428	  PRINTD (DBG_QOS, "RX SCR failed consistency check");
2429	  return error;
2430	}
2431	break;
2432      }
2433#endif
2434      default: {
2435	PRINTD (DBG_QOS, "unsupported RX traffic class");
2436	return -EINVAL;
2437	break;
2438      }
2439    }
2440  }
2441  
2442  
2443  // late abort useful for diagnostics
2444  if (vcc.aal != aal5) {
2445    PRINTD (DBG_QOS, "AAL not supported");
2446    return -EINVAL;
2447  }
2448  
2449  // get space for our vcc stuff and copy parameters into it
2450  vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2451  if (!vccp) {
2452    PRINTK (KERN_ERR, "out of memory!");
2453    return -ENOMEM;
2454  }
2455  *vccp = vcc;
2456  
2457  // clear error and grab cell rate resource lock
2458  error = 0;
2459  spin_lock (&dev->rate_lock);
2460  
2461  if (vcc.tx_rate > dev->tx_avail) {
2462    PRINTD (DBG_QOS, "not enough TX PCR left");
2463    error = -EAGAIN;
2464  }
2465  
2466  if (vcc.rx_rate > dev->rx_avail) {
2467    PRINTD (DBG_QOS, "not enough RX PCR left");
2468    error = -EAGAIN;
2469  }
2470  
2471  if (!error) {
2472    // really consume cell rates
2473    dev->tx_avail -= vcc.tx_rate;
2474    dev->rx_avail -= vcc.rx_rate;
2475    PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2476	    vcc.tx_rate, vcc.rx_rate);
2477  }
2478  
2479  // release lock and exit on error
2480  spin_unlock (&dev->rate_lock);
2481  if (error) {
2482    PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2483    kfree (vccp);
2484    return error;
2485  }
2486  
2487  // this is "immediately before allocating the connection identifier
2488  // in hardware" - so long as the next call does not fail :)
2489  set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2490  
2491  // any errors here are very serious and should never occur
2492  
2493  if (rxtp->traffic_class != ATM_NONE) {
2494    if (dev->rxer[channel]) {
2495      PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2496      error = -EBUSY;
2497    }
2498    if (!error)
2499      error = hrz_open_rx (dev, channel);
2500    if (error) {
2501      kfree (vccp);
2502      return error;
2503    }
2504    // this link allows RX frames through
2505    dev->rxer[channel] = atm_vcc;
2506  }
2507  
2508  // success, set elements of atm_vcc
2509  atm_vcc->dev_data = (void *) vccp;
2510  
2511  // indicate readiness
2512  set_bit(ATM_VF_READY,&atm_vcc->flags);
2513  
2514  return 0;
2515}
2516
2517/********** close VC **********/
2518
2519static void hrz_close (struct atm_vcc * atm_vcc) {
2520  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2521  hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2522  u16 channel = vcc->channel;
2523  PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2524  
2525  // indicate unreadiness
2526  clear_bit(ATM_VF_READY,&atm_vcc->flags);
2527
2528  if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2529    unsigned int i;
2530    
2531    // let any TX on this channel that has started complete
2532    // no restart, just keep trying
2533    while (tx_hold (dev))
2534      ;
2535    // remove record of any tx_channel having been setup for this channel
2536    for (i = 0; i < TX_CHANS; ++i)
2537      if (dev->tx_channel_record[i] == channel) {
2538	dev->tx_channel_record[i] = -1;
2539	break;
2540      }
2541    if (dev->last_vc == channel)
2542      dev->tx_last = -1;
2543    tx_release (dev);
2544  }
2545
2546  if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2547    // disable RXing - it tries quite hard
2548    hrz_close_rx (dev, channel);
2549    // forget the vcc - no more skbs will be pushed
2550    if (atm_vcc != dev->rxer[channel])
2551      PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2552	      "arghhh! we're going to die!",
2553	      atm_vcc, dev->rxer[channel]);
2554    dev->rxer[channel] = NULL;
2555  }
2556  
2557  // atomically release our rate reservation
2558  spin_lock (&dev->rate_lock);
2559  PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2560	  vcc->tx_rate, vcc->rx_rate);
2561  dev->tx_avail += vcc->tx_rate;
2562  dev->rx_avail += vcc->rx_rate;
2563  spin_unlock (&dev->rate_lock);
2564  
2565  // free our structure
2566  kfree (vcc);
2567  // say the VPI/VCI is free again
2568  clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2569}
2570
2571#if 0
2572static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2573			   void *optval, int optlen) {
2574  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2575  PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2576  switch (level) {
2577    case SOL_SOCKET:
2578      switch (optname) {
2579//	case SO_BCTXOPT:
2580//	  break;
2581//	case SO_BCRXOPT:
2582//	  break;
2583	default:
2584	  return -ENOPROTOOPT;
2585	  break;
2586      };
2587      break;
2588  }
2589  return -EINVAL;
2590}
2591
2592static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2593			   void *optval, unsigned int optlen) {
2594  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2595  PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2596  switch (level) {
2597    case SOL_SOCKET:
2598      switch (optname) {
2599//	case SO_BCTXOPT:
2600//	  break;
2601//	case SO_BCRXOPT:
2602//	  break;
2603	default:
2604	  return -ENOPROTOOPT;
2605	  break;
2606      };
2607      break;
2608  }
2609  return -EINVAL;
2610}
2611#endif
2612
2613#if 0
2614static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2615  hrz_dev * dev = HRZ_DEV(atm_dev);
2616  PRINTD (DBG_FLOW, "hrz_ioctl");
2617  return -1;
2618}
2619
2620unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2621  hrz_dev * dev = HRZ_DEV(atm_dev);
2622  PRINTD (DBG_FLOW, "hrz_phy_get");
2623  return 0;
2624}
2625
2626static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2627			 unsigned long addr) {
2628  hrz_dev * dev = HRZ_DEV(atm_dev);
2629  PRINTD (DBG_FLOW, "hrz_phy_put");
2630}
2631
2632static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2633  hrz_dev * dev = HRZ_DEV(vcc->dev);
2634  PRINTD (DBG_FLOW, "hrz_change_qos");
2635  return -1;
2636}
2637#endif
2638
2639/********** proc file contents **********/
2640
2641static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2642  hrz_dev * dev = HRZ_DEV(atm_dev);
2643  int left = *pos;
2644  PRINTD (DBG_FLOW, "hrz_proc_read");
2645  
2646  /* more diagnostics here? */
2647  
2648#if 0
2649  if (!left--) {
2650    unsigned int count = sprintf (page, "vbr buckets:");
2651    unsigned int i;
2652    for (i = 0; i < TX_CHANS; ++i)
2653      count += sprintf (page, " %u/%u",
2654			query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2655			query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2656    count += sprintf (page+count, ".\n");
2657    return count;
2658  }
2659#endif
2660  
2661  if (!left--)
2662    return sprintf (page,
2663		    "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2664		    dev->tx_cell_count, dev->rx_cell_count,
2665		    dev->hec_error_count, dev->unassigned_cell_count);
2666  
2667  if (!left--)
2668    return sprintf (page,
2669		    "free cell buffers: TX %hu, RX %hu+%hu.\n",
2670		    rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2671		    rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2672		    dev->noof_spare_buffers);
2673  
2674  if (!left--)
2675    return sprintf (page,
2676		    "cps remaining: TX %u, RX %u\n",
2677		    dev->tx_avail, dev->rx_avail);
2678  
2679  return 0;
2680}
2681
2682static const struct atmdev_ops hrz_ops = {
2683  .open	= hrz_open,
2684  .close	= hrz_close,
2685  .send	= hrz_send,
2686  .proc_read	= hrz_proc_read,
2687  .owner	= THIS_MODULE,
2688};
2689
2690static int __devinit hrz_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
 
2691{
2692	hrz_dev * dev;
2693	int err = 0;
2694
2695	// adapter slot free, read resources from PCI configuration space
2696	u32 iobase = pci_resource_start (pci_dev, 0);
2697	u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2698	unsigned int irq;
2699	unsigned char lat;
2700
2701	PRINTD (DBG_FLOW, "hrz_probe");
2702
2703	if (pci_enable_device(pci_dev))
2704		return -EINVAL;
2705
2706	/* XXX DEV_LABEL is a guess */
2707	if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2708		err = -EINVAL;
2709		goto out_disable;
2710	}
2711
2712	dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
2713	if (!dev) {
2714		// perhaps we should be nice: deregister all adapters and abort?
2715		PRINTD(DBG_ERR, "out of memory");
2716		err = -ENOMEM;
2717		goto out_release;
2718	}
2719
2720	pci_set_drvdata(pci_dev, dev);
2721
2722	// grab IRQ and install handler - move this someplace more sensible
2723	irq = pci_dev->irq;
2724	if (request_irq(irq,
2725			interrupt_handler,
2726			IRQF_SHARED, /* irqflags guess */
2727			DEV_LABEL, /* name guess */
2728			dev)) {
2729		PRINTD(DBG_WARN, "request IRQ failed!");
2730		err = -EINVAL;
2731		goto out_free;
2732	}
2733
2734	PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2735	       iobase, irq, membase);
2736
2737	dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
2738					NULL);
2739	if (!(dev->atm_dev)) {
2740		PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2741		err = -EINVAL;
2742		goto out_free_irq;
2743	}
2744
2745	PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2746	       dev->atm_dev->number, dev, dev->atm_dev);
2747	dev->atm_dev->dev_data = (void *) dev;
2748	dev->pci_dev = pci_dev; 
2749
2750	// enable bus master accesses
2751	pci_set_master(pci_dev);
2752
2753	// frobnicate latency (upwards, usually)
2754	pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2755	if (pci_lat) {
2756		PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2757		       "changing", lat, pci_lat);
2758		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2759	} else if (lat < MIN_PCI_LATENCY) {
2760		PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2761		       "increasing", lat, MIN_PCI_LATENCY);
2762		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2763	}
2764
2765	dev->iobase = iobase;
2766	dev->irq = irq; 
2767	dev->membase = membase; 
2768
2769	dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2770	dev->rx_q_wrap  = &memmap->rx_q_entries[RX_CHANS-1];
2771
2772	// these next three are performance hacks
2773	dev->last_vc = -1;
2774	dev->tx_last = -1;
2775	dev->tx_idle = 0;
2776
2777	dev->tx_regions = 0;
2778	dev->tx_bytes = 0;
2779	dev->tx_skb = NULL;
2780	dev->tx_iovec = NULL;
2781
2782	dev->tx_cell_count = 0;
2783	dev->rx_cell_count = 0;
2784	dev->hec_error_count = 0;
2785	dev->unassigned_cell_count = 0;
2786
2787	dev->noof_spare_buffers = 0;
2788
2789	{
2790		unsigned int i;
2791		for (i = 0; i < TX_CHANS; ++i)
2792			dev->tx_channel_record[i] = -1;
2793	}
2794
2795	dev->flags = 0;
2796
2797	// Allocate cell rates and remember ASIC version
2798	// Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2799	// Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2800	// Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2801
2802	if (hrz_init(dev)) {
2803		// to be really pedantic, this should be ATM_OC3c_PCR
2804		dev->tx_avail = ATM_OC3_PCR;
2805		dev->rx_avail = ATM_OC3_PCR;
2806		set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2807	} else {
2808		dev->tx_avail = ((25600000/8)*26)/(27*53);
2809		dev->rx_avail = ((25600000/8)*26)/(27*53);
2810		PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2811	}
2812
2813	// rate changes spinlock
2814	spin_lock_init(&dev->rate_lock);
2815
2816	// on-board memory access spinlock; we want atomic reads and
2817	// writes to adapter memory (handles IRQ and SMP)
2818	spin_lock_init(&dev->mem_lock);
2819
2820	init_waitqueue_head(&dev->tx_queue);
2821
2822	// vpi in 0..4, vci in 6..10
2823	dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2824	dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2825
2826	init_timer(&dev->housekeeping);
2827	dev->housekeeping.function = do_housekeeping;
2828	dev->housekeeping.data = (unsigned long) dev;
2829	mod_timer(&dev->housekeeping, jiffies);
2830
2831out:
2832	return err;
2833
2834out_free_irq:
2835	free_irq(dev->irq, dev);
2836out_free:
2837	kfree(dev);
2838out_release:
2839	release_region(iobase, HRZ_IO_EXTENT);
2840out_disable:
2841	pci_disable_device(pci_dev);
2842	goto out;
2843}
2844
2845static void __devexit hrz_remove_one(struct pci_dev *pci_dev)
2846{
2847	hrz_dev *dev;
2848
2849	dev = pci_get_drvdata(pci_dev);
2850
2851	PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2852	del_timer_sync(&dev->housekeeping);
2853	hrz_reset(dev);
2854	atm_dev_deregister(dev->atm_dev);
2855	free_irq(dev->irq, dev);
2856	release_region(dev->iobase, HRZ_IO_EXTENT);
2857	kfree(dev);
2858
2859	pci_disable_device(pci_dev);
2860}
2861
2862static void __init hrz_check_args (void) {
2863#ifdef DEBUG_HORIZON
2864  PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2865#else
2866  if (debug)
2867    PRINTK (KERN_NOTICE, "no debug support in this image");
2868#endif
2869  
2870  if (vpi_bits > HRZ_MAX_VPI)
2871    PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2872	    vpi_bits = HRZ_MAX_VPI);
2873  
2874  if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2875    PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2876	    max_tx_size = TX_AAL5_LIMIT);
2877  
2878  if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2879    PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2880	    max_rx_size = RX_AAL5_LIMIT);
2881  
2882  return;
2883}
2884
2885MODULE_AUTHOR(maintainer_string);
2886MODULE_DESCRIPTION(description_string);
2887MODULE_LICENSE("GPL");
2888module_param(debug, ushort, 0644);
2889module_param(vpi_bits, ushort, 0);
2890module_param(max_tx_size, int, 0);
2891module_param(max_rx_size, int, 0);
2892module_param(pci_lat, byte, 0);
2893MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2894MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2895MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2896MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2897MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2898
2899static struct pci_device_id hrz_pci_tbl[] = {
2900	{ PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
2901	  0, 0, 0 },
2902	{ 0, }
2903};
2904
2905MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2906
2907static struct pci_driver hrz_driver = {
2908	.name =		"horizon",
2909	.probe =	hrz_probe,
2910	.remove =	__devexit_p(hrz_remove_one),
2911	.id_table =	hrz_pci_tbl,
2912};
2913
2914/********** module entry **********/
2915
2916static int __init hrz_module_init (void) {
2917  // sanity check - cast is needed since printk does not support %Zu
2918  if (sizeof(struct MEMMAP) != 128*1024/4) {
2919    PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
2920	    (unsigned long) sizeof(struct MEMMAP));
2921    return -ENOMEM;
2922  }
2923  
2924  show_version();
2925  
2926  // check arguments
2927  hrz_check_args();
2928  
2929  // get the juice
2930  return pci_register_driver(&hrz_driver);
2931}
2932
2933/********** module exit **********/
2934
2935static void __exit hrz_module_exit (void) {
2936  PRINTD (DBG_FLOW, "cleanup_module");
2937
2938  pci_unregister_driver(&hrz_driver);
2939}
2940
2941module_init(hrz_module_init);
2942module_exit(hrz_module_exit);
v4.6
   1/*
   2  Madge Horizon ATM Adapter driver.
   3  Copyright (C) 1995-1999  Madge Networks Ltd.
   4  
   5  This program is free software; you can redistribute it and/or modify
   6  it under the terms of the GNU General Public License as published by
   7  the Free Software Foundation; either version 2 of the License, or
   8  (at your option) any later version.
   9  
  10  This program is distributed in the hope that it will be useful,
  11  but WITHOUT ANY WARRANTY; without even the implied warranty of
  12  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13  GNU General Public License for more details.
  14  
  15  You should have received a copy of the GNU General Public License
  16  along with this program; if not, write to the Free Software
  17  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  18  
  19  The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
  20  system and in the file COPYING in the Linux kernel source.
  21*/
  22
  23/*
  24  IMPORTANT NOTE: Madge Networks no longer makes the adapters
  25  supported by this driver and makes no commitment to maintain it.
  26*/
  27
  28#include <linux/module.h>
  29#include <linux/kernel.h>
  30#include <linux/mm.h>
  31#include <linux/pci.h>
  32#include <linux/errno.h>
  33#include <linux/atm.h>
  34#include <linux/atmdev.h>
  35#include <linux/sonet.h>
  36#include <linux/skbuff.h>
  37#include <linux/time.h>
  38#include <linux/delay.h>
  39#include <linux/uio.h>
  40#include <linux/init.h>
  41#include <linux/interrupt.h>
  42#include <linux/ioport.h>
  43#include <linux/wait.h>
  44#include <linux/slab.h>
  45
 
  46#include <asm/io.h>
  47#include <linux/atomic.h>
  48#include <asm/uaccess.h>
  49#include <asm/string.h>
  50#include <asm/byteorder.h>
  51
  52#include "horizon.h"
  53
  54#define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
  55#define description_string "Madge ATM Horizon [Ultra] driver"
  56#define version_string "1.2.1"
  57
  58static inline void __init show_version (void) {
  59  printk ("%s version %s\n", description_string, version_string);
  60}
  61
  62/*
  63  
  64  CREDITS
  65  
  66  Driver and documentation by:
  67  
  68  Chris Aston        Madge Networks
  69  Giuliano Procida   Madge Networks
  70  Simon Benham       Madge Networks
  71  Simon Johnson      Madge Networks
  72  Various Others     Madge Networks
  73  
  74  Some inspiration taken from other drivers by:
  75  
  76  Alexandru Cucos    UTBv
  77  Kari Mettinen      University of Helsinki
  78  Werner Almesberger EPFL LRC
  79  
  80  Theory of Operation
  81  
  82  I Hardware, detection, initialisation and shutdown.
  83  
  84  1. Supported Hardware
  85  
  86  This driver should handle all variants of the PCI Madge ATM adapters
  87  with the Horizon chipset. These are all PCI cards supporting PIO, BM
  88  DMA and a form of MMIO (registers only, not internal RAM).
  89  
  90  The driver is only known to work with SONET and UTP Horizon Ultra
  91  cards at 155Mb/s. However, code is in place to deal with both the
  92  original Horizon and 25Mb/s operation.
  93  
  94  There are two revisions of the Horizon ASIC: the original and the
  95  Ultra. Details of hardware bugs are in section III.
  96  
  97  The ASIC version can be distinguished by chip markings but is NOT
  98  indicated by the PCI revision (all adapters seem to have PCI rev 1).
  99  
 100  I believe that:
 101  
 102  Horizon       => Collage  25 PCI Adapter (UTP and STP)
 103  Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
 104  Ambassador x  => Collage 155 PCI Server (completely different)
 105  
 106  Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
 107  have a Madge B154 plus glue logic serializer. I have also found a
 108  really ancient version of this with slightly different glue. It
 109  comes with the revision 0 (140-025-01) ASIC.
 110  
 111  Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
 112  output (UTP) or an HP HFBR 5205 output (SONET). It has either
 113  Madge's SAMBA framer or a SUNI-lite device (early versions). It
 114  comes with the revision 1 (140-027-01) ASIC.
 115  
 116  2. Detection
 117  
 118  All Horizon-based cards present with the same PCI Vendor and Device
 119  IDs. The standard Linux 2.2 PCI API is used to locate any cards and
 120  to enable bus-mastering (with appropriate latency).
 121  
 122  ATM_LAYER_STATUS in the control register distinguishes between the
 123  two possible physical layers (25 and 155). It is not clear whether
 124  the 155 cards can also operate at 25Mbps. We rely on the fact that a
 125  card operates at 155 if and only if it has the newer Horizon Ultra
 126  ASIC.
 127  
 128  For 155 cards the two possible framers are probed for and then set
 129  up for loop-timing.
 130  
 131  3. Initialisation
 132  
 133  The card is reset and then put into a known state. The physical
 134  layer is configured for normal operation at the appropriate speed;
 135  in the case of the 155 cards, the framer is initialised with
 136  line-based timing; the internal RAM is zeroed and the allocation of
 137  buffers for RX and TX is made; the Burnt In Address is read and
 138  copied to the ATM ESI; various policy settings for RX (VPI bits,
 139  unknown VCs, oam cells) are made. Ideally all policy items should be
 140  configurable at module load (if not actually on-demand), however,
 141  only the vpi vs vci bit allocation can be specified at insmod.
 142  
 143  4. Shutdown
 144  
 145  This is in response to module_cleaup. No VCs are in use and the card
 146  should be idle; it is reset.
 147  
 148  II Driver software (as it should be)
 149  
 150  0. Traffic Parameters
 151  
 152  The traffic classes (not an enumeration) are currently: ATM_NONE (no
 153  traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
 154  (compatible with everything). Together with (perhaps only some of)
 155  the following items they make up the traffic specification.
 156  
 157  struct atm_trafprm {
 158    unsigned char traffic_class; traffic class (ATM_UBR, ...)
 159    int           max_pcr;       maximum PCR in cells per second
 160    int           pcr;           desired PCR in cells per second
 161    int           min_pcr;       minimum PCR in cells per second
 162    int           max_cdv;       maximum CDV in microseconds
 163    int           max_sdu;       maximum SDU in bytes
 164  };
 165  
 166  Note that these denote bandwidth available not bandwidth used; the
 167  possibilities according to ATMF are:
 168  
 169  Real Time (cdv and max CDT given)
 170  
 171  CBR(pcr)             pcr bandwidth always available
 172  rtVBR(pcr,scr,mbs)   scr bandwidth always available, up to pcr at mbs too
 173  
 174  Non Real Time
 175  
 176  nrtVBR(pcr,scr,mbs)  scr bandwidth always available, up to pcr at mbs too
 177  UBR()
 178  ABR(mcr,pcr)         mcr bandwidth always available, up to pcr (depending) too
 179  
 180  mbs is max burst size (bucket)
 181  pcr and scr have associated cdvt values
 182  mcr is like scr but has no cdtv
 183  cdtv may differ at each hop
 184  
 185  Some of the above items are qos items (as opposed to traffic
 186  parameters). We have nothing to do with qos. All except ABR can have
 187  their traffic parameters converted to GCRA parameters. The GCRA may
 188  be implemented as a (real-number) leaky bucket. The GCRA can be used
 189  in complicated ways by switches and in simpler ways by end-stations.
 190  It can be used both to filter incoming cells and shape out-going
 191  cells.
 192  
 193  ATM Linux actually supports:
 194  
 195  ATM_NONE() (no traffic in this direction)
 196  ATM_UBR(max_frame_size)
 197  ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
 198  
 199  0 or ATM_MAX_PCR are used to indicate maximum available PCR
 200  
 201  A traffic specification consists of the AAL type and separate
 202  traffic specifications for either direction. In ATM Linux it is:
 203  
 204  struct atm_qos {
 205  struct atm_trafprm txtp;
 206  struct atm_trafprm rxtp;
 207  unsigned char aal;
 208  };
 209  
 210  AAL types are:
 211  
 212  ATM_NO_AAL    AAL not specified
 213  ATM_AAL0      "raw" ATM cells
 214  ATM_AAL1      AAL1 (CBR)
 215  ATM_AAL2      AAL2 (VBR)
 216  ATM_AAL34     AAL3/4 (data)
 217  ATM_AAL5      AAL5 (data)
 218  ATM_SAAL      signaling AAL
 219  
 220  The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
 221  it does not implement AAL 3/4 SAR and it has a different notion of
 222  "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
 223  supported by this driver.
 224  
 225  The Horizon has limited support for ABR (including UBR), VBR and
 226  CBR. Each TX channel has a bucket (containing up to 31 cell units)
 227  and two timers (PCR and SCR) associated with it that can be used to
 228  govern cell emissions and host notification (in the case of ABR this
 229  is presumably so that RM cells may be emitted at appropriate times).
 230  The timers may either be disabled or may be set to any of 240 values
 231  (determined by the clock crystal, a fixed (?) per-device divider, a
 232  configurable divider and a configurable timer preload value).
 233  
 234  At the moment only UBR and CBR are supported by the driver. VBR will
 235  be supported as soon as ATM for Linux supports it. ABR support is
 236  very unlikely as RM cell handling is completely up to the driver.
 237  
 238  1. TX (TX channel setup and TX transfer)
 239  
 240  The TX half of the driver owns the TX Horizon registers. The TX
 241  component in the IRQ handler is the BM completion handler. This can
 242  only be entered when tx_busy is true (enforced by hardware). The
 243  other TX component can only be entered when tx_busy is false
 244  (enforced by driver). So TX is single-threaded.
 245  
 246  Apart from a minor optimisation to not re-select the last channel,
 247  the TX send component works as follows:
 248  
 249  Atomic test and set tx_busy until we succeed; we should implement
 250  some sort of timeout so that tx_busy will never be stuck at true.
 251  
 252  If no TX channel is set up for this VC we wait for an idle one (if
 253  necessary) and set it up.
 254  
 255  At this point we have a TX channel ready for use. We wait for enough
 256  buffers to become available then start a TX transmit (set the TX
 257  descriptor, schedule transfer, exit).
 258  
 259  The IRQ component handles TX completion (stats, free buffer, tx_busy
 260  unset, exit). We also re-schedule further transfers for the same
 261  frame if needed.
 262  
 263  TX setup in more detail:
 264  
 265  TX open is a nop, the relevant information is held in the hrz_vcc
 266  (vcc->dev_data) structure and is "cached" on the card.
 267  
 268  TX close gets the TX lock and clears the channel from the "cache".
 269  
 270  2. RX (Data Available and RX transfer)
 271  
 272  The RX half of the driver owns the RX registers. There are two RX
 273  components in the IRQ handler: the data available handler deals with
 274  fresh data that has arrived on the card, the BM completion handler
 275  is very similar to the TX completion handler. The data available
 276  handler grabs the rx_lock and it is only released once the data has
 277  been discarded or completely transferred to the host. The BM
 278  completion handler only runs when the lock is held; the data
 279  available handler is locked out over the same period.
 280  
 281  Data available on the card triggers an interrupt. If the data is not
 282  suitable for our existing RX channels or we cannot allocate a buffer
 283  it is flushed. Otherwise an RX receive is scheduled. Multiple RX
 284  transfers may be scheduled for the same frame.
 285  
 286  RX setup in more detail:
 287  
 288  RX open...
 289  RX close...
 290  
 291  III Hardware Bugs
 292  
 293  0. Byte vs Word addressing of adapter RAM.
 294  
 295  A design feature; see the .h file (especially the memory map).
 296  
 297  1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
 298  
 299  The host must not start a transmit direction transfer at a
 300  non-four-byte boundary in host memory. Instead the host should
 301  perform a byte, or a two byte, or one byte followed by two byte
 302  transfer in order to start the rest of the transfer on a four byte
 303  boundary. RX is OK.
 304  
 305  Simultaneous transmit and receive direction bus master transfers are
 306  not allowed.
 307  
 308  The simplest solution to these two is to always do PIO (never DMA)
 309  in the TX direction on the original Horizon. More complicated
 310  solutions are likely to hurt my brain.
 311  
 312  2. Loss of buffer on close VC
 313  
 314  When a VC is being closed, the buffer associated with it is not
 315  returned to the pool. The host must store the reference to this
 316  buffer and when opening a new VC then give it to that new VC.
 317  
 318  The host intervention currently consists of stacking such a buffer
 319  pointer at VC close and checking the stack at VC open.
 320  
 321  3. Failure to close a VC
 322  
 323  If a VC is currently receiving a frame then closing the VC may fail
 324  and the frame continues to be received.
 325  
 326  The solution is to make sure any received frames are flushed when
 327  ready. This is currently done just before the solution to 2.
 328  
 329  4. PCI bus (original Horizon only, fixed in Ultra)
 330  
 331  Reading from the data port prior to initialisation will hang the PCI
 332  bus. Just don't do that then! We don't.
 333  
 334  IV To Do List
 335  
 336  . Timer code may be broken.
 337  
 338  . Allow users to specify buffer allocation split for TX and RX.
 339  
 340  . Deal once and for all with buggy VC close.
 341  
 342  . Handle interrupted and/or non-blocking operations.
 343  
 344  . Change some macros to functions and move from .h to .c.
 345  
 346  . Try to limit the number of TX frames each VC may have queued, in
 347    order to reduce the chances of TX buffer exhaustion.
 348  
 349  . Implement VBR (bucket and timers not understood) and ABR (need to
 350    do RM cells manually); also no Linux support for either.
 351  
 352  . Implement QoS changes on open VCs (involves extracting parts of VC open
 353    and close into separate functions and using them to make changes).
 354  
 355*/
 356
 357/********** globals **********/
 358
 359static void do_housekeeping (unsigned long arg);
 360
 361static unsigned short debug = 0;
 362static unsigned short vpi_bits = 0;
 363static int max_tx_size = 9000;
 364static int max_rx_size = 9000;
 365static unsigned char pci_lat = 0;
 366
 367/********** access functions **********/
 368
 369/* Read / Write Horizon registers */
 370static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
 371  outl (cpu_to_le32 (data), dev->iobase + reg);
 372}
 373
 374static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
 375  return le32_to_cpu (inl (dev->iobase + reg));
 376}
 377
 378static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
 379  outw (cpu_to_le16 (data), dev->iobase + reg);
 380}
 381
 382static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
 383  return le16_to_cpu (inw (dev->iobase + reg));
 384}
 385
 386static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
 387  outsb (dev->iobase + reg, addr, len);
 388}
 389
 390static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
 391  insb (dev->iobase + reg, addr, len);
 392}
 393
 394/* Read / Write to a given address in Horizon buffer memory.
 395   Interrupts must be disabled between the address register and data
 396   port accesses as these must form an atomic operation. */
 397static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
 398  // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
 399  wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
 400  wr_regl (dev, MEMORY_PORT_OFF, data);
 401}
 402
 403static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
 404  // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
 405  wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
 406  return rd_regl (dev, MEMORY_PORT_OFF);
 407}
 408
 409static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
 410  wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
 411  wr_regl (dev, MEMORY_PORT_OFF, data);
 412}
 413
 414static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
 415  wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
 416  return rd_regl (dev, MEMORY_PORT_OFF);
 417}
 418
 419/********** specialised access functions **********/
 420
 421/* RX */
 422
 423static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
 424  wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
 425  return;
 426}
 427
 428static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
 429  while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
 430    ;
 431  return;
 432}
 433
 434static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
 435  wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
 436  return;
 437}
 438
 439static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
 440  while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
 441    ;
 442  return;
 443}
 444
 445/* TX */
 446
 447static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
 448  wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
 449  return;
 450}
 451
 452/* Update or query one configuration parameter of a particular channel. */
 453
 454static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
 455  wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
 456	   chan * TX_CHANNEL_CONFIG_MULT | mode);
 457    wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
 458    return;
 459}
 460
 
 
 
 
 
 
 461/********** dump functions **********/
 462
 463static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
 464#ifdef DEBUG_HORIZON
 465  unsigned int i;
 466  unsigned char * data = skb->data;
 467  PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
 468  for (i=0; i<skb->len && i < 256;i++)
 469    PRINTDM (DBG_DATA, "%02x ", data[i]);
 470  PRINTDE (DBG_DATA,"");
 471#else
 472  (void) prefix;
 473  (void) vc;
 474  (void) skb;
 475#endif
 476  return;
 477}
 478
 479static inline void dump_regs (hrz_dev * dev) {
 480#ifdef DEBUG_HORIZON
 481  PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
 482  PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
 483  PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
 484  PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
 485  PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
 486  PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
 487#else
 488  (void) dev;
 489#endif
 490  return;
 491}
 492
 493static inline void dump_framer (hrz_dev * dev) {
 494#ifdef DEBUG_HORIZON
 495  unsigned int i;
 496  PRINTDB (DBG_REGS, "framer registers:");
 497  for (i = 0; i < 0x10; ++i)
 498    PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
 499  PRINTDE (DBG_REGS,"");
 500#else
 501  (void) dev;
 502#endif
 503  return;
 504}
 505
 506/********** VPI/VCI <-> (RX) channel conversions **********/
 507
 508/* RX channels are 10 bit integers, these fns are quite paranoid */
 509
 
 
 
 
 
 
 
 
 
 
 510static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
 511  unsigned short vci_bits = 10 - vpi_bits;
 512  if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
 513    *channel = vpi<<vci_bits | vci;
 514    return *channel ? 0 : -EINVAL;
 515  }
 516  return -EINVAL;
 517}
 518
 519/********** decode RX queue entries **********/
 520
 521static inline u16 rx_q_entry_to_length (u32 x) {
 522  return x & RX_Q_ENTRY_LENGTH_MASK;
 523}
 524
 525static inline u16 rx_q_entry_to_rx_channel (u32 x) {
 526  return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
 527}
 528
 529/* Cell Transmit Rate Values
 530 *
 531 * the cell transmit rate (cells per sec) can be set to a variety of
 532 * different values by specifying two parameters: a timer preload from
 533 * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
 534 * an exponent from 0 to 14; the special value 15 disables the timer).
 535 *
 536 * cellrate = baserate / (preload * 2^divider)
 537 *
 538 * The maximum cell rate that can be specified is therefore just the
 539 * base rate. Halving the preload is equivalent to adding 1 to the
 540 * divider and so values 1 to 8 of the preload are redundant except
 541 * in the case of a maximal divider (14).
 542 *
 543 * Given a desired cell rate, an algorithm to determine the preload
 544 * and divider is:
 545 * 
 546 * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
 547 * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
 548 *    if x <= 16 then set p = x, d = 0 (high rates), done
 549 * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
 550 *    know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
 551 *    we find the range (n will be between 1 and 14), set d = n
 552 * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
 553 *
 554 * The algorithm used below is a minor variant of the above.
 555 *
 556 * The base rate is derived from the oscillator frequency (Hz) using a
 557 * fixed divider:
 558 *
 559 * baserate = freq / 32 in the case of some Unknown Card
 560 * baserate = freq / 8  in the case of the Horizon        25
 561 * baserate = freq / 8  in the case of the Horizon Ultra 155
 562 *
 563 * The Horizon cards have oscillators and base rates as follows:
 564 *
 565 * Card               Oscillator  Base Rate
 566 * Unknown Card       33 MHz      1.03125 MHz (33 MHz = PCI freq)
 567 * Horizon        25  32 MHz      4       MHz
 568 * Horizon Ultra 155  40 MHz      5       MHz
 569 *
 570 * The following defines give the base rates in Hz. These were
 571 * previously a factor of 100 larger, no doubt someone was using
 572 * cps*100.
 573 */
 574
 575#define BR_UKN 1031250l
 576#define BR_HRZ 4000000l
 577#define BR_ULT 5000000l
 578
 579// d is an exponent
 580#define CR_MIND 0
 581#define CR_MAXD 14
 582
 583// p ranges from 1 to a power of 2
 584#define CR_MAXPEXP 4
 585 
 586static int make_rate (const hrz_dev * dev, u32 c, rounding r,
 587		      u16 * bits, unsigned int * actual)
 588{
 589	// note: rounding the rate down means rounding 'p' up
 590	const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
 591  
 592	u32 div = CR_MIND;
 593	u32 pre;
 594  
 595	// br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
 596	// the tests below. We could think harder about exact possibilities
 597	// of failure...
 598  
 599	unsigned long br_man = br;
 600	unsigned int br_exp = 0;
 601  
 602	PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
 603		r == round_up ? "up" : r == round_down ? "down" : "nearest");
 604  
 605	// avoid div by zero
 606	if (!c) {
 607		PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
 608		return -EINVAL;
 609	}
 610  
 611	while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
 612		br_man = br_man >> 1;
 613		++br_exp;
 614	}
 615	// (br >>br_exp) <<br_exp == br and
 616	// br_exp <= CR_MAXPEXP+CR_MIND
 617  
 618	if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
 619		// Equivalent to: B <= (c << (MAXPEXP+MIND))
 620		// take care of rounding
 621		switch (r) {
 622			case round_down:
 623				pre = DIV_ROUND_UP(br, c<<div);
 624				// but p must be non-zero
 625				if (!pre)
 626					pre = 1;
 627				break;
 628			case round_nearest:
 629				pre = DIV_ROUND_CLOSEST(br, c<<div);
 630				// but p must be non-zero
 631				if (!pre)
 632					pre = 1;
 633				break;
 634			default:	/* round_up */
 635				pre = br/(c<<div);
 636				// but p must be non-zero
 637				if (!pre)
 638					return -EINVAL;
 639		}
 640		PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
 641		goto got_it;
 642	}
 643  
 644	// at this point we have
 645	// d == MIND and (c << (MAXPEXP+MIND)) < B
 646	while (div < CR_MAXD) {
 647		div++;
 648		if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
 649			// Equivalent to: B <= (c << (MAXPEXP+d))
 650			// c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
 651			// 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
 652			// MAXP/2 < B/c2^d <= MAXP
 653			// take care of rounding
 654			switch (r) {
 655				case round_down:
 656					pre = DIV_ROUND_UP(br, c<<div);
 657					break;
 658				case round_nearest:
 659					pre = DIV_ROUND_CLOSEST(br, c<<div);
 660					break;
 661				default: /* round_up */
 662					pre = br/(c<<div);
 663			}
 664			PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
 665			goto got_it;
 666		}
 667	}
 668	// at this point we have
 669	// d == MAXD and (c << (MAXPEXP+MAXD)) < B
 670	// but we cannot go any higher
 671	// take care of rounding
 672	if (r == round_down)
 673		return -EINVAL;
 674	pre = 1 << CR_MAXPEXP;
 675	PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
 676got_it:
 677	// paranoia
 678	if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
 679		PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
 680			div, pre);
 681		return -EINVAL;
 682	} else {
 683		if (bits)
 684			*bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
 685		if (actual) {
 686			*actual = DIV_ROUND_UP(br, pre<<div);
 687			PRINTD (DBG_QOS, "actual rate: %u", *actual);
 688		}
 689		return 0;
 690	}
 691}
 692
 693static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
 694				     u16 * bit_pattern, unsigned int * actual) {
 695  unsigned int my_actual;
 696  
 697  PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
 698	  c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
 699  
 700  if (!actual)
 701    // actual rate is not returned
 702    actual = &my_actual;
 703  
 704  if (make_rate (dev, c, round_nearest, bit_pattern, actual))
 705    // should never happen as round_nearest always succeeds
 706    return -1;
 707  
 708  if (c - tol <= *actual && *actual <= c + tol)
 709    // within tolerance
 710    return 0;
 711  else
 712    // intolerant, try rounding instead
 713    return make_rate (dev, c, r, bit_pattern, actual);
 714}
 715
 716/********** Listen on a VC **********/
 717
 718static int hrz_open_rx (hrz_dev * dev, u16 channel) {
 719  // is there any guarantee that we don't get two simulataneous
 720  // identical calls of this function from different processes? yes
 721  // rate_lock
 722  unsigned long flags;
 723  u32 channel_type; // u16?
 724  
 725  u16 buf_ptr = RX_CHANNEL_IDLE;
 726  
 727  rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
 728  
 729  PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
 730  
 731  spin_lock_irqsave (&dev->mem_lock, flags);
 732  channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
 733  spin_unlock_irqrestore (&dev->mem_lock, flags);
 734  
 735  // very serious error, should never occur
 736  if (channel_type != RX_CHANNEL_DISABLED) {
 737    PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
 738    return -EBUSY; // clean up?
 739  }
 740  
 741  // Give back spare buffer
 742  if (dev->noof_spare_buffers) {
 743    buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
 744    PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
 745    // should never occur
 746    if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
 747      // but easy to recover from
 748      PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
 749      buf_ptr = RX_CHANNEL_IDLE;
 750    }
 751  } else {
 752    PRINTD (DBG_VCC, "using IDLE buffer pointer");
 753  }
 754  
 755  // Channel is currently disabled so change its status to idle
 756  
 757  // do we really need to save the flags again?
 758  spin_lock_irqsave (&dev->mem_lock, flags);
 759  
 760  wr_mem (dev, &rx_desc->wr_buf_type,
 761	  buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
 762  if (buf_ptr != RX_CHANNEL_IDLE)
 763    wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
 764  
 765  spin_unlock_irqrestore (&dev->mem_lock, flags);
 766  
 767  // rxer->rate = make_rate (qos->peak_cells);
 768  
 769  PRINTD (DBG_FLOW, "hrz_open_rx ok");
 770  
 771  return 0;
 772}
 773
 774#if 0
 775/********** change vc rate for a given vc **********/
 776
 777static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
 778  rxer->rate = make_rate (qos->peak_cells);
 779}
 780#endif
 781
 782/********** free an skb (as per ATM device driver documentation) **********/
 783
 784static void hrz_kfree_skb (struct sk_buff * skb) {
 785  if (ATM_SKB(skb)->vcc->pop) {
 786    ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
 787  } else {
 788    dev_kfree_skb_any (skb);
 789  }
 790}
 791
 792/********** cancel listen on a VC **********/
 793
 794static void hrz_close_rx (hrz_dev * dev, u16 vc) {
 795  unsigned long flags;
 796  
 797  u32 value;
 798  
 799  u32 r1, r2;
 800  
 801  rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
 802  
 803  int was_idle = 0;
 804  
 805  spin_lock_irqsave (&dev->mem_lock, flags);
 806  value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
 807  spin_unlock_irqrestore (&dev->mem_lock, flags);
 808  
 809  if (value == RX_CHANNEL_DISABLED) {
 810    // I suppose this could happen once we deal with _NONE traffic properly
 811    PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
 812    return;
 813  }
 814  if (value == RX_CHANNEL_IDLE)
 815    was_idle = 1;
 816  
 817  spin_lock_irqsave (&dev->mem_lock, flags);
 818  
 819  for (;;) {
 820    wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
 821    
 822    if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
 823      break;
 824    
 825    was_idle = 0;
 826  }
 827  
 828  if (was_idle) {
 829    spin_unlock_irqrestore (&dev->mem_lock, flags);
 830    return;
 831  }
 832  
 833  WAIT_FLUSH_RX_COMPLETE(dev);
 834  
 835  // XXX Is this all really necessary? We can rely on the rx_data_av
 836  // handler to discard frames that remain queued for delivery. If the
 837  // worry is that immediately reopening the channel (perhaps by a
 838  // different process) may cause some data to be mis-delivered then
 839  // there may still be a simpler solution (such as busy-waiting on
 840  // rx_busy once the channel is disabled or before a new one is
 841  // opened - does this leave any holes?). Arguably setting up and
 842  // tearing down the TX and RX halves of each virtual circuit could
 843  // most safely be done within ?x_busy protected regions.
 844  
 845  // OK, current changes are that Simon's marker is disabled and we DO
 846  // look for NULL rxer elsewhere. The code here seems flush frames
 847  // and then remember the last dead cell belonging to the channel
 848  // just disabled - the cell gets relinked at the next vc_open.
 849  // However, when all VCs are closed or only a few opened there are a
 850  // handful of buffers that are unusable.
 851  
 852  // Does anyone feel like documenting spare_buffers properly?
 853  // Does anyone feel like fixing this in a nicer way?
 854  
 855  // Flush any data which is left in the channel
 856  for (;;) {
 857    // Change the rx channel port to something different to the RX
 858    // channel we are trying to close to force Horizon to flush the rx
 859    // channel read and write pointers.
 860    
 861    u16 other = vc^(RX_CHANS/2);
 862    
 863    SELECT_RX_CHANNEL (dev, other);
 864    WAIT_UPDATE_COMPLETE (dev);
 865    
 866    r1 = rd_mem (dev, &rx_desc->rd_buf_type);
 867    
 868    // Select this RX channel. Flush doesn't seem to work unless we
 869    // select an RX channel before hand
 870    
 871    SELECT_RX_CHANNEL (dev, vc);
 872    WAIT_UPDATE_COMPLETE (dev);
 873    
 874    // Attempt to flush a frame on this RX channel
 875    
 876    FLUSH_RX_CHANNEL (dev, vc);
 877    WAIT_FLUSH_RX_COMPLETE (dev);
 878    
 879    // Force Horizon to flush rx channel read and write pointers as before
 880    
 881    SELECT_RX_CHANNEL (dev, other);
 882    WAIT_UPDATE_COMPLETE (dev);
 883    
 884    r2 = rd_mem (dev, &rx_desc->rd_buf_type);
 885    
 886    PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
 887    
 888    if (r1 == r2) {
 889      dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
 890      break;
 891    }
 892  }
 893  
 894#if 0
 895  {
 896    rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
 897    rx_q_entry * rd_ptr = dev->rx_q_entry;
 898    
 899    PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
 900    
 901    while (rd_ptr != wr_ptr) {
 902      u32 x = rd_mem (dev, (HDW *) rd_ptr);
 903      
 904      if (vc == rx_q_entry_to_rx_channel (x)) {
 905	x |= SIMONS_DODGEY_MARKER;
 906	
 907	PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
 908	
 909	wr_mem (dev, (HDW *) rd_ptr, x);
 910      }
 911      
 912      if (rd_ptr == dev->rx_q_wrap)
 913	rd_ptr = dev->rx_q_reset;
 914      else
 915	rd_ptr++;
 916    }
 917  }
 918#endif
 919  
 920  spin_unlock_irqrestore (&dev->mem_lock, flags);
 921  
 922  return;
 923}
 924
 925/********** schedule RX transfers **********/
 926
 927// Note on tail recursion: a GCC developer said that it is not likely
 928// to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
 929// are sure it does as you may otherwise overflow the kernel stack.
 930
 931// giving this fn a return value would help GCC, allegedly
 932
 933static void rx_schedule (hrz_dev * dev, int irq) {
 934  unsigned int rx_bytes;
 935  
 936  int pio_instead = 0;
 937#ifndef TAILRECURSIONWORKS
 938  pio_instead = 1;
 939  while (pio_instead) {
 940#endif
 941    // bytes waiting for RX transfer
 942    rx_bytes = dev->rx_bytes;
 943    
 944#if 0
 945    spin_count = 0;
 946    while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
 947      PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
 948      if (++spin_count > 10) {
 949	PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
 950	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
 951	clear_bit (rx_busy, &dev->flags);
 952	hrz_kfree_skb (dev->rx_skb);
 953	return;
 954      }
 955    }
 956#endif
 957    
 958    // this code follows the TX code but (at the moment) there is only
 959    // one region - the skb itself. I don't know if this will change,
 960    // but it doesn't hurt to have the code here, disabled.
 961    
 962    if (rx_bytes) {
 963      // start next transfer within same region
 964      if (rx_bytes <= MAX_PIO_COUNT) {
 965	PRINTD (DBG_RX|DBG_BUS, "(pio)");
 966	pio_instead = 1;
 967      }
 968      if (rx_bytes <= MAX_TRANSFER_COUNT) {
 969	PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
 970	dev->rx_bytes = 0;
 971      } else {
 972	PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
 973	dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
 974	rx_bytes = MAX_TRANSFER_COUNT;
 975      }
 976    } else {
 977      // rx_bytes == 0 -- we're between regions
 978      // regions remaining to transfer
 979#if 0
 980      unsigned int rx_regions = dev->rx_regions;
 981#else
 982      unsigned int rx_regions = 0;
 983#endif
 984      
 985      if (rx_regions) {
 986#if 0
 987	// start a new region
 988	dev->rx_addr = dev->rx_iovec->iov_base;
 989	rx_bytes = dev->rx_iovec->iov_len;
 990	++dev->rx_iovec;
 991	dev->rx_regions = rx_regions - 1;
 992	
 993	if (rx_bytes <= MAX_PIO_COUNT) {
 994	  PRINTD (DBG_RX|DBG_BUS, "(pio)");
 995	  pio_instead = 1;
 996	}
 997	if (rx_bytes <= MAX_TRANSFER_COUNT) {
 998	  PRINTD (DBG_RX|DBG_BUS, "(full region)");
 999	  dev->rx_bytes = 0;
1000	} else {
1001	  PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
1002	  dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1003	  rx_bytes = MAX_TRANSFER_COUNT;
1004	}
1005#endif
1006      } else {
1007	// rx_regions == 0
1008	// that's all folks - end of frame
1009	struct sk_buff * skb = dev->rx_skb;
1010	// dev->rx_iovec = 0;
1011	
1012	FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1013	
1014	dump_skb ("<<<", dev->rx_channel, skb);
1015	
1016	PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1017	
1018	{
1019	  struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1020	  // VC layer stats
1021	  atomic_inc(&vcc->stats->rx);
1022	  __net_timestamp(skb);
1023	  // end of our responsibility
1024	  vcc->push (vcc, skb);
1025	}
1026      }
1027    }
1028    
1029    // note: writing RX_COUNT clears any interrupt condition
1030    if (rx_bytes) {
1031      if (pio_instead) {
1032	if (irq)
1033	  wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1034	rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1035      } else {
1036	wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1037	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1038      }
1039      dev->rx_addr += rx_bytes;
1040    } else {
1041      if (irq)
1042	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1043      // allow another RX thread to start
1044      YELLOW_LED_ON(dev);
1045      clear_bit (rx_busy, &dev->flags);
1046      PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1047    }
1048    
1049#ifdef TAILRECURSIONWORKS
1050    // and we all bless optimised tail calls
1051    if (pio_instead)
1052      return rx_schedule (dev, 0);
1053    return;
1054#else
1055    // grrrrrrr!
1056    irq = 0;
1057  }
1058  return;
1059#endif
1060}
1061
1062/********** handle RX bus master complete events **********/
1063
1064static void rx_bus_master_complete_handler (hrz_dev * dev) {
1065  if (test_bit (rx_busy, &dev->flags)) {
1066    rx_schedule (dev, 1);
1067  } else {
1068    PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1069    // clear interrupt condition on adapter
1070    wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1071  }
1072  return;
1073}
1074
1075/********** (queue to) become the next TX thread **********/
1076
1077static int tx_hold (hrz_dev * dev) {
1078  PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1079  wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
1080  PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1081  if (signal_pending (current))
1082    return -1;
1083  PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1084  return 0;
1085}
1086
1087/********** allow another TX thread to start **********/
1088
1089static inline void tx_release (hrz_dev * dev) {
1090  clear_bit (tx_busy, &dev->flags);
1091  PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1092  wake_up_interruptible (&dev->tx_queue);
1093}
1094
1095/********** schedule TX transfers **********/
1096
1097static void tx_schedule (hrz_dev * const dev, int irq) {
1098  unsigned int tx_bytes;
1099  
1100  int append_desc = 0;
1101  
1102  int pio_instead = 0;
1103#ifndef TAILRECURSIONWORKS
1104  pio_instead = 1;
1105  while (pio_instead) {
1106#endif
1107    // bytes in current region waiting for TX transfer
1108    tx_bytes = dev->tx_bytes;
1109    
1110#if 0
1111    spin_count = 0;
1112    while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1113      PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1114      if (++spin_count > 10) {
1115	PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1116	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1117	tx_release (dev);
1118	hrz_kfree_skb (dev->tx_skb);
1119	return;
1120      }
1121    }
1122#endif
1123    
1124    if (tx_bytes) {
1125      // start next transfer within same region
1126      if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1127	PRINTD (DBG_TX|DBG_BUS, "(pio)");
1128	pio_instead = 1;
1129      }
1130      if (tx_bytes <= MAX_TRANSFER_COUNT) {
1131	PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1132	if (!dev->tx_iovec) {
1133	  // end of last region
1134	  append_desc = 1;
1135	}
1136	dev->tx_bytes = 0;
1137      } else {
1138	PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1139	dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1140	tx_bytes = MAX_TRANSFER_COUNT;
1141      }
1142    } else {
1143      // tx_bytes == 0 -- we're between regions
1144      // regions remaining to transfer
1145      unsigned int tx_regions = dev->tx_regions;
1146      
1147      if (tx_regions) {
1148	// start a new region
1149	dev->tx_addr = dev->tx_iovec->iov_base;
1150	tx_bytes = dev->tx_iovec->iov_len;
1151	++dev->tx_iovec;
1152	dev->tx_regions = tx_regions - 1;
1153	
1154	if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1155	  PRINTD (DBG_TX|DBG_BUS, "(pio)");
1156	  pio_instead = 1;
1157	}
1158	if (tx_bytes <= MAX_TRANSFER_COUNT) {
1159	  PRINTD (DBG_TX|DBG_BUS, "(full region)");
1160	  dev->tx_bytes = 0;
1161	} else {
1162	  PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1163	  dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1164	  tx_bytes = MAX_TRANSFER_COUNT;
1165	}
1166      } else {
1167	// tx_regions == 0
1168	// that's all folks - end of frame
1169	struct sk_buff * skb = dev->tx_skb;
1170	dev->tx_iovec = NULL;
1171	
1172	// VC layer stats
1173	atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1174	
1175	// free the skb
1176	hrz_kfree_skb (skb);
1177      }
1178    }
1179    
1180    // note: writing TX_COUNT clears any interrupt condition
1181    if (tx_bytes) {
1182      if (pio_instead) {
1183	if (irq)
1184	  wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1185	wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1186	if (append_desc)
1187	  wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1188      } else {
1189	wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1190	if (append_desc)
1191	  wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1192	wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1193		 append_desc
1194		 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1195		 : tx_bytes);
1196      }
1197      dev->tx_addr += tx_bytes;
1198    } else {
1199      if (irq)
1200	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1201      YELLOW_LED_ON(dev);
1202      tx_release (dev);
1203    }
1204    
1205#ifdef TAILRECURSIONWORKS
1206    // and we all bless optimised tail calls
1207    if (pio_instead)
1208      return tx_schedule (dev, 0);
1209    return;
1210#else
1211    // grrrrrrr!
1212    irq = 0;
1213  }
1214  return;
1215#endif
1216}
1217
1218/********** handle TX bus master complete events **********/
1219
1220static void tx_bus_master_complete_handler (hrz_dev * dev) {
1221  if (test_bit (tx_busy, &dev->flags)) {
1222    tx_schedule (dev, 1);
1223  } else {
1224    PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1225    // clear interrupt condition on adapter
1226    wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1227  }
1228  return;
1229}
1230
1231/********** move RX Q pointer to next item in circular buffer **********/
1232
1233// called only from IRQ sub-handler
1234static u32 rx_queue_entry_next (hrz_dev * dev) {
1235  u32 rx_queue_entry;
1236  spin_lock (&dev->mem_lock);
1237  rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1238  if (dev->rx_q_entry == dev->rx_q_wrap)
1239    dev->rx_q_entry = dev->rx_q_reset;
1240  else
1241    dev->rx_q_entry++;
1242  wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1243  spin_unlock (&dev->mem_lock);
1244  return rx_queue_entry;
1245}
1246
 
 
 
 
 
 
 
 
1247/********** handle RX data received by device **********/
1248
1249// called from IRQ handler
1250static void rx_data_av_handler (hrz_dev * dev) {
1251  u32 rx_queue_entry;
1252  u32 rx_queue_entry_flags;
1253  u16 rx_len;
1254  u16 rx_channel;
1255  
1256  PRINTD (DBG_FLOW, "hrz_data_av_handler");
1257  
1258  // try to grab rx lock (not possible during RX bus mastering)
1259  if (test_and_set_bit (rx_busy, &dev->flags)) {
1260    PRINTD (DBG_RX, "locked out of rx lock");
1261    return;
1262  }
1263  PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1264  // lock is cleared if we fail now, o/w after bus master completion
1265  
1266  YELLOW_LED_OFF(dev);
1267  
1268  rx_queue_entry = rx_queue_entry_next (dev);
1269  
1270  rx_len = rx_q_entry_to_length (rx_queue_entry);
1271  rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1272  
1273  WAIT_FLUSH_RX_COMPLETE (dev);
1274  
1275  SELECT_RX_CHANNEL (dev, rx_channel);
1276  
1277  PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1278  rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1279  
1280  if (!rx_len) {
1281    // (at least) bus-mastering breaks if we try to handle a
1282    // zero-length frame, besides AAL5 does not support them
1283    PRINTK (KERN_ERR, "zero-length frame!");
1284    rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1285  }
1286  
1287  if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1288    PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1289  }
1290  if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1291    struct atm_vcc * atm_vcc;
1292    
1293    PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1294    
1295    atm_vcc = dev->rxer[rx_channel];
1296    // if no vcc is assigned to this channel, we should drop the frame
1297    // (is this what SIMONS etc. was trying to achieve?)
1298    
1299    if (atm_vcc) {
1300      
1301      if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1302	
1303	if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1304	    
1305	  struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1306	  if (skb) {
1307	    // remember this so we can push it later
1308	    dev->rx_skb = skb;
1309	    // remember this so we can flush it later
1310	    dev->rx_channel = rx_channel;
1311	    
1312	    // prepare socket buffer
1313	    skb_put (skb, rx_len);
1314	    ATM_SKB(skb)->vcc = atm_vcc;
1315	    
1316	    // simple transfer
1317	    // dev->rx_regions = 0;
1318	    // dev->rx_iovec = 0;
1319	    dev->rx_bytes = rx_len;
1320	    dev->rx_addr = skb->data;
1321	    PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1322		    skb->data, rx_len);
1323	    
1324	    // do the business
1325	    rx_schedule (dev, 0);
1326	    return;
1327	    
1328	  } else {
1329	    PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1330	  }
1331	  
1332	} else {
1333	  PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1334	  // do we count this?
1335	}
1336	
1337      } else {
1338	PRINTK (KERN_WARNING, "dropped over-size frame");
1339	// do we count this?
1340      }
1341      
1342    } else {
1343      PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1344      // do we count this?
1345    }
1346    
1347  } else {
1348    // Wait update complete ? SPONG
1349  }
1350  
1351  // RX was aborted
1352  YELLOW_LED_ON(dev);
1353  
1354  FLUSH_RX_CHANNEL (dev,rx_channel);
1355  clear_bit (rx_busy, &dev->flags);
1356  
1357  return;
1358}
1359
1360/********** interrupt handler **********/
1361
1362static irqreturn_t interrupt_handler(int irq, void *dev_id)
1363{
1364  hrz_dev *dev = dev_id;
1365  u32 int_source;
1366  unsigned int irq_ok;
1367  
1368  PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1369  
1370  // definitely for us
1371  irq_ok = 0;
1372  while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1373	  & INTERESTING_INTERRUPTS)) {
1374    // In the interests of fairness, the handlers below are
1375    // called in sequence and without immediate return to the head of
1376    // the while loop. This is only of issue for slow hosts (or when
1377    // debugging messages are on). Really slow hosts may find a fast
1378    // sender keeps them permanently in the IRQ handler. :(
1379    
1380    // (only an issue for slow hosts) RX completion goes before
1381    // rx_data_av as the former implies rx_busy and so the latter
1382    // would just abort. If it reschedules another transfer
1383    // (continuing the same frame) then it will not clear rx_busy.
1384    
1385    // (only an issue for slow hosts) TX completion goes before RX
1386    // data available as it is a much shorter routine - there is the
1387    // chance that any further transfers it schedules will be complete
1388    // by the time of the return to the head of the while loop
1389    
1390    if (int_source & RX_BUS_MASTER_COMPLETE) {
1391      ++irq_ok;
1392      PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1393      rx_bus_master_complete_handler (dev);
1394    }
1395    if (int_source & TX_BUS_MASTER_COMPLETE) {
1396      ++irq_ok;
1397      PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1398      tx_bus_master_complete_handler (dev);
1399    }
1400    if (int_source & RX_DATA_AV) {
1401      ++irq_ok;
1402      PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1403      rx_data_av_handler (dev);
1404    }
1405  }
1406  if (irq_ok) {
1407    PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1408  } else {
1409    PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1410  }
1411  
1412  PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1413  if (irq_ok)
1414	return IRQ_HANDLED;
1415  return IRQ_NONE;
1416}
1417
1418/********** housekeeping **********/
1419
1420static void do_housekeeping (unsigned long arg) {
1421  // just stats at the moment
1422  hrz_dev * dev = (hrz_dev *) arg;
1423
1424  // collect device-specific (not driver/atm-linux) stats here
1425  dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1426  dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1427  dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1428  dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1429
1430  mod_timer (&dev->housekeeping, jiffies + HZ/10);
1431
1432  return;
1433}
1434
1435/********** find an idle channel for TX and set it up **********/
1436
1437// called with tx_busy set
1438static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1439  unsigned short idle_channels;
1440  short tx_channel = -1;
1441  unsigned int spin_count;
1442  PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1443  
1444  // better would be to fail immediately, the caller can then decide whether
1445  // to wait or drop (depending on whether this is UBR etc.)
1446  spin_count = 0;
1447  while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1448    PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1449    // delay a bit here
1450    if (++spin_count > 100) {
1451      PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1452      return -EBUSY;
1453    }
1454  }
1455  
1456  // got an idle channel
1457  {
1458    // tx_idle ensures we look for idle channels in RR order
1459    int chan = dev->tx_idle;
1460    
1461    int keep_going = 1;
1462    while (keep_going) {
1463      if (idle_channels & (1<<chan)) {
1464	tx_channel = chan;
1465	keep_going = 0;
1466      }
1467      ++chan;
1468      if (chan == TX_CHANS)
1469	chan = 0;
1470    }
1471    
1472    dev->tx_idle = chan;
1473  }
1474  
1475  // set up the channel we found
1476  {
1477    // Initialise the cell header in the transmit channel descriptor
1478    // a.k.a. prepare the channel and remember that we have done so.
1479    
1480    tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1481    u32 rd_ptr;
1482    u32 wr_ptr;
1483    u16 channel = vcc->channel;
1484    
1485    unsigned long flags;
1486    spin_lock_irqsave (&dev->mem_lock, flags);
1487    
1488    // Update the transmit channel record.
1489    dev->tx_channel_record[tx_channel] = channel;
1490    
1491    // xBR channel
1492    update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1493			      vcc->tx_xbr_bits);
1494    
1495    // Update the PCR counter preload value etc.
1496    update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1497			      vcc->tx_pcr_bits);
1498
1499#if 0
1500    if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1501      // SCR timer
1502      update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1503				vcc->tx_scr_bits);
1504      
1505      // Bucket size...
1506      update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1507				vcc->tx_bucket_bits);
1508      
1509      // ... and fullness
1510      update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1511				vcc->tx_bucket_bits);
1512    }
1513#endif
1514
1515    // Initialise the read and write buffer pointers
1516    rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1517    wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1518    
1519    // idle TX channels should have identical pointers
1520    if (rd_ptr != wr_ptr) {
1521      PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1522      // spin_unlock... return -E...
1523      // I wonder if gcc would get rid of one of the pointer aliases
1524    }
1525    PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1526	    rd_ptr, wr_ptr);
1527    
1528    switch (vcc->aal) {
1529      case aal0:
1530	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1531	rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1532	wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1533	break;
1534      case aal34:
1535	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1536	rd_ptr |= CHANNEL_TYPE_AAL3_4;
1537	wr_ptr |= CHANNEL_TYPE_AAL3_4;
1538	break;
1539      case aal5:
1540	rd_ptr |= CHANNEL_TYPE_AAL5;
1541	wr_ptr |= CHANNEL_TYPE_AAL5;
1542	// Initialise the CRC
1543	wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1544	break;
1545    }
1546    
1547    wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1548    wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1549    
1550    // Write the Cell Header
1551    // Payload Type, CLP and GFC would go here if non-zero
1552    wr_mem (dev, &tx_desc->cell_header, channel);
1553    
1554    spin_unlock_irqrestore (&dev->mem_lock, flags);
1555  }
1556  
1557  return tx_channel;
1558}
1559
1560/********** send a frame **********/
1561
1562static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1563  unsigned int spin_count;
1564  int free_buffers;
1565  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1566  hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1567  u16 channel = vcc->channel;
1568  
1569  u32 buffers_required;
1570  
1571  /* signed for error return */
1572  short tx_channel;
1573  
1574  PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1575	  channel, skb->data, skb->len);
1576  
1577  dump_skb (">>>", channel, skb);
1578  
1579  if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1580    PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1581    hrz_kfree_skb (skb);
1582    return -EIO;
1583  }
1584  
1585  // don't understand this
1586  ATM_SKB(skb)->vcc = atm_vcc;
1587  
1588  if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1589    PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1590    hrz_kfree_skb (skb);
1591    return -EIO;
1592  }
1593  
1594  if (!channel) {
1595    PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1596    hrz_kfree_skb (skb);
1597    return -EIO;
1598  }
1599  
1600#if 0
1601  {
1602    // where would be a better place for this? housekeeping?
1603    u16 status;
1604    pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1605    if (status & PCI_STATUS_REC_MASTER_ABORT) {
1606      PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1607      status &= ~PCI_STATUS_REC_MASTER_ABORT;
1608      pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1609      if (test_bit (tx_busy, &dev->flags)) {
1610	hrz_kfree_skb (dev->tx_skb);
1611	tx_release (dev);
1612      }
1613    }
1614  }
1615#endif
1616  
1617#ifdef DEBUG_HORIZON
1618  /* wey-hey! */
1619  if (channel == 1023) {
1620    unsigned int i;
1621    unsigned short d = 0;
1622    char * s = skb->data;
1623    if (*s++ == 'D') {
1624	for (i = 0; i < 4; ++i)
1625		d = (d << 4) | hex_to_bin(*s++);
1626      PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1627    }
1628  }
1629#endif
1630  
1631  // wait until TX is free and grab lock
1632  if (tx_hold (dev)) {
1633    hrz_kfree_skb (skb);
1634    return -ERESTARTSYS;
1635  }
1636 
1637  // Wait for enough space to be available in transmit buffer memory.
1638  
1639  // should be number of cells needed + 2 (according to hardware docs)
1640  // = ((framelen+8)+47) / 48 + 2
1641  // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1642  buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1643  
1644  // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1645  spin_count = 0;
1646  while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1647    PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1648	    free_buffers, buffers_required);
1649    // what is the appropriate delay? implement a timeout? (depending on line speed?)
1650    // mdelay (1);
1651    // what happens if we kill (current_pid, SIGKILL) ?
1652    schedule();
1653    if (++spin_count > 1000) {
1654      PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1655	      free_buffers, buffers_required);
1656      tx_release (dev);
1657      hrz_kfree_skb (skb);
1658      return -ERESTARTSYS;
1659    }
1660  }
1661  
1662  // Select a channel to transmit the frame on.
1663  if (channel == dev->last_vc) {
1664    PRINTD (DBG_TX, "last vc hack: hit");
1665    tx_channel = dev->tx_last;
1666  } else {
1667    PRINTD (DBG_TX, "last vc hack: miss");
1668    // Are we currently transmitting this VC on one of the channels?
1669    for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1670      if (dev->tx_channel_record[tx_channel] == channel) {
1671	PRINTD (DBG_TX, "vc already on channel: hit");
1672	break;
1673      }
1674    if (tx_channel == TX_CHANS) { 
1675      PRINTD (DBG_TX, "vc already on channel: miss");
1676      // Find and set up an idle channel.
1677      tx_channel = setup_idle_tx_channel (dev, vcc);
1678      if (tx_channel < 0) {
1679	PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1680	tx_release (dev);
1681	return tx_channel;
1682      }
1683    }
1684    
1685    PRINTD (DBG_TX, "got channel");
1686    SELECT_TX_CHANNEL(dev, tx_channel);
1687    
1688    dev->last_vc = channel;
1689    dev->tx_last = tx_channel;
1690  }
1691  
1692  PRINTD (DBG_TX, "using channel %u", tx_channel);
1693  
1694  YELLOW_LED_OFF(dev);
1695  
1696  // TX start transfer
1697  
1698  {
1699    unsigned int tx_len = skb->len;
1700    unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1701    // remember this so we can free it later
1702    dev->tx_skb = skb;
1703    
1704    if (tx_iovcnt) {
1705      // scatter gather transfer
1706      dev->tx_regions = tx_iovcnt;
1707      dev->tx_iovec = NULL;		/* @@@ needs rewritten */
1708      dev->tx_bytes = 0;
1709      PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1710	      skb->data, tx_len);
1711      tx_release (dev);
1712      hrz_kfree_skb (skb);
1713      return -EIO;
1714    } else {
1715      // simple transfer
1716      dev->tx_regions = 0;
1717      dev->tx_iovec = NULL;
1718      dev->tx_bytes = tx_len;
1719      dev->tx_addr = skb->data;
1720      PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1721	      skb->data, tx_len);
1722    }
1723    
1724    // and do the business
1725    tx_schedule (dev, 0);
1726    
1727  }
1728  
1729  return 0;
1730}
1731
1732/********** reset a card **********/
1733
1734static void hrz_reset (const hrz_dev * dev) {
1735  u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1736  
1737  // why not set RESET_HORIZON to one and wait for the card to
1738  // reassert that bit as zero? Like so:
1739  control_0_reg = control_0_reg & RESET_HORIZON;
1740  wr_regl (dev, CONTROL_0_REG, control_0_reg);
1741  while (control_0_reg & RESET_HORIZON)
1742    control_0_reg = rd_regl (dev, CONTROL_0_REG);
1743  
1744  // old reset code retained:
1745  wr_regl (dev, CONTROL_0_REG, control_0_reg |
1746	   RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1747  // just guessing here
1748  udelay (1000);
1749  
1750  wr_regl (dev, CONTROL_0_REG, control_0_reg);
1751}
1752
1753/********** read the burnt in address **********/
1754
1755static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1756{
1757	wr_regl (dev, CONTROL_0_REG, ctrl);
1758	udelay (5);
1759}
1760  
1761static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1762{
1763	// DI must be valid around rising SK edge
1764	WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1765	WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1766}
1767
1768static u16 read_bia(const hrz_dev *dev, u16 addr)
1769{
1770  u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1771  
1772  const unsigned int addr_bits = 6;
1773  const unsigned int data_bits = 16;
1774  
1775  unsigned int i;
1776  
1777  u16 res;
1778  
1779  ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1780  WRITE_IT_WAIT(dev, ctrl);
1781  
1782  // wake Serial EEPROM and send 110 (READ) command
1783  ctrl |=  (SEEPROM_CS | SEEPROM_DI);
1784  CLOCK_IT(dev, ctrl);
1785  
1786  ctrl |= SEEPROM_DI;
1787  CLOCK_IT(dev, ctrl);
1788  
1789  ctrl &= ~SEEPROM_DI;
1790  CLOCK_IT(dev, ctrl);
1791  
1792  for (i=0; i<addr_bits; i++) {
1793    if (addr & (1 << (addr_bits-1)))
1794      ctrl |= SEEPROM_DI;
1795    else
1796      ctrl &= ~SEEPROM_DI;
1797    
1798    CLOCK_IT(dev, ctrl);
1799    
1800    addr = addr << 1;
1801  }
1802  
1803  // we could check that we have DO = 0 here
1804  ctrl &= ~SEEPROM_DI;
1805  
1806  res = 0;
1807  for (i=0;i<data_bits;i++) {
1808    res = res >> 1;
1809    
1810    CLOCK_IT(dev, ctrl);
1811    
1812    if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1813      res |= (1 << (data_bits-1));
1814  }
1815  
1816  ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1817  WRITE_IT_WAIT(dev, ctrl);
1818  
1819  return res;
1820}
1821
1822/********** initialise a card **********/
1823
1824static int hrz_init(hrz_dev *dev)
1825{
1826  int onefivefive;
1827  
1828  u16 chan;
1829  
1830  int buff_count;
1831  
1832  HDW * mem;
1833  
1834  cell_buf * tx_desc;
1835  cell_buf * rx_desc;
1836  
1837  u32 ctrl;
1838  
1839  ctrl = rd_regl (dev, CONTROL_0_REG);
1840  PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1841  onefivefive = ctrl & ATM_LAYER_STATUS;
1842  
1843  if (onefivefive)
1844    printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1845  else
1846    printk (DEV_LABEL ": Horizon (at 25 MBps)");
1847  
1848  printk (":");
1849  // Reset the card to get everything in a known state
1850  
1851  printk (" reset");
1852  hrz_reset (dev);
1853  
1854  // Clear all the buffer memory
1855  
1856  printk (" clearing memory");
1857  
1858  for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1859    wr_mem (dev, mem, 0);
1860  
1861  printk (" tx channels");
1862  
1863  // All transmit eight channels are set up as AAL5 ABR channels with
1864  // a 16us cell spacing. Why?
1865  
1866  // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1867  // buffer at 110h etc.
1868  
1869  for (chan = 0; chan < TX_CHANS; ++chan) {
1870    tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1871    cell_buf * buf = &memmap->inittxbufs[chan];
1872    
1873    // initialise the read and write buffer pointers
1874    wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1875    wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1876    
1877    // set the status of the initial buffers to empty
1878    wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1879  }
1880  
1881  // Use space bufn3 at the moment for tx buffers
1882  
1883  printk (" tx buffers");
1884  
1885  tx_desc = memmap->bufn3;
1886  
1887  wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1888  
1889  for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1890    wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1891    tx_desc++;
1892  }
1893  
1894  wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1895  
1896  // Initialise the transmit free buffer count
1897  wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1898  
1899  printk (" rx channels");
1900  
1901  // Initialise all of the receive channels to be AAL5 disabled with
1902  // an interrupt threshold of 0
1903  
1904  for (chan = 0; chan < RX_CHANS; ++chan) {
1905    rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1906    
1907    wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1908  }
1909  
1910  printk (" rx buffers");
1911  
1912  // Use space bufn4 at the moment for rx buffers
1913  
1914  rx_desc = memmap->bufn4;
1915  
1916  wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1917  
1918  for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1919    wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1920    
1921    rx_desc++;
1922  }
1923  
1924  wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1925  
1926  // Initialise the receive free buffer count
1927  wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1928  
1929  // Initialize Horizons registers
1930  
1931  // TX config
1932  wr_regw (dev, TX_CONFIG_OFF,
1933	   ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
1934  
1935  // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1936  wr_regw (dev, RX_CONFIG_OFF,
1937	   DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
1938  
1939  // RX line config
1940  wr_regw (dev, RX_LINE_CONFIG_OFF,
1941	   LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
1942  
1943  // Set the max AAL5 cell count to be just enough to contain the
1944  // largest AAL5 frame that the user wants to receive
1945  wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1946	   DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
1947  
1948  // Enable receive
1949  wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1950  
1951  printk (" control");
1952  
1953  // Drive the OE of the LEDs then turn the green LED on
1954  ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
1955  wr_regl (dev, CONTROL_0_REG, ctrl);
1956  
1957  // Test for a 155-capable card
1958  
1959  if (onefivefive) {
1960    // Select 155 mode... make this a choice (or: how do we detect
1961    // external line speed and switch?)
1962    ctrl |= ATM_LAYER_SELECT;
1963    wr_regl (dev, CONTROL_0_REG, ctrl);
1964    
1965    // test SUNI-lite vs SAMBA
1966    
1967    // Register 0x00 in the SUNI will have some of bits 3-7 set, and
1968    // they will always be zero for the SAMBA.  Ha!  Bloody hardware
1969    // engineers.  It'll never work.
1970    
1971    if (rd_framer (dev, 0) & 0x00f0) {
1972      // SUNI
1973      printk (" SUNI");
1974      
1975      // Reset, just in case
1976      wr_framer (dev, 0x00, 0x0080);
1977      wr_framer (dev, 0x00, 0x0000);
1978      
1979      // Configure transmit FIFO
1980      wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
1981      
1982      // Set line timed mode
1983      wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
1984    } else {
1985      // SAMBA
1986      printk (" SAMBA");
1987      
1988      // Reset, just in case
1989      wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
1990      wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
1991      
1992      // Turn off diagnostic loopback and enable line-timed mode
1993      wr_framer (dev, 0, 0x0002);
1994      
1995      // Turn on transmit outputs
1996      wr_framer (dev, 2, 0x0B80);
1997    }
1998  } else {
1999    // Select 25 mode
2000    ctrl &= ~ATM_LAYER_SELECT;
2001    
2002    // Madge B154 setup
2003    // none required?
2004  }
2005  
2006  printk (" LEDs");
2007  
2008  GREEN_LED_ON(dev);
2009  YELLOW_LED_ON(dev);
2010  
2011  printk (" ESI=");
2012  
2013  {
2014    u16 b = 0;
2015    int i;
2016    u8 * esi = dev->atm_dev->esi;
2017    
2018    // in the card I have, EEPROM
2019    // addresses 0, 1, 2 contain 0
2020    // addresess 5, 6 etc. contain ffff
2021    // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2022    // the read_bia routine gets the BIA in Ethernet bit order
2023    
2024    for (i=0; i < ESI_LEN; ++i) {
2025      if (i % 2 == 0)
2026	b = read_bia (dev, i/2 + 2);
2027      else
2028	b = b >> 8;
2029      esi[i] = b & 0xFF;
2030      printk ("%02x", esi[i]);
2031    }
2032  }
2033  
2034  // Enable RX_Q and ?X_COMPLETE interrupts only
2035  wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2036  printk (" IRQ on");
2037  
2038  printk (".\n");
2039  
2040  return onefivefive;
2041}
2042
2043/********** check max_sdu **********/
2044
2045static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2046  PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2047  
2048  switch (aal) {
2049    case aal0:
2050      if (!(tp->max_sdu)) {
2051	PRINTD (DBG_QOS, "defaulting max_sdu");
2052	tp->max_sdu = ATM_AAL0_SDU;
2053      } else if (tp->max_sdu != ATM_AAL0_SDU) {
2054	PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2055	return -EINVAL;
2056      }
2057      break;
2058    case aal34:
2059      if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2060	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2061	tp->max_sdu = ATM_MAX_AAL34_PDU;
2062      }
2063      break;
2064    case aal5:
2065      if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2066	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2067	tp->max_sdu = max_frame_size;
2068      }
2069      break;
2070  }
2071  return 0;
2072}
2073
2074/********** check pcr **********/
2075
2076// something like this should be part of ATM Linux
2077static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2078  // we are assuming non-UBR, and non-special values of pcr
2079  if (tp->min_pcr == ATM_MAX_PCR)
2080    PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2081  else if (tp->min_pcr < 0)
2082    PRINTD (DBG_QOS, "luser gave negative min_pcr");
2083  else if (tp->min_pcr && tp->min_pcr > pcr)
2084    PRINTD (DBG_QOS, "pcr less than min_pcr");
2085  else
2086    // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2087    // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2088    // [this would get rid of next two conditionals]
2089    if ((0) && tp->max_pcr == ATM_MAX_PCR)
2090      PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2091    else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2092      PRINTD (DBG_QOS, "luser gave negative max_pcr");
2093    else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2094      PRINTD (DBG_QOS, "pcr greater than max_pcr");
2095    else {
2096      // each limit unspecified or not violated
2097      PRINTD (DBG_QOS, "xBR(pcr) OK");
2098      return 0;
2099    }
2100  PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2101	  pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2102  return -EINVAL;
2103}
2104
2105/********** open VC **********/
2106
2107static int hrz_open (struct atm_vcc *atm_vcc)
2108{
2109  int error;
2110  u16 channel;
2111  
2112  struct atm_qos * qos;
2113  struct atm_trafprm * txtp;
2114  struct atm_trafprm * rxtp;
2115  
2116  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2117  hrz_vcc vcc;
2118  hrz_vcc * vccp; // allocated late
2119  short vpi = atm_vcc->vpi;
2120  int vci = atm_vcc->vci;
2121  PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2122  
2123#ifdef ATM_VPI_UNSPEC
2124  // UNSPEC is deprecated, remove this code eventually
2125  if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2126    PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2127    return -EINVAL;
2128  }
2129#endif
2130  
2131  error = vpivci_to_channel (&channel, vpi, vci);
2132  if (error) {
2133    PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2134    return error;
2135  }
2136  
2137  vcc.channel = channel;
2138  // max speed for the moment
2139  vcc.tx_rate = 0x0;
2140  
2141  qos = &atm_vcc->qos;
2142  
2143  // check AAL and remember it
2144  switch (qos->aal) {
2145    case ATM_AAL0:
2146      // we would if it were 48 bytes and not 52!
2147      PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2148      vcc.aal = aal0;
2149      break;
2150    case ATM_AAL34:
2151      // we would if I knew how do the SAR!
2152      PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2153      vcc.aal = aal34;
2154      break;
2155    case ATM_AAL5:
2156      PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2157      vcc.aal = aal5;
2158      break;
2159    default:
2160      PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2161      return -EINVAL;
 
2162  }
2163  
2164  // TX traffic parameters
2165  
2166  // there are two, interrelated problems here: 1. the reservation of
2167  // PCR is not a binary choice, we are given bounds and/or a
2168  // desirable value; 2. the device is only capable of certain values,
2169  // most of which are not integers. It is almost certainly acceptable
2170  // to be off by a maximum of 1 to 10 cps.
2171  
2172  // Pragmatic choice: always store an integral PCR as that which has
2173  // been allocated, even if we allocate a little (or a lot) less,
2174  // after rounding. The actual allocation depends on what we can
2175  // manage with our rate selection algorithm. The rate selection
2176  // algorithm is given an integral PCR and a tolerance and told
2177  // whether it should round the value up or down if the tolerance is
2178  // exceeded; it returns: a) the actual rate selected (rounded up to
2179  // the nearest integer), b) a bit pattern to feed to the timer
2180  // register, and c) a failure value if no applicable rate exists.
2181  
2182  // Part of the job is done by atm_pcr_goal which gives us a PCR
2183  // specification which says: EITHER grab the maximum available PCR
2184  // (and perhaps a lower bound which we musn't pass), OR grab this
2185  // amount, rounding down if you have to (and perhaps a lower bound
2186  // which we musn't pass) OR grab this amount, rounding up if you
2187  // have to (and perhaps an upper bound which we musn't pass). If any
2188  // bounds ARE passed we fail. Note that rounding is only rounding to
2189  // match device limitations, we do not round down to satisfy
2190  // bandwidth availability even if this would not violate any given
2191  // lower bound.
2192  
2193  // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2194  // (say) so this is not even a binary fixpoint cell rate (but this
2195  // device can do it). To avoid this sort of hassle we use a
2196  // tolerance parameter (currently fixed at 10 cps).
2197  
2198  PRINTD (DBG_QOS, "TX:");
2199  
2200  txtp = &qos->txtp;
2201  
2202  // set up defaults for no traffic
2203  vcc.tx_rate = 0;
2204  // who knows what would actually happen if you try and send on this?
2205  vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2206  vcc.tx_pcr_bits = CLOCK_DISABLE;
2207#if 0
2208  vcc.tx_scr_bits = CLOCK_DISABLE;
2209  vcc.tx_bucket_bits = 0;
2210#endif
2211  
2212  if (txtp->traffic_class != ATM_NONE) {
2213    error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2214    if (error) {
2215      PRINTD (DBG_QOS, "TX max_sdu check failed");
2216      return error;
2217    }
2218    
2219    switch (txtp->traffic_class) {
2220      case ATM_UBR: {
2221	// we take "the PCR" as a rate-cap
2222	// not reserved
2223	vcc.tx_rate = 0;
2224	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2225	vcc.tx_xbr_bits = ABR_RATE_TYPE;
2226	break;
2227      }
2228#if 0
2229      case ATM_ABR: {
2230	// reserve min, allow up to max
2231	vcc.tx_rate = 0; // ?
2232	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2233	vcc.tx_xbr_bits = ABR_RATE_TYPE;
2234	break;
2235      }
2236#endif
2237      case ATM_CBR: {
2238	int pcr = atm_pcr_goal (txtp);
2239	rounding r;
2240	if (!pcr) {
2241	  // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2242	  // should really have: once someone gets unlimited bandwidth
2243	  // that no more non-UBR channels can be opened until the
2244	  // unlimited one closes?? For the moment, round_down means
2245	  // greedy people actually get something and not nothing
2246	  r = round_down;
2247	  // slight race (no locking) here so we may get -EAGAIN
2248	  // later; the greedy bastards would deserve it :)
2249	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2250	  pcr = dev->tx_avail;
2251	} else if (pcr < 0) {
2252	  r = round_down;
2253	  pcr = -pcr;
2254	} else {
2255	  r = round_up;
2256	}
2257	error = make_rate_with_tolerance (dev, pcr, r, 10,
2258					  &vcc.tx_pcr_bits, &vcc.tx_rate);
2259	if (error) {
2260	  PRINTD (DBG_QOS, "could not make rate from TX PCR");
2261	  return error;
2262	}
2263	// not really clear what further checking is needed
2264	error = atm_pcr_check (txtp, vcc.tx_rate);
2265	if (error) {
2266	  PRINTD (DBG_QOS, "TX PCR failed consistency check");
2267	  return error;
2268	}
2269	vcc.tx_xbr_bits = CBR_RATE_TYPE;
2270	break;
2271      }
2272#if 0
2273      case ATM_VBR: {
2274	int pcr = atm_pcr_goal (txtp);
2275	// int scr = atm_scr_goal (txtp);
2276	int scr = pcr/2; // just for fun
2277	unsigned int mbs = 60; // just for fun
2278	rounding pr;
2279	rounding sr;
2280	unsigned int bucket;
2281	if (!pcr) {
2282	  pr = round_nearest;
2283	  pcr = 1<<30;
2284	} else if (pcr < 0) {
2285	  pr = round_down;
2286	  pcr = -pcr;
2287	} else {
2288	  pr = round_up;
2289	}
2290	error = make_rate_with_tolerance (dev, pcr, pr, 10,
2291					  &vcc.tx_pcr_bits, 0);
2292	if (!scr) {
2293	  // see comments for PCR with CBR above
2294	  sr = round_down;
2295	  // slight race (no locking) here so we may get -EAGAIN
2296	  // later; the greedy bastards would deserve it :)
2297	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2298	  scr = dev->tx_avail;
2299	} else if (scr < 0) {
2300	  sr = round_down;
2301	  scr = -scr;
2302	} else {
2303	  sr = round_up;
2304	}
2305	error = make_rate_with_tolerance (dev, scr, sr, 10,
2306					  &vcc.tx_scr_bits, &vcc.tx_rate);
2307	if (error) {
2308	  PRINTD (DBG_QOS, "could not make rate from TX SCR");
2309	  return error;
2310	}
2311	// not really clear what further checking is needed
2312	// error = atm_scr_check (txtp, vcc.tx_rate);
2313	if (error) {
2314	  PRINTD (DBG_QOS, "TX SCR failed consistency check");
2315	  return error;
2316	}
2317	// bucket calculations (from a piece of paper...) cell bucket
2318	// capacity must be largest integer smaller than m(p-s)/p + 1
2319	// where m = max burst size, p = pcr, s = scr
2320	bucket = mbs*(pcr-scr)/pcr;
2321	if (bucket*pcr != mbs*(pcr-scr))
2322	  bucket += 1;
2323	if (bucket > BUCKET_MAX_SIZE) {
2324	  PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2325		  bucket, BUCKET_MAX_SIZE);
2326	  bucket = BUCKET_MAX_SIZE;
2327	}
2328	vcc.tx_xbr_bits = VBR_RATE_TYPE;
2329	vcc.tx_bucket_bits = bucket;
2330	break;
2331      }
2332#endif
2333      default: {
2334	PRINTD (DBG_QOS, "unsupported TX traffic class");
2335	return -EINVAL;
 
2336      }
2337    }
2338  }
2339  
2340  // RX traffic parameters
2341  
2342  PRINTD (DBG_QOS, "RX:");
2343  
2344  rxtp = &qos->rxtp;
2345  
2346  // set up defaults for no traffic
2347  vcc.rx_rate = 0;
2348  
2349  if (rxtp->traffic_class != ATM_NONE) {
2350    error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2351    if (error) {
2352      PRINTD (DBG_QOS, "RX max_sdu check failed");
2353      return error;
2354    }
2355    switch (rxtp->traffic_class) {
2356      case ATM_UBR: {
2357	// not reserved
2358	break;
2359      }
2360#if 0
2361      case ATM_ABR: {
2362	// reserve min
2363	vcc.rx_rate = 0; // ?
2364	break;
2365      }
2366#endif
2367      case ATM_CBR: {
2368	int pcr = atm_pcr_goal (rxtp);
2369	if (!pcr) {
2370	  // slight race (no locking) here so we may get -EAGAIN
2371	  // later; the greedy bastards would deserve it :)
2372	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2373	  pcr = dev->rx_avail;
2374	} else if (pcr < 0) {
2375	  pcr = -pcr;
2376	}
2377	vcc.rx_rate = pcr;
2378	// not really clear what further checking is needed
2379	error = atm_pcr_check (rxtp, vcc.rx_rate);
2380	if (error) {
2381	  PRINTD (DBG_QOS, "RX PCR failed consistency check");
2382	  return error;
2383	}
2384	break;
2385      }
2386#if 0
2387      case ATM_VBR: {
2388	// int scr = atm_scr_goal (rxtp);
2389	int scr = 1<<16; // just for fun
2390	if (!scr) {
2391	  // slight race (no locking) here so we may get -EAGAIN
2392	  // later; the greedy bastards would deserve it :)
2393	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2394	  scr = dev->rx_avail;
2395	} else if (scr < 0) {
2396	  scr = -scr;
2397	}
2398	vcc.rx_rate = scr;
2399	// not really clear what further checking is needed
2400	// error = atm_scr_check (rxtp, vcc.rx_rate);
2401	if (error) {
2402	  PRINTD (DBG_QOS, "RX SCR failed consistency check");
2403	  return error;
2404	}
2405	break;
2406      }
2407#endif
2408      default: {
2409	PRINTD (DBG_QOS, "unsupported RX traffic class");
2410	return -EINVAL;
 
2411      }
2412    }
2413  }
2414  
2415  
2416  // late abort useful for diagnostics
2417  if (vcc.aal != aal5) {
2418    PRINTD (DBG_QOS, "AAL not supported");
2419    return -EINVAL;
2420  }
2421  
2422  // get space for our vcc stuff and copy parameters into it
2423  vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2424  if (!vccp) {
2425    PRINTK (KERN_ERR, "out of memory!");
2426    return -ENOMEM;
2427  }
2428  *vccp = vcc;
2429  
2430  // clear error and grab cell rate resource lock
2431  error = 0;
2432  spin_lock (&dev->rate_lock);
2433  
2434  if (vcc.tx_rate > dev->tx_avail) {
2435    PRINTD (DBG_QOS, "not enough TX PCR left");
2436    error = -EAGAIN;
2437  }
2438  
2439  if (vcc.rx_rate > dev->rx_avail) {
2440    PRINTD (DBG_QOS, "not enough RX PCR left");
2441    error = -EAGAIN;
2442  }
2443  
2444  if (!error) {
2445    // really consume cell rates
2446    dev->tx_avail -= vcc.tx_rate;
2447    dev->rx_avail -= vcc.rx_rate;
2448    PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2449	    vcc.tx_rate, vcc.rx_rate);
2450  }
2451  
2452  // release lock and exit on error
2453  spin_unlock (&dev->rate_lock);
2454  if (error) {
2455    PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2456    kfree (vccp);
2457    return error;
2458  }
2459  
2460  // this is "immediately before allocating the connection identifier
2461  // in hardware" - so long as the next call does not fail :)
2462  set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2463  
2464  // any errors here are very serious and should never occur
2465  
2466  if (rxtp->traffic_class != ATM_NONE) {
2467    if (dev->rxer[channel]) {
2468      PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2469      error = -EBUSY;
2470    }
2471    if (!error)
2472      error = hrz_open_rx (dev, channel);
2473    if (error) {
2474      kfree (vccp);
2475      return error;
2476    }
2477    // this link allows RX frames through
2478    dev->rxer[channel] = atm_vcc;
2479  }
2480  
2481  // success, set elements of atm_vcc
2482  atm_vcc->dev_data = (void *) vccp;
2483  
2484  // indicate readiness
2485  set_bit(ATM_VF_READY,&atm_vcc->flags);
2486  
2487  return 0;
2488}
2489
2490/********** close VC **********/
2491
2492static void hrz_close (struct atm_vcc * atm_vcc) {
2493  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2494  hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2495  u16 channel = vcc->channel;
2496  PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2497  
2498  // indicate unreadiness
2499  clear_bit(ATM_VF_READY,&atm_vcc->flags);
2500
2501  if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2502    unsigned int i;
2503    
2504    // let any TX on this channel that has started complete
2505    // no restart, just keep trying
2506    while (tx_hold (dev))
2507      ;
2508    // remove record of any tx_channel having been setup for this channel
2509    for (i = 0; i < TX_CHANS; ++i)
2510      if (dev->tx_channel_record[i] == channel) {
2511	dev->tx_channel_record[i] = -1;
2512	break;
2513      }
2514    if (dev->last_vc == channel)
2515      dev->tx_last = -1;
2516    tx_release (dev);
2517  }
2518
2519  if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2520    // disable RXing - it tries quite hard
2521    hrz_close_rx (dev, channel);
2522    // forget the vcc - no more skbs will be pushed
2523    if (atm_vcc != dev->rxer[channel])
2524      PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2525	      "arghhh! we're going to die!",
2526	      atm_vcc, dev->rxer[channel]);
2527    dev->rxer[channel] = NULL;
2528  }
2529  
2530  // atomically release our rate reservation
2531  spin_lock (&dev->rate_lock);
2532  PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2533	  vcc->tx_rate, vcc->rx_rate);
2534  dev->tx_avail += vcc->tx_rate;
2535  dev->rx_avail += vcc->rx_rate;
2536  spin_unlock (&dev->rate_lock);
2537  
2538  // free our structure
2539  kfree (vcc);
2540  // say the VPI/VCI is free again
2541  clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2542}
2543
2544#if 0
2545static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2546			   void *optval, int optlen) {
2547  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2548  PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2549  switch (level) {
2550    case SOL_SOCKET:
2551      switch (optname) {
2552//	case SO_BCTXOPT:
2553//	  break;
2554//	case SO_BCRXOPT:
2555//	  break;
2556	default:
2557	  return -ENOPROTOOPT;
 
2558      };
2559      break;
2560  }
2561  return -EINVAL;
2562}
2563
2564static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2565			   void *optval, unsigned int optlen) {
2566  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2567  PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2568  switch (level) {
2569    case SOL_SOCKET:
2570      switch (optname) {
2571//	case SO_BCTXOPT:
2572//	  break;
2573//	case SO_BCRXOPT:
2574//	  break;
2575	default:
2576	  return -ENOPROTOOPT;
 
2577      };
2578      break;
2579  }
2580  return -EINVAL;
2581}
2582#endif
2583
2584#if 0
2585static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2586  hrz_dev * dev = HRZ_DEV(atm_dev);
2587  PRINTD (DBG_FLOW, "hrz_ioctl");
2588  return -1;
2589}
2590
2591unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2592  hrz_dev * dev = HRZ_DEV(atm_dev);
2593  PRINTD (DBG_FLOW, "hrz_phy_get");
2594  return 0;
2595}
2596
2597static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2598			 unsigned long addr) {
2599  hrz_dev * dev = HRZ_DEV(atm_dev);
2600  PRINTD (DBG_FLOW, "hrz_phy_put");
2601}
2602
2603static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2604  hrz_dev * dev = HRZ_DEV(vcc->dev);
2605  PRINTD (DBG_FLOW, "hrz_change_qos");
2606  return -1;
2607}
2608#endif
2609
2610/********** proc file contents **********/
2611
2612static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2613  hrz_dev * dev = HRZ_DEV(atm_dev);
2614  int left = *pos;
2615  PRINTD (DBG_FLOW, "hrz_proc_read");
2616  
2617  /* more diagnostics here? */
2618  
2619#if 0
2620  if (!left--) {
2621    unsigned int count = sprintf (page, "vbr buckets:");
2622    unsigned int i;
2623    for (i = 0; i < TX_CHANS; ++i)
2624      count += sprintf (page, " %u/%u",
2625			query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2626			query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2627    count += sprintf (page+count, ".\n");
2628    return count;
2629  }
2630#endif
2631  
2632  if (!left--)
2633    return sprintf (page,
2634		    "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2635		    dev->tx_cell_count, dev->rx_cell_count,
2636		    dev->hec_error_count, dev->unassigned_cell_count);
2637  
2638  if (!left--)
2639    return sprintf (page,
2640		    "free cell buffers: TX %hu, RX %hu+%hu.\n",
2641		    rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2642		    rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2643		    dev->noof_spare_buffers);
2644  
2645  if (!left--)
2646    return sprintf (page,
2647		    "cps remaining: TX %u, RX %u\n",
2648		    dev->tx_avail, dev->rx_avail);
2649  
2650  return 0;
2651}
2652
2653static const struct atmdev_ops hrz_ops = {
2654  .open	= hrz_open,
2655  .close	= hrz_close,
2656  .send	= hrz_send,
2657  .proc_read	= hrz_proc_read,
2658  .owner	= THIS_MODULE,
2659};
2660
2661static int hrz_probe(struct pci_dev *pci_dev,
2662		     const struct pci_device_id *pci_ent)
2663{
2664	hrz_dev * dev;
2665	int err = 0;
2666
2667	// adapter slot free, read resources from PCI configuration space
2668	u32 iobase = pci_resource_start (pci_dev, 0);
2669	u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2670	unsigned int irq;
2671	unsigned char lat;
2672
2673	PRINTD (DBG_FLOW, "hrz_probe");
2674
2675	if (pci_enable_device(pci_dev))
2676		return -EINVAL;
2677
2678	/* XXX DEV_LABEL is a guess */
2679	if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2680		err = -EINVAL;
2681		goto out_disable;
2682	}
2683
2684	dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
2685	if (!dev) {
2686		// perhaps we should be nice: deregister all adapters and abort?
2687		PRINTD(DBG_ERR, "out of memory");
2688		err = -ENOMEM;
2689		goto out_release;
2690	}
2691
2692	pci_set_drvdata(pci_dev, dev);
2693
2694	// grab IRQ and install handler - move this someplace more sensible
2695	irq = pci_dev->irq;
2696	if (request_irq(irq,
2697			interrupt_handler,
2698			IRQF_SHARED, /* irqflags guess */
2699			DEV_LABEL, /* name guess */
2700			dev)) {
2701		PRINTD(DBG_WARN, "request IRQ failed!");
2702		err = -EINVAL;
2703		goto out_free;
2704	}
2705
2706	PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2707	       iobase, irq, membase);
2708
2709	dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
2710					NULL);
2711	if (!(dev->atm_dev)) {
2712		PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2713		err = -EINVAL;
2714		goto out_free_irq;
2715	}
2716
2717	PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2718	       dev->atm_dev->number, dev, dev->atm_dev);
2719	dev->atm_dev->dev_data = (void *) dev;
2720	dev->pci_dev = pci_dev; 
2721
2722	// enable bus master accesses
2723	pci_set_master(pci_dev);
2724
2725	// frobnicate latency (upwards, usually)
2726	pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2727	if (pci_lat) {
2728		PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2729		       "changing", lat, pci_lat);
2730		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2731	} else if (lat < MIN_PCI_LATENCY) {
2732		PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2733		       "increasing", lat, MIN_PCI_LATENCY);
2734		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2735	}
2736
2737	dev->iobase = iobase;
2738	dev->irq = irq; 
2739	dev->membase = membase; 
2740
2741	dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2742	dev->rx_q_wrap  = &memmap->rx_q_entries[RX_CHANS-1];
2743
2744	// these next three are performance hacks
2745	dev->last_vc = -1;
2746	dev->tx_last = -1;
2747	dev->tx_idle = 0;
2748
2749	dev->tx_regions = 0;
2750	dev->tx_bytes = 0;
2751	dev->tx_skb = NULL;
2752	dev->tx_iovec = NULL;
2753
2754	dev->tx_cell_count = 0;
2755	dev->rx_cell_count = 0;
2756	dev->hec_error_count = 0;
2757	dev->unassigned_cell_count = 0;
2758
2759	dev->noof_spare_buffers = 0;
2760
2761	{
2762		unsigned int i;
2763		for (i = 0; i < TX_CHANS; ++i)
2764			dev->tx_channel_record[i] = -1;
2765	}
2766
2767	dev->flags = 0;
2768
2769	// Allocate cell rates and remember ASIC version
2770	// Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2771	// Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2772	// Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2773
2774	if (hrz_init(dev)) {
2775		// to be really pedantic, this should be ATM_OC3c_PCR
2776		dev->tx_avail = ATM_OC3_PCR;
2777		dev->rx_avail = ATM_OC3_PCR;
2778		set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2779	} else {
2780		dev->tx_avail = ((25600000/8)*26)/(27*53);
2781		dev->rx_avail = ((25600000/8)*26)/(27*53);
2782		PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2783	}
2784
2785	// rate changes spinlock
2786	spin_lock_init(&dev->rate_lock);
2787
2788	// on-board memory access spinlock; we want atomic reads and
2789	// writes to adapter memory (handles IRQ and SMP)
2790	spin_lock_init(&dev->mem_lock);
2791
2792	init_waitqueue_head(&dev->tx_queue);
2793
2794	// vpi in 0..4, vci in 6..10
2795	dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2796	dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2797
2798	init_timer(&dev->housekeeping);
2799	dev->housekeeping.function = do_housekeeping;
2800	dev->housekeeping.data = (unsigned long) dev;
2801	mod_timer(&dev->housekeeping, jiffies);
2802
2803out:
2804	return err;
2805
2806out_free_irq:
2807	free_irq(dev->irq, dev);
2808out_free:
2809	kfree(dev);
2810out_release:
2811	release_region(iobase, HRZ_IO_EXTENT);
2812out_disable:
2813	pci_disable_device(pci_dev);
2814	goto out;
2815}
2816
2817static void hrz_remove_one(struct pci_dev *pci_dev)
2818{
2819	hrz_dev *dev;
2820
2821	dev = pci_get_drvdata(pci_dev);
2822
2823	PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2824	del_timer_sync(&dev->housekeeping);
2825	hrz_reset(dev);
2826	atm_dev_deregister(dev->atm_dev);
2827	free_irq(dev->irq, dev);
2828	release_region(dev->iobase, HRZ_IO_EXTENT);
2829	kfree(dev);
2830
2831	pci_disable_device(pci_dev);
2832}
2833
2834static void __init hrz_check_args (void) {
2835#ifdef DEBUG_HORIZON
2836  PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2837#else
2838  if (debug)
2839    PRINTK (KERN_NOTICE, "no debug support in this image");
2840#endif
2841  
2842  if (vpi_bits > HRZ_MAX_VPI)
2843    PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2844	    vpi_bits = HRZ_MAX_VPI);
2845  
2846  if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2847    PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2848	    max_tx_size = TX_AAL5_LIMIT);
2849  
2850  if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2851    PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2852	    max_rx_size = RX_AAL5_LIMIT);
2853  
2854  return;
2855}
2856
2857MODULE_AUTHOR(maintainer_string);
2858MODULE_DESCRIPTION(description_string);
2859MODULE_LICENSE("GPL");
2860module_param(debug, ushort, 0644);
2861module_param(vpi_bits, ushort, 0);
2862module_param(max_tx_size, int, 0);
2863module_param(max_rx_size, int, 0);
2864module_param(pci_lat, byte, 0);
2865MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2866MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2867MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2868MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2869MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2870
2871static struct pci_device_id hrz_pci_tbl[] = {
2872	{ PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
2873	  0, 0, 0 },
2874	{ 0, }
2875};
2876
2877MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2878
2879static struct pci_driver hrz_driver = {
2880	.name =		"horizon",
2881	.probe =	hrz_probe,
2882	.remove =	hrz_remove_one,
2883	.id_table =	hrz_pci_tbl,
2884};
2885
2886/********** module entry **********/
2887
2888static int __init hrz_module_init (void) {
2889  // sanity check - cast is needed since printk does not support %Zu
2890  if (sizeof(struct MEMMAP) != 128*1024/4) {
2891    PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
2892	    (unsigned long) sizeof(struct MEMMAP));
2893    return -ENOMEM;
2894  }
2895  
2896  show_version();
2897  
2898  // check arguments
2899  hrz_check_args();
2900  
2901  // get the juice
2902  return pci_register_driver(&hrz_driver);
2903}
2904
2905/********** module exit **********/
2906
2907static void __exit hrz_module_exit (void) {
2908  PRINTD (DBG_FLOW, "cleanup_module");
2909
2910  pci_unregister_driver(&hrz_driver);
2911}
2912
2913module_init(hrz_module_init);
2914module_exit(hrz_module_exit);