Linux Audio

Check our new training course

Loading...
v3.1
  1#include <linux/init.h>
  2
  3#include <linux/mm.h>
  4#include <linux/spinlock.h>
  5#include <linux/smp.h>
  6#include <linux/interrupt.h>
  7#include <linux/module.h>
  8#include <linux/cpu.h>
 
  9
 10#include <asm/tlbflush.h>
 11#include <asm/mmu_context.h>
 
 12#include <asm/cache.h>
 13#include <asm/apic.h>
 14#include <asm/uv/uv.h>
 15
 16DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate)
 17			= { &init_mm, 0, };
 18
 19/*
 20 *	Smarter SMP flushing macros.
 21 *		c/o Linus Torvalds.
 22 *
 23 *	These mean you can really definitely utterly forget about
 24 *	writing to user space from interrupts. (Its not allowed anyway).
 25 *
 26 *	Optimizations Manfred Spraul <manfred@colorfullife.com>
 27 *
 28 *	More scalable flush, from Andi Kleen
 29 *
 30 *	To avoid global state use 8 different call vectors.
 31 *	Each CPU uses a specific vector to trigger flushes on other
 32 *	CPUs. Depending on the received vector the target CPUs look into
 33 *	the right array slot for the flush data.
 34 *
 35 *	With more than 8 CPUs they are hashed to the 8 available
 36 *	vectors. The limited global vector space forces us to this right now.
 37 *	In future when interrupts are split into per CPU domains this could be
 38 *	fixed, at the cost of triggering multiple IPIs in some cases.
 39 */
 40
 41union smp_flush_state {
 42	struct {
 43		struct mm_struct *flush_mm;
 44		unsigned long flush_va;
 45		raw_spinlock_t tlbstate_lock;
 46		DECLARE_BITMAP(flush_cpumask, NR_CPUS);
 47	};
 48	char pad[INTERNODE_CACHE_BYTES];
 49} ____cacheline_internodealigned_in_smp;
 50
 51/* State is put into the per CPU data section, but padded
 52   to a full cache line because other CPUs can access it and we don't
 53   want false sharing in the per cpu data segment. */
 54static union smp_flush_state flush_state[NUM_INVALIDATE_TLB_VECTORS];
 
 
 
 
 55
 56static DEFINE_PER_CPU_READ_MOSTLY(int, tlb_vector_offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 57
 58/*
 59 * We cannot call mmdrop() because we are in interrupt context,
 60 * instead update mm->cpu_vm_mask.
 61 */
 62void leave_mm(int cpu)
 63{
 64	if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
 65		BUG();
 66	cpumask_clear_cpu(cpu,
 67			  mm_cpumask(percpu_read(cpu_tlbstate.active_mm)));
 68	load_cr3(swapper_pg_dir);
 
 
 
 
 
 
 
 
 
 
 
 
 69}
 70EXPORT_SYMBOL_GPL(leave_mm);
 71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 72/*
 
 
 73 *
 74 * The flush IPI assumes that a thread switch happens in this order:
 75 * [cpu0: the cpu that switches]
 76 * 1) switch_mm() either 1a) or 1b)
 77 * 1a) thread switch to a different mm
 78 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
 79 *	Stop ipi delivery for the old mm. This is not synchronized with
 80 *	the other cpus, but smp_invalidate_interrupt ignore flush ipis
 81 *	for the wrong mm, and in the worst case we perform a superfluous
 82 *	tlb flush.
 83 * 1a2) set cpu mmu_state to TLBSTATE_OK
 84 *	Now the smp_invalidate_interrupt won't call leave_mm if cpu0
 85 *	was in lazy tlb mode.
 86 * 1a3) update cpu active_mm
 87 *	Now cpu0 accepts tlb flushes for the new mm.
 88 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
 89 *	Now the other cpus will send tlb flush ipis.
 90 * 1a4) change cr3.
 91 * 1b) thread switch without mm change
 92 *	cpu active_mm is correct, cpu0 already handles
 93 *	flush ipis.
 94 * 1b1) set cpu mmu_state to TLBSTATE_OK
 95 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
 96 *	Atomically set the bit [other cpus will start sending flush ipis],
 97 *	and test the bit.
 98 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
 99 * 2) switch %%esp, ie current
100 *
101 * The interrupt must handle 2 special cases:
102 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
103 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
104 *   runs in kernel space, the cpu could load tlb entries for user space
105 *   pages.
106 *
107 * The good news is that cpu mmu_state is local to each cpu, no
108 * write/read ordering problems.
 
109 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
111/*
112 * TLB flush IPI:
 
113 *
114 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
115 * 2) Leave the mm if we are in the lazy tlb mode.
 
116 *
117 * Interrupts are disabled.
 
 
 
118 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
120/*
121 * FIXME: use of asmlinkage is not consistent.  On x86_64 it's noop
122 * but still used for documentation purpose but the usage is slightly
123 * inconsistent.  On x86_32, asmlinkage is regparm(0) but interrupt
124 * entry calls in with the first parameter in %eax.  Maybe define
125 * intrlinkage?
126 */
127#ifdef CONFIG_X86_64
128asmlinkage
129#endif
130void smp_invalidate_interrupt(struct pt_regs *regs)
131{
132	unsigned int cpu;
133	unsigned int sender;
134	union smp_flush_state *f;
135
136	cpu = smp_processor_id();
137	/*
138	 * orig_rax contains the negated interrupt vector.
139	 * Use that to determine where the sender put the data.
 
 
 
 
 
140	 */
141	sender = ~regs->orig_ax - INVALIDATE_TLB_VECTOR_START;
142	f = &flush_state[sender];
 
 
 
 
 
143
144	if (!cpumask_test_cpu(cpu, to_cpumask(f->flush_cpumask)))
145		goto out;
 
 
 
 
 
146		/*
147		 * This was a BUG() but until someone can quote me the
148		 * line from the intel manual that guarantees an IPI to
149		 * multiple CPUs is retried _only_ on the erroring CPUs
150		 * its staying as a return
151		 *
152		 * BUG();
153		 */
 
 
 
154
155	if (f->flush_mm == percpu_read(cpu_tlbstate.active_mm)) {
156		if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
157			if (f->flush_va == TLB_FLUSH_ALL)
158				local_flush_tlb();
159			else
160				__flush_tlb_one(f->flush_va);
161		} else
162			leave_mm(cpu);
163	}
164out:
165	ack_APIC_irq();
166	smp_mb__before_clear_bit();
167	cpumask_clear_cpu(cpu, to_cpumask(f->flush_cpumask));
168	smp_mb__after_clear_bit();
169	inc_irq_stat(irq_tlb_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170}
171
172static void flush_tlb_others_ipi(const struct cpumask *cpumask,
173				 struct mm_struct *mm, unsigned long va)
174{
175	unsigned int sender;
176	union smp_flush_state *f;
177
178	/* Caller has disabled preemption */
179	sender = this_cpu_read(tlb_vector_offset);
180	f = &flush_state[sender];
181
182	if (nr_cpu_ids > NUM_INVALIDATE_TLB_VECTORS)
183		raw_spin_lock(&f->tlbstate_lock);
 
184
185	f->flush_mm = mm;
186	f->flush_va = va;
187	if (cpumask_andnot(to_cpumask(f->flush_cpumask), cpumask, cpumask_of(smp_processor_id()))) {
188		/*
189		 * We have to send the IPI only to
190		 * CPUs affected.
191		 */
192		apic->send_IPI_mask(to_cpumask(f->flush_cpumask),
193			      INVALIDATE_TLB_VECTOR_START + sender);
194
195		while (!cpumask_empty(to_cpumask(f->flush_cpumask)))
196			cpu_relax();
197	}
198
199	f->flush_mm = NULL;
200	f->flush_va = 0;
201	if (nr_cpu_ids > NUM_INVALIDATE_TLB_VECTORS)
202		raw_spin_unlock(&f->tlbstate_lock);
203}
204
205void native_flush_tlb_others(const struct cpumask *cpumask,
206			     struct mm_struct *mm, unsigned long va)
207{
 
 
 
 
 
 
 
208	if (is_uv_system()) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209		unsigned int cpu;
210
211		cpu = smp_processor_id();
212		cpumask = uv_flush_tlb_others(cpumask, mm, va, cpu);
213		if (cpumask)
214			flush_tlb_others_ipi(cpumask, mm, va);
 
215		return;
216	}
217	flush_tlb_others_ipi(cpumask, mm, va);
 
218}
219
220static void __cpuinit calculate_tlb_offset(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
221{
222	int cpu, node, nr_node_vecs, idx = 0;
223	/*
224	 * we are changing tlb_vector_offset for each CPU in runtime, but this
225	 * will not cause inconsistency, as the write is atomic under X86. we
226	 * might see more lock contentions in a short time, but after all CPU's
227	 * tlb_vector_offset are changed, everything should go normal
228	 *
229	 * Note: if NUM_INVALIDATE_TLB_VECTORS % nr_online_nodes !=0, we might
230	 * waste some vectors.
231	 **/
232	if (nr_online_nodes > NUM_INVALIDATE_TLB_VECTORS)
233		nr_node_vecs = 1;
234	else
235		nr_node_vecs = NUM_INVALIDATE_TLB_VECTORS/nr_online_nodes;
236
237	for_each_online_node(node) {
238		int node_offset = (idx % NUM_INVALIDATE_TLB_VECTORS) *
239			nr_node_vecs;
240		int cpu_offset = 0;
241		for_each_cpu(cpu, cpumask_of_node(node)) {
242			per_cpu(tlb_vector_offset, cpu) = node_offset +
243				cpu_offset;
244			cpu_offset++;
245			cpu_offset = cpu_offset % nr_node_vecs;
246		}
247		idx++;
 
 
 
 
 
 
 
248	}
249}
250
251static int __cpuinit tlb_cpuhp_notify(struct notifier_block *n,
252		unsigned long action, void *hcpu)
253{
254	switch (action & 0xf) {
255	case CPU_ONLINE:
256	case CPU_DEAD:
257		calculate_tlb_offset();
258	}
259	return NOTIFY_OK;
260}
261
262static int __cpuinit init_smp_flush(void)
263{
264	int i;
 
 
265
266	for (i = 0; i < ARRAY_SIZE(flush_state); i++)
267		raw_spin_lock_init(&flush_state[i].tlbstate_lock);
268
269	calculate_tlb_offset();
270	hotcpu_notifier(tlb_cpuhp_notify, 0);
271	return 0;
 
272}
273core_initcall(init_smp_flush);
274
275void flush_tlb_current_task(void)
276{
277	struct mm_struct *mm = current->mm;
 
 
278
279	preempt_disable();
 
 
 
280
281	local_flush_tlb();
282	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
283		flush_tlb_others(mm_cpumask(mm), mm, TLB_FLUSH_ALL);
284	preempt_enable();
285}
286
287void flush_tlb_mm(struct mm_struct *mm)
288{
289	preempt_disable();
290
291	if (current->active_mm == mm) {
292		if (current->mm)
293			local_flush_tlb();
294		else
295			leave_mm(smp_processor_id());
 
 
 
 
296	}
297	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
298		flush_tlb_others(mm_cpumask(mm), mm, TLB_FLUSH_ALL);
299
300	preempt_enable();
301}
302
303void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
304{
305	struct mm_struct *mm = vma->vm_mm;
 
 
 
 
306
307	preempt_disable();
308
309	if (current->active_mm == mm) {
310		if (current->mm)
311			__flush_tlb_one(va);
312		else
313			leave_mm(smp_processor_id());
314	}
315
316	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
317		flush_tlb_others(mm_cpumask(mm), mm, va);
 
 
318
319	preempt_enable();
320}
321
322static void do_flush_tlb_all(void *info)
 
323{
324	__flush_tlb_all();
325	if (percpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
326		leave_mm(smp_processor_id());
 
 
327}
328
329void flush_tlb_all(void)
 
330{
331	on_each_cpu(do_flush_tlb_all, NULL, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
332}
v4.17
  1#include <linux/init.h>
  2
  3#include <linux/mm.h>
  4#include <linux/spinlock.h>
  5#include <linux/smp.h>
  6#include <linux/interrupt.h>
  7#include <linux/export.h>
  8#include <linux/cpu.h>
  9#include <linux/debugfs.h>
 10
 11#include <asm/tlbflush.h>
 12#include <asm/mmu_context.h>
 13#include <asm/nospec-branch.h>
 14#include <asm/cache.h>
 15#include <asm/apic.h>
 16#include <asm/uv/uv.h>
 17
 
 
 
 18/*
 19 *	TLB flushing, formerly SMP-only
 20 *		c/o Linus Torvalds.
 21 *
 22 *	These mean you can really definitely utterly forget about
 23 *	writing to user space from interrupts. (Its not allowed anyway).
 24 *
 25 *	Optimizations Manfred Spraul <manfred@colorfullife.com>
 26 *
 27 *	More scalable flush, from Andi Kleen
 28 *
 29 *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
 
 
 
 
 
 
 
 
 30 */
 31
 32/*
 33 * We get here when we do something requiring a TLB invalidation
 34 * but could not go invalidate all of the contexts.  We do the
 35 * necessary invalidation by clearing out the 'ctx_id' which
 36 * forces a TLB flush when the context is loaded.
 37 */
 38void clear_asid_other(void)
 39{
 40	u16 asid;
 41
 42	/*
 43	 * This is only expected to be set if we have disabled
 44	 * kernel _PAGE_GLOBAL pages.
 45	 */
 46	if (!static_cpu_has(X86_FEATURE_PTI)) {
 47		WARN_ON_ONCE(1);
 48		return;
 49	}
 50
 51	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
 52		/* Do not need to flush the current asid */
 53		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
 54			continue;
 55		/*
 56		 * Make sure the next time we go to switch to
 57		 * this asid, we do a flush:
 58		 */
 59		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
 60	}
 61	this_cpu_write(cpu_tlbstate.invalidate_other, false);
 62}
 63
 64atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
 65
 66
 67static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
 68			    u16 *new_asid, bool *need_flush)
 69{
 70	u16 asid;
 71
 72	if (!static_cpu_has(X86_FEATURE_PCID)) {
 73		*new_asid = 0;
 74		*need_flush = true;
 75		return;
 76	}
 77
 78	if (this_cpu_read(cpu_tlbstate.invalidate_other))
 79		clear_asid_other();
 80
 81	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
 82		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
 83		    next->context.ctx_id)
 84			continue;
 85
 86		*new_asid = asid;
 87		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
 88			       next_tlb_gen);
 89		return;
 90	}
 91
 92	/*
 93	 * We don't currently own an ASID slot on this CPU.
 94	 * Allocate a slot.
 95	 */
 96	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
 97	if (*new_asid >= TLB_NR_DYN_ASIDS) {
 98		*new_asid = 0;
 99		this_cpu_write(cpu_tlbstate.next_asid, 1);
100	}
101	*need_flush = true;
102}
103
104static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
105{
106	unsigned long new_mm_cr3;
107
108	if (need_flush) {
109		invalidate_user_asid(new_asid);
110		new_mm_cr3 = build_cr3(pgdir, new_asid);
111	} else {
112		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
113	}
114
115	/*
116	 * Caution: many callers of this function expect
117	 * that load_cr3() is serializing and orders TLB
118	 * fills with respect to the mm_cpumask writes.
119	 */
120	write_cr3(new_mm_cr3);
121}
122
 
 
 
 
123void leave_mm(int cpu)
124{
125	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
126
127	/*
128	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
129	 * If so, our callers still expect us to flush the TLB, but there
130	 * aren't any user TLB entries in init_mm to worry about.
131	 *
132	 * This needs to happen before any other sanity checks due to
133	 * intel_idle's shenanigans.
134	 */
135	if (loaded_mm == &init_mm)
136		return;
137
138	/* Warn if we're not lazy. */
139	WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
140
141	switch_mm(NULL, &init_mm, NULL);
142}
143EXPORT_SYMBOL_GPL(leave_mm);
144
145void switch_mm(struct mm_struct *prev, struct mm_struct *next,
146	       struct task_struct *tsk)
147{
148	unsigned long flags;
149
150	local_irq_save(flags);
151	switch_mm_irqs_off(prev, next, tsk);
152	local_irq_restore(flags);
153}
154
155static void sync_current_stack_to_mm(struct mm_struct *mm)
156{
157	unsigned long sp = current_stack_pointer;
158	pgd_t *pgd = pgd_offset(mm, sp);
159
160	if (pgtable_l5_enabled) {
161		if (unlikely(pgd_none(*pgd))) {
162			pgd_t *pgd_ref = pgd_offset_k(sp);
163
164			set_pgd(pgd, *pgd_ref);
165		}
166	} else {
167		/*
168		 * "pgd" is faked.  The top level entries are "p4d"s, so sync
169		 * the p4d.  This compiles to approximately the same code as
170		 * the 5-level case.
171		 */
172		p4d_t *p4d = p4d_offset(pgd, sp);
173
174		if (unlikely(p4d_none(*p4d))) {
175			pgd_t *pgd_ref = pgd_offset_k(sp);
176			p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
177
178			set_p4d(p4d, *p4d_ref);
179		}
180	}
181}
182
183void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
184			struct task_struct *tsk)
185{
186	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
187	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
188	unsigned cpu = smp_processor_id();
189	u64 next_tlb_gen;
190
191	/*
192	 * NB: The scheduler will call us with prev == next when switching
193	 * from lazy TLB mode to normal mode if active_mm isn't changing.
194	 * When this happens, we don't assume that CR3 (and hence
195	 * cpu_tlbstate.loaded_mm) matches next.
196	 *
197	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
198	 */
199
200	/* We don't want flush_tlb_func_* to run concurrently with us. */
201	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
202		WARN_ON_ONCE(!irqs_disabled());
203
204	/*
205	 * Verify that CR3 is what we think it is.  This will catch
206	 * hypothetical buggy code that directly switches to swapper_pg_dir
207	 * without going through leave_mm() / switch_mm_irqs_off() or that
208	 * does something like write_cr3(read_cr3_pa()).
209	 *
210	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
211	 * isn't free.
212	 */
213#ifdef CONFIG_DEBUG_VM
214	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
215		/*
216		 * If we were to BUG here, we'd be very likely to kill
217		 * the system so hard that we don't see the call trace.
218		 * Try to recover instead by ignoring the error and doing
219		 * a global flush to minimize the chance of corruption.
220		 *
221		 * (This is far from being a fully correct recovery.
222		 *  Architecturally, the CPU could prefetch something
223		 *  back into an incorrect ASID slot and leave it there
224		 *  to cause trouble down the road.  It's better than
225		 *  nothing, though.)
226		 */
227		__flush_tlb_all();
228	}
229#endif
230	this_cpu_write(cpu_tlbstate.is_lazy, false);
231
232	/*
233	 * The membarrier system call requires a full memory barrier and
234	 * core serialization before returning to user-space, after
235	 * storing to rq->curr. Writing to CR3 provides that full
236	 * memory barrier and core serializing instruction.
237	 */
238	if (real_prev == next) {
239		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
240			   next->context.ctx_id);
241
242		/*
243		 * We don't currently support having a real mm loaded without
244		 * our cpu set in mm_cpumask().  We have all the bookkeeping
245		 * in place to figure out whether we would need to flush
246		 * if our cpu were cleared in mm_cpumask(), but we don't
247		 * currently use it.
248		 */
249		if (WARN_ON_ONCE(real_prev != &init_mm &&
250				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
251			cpumask_set_cpu(cpu, mm_cpumask(next));
252
253		return;
254	} else {
255		u16 new_asid;
256		bool need_flush;
257		u64 last_ctx_id = this_cpu_read(cpu_tlbstate.last_ctx_id);
258
259		/*
260		 * Avoid user/user BTB poisoning by flushing the branch
261		 * predictor when switching between processes. This stops
262		 * one process from doing Spectre-v2 attacks on another.
263		 *
264		 * As an optimization, flush indirect branches only when
265		 * switching into processes that disable dumping. This
266		 * protects high value processes like gpg, without having
267		 * too high performance overhead. IBPB is *expensive*!
268		 *
269		 * This will not flush branches when switching into kernel
270		 * threads. It will also not flush if we switch to idle
271		 * thread and back to the same process. It will flush if we
272		 * switch to a different non-dumpable process.
273		 */
274		if (tsk && tsk->mm &&
275		    tsk->mm->context.ctx_id != last_ctx_id &&
276		    get_dumpable(tsk->mm) != SUID_DUMP_USER)
277			indirect_branch_prediction_barrier();
278
279		if (IS_ENABLED(CONFIG_VMAP_STACK)) {
280			/*
281			 * If our current stack is in vmalloc space and isn't
282			 * mapped in the new pgd, we'll double-fault.  Forcibly
283			 * map it.
284			 */
285			sync_current_stack_to_mm(next);
286		}
287
288		/* Stop remote flushes for the previous mm */
289		VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
290				real_prev != &init_mm);
291		cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
292
293		/*
294		 * Start remote flushes and then read tlb_gen.
295		 */
296		cpumask_set_cpu(cpu, mm_cpumask(next));
297		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
298
299		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
300
301		if (need_flush) {
302			this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
303			this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
304			load_new_mm_cr3(next->pgd, new_asid, true);
305
306			/*
307			 * NB: This gets called via leave_mm() in the idle path
308			 * where RCU functions differently.  Tracing normally
309			 * uses RCU, so we need to use the _rcuidle variant.
310			 *
311			 * (There is no good reason for this.  The idle code should
312			 *  be rearranged to call this before rcu_idle_enter().)
313			 */
314			trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
315		} else {
316			/* The new ASID is already up to date. */
317			load_new_mm_cr3(next->pgd, new_asid, false);
318
319			/* See above wrt _rcuidle. */
320			trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
321		}
322
323		/*
324		 * Record last user mm's context id, so we can avoid
325		 * flushing branch buffer with IBPB if we switch back
326		 * to the same user.
327		 */
328		if (next != &init_mm)
329			this_cpu_write(cpu_tlbstate.last_ctx_id, next->context.ctx_id);
330
331		this_cpu_write(cpu_tlbstate.loaded_mm, next);
332		this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
333	}
334
335	load_mm_cr4(next);
336	switch_ldt(real_prev, next);
337}
338
339/*
340 * Please ignore the name of this function.  It should be called
341 * switch_to_kernel_thread().
342 *
343 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
344 * kernel thread or other context without an mm.  Acceptable implementations
345 * include doing nothing whatsoever, switching to init_mm, or various clever
346 * lazy tricks to try to minimize TLB flushes.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
347 *
348 * The scheduler reserves the right to call enter_lazy_tlb() several times
349 * in a row.  It will notify us that we're going back to a real mm by
350 * calling switch_mm_irqs_off().
351 */
352void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
353{
354	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
355		return;
356
357	if (tlb_defer_switch_to_init_mm()) {
358		/*
359		 * There's a significant optimization that may be possible
360		 * here.  We have accurate enough TLB flush tracking that we
361		 * don't need to maintain coherence of TLB per se when we're
362		 * lazy.  We do, however, need to maintain coherence of
363		 * paging-structure caches.  We could, in principle, leave our
364		 * old mm loaded and only switch to init_mm when
365		 * tlb_remove_page() happens.
366		 */
367		this_cpu_write(cpu_tlbstate.is_lazy, true);
368	} else {
369		switch_mm(NULL, &init_mm, NULL);
370	}
371}
372
373/*
374 * Call this when reinitializing a CPU.  It fixes the following potential
375 * problems:
376 *
377 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
378 *   because the CPU was taken down and came back up with CR3's PCID
379 *   bits clear.  CPU hotplug can do this.
380 *
381 * - The TLB contains junk in slots corresponding to inactive ASIDs.
382 *
383 * - The CPU went so far out to lunch that it may have missed a TLB
384 *   flush.
385 */
386void initialize_tlbstate_and_flush(void)
387{
388	int i;
389	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
390	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
391	unsigned long cr3 = __read_cr3();
392
393	/* Assert that CR3 already references the right mm. */
394	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
395
396	/*
397	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
398	 * doesn't work like other CR4 bits because it can only be set from
399	 * long mode.)
400	 */
401	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
402		!(cr4_read_shadow() & X86_CR4_PCIDE));
403
404	/* Force ASID 0 and force a TLB flush. */
405	write_cr3(build_cr3(mm->pgd, 0));
406
407	/* Reinitialize tlbstate. */
408	this_cpu_write(cpu_tlbstate.last_ctx_id, mm->context.ctx_id);
409	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
410	this_cpu_write(cpu_tlbstate.next_asid, 1);
411	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
412	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
413
414	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
415		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
416}
417
418/*
419 * flush_tlb_func_common()'s memory ordering requirement is that any
420 * TLB fills that happen after we flush the TLB are ordered after we
421 * read active_mm's tlb_gen.  We don't need any explicit barriers
422 * because all x86 flush operations are serializing and the
423 * atomic64_read operation won't be reordered by the compiler.
424 */
425static void flush_tlb_func_common(const struct flush_tlb_info *f,
426				  bool local, enum tlb_flush_reason reason)
 
 
427{
 
 
 
 
 
428	/*
429	 * We have three different tlb_gen values in here.  They are:
430	 *
431	 * - mm_tlb_gen:     the latest generation.
432	 * - local_tlb_gen:  the generation that this CPU has already caught
433	 *                   up to.
434	 * - f->new_tlb_gen: the generation that the requester of the flush
435	 *                   wants us to catch up to.
436	 */
437	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
438	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
439	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
440	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
441
442	/* This code cannot presently handle being reentered. */
443	VM_WARN_ON(!irqs_disabled());
444
445	if (unlikely(loaded_mm == &init_mm))
446		return;
447
448	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
449		   loaded_mm->context.ctx_id);
450
451	if (this_cpu_read(cpu_tlbstate.is_lazy)) {
452		/*
453		 * We're in lazy mode.  We need to at least flush our
454		 * paging-structure cache to avoid speculatively reading
455		 * garbage into our TLB.  Since switching to init_mm is barely
456		 * slower than a minimal flush, just switch to init_mm.
 
 
457		 */
458		switch_mm_irqs_off(NULL, &init_mm, NULL);
459		return;
460	}
461
462	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
463		/*
464		 * There's nothing to do: we're already up to date.  This can
465		 * happen if two concurrent flushes happen -- the first flush to
466		 * be handled can catch us all the way up, leaving no work for
467		 * the second flush.
468		 */
469		trace_tlb_flush(reason, 0);
470		return;
471	}
472
473	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
474	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
475
476	/*
477	 * If we get to this point, we know that our TLB is out of date.
478	 * This does not strictly imply that we need to flush (it's
479	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
480	 * going to need to flush in the very near future, so we might
481	 * as well get it over with.
482	 *
483	 * The only question is whether to do a full or partial flush.
484	 *
485	 * We do a partial flush if requested and two extra conditions
486	 * are met:
487	 *
488	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
489	 *    we've always done all needed flushes to catch up to
490	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
491	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
492	 *    us up to date for tlb_gen 3 is the partial flush we're
493	 *    processing.
494	 *
495	 *    As an example of why this check is needed, suppose that there
496	 *    are two concurrent flushes.  The first is a full flush that
497	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
498	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
499	 *    processed on this CPU in reverse order, we'll see
500	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
501	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
502	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
503	 *    1 without the full flush that's needed for tlb_gen 2.
504	 *
505	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
506	 *    Partial TLB flushes are not all that much cheaper than full TLB
507	 *    flushes, so it seems unlikely that it would be a performance win
508	 *    to do a partial flush if that won't bring our TLB fully up to
509	 *    date.  By doing a full flush instead, we can increase
510	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
511	 *    avoid another flush in the very near future.
512	 */
513	if (f->end != TLB_FLUSH_ALL &&
514	    f->new_tlb_gen == local_tlb_gen + 1 &&
515	    f->new_tlb_gen == mm_tlb_gen) {
516		/* Partial flush */
517		unsigned long addr;
518		unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
519
520		addr = f->start;
521		while (addr < f->end) {
522			__flush_tlb_one_user(addr);
523			addr += PAGE_SIZE;
524		}
525		if (local)
526			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
527		trace_tlb_flush(reason, nr_pages);
528	} else {
529		/* Full flush. */
530		local_flush_tlb();
531		if (local)
532			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
533		trace_tlb_flush(reason, TLB_FLUSH_ALL);
534	}
535
536	/* Both paths above update our state to mm_tlb_gen. */
537	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
538}
539
540static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
 
541{
542	const struct flush_tlb_info *f = info;
 
543
544	flush_tlb_func_common(f, true, reason);
545}
 
546
547static void flush_tlb_func_remote(void *info)
548{
549	const struct flush_tlb_info *f = info;
550
551	inc_irq_stat(irq_tlb_count);
 
 
 
 
 
 
 
 
552
553	if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
554		return;
 
555
556	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
557	flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
 
 
558}
559
560void native_flush_tlb_others(const struct cpumask *cpumask,
561			     const struct flush_tlb_info *info)
562{
563	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
564	if (info->end == TLB_FLUSH_ALL)
565		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
566	else
567		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
568				(info->end - info->start) >> PAGE_SHIFT);
569
570	if (is_uv_system()) {
571		/*
572		 * This whole special case is confused.  UV has a "Broadcast
573		 * Assist Unit", which seems to be a fancy way to send IPIs.
574		 * Back when x86 used an explicit TLB flush IPI, UV was
575		 * optimized to use its own mechanism.  These days, x86 uses
576		 * smp_call_function_many(), but UV still uses a manual IPI,
577		 * and that IPI's action is out of date -- it does a manual
578		 * flush instead of calling flush_tlb_func_remote().  This
579		 * means that the percpu tlb_gen variables won't be updated
580		 * and we'll do pointless flushes on future context switches.
581		 *
582		 * Rather than hooking native_flush_tlb_others() here, I think
583		 * that UV should be updated so that smp_call_function_many(),
584		 * etc, are optimal on UV.
585		 */
586		unsigned int cpu;
587
588		cpu = smp_processor_id();
589		cpumask = uv_flush_tlb_others(cpumask, info);
590		if (cpumask)
591			smp_call_function_many(cpumask, flush_tlb_func_remote,
592					       (void *)info, 1);
593		return;
594	}
595	smp_call_function_many(cpumask, flush_tlb_func_remote,
596			       (void *)info, 1);
597}
598
599/*
600 * See Documentation/x86/tlb.txt for details.  We choose 33
601 * because it is large enough to cover the vast majority (at
602 * least 95%) of allocations, and is small enough that we are
603 * confident it will not cause too much overhead.  Each single
604 * flush is about 100 ns, so this caps the maximum overhead at
605 * _about_ 3,000 ns.
606 *
607 * This is in units of pages.
608 */
609static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
610
611void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
612				unsigned long end, unsigned long vmflag)
613{
614	int cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
615
616	struct flush_tlb_info info __aligned(SMP_CACHE_BYTES) = {
617		.mm = mm,
618	};
619
620	cpu = get_cpu();
621
622	/* This is also a barrier that synchronizes with switch_mm(). */
623	info.new_tlb_gen = inc_mm_tlb_gen(mm);
624
625	/* Should we flush just the requested range? */
626	if ((end != TLB_FLUSH_ALL) &&
627	    !(vmflag & VM_HUGETLB) &&
628	    ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
629		info.start = start;
630		info.end = end;
631	} else {
632		info.start = 0UL;
633		info.end = TLB_FLUSH_ALL;
634	}
 
635
636	if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
637		VM_WARN_ON(irqs_disabled());
638		local_irq_disable();
639		flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
640		local_irq_enable();
 
 
641	}
 
 
642
643	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
644		flush_tlb_others(mm_cpumask(mm), &info);
645
646	put_cpu();
647}
648
 
 
649
650static void do_flush_tlb_all(void *info)
651{
652	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
653	__flush_tlb_all();
654}
 
655
656void flush_tlb_all(void)
657{
658	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
659	on_each_cpu(do_flush_tlb_all, NULL, 1);
660}
661
662static void do_kernel_range_flush(void *info)
663{
664	struct flush_tlb_info *f = info;
665	unsigned long addr;
666
667	/* flush range by one by one 'invlpg' */
668	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
669		__flush_tlb_one_kernel(addr);
 
670}
671
672void flush_tlb_kernel_range(unsigned long start, unsigned long end)
673{
 
674
675	/* Balance as user space task's flush, a bit conservative */
676	if (end == TLB_FLUSH_ALL ||
677	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
678		on_each_cpu(do_flush_tlb_all, NULL, 1);
679	} else {
680		struct flush_tlb_info info;
681		info.start = start;
682		info.end = end;
683		on_each_cpu(do_kernel_range_flush, &info, 1);
684	}
 
 
 
 
685}
686
687void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
688{
689	struct flush_tlb_info info = {
690		.mm = NULL,
691		.start = 0UL,
692		.end = TLB_FLUSH_ALL,
693	};
694
695	int cpu = get_cpu();
696
697	if (cpumask_test_cpu(cpu, &batch->cpumask)) {
698		VM_WARN_ON(irqs_disabled());
699		local_irq_disable();
700		flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
701		local_irq_enable();
702	}
703
704	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
705		flush_tlb_others(&batch->cpumask, &info);
706
707	cpumask_clear(&batch->cpumask);
708
709	put_cpu();
710}
711
712static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
713			     size_t count, loff_t *ppos)
714{
715	char buf[32];
716	unsigned int len;
717
718	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
719	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
720}
721
722static ssize_t tlbflush_write_file(struct file *file,
723		 const char __user *user_buf, size_t count, loff_t *ppos)
724{
725	char buf[32];
726	ssize_t len;
727	int ceiling;
728
729	len = min(count, sizeof(buf) - 1);
730	if (copy_from_user(buf, user_buf, len))
731		return -EFAULT;
732
733	buf[len] = '\0';
734	if (kstrtoint(buf, 0, &ceiling))
735		return -EINVAL;
736
737	if (ceiling < 0)
738		return -EINVAL;
739
740	tlb_single_page_flush_ceiling = ceiling;
741	return count;
742}
743
744static const struct file_operations fops_tlbflush = {
745	.read = tlbflush_read_file,
746	.write = tlbflush_write_file,
747	.llseek = default_llseek,
748};
749
750static int __init create_tlb_single_page_flush_ceiling(void)
751{
752	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
753			    arch_debugfs_dir, NULL, &fops_tlbflush);
754	return 0;
755}
756late_initcall(create_tlb_single_page_flush_ceiling);