Linux Audio

Check our new training course

Loading...
v3.1
  1#include <linux/init.h>
  2
  3#include <linux/mm.h>
  4#include <linux/spinlock.h>
  5#include <linux/smp.h>
  6#include <linux/interrupt.h>
  7#include <linux/module.h>
  8#include <linux/cpu.h>
  9
 10#include <asm/tlbflush.h>
 11#include <asm/mmu_context.h>
 12#include <asm/cache.h>
 13#include <asm/apic.h>
 14#include <asm/uv/uv.h>
 15
 16DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate)
 17			= { &init_mm, 0, };
 18
 19/*
 20 *	Smarter SMP flushing macros.
 21 *		c/o Linus Torvalds.
 22 *
 23 *	These mean you can really definitely utterly forget about
 24 *	writing to user space from interrupts. (Its not allowed anyway).
 25 *
 26 *	Optimizations Manfred Spraul <manfred@colorfullife.com>
 27 *
 28 *	More scalable flush, from Andi Kleen
 29 *
 30 *	To avoid global state use 8 different call vectors.
 31 *	Each CPU uses a specific vector to trigger flushes on other
 32 *	CPUs. Depending on the received vector the target CPUs look into
 33 *	the right array slot for the flush data.
 34 *
 35 *	With more than 8 CPUs they are hashed to the 8 available
 36 *	vectors. The limited global vector space forces us to this right now.
 37 *	In future when interrupts are split into per CPU domains this could be
 38 *	fixed, at the cost of triggering multiple IPIs in some cases.
 39 */
 40
 41union smp_flush_state {
 42	struct {
 43		struct mm_struct *flush_mm;
 44		unsigned long flush_va;
 45		raw_spinlock_t tlbstate_lock;
 46		DECLARE_BITMAP(flush_cpumask, NR_CPUS);
 47	};
 48	char pad[INTERNODE_CACHE_BYTES];
 49} ____cacheline_internodealigned_in_smp;
 50
 51/* State is put into the per CPU data section, but padded
 52   to a full cache line because other CPUs can access it and we don't
 53   want false sharing in the per cpu data segment. */
 54static union smp_flush_state flush_state[NUM_INVALIDATE_TLB_VECTORS];
 55
 56static DEFINE_PER_CPU_READ_MOSTLY(int, tlb_vector_offset);
 
 
 
 
 57
 58/*
 59 * We cannot call mmdrop() because we are in interrupt context,
 60 * instead update mm->cpu_vm_mask.
 61 */
 62void leave_mm(int cpu)
 63{
 64	if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
 
 65		BUG();
 66	cpumask_clear_cpu(cpu,
 67			  mm_cpumask(percpu_read(cpu_tlbstate.active_mm)));
 68	load_cr3(swapper_pg_dir);
 
 
 
 
 
 
 
 
 69}
 70EXPORT_SYMBOL_GPL(leave_mm);
 71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 72/*
 73 *
 74 * The flush IPI assumes that a thread switch happens in this order:
 75 * [cpu0: the cpu that switches]
 76 * 1) switch_mm() either 1a) or 1b)
 77 * 1a) thread switch to a different mm
 78 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
 79 *	Stop ipi delivery for the old mm. This is not synchronized with
 80 *	the other cpus, but smp_invalidate_interrupt ignore flush ipis
 81 *	for the wrong mm, and in the worst case we perform a superfluous
 82 *	tlb flush.
 83 * 1a2) set cpu mmu_state to TLBSTATE_OK
 84 *	Now the smp_invalidate_interrupt won't call leave_mm if cpu0
 85 *	was in lazy tlb mode.
 86 * 1a3) update cpu active_mm
 87 *	Now cpu0 accepts tlb flushes for the new mm.
 88 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
 89 *	Now the other cpus will send tlb flush ipis.
 90 * 1a4) change cr3.
 
 
 
 
 91 * 1b) thread switch without mm change
 92 *	cpu active_mm is correct, cpu0 already handles
 93 *	flush ipis.
 94 * 1b1) set cpu mmu_state to TLBSTATE_OK
 95 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
 96 *	Atomically set the bit [other cpus will start sending flush ipis],
 97 *	and test the bit.
 98 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
 99 * 2) switch %%esp, ie current
100 *
101 * The interrupt must handle 2 special cases:
102 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
103 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
104 *   runs in kernel space, the cpu could load tlb entries for user space
105 *   pages.
106 *
107 * The good news is that cpu mmu_state is local to each cpu, no
108 * write/read ordering problems.
109 */
110
111/*
112 * TLB flush IPI:
113 *
114 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
115 * 2) Leave the mm if we are in the lazy tlb mode.
116 *
117 * Interrupts are disabled.
118 */
119
120/*
121 * FIXME: use of asmlinkage is not consistent.  On x86_64 it's noop
122 * but still used for documentation purpose but the usage is slightly
123 * inconsistent.  On x86_32, asmlinkage is regparm(0) but interrupt
124 * entry calls in with the first parameter in %eax.  Maybe define
125 * intrlinkage?
126 */
127#ifdef CONFIG_X86_64
128asmlinkage
129#endif
130void smp_invalidate_interrupt(struct pt_regs *regs)
131{
132	unsigned int cpu;
133	unsigned int sender;
134	union smp_flush_state *f;
135
136	cpu = smp_processor_id();
137	/*
138	 * orig_rax contains the negated interrupt vector.
139	 * Use that to determine where the sender put the data.
140	 */
141	sender = ~regs->orig_ax - INVALIDATE_TLB_VECTOR_START;
142	f = &flush_state[sender];
143
144	if (!cpumask_test_cpu(cpu, to_cpumask(f->flush_cpumask)))
145		goto out;
146		/*
147		 * This was a BUG() but until someone can quote me the
148		 * line from the intel manual that guarantees an IPI to
149		 * multiple CPUs is retried _only_ on the erroring CPUs
150		 * its staying as a return
151		 *
152		 * BUG();
153		 */
154
155	if (f->flush_mm == percpu_read(cpu_tlbstate.active_mm)) {
156		if (percpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
157			if (f->flush_va == TLB_FLUSH_ALL)
158				local_flush_tlb();
159			else
160				__flush_tlb_one(f->flush_va);
161		} else
162			leave_mm(cpu);
163	}
164out:
165	ack_APIC_irq();
166	smp_mb__before_clear_bit();
167	cpumask_clear_cpu(cpu, to_cpumask(f->flush_cpumask));
168	smp_mb__after_clear_bit();
169	inc_irq_stat(irq_tlb_count);
170}
171
172static void flush_tlb_others_ipi(const struct cpumask *cpumask,
173				 struct mm_struct *mm, unsigned long va)
174{
175	unsigned int sender;
176	union smp_flush_state *f;
177
178	/* Caller has disabled preemption */
179	sender = this_cpu_read(tlb_vector_offset);
180	f = &flush_state[sender];
181
182	if (nr_cpu_ids > NUM_INVALIDATE_TLB_VECTORS)
183		raw_spin_lock(&f->tlbstate_lock);
184
185	f->flush_mm = mm;
186	f->flush_va = va;
187	if (cpumask_andnot(to_cpumask(f->flush_cpumask), cpumask, cpumask_of(smp_processor_id()))) {
188		/*
189		 * We have to send the IPI only to
190		 * CPUs affected.
191		 */
192		apic->send_IPI_mask(to_cpumask(f->flush_cpumask),
193			      INVALIDATE_TLB_VECTOR_START + sender);
194
195		while (!cpumask_empty(to_cpumask(f->flush_cpumask)))
196			cpu_relax();
197	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198
199	f->flush_mm = NULL;
200	f->flush_va = 0;
201	if (nr_cpu_ids > NUM_INVALIDATE_TLB_VECTORS)
202		raw_spin_unlock(&f->tlbstate_lock);
203}
204
205void native_flush_tlb_others(const struct cpumask *cpumask,
206			     struct mm_struct *mm, unsigned long va)
 
207{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208	if (is_uv_system()) {
209		unsigned int cpu;
210
211		cpu = smp_processor_id();
212		cpumask = uv_flush_tlb_others(cpumask, mm, va, cpu);
213		if (cpumask)
214			flush_tlb_others_ipi(cpumask, mm, va);
 
215		return;
216	}
217	flush_tlb_others_ipi(cpumask, mm, va);
218}
219
220static void __cpuinit calculate_tlb_offset(void)
221{
222	int cpu, node, nr_node_vecs, idx = 0;
223	/*
224	 * we are changing tlb_vector_offset for each CPU in runtime, but this
225	 * will not cause inconsistency, as the write is atomic under X86. we
226	 * might see more lock contentions in a short time, but after all CPU's
227	 * tlb_vector_offset are changed, everything should go normal
228	 *
229	 * Note: if NUM_INVALIDATE_TLB_VECTORS % nr_online_nodes !=0, we might
230	 * waste some vectors.
231	 **/
232	if (nr_online_nodes > NUM_INVALIDATE_TLB_VECTORS)
233		nr_node_vecs = 1;
234	else
235		nr_node_vecs = NUM_INVALIDATE_TLB_VECTORS/nr_online_nodes;
236
237	for_each_online_node(node) {
238		int node_offset = (idx % NUM_INVALIDATE_TLB_VECTORS) *
239			nr_node_vecs;
240		int cpu_offset = 0;
241		for_each_cpu(cpu, cpumask_of_node(node)) {
242			per_cpu(tlb_vector_offset, cpu) = node_offset +
243				cpu_offset;
244			cpu_offset++;
245			cpu_offset = cpu_offset % nr_node_vecs;
246		}
247		idx++;
248	}
249}
250
251static int __cpuinit tlb_cpuhp_notify(struct notifier_block *n,
252		unsigned long action, void *hcpu)
253{
254	switch (action & 0xf) {
255	case CPU_ONLINE:
256	case CPU_DEAD:
257		calculate_tlb_offset();
258	}
259	return NOTIFY_OK;
260}
261
262static int __cpuinit init_smp_flush(void)
263{
264	int i;
265
266	for (i = 0; i < ARRAY_SIZE(flush_state); i++)
267		raw_spin_lock_init(&flush_state[i].tlbstate_lock);
268
269	calculate_tlb_offset();
270	hotcpu_notifier(tlb_cpuhp_notify, 0);
271	return 0;
272}
273core_initcall(init_smp_flush);
274
275void flush_tlb_current_task(void)
276{
277	struct mm_struct *mm = current->mm;
278
279	preempt_disable();
280
 
 
 
281	local_flush_tlb();
 
 
282	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
283		flush_tlb_others(mm_cpumask(mm), mm, TLB_FLUSH_ALL);
284	preempt_enable();
285}
286
287void flush_tlb_mm(struct mm_struct *mm)
 
 
 
 
 
 
 
 
 
 
 
 
 
288{
 
 
 
 
289	preempt_disable();
 
 
 
290
291	if (current->active_mm == mm) {
292		if (current->mm)
293			local_flush_tlb();
294		else
295			leave_mm(smp_processor_id());
 
 
 
 
 
296	}
297	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
298		flush_tlb_others(mm_cpumask(mm), mm, TLB_FLUSH_ALL);
299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300	preempt_enable();
301}
302
303void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
304{
305	struct mm_struct *mm = vma->vm_mm;
306
307	preempt_disable();
308
309	if (current->active_mm == mm) {
310		if (current->mm)
311			__flush_tlb_one(va);
312		else
 
 
 
 
313			leave_mm(smp_processor_id());
 
 
 
 
314	}
315
316	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
317		flush_tlb_others(mm_cpumask(mm), mm, va);
318
319	preempt_enable();
320}
321
322static void do_flush_tlb_all(void *info)
323{
 
324	__flush_tlb_all();
325	if (percpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
326		leave_mm(smp_processor_id());
327}
328
329void flush_tlb_all(void)
330{
 
331	on_each_cpu(do_flush_tlb_all, NULL, 1);
332}
v4.10.11
  1#include <linux/init.h>
  2
  3#include <linux/mm.h>
  4#include <linux/spinlock.h>
  5#include <linux/smp.h>
  6#include <linux/interrupt.h>
  7#include <linux/export.h>
  8#include <linux/cpu.h>
  9
 10#include <asm/tlbflush.h>
 11#include <asm/mmu_context.h>
 12#include <asm/cache.h>
 13#include <asm/apic.h>
 14#include <asm/uv/uv.h>
 15#include <linux/debugfs.h>
 
 
 16
 17/*
 18 *	Smarter SMP flushing macros.
 19 *		c/o Linus Torvalds.
 20 *
 21 *	These mean you can really definitely utterly forget about
 22 *	writing to user space from interrupts. (Its not allowed anyway).
 23 *
 24 *	Optimizations Manfred Spraul <manfred@colorfullife.com>
 25 *
 26 *	More scalable flush, from Andi Kleen
 27 *
 28 *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
 
 
 
 
 
 
 
 
 29 */
 30
 31#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 32
 33struct flush_tlb_info {
 34	struct mm_struct *flush_mm;
 35	unsigned long flush_start;
 36	unsigned long flush_end;
 37};
 38
 39/*
 40 * We cannot call mmdrop() because we are in interrupt context,
 41 * instead update mm->cpu_vm_mask.
 42 */
 43void leave_mm(int cpu)
 44{
 45	struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
 46	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
 47		BUG();
 48	if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
 49		cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
 50		load_cr3(swapper_pg_dir);
 51		/*
 52		 * This gets called in the idle path where RCU
 53		 * functions differently.  Tracing normally
 54		 * uses RCU, so we have to call the tracepoint
 55		 * specially here.
 56		 */
 57		trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
 58	}
 59}
 60EXPORT_SYMBOL_GPL(leave_mm);
 61
 62#endif /* CONFIG_SMP */
 63
 64void switch_mm(struct mm_struct *prev, struct mm_struct *next,
 65	       struct task_struct *tsk)
 66{
 67	unsigned long flags;
 68
 69	local_irq_save(flags);
 70	switch_mm_irqs_off(prev, next, tsk);
 71	local_irq_restore(flags);
 72}
 73
 74void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
 75			struct task_struct *tsk)
 76{
 77	unsigned cpu = smp_processor_id();
 78
 79	if (likely(prev != next)) {
 80		if (IS_ENABLED(CONFIG_VMAP_STACK)) {
 81			/*
 82			 * If our current stack is in vmalloc space and isn't
 83			 * mapped in the new pgd, we'll double-fault.  Forcibly
 84			 * map it.
 85			 */
 86			unsigned int stack_pgd_index = pgd_index(current_stack_pointer());
 87
 88			pgd_t *pgd = next->pgd + stack_pgd_index;
 89
 90			if (unlikely(pgd_none(*pgd)))
 91				set_pgd(pgd, init_mm.pgd[stack_pgd_index]);
 92		}
 93
 94#ifdef CONFIG_SMP
 95		this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
 96		this_cpu_write(cpu_tlbstate.active_mm, next);
 97#endif
 98
 99		cpumask_set_cpu(cpu, mm_cpumask(next));
100
101		/*
102		 * Re-load page tables.
103		 *
104		 * This logic has an ordering constraint:
105		 *
106		 *  CPU 0: Write to a PTE for 'next'
107		 *  CPU 0: load bit 1 in mm_cpumask.  if nonzero, send IPI.
108		 *  CPU 1: set bit 1 in next's mm_cpumask
109		 *  CPU 1: load from the PTE that CPU 0 writes (implicit)
110		 *
111		 * We need to prevent an outcome in which CPU 1 observes
112		 * the new PTE value and CPU 0 observes bit 1 clear in
113		 * mm_cpumask.  (If that occurs, then the IPI will never
114		 * be sent, and CPU 0's TLB will contain a stale entry.)
115		 *
116		 * The bad outcome can occur if either CPU's load is
117		 * reordered before that CPU's store, so both CPUs must
118		 * execute full barriers to prevent this from happening.
119		 *
120		 * Thus, switch_mm needs a full barrier between the
121		 * store to mm_cpumask and any operation that could load
122		 * from next->pgd.  TLB fills are special and can happen
123		 * due to instruction fetches or for no reason at all,
124		 * and neither LOCK nor MFENCE orders them.
125		 * Fortunately, load_cr3() is serializing and gives the
126		 * ordering guarantee we need.
127		 *
128		 */
129		load_cr3(next->pgd);
130
131		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
132
133		/* Stop flush ipis for the previous mm */
134		cpumask_clear_cpu(cpu, mm_cpumask(prev));
135
136		/* Load per-mm CR4 state */
137		load_mm_cr4(next);
138
139#ifdef CONFIG_MODIFY_LDT_SYSCALL
140		/*
141		 * Load the LDT, if the LDT is different.
142		 *
143		 * It's possible that prev->context.ldt doesn't match
144		 * the LDT register.  This can happen if leave_mm(prev)
145		 * was called and then modify_ldt changed
146		 * prev->context.ldt but suppressed an IPI to this CPU.
147		 * In this case, prev->context.ldt != NULL, because we
148		 * never set context.ldt to NULL while the mm still
149		 * exists.  That means that next->context.ldt !=
150		 * prev->context.ldt, because mms never share an LDT.
151		 */
152		if (unlikely(prev->context.ldt != next->context.ldt))
153			load_mm_ldt(next);
154#endif
155	}
156#ifdef CONFIG_SMP
157	  else {
158		this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
159		BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);
160
161		if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
162			/*
163			 * On established mms, the mm_cpumask is only changed
164			 * from irq context, from ptep_clear_flush() while in
165			 * lazy tlb mode, and here. Irqs are blocked during
166			 * schedule, protecting us from simultaneous changes.
167			 */
168			cpumask_set_cpu(cpu, mm_cpumask(next));
169
170			/*
171			 * We were in lazy tlb mode and leave_mm disabled
172			 * tlb flush IPI delivery. We must reload CR3
173			 * to make sure to use no freed page tables.
174			 *
175			 * As above, load_cr3() is serializing and orders TLB
176			 * fills with respect to the mm_cpumask write.
177			 */
178			load_cr3(next->pgd);
179			trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
180			load_mm_cr4(next);
181			load_mm_ldt(next);
182		}
183	}
184#endif
185}
186
187#ifdef CONFIG_SMP
188
189/*
 
190 * The flush IPI assumes that a thread switch happens in this order:
191 * [cpu0: the cpu that switches]
192 * 1) switch_mm() either 1a) or 1b)
193 * 1a) thread switch to a different mm
194 * 1a1) set cpu_tlbstate to TLBSTATE_OK
195 *	Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
196 *	if cpu0 was in lazy tlb mode.
197 * 1a2) update cpu active_mm
 
 
 
 
 
198 *	Now cpu0 accepts tlb flushes for the new mm.
199 * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
200 *	Now the other cpus will send tlb flush ipis.
201 * 1a4) change cr3.
202 * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
203 *	Stop ipi delivery for the old mm. This is not synchronized with
204 *	the other cpus, but flush_tlb_func ignore flush ipis for the wrong
205 *	mm, and in the worst case we perform a superfluous tlb flush.
206 * 1b) thread switch without mm change
207 *	cpu active_mm is correct, cpu0 already handles flush ipis.
208 * 1b1) set cpu_tlbstate to TLBSTATE_OK
 
209 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
210 *	Atomically set the bit [other cpus will start sending flush ipis],
211 *	and test the bit.
212 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
213 * 2) switch %%esp, ie current
214 *
215 * The interrupt must handle 2 special cases:
216 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
217 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
218 *   runs in kernel space, the cpu could load tlb entries for user space
219 *   pages.
220 *
221 * The good news is that cpu_tlbstate is local to each cpu, no
222 * write/read ordering problems.
223 */
224
225/*
226 * TLB flush funcation:
 
227 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
228 * 2) Leave the mm if we are in the lazy tlb mode.
 
 
229 */
230static void flush_tlb_func(void *info)
 
 
 
 
 
 
 
 
 
 
 
231{
232	struct flush_tlb_info *f = info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234	inc_irq_stat(irq_tlb_count);
 
 
 
 
 
 
 
235
236	if (f->flush_mm && f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
237		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238
239	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
240	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
241		if (f->flush_end == TLB_FLUSH_ALL) {
242			local_flush_tlb();
243			trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
244		} else {
245			unsigned long addr;
246			unsigned long nr_pages =
247				(f->flush_end - f->flush_start) / PAGE_SIZE;
248			addr = f->flush_start;
249			while (addr < f->flush_end) {
250				__flush_tlb_single(addr);
251				addr += PAGE_SIZE;
252			}
253			trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
254		}
255	} else
256		leave_mm(smp_processor_id());
257
 
 
 
 
258}
259
260void native_flush_tlb_others(const struct cpumask *cpumask,
261				 struct mm_struct *mm, unsigned long start,
262				 unsigned long end)
263{
264	struct flush_tlb_info info;
265
266	if (end == 0)
267		end = start + PAGE_SIZE;
268	info.flush_mm = mm;
269	info.flush_start = start;
270	info.flush_end = end;
271
272	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
273	if (end == TLB_FLUSH_ALL)
274		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
275	else
276		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
277				(end - start) >> PAGE_SHIFT);
278
279	if (is_uv_system()) {
280		unsigned int cpu;
281
282		cpu = smp_processor_id();
283		cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
284		if (cpumask)
285			smp_call_function_many(cpumask, flush_tlb_func,
286								&info, 1);
287		return;
288	}
289	smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
290}
 
291
292void flush_tlb_current_task(void)
293{
294	struct mm_struct *mm = current->mm;
295
296	preempt_disable();
297
298	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
299
300	/* This is an implicit full barrier that synchronizes with switch_mm. */
301	local_flush_tlb();
302
303	trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
304	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
305		flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
306	preempt_enable();
307}
308
309/*
310 * See Documentation/x86/tlb.txt for details.  We choose 33
311 * because it is large enough to cover the vast majority (at
312 * least 95%) of allocations, and is small enough that we are
313 * confident it will not cause too much overhead.  Each single
314 * flush is about 100 ns, so this caps the maximum overhead at
315 * _about_ 3,000 ns.
316 *
317 * This is in units of pages.
318 */
319static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
320
321void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
322				unsigned long end, unsigned long vmflag)
323{
324	unsigned long addr;
325	/* do a global flush by default */
326	unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
327
328	preempt_disable();
329	if (current->active_mm != mm) {
330		/* Synchronize with switch_mm. */
331		smp_mb();
332
333		goto out;
334	}
335
336	if (!current->mm) {
337		leave_mm(smp_processor_id());
338
339		/* Synchronize with switch_mm. */
340		smp_mb();
341
342		goto out;
343	}
 
 
344
345	if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
346		base_pages_to_flush = (end - start) >> PAGE_SHIFT;
347
348	/*
349	 * Both branches below are implicit full barriers (MOV to CR or
350	 * INVLPG) that synchronize with switch_mm.
351	 */
352	if (base_pages_to_flush > tlb_single_page_flush_ceiling) {
353		base_pages_to_flush = TLB_FLUSH_ALL;
354		count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
355		local_flush_tlb();
356	} else {
357		/* flush range by one by one 'invlpg' */
358		for (addr = start; addr < end;	addr += PAGE_SIZE) {
359			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
360			__flush_tlb_single(addr);
361		}
362	}
363	trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
364out:
365	if (base_pages_to_flush == TLB_FLUSH_ALL) {
366		start = 0UL;
367		end = TLB_FLUSH_ALL;
368	}
369	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
370		flush_tlb_others(mm_cpumask(mm), mm, start, end);
371	preempt_enable();
372}
373
374void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
375{
376	struct mm_struct *mm = vma->vm_mm;
377
378	preempt_disable();
379
380	if (current->active_mm == mm) {
381		if (current->mm) {
382			/*
383			 * Implicit full barrier (INVLPG) that synchronizes
384			 * with switch_mm.
385			 */
386			__flush_tlb_one(start);
387		} else {
388			leave_mm(smp_processor_id());
389
390			/* Synchronize with switch_mm. */
391			smp_mb();
392		}
393	}
394
395	if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
396		flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
397
398	preempt_enable();
399}
400
401static void do_flush_tlb_all(void *info)
402{
403	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
404	__flush_tlb_all();
405	if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
406		leave_mm(smp_processor_id());
407}
408
409void flush_tlb_all(void)
410{
411	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
412	on_each_cpu(do_flush_tlb_all, NULL, 1);
413}
414
415static void do_kernel_range_flush(void *info)
416{
417	struct flush_tlb_info *f = info;
418	unsigned long addr;
419
420	/* flush range by one by one 'invlpg' */
421	for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
422		__flush_tlb_single(addr);
423}
424
425void flush_tlb_kernel_range(unsigned long start, unsigned long end)
426{
427
428	/* Balance as user space task's flush, a bit conservative */
429	if (end == TLB_FLUSH_ALL ||
430	    (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
431		on_each_cpu(do_flush_tlb_all, NULL, 1);
432	} else {
433		struct flush_tlb_info info;
434		info.flush_start = start;
435		info.flush_end = end;
436		on_each_cpu(do_kernel_range_flush, &info, 1);
437	}
438}
439
440static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
441			     size_t count, loff_t *ppos)
442{
443	char buf[32];
444	unsigned int len;
445
446	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
447	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
448}
449
450static ssize_t tlbflush_write_file(struct file *file,
451		 const char __user *user_buf, size_t count, loff_t *ppos)
452{
453	char buf[32];
454	ssize_t len;
455	int ceiling;
456
457	len = min(count, sizeof(buf) - 1);
458	if (copy_from_user(buf, user_buf, len))
459		return -EFAULT;
460
461	buf[len] = '\0';
462	if (kstrtoint(buf, 0, &ceiling))
463		return -EINVAL;
464
465	if (ceiling < 0)
466		return -EINVAL;
467
468	tlb_single_page_flush_ceiling = ceiling;
469	return count;
470}
471
472static const struct file_operations fops_tlbflush = {
473	.read = tlbflush_read_file,
474	.write = tlbflush_write_file,
475	.llseek = default_llseek,
476};
477
478static int __init create_tlb_single_page_flush_ceiling(void)
479{
480	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
481			    arch_debugfs_dir, NULL, &fops_tlbflush);
482	return 0;
483}
484late_initcall(create_tlb_single_page_flush_ceiling);
485
486#endif /* CONFIG_SMP */