Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Kernel-based Virtual Machine driver for Linux
  3 * cpuid support routines
  4 *
  5 * derived from arch/x86/kvm/x86.c
  6 *
  7 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
  8 * Copyright IBM Corporation, 2008
  9 *
 10 * This work is licensed under the terms of the GNU GPL, version 2.  See
 11 * the COPYING file in the top-level directory.
 12 *
 13 */
 14
 15#include <linux/kvm_host.h>
 16#include <linux/export.h>
 17#include <linux/vmalloc.h>
 18#include <linux/uaccess.h>
 19#include <linux/sched/stat.h>
 20
 21#include <asm/processor.h>
 22#include <asm/user.h>
 23#include <asm/fpu/xstate.h>
 24#include "cpuid.h"
 25#include "lapic.h"
 26#include "mmu.h"
 27#include "trace.h"
 28#include "pmu.h"
 29
 30static u32 xstate_required_size(u64 xstate_bv, bool compacted)
 31{
 32	int feature_bit = 0;
 33	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
 34
 35	xstate_bv &= XFEATURE_MASK_EXTEND;
 36	while (xstate_bv) {
 37		if (xstate_bv & 0x1) {
 38		        u32 eax, ebx, ecx, edx, offset;
 39		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
 40			offset = compacted ? ret : ebx;
 41			ret = max(ret, offset + eax);
 42		}
 43
 44		xstate_bv >>= 1;
 45		feature_bit++;
 46	}
 47
 48	return ret;
 49}
 50
 51bool kvm_mpx_supported(void)
 52{
 53	return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
 54		 && kvm_x86_ops->mpx_supported());
 55}
 56EXPORT_SYMBOL_GPL(kvm_mpx_supported);
 57
 58u64 kvm_supported_xcr0(void)
 59{
 60	u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
 61
 62	if (!kvm_mpx_supported())
 63		xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
 64
 65	return xcr0;
 66}
 67
 68#define F(x) bit(X86_FEATURE_##x)
 69
 70/* For scattered features from cpufeatures.h; we currently expose none */
 71#define KF(x) bit(KVM_CPUID_BIT_##x)
 72
 73int kvm_update_cpuid(struct kvm_vcpu *vcpu)
 74{
 75	struct kvm_cpuid_entry2 *best;
 76	struct kvm_lapic *apic = vcpu->arch.apic;
 77
 78	best = kvm_find_cpuid_entry(vcpu, 1, 0);
 79	if (!best)
 80		return 0;
 81
 82	/* Update OSXSAVE bit */
 83	if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
 84		best->ecx &= ~F(OSXSAVE);
 85		if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
 86			best->ecx |= F(OSXSAVE);
 87	}
 88
 89	best->edx &= ~F(APIC);
 90	if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
 91		best->edx |= F(APIC);
 92
 93	if (apic) {
 94		if (best->ecx & F(TSC_DEADLINE_TIMER))
 95			apic->lapic_timer.timer_mode_mask = 3 << 17;
 96		else
 97			apic->lapic_timer.timer_mode_mask = 1 << 17;
 98	}
 99
100	best = kvm_find_cpuid_entry(vcpu, 7, 0);
101	if (best) {
102		/* Update OSPKE bit */
103		if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
104			best->ecx &= ~F(OSPKE);
105			if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
106				best->ecx |= F(OSPKE);
107		}
108	}
109
110	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
111	if (!best) {
112		vcpu->arch.guest_supported_xcr0 = 0;
113		vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
114	} else {
115		vcpu->arch.guest_supported_xcr0 =
116			(best->eax | ((u64)best->edx << 32)) &
117			kvm_supported_xcr0();
118		vcpu->arch.guest_xstate_size = best->ebx =
119			xstate_required_size(vcpu->arch.xcr0, false);
120	}
121
122	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
123	if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
124		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
125
126	/*
127	 * The existing code assumes virtual address is 48-bit or 57-bit in the
128	 * canonical address checks; exit if it is ever changed.
129	 */
130	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
131	if (best) {
132		int vaddr_bits = (best->eax & 0xff00) >> 8;
133
134		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
135			return -EINVAL;
136	}
137
138	best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
139	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
140		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
141		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
142
143	/* Update physical-address width */
144	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
145	kvm_mmu_reset_context(vcpu);
146
147	kvm_pmu_refresh(vcpu);
148	return 0;
149}
150
151static int is_efer_nx(void)
152{
153	unsigned long long efer = 0;
154
155	rdmsrl_safe(MSR_EFER, &efer);
156	return efer & EFER_NX;
157}
158
159static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
160{
161	int i;
162	struct kvm_cpuid_entry2 *e, *entry;
163
164	entry = NULL;
165	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
166		e = &vcpu->arch.cpuid_entries[i];
167		if (e->function == 0x80000001) {
168			entry = e;
169			break;
170		}
171	}
172	if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
173		entry->edx &= ~F(NX);
174		printk(KERN_INFO "kvm: guest NX capability removed\n");
175	}
176}
177
178int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
179{
180	struct kvm_cpuid_entry2 *best;
181
182	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
183	if (!best || best->eax < 0x80000008)
184		goto not_found;
185	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
186	if (best)
187		return best->eax & 0xff;
188not_found:
189	return 36;
190}
191EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
192
193/* when an old userspace process fills a new kernel module */
194int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
195			     struct kvm_cpuid *cpuid,
196			     struct kvm_cpuid_entry __user *entries)
197{
198	int r, i;
199	struct kvm_cpuid_entry *cpuid_entries = NULL;
200
201	r = -E2BIG;
202	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
203		goto out;
204	r = -ENOMEM;
205	if (cpuid->nent) {
206		cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) *
207					cpuid->nent);
208		if (!cpuid_entries)
209			goto out;
210		r = -EFAULT;
211		if (copy_from_user(cpuid_entries, entries,
212				   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
213			goto out;
214	}
215	for (i = 0; i < cpuid->nent; i++) {
216		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
217		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
218		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
219		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
220		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
221		vcpu->arch.cpuid_entries[i].index = 0;
222		vcpu->arch.cpuid_entries[i].flags = 0;
223		vcpu->arch.cpuid_entries[i].padding[0] = 0;
224		vcpu->arch.cpuid_entries[i].padding[1] = 0;
225		vcpu->arch.cpuid_entries[i].padding[2] = 0;
226	}
227	vcpu->arch.cpuid_nent = cpuid->nent;
228	cpuid_fix_nx_cap(vcpu);
229	kvm_apic_set_version(vcpu);
230	kvm_x86_ops->cpuid_update(vcpu);
231	r = kvm_update_cpuid(vcpu);
232
233out:
234	vfree(cpuid_entries);
235	return r;
236}
237
238int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
239			      struct kvm_cpuid2 *cpuid,
240			      struct kvm_cpuid_entry2 __user *entries)
241{
242	int r;
243
244	r = -E2BIG;
245	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
246		goto out;
247	r = -EFAULT;
248	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
249			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
250		goto out;
251	vcpu->arch.cpuid_nent = cpuid->nent;
252	kvm_apic_set_version(vcpu);
253	kvm_x86_ops->cpuid_update(vcpu);
254	r = kvm_update_cpuid(vcpu);
255out:
256	return r;
257}
258
259int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
260			      struct kvm_cpuid2 *cpuid,
261			      struct kvm_cpuid_entry2 __user *entries)
262{
263	int r;
264
265	r = -E2BIG;
266	if (cpuid->nent < vcpu->arch.cpuid_nent)
267		goto out;
268	r = -EFAULT;
269	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
270			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
271		goto out;
272	return 0;
273
274out:
275	cpuid->nent = vcpu->arch.cpuid_nent;
276	return r;
277}
278
279static void cpuid_mask(u32 *word, int wordnum)
280{
281	*word &= boot_cpu_data.x86_capability[wordnum];
282}
283
284static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
285			   u32 index)
286{
287	entry->function = function;
288	entry->index = index;
289	cpuid_count(entry->function, entry->index,
290		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
291	entry->flags = 0;
292}
293
294static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
295				   u32 func, u32 index, int *nent, int maxnent)
296{
297	switch (func) {
298	case 0:
299		entry->eax = 7;
300		++*nent;
301		break;
302	case 1:
303		entry->ecx = F(MOVBE);
304		++*nent;
305		break;
306	case 7:
307		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
308		if (index == 0)
309			entry->ecx = F(RDPID);
310		++*nent;
311	default:
312		break;
313	}
314
315	entry->function = func;
316	entry->index = index;
317
318	return 0;
319}
320
321static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
322				 u32 index, int *nent, int maxnent)
323{
324	int r;
325	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
326#ifdef CONFIG_X86_64
327	unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
328				? F(GBPAGES) : 0;
329	unsigned f_lm = F(LM);
330#else
331	unsigned f_gbpages = 0;
332	unsigned f_lm = 0;
333#endif
334	unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
335	unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
336	unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
337	unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
338	unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
339
340	/* cpuid 1.edx */
341	const u32 kvm_cpuid_1_edx_x86_features =
342		F(FPU) | F(VME) | F(DE) | F(PSE) |
343		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
344		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
345		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
346		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
347		0 /* Reserved, DS, ACPI */ | F(MMX) |
348		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
349		0 /* HTT, TM, Reserved, PBE */;
350	/* cpuid 0x80000001.edx */
351	const u32 kvm_cpuid_8000_0001_edx_x86_features =
352		F(FPU) | F(VME) | F(DE) | F(PSE) |
353		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
354		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
355		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
356		F(PAT) | F(PSE36) | 0 /* Reserved */ |
357		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
358		F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
359		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
360	/* cpuid 1.ecx */
361	const u32 kvm_cpuid_1_ecx_x86_features =
362		/* NOTE: MONITOR (and MWAIT) are emulated as NOP,
363		 * but *not* advertised to guests via CPUID ! */
364		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
365		0 /* DS-CPL, VMX, SMX, EST */ |
366		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
367		F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
368		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
369		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
370		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
371		F(F16C) | F(RDRAND);
372	/* cpuid 0x80000001.ecx */
373	const u32 kvm_cpuid_8000_0001_ecx_x86_features =
374		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
375		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
376		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
377		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
378		F(TOPOEXT) | F(PERFCTR_CORE);
379
380	/* cpuid 0x80000008.ebx */
381	const u32 kvm_cpuid_8000_0008_ebx_x86_features =
382		F(AMD_IBPB) | F(AMD_IBRS) | F(VIRT_SSBD);
383
384	/* cpuid 0xC0000001.edx */
385	const u32 kvm_cpuid_C000_0001_edx_x86_features =
386		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
387		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
388		F(PMM) | F(PMM_EN);
389
390	/* cpuid 7.0.ebx */
391	const u32 kvm_cpuid_7_0_ebx_x86_features =
392		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
393		F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
394		F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
395		F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
396		F(SHA_NI) | F(AVX512BW) | F(AVX512VL);
397
398	/* cpuid 0xD.1.eax */
399	const u32 kvm_cpuid_D_1_eax_x86_features =
400		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
401
402	/* cpuid 7.0.ecx*/
403	const u32 kvm_cpuid_7_0_ecx_x86_features =
404		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ |
405		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
406		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG);
407
408	/* cpuid 7.0.edx*/
409	const u32 kvm_cpuid_7_0_edx_x86_features =
410		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
411		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES);
412
413	/* all calls to cpuid_count() should be made on the same cpu */
414	get_cpu();
415
416	r = -E2BIG;
417
418	if (*nent >= maxnent)
419		goto out;
420
421	do_cpuid_1_ent(entry, function, index);
422	++*nent;
423
424	switch (function) {
425	case 0:
426		entry->eax = min(entry->eax, (u32)0xd);
427		break;
428	case 1:
429		entry->edx &= kvm_cpuid_1_edx_x86_features;
430		cpuid_mask(&entry->edx, CPUID_1_EDX);
431		entry->ecx &= kvm_cpuid_1_ecx_x86_features;
432		cpuid_mask(&entry->ecx, CPUID_1_ECX);
433		/* we support x2apic emulation even if host does not support
434		 * it since we emulate x2apic in software */
435		entry->ecx |= F(X2APIC);
436		break;
437	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
438	 * may return different values. This forces us to get_cpu() before
439	 * issuing the first command, and also to emulate this annoying behavior
440	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
441	case 2: {
442		int t, times = entry->eax & 0xff;
443
444		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
445		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
446		for (t = 1; t < times; ++t) {
447			if (*nent >= maxnent)
448				goto out;
449
450			do_cpuid_1_ent(&entry[t], function, 0);
451			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
452			++*nent;
453		}
454		break;
455	}
456	/* function 4 has additional index. */
457	case 4: {
458		int i, cache_type;
459
460		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
461		/* read more entries until cache_type is zero */
462		for (i = 1; ; ++i) {
463			if (*nent >= maxnent)
464				goto out;
465
466			cache_type = entry[i - 1].eax & 0x1f;
467			if (!cache_type)
468				break;
469			do_cpuid_1_ent(&entry[i], function, i);
470			entry[i].flags |=
471			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
472			++*nent;
473		}
474		break;
475	}
476	case 6: /* Thermal management */
477		entry->eax = 0x4; /* allow ARAT */
478		entry->ebx = 0;
479		entry->ecx = 0;
480		entry->edx = 0;
481		break;
482	case 7: {
483		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
484		/* Mask ebx against host capability word 9 */
485		if (index == 0) {
486			entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
487			cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
488			// TSC_ADJUST is emulated
489			entry->ebx |= F(TSC_ADJUST);
490			entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
491			cpuid_mask(&entry->ecx, CPUID_7_ECX);
492			entry->ecx |= f_umip;
493			/* PKU is not yet implemented for shadow paging. */
494			if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
495				entry->ecx &= ~F(PKU);
496			entry->edx &= kvm_cpuid_7_0_edx_x86_features;
497			cpuid_mask(&entry->edx, CPUID_7_EDX);
498			/*
499			 * We emulate ARCH_CAPABILITIES in software even
500			 * if the host doesn't support it.
501			 */
502			entry->edx |= F(ARCH_CAPABILITIES);
503		} else {
504			entry->ebx = 0;
505			entry->ecx = 0;
506			entry->edx = 0;
507		}
508		entry->eax = 0;
509		break;
510	}
511	case 9:
512		break;
513	case 0xa: { /* Architectural Performance Monitoring */
514		struct x86_pmu_capability cap;
515		union cpuid10_eax eax;
516		union cpuid10_edx edx;
517
518		perf_get_x86_pmu_capability(&cap);
519
520		/*
521		 * Only support guest architectural pmu on a host
522		 * with architectural pmu.
523		 */
524		if (!cap.version)
525			memset(&cap, 0, sizeof(cap));
526
527		eax.split.version_id = min(cap.version, 2);
528		eax.split.num_counters = cap.num_counters_gp;
529		eax.split.bit_width = cap.bit_width_gp;
530		eax.split.mask_length = cap.events_mask_len;
531
532		edx.split.num_counters_fixed = cap.num_counters_fixed;
533		edx.split.bit_width_fixed = cap.bit_width_fixed;
534		edx.split.reserved = 0;
535
536		entry->eax = eax.full;
537		entry->ebx = cap.events_mask;
538		entry->ecx = 0;
539		entry->edx = edx.full;
540		break;
541	}
542	/* function 0xb has additional index. */
543	case 0xb: {
544		int i, level_type;
545
546		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
547		/* read more entries until level_type is zero */
548		for (i = 1; ; ++i) {
549			if (*nent >= maxnent)
550				goto out;
551
552			level_type = entry[i - 1].ecx & 0xff00;
553			if (!level_type)
554				break;
555			do_cpuid_1_ent(&entry[i], function, i);
556			entry[i].flags |=
557			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
558			++*nent;
559		}
560		break;
561	}
562	case 0xd: {
563		int idx, i;
564		u64 supported = kvm_supported_xcr0();
565
566		entry->eax &= supported;
567		entry->ebx = xstate_required_size(supported, false);
568		entry->ecx = entry->ebx;
569		entry->edx &= supported >> 32;
570		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
571		if (!supported)
572			break;
573
574		for (idx = 1, i = 1; idx < 64; ++idx) {
575			u64 mask = ((u64)1 << idx);
576			if (*nent >= maxnent)
577				goto out;
578
579			do_cpuid_1_ent(&entry[i], function, idx);
580			if (idx == 1) {
581				entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
582				cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
583				entry[i].ebx = 0;
584				if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
585					entry[i].ebx =
586						xstate_required_size(supported,
587								     true);
588			} else {
589				if (entry[i].eax == 0 || !(supported & mask))
590					continue;
591				if (WARN_ON_ONCE(entry[i].ecx & 1))
592					continue;
593			}
594			entry[i].ecx = 0;
595			entry[i].edx = 0;
596			entry[i].flags |=
597			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
598			++*nent;
599			++i;
600		}
601		break;
602	}
603	case KVM_CPUID_SIGNATURE: {
604		static const char signature[12] = "KVMKVMKVM\0\0";
605		const u32 *sigptr = (const u32 *)signature;
606		entry->eax = KVM_CPUID_FEATURES;
607		entry->ebx = sigptr[0];
608		entry->ecx = sigptr[1];
609		entry->edx = sigptr[2];
610		break;
611	}
612	case KVM_CPUID_FEATURES:
613		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
614			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
615			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
616			     (1 << KVM_FEATURE_ASYNC_PF) |
617			     (1 << KVM_FEATURE_PV_EOI) |
618			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
619			     (1 << KVM_FEATURE_PV_UNHALT) |
620			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
621			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT);
622
623		if (sched_info_on())
624			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
625
626		entry->ebx = 0;
627		entry->ecx = 0;
628		entry->edx = 0;
629		break;
630	case 0x80000000:
631		entry->eax = min(entry->eax, 0x8000001f);
632		break;
633	case 0x80000001:
634		entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
635		cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
636		entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
637		cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
638		break;
639	case 0x80000007: /* Advanced power management */
640		/* invariant TSC is CPUID.80000007H:EDX[8] */
641		entry->edx &= (1 << 8);
642		/* mask against host */
643		entry->edx &= boot_cpu_data.x86_power;
644		entry->eax = entry->ebx = entry->ecx = 0;
645		break;
646	case 0x80000008: {
647		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
648		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
649		unsigned phys_as = entry->eax & 0xff;
650
651		if (!g_phys_as)
652			g_phys_as = phys_as;
653		entry->eax = g_phys_as | (virt_as << 8);
654		entry->edx = 0;
655		/*
656		 * IBRS, IBPB and VIRT_SSBD aren't necessarily present in
657		 * hardware cpuid
658		 */
659		if (boot_cpu_has(X86_FEATURE_AMD_IBPB))
660			entry->ebx |= F(AMD_IBPB);
661		if (boot_cpu_has(X86_FEATURE_AMD_IBRS))
662			entry->ebx |= F(AMD_IBRS);
663		if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
664			entry->ebx |= F(VIRT_SSBD);
665		entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
666		cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
667		if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
668			entry->ebx |= F(VIRT_SSBD);
669		break;
670	}
671	case 0x80000019:
672		entry->ecx = entry->edx = 0;
673		break;
674	case 0x8000001a:
675		break;
676	case 0x8000001d:
677		break;
678	/*Add support for Centaur's CPUID instruction*/
679	case 0xC0000000:
680		/*Just support up to 0xC0000004 now*/
681		entry->eax = min(entry->eax, 0xC0000004);
682		break;
683	case 0xC0000001:
684		entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
685		cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
686		break;
687	case 3: /* Processor serial number */
688	case 5: /* MONITOR/MWAIT */
689	case 0xC0000002:
690	case 0xC0000003:
691	case 0xC0000004:
692	default:
693		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
694		break;
695	}
696
697	kvm_x86_ops->set_supported_cpuid(function, entry);
698
699	r = 0;
700
701out:
702	put_cpu();
703
704	return r;
705}
706
707static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
708			u32 idx, int *nent, int maxnent, unsigned int type)
709{
710	if (type == KVM_GET_EMULATED_CPUID)
711		return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
712
713	return __do_cpuid_ent(entry, func, idx, nent, maxnent);
714}
715
716#undef F
717
718struct kvm_cpuid_param {
719	u32 func;
720	u32 idx;
721	bool has_leaf_count;
722	bool (*qualifier)(const struct kvm_cpuid_param *param);
723};
724
725static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
726{
727	return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
728}
729
730static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
731				 __u32 num_entries, unsigned int ioctl_type)
732{
733	int i;
734	__u32 pad[3];
735
736	if (ioctl_type != KVM_GET_EMULATED_CPUID)
737		return false;
738
739	/*
740	 * We want to make sure that ->padding is being passed clean from
741	 * userspace in case we want to use it for something in the future.
742	 *
743	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
744	 * have to give ourselves satisfied only with the emulated side. /me
745	 * sheds a tear.
746	 */
747	for (i = 0; i < num_entries; i++) {
748		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
749			return true;
750
751		if (pad[0] || pad[1] || pad[2])
752			return true;
753	}
754	return false;
755}
756
757int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
758			    struct kvm_cpuid_entry2 __user *entries,
759			    unsigned int type)
760{
761	struct kvm_cpuid_entry2 *cpuid_entries;
762	int limit, nent = 0, r = -E2BIG, i;
763	u32 func;
764	static const struct kvm_cpuid_param param[] = {
765		{ .func = 0, .has_leaf_count = true },
766		{ .func = 0x80000000, .has_leaf_count = true },
767		{ .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
768		{ .func = KVM_CPUID_SIGNATURE },
769		{ .func = KVM_CPUID_FEATURES },
770	};
771
772	if (cpuid->nent < 1)
773		goto out;
774	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
775		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
776
777	if (sanity_check_entries(entries, cpuid->nent, type))
778		return -EINVAL;
779
780	r = -ENOMEM;
781	cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
782	if (!cpuid_entries)
783		goto out;
784
785	r = 0;
786	for (i = 0; i < ARRAY_SIZE(param); i++) {
787		const struct kvm_cpuid_param *ent = &param[i];
788
789		if (ent->qualifier && !ent->qualifier(ent))
790			continue;
791
792		r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
793				&nent, cpuid->nent, type);
794
795		if (r)
796			goto out_free;
797
798		if (!ent->has_leaf_count)
799			continue;
800
801		limit = cpuid_entries[nent - 1].eax;
802		for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
803			r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
804				     &nent, cpuid->nent, type);
805
806		if (r)
807			goto out_free;
808	}
809
810	r = -EFAULT;
811	if (copy_to_user(entries, cpuid_entries,
812			 nent * sizeof(struct kvm_cpuid_entry2)))
813		goto out_free;
814	cpuid->nent = nent;
815	r = 0;
816
817out_free:
818	vfree(cpuid_entries);
819out:
820	return r;
821}
822
823static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
824{
825	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
826	struct kvm_cpuid_entry2 *ej;
827	int j = i;
828	int nent = vcpu->arch.cpuid_nent;
829
830	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
831	/* when no next entry is found, the current entry[i] is reselected */
832	do {
833		j = (j + 1) % nent;
834		ej = &vcpu->arch.cpuid_entries[j];
835	} while (ej->function != e->function);
836
837	ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
838
839	return j;
840}
841
842/* find an entry with matching function, matching index (if needed), and that
843 * should be read next (if it's stateful) */
844static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
845	u32 function, u32 index)
846{
847	if (e->function != function)
848		return 0;
849	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
850		return 0;
851	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
852	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
853		return 0;
854	return 1;
855}
856
857struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
858					      u32 function, u32 index)
859{
860	int i;
861	struct kvm_cpuid_entry2 *best = NULL;
862
863	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
864		struct kvm_cpuid_entry2 *e;
865
866		e = &vcpu->arch.cpuid_entries[i];
867		if (is_matching_cpuid_entry(e, function, index)) {
868			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
869				move_to_next_stateful_cpuid_entry(vcpu, i);
870			best = e;
871			break;
872		}
873	}
874	return best;
875}
876EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
877
878/*
879 * If no match is found, check whether we exceed the vCPU's limit
880 * and return the content of the highest valid _standard_ leaf instead.
881 * This is to satisfy the CPUID specification.
882 */
883static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
884                                                  u32 function, u32 index)
885{
886	struct kvm_cpuid_entry2 *maxlevel;
887
888	maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
889	if (!maxlevel || maxlevel->eax >= function)
890		return NULL;
891	if (function & 0x80000000) {
892		maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
893		if (!maxlevel)
894			return NULL;
895	}
896	return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
897}
898
899bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
900	       u32 *ecx, u32 *edx, bool check_limit)
901{
902	u32 function = *eax, index = *ecx;
903	struct kvm_cpuid_entry2 *best;
904	bool entry_found = true;
905
906	best = kvm_find_cpuid_entry(vcpu, function, index);
907
908	if (!best) {
909		entry_found = false;
910		if (!check_limit)
911			goto out;
912
913		best = check_cpuid_limit(vcpu, function, index);
914	}
915
916out:
917	if (best) {
918		*eax = best->eax;
919		*ebx = best->ebx;
920		*ecx = best->ecx;
921		*edx = best->edx;
922	} else
923		*eax = *ebx = *ecx = *edx = 0;
924	trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, entry_found);
925	return entry_found;
926}
927EXPORT_SYMBOL_GPL(kvm_cpuid);
928
929int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
930{
931	u32 eax, ebx, ecx, edx;
932
933	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
934		return 1;
935
936	eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
937	ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
938	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
939	kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
940	kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
941	kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
942	kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
943	return kvm_skip_emulated_instruction(vcpu);
944}
945EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);