Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 * cpuid support routines
   5 *
   6 * derived from arch/x86/kvm/x86.c
   7 *
   8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
   9 * Copyright IBM Corporation, 2008
  10 */
  11
  12#include <linux/kvm_host.h>
  13#include <linux/export.h>
  14#include <linux/vmalloc.h>
  15#include <linux/uaccess.h>
  16#include <linux/sched/stat.h>
  17
  18#include <asm/processor.h>
  19#include <asm/user.h>
  20#include <asm/fpu/xstate.h>
  21#include "cpuid.h"
  22#include "lapic.h"
  23#include "mmu.h"
  24#include "trace.h"
  25#include "pmu.h"
  26
  27static u32 xstate_required_size(u64 xstate_bv, bool compacted)
  28{
  29	int feature_bit = 0;
  30	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  31
  32	xstate_bv &= XFEATURE_MASK_EXTEND;
  33	while (xstate_bv) {
  34		if (xstate_bv & 0x1) {
  35		        u32 eax, ebx, ecx, edx, offset;
  36		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
  37			offset = compacted ? ret : ebx;
  38			ret = max(ret, offset + eax);
  39		}
  40
  41		xstate_bv >>= 1;
  42		feature_bit++;
  43	}
  44
  45	return ret;
  46}
  47
  48bool kvm_mpx_supported(void)
  49{
  50	return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
  51		 && kvm_x86_ops->mpx_supported());
  52}
  53EXPORT_SYMBOL_GPL(kvm_mpx_supported);
  54
  55u64 kvm_supported_xcr0(void)
  56{
  57	u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
  58
  59	if (!kvm_mpx_supported())
  60		xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
  61
  62	return xcr0;
  63}
  64
  65#define F(x) bit(X86_FEATURE_##x)
  66
  67int kvm_update_cpuid(struct kvm_vcpu *vcpu)
  68{
  69	struct kvm_cpuid_entry2 *best;
  70	struct kvm_lapic *apic = vcpu->arch.apic;
  71
  72	best = kvm_find_cpuid_entry(vcpu, 1, 0);
  73	if (!best)
  74		return 0;
  75
  76	/* Update OSXSAVE bit */
  77	if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
  78		best->ecx &= ~F(OSXSAVE);
  79		if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  80			best->ecx |= F(OSXSAVE);
  81	}
  82
  83	best->edx &= ~F(APIC);
  84	if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
  85		best->edx |= F(APIC);
  86
  87	if (apic) {
  88		if (best->ecx & F(TSC_DEADLINE_TIMER))
  89			apic->lapic_timer.timer_mode_mask = 3 << 17;
  90		else
  91			apic->lapic_timer.timer_mode_mask = 1 << 17;
  92	}
  93
  94	best = kvm_find_cpuid_entry(vcpu, 7, 0);
  95	if (best) {
  96		/* Update OSPKE bit */
  97		if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
  98			best->ecx &= ~F(OSPKE);
  99			if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
 100				best->ecx |= F(OSPKE);
 101		}
 102	}
 103
 104	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
 105	if (!best) {
 106		vcpu->arch.guest_supported_xcr0 = 0;
 107		vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
 108	} else {
 109		vcpu->arch.guest_supported_xcr0 =
 110			(best->eax | ((u64)best->edx << 32)) &
 111			kvm_supported_xcr0();
 112		vcpu->arch.guest_xstate_size = best->ebx =
 113			xstate_required_size(vcpu->arch.xcr0, false);
 114	}
 115
 116	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
 117	if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
 118		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
 119
 120	/*
 121	 * The existing code assumes virtual address is 48-bit or 57-bit in the
 122	 * canonical address checks; exit if it is ever changed.
 123	 */
 124	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
 125	if (best) {
 126		int vaddr_bits = (best->eax & 0xff00) >> 8;
 127
 128		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
 129			return -EINVAL;
 130	}
 131
 132	best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
 133	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
 134		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
 135		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
 136
 137	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
 138		best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
 139		if (best) {
 140			if (vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT)
 141				best->ecx |= F(MWAIT);
 142			else
 143				best->ecx &= ~F(MWAIT);
 144		}
 145	}
 146
 147	/* Update physical-address width */
 148	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
 149	kvm_mmu_reset_context(vcpu);
 150
 151	kvm_pmu_refresh(vcpu);
 152	return 0;
 153}
 154
 155static int is_efer_nx(void)
 156{
 157	unsigned long long efer = 0;
 158
 159	rdmsrl_safe(MSR_EFER, &efer);
 160	return efer & EFER_NX;
 161}
 162
 163static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
 164{
 165	int i;
 166	struct kvm_cpuid_entry2 *e, *entry;
 167
 168	entry = NULL;
 169	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
 170		e = &vcpu->arch.cpuid_entries[i];
 171		if (e->function == 0x80000001) {
 172			entry = e;
 173			break;
 174		}
 175	}
 176	if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
 177		entry->edx &= ~F(NX);
 178		printk(KERN_INFO "kvm: guest NX capability removed\n");
 179	}
 180}
 181
 182int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
 183{
 184	struct kvm_cpuid_entry2 *best;
 185
 186	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
 187	if (!best || best->eax < 0x80000008)
 188		goto not_found;
 189	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
 190	if (best)
 191		return best->eax & 0xff;
 192not_found:
 193	return 36;
 194}
 195EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
 196
 197/* when an old userspace process fills a new kernel module */
 198int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
 199			     struct kvm_cpuid *cpuid,
 200			     struct kvm_cpuid_entry __user *entries)
 201{
 202	int r, i;
 203	struct kvm_cpuid_entry *cpuid_entries = NULL;
 204
 205	r = -E2BIG;
 206	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 207		goto out;
 208	r = -ENOMEM;
 209	if (cpuid->nent) {
 210		cpuid_entries =
 211			vmalloc(array_size(sizeof(struct kvm_cpuid_entry),
 212					   cpuid->nent));
 213		if (!cpuid_entries)
 214			goto out;
 215		r = -EFAULT;
 216		if (copy_from_user(cpuid_entries, entries,
 217				   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
 218			goto out;
 219	}
 220	for (i = 0; i < cpuid->nent; i++) {
 221		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
 222		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
 223		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
 224		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
 225		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
 226		vcpu->arch.cpuid_entries[i].index = 0;
 227		vcpu->arch.cpuid_entries[i].flags = 0;
 228		vcpu->arch.cpuid_entries[i].padding[0] = 0;
 229		vcpu->arch.cpuid_entries[i].padding[1] = 0;
 230		vcpu->arch.cpuid_entries[i].padding[2] = 0;
 231	}
 232	vcpu->arch.cpuid_nent = cpuid->nent;
 233	cpuid_fix_nx_cap(vcpu);
 234	kvm_apic_set_version(vcpu);
 235	kvm_x86_ops->cpuid_update(vcpu);
 236	r = kvm_update_cpuid(vcpu);
 237
 238out:
 239	vfree(cpuid_entries);
 240	return r;
 241}
 242
 243int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
 244			      struct kvm_cpuid2 *cpuid,
 245			      struct kvm_cpuid_entry2 __user *entries)
 246{
 247	int r;
 248
 249	r = -E2BIG;
 250	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 251		goto out;
 252	r = -EFAULT;
 253	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
 254			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
 255		goto out;
 256	vcpu->arch.cpuid_nent = cpuid->nent;
 257	kvm_apic_set_version(vcpu);
 258	kvm_x86_ops->cpuid_update(vcpu);
 259	r = kvm_update_cpuid(vcpu);
 260out:
 261	return r;
 262}
 263
 264int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
 265			      struct kvm_cpuid2 *cpuid,
 266			      struct kvm_cpuid_entry2 __user *entries)
 267{
 268	int r;
 269
 270	r = -E2BIG;
 271	if (cpuid->nent < vcpu->arch.cpuid_nent)
 272		goto out;
 273	r = -EFAULT;
 274	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
 275			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
 276		goto out;
 277	return 0;
 278
 279out:
 280	cpuid->nent = vcpu->arch.cpuid_nent;
 281	return r;
 282}
 283
 284static void cpuid_mask(u32 *word, int wordnum)
 285{
 286	*word &= boot_cpu_data.x86_capability[wordnum];
 287}
 288
 289static void do_host_cpuid(struct kvm_cpuid_entry2 *entry, u32 function,
 290			   u32 index)
 291{
 292	entry->function = function;
 293	entry->index = index;
 294	entry->flags = 0;
 295
 296	cpuid_count(entry->function, entry->index,
 297		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
 298
 299	switch (function) {
 300	case 2:
 301		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
 302		break;
 303	case 4:
 304	case 7:
 305	case 0xb:
 306	case 0xd:
 307	case 0xf:
 308	case 0x10:
 309	case 0x12:
 310	case 0x14:
 311	case 0x17:
 312	case 0x18:
 313	case 0x1f:
 314	case 0x8000001d:
 315		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 316		break;
 317	}
 318}
 319
 320static int __do_cpuid_func_emulated(struct kvm_cpuid_entry2 *entry,
 321				    u32 func, int *nent, int maxnent)
 322{
 323	entry->function = func;
 324	entry->index = 0;
 325	entry->flags = 0;
 326
 327	switch (func) {
 328	case 0:
 329		entry->eax = 7;
 330		++*nent;
 331		break;
 332	case 1:
 333		entry->ecx = F(MOVBE);
 334		++*nent;
 335		break;
 336	case 7:
 337		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 338		entry->eax = 0;
 339		entry->ecx = F(RDPID);
 340		++*nent;
 341	default:
 342		break;
 343	}
 344
 345	return 0;
 346}
 347
 348static inline void do_cpuid_7_mask(struct kvm_cpuid_entry2 *entry, int index)
 349{
 350	unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
 351	unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
 352	unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
 353	unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
 354	unsigned f_la57;
 355
 356	/* cpuid 7.0.ebx */
 357	const u32 kvm_cpuid_7_0_ebx_x86_features =
 358		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
 359		F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
 360		F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
 361		F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
 362		F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | f_intel_pt;
 363
 364	/* cpuid 7.0.ecx*/
 365	const u32 kvm_cpuid_7_0_ecx_x86_features =
 366		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
 367		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
 368		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
 369		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/;
 370
 371	/* cpuid 7.0.edx*/
 372	const u32 kvm_cpuid_7_0_edx_x86_features =
 373		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
 374		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
 375		F(MD_CLEAR);
 376
 377	/* cpuid 7.1.eax */
 378	const u32 kvm_cpuid_7_1_eax_x86_features =
 379		F(AVX512_BF16);
 380
 381	switch (index) {
 382	case 0:
 383		entry->eax = min(entry->eax, 1u);
 384		entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
 385		cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
 386		/* TSC_ADJUST is emulated */
 387		entry->ebx |= F(TSC_ADJUST);
 388
 389		entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
 390		f_la57 = entry->ecx & F(LA57);
 391		cpuid_mask(&entry->ecx, CPUID_7_ECX);
 392		/* Set LA57 based on hardware capability. */
 393		entry->ecx |= f_la57;
 394		entry->ecx |= f_umip;
 395		/* PKU is not yet implemented for shadow paging. */
 396		if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
 397			entry->ecx &= ~F(PKU);
 398
 399		entry->edx &= kvm_cpuid_7_0_edx_x86_features;
 400		cpuid_mask(&entry->edx, CPUID_7_EDX);
 401		if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
 402			entry->edx |= F(SPEC_CTRL);
 403		if (boot_cpu_has(X86_FEATURE_STIBP))
 404			entry->edx |= F(INTEL_STIBP);
 405		if (boot_cpu_has(X86_FEATURE_SSBD))
 406			entry->edx |= F(SPEC_CTRL_SSBD);
 407		/*
 408		 * We emulate ARCH_CAPABILITIES in software even
 409		 * if the host doesn't support it.
 410		 */
 411		entry->edx |= F(ARCH_CAPABILITIES);
 412		break;
 413	case 1:
 414		entry->eax &= kvm_cpuid_7_1_eax_x86_features;
 415		entry->ebx = 0;
 416		entry->ecx = 0;
 417		entry->edx = 0;
 418		break;
 419	default:
 420		WARN_ON_ONCE(1);
 421		entry->eax = 0;
 422		entry->ebx = 0;
 423		entry->ecx = 0;
 424		entry->edx = 0;
 425		break;
 426	}
 427}
 428
 429static inline int __do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 function,
 430				  int *nent, int maxnent)
 431{
 432	int r;
 433	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
 434#ifdef CONFIG_X86_64
 435	unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
 436				? F(GBPAGES) : 0;
 437	unsigned f_lm = F(LM);
 438#else
 439	unsigned f_gbpages = 0;
 440	unsigned f_lm = 0;
 441#endif
 442	unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
 443	unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
 444	unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
 445
 446	/* cpuid 1.edx */
 447	const u32 kvm_cpuid_1_edx_x86_features =
 448		F(FPU) | F(VME) | F(DE) | F(PSE) |
 449		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 450		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
 451		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 452		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
 453		0 /* Reserved, DS, ACPI */ | F(MMX) |
 454		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
 455		0 /* HTT, TM, Reserved, PBE */;
 456	/* cpuid 0x80000001.edx */
 457	const u32 kvm_cpuid_8000_0001_edx_x86_features =
 458		F(FPU) | F(VME) | F(DE) | F(PSE) |
 459		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 460		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
 461		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 462		F(PAT) | F(PSE36) | 0 /* Reserved */ |
 463		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
 464		F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
 465		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
 466	/* cpuid 1.ecx */
 467	const u32 kvm_cpuid_1_ecx_x86_features =
 468		/* NOTE: MONITOR (and MWAIT) are emulated as NOP,
 469		 * but *not* advertised to guests via CPUID ! */
 470		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
 471		0 /* DS-CPL, VMX, SMX, EST */ |
 472		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
 473		F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
 474		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
 475		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
 476		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
 477		F(F16C) | F(RDRAND);
 478	/* cpuid 0x80000001.ecx */
 479	const u32 kvm_cpuid_8000_0001_ecx_x86_features =
 480		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
 481		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
 482		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
 483		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
 484		F(TOPOEXT) | F(PERFCTR_CORE);
 485
 486	/* cpuid 0x80000008.ebx */
 487	const u32 kvm_cpuid_8000_0008_ebx_x86_features =
 488		F(CLZERO) | F(XSAVEERPTR) |
 489		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
 490		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON);
 491
 492	/* cpuid 0xC0000001.edx */
 493	const u32 kvm_cpuid_C000_0001_edx_x86_features =
 494		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
 495		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
 496		F(PMM) | F(PMM_EN);
 497
 498	/* cpuid 0xD.1.eax */
 499	const u32 kvm_cpuid_D_1_eax_x86_features =
 500		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
 501
 502	/* all calls to cpuid_count() should be made on the same cpu */
 503	get_cpu();
 504
 505	r = -E2BIG;
 506
 507	if (*nent >= maxnent)
 508		goto out;
 509
 510	do_host_cpuid(entry, function, 0);
 511	++*nent;
 512
 513	switch (function) {
 514	case 0:
 515		/* Limited to the highest leaf implemented in KVM. */
 516		entry->eax = min(entry->eax, 0x1fU);
 517		break;
 518	case 1:
 519		entry->edx &= kvm_cpuid_1_edx_x86_features;
 520		cpuid_mask(&entry->edx, CPUID_1_EDX);
 521		entry->ecx &= kvm_cpuid_1_ecx_x86_features;
 522		cpuid_mask(&entry->ecx, CPUID_1_ECX);
 523		/* we support x2apic emulation even if host does not support
 524		 * it since we emulate x2apic in software */
 525		entry->ecx |= F(X2APIC);
 526		break;
 527	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
 528	 * may return different values. This forces us to get_cpu() before
 529	 * issuing the first command, and also to emulate this annoying behavior
 530	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
 531	case 2: {
 532		int t, times = entry->eax & 0xff;
 533
 534		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
 535		for (t = 1; t < times; ++t) {
 536			if (*nent >= maxnent)
 537				goto out;
 538
 539			do_host_cpuid(&entry[t], function, 0);
 540			++*nent;
 541		}
 542		break;
 543	}
 544	/* functions 4 and 0x8000001d have additional index. */
 545	case 4:
 546	case 0x8000001d: {
 547		int i, cache_type;
 548
 549		/* read more entries until cache_type is zero */
 550		for (i = 1; ; ++i) {
 551			if (*nent >= maxnent)
 552				goto out;
 553
 554			cache_type = entry[i - 1].eax & 0x1f;
 555			if (!cache_type)
 556				break;
 557			do_host_cpuid(&entry[i], function, i);
 558			++*nent;
 559		}
 560		break;
 561	}
 562	case 6: /* Thermal management */
 563		entry->eax = 0x4; /* allow ARAT */
 564		entry->ebx = 0;
 565		entry->ecx = 0;
 566		entry->edx = 0;
 567		break;
 568	/* function 7 has additional index. */
 569	case 7: {
 570		int i;
 571
 572		for (i = 0; ; ) {
 573			do_cpuid_7_mask(&entry[i], i);
 574			if (i == entry->eax)
 575				break;
 576			if (*nent >= maxnent)
 577				goto out;
 578
 579			++i;
 580			do_host_cpuid(&entry[i], function, i);
 581			++*nent;
 582		}
 583		break;
 584	}
 585	case 9:
 586		break;
 587	case 0xa: { /* Architectural Performance Monitoring */
 588		struct x86_pmu_capability cap;
 589		union cpuid10_eax eax;
 590		union cpuid10_edx edx;
 591
 592		perf_get_x86_pmu_capability(&cap);
 593
 594		/*
 595		 * Only support guest architectural pmu on a host
 596		 * with architectural pmu.
 597		 */
 598		if (!cap.version)
 599			memset(&cap, 0, sizeof(cap));
 600
 601		eax.split.version_id = min(cap.version, 2);
 602		eax.split.num_counters = cap.num_counters_gp;
 603		eax.split.bit_width = cap.bit_width_gp;
 604		eax.split.mask_length = cap.events_mask_len;
 605
 606		edx.split.num_counters_fixed = cap.num_counters_fixed;
 607		edx.split.bit_width_fixed = cap.bit_width_fixed;
 608		edx.split.reserved = 0;
 609
 610		entry->eax = eax.full;
 611		entry->ebx = cap.events_mask;
 612		entry->ecx = 0;
 613		entry->edx = edx.full;
 614		break;
 615	}
 616	/*
 617	 * Per Intel's SDM, the 0x1f is a superset of 0xb,
 618	 * thus they can be handled by common code.
 619	 */
 620	case 0x1f:
 621	case 0xb: {
 622		int i;
 623
 624		/*
 625		 * We filled in entry[0] for CPUID(EAX=<function>,
 626		 * ECX=00H) above.  If its level type (ECX[15:8]) is
 627		 * zero, then the leaf is unimplemented, and we're
 628		 * done.  Otherwise, continue to populate entries
 629		 * until the level type (ECX[15:8]) of the previously
 630		 * added entry is zero.
 631		 */
 632		for (i = 1; entry[i - 1].ecx & 0xff00; ++i) {
 633			if (*nent >= maxnent)
 634				goto out;
 635
 636			do_host_cpuid(&entry[i], function, i);
 637			++*nent;
 638		}
 639		break;
 640	}
 641	case 0xd: {
 642		int idx, i;
 643		u64 supported = kvm_supported_xcr0();
 644
 645		entry->eax &= supported;
 646		entry->ebx = xstate_required_size(supported, false);
 647		entry->ecx = entry->ebx;
 648		entry->edx &= supported >> 32;
 649		if (!supported)
 650			break;
 651
 652		for (idx = 1, i = 1; idx < 64; ++idx) {
 653			u64 mask = ((u64)1 << idx);
 654			if (*nent >= maxnent)
 655				goto out;
 656
 657			do_host_cpuid(&entry[i], function, idx);
 658			if (idx == 1) {
 659				entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
 660				cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
 661				entry[i].ebx = 0;
 662				if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
 663					entry[i].ebx =
 664						xstate_required_size(supported,
 665								     true);
 666			} else {
 667				if (entry[i].eax == 0 || !(supported & mask))
 668					continue;
 669				if (WARN_ON_ONCE(entry[i].ecx & 1))
 670					continue;
 671			}
 672			entry[i].ecx = 0;
 673			entry[i].edx = 0;
 674			++*nent;
 675			++i;
 676		}
 677		break;
 678	}
 679	/* Intel PT */
 680	case 0x14: {
 681		int t, times = entry->eax;
 682
 683		if (!f_intel_pt)
 684			break;
 685
 686		for (t = 1; t <= times; ++t) {
 687			if (*nent >= maxnent)
 688				goto out;
 689			do_host_cpuid(&entry[t], function, t);
 690			++*nent;
 691		}
 692		break;
 693	}
 694	case KVM_CPUID_SIGNATURE: {
 695		static const char signature[12] = "KVMKVMKVM\0\0";
 696		const u32 *sigptr = (const u32 *)signature;
 697		entry->eax = KVM_CPUID_FEATURES;
 698		entry->ebx = sigptr[0];
 699		entry->ecx = sigptr[1];
 700		entry->edx = sigptr[2];
 701		break;
 702	}
 703	case KVM_CPUID_FEATURES:
 704		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
 705			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
 706			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
 707			     (1 << KVM_FEATURE_ASYNC_PF) |
 708			     (1 << KVM_FEATURE_PV_EOI) |
 709			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
 710			     (1 << KVM_FEATURE_PV_UNHALT) |
 711			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
 712			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
 713			     (1 << KVM_FEATURE_PV_SEND_IPI) |
 714			     (1 << KVM_FEATURE_POLL_CONTROL) |
 715			     (1 << KVM_FEATURE_PV_SCHED_YIELD);
 716
 717		if (sched_info_on())
 718			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
 719
 720		entry->ebx = 0;
 721		entry->ecx = 0;
 722		entry->edx = 0;
 723		break;
 724	case 0x80000000:
 725		entry->eax = min(entry->eax, 0x8000001f);
 726		break;
 727	case 0x80000001:
 728		entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
 729		cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
 730		entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
 731		cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
 732		break;
 733	case 0x80000007: /* Advanced power management */
 734		/* invariant TSC is CPUID.80000007H:EDX[8] */
 735		entry->edx &= (1 << 8);
 736		/* mask against host */
 737		entry->edx &= boot_cpu_data.x86_power;
 738		entry->eax = entry->ebx = entry->ecx = 0;
 739		break;
 740	case 0x80000008: {
 741		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
 742		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
 743		unsigned phys_as = entry->eax & 0xff;
 744
 745		if (!g_phys_as)
 746			g_phys_as = phys_as;
 747		entry->eax = g_phys_as | (virt_as << 8);
 748		entry->edx = 0;
 749		entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
 750		cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
 751		/*
 752		 * AMD has separate bits for each SPEC_CTRL bit.
 753		 * arch/x86/kernel/cpu/bugs.c is kind enough to
 754		 * record that in cpufeatures so use them.
 755		 */
 756		if (boot_cpu_has(X86_FEATURE_IBPB))
 757			entry->ebx |= F(AMD_IBPB);
 758		if (boot_cpu_has(X86_FEATURE_IBRS))
 759			entry->ebx |= F(AMD_IBRS);
 760		if (boot_cpu_has(X86_FEATURE_STIBP))
 761			entry->ebx |= F(AMD_STIBP);
 762		if (boot_cpu_has(X86_FEATURE_SSBD))
 763			entry->ebx |= F(AMD_SSBD);
 764		if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
 765			entry->ebx |= F(AMD_SSB_NO);
 766		/*
 767		 * The preference is to use SPEC CTRL MSR instead of the
 768		 * VIRT_SPEC MSR.
 769		 */
 770		if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 771		    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
 772			entry->ebx |= F(VIRT_SSBD);
 773		break;
 774	}
 775	case 0x80000019:
 776		entry->ecx = entry->edx = 0;
 777		break;
 778	case 0x8000001a:
 779	case 0x8000001e:
 780		break;
 781	/*Add support for Centaur's CPUID instruction*/
 782	case 0xC0000000:
 783		/*Just support up to 0xC0000004 now*/
 784		entry->eax = min(entry->eax, 0xC0000004);
 785		break;
 786	case 0xC0000001:
 787		entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
 788		cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
 789		break;
 790	case 3: /* Processor serial number */
 791	case 5: /* MONITOR/MWAIT */
 792	case 0xC0000002:
 793	case 0xC0000003:
 794	case 0xC0000004:
 795	default:
 796		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 797		break;
 798	}
 799
 800	kvm_x86_ops->set_supported_cpuid(function, entry);
 801
 802	r = 0;
 803
 804out:
 805	put_cpu();
 806
 807	return r;
 808}
 809
 810static int do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 func,
 811			 int *nent, int maxnent, unsigned int type)
 812{
 813	if (type == KVM_GET_EMULATED_CPUID)
 814		return __do_cpuid_func_emulated(entry, func, nent, maxnent);
 815
 816	return __do_cpuid_func(entry, func, nent, maxnent);
 817}
 818
 819#undef F
 820
 821struct kvm_cpuid_param {
 822	u32 func;
 823	bool (*qualifier)(const struct kvm_cpuid_param *param);
 824};
 825
 826static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
 827{
 828	return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
 829}
 830
 831static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
 832				 __u32 num_entries, unsigned int ioctl_type)
 833{
 834	int i;
 835	__u32 pad[3];
 836
 837	if (ioctl_type != KVM_GET_EMULATED_CPUID)
 838		return false;
 839
 840	/*
 841	 * We want to make sure that ->padding is being passed clean from
 842	 * userspace in case we want to use it for something in the future.
 843	 *
 844	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
 845	 * have to give ourselves satisfied only with the emulated side. /me
 846	 * sheds a tear.
 847	 */
 848	for (i = 0; i < num_entries; i++) {
 849		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
 850			return true;
 851
 852		if (pad[0] || pad[1] || pad[2])
 853			return true;
 854	}
 855	return false;
 856}
 857
 858int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
 859			    struct kvm_cpuid_entry2 __user *entries,
 860			    unsigned int type)
 861{
 862	struct kvm_cpuid_entry2 *cpuid_entries;
 863	int limit, nent = 0, r = -E2BIG, i;
 864	u32 func;
 865	static const struct kvm_cpuid_param param[] = {
 866		{ .func = 0 },
 867		{ .func = 0x80000000 },
 868		{ .func = 0xC0000000, .qualifier = is_centaur_cpu },
 869		{ .func = KVM_CPUID_SIGNATURE },
 870	};
 871
 872	if (cpuid->nent < 1)
 873		goto out;
 874	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 875		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
 876
 877	if (sanity_check_entries(entries, cpuid->nent, type))
 878		return -EINVAL;
 879
 880	r = -ENOMEM;
 881	cpuid_entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
 882					   cpuid->nent));
 883	if (!cpuid_entries)
 884		goto out;
 885
 886	r = 0;
 887	for (i = 0; i < ARRAY_SIZE(param); i++) {
 888		const struct kvm_cpuid_param *ent = &param[i];
 889
 890		if (ent->qualifier && !ent->qualifier(ent))
 891			continue;
 892
 893		r = do_cpuid_func(&cpuid_entries[nent], ent->func,
 894				  &nent, cpuid->nent, type);
 895
 896		if (r)
 897			goto out_free;
 898
 899		limit = cpuid_entries[nent - 1].eax;
 900		for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
 901			r = do_cpuid_func(&cpuid_entries[nent], func,
 902				          &nent, cpuid->nent, type);
 903
 904		if (r)
 905			goto out_free;
 906	}
 907
 908	r = -EFAULT;
 909	if (copy_to_user(entries, cpuid_entries,
 910			 nent * sizeof(struct kvm_cpuid_entry2)))
 911		goto out_free;
 912	cpuid->nent = nent;
 913	r = 0;
 914
 915out_free:
 916	vfree(cpuid_entries);
 917out:
 918	return r;
 919}
 920
 921static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
 922{
 923	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
 924	struct kvm_cpuid_entry2 *ej;
 925	int j = i;
 926	int nent = vcpu->arch.cpuid_nent;
 927
 928	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
 929	/* when no next entry is found, the current entry[i] is reselected */
 930	do {
 931		j = (j + 1) % nent;
 932		ej = &vcpu->arch.cpuid_entries[j];
 933	} while (ej->function != e->function);
 934
 935	ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
 936
 937	return j;
 938}
 939
 940/* find an entry with matching function, matching index (if needed), and that
 941 * should be read next (if it's stateful) */
 942static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
 943	u32 function, u32 index)
 944{
 945	if (e->function != function)
 946		return 0;
 947	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
 948		return 0;
 949	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
 950	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
 951		return 0;
 952	return 1;
 953}
 954
 955struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
 956					      u32 function, u32 index)
 957{
 958	int i;
 959	struct kvm_cpuid_entry2 *best = NULL;
 960
 961	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
 962		struct kvm_cpuid_entry2 *e;
 963
 964		e = &vcpu->arch.cpuid_entries[i];
 965		if (is_matching_cpuid_entry(e, function, index)) {
 966			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
 967				move_to_next_stateful_cpuid_entry(vcpu, i);
 968			best = e;
 969			break;
 970		}
 971	}
 972	return best;
 973}
 974EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
 975
 976/*
 977 * If the basic or extended CPUID leaf requested is higher than the
 978 * maximum supported basic or extended leaf, respectively, then it is
 979 * out of range.
 980 */
 981static bool cpuid_function_in_range(struct kvm_vcpu *vcpu, u32 function)
 982{
 983	struct kvm_cpuid_entry2 *max;
 984
 985	max = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
 986	return max && function <= max->eax;
 987}
 988
 989bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
 990	       u32 *ecx, u32 *edx, bool check_limit)
 991{
 992	u32 function = *eax, index = *ecx;
 993	struct kvm_cpuid_entry2 *entry;
 994	struct kvm_cpuid_entry2 *max;
 995	bool found;
 996
 997	entry = kvm_find_cpuid_entry(vcpu, function, index);
 998	found = entry;
 999	/*
1000	 * Intel CPUID semantics treats any query for an out-of-range
1001	 * leaf as if the highest basic leaf (i.e. CPUID.0H:EAX) were
1002	 * requested. AMD CPUID semantics returns all zeroes for any
1003	 * undefined leaf, whether or not the leaf is in range.
1004	 */
1005	if (!entry && check_limit && !guest_cpuid_is_amd(vcpu) &&
1006	    !cpuid_function_in_range(vcpu, function)) {
1007		max = kvm_find_cpuid_entry(vcpu, 0, 0);
1008		if (max) {
1009			function = max->eax;
1010			entry = kvm_find_cpuid_entry(vcpu, function, index);
1011		}
1012	}
1013	if (entry) {
1014		*eax = entry->eax;
1015		*ebx = entry->ebx;
1016		*ecx = entry->ecx;
1017		*edx = entry->edx;
1018	} else {
1019		*eax = *ebx = *ecx = *edx = 0;
1020		/*
1021		 * When leaf 0BH or 1FH is defined, CL is pass-through
1022		 * and EDX is always the x2APIC ID, even for undefined
1023		 * subleaves. Index 1 will exist iff the leaf is
1024		 * implemented, so we pass through CL iff leaf 1
1025		 * exists. EDX can be copied from any existing index.
1026		 */
1027		if (function == 0xb || function == 0x1f) {
1028			entry = kvm_find_cpuid_entry(vcpu, function, 1);
1029			if (entry) {
1030				*ecx = index & 0xff;
1031				*edx = entry->edx;
1032			}
1033		}
1034	}
1035	trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, found);
1036	return found;
1037}
1038EXPORT_SYMBOL_GPL(kvm_cpuid);
1039
1040int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1041{
1042	u32 eax, ebx, ecx, edx;
1043
1044	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1045		return 1;
1046
1047	eax = kvm_rax_read(vcpu);
1048	ecx = kvm_rcx_read(vcpu);
1049	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
1050	kvm_rax_write(vcpu, eax);
1051	kvm_rbx_write(vcpu, ebx);
1052	kvm_rcx_write(vcpu, ecx);
1053	kvm_rdx_write(vcpu, edx);
1054	return kvm_skip_emulated_instruction(vcpu);
1055}
1056EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);