Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 * cpuid support routines
5 *
6 * derived from arch/x86/kvm/x86.c
7 *
8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9 * Copyright IBM Corporation, 2008
10 */
11
12#include <linux/kvm_host.h>
13#include <linux/export.h>
14#include <linux/vmalloc.h>
15#include <linux/uaccess.h>
16#include <linux/sched/stat.h>
17
18#include <asm/processor.h>
19#include <asm/user.h>
20#include <asm/fpu/xstate.h>
21#include "cpuid.h"
22#include "lapic.h"
23#include "mmu.h"
24#include "trace.h"
25#include "pmu.h"
26
27static u32 xstate_required_size(u64 xstate_bv, bool compacted)
28{
29 int feature_bit = 0;
30 u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
31
32 xstate_bv &= XFEATURE_MASK_EXTEND;
33 while (xstate_bv) {
34 if (xstate_bv & 0x1) {
35 u32 eax, ebx, ecx, edx, offset;
36 cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
37 offset = compacted ? ret : ebx;
38 ret = max(ret, offset + eax);
39 }
40
41 xstate_bv >>= 1;
42 feature_bit++;
43 }
44
45 return ret;
46}
47
48bool kvm_mpx_supported(void)
49{
50 return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
51 && kvm_x86_ops->mpx_supported());
52}
53EXPORT_SYMBOL_GPL(kvm_mpx_supported);
54
55u64 kvm_supported_xcr0(void)
56{
57 u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
58
59 if (!kvm_mpx_supported())
60 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
61
62 return xcr0;
63}
64
65#define F(x) bit(X86_FEATURE_##x)
66
67int kvm_update_cpuid(struct kvm_vcpu *vcpu)
68{
69 struct kvm_cpuid_entry2 *best;
70 struct kvm_lapic *apic = vcpu->arch.apic;
71
72 best = kvm_find_cpuid_entry(vcpu, 1, 0);
73 if (!best)
74 return 0;
75
76 /* Update OSXSAVE bit */
77 if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
78 best->ecx &= ~F(OSXSAVE);
79 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
80 best->ecx |= F(OSXSAVE);
81 }
82
83 best->edx &= ~F(APIC);
84 if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
85 best->edx |= F(APIC);
86
87 if (apic) {
88 if (best->ecx & F(TSC_DEADLINE_TIMER))
89 apic->lapic_timer.timer_mode_mask = 3 << 17;
90 else
91 apic->lapic_timer.timer_mode_mask = 1 << 17;
92 }
93
94 best = kvm_find_cpuid_entry(vcpu, 7, 0);
95 if (best) {
96 /* Update OSPKE bit */
97 if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
98 best->ecx &= ~F(OSPKE);
99 if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
100 best->ecx |= F(OSPKE);
101 }
102 }
103
104 best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
105 if (!best) {
106 vcpu->arch.guest_supported_xcr0 = 0;
107 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
108 } else {
109 vcpu->arch.guest_supported_xcr0 =
110 (best->eax | ((u64)best->edx << 32)) &
111 kvm_supported_xcr0();
112 vcpu->arch.guest_xstate_size = best->ebx =
113 xstate_required_size(vcpu->arch.xcr0, false);
114 }
115
116 best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
117 if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
118 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
119
120 /*
121 * The existing code assumes virtual address is 48-bit or 57-bit in the
122 * canonical address checks; exit if it is ever changed.
123 */
124 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
125 if (best) {
126 int vaddr_bits = (best->eax & 0xff00) >> 8;
127
128 if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
129 return -EINVAL;
130 }
131
132 best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
133 if (kvm_hlt_in_guest(vcpu->kvm) && best &&
134 (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
135 best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
136
137 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
138 best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
139 if (best) {
140 if (vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT)
141 best->ecx |= F(MWAIT);
142 else
143 best->ecx &= ~F(MWAIT);
144 }
145 }
146
147 /* Update physical-address width */
148 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
149 kvm_mmu_reset_context(vcpu);
150
151 kvm_pmu_refresh(vcpu);
152 return 0;
153}
154
155static int is_efer_nx(void)
156{
157 unsigned long long efer = 0;
158
159 rdmsrl_safe(MSR_EFER, &efer);
160 return efer & EFER_NX;
161}
162
163static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
164{
165 int i;
166 struct kvm_cpuid_entry2 *e, *entry;
167
168 entry = NULL;
169 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
170 e = &vcpu->arch.cpuid_entries[i];
171 if (e->function == 0x80000001) {
172 entry = e;
173 break;
174 }
175 }
176 if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
177 entry->edx &= ~F(NX);
178 printk(KERN_INFO "kvm: guest NX capability removed\n");
179 }
180}
181
182int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
183{
184 struct kvm_cpuid_entry2 *best;
185
186 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
187 if (!best || best->eax < 0x80000008)
188 goto not_found;
189 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
190 if (best)
191 return best->eax & 0xff;
192not_found:
193 return 36;
194}
195EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
196
197/* when an old userspace process fills a new kernel module */
198int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
199 struct kvm_cpuid *cpuid,
200 struct kvm_cpuid_entry __user *entries)
201{
202 int r, i;
203 struct kvm_cpuid_entry *cpuid_entries = NULL;
204
205 r = -E2BIG;
206 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
207 goto out;
208 r = -ENOMEM;
209 if (cpuid->nent) {
210 cpuid_entries =
211 vmalloc(array_size(sizeof(struct kvm_cpuid_entry),
212 cpuid->nent));
213 if (!cpuid_entries)
214 goto out;
215 r = -EFAULT;
216 if (copy_from_user(cpuid_entries, entries,
217 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
218 goto out;
219 }
220 for (i = 0; i < cpuid->nent; i++) {
221 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
222 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
223 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
224 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
225 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
226 vcpu->arch.cpuid_entries[i].index = 0;
227 vcpu->arch.cpuid_entries[i].flags = 0;
228 vcpu->arch.cpuid_entries[i].padding[0] = 0;
229 vcpu->arch.cpuid_entries[i].padding[1] = 0;
230 vcpu->arch.cpuid_entries[i].padding[2] = 0;
231 }
232 vcpu->arch.cpuid_nent = cpuid->nent;
233 cpuid_fix_nx_cap(vcpu);
234 kvm_apic_set_version(vcpu);
235 kvm_x86_ops->cpuid_update(vcpu);
236 r = kvm_update_cpuid(vcpu);
237
238out:
239 vfree(cpuid_entries);
240 return r;
241}
242
243int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
244 struct kvm_cpuid2 *cpuid,
245 struct kvm_cpuid_entry2 __user *entries)
246{
247 int r;
248
249 r = -E2BIG;
250 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
251 goto out;
252 r = -EFAULT;
253 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
254 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
255 goto out;
256 vcpu->arch.cpuid_nent = cpuid->nent;
257 kvm_apic_set_version(vcpu);
258 kvm_x86_ops->cpuid_update(vcpu);
259 r = kvm_update_cpuid(vcpu);
260out:
261 return r;
262}
263
264int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
265 struct kvm_cpuid2 *cpuid,
266 struct kvm_cpuid_entry2 __user *entries)
267{
268 int r;
269
270 r = -E2BIG;
271 if (cpuid->nent < vcpu->arch.cpuid_nent)
272 goto out;
273 r = -EFAULT;
274 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
275 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
276 goto out;
277 return 0;
278
279out:
280 cpuid->nent = vcpu->arch.cpuid_nent;
281 return r;
282}
283
284static void cpuid_mask(u32 *word, int wordnum)
285{
286 *word &= boot_cpu_data.x86_capability[wordnum];
287}
288
289static void do_host_cpuid(struct kvm_cpuid_entry2 *entry, u32 function,
290 u32 index)
291{
292 entry->function = function;
293 entry->index = index;
294 entry->flags = 0;
295
296 cpuid_count(entry->function, entry->index,
297 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
298
299 switch (function) {
300 case 2:
301 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
302 break;
303 case 4:
304 case 7:
305 case 0xb:
306 case 0xd:
307 case 0xf:
308 case 0x10:
309 case 0x12:
310 case 0x14:
311 case 0x17:
312 case 0x18:
313 case 0x1f:
314 case 0x8000001d:
315 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
316 break;
317 }
318}
319
320static int __do_cpuid_func_emulated(struct kvm_cpuid_entry2 *entry,
321 u32 func, int *nent, int maxnent)
322{
323 entry->function = func;
324 entry->index = 0;
325 entry->flags = 0;
326
327 switch (func) {
328 case 0:
329 entry->eax = 7;
330 ++*nent;
331 break;
332 case 1:
333 entry->ecx = F(MOVBE);
334 ++*nent;
335 break;
336 case 7:
337 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
338 entry->eax = 0;
339 entry->ecx = F(RDPID);
340 ++*nent;
341 default:
342 break;
343 }
344
345 return 0;
346}
347
348static inline void do_cpuid_7_mask(struct kvm_cpuid_entry2 *entry, int index)
349{
350 unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
351 unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
352 unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
353 unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
354 unsigned f_la57;
355
356 /* cpuid 7.0.ebx */
357 const u32 kvm_cpuid_7_0_ebx_x86_features =
358 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
359 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
360 F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
361 F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
362 F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | f_intel_pt;
363
364 /* cpuid 7.0.ecx*/
365 const u32 kvm_cpuid_7_0_ecx_x86_features =
366 F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
367 F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
368 F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
369 F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/;
370
371 /* cpuid 7.0.edx*/
372 const u32 kvm_cpuid_7_0_edx_x86_features =
373 F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
374 F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
375 F(MD_CLEAR);
376
377 /* cpuid 7.1.eax */
378 const u32 kvm_cpuid_7_1_eax_x86_features =
379 F(AVX512_BF16);
380
381 switch (index) {
382 case 0:
383 entry->eax = min(entry->eax, 1u);
384 entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
385 cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
386 /* TSC_ADJUST is emulated */
387 entry->ebx |= F(TSC_ADJUST);
388
389 entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
390 f_la57 = entry->ecx & F(LA57);
391 cpuid_mask(&entry->ecx, CPUID_7_ECX);
392 /* Set LA57 based on hardware capability. */
393 entry->ecx |= f_la57;
394 entry->ecx |= f_umip;
395 /* PKU is not yet implemented for shadow paging. */
396 if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
397 entry->ecx &= ~F(PKU);
398
399 entry->edx &= kvm_cpuid_7_0_edx_x86_features;
400 cpuid_mask(&entry->edx, CPUID_7_EDX);
401 if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
402 entry->edx |= F(SPEC_CTRL);
403 if (boot_cpu_has(X86_FEATURE_STIBP))
404 entry->edx |= F(INTEL_STIBP);
405 if (boot_cpu_has(X86_FEATURE_SSBD))
406 entry->edx |= F(SPEC_CTRL_SSBD);
407 /*
408 * We emulate ARCH_CAPABILITIES in software even
409 * if the host doesn't support it.
410 */
411 entry->edx |= F(ARCH_CAPABILITIES);
412 break;
413 case 1:
414 entry->eax &= kvm_cpuid_7_1_eax_x86_features;
415 entry->ebx = 0;
416 entry->ecx = 0;
417 entry->edx = 0;
418 break;
419 default:
420 WARN_ON_ONCE(1);
421 entry->eax = 0;
422 entry->ebx = 0;
423 entry->ecx = 0;
424 entry->edx = 0;
425 break;
426 }
427}
428
429static inline int __do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 function,
430 int *nent, int maxnent)
431{
432 int r;
433 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
434#ifdef CONFIG_X86_64
435 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
436 ? F(GBPAGES) : 0;
437 unsigned f_lm = F(LM);
438#else
439 unsigned f_gbpages = 0;
440 unsigned f_lm = 0;
441#endif
442 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
443 unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
444 unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
445
446 /* cpuid 1.edx */
447 const u32 kvm_cpuid_1_edx_x86_features =
448 F(FPU) | F(VME) | F(DE) | F(PSE) |
449 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
450 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
451 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
452 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
453 0 /* Reserved, DS, ACPI */ | F(MMX) |
454 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
455 0 /* HTT, TM, Reserved, PBE */;
456 /* cpuid 0x80000001.edx */
457 const u32 kvm_cpuid_8000_0001_edx_x86_features =
458 F(FPU) | F(VME) | F(DE) | F(PSE) |
459 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
460 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
461 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
462 F(PAT) | F(PSE36) | 0 /* Reserved */ |
463 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
464 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
465 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
466 /* cpuid 1.ecx */
467 const u32 kvm_cpuid_1_ecx_x86_features =
468 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
469 * but *not* advertised to guests via CPUID ! */
470 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
471 0 /* DS-CPL, VMX, SMX, EST */ |
472 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
473 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
474 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
475 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
476 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
477 F(F16C) | F(RDRAND);
478 /* cpuid 0x80000001.ecx */
479 const u32 kvm_cpuid_8000_0001_ecx_x86_features =
480 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
481 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
482 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
483 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
484 F(TOPOEXT) | F(PERFCTR_CORE);
485
486 /* cpuid 0x80000008.ebx */
487 const u32 kvm_cpuid_8000_0008_ebx_x86_features =
488 F(CLZERO) | F(XSAVEERPTR) |
489 F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
490 F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON);
491
492 /* cpuid 0xC0000001.edx */
493 const u32 kvm_cpuid_C000_0001_edx_x86_features =
494 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
495 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
496 F(PMM) | F(PMM_EN);
497
498 /* cpuid 0xD.1.eax */
499 const u32 kvm_cpuid_D_1_eax_x86_features =
500 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
501
502 /* all calls to cpuid_count() should be made on the same cpu */
503 get_cpu();
504
505 r = -E2BIG;
506
507 if (*nent >= maxnent)
508 goto out;
509
510 do_host_cpuid(entry, function, 0);
511 ++*nent;
512
513 switch (function) {
514 case 0:
515 /* Limited to the highest leaf implemented in KVM. */
516 entry->eax = min(entry->eax, 0x1fU);
517 break;
518 case 1:
519 entry->edx &= kvm_cpuid_1_edx_x86_features;
520 cpuid_mask(&entry->edx, CPUID_1_EDX);
521 entry->ecx &= kvm_cpuid_1_ecx_x86_features;
522 cpuid_mask(&entry->ecx, CPUID_1_ECX);
523 /* we support x2apic emulation even if host does not support
524 * it since we emulate x2apic in software */
525 entry->ecx |= F(X2APIC);
526 break;
527 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
528 * may return different values. This forces us to get_cpu() before
529 * issuing the first command, and also to emulate this annoying behavior
530 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
531 case 2: {
532 int t, times = entry->eax & 0xff;
533
534 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
535 for (t = 1; t < times; ++t) {
536 if (*nent >= maxnent)
537 goto out;
538
539 do_host_cpuid(&entry[t], function, 0);
540 ++*nent;
541 }
542 break;
543 }
544 /* functions 4 and 0x8000001d have additional index. */
545 case 4:
546 case 0x8000001d: {
547 int i, cache_type;
548
549 /* read more entries until cache_type is zero */
550 for (i = 1; ; ++i) {
551 if (*nent >= maxnent)
552 goto out;
553
554 cache_type = entry[i - 1].eax & 0x1f;
555 if (!cache_type)
556 break;
557 do_host_cpuid(&entry[i], function, i);
558 ++*nent;
559 }
560 break;
561 }
562 case 6: /* Thermal management */
563 entry->eax = 0x4; /* allow ARAT */
564 entry->ebx = 0;
565 entry->ecx = 0;
566 entry->edx = 0;
567 break;
568 /* function 7 has additional index. */
569 case 7: {
570 int i;
571
572 for (i = 0; ; ) {
573 do_cpuid_7_mask(&entry[i], i);
574 if (i == entry->eax)
575 break;
576 if (*nent >= maxnent)
577 goto out;
578
579 ++i;
580 do_host_cpuid(&entry[i], function, i);
581 ++*nent;
582 }
583 break;
584 }
585 case 9:
586 break;
587 case 0xa: { /* Architectural Performance Monitoring */
588 struct x86_pmu_capability cap;
589 union cpuid10_eax eax;
590 union cpuid10_edx edx;
591
592 perf_get_x86_pmu_capability(&cap);
593
594 /*
595 * Only support guest architectural pmu on a host
596 * with architectural pmu.
597 */
598 if (!cap.version)
599 memset(&cap, 0, sizeof(cap));
600
601 eax.split.version_id = min(cap.version, 2);
602 eax.split.num_counters = cap.num_counters_gp;
603 eax.split.bit_width = cap.bit_width_gp;
604 eax.split.mask_length = cap.events_mask_len;
605
606 edx.split.num_counters_fixed = cap.num_counters_fixed;
607 edx.split.bit_width_fixed = cap.bit_width_fixed;
608 edx.split.reserved = 0;
609
610 entry->eax = eax.full;
611 entry->ebx = cap.events_mask;
612 entry->ecx = 0;
613 entry->edx = edx.full;
614 break;
615 }
616 /*
617 * Per Intel's SDM, the 0x1f is a superset of 0xb,
618 * thus they can be handled by common code.
619 */
620 case 0x1f:
621 case 0xb: {
622 int i;
623
624 /*
625 * We filled in entry[0] for CPUID(EAX=<function>,
626 * ECX=00H) above. If its level type (ECX[15:8]) is
627 * zero, then the leaf is unimplemented, and we're
628 * done. Otherwise, continue to populate entries
629 * until the level type (ECX[15:8]) of the previously
630 * added entry is zero.
631 */
632 for (i = 1; entry[i - 1].ecx & 0xff00; ++i) {
633 if (*nent >= maxnent)
634 goto out;
635
636 do_host_cpuid(&entry[i], function, i);
637 ++*nent;
638 }
639 break;
640 }
641 case 0xd: {
642 int idx, i;
643 u64 supported = kvm_supported_xcr0();
644
645 entry->eax &= supported;
646 entry->ebx = xstate_required_size(supported, false);
647 entry->ecx = entry->ebx;
648 entry->edx &= supported >> 32;
649 if (!supported)
650 break;
651
652 for (idx = 1, i = 1; idx < 64; ++idx) {
653 u64 mask = ((u64)1 << idx);
654 if (*nent >= maxnent)
655 goto out;
656
657 do_host_cpuid(&entry[i], function, idx);
658 if (idx == 1) {
659 entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
660 cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
661 entry[i].ebx = 0;
662 if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
663 entry[i].ebx =
664 xstate_required_size(supported,
665 true);
666 } else {
667 if (entry[i].eax == 0 || !(supported & mask))
668 continue;
669 if (WARN_ON_ONCE(entry[i].ecx & 1))
670 continue;
671 }
672 entry[i].ecx = 0;
673 entry[i].edx = 0;
674 ++*nent;
675 ++i;
676 }
677 break;
678 }
679 /* Intel PT */
680 case 0x14: {
681 int t, times = entry->eax;
682
683 if (!f_intel_pt)
684 break;
685
686 for (t = 1; t <= times; ++t) {
687 if (*nent >= maxnent)
688 goto out;
689 do_host_cpuid(&entry[t], function, t);
690 ++*nent;
691 }
692 break;
693 }
694 case KVM_CPUID_SIGNATURE: {
695 static const char signature[12] = "KVMKVMKVM\0\0";
696 const u32 *sigptr = (const u32 *)signature;
697 entry->eax = KVM_CPUID_FEATURES;
698 entry->ebx = sigptr[0];
699 entry->ecx = sigptr[1];
700 entry->edx = sigptr[2];
701 break;
702 }
703 case KVM_CPUID_FEATURES:
704 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
705 (1 << KVM_FEATURE_NOP_IO_DELAY) |
706 (1 << KVM_FEATURE_CLOCKSOURCE2) |
707 (1 << KVM_FEATURE_ASYNC_PF) |
708 (1 << KVM_FEATURE_PV_EOI) |
709 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
710 (1 << KVM_FEATURE_PV_UNHALT) |
711 (1 << KVM_FEATURE_PV_TLB_FLUSH) |
712 (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
713 (1 << KVM_FEATURE_PV_SEND_IPI) |
714 (1 << KVM_FEATURE_POLL_CONTROL) |
715 (1 << KVM_FEATURE_PV_SCHED_YIELD);
716
717 if (sched_info_on())
718 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
719
720 entry->ebx = 0;
721 entry->ecx = 0;
722 entry->edx = 0;
723 break;
724 case 0x80000000:
725 entry->eax = min(entry->eax, 0x8000001f);
726 break;
727 case 0x80000001:
728 entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
729 cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
730 entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
731 cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
732 break;
733 case 0x80000007: /* Advanced power management */
734 /* invariant TSC is CPUID.80000007H:EDX[8] */
735 entry->edx &= (1 << 8);
736 /* mask against host */
737 entry->edx &= boot_cpu_data.x86_power;
738 entry->eax = entry->ebx = entry->ecx = 0;
739 break;
740 case 0x80000008: {
741 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
742 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
743 unsigned phys_as = entry->eax & 0xff;
744
745 if (!g_phys_as)
746 g_phys_as = phys_as;
747 entry->eax = g_phys_as | (virt_as << 8);
748 entry->edx = 0;
749 entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
750 cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
751 /*
752 * AMD has separate bits for each SPEC_CTRL bit.
753 * arch/x86/kernel/cpu/bugs.c is kind enough to
754 * record that in cpufeatures so use them.
755 */
756 if (boot_cpu_has(X86_FEATURE_IBPB))
757 entry->ebx |= F(AMD_IBPB);
758 if (boot_cpu_has(X86_FEATURE_IBRS))
759 entry->ebx |= F(AMD_IBRS);
760 if (boot_cpu_has(X86_FEATURE_STIBP))
761 entry->ebx |= F(AMD_STIBP);
762 if (boot_cpu_has(X86_FEATURE_SSBD))
763 entry->ebx |= F(AMD_SSBD);
764 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
765 entry->ebx |= F(AMD_SSB_NO);
766 /*
767 * The preference is to use SPEC CTRL MSR instead of the
768 * VIRT_SPEC MSR.
769 */
770 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
771 !boot_cpu_has(X86_FEATURE_AMD_SSBD))
772 entry->ebx |= F(VIRT_SSBD);
773 break;
774 }
775 case 0x80000019:
776 entry->ecx = entry->edx = 0;
777 break;
778 case 0x8000001a:
779 case 0x8000001e:
780 break;
781 /*Add support for Centaur's CPUID instruction*/
782 case 0xC0000000:
783 /*Just support up to 0xC0000004 now*/
784 entry->eax = min(entry->eax, 0xC0000004);
785 break;
786 case 0xC0000001:
787 entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
788 cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
789 break;
790 case 3: /* Processor serial number */
791 case 5: /* MONITOR/MWAIT */
792 case 0xC0000002:
793 case 0xC0000003:
794 case 0xC0000004:
795 default:
796 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
797 break;
798 }
799
800 kvm_x86_ops->set_supported_cpuid(function, entry);
801
802 r = 0;
803
804out:
805 put_cpu();
806
807 return r;
808}
809
810static int do_cpuid_func(struct kvm_cpuid_entry2 *entry, u32 func,
811 int *nent, int maxnent, unsigned int type)
812{
813 if (type == KVM_GET_EMULATED_CPUID)
814 return __do_cpuid_func_emulated(entry, func, nent, maxnent);
815
816 return __do_cpuid_func(entry, func, nent, maxnent);
817}
818
819#undef F
820
821struct kvm_cpuid_param {
822 u32 func;
823 bool (*qualifier)(const struct kvm_cpuid_param *param);
824};
825
826static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
827{
828 return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
829}
830
831static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
832 __u32 num_entries, unsigned int ioctl_type)
833{
834 int i;
835 __u32 pad[3];
836
837 if (ioctl_type != KVM_GET_EMULATED_CPUID)
838 return false;
839
840 /*
841 * We want to make sure that ->padding is being passed clean from
842 * userspace in case we want to use it for something in the future.
843 *
844 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
845 * have to give ourselves satisfied only with the emulated side. /me
846 * sheds a tear.
847 */
848 for (i = 0; i < num_entries; i++) {
849 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
850 return true;
851
852 if (pad[0] || pad[1] || pad[2])
853 return true;
854 }
855 return false;
856}
857
858int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
859 struct kvm_cpuid_entry2 __user *entries,
860 unsigned int type)
861{
862 struct kvm_cpuid_entry2 *cpuid_entries;
863 int limit, nent = 0, r = -E2BIG, i;
864 u32 func;
865 static const struct kvm_cpuid_param param[] = {
866 { .func = 0 },
867 { .func = 0x80000000 },
868 { .func = 0xC0000000, .qualifier = is_centaur_cpu },
869 { .func = KVM_CPUID_SIGNATURE },
870 };
871
872 if (cpuid->nent < 1)
873 goto out;
874 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
875 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
876
877 if (sanity_check_entries(entries, cpuid->nent, type))
878 return -EINVAL;
879
880 r = -ENOMEM;
881 cpuid_entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
882 cpuid->nent));
883 if (!cpuid_entries)
884 goto out;
885
886 r = 0;
887 for (i = 0; i < ARRAY_SIZE(param); i++) {
888 const struct kvm_cpuid_param *ent = ¶m[i];
889
890 if (ent->qualifier && !ent->qualifier(ent))
891 continue;
892
893 r = do_cpuid_func(&cpuid_entries[nent], ent->func,
894 &nent, cpuid->nent, type);
895
896 if (r)
897 goto out_free;
898
899 limit = cpuid_entries[nent - 1].eax;
900 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
901 r = do_cpuid_func(&cpuid_entries[nent], func,
902 &nent, cpuid->nent, type);
903
904 if (r)
905 goto out_free;
906 }
907
908 r = -EFAULT;
909 if (copy_to_user(entries, cpuid_entries,
910 nent * sizeof(struct kvm_cpuid_entry2)))
911 goto out_free;
912 cpuid->nent = nent;
913 r = 0;
914
915out_free:
916 vfree(cpuid_entries);
917out:
918 return r;
919}
920
921static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
922{
923 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
924 struct kvm_cpuid_entry2 *ej;
925 int j = i;
926 int nent = vcpu->arch.cpuid_nent;
927
928 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
929 /* when no next entry is found, the current entry[i] is reselected */
930 do {
931 j = (j + 1) % nent;
932 ej = &vcpu->arch.cpuid_entries[j];
933 } while (ej->function != e->function);
934
935 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
936
937 return j;
938}
939
940/* find an entry with matching function, matching index (if needed), and that
941 * should be read next (if it's stateful) */
942static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
943 u32 function, u32 index)
944{
945 if (e->function != function)
946 return 0;
947 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
948 return 0;
949 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
950 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
951 return 0;
952 return 1;
953}
954
955struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
956 u32 function, u32 index)
957{
958 int i;
959 struct kvm_cpuid_entry2 *best = NULL;
960
961 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
962 struct kvm_cpuid_entry2 *e;
963
964 e = &vcpu->arch.cpuid_entries[i];
965 if (is_matching_cpuid_entry(e, function, index)) {
966 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
967 move_to_next_stateful_cpuid_entry(vcpu, i);
968 best = e;
969 break;
970 }
971 }
972 return best;
973}
974EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
975
976/*
977 * If the basic or extended CPUID leaf requested is higher than the
978 * maximum supported basic or extended leaf, respectively, then it is
979 * out of range.
980 */
981static bool cpuid_function_in_range(struct kvm_vcpu *vcpu, u32 function)
982{
983 struct kvm_cpuid_entry2 *max;
984
985 max = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
986 return max && function <= max->eax;
987}
988
989bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
990 u32 *ecx, u32 *edx, bool check_limit)
991{
992 u32 function = *eax, index = *ecx;
993 struct kvm_cpuid_entry2 *entry;
994 struct kvm_cpuid_entry2 *max;
995 bool found;
996
997 entry = kvm_find_cpuid_entry(vcpu, function, index);
998 found = entry;
999 /*
1000 * Intel CPUID semantics treats any query for an out-of-range
1001 * leaf as if the highest basic leaf (i.e. CPUID.0H:EAX) were
1002 * requested. AMD CPUID semantics returns all zeroes for any
1003 * undefined leaf, whether or not the leaf is in range.
1004 */
1005 if (!entry && check_limit && !guest_cpuid_is_amd(vcpu) &&
1006 !cpuid_function_in_range(vcpu, function)) {
1007 max = kvm_find_cpuid_entry(vcpu, 0, 0);
1008 if (max) {
1009 function = max->eax;
1010 entry = kvm_find_cpuid_entry(vcpu, function, index);
1011 }
1012 }
1013 if (entry) {
1014 *eax = entry->eax;
1015 *ebx = entry->ebx;
1016 *ecx = entry->ecx;
1017 *edx = entry->edx;
1018 } else {
1019 *eax = *ebx = *ecx = *edx = 0;
1020 /*
1021 * When leaf 0BH or 1FH is defined, CL is pass-through
1022 * and EDX is always the x2APIC ID, even for undefined
1023 * subleaves. Index 1 will exist iff the leaf is
1024 * implemented, so we pass through CL iff leaf 1
1025 * exists. EDX can be copied from any existing index.
1026 */
1027 if (function == 0xb || function == 0x1f) {
1028 entry = kvm_find_cpuid_entry(vcpu, function, 1);
1029 if (entry) {
1030 *ecx = index & 0xff;
1031 *edx = entry->edx;
1032 }
1033 }
1034 }
1035 trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, found);
1036 return found;
1037}
1038EXPORT_SYMBOL_GPL(kvm_cpuid);
1039
1040int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1041{
1042 u32 eax, ebx, ecx, edx;
1043
1044 if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1045 return 1;
1046
1047 eax = kvm_rax_read(vcpu);
1048 ecx = kvm_rcx_read(vcpu);
1049 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
1050 kvm_rax_write(vcpu, eax);
1051 kvm_rbx_write(vcpu, ebx);
1052 kvm_rcx_write(vcpu, ecx);
1053 kvm_rdx_write(vcpu, edx);
1054 return kvm_skip_emulated_instruction(vcpu);
1055}
1056EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);