Loading...
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
14#include <linux/slab.h>
15#include <linux/init.h>
16#include <linux/bitops.h>
17#include <linux/poison.h>
18#include <linux/pfn.h>
19#include <linux/debugfs.h>
20#include <linux/seq_file.h>
21#include <linux/memblock.h>
22
23struct memblock memblock __initdata_memblock;
24
25int memblock_debug __initdata_memblock;
26int memblock_can_resize __initdata_memblock;
27static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
28static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
29
30/* inline so we don't get a warning when pr_debug is compiled out */
31static inline const char *memblock_type_name(struct memblock_type *type)
32{
33 if (type == &memblock.memory)
34 return "memory";
35 else if (type == &memblock.reserved)
36 return "reserved";
37 else
38 return "unknown";
39}
40
41/*
42 * Address comparison utilities
43 */
44
45static phys_addr_t __init_memblock memblock_align_down(phys_addr_t addr, phys_addr_t size)
46{
47 return addr & ~(size - 1);
48}
49
50static phys_addr_t __init_memblock memblock_align_up(phys_addr_t addr, phys_addr_t size)
51{
52 return (addr + (size - 1)) & ~(size - 1);
53}
54
55static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
56 phys_addr_t base2, phys_addr_t size2)
57{
58 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
59}
60
61long __init_memblock memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
62{
63 unsigned long i;
64
65 for (i = 0; i < type->cnt; i++) {
66 phys_addr_t rgnbase = type->regions[i].base;
67 phys_addr_t rgnsize = type->regions[i].size;
68 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
69 break;
70 }
71
72 return (i < type->cnt) ? i : -1;
73}
74
75/*
76 * Find, allocate, deallocate or reserve unreserved regions. All allocations
77 * are top-down.
78 */
79
80static phys_addr_t __init_memblock memblock_find_region(phys_addr_t start, phys_addr_t end,
81 phys_addr_t size, phys_addr_t align)
82{
83 phys_addr_t base, res_base;
84 long j;
85
86 /* In case, huge size is requested */
87 if (end < size)
88 return MEMBLOCK_ERROR;
89
90 base = memblock_align_down((end - size), align);
91
92 /* Prevent allocations returning 0 as it's also used to
93 * indicate an allocation failure
94 */
95 if (start == 0)
96 start = PAGE_SIZE;
97
98 while (start <= base) {
99 j = memblock_overlaps_region(&memblock.reserved, base, size);
100 if (j < 0)
101 return base;
102 res_base = memblock.reserved.regions[j].base;
103 if (res_base < size)
104 break;
105 base = memblock_align_down(res_base - size, align);
106 }
107
108 return MEMBLOCK_ERROR;
109}
110
111static phys_addr_t __init_memblock memblock_find_base(phys_addr_t size,
112 phys_addr_t align, phys_addr_t start, phys_addr_t end)
113{
114 long i;
115
116 BUG_ON(0 == size);
117
118 /* Pump up max_addr */
119 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
120 end = memblock.current_limit;
121
122 /* We do a top-down search, this tends to limit memory
123 * fragmentation by keeping early boot allocs near the
124 * top of memory
125 */
126 for (i = memblock.memory.cnt - 1; i >= 0; i--) {
127 phys_addr_t memblockbase = memblock.memory.regions[i].base;
128 phys_addr_t memblocksize = memblock.memory.regions[i].size;
129 phys_addr_t bottom, top, found;
130
131 if (memblocksize < size)
132 continue;
133 if ((memblockbase + memblocksize) <= start)
134 break;
135 bottom = max(memblockbase, start);
136 top = min(memblockbase + memblocksize, end);
137 if (bottom >= top)
138 continue;
139 found = memblock_find_region(bottom, top, size, align);
140 if (found != MEMBLOCK_ERROR)
141 return found;
142 }
143 return MEMBLOCK_ERROR;
144}
145
146/*
147 * Find a free area with specified alignment in a specific range.
148 */
149u64 __init_memblock memblock_find_in_range(u64 start, u64 end, u64 size, u64 align)
150{
151 return memblock_find_base(size, align, start, end);
152}
153
154/*
155 * Free memblock.reserved.regions
156 */
157int __init_memblock memblock_free_reserved_regions(void)
158{
159 if (memblock.reserved.regions == memblock_reserved_init_regions)
160 return 0;
161
162 return memblock_free(__pa(memblock.reserved.regions),
163 sizeof(struct memblock_region) * memblock.reserved.max);
164}
165
166/*
167 * Reserve memblock.reserved.regions
168 */
169int __init_memblock memblock_reserve_reserved_regions(void)
170{
171 if (memblock.reserved.regions == memblock_reserved_init_regions)
172 return 0;
173
174 return memblock_reserve(__pa(memblock.reserved.regions),
175 sizeof(struct memblock_region) * memblock.reserved.max);
176}
177
178static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
179{
180 unsigned long i;
181
182 for (i = r; i < type->cnt - 1; i++) {
183 type->regions[i].base = type->regions[i + 1].base;
184 type->regions[i].size = type->regions[i + 1].size;
185 }
186 type->cnt--;
187
188 /* Special case for empty arrays */
189 if (type->cnt == 0) {
190 type->cnt = 1;
191 type->regions[0].base = 0;
192 type->regions[0].size = 0;
193 }
194}
195
196/* Defined below but needed now */
197static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size);
198
199static int __init_memblock memblock_double_array(struct memblock_type *type)
200{
201 struct memblock_region *new_array, *old_array;
202 phys_addr_t old_size, new_size, addr;
203 int use_slab = slab_is_available();
204
205 /* We don't allow resizing until we know about the reserved regions
206 * of memory that aren't suitable for allocation
207 */
208 if (!memblock_can_resize)
209 return -1;
210
211 /* Calculate new doubled size */
212 old_size = type->max * sizeof(struct memblock_region);
213 new_size = old_size << 1;
214
215 /* Try to find some space for it.
216 *
217 * WARNING: We assume that either slab_is_available() and we use it or
218 * we use MEMBLOCK for allocations. That means that this is unsafe to use
219 * when bootmem is currently active (unless bootmem itself is implemented
220 * on top of MEMBLOCK which isn't the case yet)
221 *
222 * This should however not be an issue for now, as we currently only
223 * call into MEMBLOCK while it's still active, or much later when slab is
224 * active for memory hotplug operations
225 */
226 if (use_slab) {
227 new_array = kmalloc(new_size, GFP_KERNEL);
228 addr = new_array == NULL ? MEMBLOCK_ERROR : __pa(new_array);
229 } else
230 addr = memblock_find_base(new_size, sizeof(phys_addr_t), 0, MEMBLOCK_ALLOC_ACCESSIBLE);
231 if (addr == MEMBLOCK_ERROR) {
232 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
233 memblock_type_name(type), type->max, type->max * 2);
234 return -1;
235 }
236 new_array = __va(addr);
237
238 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
239 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
240
241 /* Found space, we now need to move the array over before
242 * we add the reserved region since it may be our reserved
243 * array itself that is full.
244 */
245 memcpy(new_array, type->regions, old_size);
246 memset(new_array + type->max, 0, old_size);
247 old_array = type->regions;
248 type->regions = new_array;
249 type->max <<= 1;
250
251 /* If we use SLAB that's it, we are done */
252 if (use_slab)
253 return 0;
254
255 /* Add the new reserved region now. Should not fail ! */
256 BUG_ON(memblock_add_region(&memblock.reserved, addr, new_size));
257
258 /* If the array wasn't our static init one, then free it. We only do
259 * that before SLAB is available as later on, we don't know whether
260 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
261 * anyways
262 */
263 if (old_array != memblock_memory_init_regions &&
264 old_array != memblock_reserved_init_regions)
265 memblock_free(__pa(old_array), old_size);
266
267 return 0;
268}
269
270extern int __init_memblock __weak memblock_memory_can_coalesce(phys_addr_t addr1, phys_addr_t size1,
271 phys_addr_t addr2, phys_addr_t size2)
272{
273 return 1;
274}
275
276static long __init_memblock memblock_add_region(struct memblock_type *type,
277 phys_addr_t base, phys_addr_t size)
278{
279 phys_addr_t end = base + size;
280 int i, slot = -1;
281
282 /* First try and coalesce this MEMBLOCK with others */
283 for (i = 0; i < type->cnt; i++) {
284 struct memblock_region *rgn = &type->regions[i];
285 phys_addr_t rend = rgn->base + rgn->size;
286
287 /* Exit if there's no possible hits */
288 if (rgn->base > end || rgn->size == 0)
289 break;
290
291 /* Check if we are fully enclosed within an existing
292 * block
293 */
294 if (rgn->base <= base && rend >= end)
295 return 0;
296
297 /* Check if we overlap or are adjacent with the bottom
298 * of a block.
299 */
300 if (base < rgn->base && end >= rgn->base) {
301 /* If we can't coalesce, create a new block */
302 if (!memblock_memory_can_coalesce(base, size,
303 rgn->base,
304 rgn->size)) {
305 /* Overlap & can't coalesce are mutually
306 * exclusive, if you do that, be prepared
307 * for trouble
308 */
309 WARN_ON(end != rgn->base);
310 goto new_block;
311 }
312 /* We extend the bottom of the block down to our
313 * base
314 */
315 rgn->base = base;
316 rgn->size = rend - base;
317
318 /* Return if we have nothing else to allocate
319 * (fully coalesced)
320 */
321 if (rend >= end)
322 return 0;
323
324 /* We continue processing from the end of the
325 * coalesced block.
326 */
327 base = rend;
328 size = end - base;
329 }
330
331 /* Now check if we overlap or are adjacent with the
332 * top of a block
333 */
334 if (base <= rend && end >= rend) {
335 /* If we can't coalesce, create a new block */
336 if (!memblock_memory_can_coalesce(rgn->base,
337 rgn->size,
338 base, size)) {
339 /* Overlap & can't coalesce are mutually
340 * exclusive, if you do that, be prepared
341 * for trouble
342 */
343 WARN_ON(rend != base);
344 goto new_block;
345 }
346 /* We adjust our base down to enclose the
347 * original block and destroy it. It will be
348 * part of our new allocation. Since we've
349 * freed an entry, we know we won't fail
350 * to allocate one later, so we won't risk
351 * losing the original block allocation.
352 */
353 size += (base - rgn->base);
354 base = rgn->base;
355 memblock_remove_region(type, i--);
356 }
357 }
358
359 /* If the array is empty, special case, replace the fake
360 * filler region and return
361 */
362 if ((type->cnt == 1) && (type->regions[0].size == 0)) {
363 type->regions[0].base = base;
364 type->regions[0].size = size;
365 return 0;
366 }
367
368 new_block:
369 /* If we are out of space, we fail. It's too late to resize the array
370 * but then this shouldn't have happened in the first place.
371 */
372 if (WARN_ON(type->cnt >= type->max))
373 return -1;
374
375 /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
376 for (i = type->cnt - 1; i >= 0; i--) {
377 if (base < type->regions[i].base) {
378 type->regions[i+1].base = type->regions[i].base;
379 type->regions[i+1].size = type->regions[i].size;
380 } else {
381 type->regions[i+1].base = base;
382 type->regions[i+1].size = size;
383 slot = i + 1;
384 break;
385 }
386 }
387 if (base < type->regions[0].base) {
388 type->regions[0].base = base;
389 type->regions[0].size = size;
390 slot = 0;
391 }
392 type->cnt++;
393
394 /* The array is full ? Try to resize it. If that fails, we undo
395 * our allocation and return an error
396 */
397 if (type->cnt == type->max && memblock_double_array(type)) {
398 BUG_ON(slot < 0);
399 memblock_remove_region(type, slot);
400 return -1;
401 }
402
403 return 0;
404}
405
406long __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
407{
408 return memblock_add_region(&memblock.memory, base, size);
409
410}
411
412static long __init_memblock __memblock_remove(struct memblock_type *type,
413 phys_addr_t base, phys_addr_t size)
414{
415 phys_addr_t end = base + size;
416 int i;
417
418 /* Walk through the array for collisions */
419 for (i = 0; i < type->cnt; i++) {
420 struct memblock_region *rgn = &type->regions[i];
421 phys_addr_t rend = rgn->base + rgn->size;
422
423 /* Nothing more to do, exit */
424 if (rgn->base > end || rgn->size == 0)
425 break;
426
427 /* If we fully enclose the block, drop it */
428 if (base <= rgn->base && end >= rend) {
429 memblock_remove_region(type, i--);
430 continue;
431 }
432
433 /* If we are fully enclosed within a block
434 * then we need to split it and we are done
435 */
436 if (base > rgn->base && end < rend) {
437 rgn->size = base - rgn->base;
438 if (!memblock_add_region(type, end, rend - end))
439 return 0;
440 /* Failure to split is bad, we at least
441 * restore the block before erroring
442 */
443 rgn->size = rend - rgn->base;
444 WARN_ON(1);
445 return -1;
446 }
447
448 /* Check if we need to trim the bottom of a block */
449 if (rgn->base < end && rend > end) {
450 rgn->size -= end - rgn->base;
451 rgn->base = end;
452 break;
453 }
454
455 /* And check if we need to trim the top of a block */
456 if (base < rend)
457 rgn->size -= rend - base;
458
459 }
460 return 0;
461}
462
463long __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
464{
465 return __memblock_remove(&memblock.memory, base, size);
466}
467
468long __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
469{
470 return __memblock_remove(&memblock.reserved, base, size);
471}
472
473long __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
474{
475 struct memblock_type *_rgn = &memblock.reserved;
476
477 BUG_ON(0 == size);
478
479 return memblock_add_region(_rgn, base, size);
480}
481
482phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
483{
484 phys_addr_t found;
485
486 /* We align the size to limit fragmentation. Without this, a lot of
487 * small allocs quickly eat up the whole reserve array on sparc
488 */
489 size = memblock_align_up(size, align);
490
491 found = memblock_find_base(size, align, 0, max_addr);
492 if (found != MEMBLOCK_ERROR &&
493 !memblock_add_region(&memblock.reserved, found, size))
494 return found;
495
496 return 0;
497}
498
499phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
500{
501 phys_addr_t alloc;
502
503 alloc = __memblock_alloc_base(size, align, max_addr);
504
505 if (alloc == 0)
506 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
507 (unsigned long long) size, (unsigned long long) max_addr);
508
509 return alloc;
510}
511
512phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
513{
514 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
515}
516
517
518/*
519 * Additional node-local allocators. Search for node memory is bottom up
520 * and walks memblock regions within that node bottom-up as well, but allocation
521 * within an memblock region is top-down. XXX I plan to fix that at some stage
522 *
523 * WARNING: Only available after early_node_map[] has been populated,
524 * on some architectures, that is after all the calls to add_active_range()
525 * have been done to populate it.
526 */
527
528phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid)
529{
530#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
531 /*
532 * This code originates from sparc which really wants use to walk by addresses
533 * and returns the nid. This is not very convenient for early_pfn_map[] users
534 * as the map isn't sorted yet, and it really wants to be walked by nid.
535 *
536 * For now, I implement the inefficient method below which walks the early
537 * map multiple times. Eventually we may want to use an ARCH config option
538 * to implement a completely different method for both case.
539 */
540 unsigned long start_pfn, end_pfn;
541 int i;
542
543 for (i = 0; i < MAX_NUMNODES; i++) {
544 get_pfn_range_for_nid(i, &start_pfn, &end_pfn);
545 if (start < PFN_PHYS(start_pfn) || start >= PFN_PHYS(end_pfn))
546 continue;
547 *nid = i;
548 return min(end, PFN_PHYS(end_pfn));
549 }
550#endif
551 *nid = 0;
552
553 return end;
554}
555
556static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp,
557 phys_addr_t size,
558 phys_addr_t align, int nid)
559{
560 phys_addr_t start, end;
561
562 start = mp->base;
563 end = start + mp->size;
564
565 start = memblock_align_up(start, align);
566 while (start < end) {
567 phys_addr_t this_end;
568 int this_nid;
569
570 this_end = memblock_nid_range(start, end, &this_nid);
571 if (this_nid == nid) {
572 phys_addr_t ret = memblock_find_region(start, this_end, size, align);
573 if (ret != MEMBLOCK_ERROR &&
574 !memblock_add_region(&memblock.reserved, ret, size))
575 return ret;
576 }
577 start = this_end;
578 }
579
580 return MEMBLOCK_ERROR;
581}
582
583phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
584{
585 struct memblock_type *mem = &memblock.memory;
586 int i;
587
588 BUG_ON(0 == size);
589
590 /* We align the size to limit fragmentation. Without this, a lot of
591 * small allocs quickly eat up the whole reserve array on sparc
592 */
593 size = memblock_align_up(size, align);
594
595 /* We do a bottom-up search for a region with the right
596 * nid since that's easier considering how memblock_nid_range()
597 * works
598 */
599 for (i = 0; i < mem->cnt; i++) {
600 phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i],
601 size, align, nid);
602 if (ret != MEMBLOCK_ERROR)
603 return ret;
604 }
605
606 return 0;
607}
608
609phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
610{
611 phys_addr_t res = memblock_alloc_nid(size, align, nid);
612
613 if (res)
614 return res;
615 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE);
616}
617
618
619/*
620 * Remaining API functions
621 */
622
623/* You must call memblock_analyze() before this. */
624phys_addr_t __init memblock_phys_mem_size(void)
625{
626 return memblock.memory_size;
627}
628
629phys_addr_t __init_memblock memblock_end_of_DRAM(void)
630{
631 int idx = memblock.memory.cnt - 1;
632
633 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
634}
635
636/* You must call memblock_analyze() after this. */
637void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
638{
639 unsigned long i;
640 phys_addr_t limit;
641 struct memblock_region *p;
642
643 if (!memory_limit)
644 return;
645
646 /* Truncate the memblock regions to satisfy the memory limit. */
647 limit = memory_limit;
648 for (i = 0; i < memblock.memory.cnt; i++) {
649 if (limit > memblock.memory.regions[i].size) {
650 limit -= memblock.memory.regions[i].size;
651 continue;
652 }
653
654 memblock.memory.regions[i].size = limit;
655 memblock.memory.cnt = i + 1;
656 break;
657 }
658
659 memory_limit = memblock_end_of_DRAM();
660
661 /* And truncate any reserves above the limit also. */
662 for (i = 0; i < memblock.reserved.cnt; i++) {
663 p = &memblock.reserved.regions[i];
664
665 if (p->base > memory_limit)
666 p->size = 0;
667 else if ((p->base + p->size) > memory_limit)
668 p->size = memory_limit - p->base;
669
670 if (p->size == 0) {
671 memblock_remove_region(&memblock.reserved, i);
672 i--;
673 }
674 }
675}
676
677static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
678{
679 unsigned int left = 0, right = type->cnt;
680
681 do {
682 unsigned int mid = (right + left) / 2;
683
684 if (addr < type->regions[mid].base)
685 right = mid;
686 else if (addr >= (type->regions[mid].base +
687 type->regions[mid].size))
688 left = mid + 1;
689 else
690 return mid;
691 } while (left < right);
692 return -1;
693}
694
695int __init memblock_is_reserved(phys_addr_t addr)
696{
697 return memblock_search(&memblock.reserved, addr) != -1;
698}
699
700int __init_memblock memblock_is_memory(phys_addr_t addr)
701{
702 return memblock_search(&memblock.memory, addr) != -1;
703}
704
705int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
706{
707 int idx = memblock_search(&memblock.memory, base);
708
709 if (idx == -1)
710 return 0;
711 return memblock.memory.regions[idx].base <= base &&
712 (memblock.memory.regions[idx].base +
713 memblock.memory.regions[idx].size) >= (base + size);
714}
715
716int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
717{
718 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
719}
720
721
722void __init_memblock memblock_set_current_limit(phys_addr_t limit)
723{
724 memblock.current_limit = limit;
725}
726
727static void __init_memblock memblock_dump(struct memblock_type *region, char *name)
728{
729 unsigned long long base, size;
730 int i;
731
732 pr_info(" %s.cnt = 0x%lx\n", name, region->cnt);
733
734 for (i = 0; i < region->cnt; i++) {
735 base = region->regions[i].base;
736 size = region->regions[i].size;
737
738 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes\n",
739 name, i, base, base + size - 1, size);
740 }
741}
742
743void __init_memblock memblock_dump_all(void)
744{
745 if (!memblock_debug)
746 return;
747
748 pr_info("MEMBLOCK configuration:\n");
749 pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
750
751 memblock_dump(&memblock.memory, "memory");
752 memblock_dump(&memblock.reserved, "reserved");
753}
754
755void __init memblock_analyze(void)
756{
757 int i;
758
759 /* Check marker in the unused last array entry */
760 WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base
761 != MEMBLOCK_INACTIVE);
762 WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base
763 != MEMBLOCK_INACTIVE);
764
765 memblock.memory_size = 0;
766
767 for (i = 0; i < memblock.memory.cnt; i++)
768 memblock.memory_size += memblock.memory.regions[i].size;
769
770 /* We allow resizing from there */
771 memblock_can_resize = 1;
772}
773
774void __init memblock_init(void)
775{
776 static int init_done __initdata = 0;
777
778 if (init_done)
779 return;
780 init_done = 1;
781
782 /* Hookup the initial arrays */
783 memblock.memory.regions = memblock_memory_init_regions;
784 memblock.memory.max = INIT_MEMBLOCK_REGIONS;
785 memblock.reserved.regions = memblock_reserved_init_regions;
786 memblock.reserved.max = INIT_MEMBLOCK_REGIONS;
787
788 /* Write a marker in the unused last array entry */
789 memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = MEMBLOCK_INACTIVE;
790 memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = MEMBLOCK_INACTIVE;
791
792 /* Create a dummy zero size MEMBLOCK which will get coalesced away later.
793 * This simplifies the memblock_add() code below...
794 */
795 memblock.memory.regions[0].base = 0;
796 memblock.memory.regions[0].size = 0;
797 memblock.memory.cnt = 1;
798
799 /* Ditto. */
800 memblock.reserved.regions[0].base = 0;
801 memblock.reserved.regions[0].size = 0;
802 memblock.reserved.cnt = 1;
803
804 memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
805}
806
807static int __init early_memblock(char *p)
808{
809 if (p && strstr(p, "debug"))
810 memblock_debug = 1;
811 return 0;
812}
813early_param("memblock", early_memblock);
814
815#if defined(CONFIG_DEBUG_FS) && !defined(ARCH_DISCARD_MEMBLOCK)
816
817static int memblock_debug_show(struct seq_file *m, void *private)
818{
819 struct memblock_type *type = m->private;
820 struct memblock_region *reg;
821 int i;
822
823 for (i = 0; i < type->cnt; i++) {
824 reg = &type->regions[i];
825 seq_printf(m, "%4d: ", i);
826 if (sizeof(phys_addr_t) == 4)
827 seq_printf(m, "0x%08lx..0x%08lx\n",
828 (unsigned long)reg->base,
829 (unsigned long)(reg->base + reg->size - 1));
830 else
831 seq_printf(m, "0x%016llx..0x%016llx\n",
832 (unsigned long long)reg->base,
833 (unsigned long long)(reg->base + reg->size - 1));
834
835 }
836 return 0;
837}
838
839static int memblock_debug_open(struct inode *inode, struct file *file)
840{
841 return single_open(file, memblock_debug_show, inode->i_private);
842}
843
844static const struct file_operations memblock_debug_fops = {
845 .open = memblock_debug_open,
846 .read = seq_read,
847 .llseek = seq_lseek,
848 .release = single_release,
849};
850
851static int __init memblock_init_debugfs(void)
852{
853 struct dentry *root = debugfs_create_dir("memblock", NULL);
854 if (!root)
855 return -ENXIO;
856 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
857 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
858
859 return 0;
860}
861__initcall(memblock_init_debugfs);
862
863#endif /* CONFIG_DEBUG_FS */
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
14#include <linux/slab.h>
15#include <linux/init.h>
16#include <linux/bitops.h>
17#include <linux/poison.h>
18#include <linux/pfn.h>
19#include <linux/debugfs.h>
20#include <linux/kmemleak.h>
21#include <linux/seq_file.h>
22#include <linux/memblock.h>
23
24#include <asm/sections.h>
25#include <linux/io.h>
26
27#include "internal.h"
28
29static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
31#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
32static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
33#endif
34
35struct memblock memblock __initdata_memblock = {
36 .memory.regions = memblock_memory_init_regions,
37 .memory.cnt = 1, /* empty dummy entry */
38 .memory.max = INIT_MEMBLOCK_REGIONS,
39 .memory.name = "memory",
40
41 .reserved.regions = memblock_reserved_init_regions,
42 .reserved.cnt = 1, /* empty dummy entry */
43 .reserved.max = INIT_MEMBLOCK_REGIONS,
44 .reserved.name = "reserved",
45
46#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
47 .physmem.regions = memblock_physmem_init_regions,
48 .physmem.cnt = 1, /* empty dummy entry */
49 .physmem.max = INIT_PHYSMEM_REGIONS,
50 .physmem.name = "physmem",
51#endif
52
53 .bottom_up = false,
54 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
55};
56
57int memblock_debug __initdata_memblock;
58static bool system_has_some_mirror __initdata_memblock = false;
59static int memblock_can_resize __initdata_memblock;
60static int memblock_memory_in_slab __initdata_memblock = 0;
61static int memblock_reserved_in_slab __initdata_memblock = 0;
62
63ulong __init_memblock choose_memblock_flags(void)
64{
65 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
66}
67
68/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
69static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
70{
71 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
72}
73
74/*
75 * Address comparison utilities
76 */
77static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
78 phys_addr_t base2, phys_addr_t size2)
79{
80 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
81}
82
83bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
84 phys_addr_t base, phys_addr_t size)
85{
86 unsigned long i;
87
88 for (i = 0; i < type->cnt; i++)
89 if (memblock_addrs_overlap(base, size, type->regions[i].base,
90 type->regions[i].size))
91 break;
92 return i < type->cnt;
93}
94
95/*
96 * __memblock_find_range_bottom_up - find free area utility in bottom-up
97 * @start: start of candidate range
98 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
99 * @size: size of free area to find
100 * @align: alignment of free area to find
101 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
102 * @flags: pick from blocks based on memory attributes
103 *
104 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
105 *
106 * RETURNS:
107 * Found address on success, 0 on failure.
108 */
109static phys_addr_t __init_memblock
110__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
111 phys_addr_t size, phys_addr_t align, int nid,
112 ulong flags)
113{
114 phys_addr_t this_start, this_end, cand;
115 u64 i;
116
117 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
118 this_start = clamp(this_start, start, end);
119 this_end = clamp(this_end, start, end);
120
121 cand = round_up(this_start, align);
122 if (cand < this_end && this_end - cand >= size)
123 return cand;
124 }
125
126 return 0;
127}
128
129/**
130 * __memblock_find_range_top_down - find free area utility, in top-down
131 * @start: start of candidate range
132 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
133 * @size: size of free area to find
134 * @align: alignment of free area to find
135 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
136 * @flags: pick from blocks based on memory attributes
137 *
138 * Utility called from memblock_find_in_range_node(), find free area top-down.
139 *
140 * RETURNS:
141 * Found address on success, 0 on failure.
142 */
143static phys_addr_t __init_memblock
144__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
145 phys_addr_t size, phys_addr_t align, int nid,
146 ulong flags)
147{
148 phys_addr_t this_start, this_end, cand;
149 u64 i;
150
151 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
152 NULL) {
153 this_start = clamp(this_start, start, end);
154 this_end = clamp(this_end, start, end);
155
156 if (this_end < size)
157 continue;
158
159 cand = round_down(this_end - size, align);
160 if (cand >= this_start)
161 return cand;
162 }
163
164 return 0;
165}
166
167/**
168 * memblock_find_in_range_node - find free area in given range and node
169 * @size: size of free area to find
170 * @align: alignment of free area to find
171 * @start: start of candidate range
172 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
173 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
174 * @flags: pick from blocks based on memory attributes
175 *
176 * Find @size free area aligned to @align in the specified range and node.
177 *
178 * When allocation direction is bottom-up, the @start should be greater
179 * than the end of the kernel image. Otherwise, it will be trimmed. The
180 * reason is that we want the bottom-up allocation just near the kernel
181 * image so it is highly likely that the allocated memory and the kernel
182 * will reside in the same node.
183 *
184 * If bottom-up allocation failed, will try to allocate memory top-down.
185 *
186 * RETURNS:
187 * Found address on success, 0 on failure.
188 */
189phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
190 phys_addr_t align, phys_addr_t start,
191 phys_addr_t end, int nid, ulong flags)
192{
193 phys_addr_t kernel_end, ret;
194
195 /* pump up @end */
196 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
197 end = memblock.current_limit;
198
199 /* avoid allocating the first page */
200 start = max_t(phys_addr_t, start, PAGE_SIZE);
201 end = max(start, end);
202 kernel_end = __pa_symbol(_end);
203
204 /*
205 * try bottom-up allocation only when bottom-up mode
206 * is set and @end is above the kernel image.
207 */
208 if (memblock_bottom_up() && end > kernel_end) {
209 phys_addr_t bottom_up_start;
210
211 /* make sure we will allocate above the kernel */
212 bottom_up_start = max(start, kernel_end);
213
214 /* ok, try bottom-up allocation first */
215 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
216 size, align, nid, flags);
217 if (ret)
218 return ret;
219
220 /*
221 * we always limit bottom-up allocation above the kernel,
222 * but top-down allocation doesn't have the limit, so
223 * retrying top-down allocation may succeed when bottom-up
224 * allocation failed.
225 *
226 * bottom-up allocation is expected to be fail very rarely,
227 * so we use WARN_ONCE() here to see the stack trace if
228 * fail happens.
229 */
230 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
231 }
232
233 return __memblock_find_range_top_down(start, end, size, align, nid,
234 flags);
235}
236
237/**
238 * memblock_find_in_range - find free area in given range
239 * @start: start of candidate range
240 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
241 * @size: size of free area to find
242 * @align: alignment of free area to find
243 *
244 * Find @size free area aligned to @align in the specified range.
245 *
246 * RETURNS:
247 * Found address on success, 0 on failure.
248 */
249phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
250 phys_addr_t end, phys_addr_t size,
251 phys_addr_t align)
252{
253 phys_addr_t ret;
254 ulong flags = choose_memblock_flags();
255
256again:
257 ret = memblock_find_in_range_node(size, align, start, end,
258 NUMA_NO_NODE, flags);
259
260 if (!ret && (flags & MEMBLOCK_MIRROR)) {
261 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
262 &size);
263 flags &= ~MEMBLOCK_MIRROR;
264 goto again;
265 }
266
267 return ret;
268}
269
270static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
271{
272 type->total_size -= type->regions[r].size;
273 memmove(&type->regions[r], &type->regions[r + 1],
274 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
275 type->cnt--;
276
277 /* Special case for empty arrays */
278 if (type->cnt == 0) {
279 WARN_ON(type->total_size != 0);
280 type->cnt = 1;
281 type->regions[0].base = 0;
282 type->regions[0].size = 0;
283 type->regions[0].flags = 0;
284 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
285 }
286}
287
288#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
289/**
290 * Discard memory and reserved arrays if they were allocated
291 */
292void __init memblock_discard(void)
293{
294 phys_addr_t addr, size;
295
296 if (memblock.reserved.regions != memblock_reserved_init_regions) {
297 addr = __pa(memblock.reserved.regions);
298 size = PAGE_ALIGN(sizeof(struct memblock_region) *
299 memblock.reserved.max);
300 __memblock_free_late(addr, size);
301 }
302
303 if (memblock.memory.regions != memblock_memory_init_regions) {
304 addr = __pa(memblock.memory.regions);
305 size = PAGE_ALIGN(sizeof(struct memblock_region) *
306 memblock.memory.max);
307 __memblock_free_late(addr, size);
308 }
309}
310#endif
311
312/**
313 * memblock_double_array - double the size of the memblock regions array
314 * @type: memblock type of the regions array being doubled
315 * @new_area_start: starting address of memory range to avoid overlap with
316 * @new_area_size: size of memory range to avoid overlap with
317 *
318 * Double the size of the @type regions array. If memblock is being used to
319 * allocate memory for a new reserved regions array and there is a previously
320 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
321 * waiting to be reserved, ensure the memory used by the new array does
322 * not overlap.
323 *
324 * RETURNS:
325 * 0 on success, -1 on failure.
326 */
327static int __init_memblock memblock_double_array(struct memblock_type *type,
328 phys_addr_t new_area_start,
329 phys_addr_t new_area_size)
330{
331 struct memblock_region *new_array, *old_array;
332 phys_addr_t old_alloc_size, new_alloc_size;
333 phys_addr_t old_size, new_size, addr;
334 int use_slab = slab_is_available();
335 int *in_slab;
336
337 /* We don't allow resizing until we know about the reserved regions
338 * of memory that aren't suitable for allocation
339 */
340 if (!memblock_can_resize)
341 return -1;
342
343 /* Calculate new doubled size */
344 old_size = type->max * sizeof(struct memblock_region);
345 new_size = old_size << 1;
346 /*
347 * We need to allocated new one align to PAGE_SIZE,
348 * so we can free them completely later.
349 */
350 old_alloc_size = PAGE_ALIGN(old_size);
351 new_alloc_size = PAGE_ALIGN(new_size);
352
353 /* Retrieve the slab flag */
354 if (type == &memblock.memory)
355 in_slab = &memblock_memory_in_slab;
356 else
357 in_slab = &memblock_reserved_in_slab;
358
359 /* Try to find some space for it.
360 *
361 * WARNING: We assume that either slab_is_available() and we use it or
362 * we use MEMBLOCK for allocations. That means that this is unsafe to
363 * use when bootmem is currently active (unless bootmem itself is
364 * implemented on top of MEMBLOCK which isn't the case yet)
365 *
366 * This should however not be an issue for now, as we currently only
367 * call into MEMBLOCK while it's still active, or much later when slab
368 * is active for memory hotplug operations
369 */
370 if (use_slab) {
371 new_array = kmalloc(new_size, GFP_KERNEL);
372 addr = new_array ? __pa(new_array) : 0;
373 } else {
374 /* only exclude range when trying to double reserved.regions */
375 if (type != &memblock.reserved)
376 new_area_start = new_area_size = 0;
377
378 addr = memblock_find_in_range(new_area_start + new_area_size,
379 memblock.current_limit,
380 new_alloc_size, PAGE_SIZE);
381 if (!addr && new_area_size)
382 addr = memblock_find_in_range(0,
383 min(new_area_start, memblock.current_limit),
384 new_alloc_size, PAGE_SIZE);
385
386 new_array = addr ? __va(addr) : NULL;
387 }
388 if (!addr) {
389 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
390 type->name, type->max, type->max * 2);
391 return -1;
392 }
393
394 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
395 type->name, type->max * 2, (u64)addr,
396 (u64)addr + new_size - 1);
397
398 /*
399 * Found space, we now need to move the array over before we add the
400 * reserved region since it may be our reserved array itself that is
401 * full.
402 */
403 memcpy(new_array, type->regions, old_size);
404 memset(new_array + type->max, 0, old_size);
405 old_array = type->regions;
406 type->regions = new_array;
407 type->max <<= 1;
408
409 /* Free old array. We needn't free it if the array is the static one */
410 if (*in_slab)
411 kfree(old_array);
412 else if (old_array != memblock_memory_init_regions &&
413 old_array != memblock_reserved_init_regions)
414 memblock_free(__pa(old_array), old_alloc_size);
415
416 /*
417 * Reserve the new array if that comes from the memblock. Otherwise, we
418 * needn't do it
419 */
420 if (!use_slab)
421 BUG_ON(memblock_reserve(addr, new_alloc_size));
422
423 /* Update slab flag */
424 *in_slab = use_slab;
425
426 return 0;
427}
428
429/**
430 * memblock_merge_regions - merge neighboring compatible regions
431 * @type: memblock type to scan
432 *
433 * Scan @type and merge neighboring compatible regions.
434 */
435static void __init_memblock memblock_merge_regions(struct memblock_type *type)
436{
437 int i = 0;
438
439 /* cnt never goes below 1 */
440 while (i < type->cnt - 1) {
441 struct memblock_region *this = &type->regions[i];
442 struct memblock_region *next = &type->regions[i + 1];
443
444 if (this->base + this->size != next->base ||
445 memblock_get_region_node(this) !=
446 memblock_get_region_node(next) ||
447 this->flags != next->flags) {
448 BUG_ON(this->base + this->size > next->base);
449 i++;
450 continue;
451 }
452
453 this->size += next->size;
454 /* move forward from next + 1, index of which is i + 2 */
455 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
456 type->cnt--;
457 }
458}
459
460/**
461 * memblock_insert_region - insert new memblock region
462 * @type: memblock type to insert into
463 * @idx: index for the insertion point
464 * @base: base address of the new region
465 * @size: size of the new region
466 * @nid: node id of the new region
467 * @flags: flags of the new region
468 *
469 * Insert new memblock region [@base,@base+@size) into @type at @idx.
470 * @type must already have extra room to accommodate the new region.
471 */
472static void __init_memblock memblock_insert_region(struct memblock_type *type,
473 int idx, phys_addr_t base,
474 phys_addr_t size,
475 int nid, unsigned long flags)
476{
477 struct memblock_region *rgn = &type->regions[idx];
478
479 BUG_ON(type->cnt >= type->max);
480 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
481 rgn->base = base;
482 rgn->size = size;
483 rgn->flags = flags;
484 memblock_set_region_node(rgn, nid);
485 type->cnt++;
486 type->total_size += size;
487}
488
489/**
490 * memblock_add_range - add new memblock region
491 * @type: memblock type to add new region into
492 * @base: base address of the new region
493 * @size: size of the new region
494 * @nid: nid of the new region
495 * @flags: flags of the new region
496 *
497 * Add new memblock region [@base,@base+@size) into @type. The new region
498 * is allowed to overlap with existing ones - overlaps don't affect already
499 * existing regions. @type is guaranteed to be minimal (all neighbouring
500 * compatible regions are merged) after the addition.
501 *
502 * RETURNS:
503 * 0 on success, -errno on failure.
504 */
505int __init_memblock memblock_add_range(struct memblock_type *type,
506 phys_addr_t base, phys_addr_t size,
507 int nid, unsigned long flags)
508{
509 bool insert = false;
510 phys_addr_t obase = base;
511 phys_addr_t end = base + memblock_cap_size(base, &size);
512 int idx, nr_new;
513 struct memblock_region *rgn;
514
515 if (!size)
516 return 0;
517
518 /* special case for empty array */
519 if (type->regions[0].size == 0) {
520 WARN_ON(type->cnt != 1 || type->total_size);
521 type->regions[0].base = base;
522 type->regions[0].size = size;
523 type->regions[0].flags = flags;
524 memblock_set_region_node(&type->regions[0], nid);
525 type->total_size = size;
526 return 0;
527 }
528repeat:
529 /*
530 * The following is executed twice. Once with %false @insert and
531 * then with %true. The first counts the number of regions needed
532 * to accommodate the new area. The second actually inserts them.
533 */
534 base = obase;
535 nr_new = 0;
536
537 for_each_memblock_type(idx, type, rgn) {
538 phys_addr_t rbase = rgn->base;
539 phys_addr_t rend = rbase + rgn->size;
540
541 if (rbase >= end)
542 break;
543 if (rend <= base)
544 continue;
545 /*
546 * @rgn overlaps. If it separates the lower part of new
547 * area, insert that portion.
548 */
549 if (rbase > base) {
550#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
551 WARN_ON(nid != memblock_get_region_node(rgn));
552#endif
553 WARN_ON(flags != rgn->flags);
554 nr_new++;
555 if (insert)
556 memblock_insert_region(type, idx++, base,
557 rbase - base, nid,
558 flags);
559 }
560 /* area below @rend is dealt with, forget about it */
561 base = min(rend, end);
562 }
563
564 /* insert the remaining portion */
565 if (base < end) {
566 nr_new++;
567 if (insert)
568 memblock_insert_region(type, idx, base, end - base,
569 nid, flags);
570 }
571
572 if (!nr_new)
573 return 0;
574
575 /*
576 * If this was the first round, resize array and repeat for actual
577 * insertions; otherwise, merge and return.
578 */
579 if (!insert) {
580 while (type->cnt + nr_new > type->max)
581 if (memblock_double_array(type, obase, size) < 0)
582 return -ENOMEM;
583 insert = true;
584 goto repeat;
585 } else {
586 memblock_merge_regions(type);
587 return 0;
588 }
589}
590
591int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
592 int nid)
593{
594 return memblock_add_range(&memblock.memory, base, size, nid, 0);
595}
596
597int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
598{
599 phys_addr_t end = base + size - 1;
600
601 memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
602 &base, &end, (void *)_RET_IP_);
603
604 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
605}
606
607/**
608 * memblock_isolate_range - isolate given range into disjoint memblocks
609 * @type: memblock type to isolate range for
610 * @base: base of range to isolate
611 * @size: size of range to isolate
612 * @start_rgn: out parameter for the start of isolated region
613 * @end_rgn: out parameter for the end of isolated region
614 *
615 * Walk @type and ensure that regions don't cross the boundaries defined by
616 * [@base,@base+@size). Crossing regions are split at the boundaries,
617 * which may create at most two more regions. The index of the first
618 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
619 *
620 * RETURNS:
621 * 0 on success, -errno on failure.
622 */
623static int __init_memblock memblock_isolate_range(struct memblock_type *type,
624 phys_addr_t base, phys_addr_t size,
625 int *start_rgn, int *end_rgn)
626{
627 phys_addr_t end = base + memblock_cap_size(base, &size);
628 int idx;
629 struct memblock_region *rgn;
630
631 *start_rgn = *end_rgn = 0;
632
633 if (!size)
634 return 0;
635
636 /* we'll create at most two more regions */
637 while (type->cnt + 2 > type->max)
638 if (memblock_double_array(type, base, size) < 0)
639 return -ENOMEM;
640
641 for_each_memblock_type(idx, type, rgn) {
642 phys_addr_t rbase = rgn->base;
643 phys_addr_t rend = rbase + rgn->size;
644
645 if (rbase >= end)
646 break;
647 if (rend <= base)
648 continue;
649
650 if (rbase < base) {
651 /*
652 * @rgn intersects from below. Split and continue
653 * to process the next region - the new top half.
654 */
655 rgn->base = base;
656 rgn->size -= base - rbase;
657 type->total_size -= base - rbase;
658 memblock_insert_region(type, idx, rbase, base - rbase,
659 memblock_get_region_node(rgn),
660 rgn->flags);
661 } else if (rend > end) {
662 /*
663 * @rgn intersects from above. Split and redo the
664 * current region - the new bottom half.
665 */
666 rgn->base = end;
667 rgn->size -= end - rbase;
668 type->total_size -= end - rbase;
669 memblock_insert_region(type, idx--, rbase, end - rbase,
670 memblock_get_region_node(rgn),
671 rgn->flags);
672 } else {
673 /* @rgn is fully contained, record it */
674 if (!*end_rgn)
675 *start_rgn = idx;
676 *end_rgn = idx + 1;
677 }
678 }
679
680 return 0;
681}
682
683static int __init_memblock memblock_remove_range(struct memblock_type *type,
684 phys_addr_t base, phys_addr_t size)
685{
686 int start_rgn, end_rgn;
687 int i, ret;
688
689 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
690 if (ret)
691 return ret;
692
693 for (i = end_rgn - 1; i >= start_rgn; i--)
694 memblock_remove_region(type, i);
695 return 0;
696}
697
698int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
699{
700 return memblock_remove_range(&memblock.memory, base, size);
701}
702
703
704int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
705{
706 phys_addr_t end = base + size - 1;
707
708 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
709 &base, &end, (void *)_RET_IP_);
710
711 kmemleak_free_part_phys(base, size);
712 return memblock_remove_range(&memblock.reserved, base, size);
713}
714
715int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
716{
717 phys_addr_t end = base + size - 1;
718
719 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
720 &base, &end, (void *)_RET_IP_);
721
722 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
723}
724
725/**
726 *
727 * This function isolates region [@base, @base + @size), and sets/clears flag
728 *
729 * Return 0 on success, -errno on failure.
730 */
731static int __init_memblock memblock_setclr_flag(phys_addr_t base,
732 phys_addr_t size, int set, int flag)
733{
734 struct memblock_type *type = &memblock.memory;
735 int i, ret, start_rgn, end_rgn;
736
737 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
738 if (ret)
739 return ret;
740
741 for (i = start_rgn; i < end_rgn; i++)
742 if (set)
743 memblock_set_region_flags(&type->regions[i], flag);
744 else
745 memblock_clear_region_flags(&type->regions[i], flag);
746
747 memblock_merge_regions(type);
748 return 0;
749}
750
751/**
752 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
753 * @base: the base phys addr of the region
754 * @size: the size of the region
755 *
756 * Return 0 on success, -errno on failure.
757 */
758int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
759{
760 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
761}
762
763/**
764 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
765 * @base: the base phys addr of the region
766 * @size: the size of the region
767 *
768 * Return 0 on success, -errno on failure.
769 */
770int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
771{
772 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
773}
774
775/**
776 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
777 * @base: the base phys addr of the region
778 * @size: the size of the region
779 *
780 * Return 0 on success, -errno on failure.
781 */
782int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
783{
784 system_has_some_mirror = true;
785
786 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
787}
788
789/**
790 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
791 * @base: the base phys addr of the region
792 * @size: the size of the region
793 *
794 * Return 0 on success, -errno on failure.
795 */
796int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
797{
798 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
799}
800
801/**
802 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
803 * @base: the base phys addr of the region
804 * @size: the size of the region
805 *
806 * Return 0 on success, -errno on failure.
807 */
808int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
809{
810 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
811}
812
813/**
814 * __next_reserved_mem_region - next function for for_each_reserved_region()
815 * @idx: pointer to u64 loop variable
816 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
817 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
818 *
819 * Iterate over all reserved memory regions.
820 */
821void __init_memblock __next_reserved_mem_region(u64 *idx,
822 phys_addr_t *out_start,
823 phys_addr_t *out_end)
824{
825 struct memblock_type *type = &memblock.reserved;
826
827 if (*idx < type->cnt) {
828 struct memblock_region *r = &type->regions[*idx];
829 phys_addr_t base = r->base;
830 phys_addr_t size = r->size;
831
832 if (out_start)
833 *out_start = base;
834 if (out_end)
835 *out_end = base + size - 1;
836
837 *idx += 1;
838 return;
839 }
840
841 /* signal end of iteration */
842 *idx = ULLONG_MAX;
843}
844
845/**
846 * __next__mem_range - next function for for_each_free_mem_range() etc.
847 * @idx: pointer to u64 loop variable
848 * @nid: node selector, %NUMA_NO_NODE for all nodes
849 * @flags: pick from blocks based on memory attributes
850 * @type_a: pointer to memblock_type from where the range is taken
851 * @type_b: pointer to memblock_type which excludes memory from being taken
852 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
853 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
854 * @out_nid: ptr to int for nid of the range, can be %NULL
855 *
856 * Find the first area from *@idx which matches @nid, fill the out
857 * parameters, and update *@idx for the next iteration. The lower 32bit of
858 * *@idx contains index into type_a and the upper 32bit indexes the
859 * areas before each region in type_b. For example, if type_b regions
860 * look like the following,
861 *
862 * 0:[0-16), 1:[32-48), 2:[128-130)
863 *
864 * The upper 32bit indexes the following regions.
865 *
866 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
867 *
868 * As both region arrays are sorted, the function advances the two indices
869 * in lockstep and returns each intersection.
870 */
871void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
872 struct memblock_type *type_a,
873 struct memblock_type *type_b,
874 phys_addr_t *out_start,
875 phys_addr_t *out_end, int *out_nid)
876{
877 int idx_a = *idx & 0xffffffff;
878 int idx_b = *idx >> 32;
879
880 if (WARN_ONCE(nid == MAX_NUMNODES,
881 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
882 nid = NUMA_NO_NODE;
883
884 for (; idx_a < type_a->cnt; idx_a++) {
885 struct memblock_region *m = &type_a->regions[idx_a];
886
887 phys_addr_t m_start = m->base;
888 phys_addr_t m_end = m->base + m->size;
889 int m_nid = memblock_get_region_node(m);
890
891 /* only memory regions are associated with nodes, check it */
892 if (nid != NUMA_NO_NODE && nid != m_nid)
893 continue;
894
895 /* skip hotpluggable memory regions if needed */
896 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
897 continue;
898
899 /* if we want mirror memory skip non-mirror memory regions */
900 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
901 continue;
902
903 /* skip nomap memory unless we were asked for it explicitly */
904 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
905 continue;
906
907 if (!type_b) {
908 if (out_start)
909 *out_start = m_start;
910 if (out_end)
911 *out_end = m_end;
912 if (out_nid)
913 *out_nid = m_nid;
914 idx_a++;
915 *idx = (u32)idx_a | (u64)idx_b << 32;
916 return;
917 }
918
919 /* scan areas before each reservation */
920 for (; idx_b < type_b->cnt + 1; idx_b++) {
921 struct memblock_region *r;
922 phys_addr_t r_start;
923 phys_addr_t r_end;
924
925 r = &type_b->regions[idx_b];
926 r_start = idx_b ? r[-1].base + r[-1].size : 0;
927 r_end = idx_b < type_b->cnt ?
928 r->base : (phys_addr_t)ULLONG_MAX;
929
930 /*
931 * if idx_b advanced past idx_a,
932 * break out to advance idx_a
933 */
934 if (r_start >= m_end)
935 break;
936 /* if the two regions intersect, we're done */
937 if (m_start < r_end) {
938 if (out_start)
939 *out_start =
940 max(m_start, r_start);
941 if (out_end)
942 *out_end = min(m_end, r_end);
943 if (out_nid)
944 *out_nid = m_nid;
945 /*
946 * The region which ends first is
947 * advanced for the next iteration.
948 */
949 if (m_end <= r_end)
950 idx_a++;
951 else
952 idx_b++;
953 *idx = (u32)idx_a | (u64)idx_b << 32;
954 return;
955 }
956 }
957 }
958
959 /* signal end of iteration */
960 *idx = ULLONG_MAX;
961}
962
963/**
964 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
965 *
966 * Finds the next range from type_a which is not marked as unsuitable
967 * in type_b.
968 *
969 * @idx: pointer to u64 loop variable
970 * @nid: node selector, %NUMA_NO_NODE for all nodes
971 * @flags: pick from blocks based on memory attributes
972 * @type_a: pointer to memblock_type from where the range is taken
973 * @type_b: pointer to memblock_type which excludes memory from being taken
974 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
975 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
976 * @out_nid: ptr to int for nid of the range, can be %NULL
977 *
978 * Reverse of __next_mem_range().
979 */
980void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
981 struct memblock_type *type_a,
982 struct memblock_type *type_b,
983 phys_addr_t *out_start,
984 phys_addr_t *out_end, int *out_nid)
985{
986 int idx_a = *idx & 0xffffffff;
987 int idx_b = *idx >> 32;
988
989 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
990 nid = NUMA_NO_NODE;
991
992 if (*idx == (u64)ULLONG_MAX) {
993 idx_a = type_a->cnt - 1;
994 if (type_b != NULL)
995 idx_b = type_b->cnt;
996 else
997 idx_b = 0;
998 }
999
1000 for (; idx_a >= 0; idx_a--) {
1001 struct memblock_region *m = &type_a->regions[idx_a];
1002
1003 phys_addr_t m_start = m->base;
1004 phys_addr_t m_end = m->base + m->size;
1005 int m_nid = memblock_get_region_node(m);
1006
1007 /* only memory regions are associated with nodes, check it */
1008 if (nid != NUMA_NO_NODE && nid != m_nid)
1009 continue;
1010
1011 /* skip hotpluggable memory regions if needed */
1012 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1013 continue;
1014
1015 /* if we want mirror memory skip non-mirror memory regions */
1016 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1017 continue;
1018
1019 /* skip nomap memory unless we were asked for it explicitly */
1020 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1021 continue;
1022
1023 if (!type_b) {
1024 if (out_start)
1025 *out_start = m_start;
1026 if (out_end)
1027 *out_end = m_end;
1028 if (out_nid)
1029 *out_nid = m_nid;
1030 idx_a--;
1031 *idx = (u32)idx_a | (u64)idx_b << 32;
1032 return;
1033 }
1034
1035 /* scan areas before each reservation */
1036 for (; idx_b >= 0; idx_b--) {
1037 struct memblock_region *r;
1038 phys_addr_t r_start;
1039 phys_addr_t r_end;
1040
1041 r = &type_b->regions[idx_b];
1042 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1043 r_end = idx_b < type_b->cnt ?
1044 r->base : (phys_addr_t)ULLONG_MAX;
1045 /*
1046 * if idx_b advanced past idx_a,
1047 * break out to advance idx_a
1048 */
1049
1050 if (r_end <= m_start)
1051 break;
1052 /* if the two regions intersect, we're done */
1053 if (m_end > r_start) {
1054 if (out_start)
1055 *out_start = max(m_start, r_start);
1056 if (out_end)
1057 *out_end = min(m_end, r_end);
1058 if (out_nid)
1059 *out_nid = m_nid;
1060 if (m_start >= r_start)
1061 idx_a--;
1062 else
1063 idx_b--;
1064 *idx = (u32)idx_a | (u64)idx_b << 32;
1065 return;
1066 }
1067 }
1068 }
1069 /* signal end of iteration */
1070 *idx = ULLONG_MAX;
1071}
1072
1073#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1074/*
1075 * Common iterator interface used to define for_each_mem_range().
1076 */
1077void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1078 unsigned long *out_start_pfn,
1079 unsigned long *out_end_pfn, int *out_nid)
1080{
1081 struct memblock_type *type = &memblock.memory;
1082 struct memblock_region *r;
1083
1084 while (++*idx < type->cnt) {
1085 r = &type->regions[*idx];
1086
1087 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1088 continue;
1089 if (nid == MAX_NUMNODES || nid == r->nid)
1090 break;
1091 }
1092 if (*idx >= type->cnt) {
1093 *idx = -1;
1094 return;
1095 }
1096
1097 if (out_start_pfn)
1098 *out_start_pfn = PFN_UP(r->base);
1099 if (out_end_pfn)
1100 *out_end_pfn = PFN_DOWN(r->base + r->size);
1101 if (out_nid)
1102 *out_nid = r->nid;
1103}
1104
1105/**
1106 * memblock_set_node - set node ID on memblock regions
1107 * @base: base of area to set node ID for
1108 * @size: size of area to set node ID for
1109 * @type: memblock type to set node ID for
1110 * @nid: node ID to set
1111 *
1112 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1113 * Regions which cross the area boundaries are split as necessary.
1114 *
1115 * RETURNS:
1116 * 0 on success, -errno on failure.
1117 */
1118int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1119 struct memblock_type *type, int nid)
1120{
1121 int start_rgn, end_rgn;
1122 int i, ret;
1123
1124 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1125 if (ret)
1126 return ret;
1127
1128 for (i = start_rgn; i < end_rgn; i++)
1129 memblock_set_region_node(&type->regions[i], nid);
1130
1131 memblock_merge_regions(type);
1132 return 0;
1133}
1134#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1135
1136static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1137 phys_addr_t align, phys_addr_t start,
1138 phys_addr_t end, int nid, ulong flags)
1139{
1140 phys_addr_t found;
1141
1142 if (!align)
1143 align = SMP_CACHE_BYTES;
1144
1145 found = memblock_find_in_range_node(size, align, start, end, nid,
1146 flags);
1147 if (found && !memblock_reserve(found, size)) {
1148 /*
1149 * The min_count is set to 0 so that memblock allocations are
1150 * never reported as leaks.
1151 */
1152 kmemleak_alloc_phys(found, size, 0, 0);
1153 return found;
1154 }
1155 return 0;
1156}
1157
1158phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1159 phys_addr_t start, phys_addr_t end,
1160 ulong flags)
1161{
1162 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1163 flags);
1164}
1165
1166phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1167 phys_addr_t align, phys_addr_t max_addr,
1168 int nid, ulong flags)
1169{
1170 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1171}
1172
1173phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1174{
1175 ulong flags = choose_memblock_flags();
1176 phys_addr_t ret;
1177
1178again:
1179 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1180 nid, flags);
1181
1182 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1183 flags &= ~MEMBLOCK_MIRROR;
1184 goto again;
1185 }
1186 return ret;
1187}
1188
1189phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1190{
1191 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1192 MEMBLOCK_NONE);
1193}
1194
1195phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1196{
1197 phys_addr_t alloc;
1198
1199 alloc = __memblock_alloc_base(size, align, max_addr);
1200
1201 if (alloc == 0)
1202 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1203 &size, &max_addr);
1204
1205 return alloc;
1206}
1207
1208phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1209{
1210 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1211}
1212
1213phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1214{
1215 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1216
1217 if (res)
1218 return res;
1219 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1220}
1221
1222/**
1223 * memblock_virt_alloc_internal - allocate boot memory block
1224 * @size: size of memory block to be allocated in bytes
1225 * @align: alignment of the region and block's size
1226 * @min_addr: the lower bound of the memory region to allocate (phys address)
1227 * @max_addr: the upper bound of the memory region to allocate (phys address)
1228 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1229 *
1230 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1231 * will fall back to memory below @min_addr. Also, allocation may fall back
1232 * to any node in the system if the specified node can not
1233 * hold the requested memory.
1234 *
1235 * The allocation is performed from memory region limited by
1236 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1237 *
1238 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1239 *
1240 * The phys address of allocated boot memory block is converted to virtual and
1241 * allocated memory is reset to 0.
1242 *
1243 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1244 * allocated boot memory block, so that it is never reported as leaks.
1245 *
1246 * RETURNS:
1247 * Virtual address of allocated memory block on success, NULL on failure.
1248 */
1249static void * __init memblock_virt_alloc_internal(
1250 phys_addr_t size, phys_addr_t align,
1251 phys_addr_t min_addr, phys_addr_t max_addr,
1252 int nid)
1253{
1254 phys_addr_t alloc;
1255 void *ptr;
1256 ulong flags = choose_memblock_flags();
1257
1258 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1259 nid = NUMA_NO_NODE;
1260
1261 /*
1262 * Detect any accidental use of these APIs after slab is ready, as at
1263 * this moment memblock may be deinitialized already and its
1264 * internal data may be destroyed (after execution of free_all_bootmem)
1265 */
1266 if (WARN_ON_ONCE(slab_is_available()))
1267 return kzalloc_node(size, GFP_NOWAIT, nid);
1268
1269 if (!align)
1270 align = SMP_CACHE_BYTES;
1271
1272 if (max_addr > memblock.current_limit)
1273 max_addr = memblock.current_limit;
1274again:
1275 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1276 nid, flags);
1277 if (alloc && !memblock_reserve(alloc, size))
1278 goto done;
1279
1280 if (nid != NUMA_NO_NODE) {
1281 alloc = memblock_find_in_range_node(size, align, min_addr,
1282 max_addr, NUMA_NO_NODE,
1283 flags);
1284 if (alloc && !memblock_reserve(alloc, size))
1285 goto done;
1286 }
1287
1288 if (min_addr) {
1289 min_addr = 0;
1290 goto again;
1291 }
1292
1293 if (flags & MEMBLOCK_MIRROR) {
1294 flags &= ~MEMBLOCK_MIRROR;
1295 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1296 &size);
1297 goto again;
1298 }
1299
1300 return NULL;
1301done:
1302 ptr = phys_to_virt(alloc);
1303
1304 /*
1305 * The min_count is set to 0 so that bootmem allocated blocks
1306 * are never reported as leaks. This is because many of these blocks
1307 * are only referred via the physical address which is not
1308 * looked up by kmemleak.
1309 */
1310 kmemleak_alloc(ptr, size, 0, 0);
1311
1312 return ptr;
1313}
1314
1315/**
1316 * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
1317 * memory and without panicking
1318 * @size: size of memory block to be allocated in bytes
1319 * @align: alignment of the region and block's size
1320 * @min_addr: the lower bound of the memory region from where the allocation
1321 * is preferred (phys address)
1322 * @max_addr: the upper bound of the memory region from where the allocation
1323 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1324 * allocate only from memory limited by memblock.current_limit value
1325 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1326 *
1327 * Public function, provides additional debug information (including caller
1328 * info), if enabled. Does not zero allocated memory, does not panic if request
1329 * cannot be satisfied.
1330 *
1331 * RETURNS:
1332 * Virtual address of allocated memory block on success, NULL on failure.
1333 */
1334void * __init memblock_virt_alloc_try_nid_raw(
1335 phys_addr_t size, phys_addr_t align,
1336 phys_addr_t min_addr, phys_addr_t max_addr,
1337 int nid)
1338{
1339 void *ptr;
1340
1341 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1342 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1343 (u64)max_addr, (void *)_RET_IP_);
1344
1345 ptr = memblock_virt_alloc_internal(size, align,
1346 min_addr, max_addr, nid);
1347#ifdef CONFIG_DEBUG_VM
1348 if (ptr && size > 0)
1349 memset(ptr, PAGE_POISON_PATTERN, size);
1350#endif
1351 return ptr;
1352}
1353
1354/**
1355 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1356 * @size: size of memory block to be allocated in bytes
1357 * @align: alignment of the region and block's size
1358 * @min_addr: the lower bound of the memory region from where the allocation
1359 * is preferred (phys address)
1360 * @max_addr: the upper bound of the memory region from where the allocation
1361 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1362 * allocate only from memory limited by memblock.current_limit value
1363 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1364 *
1365 * Public function, provides additional debug information (including caller
1366 * info), if enabled. This function zeroes the allocated memory.
1367 *
1368 * RETURNS:
1369 * Virtual address of allocated memory block on success, NULL on failure.
1370 */
1371void * __init memblock_virt_alloc_try_nid_nopanic(
1372 phys_addr_t size, phys_addr_t align,
1373 phys_addr_t min_addr, phys_addr_t max_addr,
1374 int nid)
1375{
1376 void *ptr;
1377
1378 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1379 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1380 (u64)max_addr, (void *)_RET_IP_);
1381
1382 ptr = memblock_virt_alloc_internal(size, align,
1383 min_addr, max_addr, nid);
1384 if (ptr)
1385 memset(ptr, 0, size);
1386 return ptr;
1387}
1388
1389/**
1390 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1391 * @size: size of memory block to be allocated in bytes
1392 * @align: alignment of the region and block's size
1393 * @min_addr: the lower bound of the memory region from where the allocation
1394 * is preferred (phys address)
1395 * @max_addr: the upper bound of the memory region from where the allocation
1396 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1397 * allocate only from memory limited by memblock.current_limit value
1398 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1399 *
1400 * Public panicking version of memblock_virt_alloc_try_nid_nopanic()
1401 * which provides debug information (including caller info), if enabled,
1402 * and panics if the request can not be satisfied.
1403 *
1404 * RETURNS:
1405 * Virtual address of allocated memory block on success, NULL on failure.
1406 */
1407void * __init memblock_virt_alloc_try_nid(
1408 phys_addr_t size, phys_addr_t align,
1409 phys_addr_t min_addr, phys_addr_t max_addr,
1410 int nid)
1411{
1412 void *ptr;
1413
1414 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1415 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1416 (u64)max_addr, (void *)_RET_IP_);
1417 ptr = memblock_virt_alloc_internal(size, align,
1418 min_addr, max_addr, nid);
1419 if (ptr) {
1420 memset(ptr, 0, size);
1421 return ptr;
1422 }
1423
1424 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1425 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1426 (u64)max_addr);
1427 return NULL;
1428}
1429
1430/**
1431 * __memblock_free_early - free boot memory block
1432 * @base: phys starting address of the boot memory block
1433 * @size: size of the boot memory block in bytes
1434 *
1435 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1436 * The freeing memory will not be released to the buddy allocator.
1437 */
1438void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1439{
1440 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1441 __func__, (u64)base, (u64)base + size - 1,
1442 (void *)_RET_IP_);
1443 kmemleak_free_part_phys(base, size);
1444 memblock_remove_range(&memblock.reserved, base, size);
1445}
1446
1447/*
1448 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1449 * @addr: phys starting address of the boot memory block
1450 * @size: size of the boot memory block in bytes
1451 *
1452 * This is only useful when the bootmem allocator has already been torn
1453 * down, but we are still initializing the system. Pages are released directly
1454 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1455 */
1456void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1457{
1458 u64 cursor, end;
1459
1460 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1461 __func__, (u64)base, (u64)base + size - 1,
1462 (void *)_RET_IP_);
1463 kmemleak_free_part_phys(base, size);
1464 cursor = PFN_UP(base);
1465 end = PFN_DOWN(base + size);
1466
1467 for (; cursor < end; cursor++) {
1468 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1469 totalram_pages++;
1470 }
1471}
1472
1473/*
1474 * Remaining API functions
1475 */
1476
1477phys_addr_t __init_memblock memblock_phys_mem_size(void)
1478{
1479 return memblock.memory.total_size;
1480}
1481
1482phys_addr_t __init_memblock memblock_reserved_size(void)
1483{
1484 return memblock.reserved.total_size;
1485}
1486
1487phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1488{
1489 unsigned long pages = 0;
1490 struct memblock_region *r;
1491 unsigned long start_pfn, end_pfn;
1492
1493 for_each_memblock(memory, r) {
1494 start_pfn = memblock_region_memory_base_pfn(r);
1495 end_pfn = memblock_region_memory_end_pfn(r);
1496 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1497 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1498 pages += end_pfn - start_pfn;
1499 }
1500
1501 return PFN_PHYS(pages);
1502}
1503
1504/* lowest address */
1505phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1506{
1507 return memblock.memory.regions[0].base;
1508}
1509
1510phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1511{
1512 int idx = memblock.memory.cnt - 1;
1513
1514 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1515}
1516
1517static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1518{
1519 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1520 struct memblock_region *r;
1521
1522 /*
1523 * translate the memory @limit size into the max address within one of
1524 * the memory memblock regions, if the @limit exceeds the total size
1525 * of those regions, max_addr will keep original value ULLONG_MAX
1526 */
1527 for_each_memblock(memory, r) {
1528 if (limit <= r->size) {
1529 max_addr = r->base + limit;
1530 break;
1531 }
1532 limit -= r->size;
1533 }
1534
1535 return max_addr;
1536}
1537
1538void __init memblock_enforce_memory_limit(phys_addr_t limit)
1539{
1540 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1541
1542 if (!limit)
1543 return;
1544
1545 max_addr = __find_max_addr(limit);
1546
1547 /* @limit exceeds the total size of the memory, do nothing */
1548 if (max_addr == (phys_addr_t)ULLONG_MAX)
1549 return;
1550
1551 /* truncate both memory and reserved regions */
1552 memblock_remove_range(&memblock.memory, max_addr,
1553 (phys_addr_t)ULLONG_MAX);
1554 memblock_remove_range(&memblock.reserved, max_addr,
1555 (phys_addr_t)ULLONG_MAX);
1556}
1557
1558void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1559{
1560 int start_rgn, end_rgn;
1561 int i, ret;
1562
1563 if (!size)
1564 return;
1565
1566 ret = memblock_isolate_range(&memblock.memory, base, size,
1567 &start_rgn, &end_rgn);
1568 if (ret)
1569 return;
1570
1571 /* remove all the MAP regions */
1572 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1573 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1574 memblock_remove_region(&memblock.memory, i);
1575
1576 for (i = start_rgn - 1; i >= 0; i--)
1577 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1578 memblock_remove_region(&memblock.memory, i);
1579
1580 /* truncate the reserved regions */
1581 memblock_remove_range(&memblock.reserved, 0, base);
1582 memblock_remove_range(&memblock.reserved,
1583 base + size, (phys_addr_t)ULLONG_MAX);
1584}
1585
1586void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1587{
1588 phys_addr_t max_addr;
1589
1590 if (!limit)
1591 return;
1592
1593 max_addr = __find_max_addr(limit);
1594
1595 /* @limit exceeds the total size of the memory, do nothing */
1596 if (max_addr == (phys_addr_t)ULLONG_MAX)
1597 return;
1598
1599 memblock_cap_memory_range(0, max_addr);
1600}
1601
1602static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1603{
1604 unsigned int left = 0, right = type->cnt;
1605
1606 do {
1607 unsigned int mid = (right + left) / 2;
1608
1609 if (addr < type->regions[mid].base)
1610 right = mid;
1611 else if (addr >= (type->regions[mid].base +
1612 type->regions[mid].size))
1613 left = mid + 1;
1614 else
1615 return mid;
1616 } while (left < right);
1617 return -1;
1618}
1619
1620bool __init memblock_is_reserved(phys_addr_t addr)
1621{
1622 return memblock_search(&memblock.reserved, addr) != -1;
1623}
1624
1625bool __init_memblock memblock_is_memory(phys_addr_t addr)
1626{
1627 return memblock_search(&memblock.memory, addr) != -1;
1628}
1629
1630bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1631{
1632 int i = memblock_search(&memblock.memory, addr);
1633
1634 if (i == -1)
1635 return false;
1636 return !memblock_is_nomap(&memblock.memory.regions[i]);
1637}
1638
1639#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1640int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1641 unsigned long *start_pfn, unsigned long *end_pfn)
1642{
1643 struct memblock_type *type = &memblock.memory;
1644 int mid = memblock_search(type, PFN_PHYS(pfn));
1645
1646 if (mid == -1)
1647 return -1;
1648
1649 *start_pfn = PFN_DOWN(type->regions[mid].base);
1650 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1651
1652 return type->regions[mid].nid;
1653}
1654#endif
1655
1656/**
1657 * memblock_is_region_memory - check if a region is a subset of memory
1658 * @base: base of region to check
1659 * @size: size of region to check
1660 *
1661 * Check if the region [@base, @base+@size) is a subset of a memory block.
1662 *
1663 * RETURNS:
1664 * 0 if false, non-zero if true
1665 */
1666bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1667{
1668 int idx = memblock_search(&memblock.memory, base);
1669 phys_addr_t end = base + memblock_cap_size(base, &size);
1670
1671 if (idx == -1)
1672 return false;
1673 return (memblock.memory.regions[idx].base +
1674 memblock.memory.regions[idx].size) >= end;
1675}
1676
1677/**
1678 * memblock_is_region_reserved - check if a region intersects reserved memory
1679 * @base: base of region to check
1680 * @size: size of region to check
1681 *
1682 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1683 *
1684 * RETURNS:
1685 * True if they intersect, false if not.
1686 */
1687bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1688{
1689 memblock_cap_size(base, &size);
1690 return memblock_overlaps_region(&memblock.reserved, base, size);
1691}
1692
1693void __init_memblock memblock_trim_memory(phys_addr_t align)
1694{
1695 phys_addr_t start, end, orig_start, orig_end;
1696 struct memblock_region *r;
1697
1698 for_each_memblock(memory, r) {
1699 orig_start = r->base;
1700 orig_end = r->base + r->size;
1701 start = round_up(orig_start, align);
1702 end = round_down(orig_end, align);
1703
1704 if (start == orig_start && end == orig_end)
1705 continue;
1706
1707 if (start < end) {
1708 r->base = start;
1709 r->size = end - start;
1710 } else {
1711 memblock_remove_region(&memblock.memory,
1712 r - memblock.memory.regions);
1713 r--;
1714 }
1715 }
1716}
1717
1718void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1719{
1720 memblock.current_limit = limit;
1721}
1722
1723phys_addr_t __init_memblock memblock_get_current_limit(void)
1724{
1725 return memblock.current_limit;
1726}
1727
1728static void __init_memblock memblock_dump(struct memblock_type *type)
1729{
1730 phys_addr_t base, end, size;
1731 unsigned long flags;
1732 int idx;
1733 struct memblock_region *rgn;
1734
1735 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1736
1737 for_each_memblock_type(idx, type, rgn) {
1738 char nid_buf[32] = "";
1739
1740 base = rgn->base;
1741 size = rgn->size;
1742 end = base + size - 1;
1743 flags = rgn->flags;
1744#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1745 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1746 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1747 memblock_get_region_node(rgn));
1748#endif
1749 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1750 type->name, idx, &base, &end, &size, nid_buf, flags);
1751 }
1752}
1753
1754void __init_memblock __memblock_dump_all(void)
1755{
1756 pr_info("MEMBLOCK configuration:\n");
1757 pr_info(" memory size = %pa reserved size = %pa\n",
1758 &memblock.memory.total_size,
1759 &memblock.reserved.total_size);
1760
1761 memblock_dump(&memblock.memory);
1762 memblock_dump(&memblock.reserved);
1763#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1764 memblock_dump(&memblock.physmem);
1765#endif
1766}
1767
1768void __init memblock_allow_resize(void)
1769{
1770 memblock_can_resize = 1;
1771}
1772
1773static int __init early_memblock(char *p)
1774{
1775 if (p && strstr(p, "debug"))
1776 memblock_debug = 1;
1777 return 0;
1778}
1779early_param("memblock", early_memblock);
1780
1781#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1782
1783static int memblock_debug_show(struct seq_file *m, void *private)
1784{
1785 struct memblock_type *type = m->private;
1786 struct memblock_region *reg;
1787 int i;
1788 phys_addr_t end;
1789
1790 for (i = 0; i < type->cnt; i++) {
1791 reg = &type->regions[i];
1792 end = reg->base + reg->size - 1;
1793
1794 seq_printf(m, "%4d: ", i);
1795 seq_printf(m, "%pa..%pa\n", ®->base, &end);
1796 }
1797 return 0;
1798}
1799DEFINE_SHOW_ATTRIBUTE(memblock_debug);
1800
1801static int __init memblock_init_debugfs(void)
1802{
1803 struct dentry *root = debugfs_create_dir("memblock", NULL);
1804 if (!root)
1805 return -ENXIO;
1806 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1807 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1808#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1809 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1810#endif
1811
1812 return 0;
1813}
1814__initcall(memblock_init_debugfs);
1815
1816#endif /* CONFIG_DEBUG_FS */