Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v3.1
  1/*
  2 * Procedures for maintaining information about logical memory blocks.
  3 *
  4 * Peter Bergner, IBM Corp.	June 2001.
  5 * Copyright (C) 2001 Peter Bergner.
  6 *
  7 *      This program is free software; you can redistribute it and/or
  8 *      modify it under the terms of the GNU General Public License
  9 *      as published by the Free Software Foundation; either version
 10 *      2 of the License, or (at your option) any later version.
 11 */
 12
 13#include <linux/kernel.h>
 14#include <linux/slab.h>
 15#include <linux/init.h>
 16#include <linux/bitops.h>
 17#include <linux/poison.h>
 18#include <linux/pfn.h>
 19#include <linux/debugfs.h>
 
 20#include <linux/seq_file.h>
 21#include <linux/memblock.h>
 22
 23struct memblock memblock __initdata_memblock;
 
 24
 25int memblock_debug __initdata_memblock;
 26int memblock_can_resize __initdata_memblock;
 27static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
 28static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
 29
 30/* inline so we don't get a warning when pr_debug is compiled out */
 31static inline const char *memblock_type_name(struct memblock_type *type)
 32{
 33	if (type == &memblock.memory)
 34		return "memory";
 35	else if (type == &memblock.reserved)
 36		return "reserved";
 37	else
 38		return "unknown";
 39}
 40
 41/*
 42 * Address comparison utilities
 43 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 44
 45static phys_addr_t __init_memblock memblock_align_down(phys_addr_t addr, phys_addr_t size)
 
 
 
 
 
 
 46{
 47	return addr & ~(size - 1);
 48}
 49
 50static phys_addr_t __init_memblock memblock_align_up(phys_addr_t addr, phys_addr_t size)
 
 51{
 52	return (addr + (size - 1)) & ~(size - 1);
 53}
 54
 
 
 
 55static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
 56				       phys_addr_t base2, phys_addr_t size2)
 57{
 58	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
 59}
 60
 61long __init_memblock memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
 
 62{
 63	unsigned long i;
 64
 65	for (i = 0; i < type->cnt; i++) {
 66		phys_addr_t rgnbase = type->regions[i].base;
 67		phys_addr_t rgnsize = type->regions[i].size;
 68		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
 69			break;
 70	}
 71
 72	return (i < type->cnt) ? i : -1;
 73}
 74
 75/*
 76 * Find, allocate, deallocate or reserve unreserved regions. All allocations
 77 * are top-down.
 
 
 
 
 
 
 
 
 
 
 78 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 79
 80static phys_addr_t __init_memblock memblock_find_region(phys_addr_t start, phys_addr_t end,
 81					  phys_addr_t size, phys_addr_t align)
 82{
 83	phys_addr_t base, res_base;
 84	long j;
 85
 86	/* In case, huge size is requested */
 87	if (end < size)
 88		return MEMBLOCK_ERROR;
 89
 90	base = memblock_align_down((end - size), align);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 91
 92	/* Prevent allocations returning 0 as it's also used to
 93	 * indicate an allocation failure
 94	 */
 95	if (start == 0)
 96		start = PAGE_SIZE;
 97
 98	while (start <= base) {
 99		j = memblock_overlaps_region(&memblock.reserved, base, size);
100		if (j < 0)
101			return base;
102		res_base = memblock.reserved.regions[j].base;
103		if (res_base < size)
104			break;
105		base = memblock_align_down(res_base - size, align);
106	}
107
108	return MEMBLOCK_ERROR;
109}
110
111static phys_addr_t __init_memblock memblock_find_base(phys_addr_t size,
112			phys_addr_t align, phys_addr_t start, phys_addr_t end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113{
114	long i;
115
116	BUG_ON(0 == size);
117
118	/* Pump up max_addr */
119	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
120		end = memblock.current_limit;
121
122	/* We do a top-down search, this tends to limit memory
123	 * fragmentation by keeping early boot allocs near the
124	 * top of memory
125	 */
126	for (i = memblock.memory.cnt - 1; i >= 0; i--) {
127		phys_addr_t memblockbase = memblock.memory.regions[i].base;
128		phys_addr_t memblocksize = memblock.memory.regions[i].size;
129		phys_addr_t bottom, top, found;
130
131		if (memblocksize < size)
132			continue;
133		if ((memblockbase + memblocksize) <= start)
134			break;
135		bottom = max(memblockbase, start);
136		top = min(memblockbase + memblocksize, end);
137		if (bottom >= top)
138			continue;
139		found = memblock_find_region(bottom, top, size, align);
140		if (found != MEMBLOCK_ERROR)
141			return found;
142	}
143	return MEMBLOCK_ERROR;
144}
145
146/*
147 * Find a free area with specified alignment in a specific range.
148 */
149u64 __init_memblock memblock_find_in_range(u64 start, u64 end, u64 size, u64 align)
150{
151	return memblock_find_base(size, align, start, end);
152}
153
154/*
155 * Free memblock.reserved.regions
156 */
157int __init_memblock memblock_free_reserved_regions(void)
158{
159	if (memblock.reserved.regions == memblock_reserved_init_regions)
160		return 0;
161
162	return memblock_free(__pa(memblock.reserved.regions),
163		 sizeof(struct memblock_region) * memblock.reserved.max);
 
 
 
 
 
 
 
 
 
 
 
 
 
164}
165
166/*
167 * Reserve memblock.reserved.regions
 
 
 
 
 
 
 
 
 
168 */
169int __init_memblock memblock_reserve_reserved_regions(void)
170{
171	if (memblock.reserved.regions == memblock_reserved_init_regions)
172		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
173
174	return memblock_reserve(__pa(memblock.reserved.regions),
175		 sizeof(struct memblock_region) * memblock.reserved.max);
176}
177
178static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
179{
180	unsigned long i;
181
182	for (i = r; i < type->cnt - 1; i++) {
183		type->regions[i].base = type->regions[i + 1].base;
184		type->regions[i].size = type->regions[i + 1].size;
185	}
186	type->cnt--;
187
188	/* Special case for empty arrays */
189	if (type->cnt == 0) {
 
190		type->cnt = 1;
191		type->regions[0].base = 0;
192		type->regions[0].size = 0;
 
 
193	}
194}
195
196/* Defined below but needed now */
197static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198
199static int __init_memblock memblock_double_array(struct memblock_type *type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200{
201	struct memblock_region *new_array, *old_array;
 
202	phys_addr_t old_size, new_size, addr;
203	int use_slab = slab_is_available();
 
204
205	/* We don't allow resizing until we know about the reserved regions
206	 * of memory that aren't suitable for allocation
207	 */
208	if (!memblock_can_resize)
209		return -1;
210
211	/* Calculate new doubled size */
212	old_size = type->max * sizeof(struct memblock_region);
213	new_size = old_size << 1;
 
 
 
 
 
 
 
 
 
 
 
 
214
215	/* Try to find some space for it.
216	 *
217	 * WARNING: We assume that either slab_is_available() and we use it or
218	 * we use MEMBLOCK for allocations. That means that this is unsafe to use
219	 * when bootmem is currently active (unless bootmem itself is implemented
220	 * on top of MEMBLOCK which isn't the case yet)
221	 *
222	 * This should however not be an issue for now, as we currently only
223	 * call into MEMBLOCK while it's still active, or much later when slab is
224	 * active for memory hotplug operations
225	 */
226	if (use_slab) {
227		new_array = kmalloc(new_size, GFP_KERNEL);
228		addr = new_array == NULL ? MEMBLOCK_ERROR : __pa(new_array);
229	} else
230		addr = memblock_find_base(new_size, sizeof(phys_addr_t), 0, MEMBLOCK_ALLOC_ACCESSIBLE);
231	if (addr == MEMBLOCK_ERROR) {
 
 
 
 
 
 
 
 
 
 
 
 
 
232		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
233		       memblock_type_name(type), type->max, type->max * 2);
234		return -1;
235	}
236	new_array = __va(addr);
237
238	memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
239		 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
 
240
241	/* Found space, we now need to move the array over before
242	 * we add the reserved region since it may be our reserved
243	 * array itself that is full.
 
244	 */
245	memcpy(new_array, type->regions, old_size);
246	memset(new_array + type->max, 0, old_size);
247	old_array = type->regions;
248	type->regions = new_array;
249	type->max <<= 1;
250
251	/* If we use SLAB that's it, we are done */
252	if (use_slab)
253		return 0;
 
 
 
254
255	/* Add the new reserved region now. Should not fail ! */
256	BUG_ON(memblock_add_region(&memblock.reserved, addr, new_size));
 
 
 
 
257
258	/* If the array wasn't our static init one, then free it. We only do
259	 * that before SLAB is available as later on, we don't know whether
260	 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
261	 * anyways
262	 */
263	if (old_array != memblock_memory_init_regions &&
264	    old_array != memblock_reserved_init_regions)
265		memblock_free(__pa(old_array), old_size);
266
267	return 0;
268}
269
270extern int __init_memblock __weak memblock_memory_can_coalesce(phys_addr_t addr1, phys_addr_t size1,
271					  phys_addr_t addr2, phys_addr_t size2)
 
 
 
 
 
272{
273	return 1;
274}
275
276static long __init_memblock memblock_add_region(struct memblock_type *type,
277						phys_addr_t base, phys_addr_t size)
278{
279	phys_addr_t end = base + size;
280	int i, slot = -1;
 
 
 
 
 
 
 
 
281
282	/* First try and coalesce this MEMBLOCK with others */
283	for (i = 0; i < type->cnt; i++) {
284		struct memblock_region *rgn = &type->regions[i];
285		phys_addr_t rend = rgn->base + rgn->size;
 
 
286
287		/* Exit if there's no possible hits */
288		if (rgn->base > end || rgn->size == 0)
289			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
290
291		/* Check if we are fully enclosed within an existing
292		 * block
293		 */
294		if (rgn->base <= base && rend >= end)
295			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296
297		/* Check if we overlap or are adjacent with the bottom
298		 * of a block.
299		 */
300		if (base < rgn->base && end >= rgn->base) {
301			/* If we can't coalesce, create a new block */
302			if (!memblock_memory_can_coalesce(base, size,
303							  rgn->base,
304							  rgn->size)) {
305				/* Overlap & can't coalesce are mutually
306				 * exclusive, if you do that, be prepared
307				 * for trouble
308				 */
309				WARN_ON(end != rgn->base);
310				goto new_block;
311			}
312			/* We extend the bottom of the block down to our
313			 * base
314			 */
315			rgn->base = base;
316			rgn->size = rend - base;
317
318			/* Return if we have nothing else to allocate
319			 * (fully coalesced)
320			 */
321			if (rend >= end)
322				return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
323
324			/* We continue processing from the end of the
325			 * coalesced block.
326			 */
327			base = rend;
328			size = end - base;
329		}
330
331		/* Now check if we overlap or are adjacent with the
332		 * top of a block
 
 
 
 
 
333		 */
334		if (base <= rend && end >= rend) {
335			/* If we can't coalesce, create a new block */
336			if (!memblock_memory_can_coalesce(rgn->base,
337							  rgn->size,
338							  base, size)) {
339				/* Overlap & can't coalesce are mutually
340				 * exclusive, if you do that, be prepared
341				 * for trouble
342				 */
343				WARN_ON(rend != base);
344				goto new_block;
345			}
346			/* We adjust our base down to enclose the
347			 * original block and destroy it. It will be
348			 * part of our new allocation. Since we've
349			 * freed an entry, we know we won't fail
350			 * to allocate one later, so we won't risk
351			 * losing the original block allocation.
352			 */
353			size += (base - rgn->base);
354			base = rgn->base;
355			memblock_remove_region(type, i--);
356		}
 
 
 
 
 
 
 
 
 
 
357	}
358
359	/* If the array is empty, special case, replace the fake
360	 * filler region and return
 
 
 
 
361	 */
362	if ((type->cnt == 1) && (type->regions[0].size == 0)) {
363		type->regions[0].base = base;
364		type->regions[0].size = size;
 
 
 
 
 
365		return 0;
366	}
 
367
368 new_block:
369	/* If we are out of space, we fail. It's too late to resize the array
370	 * but then this shouldn't have happened in the first place.
371	 */
372	if (WARN_ON(type->cnt >= type->max))
373		return -1;
374
375	/* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
376	for (i = type->cnt - 1; i >= 0; i--) {
377		if (base < type->regions[i].base) {
378			type->regions[i+1].base = type->regions[i].base;
379			type->regions[i+1].size = type->regions[i].size;
380		} else {
381			type->regions[i+1].base = base;
382			type->regions[i+1].size = size;
383			slot = i + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
384			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
385		}
386	}
387	if (base < type->regions[0].base) {
388		type->regions[0].base = base;
389		type->regions[0].size = size;
390		slot = 0;
391	}
392	type->cnt++;
393
394	/* The array is full ? Try to resize it. If that fails, we undo
395	 * our allocation and return an error
396	 */
397	if (type->cnt == type->max && memblock_double_array(type)) {
398		BUG_ON(slot < 0);
399		memblock_remove_region(type, slot);
400		return -1;
401	}
 
 
 
 
 
 
 
 
 
402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
403	return 0;
404}
405
406long __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 
 
 
 
 
 
 
407{
408	return memblock_add_region(&memblock.memory, base, size);
 
409
 
 
 
 
 
 
 
 
 
 
410}
411
412static long __init_memblock __memblock_remove(struct memblock_type *type,
413					      phys_addr_t base, phys_addr_t size)
 
 
 
 
 
 
414{
415	phys_addr_t end = base + size;
416	int i;
417
418	/* Walk through the array for collisions */
419	for (i = 0; i < type->cnt; i++) {
420		struct memblock_region *rgn = &type->regions[i];
421		phys_addr_t rend = rgn->base + rgn->size;
422
423		/* Nothing more to do, exit */
424		if (rgn->base > end || rgn->size == 0)
425			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
426
427		/* If we fully enclose the block, drop it */
428		if (base <= rgn->base && end >= rend) {
429			memblock_remove_region(type, i--);
430			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
431		}
432
433		/* If we are fully enclosed within a block
434		 * then we need to split it and we are done
435		 */
436		if (base > rgn->base && end < rend) {
437			rgn->size = base - rgn->base;
438			if (!memblock_add_region(type, end, rend - end))
439				return 0;
440			/* Failure to split is bad, we at least
441			 * restore the block before erroring
 
 
 
 
 
442			 */
443			rgn->size = rend - rgn->base;
444			WARN_ON(1);
445			return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
446		}
 
447
448		/* Check if we need to trim the bottom of a block */
449		if (rgn->base < end && rend > end) {
450			rgn->size -= end - rgn->base;
451			rgn->base = end;
452			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
453		}
454
455		/* And check if we need to trim the top of a block */
456		if (base < rend)
457			rgn->size -= rend - base;
 
 
 
 
 
 
 
 
 
 
 
458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
459	}
460	return 0;
 
461}
462
463long __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 
 
 
 
 
 
464{
465	return __memblock_remove(&memblock.memory, base, size);
466}
467
468long __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
469{
470	return __memblock_remove(&memblock.reserved, base, size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471}
472
473long __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
474{
475	struct memblock_type *_rgn = &memblock.reserved;
 
 
 
 
 
476
477	BUG_ON(0 == size);
 
478
479	return memblock_add_region(_rgn, base, size);
 
480}
 
481
482phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
 
 
483{
484	phys_addr_t found;
485
486	/* We align the size to limit fragmentation. Without this, a lot of
487	 * small allocs quickly eat up the whole reserve array on sparc
488	 */
489	size = memblock_align_up(size, align);
490
491	found = memblock_find_base(size, align, 0, max_addr);
492	if (found != MEMBLOCK_ERROR &&
493	    !memblock_add_region(&memblock.reserved, found, size))
 
 
 
 
 
494		return found;
495
496	return 0;
497}
498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
500{
501	phys_addr_t alloc;
502
503	alloc = __memblock_alloc_base(size, align, max_addr);
504
505	if (alloc == 0)
506		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
507		      (unsigned long long) size, (unsigned long long) max_addr);
508
509	return alloc;
510}
511
512phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
513{
514	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
515}
516
 
 
 
 
 
 
 
 
517
518/*
519 * Additional node-local allocators. Search for node memory is bottom up
520 * and walks memblock regions within that node bottom-up as well, but allocation
521 * within an memblock region is top-down. XXX I plan to fix that at some stage
 
 
 
 
 
 
 
 
 
 
 
522 *
523 * WARNING: Only available after early_node_map[] has been populated,
524 * on some architectures, that is after all the calls to add_active_range()
525 * have been done to populate it.
 
 
 
 
 
 
 
526 */
527
528phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid)
 
 
529{
530#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
 
 
 
 
 
 
531	/*
532	 * This code originates from sparc which really wants use to walk by addresses
533	 * and returns the nid. This is not very convenient for early_pfn_map[] users
534	 * as the map isn't sorted yet, and it really wants to be walked by nid.
535	 *
536	 * For now, I implement the inefficient method below which walks the early
537	 * map multiple times. Eventually we may want to use an ARCH config option
538	 * to implement a completely different method for both case.
539	 */
540	unsigned long start_pfn, end_pfn;
541	int i;
542
543	for (i = 0; i < MAX_NUMNODES; i++) {
544		get_pfn_range_for_nid(i, &start_pfn, &end_pfn);
545		if (start < PFN_PHYS(start_pfn) || start >= PFN_PHYS(end_pfn))
546			continue;
547		*nid = i;
548		return min(end, PFN_PHYS(end_pfn));
 
 
 
 
 
 
 
 
 
 
 
549	}
550#endif
551	*nid = 0;
552
553	return end;
554}
 
 
555
556static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp,
557					       phys_addr_t size,
558					       phys_addr_t align, int nid)
559{
560	phys_addr_t start, end;
 
561
562	start = mp->base;
563	end = start + mp->size;
 
564
565	start = memblock_align_up(start, align);
566	while (start < end) {
567		phys_addr_t this_end;
568		int this_nid;
 
 
 
569
570		this_end = memblock_nid_range(start, end, &this_nid);
571		if (this_nid == nid) {
572			phys_addr_t ret = memblock_find_region(start, this_end, size, align);
573			if (ret != MEMBLOCK_ERROR &&
574			    !memblock_add_region(&memblock.reserved, ret, size))
575				return ret;
576		}
577		start = this_end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
578	}
579
580	return MEMBLOCK_ERROR;
 
 
 
581}
582
583phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
 
 
 
 
 
 
 
 
584{
585	struct memblock_type *mem = &memblock.memory;
586	int i;
587
588	BUG_ON(0 == size);
 
 
589
590	/* We align the size to limit fragmentation. Without this, a lot of
591	 * small allocs quickly eat up the whole reserve array on sparc
592	 */
593	size = memblock_align_up(size, align);
 
 
 
 
 
 
 
 
594
595	/* We do a bottom-up search for a region with the right
596	 * nid since that's easier considering how memblock_nid_range()
597	 * works
598	 */
599	for (i = 0; i < mem->cnt; i++) {
600		phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i],
601					       size, align, nid);
602		if (ret != MEMBLOCK_ERROR)
603			return ret;
 
604	}
605
606	return 0;
607}
608
609phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
 
 
 
 
610{
611	phys_addr_t res = memblock_alloc_nid(size, align, nid);
 
612
613	if (res)
614		return res;
615	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE);
616}
617
 
 
 
 
 
618
619/*
620 * Remaining API functions
621 */
 
 
 
 
622
623/* You must call memblock_analyze() before this. */
624phys_addr_t __init memblock_phys_mem_size(void)
 
 
 
625{
626	return memblock.memory_size;
627}
628
629phys_addr_t __init_memblock memblock_end_of_DRAM(void)
630{
631	int idx = memblock.memory.cnt - 1;
632
633	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
634}
635
636/* You must call memblock_analyze() after this. */
637void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
638{
639	unsigned long i;
640	phys_addr_t limit;
641	struct memblock_region *p;
 
 
 
 
 
 
 
 
 
 
 
 
642
643	if (!memory_limit)
 
 
 
 
 
 
 
644		return;
645
646	/* Truncate the memblock regions to satisfy the memory limit. */
647	limit = memory_limit;
648	for (i = 0; i < memblock.memory.cnt; i++) {
649		if (limit > memblock.memory.regions[i].size) {
650			limit -= memblock.memory.regions[i].size;
651			continue;
652		}
653
654		memblock.memory.regions[i].size = limit;
655		memblock.memory.cnt = i + 1;
656		break;
657	}
658
659	memory_limit = memblock_end_of_DRAM();
 
 
 
 
 
660
661	/* And truncate any reserves above the limit also. */
662	for (i = 0; i < memblock.reserved.cnt; i++) {
663		p = &memblock.reserved.regions[i];
 
664
665		if (p->base > memory_limit)
666			p->size = 0;
667		else if ((p->base + p->size) > memory_limit)
668			p->size = memory_limit - p->base;
669
670		if (p->size == 0) {
671			memblock_remove_region(&memblock.reserved, i);
672			i--;
673		}
674	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
675}
676
677static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
678{
679	unsigned int left = 0, right = type->cnt;
680
681	do {
682		unsigned int mid = (right + left) / 2;
683
684		if (addr < type->regions[mid].base)
685			right = mid;
686		else if (addr >= (type->regions[mid].base +
687				  type->regions[mid].size))
688			left = mid + 1;
689		else
690			return mid;
691	} while (left < right);
692	return -1;
693}
694
695int __init memblock_is_reserved(phys_addr_t addr)
696{
697	return memblock_search(&memblock.reserved, addr) != -1;
698}
699
700int __init_memblock memblock_is_memory(phys_addr_t addr)
701{
702	return memblock_search(&memblock.memory, addr) != -1;
703}
704
705int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
706{
707	int idx = memblock_search(&memblock.memory, base);
708
709	if (idx == -1)
710		return 0;
711	return memblock.memory.regions[idx].base <= base &&
712		(memblock.memory.regions[idx].base +
713		 memblock.memory.regions[idx].size) >= (base + size);
714}
715
716int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
 
 
717{
718	return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
 
 
 
 
 
 
 
 
 
719}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
720
 
 
 
 
 
721
722void __init_memblock memblock_set_current_limit(phys_addr_t limit)
 
 
 
 
 
 
 
 
 
 
723{
724	memblock.current_limit = limit;
 
725}
726
727static void __init_memblock memblock_dump(struct memblock_type *region, char *name)
728{
729	unsigned long long base, size;
730	int i;
731
732	pr_info(" %s.cnt  = 0x%lx\n", name, region->cnt);
 
 
 
 
733
734	for (i = 0; i < region->cnt; i++) {
735		base = region->regions[i].base;
736		size = region->regions[i].size;
737
738		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes\n",
739		    name, i, base, base + size - 1, size);
 
 
 
 
 
 
740	}
741}
742
743void __init_memblock memblock_dump_all(void)
744{
745	if (!memblock_debug)
746		return;
747
748	pr_info("MEMBLOCK configuration:\n");
749	pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
750
751	memblock_dump(&memblock.memory, "memory");
752	memblock_dump(&memblock.reserved, "reserved");
753}
754
755void __init memblock_analyze(void)
756{
757	int i;
 
758
759	/* Check marker in the unused last array entry */
760	WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base
761		!= MEMBLOCK_INACTIVE);
762	WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base
763		!= MEMBLOCK_INACTIVE);
 
764
765	memblock.memory_size = 0;
766
767	for (i = 0; i < memblock.memory.cnt; i++)
768		memblock.memory_size += memblock.memory.regions[i].size;
769
770	/* We allow resizing from there */
771	memblock_can_resize = 1;
 
 
 
 
 
 
 
 
 
 
772}
773
774void __init memblock_init(void)
775{
776	static int init_done __initdata = 0;
777
778	if (init_done)
779		return;
780	init_done = 1;
781
782	/* Hookup the initial arrays */
783	memblock.memory.regions	= memblock_memory_init_regions;
784	memblock.memory.max		= INIT_MEMBLOCK_REGIONS;
785	memblock.reserved.regions	= memblock_reserved_init_regions;
786	memblock.reserved.max	= INIT_MEMBLOCK_REGIONS;
787
788	/* Write a marker in the unused last array entry */
789	memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = MEMBLOCK_INACTIVE;
790	memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = MEMBLOCK_INACTIVE;
791
792	/* Create a dummy zero size MEMBLOCK which will get coalesced away later.
793	 * This simplifies the memblock_add() code below...
794	 */
795	memblock.memory.regions[0].base = 0;
796	memblock.memory.regions[0].size = 0;
797	memblock.memory.cnt = 1;
798
799	/* Ditto. */
800	memblock.reserved.regions[0].base = 0;
801	memblock.reserved.regions[0].size = 0;
802	memblock.reserved.cnt = 1;
803
804	memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
 
 
805}
806
807static int __init early_memblock(char *p)
808{
809	if (p && strstr(p, "debug"))
810		memblock_debug = 1;
811	return 0;
812}
813early_param("memblock", early_memblock);
814
815#if defined(CONFIG_DEBUG_FS) && !defined(ARCH_DISCARD_MEMBLOCK)
816
817static int memblock_debug_show(struct seq_file *m, void *private)
818{
819	struct memblock_type *type = m->private;
820	struct memblock_region *reg;
821	int i;
 
822
823	for (i = 0; i < type->cnt; i++) {
824		reg = &type->regions[i];
825		seq_printf(m, "%4d: ", i);
826		if (sizeof(phys_addr_t) == 4)
827			seq_printf(m, "0x%08lx..0x%08lx\n",
828				   (unsigned long)reg->base,
829				   (unsigned long)(reg->base + reg->size - 1));
830		else
831			seq_printf(m, "0x%016llx..0x%016llx\n",
832				   (unsigned long long)reg->base,
833				   (unsigned long long)(reg->base + reg->size - 1));
834
 
 
835	}
836	return 0;
837}
838
839static int memblock_debug_open(struct inode *inode, struct file *file)
840{
841	return single_open(file, memblock_debug_show, inode->i_private);
842}
843
844static const struct file_operations memblock_debug_fops = {
845	.open = memblock_debug_open,
846	.read = seq_read,
847	.llseek = seq_lseek,
848	.release = single_release,
849};
850
851static int __init memblock_init_debugfs(void)
852{
853	struct dentry *root = debugfs_create_dir("memblock", NULL);
854	if (!root)
855		return -ENXIO;
856	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
857	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
 
 
 
858
859	return 0;
860}
861__initcall(memblock_init_debugfs);
862
863#endif /* CONFIG_DEBUG_FS */
v4.17
   1/*
   2 * Procedures for maintaining information about logical memory blocks.
   3 *
   4 * Peter Bergner, IBM Corp.	June 2001.
   5 * Copyright (C) 2001 Peter Bergner.
   6 *
   7 *      This program is free software; you can redistribute it and/or
   8 *      modify it under the terms of the GNU General Public License
   9 *      as published by the Free Software Foundation; either version
  10 *      2 of the License, or (at your option) any later version.
  11 */
  12
  13#include <linux/kernel.h>
  14#include <linux/slab.h>
  15#include <linux/init.h>
  16#include <linux/bitops.h>
  17#include <linux/poison.h>
  18#include <linux/pfn.h>
  19#include <linux/debugfs.h>
  20#include <linux/kmemleak.h>
  21#include <linux/seq_file.h>
  22#include <linux/memblock.h>
  23
  24#include <asm/sections.h>
  25#include <linux/io.h>
  26
  27#include "internal.h"
 
 
 
  28
  29static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
  30static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
  31#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
  32static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
  33#endif
 
 
 
 
 
  34
  35struct memblock memblock __initdata_memblock = {
  36	.memory.regions		= memblock_memory_init_regions,
  37	.memory.cnt		= 1,	/* empty dummy entry */
  38	.memory.max		= INIT_MEMBLOCK_REGIONS,
  39	.memory.name		= "memory",
  40
  41	.reserved.regions	= memblock_reserved_init_regions,
  42	.reserved.cnt		= 1,	/* empty dummy entry */
  43	.reserved.max		= INIT_MEMBLOCK_REGIONS,
  44	.reserved.name		= "reserved",
  45
  46#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
  47	.physmem.regions	= memblock_physmem_init_regions,
  48	.physmem.cnt		= 1,	/* empty dummy entry */
  49	.physmem.max		= INIT_PHYSMEM_REGIONS,
  50	.physmem.name		= "physmem",
  51#endif
  52
  53	.bottom_up		= false,
  54	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
  55};
  56
  57int memblock_debug __initdata_memblock;
  58static bool system_has_some_mirror __initdata_memblock = false;
  59static int memblock_can_resize __initdata_memblock;
  60static int memblock_memory_in_slab __initdata_memblock = 0;
  61static int memblock_reserved_in_slab __initdata_memblock = 0;
  62
  63ulong __init_memblock choose_memblock_flags(void)
  64{
  65	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
  66}
  67
  68/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
  69static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
  70{
  71	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
  72}
  73
  74/*
  75 * Address comparison utilities
  76 */
  77static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
  78				       phys_addr_t base2, phys_addr_t size2)
  79{
  80	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
  81}
  82
  83bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
  84					phys_addr_t base, phys_addr_t size)
  85{
  86	unsigned long i;
  87
  88	for (i = 0; i < type->cnt; i++)
  89		if (memblock_addrs_overlap(base, size, type->regions[i].base,
  90					   type->regions[i].size))
 
  91			break;
  92	return i < type->cnt;
 
 
  93}
  94
  95/*
  96 * __memblock_find_range_bottom_up - find free area utility in bottom-up
  97 * @start: start of candidate range
  98 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
  99 * @size: size of free area to find
 100 * @align: alignment of free area to find
 101 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 102 * @flags: pick from blocks based on memory attributes
 103 *
 104 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 105 *
 106 * RETURNS:
 107 * Found address on success, 0 on failure.
 108 */
 109static phys_addr_t __init_memblock
 110__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 111				phys_addr_t size, phys_addr_t align, int nid,
 112				ulong flags)
 113{
 114	phys_addr_t this_start, this_end, cand;
 115	u64 i;
 116
 117	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 118		this_start = clamp(this_start, start, end);
 119		this_end = clamp(this_end, start, end);
 120
 121		cand = round_up(this_start, align);
 122		if (cand < this_end && this_end - cand >= size)
 123			return cand;
 124	}
 125
 126	return 0;
 127}
 
 
 
 
 
 
 
 128
 129/**
 130 * __memblock_find_range_top_down - find free area utility, in top-down
 131 * @start: start of candidate range
 132 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 133 * @size: size of free area to find
 134 * @align: alignment of free area to find
 135 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 136 * @flags: pick from blocks based on memory attributes
 137 *
 138 * Utility called from memblock_find_in_range_node(), find free area top-down.
 139 *
 140 * RETURNS:
 141 * Found address on success, 0 on failure.
 142 */
 143static phys_addr_t __init_memblock
 144__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 145			       phys_addr_t size, phys_addr_t align, int nid,
 146			       ulong flags)
 147{
 148	phys_addr_t this_start, this_end, cand;
 149	u64 i;
 150
 151	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 152					NULL) {
 153		this_start = clamp(this_start, start, end);
 154		this_end = clamp(this_end, start, end);
 155
 156		if (this_end < size)
 157			continue;
 
 
 
 158
 159		cand = round_down(this_end - size, align);
 160		if (cand >= this_start)
 161			return cand;
 
 
 
 
 
 162	}
 163
 164	return 0;
 165}
 166
 167/**
 168 * memblock_find_in_range_node - find free area in given range and node
 169 * @size: size of free area to find
 170 * @align: alignment of free area to find
 171 * @start: start of candidate range
 172 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 173 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 174 * @flags: pick from blocks based on memory attributes
 175 *
 176 * Find @size free area aligned to @align in the specified range and node.
 177 *
 178 * When allocation direction is bottom-up, the @start should be greater
 179 * than the end of the kernel image. Otherwise, it will be trimmed. The
 180 * reason is that we want the bottom-up allocation just near the kernel
 181 * image so it is highly likely that the allocated memory and the kernel
 182 * will reside in the same node.
 183 *
 184 * If bottom-up allocation failed, will try to allocate memory top-down.
 185 *
 186 * RETURNS:
 187 * Found address on success, 0 on failure.
 188 */
 189phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 190					phys_addr_t align, phys_addr_t start,
 191					phys_addr_t end, int nid, ulong flags)
 192{
 193	phys_addr_t kernel_end, ret;
 
 
 194
 195	/* pump up @end */
 196	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
 197		end = memblock.current_limit;
 198
 199	/* avoid allocating the first page */
 200	start = max_t(phys_addr_t, start, PAGE_SIZE);
 201	end = max(start, end);
 202	kernel_end = __pa_symbol(_end);
 
 
 
 
 203
 204	/*
 205	 * try bottom-up allocation only when bottom-up mode
 206	 * is set and @end is above the kernel image.
 207	 */
 208	if (memblock_bottom_up() && end > kernel_end) {
 209		phys_addr_t bottom_up_start;
 
 
 
 
 
 
 
 
 210
 211		/* make sure we will allocate above the kernel */
 212		bottom_up_start = max(start, kernel_end);
 
 
 
 
 
 213
 214		/* ok, try bottom-up allocation first */
 215		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
 216						      size, align, nid, flags);
 217		if (ret)
 218			return ret;
 
 
 219
 220		/*
 221		 * we always limit bottom-up allocation above the kernel,
 222		 * but top-down allocation doesn't have the limit, so
 223		 * retrying top-down allocation may succeed when bottom-up
 224		 * allocation failed.
 225		 *
 226		 * bottom-up allocation is expected to be fail very rarely,
 227		 * so we use WARN_ONCE() here to see the stack trace if
 228		 * fail happens.
 229		 */
 230		WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
 231	}
 232
 233	return __memblock_find_range_top_down(start, end, size, align, nid,
 234					      flags);
 235}
 236
 237/**
 238 * memblock_find_in_range - find free area in given range
 239 * @start: start of candidate range
 240 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 241 * @size: size of free area to find
 242 * @align: alignment of free area to find
 243 *
 244 * Find @size free area aligned to @align in the specified range.
 245 *
 246 * RETURNS:
 247 * Found address on success, 0 on failure.
 248 */
 249phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 250					phys_addr_t end, phys_addr_t size,
 251					phys_addr_t align)
 252{
 253	phys_addr_t ret;
 254	ulong flags = choose_memblock_flags();
 255
 256again:
 257	ret = memblock_find_in_range_node(size, align, start, end,
 258					    NUMA_NO_NODE, flags);
 259
 260	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 261		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
 262			&size);
 263		flags &= ~MEMBLOCK_MIRROR;
 264		goto again;
 265	}
 266
 267	return ret;
 
 268}
 269
 270static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 271{
 272	type->total_size -= type->regions[r].size;
 273	memmove(&type->regions[r], &type->regions[r + 1],
 274		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 
 
 
 275	type->cnt--;
 276
 277	/* Special case for empty arrays */
 278	if (type->cnt == 0) {
 279		WARN_ON(type->total_size != 0);
 280		type->cnt = 1;
 281		type->regions[0].base = 0;
 282		type->regions[0].size = 0;
 283		type->regions[0].flags = 0;
 284		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 285	}
 286}
 287
 288#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
 289/**
 290 * Discard memory and reserved arrays if they were allocated
 291 */
 292void __init memblock_discard(void)
 293{
 294	phys_addr_t addr, size;
 295
 296	if (memblock.reserved.regions != memblock_reserved_init_regions) {
 297		addr = __pa(memblock.reserved.regions);
 298		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 299				  memblock.reserved.max);
 300		__memblock_free_late(addr, size);
 301	}
 302
 303	if (memblock.memory.regions != memblock_memory_init_regions) {
 304		addr = __pa(memblock.memory.regions);
 305		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 306				  memblock.memory.max);
 307		__memblock_free_late(addr, size);
 308	}
 309}
 310#endif
 311
 312/**
 313 * memblock_double_array - double the size of the memblock regions array
 314 * @type: memblock type of the regions array being doubled
 315 * @new_area_start: starting address of memory range to avoid overlap with
 316 * @new_area_size: size of memory range to avoid overlap with
 317 *
 318 * Double the size of the @type regions array. If memblock is being used to
 319 * allocate memory for a new reserved regions array and there is a previously
 320 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
 321 * waiting to be reserved, ensure the memory used by the new array does
 322 * not overlap.
 323 *
 324 * RETURNS:
 325 * 0 on success, -1 on failure.
 326 */
 327static int __init_memblock memblock_double_array(struct memblock_type *type,
 328						phys_addr_t new_area_start,
 329						phys_addr_t new_area_size)
 330{
 331	struct memblock_region *new_array, *old_array;
 332	phys_addr_t old_alloc_size, new_alloc_size;
 333	phys_addr_t old_size, new_size, addr;
 334	int use_slab = slab_is_available();
 335	int *in_slab;
 336
 337	/* We don't allow resizing until we know about the reserved regions
 338	 * of memory that aren't suitable for allocation
 339	 */
 340	if (!memblock_can_resize)
 341		return -1;
 342
 343	/* Calculate new doubled size */
 344	old_size = type->max * sizeof(struct memblock_region);
 345	new_size = old_size << 1;
 346	/*
 347	 * We need to allocated new one align to PAGE_SIZE,
 348	 *   so we can free them completely later.
 349	 */
 350	old_alloc_size = PAGE_ALIGN(old_size);
 351	new_alloc_size = PAGE_ALIGN(new_size);
 352
 353	/* Retrieve the slab flag */
 354	if (type == &memblock.memory)
 355		in_slab = &memblock_memory_in_slab;
 356	else
 357		in_slab = &memblock_reserved_in_slab;
 358
 359	/* Try to find some space for it.
 360	 *
 361	 * WARNING: We assume that either slab_is_available() and we use it or
 362	 * we use MEMBLOCK for allocations. That means that this is unsafe to
 363	 * use when bootmem is currently active (unless bootmem itself is
 364	 * implemented on top of MEMBLOCK which isn't the case yet)
 365	 *
 366	 * This should however not be an issue for now, as we currently only
 367	 * call into MEMBLOCK while it's still active, or much later when slab
 368	 * is active for memory hotplug operations
 369	 */
 370	if (use_slab) {
 371		new_array = kmalloc(new_size, GFP_KERNEL);
 372		addr = new_array ? __pa(new_array) : 0;
 373	} else {
 374		/* only exclude range when trying to double reserved.regions */
 375		if (type != &memblock.reserved)
 376			new_area_start = new_area_size = 0;
 377
 378		addr = memblock_find_in_range(new_area_start + new_area_size,
 379						memblock.current_limit,
 380						new_alloc_size, PAGE_SIZE);
 381		if (!addr && new_area_size)
 382			addr = memblock_find_in_range(0,
 383				min(new_area_start, memblock.current_limit),
 384				new_alloc_size, PAGE_SIZE);
 385
 386		new_array = addr ? __va(addr) : NULL;
 387	}
 388	if (!addr) {
 389		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 390		       type->name, type->max, type->max * 2);
 391		return -1;
 392	}
 
 393
 394	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
 395			type->name, type->max * 2, (u64)addr,
 396			(u64)addr + new_size - 1);
 397
 398	/*
 399	 * Found space, we now need to move the array over before we add the
 400	 * reserved region since it may be our reserved array itself that is
 401	 * full.
 402	 */
 403	memcpy(new_array, type->regions, old_size);
 404	memset(new_array + type->max, 0, old_size);
 405	old_array = type->regions;
 406	type->regions = new_array;
 407	type->max <<= 1;
 408
 409	/* Free old array. We needn't free it if the array is the static one */
 410	if (*in_slab)
 411		kfree(old_array);
 412	else if (old_array != memblock_memory_init_regions &&
 413		 old_array != memblock_reserved_init_regions)
 414		memblock_free(__pa(old_array), old_alloc_size);
 415
 416	/*
 417	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 418	 * needn't do it
 419	 */
 420	if (!use_slab)
 421		BUG_ON(memblock_reserve(addr, new_alloc_size));
 422
 423	/* Update slab flag */
 424	*in_slab = use_slab;
 
 
 
 
 
 
 425
 426	return 0;
 427}
 428
 429/**
 430 * memblock_merge_regions - merge neighboring compatible regions
 431 * @type: memblock type to scan
 432 *
 433 * Scan @type and merge neighboring compatible regions.
 434 */
 435static void __init_memblock memblock_merge_regions(struct memblock_type *type)
 436{
 437	int i = 0;
 
 438
 439	/* cnt never goes below 1 */
 440	while (i < type->cnt - 1) {
 441		struct memblock_region *this = &type->regions[i];
 442		struct memblock_region *next = &type->regions[i + 1];
 443
 444		if (this->base + this->size != next->base ||
 445		    memblock_get_region_node(this) !=
 446		    memblock_get_region_node(next) ||
 447		    this->flags != next->flags) {
 448			BUG_ON(this->base + this->size > next->base);
 449			i++;
 450			continue;
 451		}
 452
 453		this->size += next->size;
 454		/* move forward from next + 1, index of which is i + 2 */
 455		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 456		type->cnt--;
 457	}
 458}
 459
 460/**
 461 * memblock_insert_region - insert new memblock region
 462 * @type:	memblock type to insert into
 463 * @idx:	index for the insertion point
 464 * @base:	base address of the new region
 465 * @size:	size of the new region
 466 * @nid:	node id of the new region
 467 * @flags:	flags of the new region
 468 *
 469 * Insert new memblock region [@base,@base+@size) into @type at @idx.
 470 * @type must already have extra room to accommodate the new region.
 471 */
 472static void __init_memblock memblock_insert_region(struct memblock_type *type,
 473						   int idx, phys_addr_t base,
 474						   phys_addr_t size,
 475						   int nid, unsigned long flags)
 476{
 477	struct memblock_region *rgn = &type->regions[idx];
 478
 479	BUG_ON(type->cnt >= type->max);
 480	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 481	rgn->base = base;
 482	rgn->size = size;
 483	rgn->flags = flags;
 484	memblock_set_region_node(rgn, nid);
 485	type->cnt++;
 486	type->total_size += size;
 487}
 488
 489/**
 490 * memblock_add_range - add new memblock region
 491 * @type: memblock type to add new region into
 492 * @base: base address of the new region
 493 * @size: size of the new region
 494 * @nid: nid of the new region
 495 * @flags: flags of the new region
 496 *
 497 * Add new memblock region [@base,@base+@size) into @type.  The new region
 498 * is allowed to overlap with existing ones - overlaps don't affect already
 499 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 500 * compatible regions are merged) after the addition.
 501 *
 502 * RETURNS:
 503 * 0 on success, -errno on failure.
 504 */
 505int __init_memblock memblock_add_range(struct memblock_type *type,
 506				phys_addr_t base, phys_addr_t size,
 507				int nid, unsigned long flags)
 508{
 509	bool insert = false;
 510	phys_addr_t obase = base;
 511	phys_addr_t end = base + memblock_cap_size(base, &size);
 512	int idx, nr_new;
 513	struct memblock_region *rgn;
 514
 515	if (!size)
 516		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 517
 518	/* special case for empty array */
 519	if (type->regions[0].size == 0) {
 520		WARN_ON(type->cnt != 1 || type->total_size);
 521		type->regions[0].base = base;
 522		type->regions[0].size = size;
 523		type->regions[0].flags = flags;
 524		memblock_set_region_node(&type->regions[0], nid);
 525		type->total_size = size;
 526		return 0;
 527	}
 528repeat:
 529	/*
 530	 * The following is executed twice.  Once with %false @insert and
 531	 * then with %true.  The first counts the number of regions needed
 532	 * to accommodate the new area.  The second actually inserts them.
 533	 */
 534	base = obase;
 535	nr_new = 0;
 536
 537	for_each_memblock_type(idx, type, rgn) {
 538		phys_addr_t rbase = rgn->base;
 539		phys_addr_t rend = rbase + rgn->size;
 
 
 
 540
 541		if (rbase >= end)
 542			break;
 543		if (rend <= base)
 544			continue;
 545		/*
 546		 * @rgn overlaps.  If it separates the lower part of new
 547		 * area, insert that portion.
 548		 */
 549		if (rbase > base) {
 550#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 551			WARN_ON(nid != memblock_get_region_node(rgn));
 552#endif
 553			WARN_ON(flags != rgn->flags);
 554			nr_new++;
 555			if (insert)
 556				memblock_insert_region(type, idx++, base,
 557						       rbase - base, nid,
 558						       flags);
 
 
 
 
 
 
 
 
 
 
 
 
 559		}
 560		/* area below @rend is dealt with, forget about it */
 561		base = min(rend, end);
 562	}
 563
 564	/* insert the remaining portion */
 565	if (base < end) {
 566		nr_new++;
 567		if (insert)
 568			memblock_insert_region(type, idx, base, end - base,
 569					       nid, flags);
 570	}
 571
 572	if (!nr_new)
 573		return 0;
 574
 575	/*
 576	 * If this was the first round, resize array and repeat for actual
 577	 * insertions; otherwise, merge and return.
 578	 */
 579	if (!insert) {
 580		while (type->cnt + nr_new > type->max)
 581			if (memblock_double_array(type, obase, size) < 0)
 582				return -ENOMEM;
 583		insert = true;
 584		goto repeat;
 585	} else {
 586		memblock_merge_regions(type);
 587		return 0;
 588	}
 589}
 590
 591int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 592				       int nid)
 593{
 594	return memblock_add_range(&memblock.memory, base, size, nid, 0);
 595}
 
 596
 597int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 598{
 599	phys_addr_t end = base + size - 1;
 600
 601	memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
 602		     &base, &end, (void *)_RET_IP_);
 603
 604	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
 605}
 606
 607/**
 608 * memblock_isolate_range - isolate given range into disjoint memblocks
 609 * @type: memblock type to isolate range for
 610 * @base: base of range to isolate
 611 * @size: size of range to isolate
 612 * @start_rgn: out parameter for the start of isolated region
 613 * @end_rgn: out parameter for the end of isolated region
 614 *
 615 * Walk @type and ensure that regions don't cross the boundaries defined by
 616 * [@base,@base+@size).  Crossing regions are split at the boundaries,
 617 * which may create at most two more regions.  The index of the first
 618 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 619 *
 620 * RETURNS:
 621 * 0 on success, -errno on failure.
 622 */
 623static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 624					phys_addr_t base, phys_addr_t size,
 625					int *start_rgn, int *end_rgn)
 626{
 627	phys_addr_t end = base + memblock_cap_size(base, &size);
 628	int idx;
 629	struct memblock_region *rgn;
 630
 631	*start_rgn = *end_rgn = 0;
 632
 633	if (!size)
 634		return 0;
 635
 636	/* we'll create at most two more regions */
 637	while (type->cnt + 2 > type->max)
 638		if (memblock_double_array(type, base, size) < 0)
 639			return -ENOMEM;
 640
 641	for_each_memblock_type(idx, type, rgn) {
 642		phys_addr_t rbase = rgn->base;
 643		phys_addr_t rend = rbase + rgn->size;
 644
 645		if (rbase >= end)
 646			break;
 647		if (rend <= base)
 648			continue;
 649
 650		if (rbase < base) {
 651			/*
 652			 * @rgn intersects from below.  Split and continue
 653			 * to process the next region - the new top half.
 654			 */
 655			rgn->base = base;
 656			rgn->size -= base - rbase;
 657			type->total_size -= base - rbase;
 658			memblock_insert_region(type, idx, rbase, base - rbase,
 659					       memblock_get_region_node(rgn),
 660					       rgn->flags);
 661		} else if (rend > end) {
 662			/*
 663			 * @rgn intersects from above.  Split and redo the
 664			 * current region - the new bottom half.
 665			 */
 666			rgn->base = end;
 667			rgn->size -= end - rbase;
 668			type->total_size -= end - rbase;
 669			memblock_insert_region(type, idx--, rbase, end - rbase,
 670					       memblock_get_region_node(rgn),
 671					       rgn->flags);
 672		} else {
 673			/* @rgn is fully contained, record it */
 674			if (!*end_rgn)
 675				*start_rgn = idx;
 676			*end_rgn = idx + 1;
 677		}
 678	}
 
 
 
 
 
 
 679
 680	return 0;
 681}
 682
 683static int __init_memblock memblock_remove_range(struct memblock_type *type,
 684					  phys_addr_t base, phys_addr_t size)
 685{
 686	int start_rgn, end_rgn;
 687	int i, ret;
 688
 689	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 690	if (ret)
 691		return ret;
 692
 693	for (i = end_rgn - 1; i >= start_rgn; i--)
 694		memblock_remove_region(type, i);
 695	return 0;
 696}
 697
 698int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 699{
 700	return memblock_remove_range(&memblock.memory, base, size);
 701}
 702
 703
 704int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 705{
 706	phys_addr_t end = base + size - 1;
 707
 708	memblock_dbg("   memblock_free: [%pa-%pa] %pF\n",
 709		     &base, &end, (void *)_RET_IP_);
 710
 711	kmemleak_free_part_phys(base, size);
 712	return memblock_remove_range(&memblock.reserved, base, size);
 713}
 714
 715int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 716{
 717	phys_addr_t end = base + size - 1;
 718
 719	memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
 720		     &base, &end, (void *)_RET_IP_);
 721
 722	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
 723}
 724
 725/**
 726 *
 727 * This function isolates region [@base, @base + @size), and sets/clears flag
 728 *
 729 * Return 0 on success, -errno on failure.
 730 */
 731static int __init_memblock memblock_setclr_flag(phys_addr_t base,
 732				phys_addr_t size, int set, int flag)
 733{
 734	struct memblock_type *type = &memblock.memory;
 735	int i, ret, start_rgn, end_rgn;
 736
 737	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 738	if (ret)
 739		return ret;
 740
 741	for (i = start_rgn; i < end_rgn; i++)
 742		if (set)
 743			memblock_set_region_flags(&type->regions[i], flag);
 744		else
 745			memblock_clear_region_flags(&type->regions[i], flag);
 746
 747	memblock_merge_regions(type);
 748	return 0;
 749}
 750
 751/**
 752 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 753 * @base: the base phys addr of the region
 754 * @size: the size of the region
 755 *
 756 * Return 0 on success, -errno on failure.
 757 */
 758int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 759{
 760	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
 761}
 762
 763/**
 764 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 765 * @base: the base phys addr of the region
 766 * @size: the size of the region
 767 *
 768 * Return 0 on success, -errno on failure.
 769 */
 770int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 771{
 772	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
 773}
 774
 775/**
 776 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 777 * @base: the base phys addr of the region
 778 * @size: the size of the region
 779 *
 780 * Return 0 on success, -errno on failure.
 781 */
 782int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 783{
 784	system_has_some_mirror = true;
 
 785
 786	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
 787}
 
 
 788
 789/**
 790 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
 791 * @base: the base phys addr of the region
 792 * @size: the size of the region
 793 *
 794 * Return 0 on success, -errno on failure.
 795 */
 796int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
 797{
 798	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
 799}
 800
 801/**
 802 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
 803 * @base: the base phys addr of the region
 804 * @size: the size of the region
 805 *
 806 * Return 0 on success, -errno on failure.
 807 */
 808int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
 809{
 810	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
 811}
 812
 813/**
 814 * __next_reserved_mem_region - next function for for_each_reserved_region()
 815 * @idx: pointer to u64 loop variable
 816 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
 817 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
 818 *
 819 * Iterate over all reserved memory regions.
 820 */
 821void __init_memblock __next_reserved_mem_region(u64 *idx,
 822					   phys_addr_t *out_start,
 823					   phys_addr_t *out_end)
 824{
 825	struct memblock_type *type = &memblock.reserved;
 826
 827	if (*idx < type->cnt) {
 828		struct memblock_region *r = &type->regions[*idx];
 829		phys_addr_t base = r->base;
 830		phys_addr_t size = r->size;
 831
 832		if (out_start)
 833			*out_start = base;
 834		if (out_end)
 835			*out_end = base + size - 1;
 836
 837		*idx += 1;
 838		return;
 839	}
 840
 841	/* signal end of iteration */
 842	*idx = ULLONG_MAX;
 843}
 844
 845/**
 846 * __next__mem_range - next function for for_each_free_mem_range() etc.
 847 * @idx: pointer to u64 loop variable
 848 * @nid: node selector, %NUMA_NO_NODE for all nodes
 849 * @flags: pick from blocks based on memory attributes
 850 * @type_a: pointer to memblock_type from where the range is taken
 851 * @type_b: pointer to memblock_type which excludes memory from being taken
 852 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 853 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 854 * @out_nid: ptr to int for nid of the range, can be %NULL
 855 *
 856 * Find the first area from *@idx which matches @nid, fill the out
 857 * parameters, and update *@idx for the next iteration.  The lower 32bit of
 858 * *@idx contains index into type_a and the upper 32bit indexes the
 859 * areas before each region in type_b.	For example, if type_b regions
 860 * look like the following,
 861 *
 862 *	0:[0-16), 1:[32-48), 2:[128-130)
 863 *
 864 * The upper 32bit indexes the following regions.
 865 *
 866 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
 867 *
 868 * As both region arrays are sorted, the function advances the two indices
 869 * in lockstep and returns each intersection.
 870 */
 871void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
 872				      struct memblock_type *type_a,
 873				      struct memblock_type *type_b,
 874				      phys_addr_t *out_start,
 875				      phys_addr_t *out_end, int *out_nid)
 876{
 877	int idx_a = *idx & 0xffffffff;
 878	int idx_b = *idx >> 32;
 879
 880	if (WARN_ONCE(nid == MAX_NUMNODES,
 881	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
 882		nid = NUMA_NO_NODE;
 883
 884	for (; idx_a < type_a->cnt; idx_a++) {
 885		struct memblock_region *m = &type_a->regions[idx_a];
 886
 887		phys_addr_t m_start = m->base;
 888		phys_addr_t m_end = m->base + m->size;
 889		int	    m_nid = memblock_get_region_node(m);
 890
 891		/* only memory regions are associated with nodes, check it */
 892		if (nid != NUMA_NO_NODE && nid != m_nid)
 893			continue;
 894
 895		/* skip hotpluggable memory regions if needed */
 896		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
 
 897			continue;
 898
 899		/* if we want mirror memory skip non-mirror memory regions */
 900		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
 901			continue;
 902
 903		/* skip nomap memory unless we were asked for it explicitly */
 904		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
 905			continue;
 906
 907		if (!type_b) {
 908			if (out_start)
 909				*out_start = m_start;
 910			if (out_end)
 911				*out_end = m_end;
 912			if (out_nid)
 913				*out_nid = m_nid;
 914			idx_a++;
 915			*idx = (u32)idx_a | (u64)idx_b << 32;
 916			return;
 917		}
 918
 919		/* scan areas before each reservation */
 920		for (; idx_b < type_b->cnt + 1; idx_b++) {
 921			struct memblock_region *r;
 922			phys_addr_t r_start;
 923			phys_addr_t r_end;
 924
 925			r = &type_b->regions[idx_b];
 926			r_start = idx_b ? r[-1].base + r[-1].size : 0;
 927			r_end = idx_b < type_b->cnt ?
 928				r->base : (phys_addr_t)ULLONG_MAX;
 929
 930			/*
 931			 * if idx_b advanced past idx_a,
 932			 * break out to advance idx_a
 933			 */
 934			if (r_start >= m_end)
 935				break;
 936			/* if the two regions intersect, we're done */
 937			if (m_start < r_end) {
 938				if (out_start)
 939					*out_start =
 940						max(m_start, r_start);
 941				if (out_end)
 942					*out_end = min(m_end, r_end);
 943				if (out_nid)
 944					*out_nid = m_nid;
 945				/*
 946				 * The region which ends first is
 947				 * advanced for the next iteration.
 948				 */
 949				if (m_end <= r_end)
 950					idx_a++;
 951				else
 952					idx_b++;
 953				*idx = (u32)idx_a | (u64)idx_b << 32;
 954				return;
 955			}
 956		}
 957	}
 958
 959	/* signal end of iteration */
 960	*idx = ULLONG_MAX;
 961}
 962
 963/**
 964 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
 965 *
 966 * Finds the next range from type_a which is not marked as unsuitable
 967 * in type_b.
 968 *
 969 * @idx: pointer to u64 loop variable
 970 * @nid: node selector, %NUMA_NO_NODE for all nodes
 971 * @flags: pick from blocks based on memory attributes
 972 * @type_a: pointer to memblock_type from where the range is taken
 973 * @type_b: pointer to memblock_type which excludes memory from being taken
 974 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 975 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 976 * @out_nid: ptr to int for nid of the range, can be %NULL
 977 *
 978 * Reverse of __next_mem_range().
 979 */
 980void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
 981					  struct memblock_type *type_a,
 982					  struct memblock_type *type_b,
 983					  phys_addr_t *out_start,
 984					  phys_addr_t *out_end, int *out_nid)
 985{
 986	int idx_a = *idx & 0xffffffff;
 987	int idx_b = *idx >> 32;
 988
 989	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
 990		nid = NUMA_NO_NODE;
 991
 992	if (*idx == (u64)ULLONG_MAX) {
 993		idx_a = type_a->cnt - 1;
 994		if (type_b != NULL)
 995			idx_b = type_b->cnt;
 996		else
 997			idx_b = 0;
 998	}
 999
1000	for (; idx_a >= 0; idx_a--) {
1001		struct memblock_region *m = &type_a->regions[idx_a];
1002
1003		phys_addr_t m_start = m->base;
1004		phys_addr_t m_end = m->base + m->size;
1005		int m_nid = memblock_get_region_node(m);
1006
1007		/* only memory regions are associated with nodes, check it */
1008		if (nid != NUMA_NO_NODE && nid != m_nid)
1009			continue;
1010
1011		/* skip hotpluggable memory regions if needed */
1012		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1013			continue;
1014
1015		/* if we want mirror memory skip non-mirror memory regions */
1016		if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1017			continue;
1018
1019		/* skip nomap memory unless we were asked for it explicitly */
1020		if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1021			continue;
1022
1023		if (!type_b) {
1024			if (out_start)
1025				*out_start = m_start;
1026			if (out_end)
1027				*out_end = m_end;
1028			if (out_nid)
1029				*out_nid = m_nid;
1030			idx_a--;
1031			*idx = (u32)idx_a | (u64)idx_b << 32;
1032			return;
1033		}
1034
1035		/* scan areas before each reservation */
1036		for (; idx_b >= 0; idx_b--) {
1037			struct memblock_region *r;
1038			phys_addr_t r_start;
1039			phys_addr_t r_end;
1040
1041			r = &type_b->regions[idx_b];
1042			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1043			r_end = idx_b < type_b->cnt ?
1044				r->base : (phys_addr_t)ULLONG_MAX;
1045			/*
1046			 * if idx_b advanced past idx_a,
1047			 * break out to advance idx_a
1048			 */
1049
1050			if (r_end <= m_start)
1051				break;
1052			/* if the two regions intersect, we're done */
1053			if (m_end > r_start) {
1054				if (out_start)
1055					*out_start = max(m_start, r_start);
1056				if (out_end)
1057					*out_end = min(m_end, r_end);
1058				if (out_nid)
1059					*out_nid = m_nid;
1060				if (m_start >= r_start)
1061					idx_a--;
1062				else
1063					idx_b--;
1064				*idx = (u32)idx_a | (u64)idx_b << 32;
1065				return;
1066			}
1067		}
1068	}
1069	/* signal end of iteration */
1070	*idx = ULLONG_MAX;
1071}
1072
1073#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1074/*
1075 * Common iterator interface used to define for_each_mem_range().
1076 */
1077void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1078				unsigned long *out_start_pfn,
1079				unsigned long *out_end_pfn, int *out_nid)
1080{
1081	struct memblock_type *type = &memblock.memory;
1082	struct memblock_region *r;
1083
1084	while (++*idx < type->cnt) {
1085		r = &type->regions[*idx];
1086
1087		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1088			continue;
1089		if (nid == MAX_NUMNODES || nid == r->nid)
1090			break;
1091	}
1092	if (*idx >= type->cnt) {
1093		*idx = -1;
1094		return;
1095	}
1096
1097	if (out_start_pfn)
1098		*out_start_pfn = PFN_UP(r->base);
1099	if (out_end_pfn)
1100		*out_end_pfn = PFN_DOWN(r->base + r->size);
1101	if (out_nid)
1102		*out_nid = r->nid;
1103}
1104
1105/**
1106 * memblock_set_node - set node ID on memblock regions
1107 * @base: base of area to set node ID for
1108 * @size: size of area to set node ID for
1109 * @type: memblock type to set node ID for
1110 * @nid: node ID to set
1111 *
1112 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1113 * Regions which cross the area boundaries are split as necessary.
1114 *
1115 * RETURNS:
1116 * 0 on success, -errno on failure.
1117 */
1118int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1119				      struct memblock_type *type, int nid)
1120{
1121	int start_rgn, end_rgn;
1122	int i, ret;
1123
1124	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1125	if (ret)
1126		return ret;
1127
1128	for (i = start_rgn; i < end_rgn; i++)
1129		memblock_set_region_node(&type->regions[i], nid);
1130
1131	memblock_merge_regions(type);
1132	return 0;
1133}
1134#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1135
1136static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1137					phys_addr_t align, phys_addr_t start,
1138					phys_addr_t end, int nid, ulong flags)
1139{
1140	phys_addr_t found;
1141
1142	if (!align)
1143		align = SMP_CACHE_BYTES;
 
 
1144
1145	found = memblock_find_in_range_node(size, align, start, end, nid,
1146					    flags);
1147	if (found && !memblock_reserve(found, size)) {
1148		/*
1149		 * The min_count is set to 0 so that memblock allocations are
1150		 * never reported as leaks.
1151		 */
1152		kmemleak_alloc_phys(found, size, 0, 0);
1153		return found;
1154	}
1155	return 0;
1156}
1157
1158phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1159					phys_addr_t start, phys_addr_t end,
1160					ulong flags)
1161{
1162	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1163					flags);
1164}
1165
1166phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1167					phys_addr_t align, phys_addr_t max_addr,
1168					int nid, ulong flags)
1169{
1170	return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1171}
1172
1173phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1174{
1175	ulong flags = choose_memblock_flags();
1176	phys_addr_t ret;
1177
1178again:
1179	ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1180				      nid, flags);
1181
1182	if (!ret && (flags & MEMBLOCK_MIRROR)) {
1183		flags &= ~MEMBLOCK_MIRROR;
1184		goto again;
1185	}
1186	return ret;
1187}
1188
1189phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1190{
1191	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1192				       MEMBLOCK_NONE);
1193}
1194
1195phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1196{
1197	phys_addr_t alloc;
1198
1199	alloc = __memblock_alloc_base(size, align, max_addr);
1200
1201	if (alloc == 0)
1202		panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1203		      &size, &max_addr);
1204
1205	return alloc;
1206}
1207
1208phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1209{
1210	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1211}
1212
1213phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1214{
1215	phys_addr_t res = memblock_alloc_nid(size, align, nid);
1216
1217	if (res)
1218		return res;
1219	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1220}
1221
1222/**
1223 * memblock_virt_alloc_internal - allocate boot memory block
1224 * @size: size of memory block to be allocated in bytes
1225 * @align: alignment of the region and block's size
1226 * @min_addr: the lower bound of the memory region to allocate (phys address)
1227 * @max_addr: the upper bound of the memory region to allocate (phys address)
1228 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1229 *
1230 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1231 * will fall back to memory below @min_addr. Also, allocation may fall back
1232 * to any node in the system if the specified node can not
1233 * hold the requested memory.
1234 *
1235 * The allocation is performed from memory region limited by
1236 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1237 *
1238 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1239 *
1240 * The phys address of allocated boot memory block is converted to virtual and
1241 * allocated memory is reset to 0.
1242 *
1243 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1244 * allocated boot memory block, so that it is never reported as leaks.
1245 *
1246 * RETURNS:
1247 * Virtual address of allocated memory block on success, NULL on failure.
1248 */
1249static void * __init memblock_virt_alloc_internal(
1250				phys_addr_t size, phys_addr_t align,
1251				phys_addr_t min_addr, phys_addr_t max_addr,
1252				int nid)
1253{
1254	phys_addr_t alloc;
1255	void *ptr;
1256	ulong flags = choose_memblock_flags();
1257
1258	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1259		nid = NUMA_NO_NODE;
1260
1261	/*
1262	 * Detect any accidental use of these APIs after slab is ready, as at
1263	 * this moment memblock may be deinitialized already and its
1264	 * internal data may be destroyed (after execution of free_all_bootmem)
 
 
 
 
1265	 */
1266	if (WARN_ON_ONCE(slab_is_available()))
1267		return kzalloc_node(size, GFP_NOWAIT, nid);
1268
1269	if (!align)
1270		align = SMP_CACHE_BYTES;
1271
1272	if (max_addr > memblock.current_limit)
1273		max_addr = memblock.current_limit;
1274again:
1275	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1276					    nid, flags);
1277	if (alloc && !memblock_reserve(alloc, size))
1278		goto done;
1279
1280	if (nid != NUMA_NO_NODE) {
1281		alloc = memblock_find_in_range_node(size, align, min_addr,
1282						    max_addr, NUMA_NO_NODE,
1283						    flags);
1284		if (alloc && !memblock_reserve(alloc, size))
1285			goto done;
1286	}
 
 
1287
1288	if (min_addr) {
1289		min_addr = 0;
1290		goto again;
1291	}
1292
1293	if (flags & MEMBLOCK_MIRROR) {
1294		flags &= ~MEMBLOCK_MIRROR;
1295		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1296			&size);
1297		goto again;
1298	}
1299
1300	return NULL;
1301done:
1302	ptr = phys_to_virt(alloc);
1303
1304	/*
1305	 * The min_count is set to 0 so that bootmem allocated blocks
1306	 * are never reported as leaks. This is because many of these blocks
1307	 * are only referred via the physical address which is not
1308	 * looked up by kmemleak.
1309	 */
1310	kmemleak_alloc(ptr, size, 0, 0);
1311
1312	return ptr;
1313}
1314
1315/**
1316 * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
1317 * memory and without panicking
1318 * @size: size of memory block to be allocated in bytes
1319 * @align: alignment of the region and block's size
1320 * @min_addr: the lower bound of the memory region from where the allocation
1321 *	  is preferred (phys address)
1322 * @max_addr: the upper bound of the memory region from where the allocation
1323 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1324 *	      allocate only from memory limited by memblock.current_limit value
1325 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1326 *
1327 * Public function, provides additional debug information (including caller
1328 * info), if enabled. Does not zero allocated memory, does not panic if request
1329 * cannot be satisfied.
1330 *
1331 * RETURNS:
1332 * Virtual address of allocated memory block on success, NULL on failure.
1333 */
1334void * __init memblock_virt_alloc_try_nid_raw(
1335			phys_addr_t size, phys_addr_t align,
1336			phys_addr_t min_addr, phys_addr_t max_addr,
1337			int nid)
1338{
1339	void *ptr;
1340
1341	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1342		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1343		     (u64)max_addr, (void *)_RET_IP_);
1344
1345	ptr = memblock_virt_alloc_internal(size, align,
1346					   min_addr, max_addr, nid);
1347#ifdef CONFIG_DEBUG_VM
1348	if (ptr && size > 0)
1349		memset(ptr, PAGE_POISON_PATTERN, size);
1350#endif
1351	return ptr;
1352}
1353
1354/**
1355 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1356 * @size: size of memory block to be allocated in bytes
1357 * @align: alignment of the region and block's size
1358 * @min_addr: the lower bound of the memory region from where the allocation
1359 *	  is preferred (phys address)
1360 * @max_addr: the upper bound of the memory region from where the allocation
1361 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1362 *	      allocate only from memory limited by memblock.current_limit value
1363 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1364 *
1365 * Public function, provides additional debug information (including caller
1366 * info), if enabled. This function zeroes the allocated memory.
1367 *
1368 * RETURNS:
1369 * Virtual address of allocated memory block on success, NULL on failure.
1370 */
1371void * __init memblock_virt_alloc_try_nid_nopanic(
1372				phys_addr_t size, phys_addr_t align,
1373				phys_addr_t min_addr, phys_addr_t max_addr,
1374				int nid)
1375{
1376	void *ptr;
1377
1378	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1379		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1380		     (u64)max_addr, (void *)_RET_IP_);
1381
1382	ptr = memblock_virt_alloc_internal(size, align,
1383					   min_addr, max_addr, nid);
1384	if (ptr)
1385		memset(ptr, 0, size);
1386	return ptr;
1387}
1388
1389/**
1390 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1391 * @size: size of memory block to be allocated in bytes
1392 * @align: alignment of the region and block's size
1393 * @min_addr: the lower bound of the memory region from where the allocation
1394 *	  is preferred (phys address)
1395 * @max_addr: the upper bound of the memory region from where the allocation
1396 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1397 *	      allocate only from memory limited by memblock.current_limit value
1398 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1399 *
1400 * Public panicking version of memblock_virt_alloc_try_nid_nopanic()
1401 * which provides debug information (including caller info), if enabled,
1402 * and panics if the request can not be satisfied.
1403 *
1404 * RETURNS:
1405 * Virtual address of allocated memory block on success, NULL on failure.
1406 */
1407void * __init memblock_virt_alloc_try_nid(
1408			phys_addr_t size, phys_addr_t align,
1409			phys_addr_t min_addr, phys_addr_t max_addr,
1410			int nid)
1411{
1412	void *ptr;
1413
1414	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1415		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1416		     (u64)max_addr, (void *)_RET_IP_);
1417	ptr = memblock_virt_alloc_internal(size, align,
1418					   min_addr, max_addr, nid);
1419	if (ptr) {
1420		memset(ptr, 0, size);
1421		return ptr;
1422	}
1423
1424	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1425	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1426	      (u64)max_addr);
1427	return NULL;
1428}
1429
1430/**
1431 * __memblock_free_early - free boot memory block
1432 * @base: phys starting address of the  boot memory block
1433 * @size: size of the boot memory block in bytes
1434 *
1435 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1436 * The freeing memory will not be released to the buddy allocator.
1437 */
1438void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1439{
1440	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1441		     __func__, (u64)base, (u64)base + size - 1,
1442		     (void *)_RET_IP_);
1443	kmemleak_free_part_phys(base, size);
1444	memblock_remove_range(&memblock.reserved, base, size);
1445}
1446
1447/*
1448 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1449 * @addr: phys starting address of the  boot memory block
1450 * @size: size of the boot memory block in bytes
1451 *
1452 * This is only useful when the bootmem allocator has already been torn
1453 * down, but we are still initializing the system.  Pages are released directly
1454 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1455 */
1456void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1457{
1458	u64 cursor, end;
1459
1460	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1461		     __func__, (u64)base, (u64)base + size - 1,
1462		     (void *)_RET_IP_);
1463	kmemleak_free_part_phys(base, size);
1464	cursor = PFN_UP(base);
1465	end = PFN_DOWN(base + size);
1466
1467	for (; cursor < end; cursor++) {
1468		__free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1469		totalram_pages++;
1470	}
 
 
1471}
1472
1473/*
1474 * Remaining API functions
1475 */
1476
1477phys_addr_t __init_memblock memblock_phys_mem_size(void)
1478{
1479	return memblock.memory.total_size;
1480}
1481
1482phys_addr_t __init_memblock memblock_reserved_size(void)
1483{
1484	return memblock.reserved.total_size;
1485}
1486
1487phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1488{
1489	unsigned long pages = 0;
1490	struct memblock_region *r;
1491	unsigned long start_pfn, end_pfn;
1492
1493	for_each_memblock(memory, r) {
1494		start_pfn = memblock_region_memory_base_pfn(r);
1495		end_pfn = memblock_region_memory_end_pfn(r);
1496		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1497		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1498		pages += end_pfn - start_pfn;
1499	}
1500
1501	return PFN_PHYS(pages);
1502}
1503
1504/* lowest address */
1505phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1506{
1507	return memblock.memory.regions[0].base;
1508}
1509
1510phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1511{
1512	int idx = memblock.memory.cnt - 1;
1513
1514	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1515}
1516
1517static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
 
1518{
1519	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1520	struct memblock_region *r;
1521
1522	/*
1523	 * translate the memory @limit size into the max address within one of
1524	 * the memory memblock regions, if the @limit exceeds the total size
1525	 * of those regions, max_addr will keep original value ULLONG_MAX
1526	 */
1527	for_each_memblock(memory, r) {
1528		if (limit <= r->size) {
1529			max_addr = r->base + limit;
1530			break;
1531		}
1532		limit -= r->size;
1533	}
1534
1535	return max_addr;
1536}
1537
1538void __init memblock_enforce_memory_limit(phys_addr_t limit)
1539{
1540	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1541
1542	if (!limit)
1543		return;
1544
1545	max_addr = __find_max_addr(limit);
 
 
 
 
 
 
1546
1547	/* @limit exceeds the total size of the memory, do nothing */
1548	if (max_addr == (phys_addr_t)ULLONG_MAX)
1549		return;
 
1550
1551	/* truncate both memory and reserved regions */
1552	memblock_remove_range(&memblock.memory, max_addr,
1553			      (phys_addr_t)ULLONG_MAX);
1554	memblock_remove_range(&memblock.reserved, max_addr,
1555			      (phys_addr_t)ULLONG_MAX);
1556}
1557
1558void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1559{
1560	int start_rgn, end_rgn;
1561	int i, ret;
1562
1563	if (!size)
1564		return;
 
 
1565
1566	ret = memblock_isolate_range(&memblock.memory, base, size,
1567						&start_rgn, &end_rgn);
1568	if (ret)
1569		return;
1570
1571	/* remove all the MAP regions */
1572	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1573		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1574			memblock_remove_region(&memblock.memory, i);
1575
1576	for (i = start_rgn - 1; i >= 0; i--)
1577		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1578			memblock_remove_region(&memblock.memory, i);
1579
1580	/* truncate the reserved regions */
1581	memblock_remove_range(&memblock.reserved, 0, base);
1582	memblock_remove_range(&memblock.reserved,
1583			base + size, (phys_addr_t)ULLONG_MAX);
1584}
1585
1586void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1587{
1588	phys_addr_t max_addr;
1589
1590	if (!limit)
1591		return;
1592
1593	max_addr = __find_max_addr(limit);
1594
1595	/* @limit exceeds the total size of the memory, do nothing */
1596	if (max_addr == (phys_addr_t)ULLONG_MAX)
1597		return;
1598
1599	memblock_cap_memory_range(0, max_addr);
1600}
1601
1602static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1603{
1604	unsigned int left = 0, right = type->cnt;
1605
1606	do {
1607		unsigned int mid = (right + left) / 2;
1608
1609		if (addr < type->regions[mid].base)
1610			right = mid;
1611		else if (addr >= (type->regions[mid].base +
1612				  type->regions[mid].size))
1613			left = mid + 1;
1614		else
1615			return mid;
1616	} while (left < right);
1617	return -1;
1618}
1619
1620bool __init memblock_is_reserved(phys_addr_t addr)
1621{
1622	return memblock_search(&memblock.reserved, addr) != -1;
1623}
1624
1625bool __init_memblock memblock_is_memory(phys_addr_t addr)
1626{
1627	return memblock_search(&memblock.memory, addr) != -1;
1628}
1629
1630bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1631{
1632	int i = memblock_search(&memblock.memory, addr);
1633
1634	if (i == -1)
1635		return false;
1636	return !memblock_is_nomap(&memblock.memory.regions[i]);
 
 
1637}
1638
1639#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1640int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1641			 unsigned long *start_pfn, unsigned long *end_pfn)
1642{
1643	struct memblock_type *type = &memblock.memory;
1644	int mid = memblock_search(type, PFN_PHYS(pfn));
1645
1646	if (mid == -1)
1647		return -1;
1648
1649	*start_pfn = PFN_DOWN(type->regions[mid].base);
1650	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1651
1652	return type->regions[mid].nid;
1653}
1654#endif
1655
1656/**
1657 * memblock_is_region_memory - check if a region is a subset of memory
1658 * @base: base of region to check
1659 * @size: size of region to check
1660 *
1661 * Check if the region [@base, @base+@size) is a subset of a memory block.
1662 *
1663 * RETURNS:
1664 * 0 if false, non-zero if true
1665 */
1666bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1667{
1668	int idx = memblock_search(&memblock.memory, base);
1669	phys_addr_t end = base + memblock_cap_size(base, &size);
1670
1671	if (idx == -1)
1672		return false;
1673	return (memblock.memory.regions[idx].base +
1674		 memblock.memory.regions[idx].size) >= end;
1675}
1676
1677/**
1678 * memblock_is_region_reserved - check if a region intersects reserved memory
1679 * @base: base of region to check
1680 * @size: size of region to check
1681 *
1682 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1683 *
1684 * RETURNS:
1685 * True if they intersect, false if not.
1686 */
1687bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1688{
1689	memblock_cap_size(base, &size);
1690	return memblock_overlaps_region(&memblock.reserved, base, size);
1691}
1692
1693void __init_memblock memblock_trim_memory(phys_addr_t align)
1694{
1695	phys_addr_t start, end, orig_start, orig_end;
1696	struct memblock_region *r;
1697
1698	for_each_memblock(memory, r) {
1699		orig_start = r->base;
1700		orig_end = r->base + r->size;
1701		start = round_up(orig_start, align);
1702		end = round_down(orig_end, align);
1703
1704		if (start == orig_start && end == orig_end)
1705			continue;
 
1706
1707		if (start < end) {
1708			r->base = start;
1709			r->size = end - start;
1710		} else {
1711			memblock_remove_region(&memblock.memory,
1712					       r - memblock.memory.regions);
1713			r--;
1714		}
1715	}
1716}
1717
1718void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1719{
1720	memblock.current_limit = limit;
 
 
 
 
 
 
 
1721}
1722
1723phys_addr_t __init_memblock memblock_get_current_limit(void)
1724{
1725	return memblock.current_limit;
1726}
1727
1728static void __init_memblock memblock_dump(struct memblock_type *type)
1729{
1730	phys_addr_t base, end, size;
1731	unsigned long flags;
1732	int idx;
1733	struct memblock_region *rgn;
1734
1735	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1736
1737	for_each_memblock_type(idx, type, rgn) {
1738		char nid_buf[32] = "";
1739
1740		base = rgn->base;
1741		size = rgn->size;
1742		end = base + size - 1;
1743		flags = rgn->flags;
1744#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1745		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1746			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1747				 memblock_get_region_node(rgn));
1748#endif
1749		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1750			type->name, idx, &base, &end, &size, nid_buf, flags);
1751	}
1752}
1753
1754void __init_memblock __memblock_dump_all(void)
1755{
1756	pr_info("MEMBLOCK configuration:\n");
1757	pr_info(" memory size = %pa reserved size = %pa\n",
1758		&memblock.memory.total_size,
1759		&memblock.reserved.total_size);
1760
1761	memblock_dump(&memblock.memory);
1762	memblock_dump(&memblock.reserved);
1763#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1764	memblock_dump(&memblock.physmem);
1765#endif
1766}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1767
1768void __init memblock_allow_resize(void)
1769{
1770	memblock_can_resize = 1;
1771}
1772
1773static int __init early_memblock(char *p)
1774{
1775	if (p && strstr(p, "debug"))
1776		memblock_debug = 1;
1777	return 0;
1778}
1779early_param("memblock", early_memblock);
1780
1781#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1782
1783static int memblock_debug_show(struct seq_file *m, void *private)
1784{
1785	struct memblock_type *type = m->private;
1786	struct memblock_region *reg;
1787	int i;
1788	phys_addr_t end;
1789
1790	for (i = 0; i < type->cnt; i++) {
1791		reg = &type->regions[i];
1792		end = reg->base + reg->size - 1;
 
 
 
 
 
 
 
 
1793
1794		seq_printf(m, "%4d: ", i);
1795		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
1796	}
1797	return 0;
1798}
1799DEFINE_SHOW_ATTRIBUTE(memblock_debug);
 
 
 
 
 
 
 
 
 
 
 
1800
1801static int __init memblock_init_debugfs(void)
1802{
1803	struct dentry *root = debugfs_create_dir("memblock", NULL);
1804	if (!root)
1805		return -ENXIO;
1806	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1807	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1808#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1809	debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1810#endif
1811
1812	return 0;
1813}
1814__initcall(memblock_init_debugfs);
1815
1816#endif /* CONFIG_DEBUG_FS */