Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v3.1
  1/*
  2 * Procedures for maintaining information about logical memory blocks.
  3 *
  4 * Peter Bergner, IBM Corp.	June 2001.
  5 * Copyright (C) 2001 Peter Bergner.
  6 *
  7 *      This program is free software; you can redistribute it and/or
  8 *      modify it under the terms of the GNU General Public License
  9 *      as published by the Free Software Foundation; either version
 10 *      2 of the License, or (at your option) any later version.
 11 */
 12
 13#include <linux/kernel.h>
 14#include <linux/slab.h>
 15#include <linux/init.h>
 16#include <linux/bitops.h>
 17#include <linux/poison.h>
 18#include <linux/pfn.h>
 19#include <linux/debugfs.h>
 20#include <linux/seq_file.h>
 21#include <linux/memblock.h>
 22
 23struct memblock memblock __initdata_memblock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 24
 25int memblock_debug __initdata_memblock;
 26int memblock_can_resize __initdata_memblock;
 27static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
 28static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
 
 
 
 29
 30/* inline so we don't get a warning when pr_debug is compiled out */
 31static inline const char *memblock_type_name(struct memblock_type *type)
 
 32{
 33	if (type == &memblock.memory)
 34		return "memory";
 35	else if (type == &memblock.reserved)
 36		return "reserved";
 37	else
 38		return "unknown";
 39}
 40
 41/*
 42 * Address comparison utilities
 43 */
 44
 45static phys_addr_t __init_memblock memblock_align_down(phys_addr_t addr, phys_addr_t size)
 46{
 47	return addr & ~(size - 1);
 48}
 49
 50static phys_addr_t __init_memblock memblock_align_up(phys_addr_t addr, phys_addr_t size)
 51{
 52	return (addr + (size - 1)) & ~(size - 1);
 53}
 54
 
 
 
 55static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
 56				       phys_addr_t base2, phys_addr_t size2)
 57{
 58	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
 59}
 60
 61long __init_memblock memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
 
 62{
 63	unsigned long i;
 64
 65	for (i = 0; i < type->cnt; i++) {
 66		phys_addr_t rgnbase = type->regions[i].base;
 67		phys_addr_t rgnsize = type->regions[i].size;
 68		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
 69			break;
 70	}
 71
 72	return (i < type->cnt) ? i : -1;
 73}
 74
 75/*
 76 * Find, allocate, deallocate or reserve unreserved regions. All allocations
 77 * are top-down.
 
 
 
 
 
 
 
 
 
 78 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 79
 80static phys_addr_t __init_memblock memblock_find_region(phys_addr_t start, phys_addr_t end,
 81					  phys_addr_t size, phys_addr_t align)
 82{
 83	phys_addr_t base, res_base;
 84	long j;
 85
 86	/* In case, huge size is requested */
 87	if (end < size)
 88		return MEMBLOCK_ERROR;
 89
 90	base = memblock_align_down((end - size), align);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 91
 92	/* Prevent allocations returning 0 as it's also used to
 93	 * indicate an allocation failure
 94	 */
 95	if (start == 0)
 96		start = PAGE_SIZE;
 97
 98	while (start <= base) {
 99		j = memblock_overlaps_region(&memblock.reserved, base, size);
100		if (j < 0)
101			return base;
102		res_base = memblock.reserved.regions[j].base;
103		if (res_base < size)
104			break;
105		base = memblock_align_down(res_base - size, align);
106	}
107
108	return MEMBLOCK_ERROR;
109}
110
111static phys_addr_t __init_memblock memblock_find_base(phys_addr_t size,
112			phys_addr_t align, phys_addr_t start, phys_addr_t end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113{
114	long i;
115
116	BUG_ON(0 == size);
117
118	/* Pump up max_addr */
119	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
120		end = memblock.current_limit;
121
122	/* We do a top-down search, this tends to limit memory
123	 * fragmentation by keeping early boot allocs near the
124	 * top of memory
 
 
 
 
 
125	 */
126	for (i = memblock.memory.cnt - 1; i >= 0; i--) {
127		phys_addr_t memblockbase = memblock.memory.regions[i].base;
128		phys_addr_t memblocksize = memblock.memory.regions[i].size;
129		phys_addr_t bottom, top, found;
130
131		if (memblocksize < size)
132			continue;
133		if ((memblockbase + memblocksize) <= start)
134			break;
135		bottom = max(memblockbase, start);
136		top = min(memblockbase + memblocksize, end);
137		if (bottom >= top)
138			continue;
139		found = memblock_find_region(bottom, top, size, align);
140		if (found != MEMBLOCK_ERROR)
141			return found;
 
 
 
 
 
 
 
 
 
 
142	}
143	return MEMBLOCK_ERROR;
 
144}
145
146/*
147 * Find a free area with specified alignment in a specific range.
 
 
 
 
 
 
 
 
 
148 */
149u64 __init_memblock memblock_find_in_range(u64 start, u64 end, u64 size, u64 align)
 
 
150{
151	return memblock_find_base(size, align, start, end);
 
152}
153
154/*
155 * Free memblock.reserved.regions
156 */
157int __init_memblock memblock_free_reserved_regions(void)
158{
159	if (memblock.reserved.regions == memblock_reserved_init_regions)
160		return 0;
 
 
161
162	return memblock_free(__pa(memblock.reserved.regions),
163		 sizeof(struct memblock_region) * memblock.reserved.max);
 
 
 
 
 
 
 
164}
165
166/*
167 * Reserve memblock.reserved.regions
168 */
169int __init_memblock memblock_reserve_reserved_regions(void)
170{
171	if (memblock.reserved.regions == memblock_reserved_init_regions)
172		return 0;
173
174	return memblock_reserve(__pa(memblock.reserved.regions),
175		 sizeof(struct memblock_region) * memblock.reserved.max);
 
 
176}
177
178static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 
179{
180	unsigned long i;
 
181
182	for (i = r; i < type->cnt - 1; i++) {
183		type->regions[i].base = type->regions[i + 1].base;
184		type->regions[i].size = type->regions[i + 1].size;
185	}
186	type->cnt--;
187
188	/* Special case for empty arrays */
189	if (type->cnt == 0) {
190		type->cnt = 1;
191		type->regions[0].base = 0;
192		type->regions[0].size = 0;
193	}
194}
195
196/* Defined below but needed now */
197static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size);
198
199static int __init_memblock memblock_double_array(struct memblock_type *type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200{
201	struct memblock_region *new_array, *old_array;
 
202	phys_addr_t old_size, new_size, addr;
203	int use_slab = slab_is_available();
 
204
205	/* We don't allow resizing until we know about the reserved regions
206	 * of memory that aren't suitable for allocation
207	 */
208	if (!memblock_can_resize)
209		return -1;
210
211	/* Calculate new doubled size */
212	old_size = type->max * sizeof(struct memblock_region);
213	new_size = old_size << 1;
 
 
 
 
 
 
 
 
 
 
 
 
214
215	/* Try to find some space for it.
216	 *
217	 * WARNING: We assume that either slab_is_available() and we use it or
218	 * we use MEMBLOCK for allocations. That means that this is unsafe to use
219	 * when bootmem is currently active (unless bootmem itself is implemented
220	 * on top of MEMBLOCK which isn't the case yet)
221	 *
222	 * This should however not be an issue for now, as we currently only
223	 * call into MEMBLOCK while it's still active, or much later when slab is
224	 * active for memory hotplug operations
225	 */
226	if (use_slab) {
227		new_array = kmalloc(new_size, GFP_KERNEL);
228		addr = new_array == NULL ? MEMBLOCK_ERROR : __pa(new_array);
229	} else
230		addr = memblock_find_base(new_size, sizeof(phys_addr_t), 0, MEMBLOCK_ALLOC_ACCESSIBLE);
231	if (addr == MEMBLOCK_ERROR) {
 
 
 
 
 
 
 
 
 
 
 
 
 
232		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
233		       memblock_type_name(type), type->max, type->max * 2);
234		return -1;
235	}
236	new_array = __va(addr);
237
238	memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
239		 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
 
240
241	/* Found space, we now need to move the array over before
242	 * we add the reserved region since it may be our reserved
243	 * array itself that is full.
 
244	 */
245	memcpy(new_array, type->regions, old_size);
246	memset(new_array + type->max, 0, old_size);
247	old_array = type->regions;
248	type->regions = new_array;
249	type->max <<= 1;
250
251	/* If we use SLAB that's it, we are done */
252	if (use_slab)
253		return 0;
254
255	/* Add the new reserved region now. Should not fail ! */
256	BUG_ON(memblock_add_region(&memblock.reserved, addr, new_size));
257
258	/* If the array wasn't our static init one, then free it. We only do
259	 * that before SLAB is available as later on, we don't know whether
260	 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
261	 * anyways
262	 */
263	if (old_array != memblock_memory_init_regions &&
264	    old_array != memblock_reserved_init_regions)
265		memblock_free(__pa(old_array), old_size);
266
267	return 0;
268}
269
270extern int __init_memblock __weak memblock_memory_can_coalesce(phys_addr_t addr1, phys_addr_t size1,
271					  phys_addr_t addr2, phys_addr_t size2)
272{
273	return 1;
274}
275
276static long __init_memblock memblock_add_region(struct memblock_type *type,
277						phys_addr_t base, phys_addr_t size)
 
 
 
 
 
278{
279	phys_addr_t end = base + size;
280	int i, slot = -1;
281
282	/* First try and coalesce this MEMBLOCK with others */
283	for (i = 0; i < type->cnt; i++) {
284		struct memblock_region *rgn = &type->regions[i];
285		phys_addr_t rend = rgn->base + rgn->size;
286
287		/* Exit if there's no possible hits */
288		if (rgn->base > end || rgn->size == 0)
289			break;
290
291		/* Check if we are fully enclosed within an existing
292		 * block
293		 */
294		if (rgn->base <= base && rend >= end)
295			return 0;
 
 
 
 
 
 
 
 
296
297		/* Check if we overlap or are adjacent with the bottom
298		 * of a block.
299		 */
300		if (base < rgn->base && end >= rgn->base) {
301			/* If we can't coalesce, create a new block */
302			if (!memblock_memory_can_coalesce(base, size,
303							  rgn->base,
304							  rgn->size)) {
305				/* Overlap & can't coalesce are mutually
306				 * exclusive, if you do that, be prepared
307				 * for trouble
308				 */
309				WARN_ON(end != rgn->base);
310				goto new_block;
311			}
312			/* We extend the bottom of the block down to our
313			 * base
314			 */
315			rgn->base = base;
316			rgn->size = rend - base;
317
318			/* Return if we have nothing else to allocate
319			 * (fully coalesced)
320			 */
321			if (rend >= end)
322				return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323
324			/* We continue processing from the end of the
325			 * coalesced block.
326			 */
327			base = rend;
328			size = end - base;
329		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
330
331		/* Now check if we overlap or are adjacent with the
332		 * top of a block
333		 */
334		if (base <= rend && end >= rend) {
335			/* If we can't coalesce, create a new block */
336			if (!memblock_memory_can_coalesce(rgn->base,
337							  rgn->size,
338							  base, size)) {
339				/* Overlap & can't coalesce are mutually
340				 * exclusive, if you do that, be prepared
341				 * for trouble
342				 */
343				WARN_ON(rend != base);
344				goto new_block;
345			}
346			/* We adjust our base down to enclose the
347			 * original block and destroy it. It will be
348			 * part of our new allocation. Since we've
349			 * freed an entry, we know we won't fail
350			 * to allocate one later, so we won't risk
351			 * losing the original block allocation.
352			 */
353			size += (base - rgn->base);
354			base = rgn->base;
355			memblock_remove_region(type, i--);
356		}
357	}
358
359	/* If the array is empty, special case, replace the fake
360	 * filler region and return
361	 */
362	if ((type->cnt == 1) && (type->regions[0].size == 0)) {
363		type->regions[0].base = base;
364		type->regions[0].size = size;
 
 
 
365		return 0;
366	}
367
368 new_block:
369	/* If we are out of space, we fail. It's too late to resize the array
370	 * but then this shouldn't have happened in the first place.
 
371	 */
372	if (WARN_ON(type->cnt >= type->max))
373		return -1;
374
375	/* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
376	for (i = type->cnt - 1; i >= 0; i--) {
377		if (base < type->regions[i].base) {
378			type->regions[i+1].base = type->regions[i].base;
379			type->regions[i+1].size = type->regions[i].size;
380		} else {
381			type->regions[i+1].base = base;
382			type->regions[i+1].size = size;
383			slot = i + 1;
384			break;
 
 
 
 
 
 
 
 
 
 
 
 
385		}
 
 
386	}
387	if (base < type->regions[0].base) {
388		type->regions[0].base = base;
389		type->regions[0].size = size;
390		slot = 0;
 
 
 
391	}
392	type->cnt++;
393
394	/* The array is full ? Try to resize it. If that fails, we undo
395	 * our allocation and return an error
 
396	 */
397	if (type->cnt == type->max && memblock_double_array(type)) {
398		BUG_ON(slot < 0);
399		memblock_remove_region(type, slot);
400		return -1;
 
 
 
 
 
401	}
402
403	return 0;
404}
405
406long __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 
407{
408	return memblock_add_region(&memblock.memory, base, size);
 
409
 
 
 
 
410}
411
412static long __init_memblock __memblock_remove(struct memblock_type *type,
413					      phys_addr_t base, phys_addr_t size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
414{
415	phys_addr_t end = base + size;
416	int i;
417
418	/* Walk through the array for collisions */
 
 
 
 
 
 
 
 
 
419	for (i = 0; i < type->cnt; i++) {
420		struct memblock_region *rgn = &type->regions[i];
421		phys_addr_t rend = rgn->base + rgn->size;
 
422
423		/* Nothing more to do, exit */
424		if (rgn->base > end || rgn->size == 0)
425			break;
426
427		/* If we fully enclose the block, drop it */
428		if (base <= rgn->base && end >= rend) {
429			memblock_remove_region(type, i--);
430			continue;
431		}
432
433		/* If we are fully enclosed within a block
434		 * then we need to split it and we are done
435		 */
436		if (base > rgn->base && end < rend) {
437			rgn->size = base - rgn->base;
438			if (!memblock_add_region(type, end, rend - end))
439				return 0;
440			/* Failure to split is bad, we at least
441			 * restore the block before erroring
 
 
 
 
 
 
442			 */
443			rgn->size = rend - rgn->base;
444			WARN_ON(1);
445			return -1;
446		}
447
448		/* Check if we need to trim the bottom of a block */
449		if (rgn->base < end && rend > end) {
450			rgn->size -= end - rgn->base;
451			rgn->base = end;
452			break;
 
 
 
 
 
 
 
 
 
453		}
 
 
 
 
454
455		/* And check if we need to trim the top of a block */
456		if (base < rend)
457			rgn->size -= rend - base;
 
 
458
459	}
 
 
 
 
 
460	return 0;
461}
462
463long __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
464{
465	return __memblock_remove(&memblock.memory, base, size);
466}
467
468long __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
469{
 
 
 
 
 
470	return __memblock_remove(&memblock.reserved, base, size);
471}
472
473long __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 
 
 
474{
475	struct memblock_type *_rgn = &memblock.reserved;
476
477	BUG_ON(0 == size);
 
 
 
478
479	return memblock_add_region(_rgn, base, size);
480}
481
482phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
483{
484	phys_addr_t found;
 
485
486	/* We align the size to limit fragmentation. Without this, a lot of
487	 * small allocs quickly eat up the whole reserve array on sparc
488	 */
489	size = memblock_align_up(size, align);
 
 
 
 
 
 
 
 
 
 
490
491	found = memblock_find_base(size, align, 0, max_addr);
492	if (found != MEMBLOCK_ERROR &&
493	    !memblock_add_region(&memblock.reserved, found, size))
494		return found;
 
 
495
 
496	return 0;
497}
498
499phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
 
 
 
 
 
 
 
 
 
 
500{
501	phys_addr_t alloc;
 
502
503	alloc = __memblock_alloc_base(size, align, max_addr);
 
 
504
505	if (alloc == 0)
506		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
507		      (unsigned long long) size, (unsigned long long) max_addr);
508
509	return alloc;
 
510}
511
512phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
513{
514	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
515}
 
 
 
 
 
 
 
 
 
 
516
 
 
 
517
518/*
519 * Additional node-local allocators. Search for node memory is bottom up
520 * and walks memblock regions within that node bottom-up as well, but allocation
521 * within an memblock region is top-down. XXX I plan to fix that at some stage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
522 *
523 * WARNING: Only available after early_node_map[] has been populated,
524 * on some architectures, that is after all the calls to add_active_range()
525 * have been done to populate it.
 
526 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527
528phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
529{
530#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
531	/*
532	 * This code originates from sparc which really wants use to walk by addresses
533	 * and returns the nid. This is not very convenient for early_pfn_map[] users
534	 * as the map isn't sorted yet, and it really wants to be walked by nid.
535	 *
536	 * For now, I implement the inefficient method below which walks the early
537	 * map multiple times. Eventually we may want to use an ARCH config option
538	 * to implement a completely different method for both case.
539	 */
540	unsigned long start_pfn, end_pfn;
541	int i;
542
543	for (i = 0; i < MAX_NUMNODES; i++) {
544		get_pfn_range_for_nid(i, &start_pfn, &end_pfn);
545		if (start < PFN_PHYS(start_pfn) || start >= PFN_PHYS(end_pfn))
 
546			continue;
547		*nid = i;
548		return min(end, PFN_PHYS(end_pfn));
 
 
 
 
549	}
550#endif
551	*nid = 0;
552
553	return end;
 
 
 
 
 
554}
555
556static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp,
557					       phys_addr_t size,
558					       phys_addr_t align, int nid)
 
 
 
 
 
 
 
 
 
 
 
 
559{
560	phys_addr_t start, end;
 
561
562	start = mp->base;
563	end = start + mp->size;
 
564
565	start = memblock_align_up(start, align);
566	while (start < end) {
567		phys_addr_t this_end;
568		int this_nid;
569
570		this_end = memblock_nid_range(start, end, &this_nid);
571		if (this_nid == nid) {
572			phys_addr_t ret = memblock_find_region(start, this_end, size, align);
573			if (ret != MEMBLOCK_ERROR &&
574			    !memblock_add_region(&memblock.reserved, ret, size))
575				return ret;
576		}
577		start = this_end;
578	}
 
579
580	return MEMBLOCK_ERROR;
 
 
 
 
 
 
 
581}
582
583phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
584{
585	struct memblock_type *mem = &memblock.memory;
586	int i;
587
588	BUG_ON(0 == size);
 
 
 
589
590	/* We align the size to limit fragmentation. Without this, a lot of
591	 * small allocs quickly eat up the whole reserve array on sparc
592	 */
593	size = memblock_align_up(size, align);
594
595	/* We do a bottom-up search for a region with the right
596	 * nid since that's easier considering how memblock_nid_range()
597	 * works
598	 */
599	for (i = 0; i < mem->cnt; i++) {
600		phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i],
601					       size, align, nid);
602		if (ret != MEMBLOCK_ERROR)
603			return ret;
604	}
605
606	return 0;
 
 
 
 
 
 
 
 
 
607}
608
609phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
610{
611	phys_addr_t res = memblock_alloc_nid(size, align, nid);
612
613	if (res)
614		return res;
615	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616}
617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
618
619/*
620 * Remaining API functions
621 */
622
623/* You must call memblock_analyze() before this. */
624phys_addr_t __init memblock_phys_mem_size(void)
625{
626	return memblock.memory_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
627}
628
629phys_addr_t __init_memblock memblock_end_of_DRAM(void)
630{
631	int idx = memblock.memory.cnt - 1;
632
633	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
634}
635
636/* You must call memblock_analyze() after this. */
637void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
638{
639	unsigned long i;
640	phys_addr_t limit;
641	struct memblock_region *p;
642
643	if (!memory_limit)
644		return;
645
646	/* Truncate the memblock regions to satisfy the memory limit. */
647	limit = memory_limit;
648	for (i = 0; i < memblock.memory.cnt; i++) {
649		if (limit > memblock.memory.regions[i].size) {
650			limit -= memblock.memory.regions[i].size;
651			continue;
652		}
653
654		memblock.memory.regions[i].size = limit;
655		memblock.memory.cnt = i + 1;
656		break;
657	}
658
659	memory_limit = memblock_end_of_DRAM();
660
661	/* And truncate any reserves above the limit also. */
662	for (i = 0; i < memblock.reserved.cnt; i++) {
663		p = &memblock.reserved.regions[i];
664
665		if (p->base > memory_limit)
666			p->size = 0;
667		else if ((p->base + p->size) > memory_limit)
668			p->size = memory_limit - p->base;
669
670		if (p->size == 0) {
671			memblock_remove_region(&memblock.reserved, i);
672			i--;
673		}
674	}
675}
676
677static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
678{
679	unsigned int left = 0, right = type->cnt;
680
681	do {
682		unsigned int mid = (right + left) / 2;
683
684		if (addr < type->regions[mid].base)
685			right = mid;
686		else if (addr >= (type->regions[mid].base +
687				  type->regions[mid].size))
688			left = mid + 1;
689		else
690			return mid;
691	} while (left < right);
692	return -1;
693}
694
695int __init memblock_is_reserved(phys_addr_t addr)
696{
697	return memblock_search(&memblock.reserved, addr) != -1;
698}
699
700int __init_memblock memblock_is_memory(phys_addr_t addr)
701{
702	return memblock_search(&memblock.memory, addr) != -1;
703}
704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
705int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
706{
707	int idx = memblock_search(&memblock.memory, base);
 
708
709	if (idx == -1)
710		return 0;
711	return memblock.memory.regions[idx].base <= base &&
712		(memblock.memory.regions[idx].base +
713		 memblock.memory.regions[idx].size) >= (base + size);
714}
715
 
 
 
 
 
 
 
 
 
 
716int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
717{
 
718	return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
719}
720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
721
722void __init_memblock memblock_set_current_limit(phys_addr_t limit)
723{
724	memblock.current_limit = limit;
725}
726
727static void __init_memblock memblock_dump(struct memblock_type *region, char *name)
 
 
 
 
 
728{
729	unsigned long long base, size;
 
730	int i;
731
732	pr_info(" %s.cnt  = 0x%lx\n", name, region->cnt);
733
734	for (i = 0; i < region->cnt; i++) {
735		base = region->regions[i].base;
736		size = region->regions[i].size;
737
738		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes\n",
739		    name, i, base, base + size - 1, size);
 
 
 
 
 
 
 
 
740	}
741}
742
743void __init_memblock memblock_dump_all(void)
744{
745	if (!memblock_debug)
746		return;
747
748	pr_info("MEMBLOCK configuration:\n");
749	pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
 
 
750
751	memblock_dump(&memblock.memory, "memory");
752	memblock_dump(&memblock.reserved, "reserved");
753}
754
755void __init memblock_analyze(void)
756{
757	int i;
758
759	/* Check marker in the unused last array entry */
760	WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base
761		!= MEMBLOCK_INACTIVE);
762	WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base
763		!= MEMBLOCK_INACTIVE);
764
765	memblock.memory_size = 0;
766
767	for (i = 0; i < memblock.memory.cnt; i++)
768		memblock.memory_size += memblock.memory.regions[i].size;
769
770	/* We allow resizing from there */
771	memblock_can_resize = 1;
772}
773
774void __init memblock_init(void)
775{
776	static int init_done __initdata = 0;
777
778	if (init_done)
779		return;
780	init_done = 1;
781
782	/* Hookup the initial arrays */
783	memblock.memory.regions	= memblock_memory_init_regions;
784	memblock.memory.max		= INIT_MEMBLOCK_REGIONS;
785	memblock.reserved.regions	= memblock_reserved_init_regions;
786	memblock.reserved.max	= INIT_MEMBLOCK_REGIONS;
787
788	/* Write a marker in the unused last array entry */
789	memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = MEMBLOCK_INACTIVE;
790	memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = MEMBLOCK_INACTIVE;
791
792	/* Create a dummy zero size MEMBLOCK which will get coalesced away later.
793	 * This simplifies the memblock_add() code below...
794	 */
795	memblock.memory.regions[0].base = 0;
796	memblock.memory.regions[0].size = 0;
797	memblock.memory.cnt = 1;
798
799	/* Ditto. */
800	memblock.reserved.regions[0].base = 0;
801	memblock.reserved.regions[0].size = 0;
802	memblock.reserved.cnt = 1;
803
804	memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
805}
806
807static int __init early_memblock(char *p)
808{
809	if (p && strstr(p, "debug"))
810		memblock_debug = 1;
811	return 0;
812}
813early_param("memblock", early_memblock);
814
815#if defined(CONFIG_DEBUG_FS) && !defined(ARCH_DISCARD_MEMBLOCK)
816
817static int memblock_debug_show(struct seq_file *m, void *private)
818{
819	struct memblock_type *type = m->private;
820	struct memblock_region *reg;
821	int i;
822
823	for (i = 0; i < type->cnt; i++) {
824		reg = &type->regions[i];
825		seq_printf(m, "%4d: ", i);
826		if (sizeof(phys_addr_t) == 4)
827			seq_printf(m, "0x%08lx..0x%08lx\n",
828				   (unsigned long)reg->base,
829				   (unsigned long)(reg->base + reg->size - 1));
830		else
831			seq_printf(m, "0x%016llx..0x%016llx\n",
832				   (unsigned long long)reg->base,
833				   (unsigned long long)(reg->base + reg->size - 1));
834
835	}
836	return 0;
837}
838
839static int memblock_debug_open(struct inode *inode, struct file *file)
840{
841	return single_open(file, memblock_debug_show, inode->i_private);
842}
843
844static const struct file_operations memblock_debug_fops = {
845	.open = memblock_debug_open,
846	.read = seq_read,
847	.llseek = seq_lseek,
848	.release = single_release,
849};
850
851static int __init memblock_init_debugfs(void)
852{
853	struct dentry *root = debugfs_create_dir("memblock", NULL);
854	if (!root)
855		return -ENXIO;
856	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
857	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
858
859	return 0;
860}
861__initcall(memblock_init_debugfs);
862
863#endif /* CONFIG_DEBUG_FS */
v3.15
   1/*
   2 * Procedures for maintaining information about logical memory blocks.
   3 *
   4 * Peter Bergner, IBM Corp.	June 2001.
   5 * Copyright (C) 2001 Peter Bergner.
   6 *
   7 *      This program is free software; you can redistribute it and/or
   8 *      modify it under the terms of the GNU General Public License
   9 *      as published by the Free Software Foundation; either version
  10 *      2 of the License, or (at your option) any later version.
  11 */
  12
  13#include <linux/kernel.h>
  14#include <linux/slab.h>
  15#include <linux/init.h>
  16#include <linux/bitops.h>
  17#include <linux/poison.h>
  18#include <linux/pfn.h>
  19#include <linux/debugfs.h>
  20#include <linux/seq_file.h>
  21#include <linux/memblock.h>
  22
  23#include <asm-generic/sections.h>
  24#include <linux/io.h>
  25
  26#include "internal.h"
  27
  28static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
  29static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
  30
  31struct memblock memblock __initdata_memblock = {
  32	.memory.regions		= memblock_memory_init_regions,
  33	.memory.cnt		= 1,	/* empty dummy entry */
  34	.memory.max		= INIT_MEMBLOCK_REGIONS,
  35
  36	.reserved.regions	= memblock_reserved_init_regions,
  37	.reserved.cnt		= 1,	/* empty dummy entry */
  38	.reserved.max		= INIT_MEMBLOCK_REGIONS,
  39
  40	.bottom_up		= false,
  41	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
  42};
  43
  44int memblock_debug __initdata_memblock;
  45#ifdef CONFIG_MOVABLE_NODE
  46bool movable_node_enabled __initdata_memblock = false;
  47#endif
  48static int memblock_can_resize __initdata_memblock;
  49static int memblock_memory_in_slab __initdata_memblock = 0;
  50static int memblock_reserved_in_slab __initdata_memblock = 0;
  51
  52/* inline so we don't get a warning when pr_debug is compiled out */
  53static __init_memblock const char *
  54memblock_type_name(struct memblock_type *type)
  55{
  56	if (type == &memblock.memory)
  57		return "memory";
  58	else if (type == &memblock.reserved)
  59		return "reserved";
  60	else
  61		return "unknown";
  62}
  63
  64/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
  65static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
 
 
 
 
 
 
 
 
  66{
  67	return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
  68}
  69
  70/*
  71 * Address comparison utilities
  72 */
  73static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
  74				       phys_addr_t base2, phys_addr_t size2)
  75{
  76	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
  77}
  78
  79static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
  80					phys_addr_t base, phys_addr_t size)
  81{
  82	unsigned long i;
  83
  84	for (i = 0; i < type->cnt; i++) {
  85		phys_addr_t rgnbase = type->regions[i].base;
  86		phys_addr_t rgnsize = type->regions[i].size;
  87		if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
  88			break;
  89	}
  90
  91	return (i < type->cnt) ? i : -1;
  92}
  93
  94/*
  95 * __memblock_find_range_bottom_up - find free area utility in bottom-up
  96 * @start: start of candidate range
  97 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
  98 * @size: size of free area to find
  99 * @align: alignment of free area to find
 100 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 101 *
 102 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 103 *
 104 * RETURNS:
 105 * Found address on success, 0 on failure.
 106 */
 107static phys_addr_t __init_memblock
 108__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 109				phys_addr_t size, phys_addr_t align, int nid)
 110{
 111	phys_addr_t this_start, this_end, cand;
 112	u64 i;
 113
 114	for_each_free_mem_range(i, nid, &this_start, &this_end, NULL) {
 115		this_start = clamp(this_start, start, end);
 116		this_end = clamp(this_end, start, end);
 117
 118		cand = round_up(this_start, align);
 119		if (cand < this_end && this_end - cand >= size)
 120			return cand;
 121	}
 122
 123	return 0;
 124}
 
 
 
 
 
 
 
 125
 126/**
 127 * __memblock_find_range_top_down - find free area utility, in top-down
 128 * @start: start of candidate range
 129 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 130 * @size: size of free area to find
 131 * @align: alignment of free area to find
 132 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 133 *
 134 * Utility called from memblock_find_in_range_node(), find free area top-down.
 135 *
 136 * RETURNS:
 137 * Found address on success, 0 on failure.
 138 */
 139static phys_addr_t __init_memblock
 140__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 141			       phys_addr_t size, phys_addr_t align, int nid)
 142{
 143	phys_addr_t this_start, this_end, cand;
 144	u64 i;
 145
 146	for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
 147		this_start = clamp(this_start, start, end);
 148		this_end = clamp(this_end, start, end);
 149
 150		if (this_end < size)
 151			continue;
 
 
 
 152
 153		cand = round_down(this_end - size, align);
 154		if (cand >= this_start)
 155			return cand;
 
 
 
 
 
 156	}
 157
 158	return 0;
 159}
 160
 161/**
 162 * memblock_find_in_range_node - find free area in given range and node
 163 * @size: size of free area to find
 164 * @align: alignment of free area to find
 165 * @start: start of candidate range
 166 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 167 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 168 *
 169 * Find @size free area aligned to @align in the specified range and node.
 170 *
 171 * When allocation direction is bottom-up, the @start should be greater
 172 * than the end of the kernel image. Otherwise, it will be trimmed. The
 173 * reason is that we want the bottom-up allocation just near the kernel
 174 * image so it is highly likely that the allocated memory and the kernel
 175 * will reside in the same node.
 176 *
 177 * If bottom-up allocation failed, will try to allocate memory top-down.
 178 *
 179 * RETURNS:
 180 * Found address on success, 0 on failure.
 181 */
 182phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 183					phys_addr_t align, phys_addr_t start,
 184					phys_addr_t end, int nid)
 185{
 186	int ret;
 187	phys_addr_t kernel_end;
 
 188
 189	/* pump up @end */
 190	if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
 191		end = memblock.current_limit;
 192
 193	/* avoid allocating the first page */
 194	start = max_t(phys_addr_t, start, PAGE_SIZE);
 195	end = max(start, end);
 196	kernel_end = __pa_symbol(_end);
 197
 198	/*
 199	 * try bottom-up allocation only when bottom-up mode
 200	 * is set and @end is above the kernel image.
 201	 */
 202	if (memblock_bottom_up() && end > kernel_end) {
 203		phys_addr_t bottom_up_start;
 
 
 204
 205		/* make sure we will allocate above the kernel */
 206		bottom_up_start = max(start, kernel_end);
 207
 208		/* ok, try bottom-up allocation first */
 209		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
 210						      size, align, nid);
 211		if (ret)
 212			return ret;
 213
 214		/*
 215		 * we always limit bottom-up allocation above the kernel,
 216		 * but top-down allocation doesn't have the limit, so
 217		 * retrying top-down allocation may succeed when bottom-up
 218		 * allocation failed.
 219		 *
 220		 * bottom-up allocation is expected to be fail very rarely,
 221		 * so we use WARN_ONCE() here to see the stack trace if
 222		 * fail happens.
 223		 */
 224		WARN_ONCE(1, "memblock: bottom-up allocation failed, "
 225			     "memory hotunplug may be affected\n");
 226	}
 227
 228	return __memblock_find_range_top_down(start, end, size, align, nid);
 229}
 230
 231/**
 232 * memblock_find_in_range - find free area in given range
 233 * @start: start of candidate range
 234 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
 235 * @size: size of free area to find
 236 * @align: alignment of free area to find
 237 *
 238 * Find @size free area aligned to @align in the specified range.
 239 *
 240 * RETURNS:
 241 * Found address on success, 0 on failure.
 242 */
 243phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 244					phys_addr_t end, phys_addr_t size,
 245					phys_addr_t align)
 246{
 247	return memblock_find_in_range_node(size, align, start, end,
 248					    NUMA_NO_NODE);
 249}
 250
 251static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 
 
 
 252{
 253	type->total_size -= type->regions[r].size;
 254	memmove(&type->regions[r], &type->regions[r + 1],
 255		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 256	type->cnt--;
 257
 258	/* Special case for empty arrays */
 259	if (type->cnt == 0) {
 260		WARN_ON(type->total_size != 0);
 261		type->cnt = 1;
 262		type->regions[0].base = 0;
 263		type->regions[0].size = 0;
 264		type->regions[0].flags = 0;
 265		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 266	}
 267}
 268
 269#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
 270
 271phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
 272					phys_addr_t *addr)
 273{
 274	if (memblock.reserved.regions == memblock_reserved_init_regions)
 275		return 0;
 276
 277	*addr = __pa(memblock.reserved.regions);
 278
 279	return PAGE_ALIGN(sizeof(struct memblock_region) *
 280			  memblock.reserved.max);
 281}
 282
 283phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
 284					phys_addr_t *addr)
 285{
 286	if (memblock.memory.regions == memblock_memory_init_regions)
 287		return 0;
 288
 289	*addr = __pa(memblock.memory.regions);
 
 
 
 
 290
 291	return PAGE_ALIGN(sizeof(struct memblock_region) *
 292			  memblock.memory.max);
 
 
 
 
 293}
 294
 295#endif
 
 296
 297/**
 298 * memblock_double_array - double the size of the memblock regions array
 299 * @type: memblock type of the regions array being doubled
 300 * @new_area_start: starting address of memory range to avoid overlap with
 301 * @new_area_size: size of memory range to avoid overlap with
 302 *
 303 * Double the size of the @type regions array. If memblock is being used to
 304 * allocate memory for a new reserved regions array and there is a previously
 305 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
 306 * waiting to be reserved, ensure the memory used by the new array does
 307 * not overlap.
 308 *
 309 * RETURNS:
 310 * 0 on success, -1 on failure.
 311 */
 312static int __init_memblock memblock_double_array(struct memblock_type *type,
 313						phys_addr_t new_area_start,
 314						phys_addr_t new_area_size)
 315{
 316	struct memblock_region *new_array, *old_array;
 317	phys_addr_t old_alloc_size, new_alloc_size;
 318	phys_addr_t old_size, new_size, addr;
 319	int use_slab = slab_is_available();
 320	int *in_slab;
 321
 322	/* We don't allow resizing until we know about the reserved regions
 323	 * of memory that aren't suitable for allocation
 324	 */
 325	if (!memblock_can_resize)
 326		return -1;
 327
 328	/* Calculate new doubled size */
 329	old_size = type->max * sizeof(struct memblock_region);
 330	new_size = old_size << 1;
 331	/*
 332	 * We need to allocated new one align to PAGE_SIZE,
 333	 *   so we can free them completely later.
 334	 */
 335	old_alloc_size = PAGE_ALIGN(old_size);
 336	new_alloc_size = PAGE_ALIGN(new_size);
 337
 338	/* Retrieve the slab flag */
 339	if (type == &memblock.memory)
 340		in_slab = &memblock_memory_in_slab;
 341	else
 342		in_slab = &memblock_reserved_in_slab;
 343
 344	/* Try to find some space for it.
 345	 *
 346	 * WARNING: We assume that either slab_is_available() and we use it or
 347	 * we use MEMBLOCK for allocations. That means that this is unsafe to
 348	 * use when bootmem is currently active (unless bootmem itself is
 349	 * implemented on top of MEMBLOCK which isn't the case yet)
 350	 *
 351	 * This should however not be an issue for now, as we currently only
 352	 * call into MEMBLOCK while it's still active, or much later when slab
 353	 * is active for memory hotplug operations
 354	 */
 355	if (use_slab) {
 356		new_array = kmalloc(new_size, GFP_KERNEL);
 357		addr = new_array ? __pa(new_array) : 0;
 358	} else {
 359		/* only exclude range when trying to double reserved.regions */
 360		if (type != &memblock.reserved)
 361			new_area_start = new_area_size = 0;
 362
 363		addr = memblock_find_in_range(new_area_start + new_area_size,
 364						memblock.current_limit,
 365						new_alloc_size, PAGE_SIZE);
 366		if (!addr && new_area_size)
 367			addr = memblock_find_in_range(0,
 368				min(new_area_start, memblock.current_limit),
 369				new_alloc_size, PAGE_SIZE);
 370
 371		new_array = addr ? __va(addr) : NULL;
 372	}
 373	if (!addr) {
 374		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 375		       memblock_type_name(type), type->max, type->max * 2);
 376		return -1;
 377	}
 
 378
 379	memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
 380			memblock_type_name(type), type->max * 2, (u64)addr,
 381			(u64)addr + new_size - 1);
 382
 383	/*
 384	 * Found space, we now need to move the array over before we add the
 385	 * reserved region since it may be our reserved array itself that is
 386	 * full.
 387	 */
 388	memcpy(new_array, type->regions, old_size);
 389	memset(new_array + type->max, 0, old_size);
 390	old_array = type->regions;
 391	type->regions = new_array;
 392	type->max <<= 1;
 393
 394	/* Free old array. We needn't free it if the array is the static one */
 395	if (*in_slab)
 396		kfree(old_array);
 397	else if (old_array != memblock_memory_init_regions &&
 398		 old_array != memblock_reserved_init_regions)
 399		memblock_free(__pa(old_array), old_alloc_size);
 400
 401	/*
 402	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 403	 * needn't do it
 
 404	 */
 405	if (!use_slab)
 406		BUG_ON(memblock_reserve(addr, new_alloc_size));
 
 407
 408	/* Update slab flag */
 409	*in_slab = use_slab;
 410
 411	return 0;
 
 
 
 412}
 413
 414/**
 415 * memblock_merge_regions - merge neighboring compatible regions
 416 * @type: memblock type to scan
 417 *
 418 * Scan @type and merge neighboring compatible regions.
 419 */
 420static void __init_memblock memblock_merge_regions(struct memblock_type *type)
 421{
 422	int i = 0;
 
 
 
 
 
 
 
 
 
 
 423
 424	/* cnt never goes below 1 */
 425	while (i < type->cnt - 1) {
 426		struct memblock_region *this = &type->regions[i];
 427		struct memblock_region *next = &type->regions[i + 1];
 428
 429		if (this->base + this->size != next->base ||
 430		    memblock_get_region_node(this) !=
 431		    memblock_get_region_node(next) ||
 432		    this->flags != next->flags) {
 433			BUG_ON(this->base + this->size > next->base);
 434			i++;
 435			continue;
 436		}
 437
 438		this->size += next->size;
 439		/* move forward from next + 1, index of which is i + 2 */
 440		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 441		type->cnt--;
 442	}
 443}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 444
 445/**
 446 * memblock_insert_region - insert new memblock region
 447 * @type:	memblock type to insert into
 448 * @idx:	index for the insertion point
 449 * @base:	base address of the new region
 450 * @size:	size of the new region
 451 * @nid:	node id of the new region
 452 * @flags:	flags of the new region
 453 *
 454 * Insert new memblock region [@base,@base+@size) into @type at @idx.
 455 * @type must already have extra room to accomodate the new region.
 456 */
 457static void __init_memblock memblock_insert_region(struct memblock_type *type,
 458						   int idx, phys_addr_t base,
 459						   phys_addr_t size,
 460						   int nid, unsigned long flags)
 461{
 462	struct memblock_region *rgn = &type->regions[idx];
 463
 464	BUG_ON(type->cnt >= type->max);
 465	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 466	rgn->base = base;
 467	rgn->size = size;
 468	rgn->flags = flags;
 469	memblock_set_region_node(rgn, nid);
 470	type->cnt++;
 471	type->total_size += size;
 472}
 473
 474/**
 475 * memblock_add_region - add new memblock region
 476 * @type: memblock type to add new region into
 477 * @base: base address of the new region
 478 * @size: size of the new region
 479 * @nid: nid of the new region
 480 * @flags: flags of the new region
 481 *
 482 * Add new memblock region [@base,@base+@size) into @type.  The new region
 483 * is allowed to overlap with existing ones - overlaps don't affect already
 484 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 485 * compatible regions are merged) after the addition.
 486 *
 487 * RETURNS:
 488 * 0 on success, -errno on failure.
 489 */
 490static int __init_memblock memblock_add_region(struct memblock_type *type,
 491				phys_addr_t base, phys_addr_t size,
 492				int nid, unsigned long flags)
 493{
 494	bool insert = false;
 495	phys_addr_t obase = base;
 496	phys_addr_t end = base + memblock_cap_size(base, &size);
 497	int i, nr_new;
 498
 499	if (!size)
 500		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 501
 502	/* special case for empty array */
 503	if (type->regions[0].size == 0) {
 504		WARN_ON(type->cnt != 1 || type->total_size);
 
 505		type->regions[0].base = base;
 506		type->regions[0].size = size;
 507		type->regions[0].flags = flags;
 508		memblock_set_region_node(&type->regions[0], nid);
 509		type->total_size = size;
 510		return 0;
 511	}
 512repeat:
 513	/*
 514	 * The following is executed twice.  Once with %false @insert and
 515	 * then with %true.  The first counts the number of regions needed
 516	 * to accomodate the new area.  The second actually inserts them.
 517	 */
 518	base = obase;
 519	nr_new = 0;
 520
 521	for (i = 0; i < type->cnt; i++) {
 522		struct memblock_region *rgn = &type->regions[i];
 523		phys_addr_t rbase = rgn->base;
 524		phys_addr_t rend = rbase + rgn->size;
 525
 526		if (rbase >= end)
 
 
 
 527			break;
 528		if (rend <= base)
 529			continue;
 530		/*
 531		 * @rgn overlaps.  If it separates the lower part of new
 532		 * area, insert that portion.
 533		 */
 534		if (rbase > base) {
 535			nr_new++;
 536			if (insert)
 537				memblock_insert_region(type, i++, base,
 538						       rbase - base, nid,
 539						       flags);
 540		}
 541		/* area below @rend is dealt with, forget about it */
 542		base = min(rend, end);
 543	}
 544
 545	/* insert the remaining portion */
 546	if (base < end) {
 547		nr_new++;
 548		if (insert)
 549			memblock_insert_region(type, i, base, end - base,
 550					       nid, flags);
 551	}
 
 552
 553	/*
 554	 * If this was the first round, resize array and repeat for actual
 555	 * insertions; otherwise, merge and return.
 556	 */
 557	if (!insert) {
 558		while (type->cnt + nr_new > type->max)
 559			if (memblock_double_array(type, obase, size) < 0)
 560				return -ENOMEM;
 561		insert = true;
 562		goto repeat;
 563	} else {
 564		memblock_merge_regions(type);
 565		return 0;
 566	}
 
 
 567}
 568
 569int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 570				       int nid)
 571{
 572	return memblock_add_region(&memblock.memory, base, size, nid, 0);
 573}
 574
 575int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 576{
 577	return memblock_add_region(&memblock.memory, base, size,
 578				   MAX_NUMNODES, 0);
 579}
 580
 581/**
 582 * memblock_isolate_range - isolate given range into disjoint memblocks
 583 * @type: memblock type to isolate range for
 584 * @base: base of range to isolate
 585 * @size: size of range to isolate
 586 * @start_rgn: out parameter for the start of isolated region
 587 * @end_rgn: out parameter for the end of isolated region
 588 *
 589 * Walk @type and ensure that regions don't cross the boundaries defined by
 590 * [@base,@base+@size).  Crossing regions are split at the boundaries,
 591 * which may create at most two more regions.  The index of the first
 592 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 593 *
 594 * RETURNS:
 595 * 0 on success, -errno on failure.
 596 */
 597static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 598					phys_addr_t base, phys_addr_t size,
 599					int *start_rgn, int *end_rgn)
 600{
 601	phys_addr_t end = base + memblock_cap_size(base, &size);
 602	int i;
 603
 604	*start_rgn = *end_rgn = 0;
 605
 606	if (!size)
 607		return 0;
 608
 609	/* we'll create at most two more regions */
 610	while (type->cnt + 2 > type->max)
 611		if (memblock_double_array(type, base, size) < 0)
 612			return -ENOMEM;
 613
 614	for (i = 0; i < type->cnt; i++) {
 615		struct memblock_region *rgn = &type->regions[i];
 616		phys_addr_t rbase = rgn->base;
 617		phys_addr_t rend = rbase + rgn->size;
 618
 619		if (rbase >= end)
 
 620			break;
 621		if (rend <= base)
 
 
 
 622			continue;
 
 623
 624		if (rbase < base) {
 625			/*
 626			 * @rgn intersects from below.  Split and continue
 627			 * to process the next region - the new top half.
 628			 */
 629			rgn->base = base;
 630			rgn->size -= base - rbase;
 631			type->total_size -= base - rbase;
 632			memblock_insert_region(type, i, rbase, base - rbase,
 633					       memblock_get_region_node(rgn),
 634					       rgn->flags);
 635		} else if (rend > end) {
 636			/*
 637			 * @rgn intersects from above.  Split and redo the
 638			 * current region - the new bottom half.
 639			 */
 
 
 
 
 
 
 
 
 640			rgn->base = end;
 641			rgn->size -= end - rbase;
 642			type->total_size -= end - rbase;
 643			memblock_insert_region(type, i--, rbase, end - rbase,
 644					       memblock_get_region_node(rgn),
 645					       rgn->flags);
 646		} else {
 647			/* @rgn is fully contained, record it */
 648			if (!*end_rgn)
 649				*start_rgn = i;
 650			*end_rgn = i + 1;
 651		}
 652	}
 653
 654	return 0;
 655}
 656
 657static int __init_memblock __memblock_remove(struct memblock_type *type,
 658					     phys_addr_t base, phys_addr_t size)
 659{
 660	int start_rgn, end_rgn;
 661	int i, ret;
 662
 663	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 664	if (ret)
 665		return ret;
 666
 667	for (i = end_rgn - 1; i >= start_rgn; i--)
 668		memblock_remove_region(type, i);
 669	return 0;
 670}
 671
 672int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 673{
 674	return __memblock_remove(&memblock.memory, base, size);
 675}
 676
 677int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 678{
 679	memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
 680		     (unsigned long long)base,
 681		     (unsigned long long)base + size - 1,
 682		     (void *)_RET_IP_);
 683
 684	return __memblock_remove(&memblock.reserved, base, size);
 685}
 686
 687static int __init_memblock memblock_reserve_region(phys_addr_t base,
 688						   phys_addr_t size,
 689						   int nid,
 690						   unsigned long flags)
 691{
 692	struct memblock_type *_rgn = &memblock.reserved;
 693
 694	memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
 695		     (unsigned long long)base,
 696		     (unsigned long long)base + size - 1,
 697		     flags, (void *)_RET_IP_);
 698
 699	return memblock_add_region(_rgn, base, size, nid, flags);
 700}
 701
 702int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 703{
 704	return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
 705}
 706
 707/**
 708 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 709 * @base: the base phys addr of the region
 710 * @size: the size of the region
 711 *
 712 * This function isolates region [@base, @base + @size), and mark it with flag
 713 * MEMBLOCK_HOTPLUG.
 714 *
 715 * Return 0 on succees, -errno on failure.
 716 */
 717int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 718{
 719	struct memblock_type *type = &memblock.memory;
 720	int i, ret, start_rgn, end_rgn;
 721
 722	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 723	if (ret)
 724		return ret;
 725
 726	for (i = start_rgn; i < end_rgn; i++)
 727		memblock_set_region_flags(&type->regions[i], MEMBLOCK_HOTPLUG);
 728
 729	memblock_merge_regions(type);
 730	return 0;
 731}
 732
 733/**
 734 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 735 * @base: the base phys addr of the region
 736 * @size: the size of the region
 737 *
 738 * This function isolates region [@base, @base + @size), and clear flag
 739 * MEMBLOCK_HOTPLUG for the isolated regions.
 740 *
 741 * Return 0 on succees, -errno on failure.
 742 */
 743int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 744{
 745	struct memblock_type *type = &memblock.memory;
 746	int i, ret, start_rgn, end_rgn;
 747
 748	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 749	if (ret)
 750		return ret;
 751
 752	for (i = start_rgn; i < end_rgn; i++)
 753		memblock_clear_region_flags(&type->regions[i],
 754					    MEMBLOCK_HOTPLUG);
 755
 756	memblock_merge_regions(type);
 757	return 0;
 758}
 759
 760/**
 761 * __next_free_mem_range - next function for for_each_free_mem_range()
 762 * @idx: pointer to u64 loop variable
 763 * @nid: node selector, %NUMA_NO_NODE for all nodes
 764 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 765 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 766 * @out_nid: ptr to int for nid of the range, can be %NULL
 767 *
 768 * Find the first free area from *@idx which matches @nid, fill the out
 769 * parameters, and update *@idx for the next iteration.  The lower 32bit of
 770 * *@idx contains index into memory region and the upper 32bit indexes the
 771 * areas before each reserved region.  For example, if reserved regions
 772 * look like the following,
 773 *
 774 *	0:[0-16), 1:[32-48), 2:[128-130)
 775 *
 776 * The upper 32bit indexes the following regions.
 777 *
 778 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
 779 *
 780 * As both region arrays are sorted, the function advances the two indices
 781 * in lockstep and returns each intersection.
 782 */
 783void __init_memblock __next_free_mem_range(u64 *idx, int nid,
 784					   phys_addr_t *out_start,
 785					   phys_addr_t *out_end, int *out_nid)
 786{
 787	struct memblock_type *mem = &memblock.memory;
 788	struct memblock_type *rsv = &memblock.reserved;
 789	int mi = *idx & 0xffffffff;
 790	int ri = *idx >> 32;
 791
 792	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
 793		nid = NUMA_NO_NODE;
 794
 795	for ( ; mi < mem->cnt; mi++) {
 796		struct memblock_region *m = &mem->regions[mi];
 797		phys_addr_t m_start = m->base;
 798		phys_addr_t m_end = m->base + m->size;
 799
 800		/* only memory regions are associated with nodes, check it */
 801		if (nid != NUMA_NO_NODE && nid != memblock_get_region_node(m))
 802			continue;
 803
 804		/* scan areas before each reservation for intersection */
 805		for ( ; ri < rsv->cnt + 1; ri++) {
 806			struct memblock_region *r = &rsv->regions[ri];
 807			phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
 808			phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
 809
 810			/* if ri advanced past mi, break out to advance mi */
 811			if (r_start >= m_end)
 812				break;
 813			/* if the two regions intersect, we're done */
 814			if (m_start < r_end) {
 815				if (out_start)
 816					*out_start = max(m_start, r_start);
 817				if (out_end)
 818					*out_end = min(m_end, r_end);
 819				if (out_nid)
 820					*out_nid = memblock_get_region_node(m);
 821				/*
 822				 * The region which ends first is advanced
 823				 * for the next iteration.
 824				 */
 825				if (m_end <= r_end)
 826					mi++;
 827				else
 828					ri++;
 829				*idx = (u32)mi | (u64)ri << 32;
 830				return;
 831			}
 832		}
 833	}
 834
 835	/* signal end of iteration */
 836	*idx = ULLONG_MAX;
 837}
 838
 839/**
 840 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
 841 * @idx: pointer to u64 loop variable
 842 * @nid: nid: node selector, %NUMA_NO_NODE for all nodes
 843 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 844 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 845 * @out_nid: ptr to int for nid of the range, can be %NULL
 846 *
 847 * Reverse of __next_free_mem_range().
 848 *
 849 * Linux kernel cannot migrate pages used by itself. Memory hotplug users won't
 850 * be able to hot-remove hotpluggable memory used by the kernel. So this
 851 * function skip hotpluggable regions if needed when allocating memory for the
 852 * kernel.
 853 */
 854void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
 855					   phys_addr_t *out_start,
 856					   phys_addr_t *out_end, int *out_nid)
 857{
 858	struct memblock_type *mem = &memblock.memory;
 859	struct memblock_type *rsv = &memblock.reserved;
 860	int mi = *idx & 0xffffffff;
 861	int ri = *idx >> 32;
 862
 863	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
 864		nid = NUMA_NO_NODE;
 865
 866	if (*idx == (u64)ULLONG_MAX) {
 867		mi = mem->cnt - 1;
 868		ri = rsv->cnt;
 869	}
 870
 871	for ( ; mi >= 0; mi--) {
 872		struct memblock_region *m = &mem->regions[mi];
 873		phys_addr_t m_start = m->base;
 874		phys_addr_t m_end = m->base + m->size;
 875
 876		/* only memory regions are associated with nodes, check it */
 877		if (nid != NUMA_NO_NODE && nid != memblock_get_region_node(m))
 878			continue;
 879
 880		/* skip hotpluggable memory regions if needed */
 881		if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
 882			continue;
 883
 884		/* scan areas before each reservation for intersection */
 885		for ( ; ri >= 0; ri--) {
 886			struct memblock_region *r = &rsv->regions[ri];
 887			phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
 888			phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
 889
 890			/* if ri advanced past mi, break out to advance mi */
 891			if (r_end <= m_start)
 892				break;
 893			/* if the two regions intersect, we're done */
 894			if (m_end > r_start) {
 895				if (out_start)
 896					*out_start = max(m_start, r_start);
 897				if (out_end)
 898					*out_end = min(m_end, r_end);
 899				if (out_nid)
 900					*out_nid = memblock_get_region_node(m);
 901
 902				if (m_start >= r_start)
 903					mi--;
 904				else
 905					ri--;
 906				*idx = (u32)mi | (u64)ri << 32;
 907				return;
 908			}
 909		}
 910	}
 911
 912	*idx = ULLONG_MAX;
 913}
 914
 915#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 916/*
 917 * Common iterator interface used to define for_each_mem_range().
 918 */
 919void __init_memblock __next_mem_pfn_range(int *idx, int nid,
 920				unsigned long *out_start_pfn,
 921				unsigned long *out_end_pfn, int *out_nid)
 922{
 923	struct memblock_type *type = &memblock.memory;
 924	struct memblock_region *r;
 
 
 
 
 
 
 
 
 
 
 925
 926	while (++*idx < type->cnt) {
 927		r = &type->regions[*idx];
 928
 929		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
 930			continue;
 931		if (nid == MAX_NUMNODES || nid == r->nid)
 932			break;
 933	}
 934	if (*idx >= type->cnt) {
 935		*idx = -1;
 936		return;
 937	}
 
 
 938
 939	if (out_start_pfn)
 940		*out_start_pfn = PFN_UP(r->base);
 941	if (out_end_pfn)
 942		*out_end_pfn = PFN_DOWN(r->base + r->size);
 943	if (out_nid)
 944		*out_nid = r->nid;
 945}
 946
 947/**
 948 * memblock_set_node - set node ID on memblock regions
 949 * @base: base of area to set node ID for
 950 * @size: size of area to set node ID for
 951 * @type: memblock type to set node ID for
 952 * @nid: node ID to set
 953 *
 954 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
 955 * Regions which cross the area boundaries are split as necessary.
 956 *
 957 * RETURNS:
 958 * 0 on success, -errno on failure.
 959 */
 960int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
 961				      struct memblock_type *type, int nid)
 962{
 963	int start_rgn, end_rgn;
 964	int i, ret;
 965
 966	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 967	if (ret)
 968		return ret;
 969
 970	for (i = start_rgn; i < end_rgn; i++)
 971		memblock_set_region_node(&type->regions[i], nid);
 
 
 972
 973	memblock_merge_regions(type);
 974	return 0;
 975}
 976#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 977
 978static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
 979					phys_addr_t align, phys_addr_t max_addr,
 980					int nid)
 981{
 982	phys_addr_t found;
 983
 984	if (!align)
 985		align = SMP_CACHE_BYTES;
 986
 987	found = memblock_find_in_range_node(size, align, 0, max_addr, nid);
 988	if (found && !memblock_reserve(found, size))
 989		return found;
 990
 991	return 0;
 992}
 993
 994phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
 995{
 996	return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
 997}
 998
 999phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1000{
1001	return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE);
1002}
1003
1004phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1005{
1006	phys_addr_t alloc;
 
1007
1008	alloc = __memblock_alloc_base(size, align, max_addr);
 
 
 
 
 
 
 
 
 
1009
1010	if (alloc == 0)
1011		panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1012		      (unsigned long long) size, (unsigned long long) max_addr);
1013
1014	return alloc;
1015}
1016
1017phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1018{
1019	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1020}
1021
1022phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1023{
1024	phys_addr_t res = memblock_alloc_nid(size, align, nid);
1025
1026	if (res)
1027		return res;
1028	return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1029}
1030
1031/**
1032 * memblock_virt_alloc_internal - allocate boot memory block
1033 * @size: size of memory block to be allocated in bytes
1034 * @align: alignment of the region and block's size
1035 * @min_addr: the lower bound of the memory region to allocate (phys address)
1036 * @max_addr: the upper bound of the memory region to allocate (phys address)
1037 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1038 *
1039 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1040 * will fall back to memory below @min_addr. Also, allocation may fall back
1041 * to any node in the system if the specified node can not
1042 * hold the requested memory.
1043 *
1044 * The allocation is performed from memory region limited by
1045 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1046 *
1047 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1048 *
1049 * The phys address of allocated boot memory block is converted to virtual and
1050 * allocated memory is reset to 0.
1051 *
1052 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1053 * allocated boot memory block, so that it is never reported as leaks.
1054 *
1055 * RETURNS:
1056 * Virtual address of allocated memory block on success, NULL on failure.
1057 */
1058static void * __init memblock_virt_alloc_internal(
1059				phys_addr_t size, phys_addr_t align,
1060				phys_addr_t min_addr, phys_addr_t max_addr,
1061				int nid)
1062{
1063	phys_addr_t alloc;
1064	void *ptr;
1065
1066	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1067		nid = NUMA_NO_NODE;
1068
1069	/*
1070	 * Detect any accidental use of these APIs after slab is ready, as at
1071	 * this moment memblock may be deinitialized already and its
1072	 * internal data may be destroyed (after execution of free_all_bootmem)
1073	 */
1074	if (WARN_ON_ONCE(slab_is_available()))
1075		return kzalloc_node(size, GFP_NOWAIT, nid);
1076
1077	if (!align)
1078		align = SMP_CACHE_BYTES;
1079
1080	if (max_addr > memblock.current_limit)
1081		max_addr = memblock.current_limit;
1082
1083again:
1084	alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1085					    nid);
1086	if (alloc)
1087		goto done;
1088
1089	if (nid != NUMA_NO_NODE) {
1090		alloc = memblock_find_in_range_node(size, align, min_addr,
1091						    max_addr,  NUMA_NO_NODE);
1092		if (alloc)
1093			goto done;
1094	}
1095
1096	if (min_addr) {
1097		min_addr = 0;
1098		goto again;
1099	} else {
1100		goto error;
1101	}
1102
1103done:
1104	memblock_reserve(alloc, size);
1105	ptr = phys_to_virt(alloc);
1106	memset(ptr, 0, size);
1107
1108	/*
1109	 * The min_count is set to 0 so that bootmem allocated blocks
1110	 * are never reported as leaks. This is because many of these blocks
1111	 * are only referred via the physical address which is not
1112	 * looked up by kmemleak.
1113	 */
1114	kmemleak_alloc(ptr, size, 0, 0);
1115
1116	return ptr;
1117
1118error:
1119	return NULL;
1120}
1121
1122/**
1123 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1124 * @size: size of memory block to be allocated in bytes
1125 * @align: alignment of the region and block's size
1126 * @min_addr: the lower bound of the memory region from where the allocation
1127 *	  is preferred (phys address)
1128 * @max_addr: the upper bound of the memory region from where the allocation
1129 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1130 *	      allocate only from memory limited by memblock.current_limit value
1131 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1132 *
1133 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1134 * additional debug information (including caller info), if enabled.
1135 *
1136 * RETURNS:
1137 * Virtual address of allocated memory block on success, NULL on failure.
1138 */
1139void * __init memblock_virt_alloc_try_nid_nopanic(
1140				phys_addr_t size, phys_addr_t align,
1141				phys_addr_t min_addr, phys_addr_t max_addr,
1142				int nid)
1143{
1144	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1145		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1146		     (u64)max_addr, (void *)_RET_IP_);
1147	return memblock_virt_alloc_internal(size, align, min_addr,
1148					     max_addr, nid);
1149}
1150
1151/**
1152 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1153 * @size: size of memory block to be allocated in bytes
1154 * @align: alignment of the region and block's size
1155 * @min_addr: the lower bound of the memory region from where the allocation
1156 *	  is preferred (phys address)
1157 * @max_addr: the upper bound of the memory region from where the allocation
1158 *	      is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1159 *	      allocate only from memory limited by memblock.current_limit value
1160 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1161 *
1162 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1163 * which provides debug information (including caller info), if enabled,
1164 * and panics if the request can not be satisfied.
1165 *
1166 * RETURNS:
1167 * Virtual address of allocated memory block on success, NULL on failure.
1168 */
1169void * __init memblock_virt_alloc_try_nid(
1170			phys_addr_t size, phys_addr_t align,
1171			phys_addr_t min_addr, phys_addr_t max_addr,
1172			int nid)
1173{
1174	void *ptr;
1175
1176	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1177		     __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1178		     (u64)max_addr, (void *)_RET_IP_);
1179	ptr = memblock_virt_alloc_internal(size, align,
1180					   min_addr, max_addr, nid);
1181	if (ptr)
1182		return ptr;
1183
1184	panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1185	      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1186	      (u64)max_addr);
1187	return NULL;
1188}
1189
1190/**
1191 * __memblock_free_early - free boot memory block
1192 * @base: phys starting address of the  boot memory block
1193 * @size: size of the boot memory block in bytes
1194 *
1195 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1196 * The freeing memory will not be released to the buddy allocator.
1197 */
1198void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1199{
1200	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1201		     __func__, (u64)base, (u64)base + size - 1,
1202		     (void *)_RET_IP_);
1203	kmemleak_free_part(__va(base), size);
1204	__memblock_remove(&memblock.reserved, base, size);
1205}
1206
1207/*
1208 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1209 * @addr: phys starting address of the  boot memory block
1210 * @size: size of the boot memory block in bytes
1211 *
1212 * This is only useful when the bootmem allocator has already been torn
1213 * down, but we are still initializing the system.  Pages are released directly
1214 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1215 */
1216void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1217{
1218	u64 cursor, end;
1219
1220	memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1221		     __func__, (u64)base, (u64)base + size - 1,
1222		     (void *)_RET_IP_);
1223	kmemleak_free_part(__va(base), size);
1224	cursor = PFN_UP(base);
1225	end = PFN_DOWN(base + size);
1226
1227	for (; cursor < end; cursor++) {
1228		__free_pages_bootmem(pfn_to_page(cursor), 0);
1229		totalram_pages++;
1230	}
1231}
1232
1233/*
1234 * Remaining API functions
1235 */
1236
 
1237phys_addr_t __init memblock_phys_mem_size(void)
1238{
1239	return memblock.memory.total_size;
1240}
1241
1242phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1243{
1244	unsigned long pages = 0;
1245	struct memblock_region *r;
1246	unsigned long start_pfn, end_pfn;
1247
1248	for_each_memblock(memory, r) {
1249		start_pfn = memblock_region_memory_base_pfn(r);
1250		end_pfn = memblock_region_memory_end_pfn(r);
1251		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1252		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1253		pages += end_pfn - start_pfn;
1254	}
1255
1256	return PFN_PHYS(pages);
1257}
1258
1259/* lowest address */
1260phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1261{
1262	return memblock.memory.regions[0].base;
1263}
1264
1265phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1266{
1267	int idx = memblock.memory.cnt - 1;
1268
1269	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1270}
1271
1272void __init memblock_enforce_memory_limit(phys_addr_t limit)
 
1273{
1274	phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1275	struct memblock_region *r;
 
1276
1277	if (!limit)
1278		return;
1279
1280	/* find out max address */
1281	for_each_memblock(memory, r) {
1282		if (limit <= r->size) {
1283			max_addr = r->base + limit;
1284			break;
 
1285		}
1286		limit -= r->size;
 
 
 
1287	}
1288
1289	/* truncate both memory and reserved regions */
1290	__memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
1291	__memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
 
 
 
 
 
 
 
 
 
 
 
 
 
1292}
1293
1294static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1295{
1296	unsigned int left = 0, right = type->cnt;
1297
1298	do {
1299		unsigned int mid = (right + left) / 2;
1300
1301		if (addr < type->regions[mid].base)
1302			right = mid;
1303		else if (addr >= (type->regions[mid].base +
1304				  type->regions[mid].size))
1305			left = mid + 1;
1306		else
1307			return mid;
1308	} while (left < right);
1309	return -1;
1310}
1311
1312int __init memblock_is_reserved(phys_addr_t addr)
1313{
1314	return memblock_search(&memblock.reserved, addr) != -1;
1315}
1316
1317int __init_memblock memblock_is_memory(phys_addr_t addr)
1318{
1319	return memblock_search(&memblock.memory, addr) != -1;
1320}
1321
1322#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1323int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1324			 unsigned long *start_pfn, unsigned long *end_pfn)
1325{
1326	struct memblock_type *type = &memblock.memory;
1327	int mid = memblock_search(type, PFN_PHYS(pfn));
1328
1329	if (mid == -1)
1330		return -1;
1331
1332	*start_pfn = type->regions[mid].base >> PAGE_SHIFT;
1333	*end_pfn = (type->regions[mid].base + type->regions[mid].size)
1334			>> PAGE_SHIFT;
1335
1336	return type->regions[mid].nid;
1337}
1338#endif
1339
1340/**
1341 * memblock_is_region_memory - check if a region is a subset of memory
1342 * @base: base of region to check
1343 * @size: size of region to check
1344 *
1345 * Check if the region [@base, @base+@size) is a subset of a memory block.
1346 *
1347 * RETURNS:
1348 * 0 if false, non-zero if true
1349 */
1350int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1351{
1352	int idx = memblock_search(&memblock.memory, base);
1353	phys_addr_t end = base + memblock_cap_size(base, &size);
1354
1355	if (idx == -1)
1356		return 0;
1357	return memblock.memory.regions[idx].base <= base &&
1358		(memblock.memory.regions[idx].base +
1359		 memblock.memory.regions[idx].size) >= end;
1360}
1361
1362/**
1363 * memblock_is_region_reserved - check if a region intersects reserved memory
1364 * @base: base of region to check
1365 * @size: size of region to check
1366 *
1367 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1368 *
1369 * RETURNS:
1370 * 0 if false, non-zero if true
1371 */
1372int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1373{
1374	memblock_cap_size(base, &size);
1375	return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
1376}
1377
1378void __init_memblock memblock_trim_memory(phys_addr_t align)
1379{
1380	phys_addr_t start, end, orig_start, orig_end;
1381	struct memblock_region *r;
1382
1383	for_each_memblock(memory, r) {
1384		orig_start = r->base;
1385		orig_end = r->base + r->size;
1386		start = round_up(orig_start, align);
1387		end = round_down(orig_end, align);
1388
1389		if (start == orig_start && end == orig_end)
1390			continue;
1391
1392		if (start < end) {
1393			r->base = start;
1394			r->size = end - start;
1395		} else {
1396			memblock_remove_region(&memblock.memory,
1397					       r - memblock.memory.regions);
1398			r--;
1399		}
1400	}
1401}
1402
1403void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1404{
1405	memblock.current_limit = limit;
1406}
1407
1408phys_addr_t __init_memblock memblock_get_current_limit(void)
1409{
1410	return memblock.current_limit;
1411}
1412
1413static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1414{
1415	unsigned long long base, size;
1416	unsigned long flags;
1417	int i;
1418
1419	pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
1420
1421	for (i = 0; i < type->cnt; i++) {
1422		struct memblock_region *rgn = &type->regions[i];
1423		char nid_buf[32] = "";
1424
1425		base = rgn->base;
1426		size = rgn->size;
1427		flags = rgn->flags;
1428#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1429		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1430			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1431				 memblock_get_region_node(rgn));
1432#endif
1433		pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1434			name, i, base, base + size - 1, size, nid_buf, flags);
1435	}
1436}
1437
1438void __init_memblock __memblock_dump_all(void)
1439{
 
 
 
1440	pr_info("MEMBLOCK configuration:\n");
1441	pr_info(" memory size = %#llx reserved size = %#llx\n",
1442		(unsigned long long)memblock.memory.total_size,
1443		(unsigned long long)memblock.reserved.total_size);
1444
1445	memblock_dump(&memblock.memory, "memory");
1446	memblock_dump(&memblock.reserved, "reserved");
1447}
1448
1449void __init memblock_allow_resize(void)
1450{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1451	memblock_can_resize = 1;
1452}
1453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1454static int __init early_memblock(char *p)
1455{
1456	if (p && strstr(p, "debug"))
1457		memblock_debug = 1;
1458	return 0;
1459}
1460early_param("memblock", early_memblock);
1461
1462#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1463
1464static int memblock_debug_show(struct seq_file *m, void *private)
1465{
1466	struct memblock_type *type = m->private;
1467	struct memblock_region *reg;
1468	int i;
1469
1470	for (i = 0; i < type->cnt; i++) {
1471		reg = &type->regions[i];
1472		seq_printf(m, "%4d: ", i);
1473		if (sizeof(phys_addr_t) == 4)
1474			seq_printf(m, "0x%08lx..0x%08lx\n",
1475				   (unsigned long)reg->base,
1476				   (unsigned long)(reg->base + reg->size - 1));
1477		else
1478			seq_printf(m, "0x%016llx..0x%016llx\n",
1479				   (unsigned long long)reg->base,
1480				   (unsigned long long)(reg->base + reg->size - 1));
1481
1482	}
1483	return 0;
1484}
1485
1486static int memblock_debug_open(struct inode *inode, struct file *file)
1487{
1488	return single_open(file, memblock_debug_show, inode->i_private);
1489}
1490
1491static const struct file_operations memblock_debug_fops = {
1492	.open = memblock_debug_open,
1493	.read = seq_read,
1494	.llseek = seq_lseek,
1495	.release = single_release,
1496};
1497
1498static int __init memblock_init_debugfs(void)
1499{
1500	struct dentry *root = debugfs_create_dir("memblock", NULL);
1501	if (!root)
1502		return -ENXIO;
1503	debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1504	debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1505
1506	return 0;
1507}
1508__initcall(memblock_init_debugfs);
1509
1510#endif /* CONFIG_DEBUG_FS */